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What does the division of labor look like - where are the
interfaces? (with regard to representation, with regard to
inference, etc.)
Current models seem to couple the formal and distributional
aspects loosely rather than opting for a unified single model: is
that reasonable?
At first glance, current models look rather scattered with no
common aim or method. What do they have in common?
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WG Formal (Erk/Pado) (3)

Next steps for combined formal and distributional semantic
models

What phenomena should such models aim to cover?
What general architecture should they use?
What are the most pressing open questions?
What should/will happen with the current “zoo” of models in
a couple of years?
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Will focus on reference: anaphora, definite descriptions etc.

Is there a distributed-representation way of modeling reference
or should this be left to formal semantics?

Not a topic: how distributed semantics can be a component
in, say, coreference resolution systems.

Memory?

Presentation of computational models: Baroni, Blunsom,
Mikolov, . . .

Are anaphora variables and does that mean we have a
neural/distributed binding problem?
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How do we represent the broader discourse context and the
entities it defines in DS?

How do we build such discourse representations
compositionally and dynamically?

How do we learn a reference-aware DS model from the data?
From which data?

How do we represent sentences that are “referring” in DS?

Actually, is representing sentences the right approach or do
alternatives exist in which our DS model represents the
subpart of discourse context that is necessary to interpret
subsequent discourse, but does not represent sentences as
vectors?
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Natural language knowledge representation (KR) /
natural language knowledge base (KB)

Vision: a kind of knowledge graph, but the nodes are
propositions, not entities

Which propositions to represent and how to represent them,
including their internal structure?

Merging information across NL propositions

Relations between different propositions (e.g., causality)

Inference mechanisms over knowledge representations

Use cases and applications (e.g., question answering)
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Is this a semantic net and if not, what is different?

How can propositions be recognized in text?

The role of distributional semantics in merging information
across propositions

Does it scale? O(n2) comparisons for n nodes

Event coreference may be crucial:
relationship to Martha Palmer’s ERE?

What is the best way of taking into account context for
recognizing propositions in text, for merging them and for
event coreference?
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WG KR (Dagan/Riedel): Targeted deliverables

Initial specification of a largely new research area
(position-paper style)

Concrete component task specifications

A set of analyzed/annotated examples
(serving the other deliverables)
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WG Sentence (Clark/Dinu)

Starting point

Neural network-based machine translation models are providing
competitive results compared to the state-of-the-art in phrase- and
syntax-based SMT, and at the heart of the neural MT model is a
vector-based representation of sentences which effectively acts as
an interlingua. The relative success of neural MT models is
somewhat puzzling, and raises a number of questions.
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Sentence vectors in neural MT models not only represent the
source-side sentence; they are also used to generate the target
side. Limitations in NLG when the input is a vector?

Are there problems in natural language semantics, e.g.
quantification, which cannot be solved using vector
representations? Should we be trying to solve all of semantics
using neural networks?

Can vector-based representations be usefully extended beyond
sentences, e.g. to represent elements of discourse?
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Instructions to Rapporteurs (1)

The reporting session for your working group has a length of
45 minutes.

Two reporting sessions are Wednesday, 11:00-12:30,
two Friday, 09:00-10:30

You probably want to leave some time for discussion,
but it’s up to you.

One person or several people can report.

Each WG should answer the MIC-specific questions (first
block below).

The other two blocks (“general questions”, “detailed
questions”) are intended to help you with the report, but you
don’t have to address them.
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Instructions to Rapporteurs (2)

Key results of your working group

Fundamental research questions / research problems that you
identified

Points of agreement / points of disagreement

New ideas / new approaches / new insights you want to share
with the plenum

What has changed in the two years since Dagstuhl?

In which areas do you see most interesting work happening in
the next two years?
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Instructions to Rapporteurs (3)

What is the relation between formal semantics and
distributional semantics? Joint or separate? One a component
of the other? Division of labor?

(Updated) Dagstuhl questions from 2013

Hardest problems for formal semantics that distributional
semantics can handle well
Hardest problems for distributional semantics that formal
semantics can handle well
Compositionality
Dynamics in the sense of dynamic semantics like DRT

Shared tasks?

Any planned publications?

Other follow-up activities
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Devote some time to discussing them

Should be easy for WGs Dynamic and Sentence

Also for Formal? “Next steps for combined formal and
distributional semantic models”

More tricky for KR? “Best way of taking into account context
for recognizing propositions in text, for merging them and for
event coreference?”

There should be some synergy between working groups –
don’t organize your working group as an isolated event that is
not related to the rest of MIC.
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Questions? Comments?
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