Overview

1. Recap
2. Compression
3. Term statistics
4. Dictionary compression
5. Postings compression
Outline

1 Recap

2 Compression

3 Term statistics

4 Dictionary compression

5 Postings compression
Blocked Sort-Based Indexing

postings to be merged

- brutus d3
- caesar d4
- noble d3
- with d4

merged postings

- brutus d2
- brutus d3
- caesar d1
- caesar d4
- julius d1
- killed d2
- noble d3
- with d4

disk
Single-pass in-memory indexing

- Abbreviation: SPIMI
- Key idea 1: Generate separate dictionaries for each block – no need to maintain term-termID mapping across blocks.
- Key idea 2: Don’t sort. Accumulate postings in postings lists as they occur.
- With these two ideas we can generate a complete inverted index for each block.
- These separate indexes can then be merged into one big index.
SPIMI-Invert

SPIMI-Invert(token_stream)

1. output_file ← NewFile()
2. dictionary ← NewHash()
3. while (free memory available)
4. do token ← next(token_stream)
5. if term(token) ∉ dictionary
6. then postings_list ← AddToDictionary(dictionary, term(token))
7. else postings_list ← GetPostingsList(dictionary, term(token))
8. if full(postings_list)
9. then postings_list ← DoublePostingsList(dictionary, term(token))
10. AddToPostingsList(postings_list, docID(token))
11. sorted_terms ← SortTerms(dictionary)
12. WriteBlockToDisk(sorted_terms, dictionary, output_file)
13. return output_file
MapReduce for index construction
Dynamic indexing: Simplest approach

- Maintain big main index on disk
- New docs go into small auxiliary index in memory.
- Search across both, merge results
- Periodically, merge auxiliary index into big index
Take-away today

Motivation for compression in information retrieval systems

- How can we compress the dictionary component of the inverted index?
- How can we compress the postings component of the inverted index?
- Term statistics: how are terms distributed in document collections?
Outline

1 Recap

2 Compression

3 Term statistics

4 Dictionary compression

5 Postings compression
Why compression? (in general)

- Use less disk space (saves money)
- Keep more stuff in memory (increases speed)
- Increase speed of transferring data from disk to memory (again, increases speed)
 - [read compressed data and decompress in memory] is faster than [read uncompressed data]
- Premise: Decompression algorithms are fast.
- This is true of the decompression algorithms we will use.
Why compression in information retrieval?

- First, we will consider space for dictionary
 - Main motivation for dictionary compression: make it small enough to keep in main memory
- Then for the postings file
 - Motivation: reduce disk space needed, decrease time needed to read from disk
 - Note: Large search engines keep significant part of postings in memory
- We will devise various compression schemes for dictionary and postings.
Lossy vs. lossless compression

- Lossy compression: Discard some information
- Several of the preprocessing steps we frequently use can be viewed as lossy compression:
 - downcasing, stop words, porter, number elimination
- Lossless compression: All information is preserved.
 - What we mostly do in index compression
Model collection: The Reuters collection

<table>
<thead>
<tr>
<th>symbol</th>
<th>statistic</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>documents</td>
<td>800,000</td>
</tr>
<tr>
<td>L</td>
<td>avg. # word tokens per document</td>
<td>200</td>
</tr>
<tr>
<td>M</td>
<td>word types</td>
<td>400,000</td>
</tr>
<tr>
<td></td>
<td>avg. # bytes per word token (incl. spaces/punct.)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>avg. # bytes per word token (without spaces/punct.)</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>avg. # bytes per word type</td>
<td>7.5</td>
</tr>
<tr>
<td>T</td>
<td>non-positional postings</td>
<td>100,000,000</td>
</tr>
</tbody>
</table>
Effect of preprocessing for Reuters

<table>
<thead>
<tr>
<th>Preprocessing</th>
<th>Word Types (terms)</th>
<th>Non-Positional Postings</th>
<th>Positional Postings (word tokens)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dictionary</td>
<td>Non-Positional Index</td>
<td>Positional Index</td>
</tr>
<tr>
<td></td>
<td>size</td>
<td>Δ cml</td>
<td>size</td>
</tr>
<tr>
<td>unfiltered</td>
<td>484,594</td>
<td>-2</td>
<td>109,971,179</td>
</tr>
<tr>
<td>no numbers</td>
<td>473,723</td>
<td>-2</td>
<td>100,680,242</td>
</tr>
<tr>
<td>case folding</td>
<td>391,523</td>
<td>-17</td>
<td>96,969,056</td>
</tr>
<tr>
<td>30 stopw’s</td>
<td>391,493</td>
<td>-0</td>
<td>83,390,443</td>
</tr>
<tr>
<td>150 stopw’s</td>
<td>391,373</td>
<td>-0</td>
<td>67,001,847</td>
</tr>
<tr>
<td>stemming</td>
<td>322,383</td>
<td>-17</td>
<td>63,812,300</td>
</tr>
</tbody>
</table>

Explain differences between numbers non-positional vs positional:

-3 vs -0, -14 vs -31, -30 vs -47, -4 vs -0
How big is the term vocabulary?

- That is, how many distinct words are there?
- Can we assume there is an upper bound?
- Not really: At least $70^{20} \approx 10^{37}$ different words of length 20.
- The vocabulary will keep growing with collection size.
- Heaps’ law: $M = kT^b$
- M is the size of the vocabulary, T is the number of tokens in the collection.
- Typical values for the parameters k and b are: $30 \leq k \leq 100$ and $b \approx 0.5$.
- Heaps’ law is linear in log-log space.
 - It is the simplest possible relationship between collection size and vocabulary size in log-log space.
 - Empirical law
Heaps’ law for Reuters

Vocabulary size M as a function of collection size T (number of tokens) for Reuters-RCV1. For these data, the dashed line $\log_{10} M = 0.49 \times \log_{10} T + 1.64$ is the best least squares fit. Thus, $M = 10^{1.64} T^{0.49}$ and $k = 10^{1.64} \approx 44$ and $b = 0.49$.
Empirical fit for Reuters

- Good, as we just saw in the graph.
- Example: for the first 1,000,020 tokens Heaps’ law predicts 38,323 terms:

\[44 \times 1,000,020^{0.49} \approx 38,323 \]

- The actual number is 38,365 terms, very close to the prediction.
- Empirical observation: fit is good in general.
Exercise

1. What is the effect of including spelling errors vs. automatically correcting spelling errors on Heaps’ law?

2. Compute vocabulary size M
 - Looking at a collection of web pages, you find that there are 3000 different terms in the first 10,000 tokens and 30,000 different terms in the first 1,000,000 tokens.
 - Assume a search engine indexes a total of 2×10^{10} pages, containing 200 tokens on average.
 - What is the size of the vocabulary of the indexed collection as predicted by Heaps’ law?
Now we have characterized the growth of the vocabulary in collections.
We also want to know how many frequent vs. infrequent terms we should expect in a collection.
In natural language, there are a few very frequent terms and very many very rare terms.
Zipf’s law: The i^{th} most frequent term has frequency cf_i proportional to $1/i$.
$cf_i \propto \frac{1}{i}$
cf_i is collection frequency: the number of occurrences of the term t_i in the collection.
Zipf’s law

- **Zipf’s law**: The i^{th} most frequent term has frequency proportional to $1/i$.
- $cf_i \propto \frac{1}{i}$
- cf is collection frequency: the number of occurrences of the term in the collection.
- So if the most frequent term (the) occurs cf_1 times, then the second most frequent term (of) has half as many occurrences $cf_2 = \frac{1}{2} cf_1$. . .
- . . . and the third most frequent term (and) has a third as many occurrences $cf_3 = \frac{1}{3} cf_1$ etc.
- Equivalent: $cf_i = ci^k$ and $\log cf_i = \log c + k \log i$ (for $k = -1$)
- Example of a power law
Fit is not great. What is important is the key insight: Few frequent terms, many rare terms.
Outline

1 Recap
2 Compression
3 Term statistics
4 Dictionary compression
5 Postings compression
Dictionary compression

- The dictionary is small compared to the postings file.
- But we want to keep it in memory.
- Also: competition with other applications, cell phones, onboard computers, fast startup time
- So compressing the dictionary is important.
Recall: Dictionary as array of fixed-width entries

<table>
<thead>
<tr>
<th>term</th>
<th>document frequency</th>
<th>pointer to postings list</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>656,265</td>
<td>→</td>
</tr>
<tr>
<td>aachen</td>
<td>65</td>
<td>→</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>zulu</td>
<td>221</td>
<td>→</td>
</tr>
</tbody>
</table>

Space needed: 20 bytes 4 bytes 4 bytes

for Reuters: \((20+4+4) \times 400,000 = 11.2\) MB
Fixed-width entries are bad.

- Most of the bytes in the term column are wasted.
 - We allot 20 bytes for terms of length 1.
- We can’t handle HYDROCHLOROFLUOROCARBONS and SUPERCALIFRAGILISTICEXPIALIDOCIOUS
- Average length of a term in English: 8 characters (or a little bit less)
- How can we use on average 8 characters per term?
Dictionary as a string

...systilesyzygeticsyzygialsyzygyszaibelyiteszecinszono...

freq. postings ptr. term ptr.
9 →
92 →
5 →
71 →
12 →
...
...
...
4 bytes 4 bytes 3 bytes
Space for dictionary as a string

- 4 bytes per term for frequency
- 4 bytes per term for pointer to postings list
- 8 bytes (on average) for term in string
- 3 bytes per pointer into string (need $\log_2 8 \cdot 400000 \leq 24$ bits to resolve $8 \cdot 400,000$ positions)

Space: $400,000 \times (4 + 4 + 3 + 8) = 7.6$MB (compared to 11.2 MB for fixed-width array)
Dictionary as a string with blocking

...7stile9syzygetic8syzygial6syzygy11szaibelyite6szecin...

freq. postings ptr. term ptr.
9 →
92 →
5 →
71 →
12 →
... →... →... →... →...
Space for dictionary as a string with blocking

- Example block size $k = 4$
- Where we used 4×3 bytes for term pointers without blocking
 ...
 ... we now use 3 bytes for one pointer plus 4 bytes for indicating the length of each term.
- We save $12 - (3 + 4) = 5$ bytes per block.
- Total savings: $400,000 / 4 \times 5 = 0.5$ MB
- This reduces the size of the dictionary from 7.6 MB to 7.1 MB.
Lookup of a term without blocking
Lookup of a term with blocking: (slightly) slower
Front coding

One block in blocked compression \((k = 4)\) . . .

8 automata 8 automate 9 automatic 10 automation

\[\downarrow\]

. . . further compressed with front coding.

8 automa ta 1 e 2 ic 3 ion
Dictionary compression for Reuters: Summary

<table>
<thead>
<tr>
<th>data structure</th>
<th>size in MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>dictionary, fixed-width</td>
<td>11.2</td>
</tr>
<tr>
<td>dictionary, term pointers into string</td>
<td>7.6</td>
</tr>
<tr>
<td>∼, with blocking, (k = 4)</td>
<td>7.1</td>
</tr>
<tr>
<td>∼, with blocking & front coding</td>
<td>5.9</td>
</tr>
</tbody>
</table>
Exercise

- Which prefixes should be used for front coding? What are the tradeoffs?
- Input: list of terms (= the term vocabulary)
- Output: list of prefixes that will be used in front coding
1. Recap
2. Compression
3. Term statistics
4. Dictionary compression
5. Postings compression
Postings compression

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use $\log_2 800,000 \approx 19.6 < 20$ bits per docID.
- Our goal: use a lot less than 20 bits per docID.
Key idea: Store gaps instead of docIDs

- Each postings list is ordered in increasing order of docID.
- Example postings list: `COMPUTER: 283154, 283159, 283202, ...
- It suffices to store gaps: 283159-283154=5, 283202-283159=43
- Example postings list using gaps: `COMPUTER: 283154, 5, 43, ...
- Gaps for frequent terms are small.
- Thus: We can encode small gaps with fewer than 20 bits.
Gap encoding

<table>
<thead>
<tr>
<th></th>
<th>encoding postings list</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>THE</td>
<td>docIDs: ...</td>
<td>283042</td>
<td>283043</td>
<td>283044</td>
<td>283045</td>
</tr>
<tr>
<td></td>
<td>gaps: 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>COMPUTER</td>
<td>docIDs: ...</td>
<td>283047</td>
<td>283154</td>
<td>283159</td>
<td>283202</td>
</tr>
<tr>
<td></td>
<td>gaps: 107, 5, 43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARACHNOCENTRIC</td>
<td>docIDs: 252000, 500100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gaps: 252000, 248100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Variable length encoding

- **Aim:**
 - For *ARACHNOCENTRIC* and other rare terms, we will use about 20 bits per gap (≡ posting).
 - For *THE* and other very frequent terms, we will use only a few bits per gap (≡ posting).

- In order to implement this, we need to devise some form of variable length encoding.

- Variable length encoding uses few bits for small gaps and many bits for large gaps.
Variable byte (VB) code

- Used by many commercial/research systems
- Good low-tech blend of variable-length coding and sensitivity to alignment matches (bit-level codes, see later).
- Dedicate 1 bit (high bit) to be a continuation bit \(c \).
- If the gap \(G \) fits within 7 bits, binary-encode it in the 7 available bits and set \(c = 1 \).
- Else: encode lower-order 7 bits and then use one or more additional bytes to encode the higher order bits using the same algorithm.
- At the end set the continuation bit of the last byte to 1 (\(c = 1 \)) and of the other bytes to 0 (\(c = 0 \)).
VB code examples

<table>
<thead>
<tr>
<th>docIDs</th>
<th>824</th>
<th>829</th>
<th>215406</th>
</tr>
</thead>
<tbody>
<tr>
<td>gaps</td>
<td>5</td>
<td>5</td>
<td>214577</td>
</tr>
<tr>
<td>VB code</td>
<td>00000110 10111000</td>
<td>10000101</td>
<td>00001101 00001100 10110001</td>
</tr>
</tbody>
</table>
VB code encoding algorithm

VBEncodeNumber(n)
1 \textit{bytes} \leftarrow \langle \rangle
2 \textbf{while} \ true
3 \textbf{do} \ \textbf{Prepend} \left(\textit{bytes}, n \mod 128 \right)
4 \quad \textbf{if} \ n < 128
5 \quad \quad \textbf{Break}
6 \quad n \leftarrow n \div 128
7 \textit{bytes}[\text{Length}(\textit{bytes})] += 128
8 \textbf{return} \ \textit{bytes}

VBEncode($\textit{numbers}$)
1 \textit{bytestream} \leftarrow \langle \rangle
2 \textbf{for each} \ n \in \textit{numbers}
3 \textbf{do} \ \textit{bytes} \leftarrow \text{VBEncodeNumber}(n)
4 \quad \textit{bytestream} \leftarrow \text{Extend}(\textit{bytestream}, \textit{bytes})
5 \textbf{return} \ \textit{bytestream}
VB code decoding algorithm

```
VBDecode(bytestream)
1   numbers ← ⟨⟩
2   n ← 0
3   for i ← 1 to LENGTH(bytestream)
4       do if bytestream[i] < 128
5           then n ← 128 × n + bytestream[i]
6       else n ← 128 × n + (bytestream[i] − 128)
7       Append(numbers, n)
8   n ← 0
9   return numbers
```
Other variable codes

- Instead of bytes, we can also use a different “unit of alignment”: 32 bits (words), 16 bits, 4 bits (nibbles) etc.
- Variable byte alignment wastes space if you have many small gaps – nibbles do better on those.
- There is work on word-aligned codes that efficiently “pack” a variable number of gaps into one word – see resources at the end.
Gamma codes for gap encoding

- You can get even more compression with another type of variable length encoding: **bitlevel** code.
- Gamma code is the best known of these.
- First, we need unary code to be able to introduce gamma code.

Unary code
- Represent \(n \) as \(n \) 1s with a final 0.
- Unary code for 3 is 1110
- Unary code for 40 is
 \[
 1110
 \]
- Unary code for 70 is:
 \[
 1110
 \]
Represent a gap G as a pair of length and offset.
Offset is the gap in binary, with the leading bit chopped off.
For example $13 \rightarrow 1101 \rightarrow 101 = \text{offset}$
Length is the length of offset.
For 13 (offset 101), this is 3.
Encode length in unary code: 1110.
Gamma code of 13 is the concatenation of length and offset: 1110101.
Gamma code examples

<table>
<thead>
<tr>
<th>number</th>
<th>unary code</th>
<th>length</th>
<th>offset</th>
<th>γ code</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10,0</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>10</td>
<td>0</td>
<td>10,1</td>
</tr>
<tr>
<td>3</td>
<td>1110</td>
<td>10</td>
<td>1</td>
<td>110,00</td>
</tr>
<tr>
<td>4</td>
<td>11110</td>
<td>110</td>
<td>00</td>
<td>1110,001</td>
</tr>
<tr>
<td>9</td>
<td>1111111110</td>
<td>1110</td>
<td>001</td>
<td>1110,101</td>
</tr>
<tr>
<td>13</td>
<td>1110</td>
<td>101</td>
<td></td>
<td>1110,1000</td>
</tr>
<tr>
<td>24</td>
<td>11110</td>
<td>1000</td>
<td></td>
<td>11110,1000</td>
</tr>
<tr>
<td>511</td>
<td>111111110</td>
<td>1111111</td>
<td>11111110,11111111</td>
<td></td>
</tr>
<tr>
<td>1025</td>
<td>1111111110</td>
<td>0000000001</td>
<td>1111111110,0000000001</td>
<td></td>
</tr>
</tbody>
</table>
Exercise

- Compute the variable byte code of 130
- Compute the gamma code of 130
Length of gamma code

- The length of offset is \(\lfloor \log_2 G \rfloor \) bits.
- The length of length is \(\lfloor \log_2 G \rfloor + 1 \) bits.
- So the length of the entire code is \(2 \times \lfloor \log_2 G \rfloor + 1 \) bits.
- \(\gamma \) codes are always of odd length.
- Gamma codes are within a factor of 2 of the optimal encoding length \(\log_2 G \).
 - (assuming the frequency of a gap \(G \) is proportional to \(\log_2 G \) – only approximately true)
Gamma code: Properties

- Gamma code (like variable byte code) is **prefix-free**: a valid code word is not a prefix of any other valid code.
- Encoding is optimal within a factor of 3 (and within a factor of 2 making additional assumptions).
- This result is independent of the distribution of gaps!
- We can use gamma codes for any distribution. Gamma code is **universal**.
- Gamma code is **parameter-free**.
Gamma codes: Alignment

- Machines have word boundaries – 8, 16, 32 bits
- Compressing and manipulating at granularity of bits can be slow.
- Variable byte encoding is aligned and thus potentially more efficient.
- Regardless of efficiency, variable byte is conceptually simpler at little additional space cost.
Compression of Reuters

<table>
<thead>
<tr>
<th>data structure</th>
<th>size in MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>dictionary, fixed-width</td>
<td>11.2</td>
</tr>
<tr>
<td>dictionary, term pointers into string</td>
<td>7.6</td>
</tr>
<tr>
<td>∼, with blocking, $k = 4$</td>
<td>7.1</td>
</tr>
<tr>
<td>∼, with blocking & front coding</td>
<td>5.9</td>
</tr>
<tr>
<td>collection (text, xml markup etc)</td>
<td>3600.0</td>
</tr>
<tr>
<td>collection (text)</td>
<td>960.0</td>
</tr>
<tr>
<td>T/D incidence matrix</td>
<td>40,000.0</td>
</tr>
<tr>
<td>postings, uncompressed (32-bit words)</td>
<td>400.0</td>
</tr>
<tr>
<td>postings, uncompressed (20 bits)</td>
<td>250.0</td>
</tr>
<tr>
<td>postings, variable byte encoded</td>
<td>116.0</td>
</tr>
<tr>
<td>postings, γ encoded</td>
<td>101.0</td>
</tr>
</tbody>
</table>
Term-document incidence matrix

<table>
<thead>
<tr>
<th></th>
<th>Anthony and Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHONY</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BRUTUS</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CAESAR</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CALPURNIA</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CLEOPATRA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MERCY</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WORSER</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

...
Entry is 1 if term occurs. Example: **Calpurnia** occurs in *Julius Caesar*. Entry is 0 if term doesn’t occur. Example: **Calpurnia** doesn’t occur in *The tempest*.
Compression of Reuters

<table>
<thead>
<tr>
<th>data structure</th>
<th>size in MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>dictionary, fixed-width</td>
<td>11.2</td>
</tr>
<tr>
<td>dictionary, term pointers into string</td>
<td>7.6</td>
</tr>
<tr>
<td>∼, with blocking, $k = 4$</td>
<td>7.1</td>
</tr>
<tr>
<td>∼, with blocking & front coding</td>
<td>5.9</td>
</tr>
<tr>
<td>collection (text, xml markup etc)</td>
<td>3600.0</td>
</tr>
<tr>
<td>collection (text)</td>
<td>960.0</td>
</tr>
<tr>
<td>T/D incidence matrix</td>
<td>40,000.0</td>
</tr>
<tr>
<td>postings, uncompressed (32-bit words)</td>
<td>400.0</td>
</tr>
<tr>
<td>postings, uncompressed (20 bits)</td>
<td>250.0</td>
</tr>
<tr>
<td>postings, variable byte encoded</td>
<td>116.0</td>
</tr>
<tr>
<td>postings, γ encoded</td>
<td>101.0</td>
</tr>
</tbody>
</table>
Summary

- We can now create an index for highly efficient Boolean retrieval that is very space efficient.
- Only 10-15% of the total size of the text in the collection.
- However, we’ve ignored positional and frequency information.
- For this reason, space savings are less in reality.
Take-away today

- Motivation for compression in information retrieval systems
- How can we compress the **dictionary** component of the inverted index?
- How can we compress the **postings** component of the inverted index?
- Term statistics: how are terms distributed in document collections?
Resources

- Chapter 5 of IIR
- Resources at http://cislmu.org
 - Original publication on word-aligned binary codes by Anh and Moffat (2005); also: Anh and Moffat (2006a)
 - Original publication on variable byte codes by Scholer, Williams, Yiannis and Zobel (2002)
 - More details on compression (including compression of positions and frequencies) in Zobel and Moffat (2006)