
Module 9
The CIS error profiling technology

Florian Fink

Centrum für Informations- und Sprachverarbeitung (CIS)
Ludwig-Maximilians-Universität München (LMU)

2015-09-15

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 1 / 24

https://creativecommons.org/licenses/by-nc-sa/4.0/

Introduction to postcorrection

Introduction to postcorrection

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 2 / 24

Introduction to postcorrection

OCR on historical documents

Even state-of-the-art OCR engines introduce detection errors to the
digitalization process.
The detection rate of OCR engines on historical documents is in general worse
than on modern documents due to:

bad quality of the original documents
bad quality of the scans
unusual fonts
unusual characters
historical spelling

For a later scientific work on the documents, the results of the digitalization
must be further improved
The results of the OCR must be manually verified and corrected

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 3 / 24

Introduction to postcorrection

Error detection

Modern word processors support include powerful spellchecker to help the user
to produce (mostly) error-free text

They detect misspelled words and mark them in the text
They automatically generate a list of corrections for the user

Error correction systems use dictionaries in order to detect misspelled words and
to generate correction lists
Through the inclusion of a word context, even correct dictionary entries in a
wrong context can be detected

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 4 / 24

Introduction to postcorrection

The spell checker poem

The spell checker poem shows the weakness of word based error detection without
context:

I have a spelling checker
It came with my PC
It highlights for my review
Mistakes I cannot sea.

I ran this poem thru it
I’m sure your pleased to no
Its letter perfect in it’s weigh
My checker told me sew.

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 5 / 24

http://grammar.about.com/od/spelling/a/spellcheck.htm

Introduction to postcorrection

Error detection on OCRed historical documents

Spellchecker as used in word processors can be used to detect misspelled words.
They need at least dictionary of the document’s language
A language model of the document further improves the error detection.
For historical documents dictionaries and language models are scarce
The OCR further complicates the detection errors into the documents:

is a unknown word a historical spelling variant?
was the unknown word introduced by a erroneous character recognition?
do both factors overlap?

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 6 / 24

Basic error detection and correction

Basic error detection and correction

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 7 / 24

Basic error detection and correction

Word based error detection and correction

Given a dictionary of all words in a language the spell checker searches every word in
the dictionary

If an according dictionary entry is found, the word is correct
If an according dictionary entry is not found, the word is marked as a possible
error

Each word of the dictionary is compared to the misspelled word
Dictionary entries that are similar to this word are selected
The selected dictionary entries are provided as correction suggestions for the
misspelled word.

To compare words different kinds of word distance measures – like the
Levenshtein distance are used.

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 8 / 24

Basic error detection and correction

Levenshtein distance

The Levenshtein distance is a common metric to measure the distance between
two words.
It is defined as the minimal number of character level edits that convert one word
into another.
Character level edits include:

Substitution of one character to another
Insertion of one character
Deletion of one character

For example the Levenshtein distance between kitten and sitting is 3:

kitten → sitting (substitution of k with s)
sitten → sitting (substitution of e with i)
sittin → sitting (insertion of g at the end)

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 9 / 24

https://en.wikipedia.org/wiki/Levenshtein_distance

Basic error detection and correction

Context sensitive error detection

The context of words is represented, using so-called N-Gram language models
for the different languages.
N-Gram models count overlapping sequences of N words in big language
corpora to calculate the probability of word contexts.
These probabilities are then used to identify unlikely word sequences in the
input documents.

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 10 / 24

The language profiler

The language profiler

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 11 / 24

The language profiler

Overview

Dictionaries and language models for historical languages are scarce.
They are needed to do error detection and correction on OCRed historical
documents, though.
The language profiler detects errors and generates correction suggestions for
misspelled words.
It mainly just needs a modern dictionary and a list of spelling patterns to work.
The profiler can be supplied over the web as web service.
The profiler and the profiler web service are is documented in the profiler
manual.

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 12 / 24

https://github.com/cisocrgroup/Resources/tree/master/manuals/profiler-manual.md
https://github.com/cisocrgroup/Resources/tree/master/manuals/profiler-manual.md

The language profiler

Language profiles

As any spellchecker, the profiler must be configured for a specific language – the
so-called language profile. You can generate such language profiles for your
documents. You will need:

At least one dictionary of modern words
A list of patterns that describe the differences between modern spelled and
historical spelled words
A (small) historical ground truth training file

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 13 / 24

The language profiler

Basic workings

For any given language profile and input file, the profiler identifies unknown
words using:

the modern dictionary of the language profile.
hints from the OCR engine in the input document.

To find correction suggestions, it uses the Levenshtein distance of misspelled
words and dictionary entries.
For all unknown words in the input, it tries then to apply pattern rules to
generate valid dictionary entries and calculates the weights for the different
patterns.
It iterative optimizes these weight calculations onto the whole document.
It gives out a list of the most common pattern encountered in the document
It gives out the input document augmented with a list of correction suggestions.

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 14 / 24

Getting your hands dirty

Getting your hands dirty

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 15 / 24

Getting your hands dirty

Overview

I will give you just the basics here – You should read the documentation if you
intend to use the profiler.
The profiler is developed on/for the Linux Operation System – you should have
access to such an OS.
The profiler is a command line tool – you should be able to use the command
line.
The profiler is not provided in a package but as source code – you should be able
to use a C++ compiler and the make utility.
The profiler relies on external tools an libraries – you should be able to install
these requirements accordingly.

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 16 / 24

https://github.com/cisocrgroup/Resources/tree/master/manuals/profiler-manual.md

Getting your hands dirty

Installing the profiler

The source profiler is available through its github repository
You will need a C++ compiler the additional Xerces-c XML, java and boost
libraries on your system.
Compile the source code of the profiler using make on the provided Makefile
Install the profiler and its additional tools locally to your home directory.
The installation will install:

The profiler executable profiler
The dictionary compiler compileFBDIC
The language profile training executable trainFrequencyList

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 17 / 24

https://github.com/cisocrgroup/Profiler

Getting your hands dirty

Building a language profile

You need one (sorted) modern dictionary, one pattern file and one historical
training file
Compile your dictionary:
$ compileFBDIC dict.txt dict.fbdic

generate the language profile configuration file:
$ profiler --generateConfig > language-profile.ini

edit the configuration according to the documentation in the profiler manual
and add your compiled dictionary
generate the initial weights for your language model:
$ trainFrequencyList --config language-profile.ini

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 18 / 24

https://github.com/cisocrgroup/Resources/tree/master/manuals/profiler-manual.md

Getting your hands dirty

The pattern file

each line represents exactly one pattern rule
each pattern rule consists of a
modern pattern (left side)
and a historical pattern (right side)
ä:ae
ü:ue
ö:oe
ss:s
u:v
n:nn
ß:s
ss:ß
f:ff
...

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 19 / 24

Getting your hands dirty

Using the profiler

To use the the profiler on a plain text file use the command:
$ profiler --config language-profile.ini --sourceFile input.txt \

--sourceFormat TXT --out_doc output.xml

The profiler understands different input file formats:
$ profiler --config language-profile.ini --sourceFile input.xml \
--sourceFormat DocXML --out_doc output.xml

The profiler produces different output files (at once):
$ profiler [...] --out_doc output.xml --out_xml corrections.xml \

--out_html overview.html

See the profiler manual for all possible command line options

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 20 / 24

https://github.com/cisocrgroup/Resources/tree/master/manuals/profiler-manual.md

Getting your hands dirty

Input and output file formats

The profiler understands among others two different input formats:

The format --sourceFormat TXT specifies plain text files.
The format --sourceFormat DocXML specifies DocXML (AbbyyXML)
formatted files.

The profiler can produce three different output formats:

The --out_doc option generates an output of your document in a format that
PoCoTo uses.
The --out_xml option generates a profile file, that contains the correction
suggestions.
The --out_html option generates a nice HTML file that displays the
document, the errors and the correction suggestions.

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 21 / 24

https://github.com/cisocrgroup/Resources/tree/master/manuals/pocoto-manual.md

Getting your hands dirty

The DocOut format

<!-- [...] -->
<token token_id=”16” isNormal=”true”>

<ext_id>18</ext_id>
<wOCR>Bibliothec</wOCR>
<wOCR_lc>bibliothec</wOCR_lc>
<wCorr></wCorr>
<cand>Bibliotheca:{bibliotheca+[]}+ocr[(a:,10)],voteWeight=0.984376,\

levDistance=1</cand>
<cand>Bibliothece:{bibliothece+[]}+ocr[(e:,10)],voteWeight=0.0156243,\

levDistance=1</cand>
<cand>Bibliotheces:{bibliotheces+[]}+ocr[(c:,9)(es:c,10)],\

voteWeight=2.99037e-27,levDistance=2</cand>
<coord l=”761” t=”481” r=”1413” b=”557”/>
<abbyy_suspicious value=”true”/>

</token>
<!-- [...] -->

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 22 / 24

Getting your hands dirty

The profile_out format
<!-- [...] -->
<dictionary_distribution>
<item dict=”dict_modernexact” frequency=”13978” proportion=”0.65385”/>
<item dict=”dict_modernhypotheticerror” frequency=”7399.75”

proportion=”0.346138”/>
</dictionary_distribution>
<spelling_variants>
<pattern left=”iu” right=”ju” pat_string=”iu_ju” relFreq=”0.236162”

absFreq=”251.729”/>
<pattern left=”e” right=”ae” pat_string=”e_ae” relFreq=”0.000882386”

absFreq=”13.2681”/>
</spelling_variants>
<ocr_errors>
<pattern left=”s” right=”f” pat_string=”s_f” relFreq=”0.372328”

absFreq=”3248.2”>
<pattern_occurrences>
<type wOCR_lc=”poteftate” wSuggest=”potestate” freq=”9”/>
<type wOCR_lc=”nobiliflimum” wSuggest=”nobilissimum” freq=”1”/>
<type wOCR_lc=”duriflimis” wSuggest=”durissimis” freq=”1”/>

<!-- [...] -->
Florian Fink Module 9 The CIS error profiling technology 2015-09-15 23 / 24

Thanks for your attention!

Thanks for your attention!

Florian Fink Module 9 The CIS error profiling technology 2015-09-15 24 / 24

	Introduction to postcorrection
	Basic error detection and correction
	The language profiler
	Getting your hands dirty

