Introduction to Information Retrieval
http://informationretrieval.org

IIR 15-2: Learning to Rank

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2011-06-05
Overview

1. Recap
2. Zone scoring
3. Machine-learned scoring
4. Ranking SVMs
Outline

1. Recap
2. Zone scoring
3. Machine-learned scoring
4. Ranking SVMs
A linear classifier in 3D is a plane described by the equation
\[w_1 d_1 + w_2 d_2 + w_3 d_3 = \theta \]
Example for a 3D linear classifier
Points \((d_1, d_2, d_3)\) with
\[w_1 d_1 + w_2 d_2 + w_3 d_3 \geq \theta \]
are in the class \(c\).
Points \((d_1, d_2, d_3)\) with
\[w_1 d_1 + w_2 d_2 + w_3 d_3 < \theta \]
are in the complement class \(\overline{c}\).
A linear classifier in 3D is a plane described by the equation:

\[w_1 d_1 + w_2 d_2 + w_3 d_3 = \theta \]

Example for a 3D linear classifier:

- Points \((d_1, d_2, d_3)\) with \(w_1 d_1 + w_2 d_2 + w_3 d_3 \geq \theta\) are in the class \(c\).

- Points \((d_1, d_2, d_3)\) with \(w_1 d_1 + w_2 d_2 + w_3 d_3 < \theta\) are in the complement class \(\overline{c}\).
A linear classifier in 3D is a plane described by the equation
\[w_1 d_1 + w_2 d_2 + w_3 d_3 = \theta \]

- Example for a 3D linear classifier
- Points \((d_1, d_2, d_3)\) with \(w_1 d_1 + w_2 d_2 + w_3 d_3 \geq \theta\) are in the class \(c\).
- Points \((d_1, d_2, d_3)\) with \(w_1 d_1 + w_2 d_2 + w_3 d_3 < \theta\) are in the complement class \(\overline{c}\).
Linear classifiers

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, least squares regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane
 - Huge differences in performance on test documents
Support vector machines

- Binary classification problem
- Simple SVMs are linear classifiers.
- Criterion: being maximally far away from any data point determines classifier **margin**
- Linear separator position defined by support vectors

- Maximum margin decision hyperplane
- Support vectors
- Margin is maximized
Optimization problem solved by SVMs

Find \(\vec{w} \) and \(b \) such that:

1. \(\frac{1}{2} \vec{w}^T \vec{w} \) is minimized (because \(|\vec{w}| = \sqrt{\vec{w}^T \vec{w}} \)), and
2. for all \(\{(\vec{x}_i, y_i)\} \), \(y_i (\vec{w}^T \vec{x}_i + b) \geq 1 \)
Which machine learning method to choose

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance.

Factors to take into account:
- How much training data is available?
- How simple/complex is the problem? (linear vs. nonlinear decision boundary)
- How noisy is the problem?
- How stable is the problem over time?
 - For an unstable problem, it’s better to use a simple and robust classifier.
Take-away today
Basic idea of learning to rank (LTR): We use machine learning to learn the relevance score (retrieval status value) of a document with respect to a query.
Basic idea of learning to rank (LTR): We use machine learning to learn the relevance score (retrieval status value) of a document with respect to a query.

Zone scoring: a particularly simple instance of LTR
Basic idea of learning to rank (LTR): We use machine learning to learn the relevance score (retrieval status value) of a document with respect to a query.

Zone scoring: a particularly simple instance of LTR

Machine-learned scoring as a general approach to ranking
Take-away today

- Basic idea of learning to rank (LTR): We use machine learning to learn the relevance score (retrieval status value) of a document with respect to a query.
- Zone scoring: a particularly simple instance of LTR
- Machine-learned scoring as a general approach to ranking
- Ranking SVMs
Outline

1 Recap
2 Zone scoring
3 Machine-learned scoring
4 Ranking SVMs
Main idea
Main idea

- The aim of term weights (e.g., tf-idf) is to measure term salience.
Main idea

- The aim of term weights (e.g., tf-idf) is to measure term salience.
 - The sum of term weights is a measure of the relevance of a document to a query and the basis for ranking.
Main idea

- The aim of term weights (e.g., tf-idf) is to measure term salience.
 - The sum of term weights is a measure of the relevance of a document to a query and the basis for ranking.
- Now we view this ranking problem as a machine learning problem – we will learn the weighting or, more generally, the ranking.
Main idea

- The aim of term weights (e.g., tf-idf) is to measure term salience.
 - The sum of term weights is a measure of the relevance of a document to a query and the basis for ranking.
- Now we view this ranking problem as a machine learning problem – we will learn the weighting or, more generally, the ranking.
 - Term weights can be learned using training examples that have been judged.
Main idea

- The aim of term weights (e.g., tf-idf) is to measure term salience.
 - The sum of term weights is a measure of the relevance of a document to a query and the basis for ranking.
- Now we view this ranking problem as a machine learning problem – we will learn the weighting or, more generally, the ranking.
 - Term weights can be learned using training examples that have been judged.
- This methodology falls under a general class of approaches known as machine learned relevance or learning to rank.
Learning weights
Learning weights

Main methodology

- Given a set of training examples, each of which is a tuple of:
 a query q, a document d, a relevance judgment for d on q
Main methodology

- Given a set of **training examples**, each of which is a tuple of:
 - a query q, a document d, a relevance judgment for d on q
 - Simplest case: $R(d, q)$ is either relevant (1) or nonrelevant (0)
Main methodology

- Given a set of training examples, each of which is a tuple of:
 - a query q, a document d, a relevance judgment for d on q
 - Simplest case: $R(d, q)$ is either relevant (1) or nonrelevant (0)
 - More sophisticated cases: graded relevance judgments
Learning weights

Main methodology

- Given a set of training examples, each of which is a tuple of: a query q, a document d, a relevance judgment for d on q
 - Simplest case: $R(d, q)$ is either relevant (1) or nonrelevant (0)
 - More sophisticated cases: graded relevance judgments
- Learn weights from these examples, so that the learned scores approximate the relevance judgments in the training examples
Binary independence model (BIM)
Binary independence model (BIM)

- Is what BIM does a form of learning to rank?
Binary independence model (BIM)

- Is what BIM does a form of learning to rank?
- Recap BIM:
Is what BIM does a form of learning to rank?
Recap BIM:
- Estimate classifier of probability of relevance on training set
Binary independence model (BIM)

- Is what BIM does a form of learning to rank?
- Recap BIM:
 - Estimate classifier of probability of relevance on training set
 - Apply to all documents
Binary independence model (BIM)

- Is what BIM does a form of learning to rank?
- Recap BIM:
 - Estimate classifier of probability of relevance on training set
 - Apply to all documents
 - Rank documents according to probability of relevance
Learning to rank vs. Text classification
Learning to rank vs. Text classification

- Both are machine learning approaches
Learning to rank vs. Text classification

- Both are machine learning approaches
- Text classification, BIM and relevance feedback (if solved by text classification) are query-specific.
Both are machine learning approaches

- Text classification, BIM and relevance feedback (if solved by text classification) are query-specific.
 - We need a query-specific training set to learn the ranker.
Learning to rank vs. Text classification

- Both are machine learning approaches
- Text classification, BIM and relevance feedback (if solved by text classification) are query-specific.
 - We need a query-specific training set to learn the ranker.
 - We need to learn a new ranker for each query.
Learning to rank vs. Text classification

- Both are machine learning approaches
- Text classification, BIM and relevance feedback (if solved by text classification) are \textit{query-specific}.
 - We need a query-specific training set to learn the ranker.
 - We need to learn a new ranker for each query.
- Learning to rank usually refers to \textit{query-independent} ranking.
Learning to rank vs. Text classification

- Both are machine learning approaches
- Text classification, BIM and relevance feedback (if solved by text classification) are query-specific.
 - We need a query-specific training set to learn the ranker.
 - We need to learn a new ranker for each query.
- Learning to rank usually refers to query-independent ranking.
- We learn a single classifier.
Learning to rank vs. Text classification

- Both are machine learning approaches
- Text classification, BIM and relevance feedback (if solved by text classification) are query-specific.
 - We need a query-specific training set to learn the ranker.
 - We need to learn a new ranker for each query.
- Learning to rank usually refers to query-independent ranking.
- We learn a single classifier.
- We can then rank documents for a query that we don’t have any relevance judgments for.
Learning to rank: Exercise
Learning to rank: Exercise

- One approach to learning to rank is to represent each query-document pair as a data point, represented as a vector.
Learning to rank: Exercise

- One approach to learning to rank is to represent each query-document pair as a data point, represented as a vector.
- We have two classes.
Learning to rank: Exercise

- One approach to learning to rank is to represent each query-document pair as a data point, represented as a vector.
- We have two classes.
 - Class 1: the document is relevant to the query.
Learning to rank: Exercise

- One approach to learning to rank is to represent each query-document pair as a data point, represented as a vector.
- We have two classes:
 - Class 1: the document is relevant to the query.
 - Class 2: the document is not relevant to the query.
Learning to rank: Exercise

- One approach to learning to rank is to represent each query-document pair as a data point, represented as a vector.
- We have two classes.
 - Class 1: the document is relevant to the query.
 - Class 2: the document is not relevant to the query.
- This is a standard classification problem, except that the data points are query-document pairs (as opposed to documents).
Learning to rank: Exercise

- One approach to learning to rank is to represent each query-document pair as a data point, represented as a vector.
- We have two classes.
 - Class 1: the document is relevant to the query.
 - Class 2: the document is not relevant to the query.
- This is a standard classification problem, except that the data points are query-document pairs (as opposed to documents).
- Documents are ranked according to probability of relevance of corresponding query-document pairs.
One approach to learning to rank is to represent each query-document pair as a data point, represented as a vector.

We have two classes.
- Class 1: the document is relevant to the query.
- Class 2: the document is not relevant to the query.

This is a standard classification problem, except that the data points are query-document pairs (as opposed to documents).

Documents are ranked according to probability of relevance of corresponding query-document pairs.

What features/dimensions would you use to represent a query-document pair?
Simple form of learning to rank: Zone scoring
Simple form of learning to rank: Zone scoring

- Given: a collection where documents have three zones (a.k.a. fields): author, title, body
Simple form of learning to rank: Zone scoring

- Given: a collection where documents have three zones (a.k.a. fields): author, title, body
- Weighted zone scoring requires a separate weight for each zone, e.g. g_1, g_2, g_3
Simple form of learning to rank: Zone scoring

- Given: a collection where documents have three zones (a.k.a. fields): author, title, body
- Weighted zone scoring requires a separate weight for each zone, e.g. g_1, g_2, g_3
- Not all zones are equally important:
 - e.g. author $< title < body$
 - $g_1 = 0.2$, $g_2 = 0.3$, $g_3 = 0.5$ (so that they add up to 1)
Simple form of learning to rank: Zone scoring

- Given: a collection where documents have three zones (a.k.a. fields): author, title, body
- Weighted zone scoring requires a separate weight for each zone, e.g. g_1, g_2, g_3
- Not all zones are equally important:
 - e.g. author $<$ title $<$ body
 - $\rightarrow g_1 = 0.2, g_2 = 0.3, g_3 = 0.5$ (so that they add up to 1)
- Score for a zone $=$ 1 if the query term occurs in that zone, 0 otherwise (Boolean)
Simple form of learning to rank: Zone scoring

- Given: a collection where documents have three zones (a.k.a. fields): author, title, body
- Weighted zone scoring requires a separate weight for each zone, e.g. g_1, g_2, g_3
- Not all zones are equally important:
 - e.g. author < title < body
 - $g_1 = 0.2$, $g_2 = 0.3$, $g_3 = 0.5$ (so that they add up to 1)
- Score for a zone = 1 if the query term occurs in that zone, 0 otherwise (Boolean)

Example

Query term appears in title and body only
Document score: $(0.3 \cdot 1) + (0.5 \cdot 1) = 0.8$.

Schütze: Learning to rank
General form of weighted zone scoring
Given query q and document d, weighted zone scoring assigns to the pair (q, d) a score in the interval $[0,1]$ by computing a linear combination of document zone scores, where each zone contributes a value.

- Consider a set of documents, which have l zones
General form of weighted zone scoring

Given query \(q \) and document \(d \), weighted zone scoring assigns to the pair \((q, d) \) a score in the interval \([0,1]\) by computing a linear combination of document zone scores, where each zone contributes a value.

- Consider a set of documents, which have \(l \) zones
- Let \(g_1, ..., g_l \in [0,1] \), such that \(\sum_{i=1}^{l} g_i = 1 \)
General form of weighted zone scoring

Given query q and document d, weighted zone scoring assigns to the pair (q,d) a score in the interval $[0,1]$ by computing a linear combination of document zone scores, where each zone contributes a value.

- Consider a set of documents, which have l zones
- Let $g_1, ..., g_l \in [0,1]$, such that $\sum_{i=1}^{l} g_i = 1$
- For $1 \leq i \leq l$, let s_i be the Boolean score denoting a match (or non-match) between q and the i^{th} zone
Given query q and document d, weighted zone scoring assigns to the pair (q, d) a score in the interval $[0,1]$ by computing a linear combination of document zone scores, where each zone contributes a value.

- Consider a set of documents, which have l zones
- Let $g_1, \ldots, g_l \in [0,1]$, such that $\sum_{i=1}^{l} g_i = 1$
- For $1 \leq i \leq l$, let s_i be the Boolean score denoting a match (or non-match) between q and the i^{th} zone
 - $s_i = 1$ if a query term occurs in zone i, 0 otherwise
Given query q and document d, weighted zone scoring assigns to the pair (q, d) a score in the interval $[0,1]$ by computing a linear combination of document zone scores, where each zone contributes a value.

- Consider a set of documents, which have l zones
- Let $g_1, ..., g_l \in [0,1]$, such that $\sum_{i=1}^{l} g_i = 1$
- For $1 \leq i \leq l$, let s_i be the Boolean score denoting a match (or non-match) between q and the i^{th} zone
 - $s_i = 1$ if a query term occurs in zone i, 0 otherwise

Weighted zone score a.k.a ranked Boolean retrieval

Rank documents according to $\sum_{i=1}^{l} g_i s_i$
Learning weights in weighted zone scoring
Learning weights in weighted zone scoring

- Weighted zone scoring may be viewed as learning a linear function of the Boolean match scores contributed by the various zones.
Learning weights in weighted zone scoring

- Weighted zone scoring may be viewed as learning a linear function of the Boolean match scores contributed by the various zones.
- No free lunch: labor-intensive assembly of user-generated relevance judgments from which to learn the weights
Learning weights in weighted zone scoring

- Weighted zone scoring may be viewed as learning a linear function of the Boolean match scores contributed by the various zones.
- No free lunch: labor-intensive assembly of user-generated relevance judgments from which to learn the weights
 - Especially in a dynamic collection (such as the Web)
Learning weights in weighted zone scoring

- Weighted zone scoring may be viewed as learning a linear function of the Boolean match scores contributed by the various zones.
- No free lunch: labor-intensive assembly of user-generated relevance judgments from which to learn the weights
 - Especially in a dynamic collection (such as the Web)
 - Major search engines put considerable resources into creating large training sets for learning to rank.
Learning weights in weighted zone scoring

- Weighted zone scoring may be viewed as learning a linear function of the Boolean match scores contributed by the various zones.
- No free lunch: labor-intensive assembly of user-generated relevance judgments from which to learn the weights
 - Especially in a dynamic collection (such as the Web)
 - Major search engines put considerable resources into creating large training sets for learning to rank.
- Good news: once you have a large enough training set, the problem of learning the weights g_i reduces to a simple optimization problem.
Learning weights in weighted zone scoring: Simple case
Learning weights in weighted zone scoring: Simple case

- Let documents have two zones: title, body
Learning weights in weighted zone scoring: Simple case

- Let documents have two zones: title, body
- The weighted zone scoring formula we saw before:

\[\sum_{i=1}^{l} g_i s_i \]
Learning weights in weighted zone scoring: Simple case

- Let documents have two zones: title, body
- The weighted zone scoring formula we saw before:

\[
\sum_{i=1}^{l} g_i s_i
\]

- Given \(q, d, s_T(d, q) = 1 \) if a query term occurs in title, 0 otherwise; \(s_B(d, q) = 1 \) if a query term occurs in body, 0 otherwise
Learning weights in weighted zone scoring: Simple case

- Let documents have two zones: title, body
- The weighted zone scoring formula we saw before:
 \[
 \sum_{i=1}^{l} g_i s_i
 \]

- Given \(q, d, s_T(d, q) = 1 \) if a query term occurs in title, 0 otherwise; \(s_B(d, q) = 1 \) if a query term occurs in body, 0 otherwise
- We compute a score between 0 and 1 for each \((d, q)\) pair using \(s_T(d, q) \) and \(s_B(d, q) \) by using a constant \(g \in [0, 1] \):
 \[
 \text{score}(d, q) = g \cdot s_T(d, q) + (1 - g) \cdot s_B(d, q)
 \]
Learning weights: determine g from training examples
Learning weights: determine g from training examples

<table>
<thead>
<tr>
<th>Φ_j</th>
<th>d_j</th>
<th>q_j</th>
<th>s_T</th>
<th>s_B</th>
<th>$r(d_j, q_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux</td>
<td>1</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin</td>
<td>0</td>
<td>1</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>system</td>
<td>0</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>penguin</td>
<td>0</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_5</td>
<td>1741</td>
<td>kernel</td>
<td>1</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_6</td>
<td>2094</td>
<td>driver</td>
<td>0</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_7</td>
<td>3194</td>
<td>driver</td>
<td>1</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
</tbody>
</table>
Learning weights: determine g from training examples

<table>
<thead>
<tr>
<th>Example</th>
<th></th>
<th></th>
<th>s_T</th>
<th>s_B</th>
<th>$r(d_j, q_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux</td>
<td>1</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin</td>
<td>0</td>
<td>1</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>system</td>
<td>0</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>penguin</td>
<td>0</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_5</td>
<td>1741</td>
<td>kernel</td>
<td>1</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_6</td>
<td>2094</td>
<td>driver</td>
<td>0</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_7</td>
<td>3194</td>
<td>driver</td>
<td>1</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
</tbody>
</table>

Training examples: triples of the form $\Phi_j = (d_j, q_j, r(d_j, q_j))$
Learning weights: determine g from training examples

<table>
<thead>
<tr>
<th>Φ_j</th>
<th>d_j</th>
<th>q_j</th>
<th>s_T</th>
<th>s_B</th>
<th>$r(d_j, q_j)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux</td>
<td>1</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin</td>
<td>0</td>
<td>1</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>system</td>
<td>0</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>penguin</td>
<td>0</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_5</td>
<td>1741</td>
<td>kernel</td>
<td>1</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_6</td>
<td>2094</td>
<td>driver</td>
<td>0</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_7</td>
<td>3194</td>
<td>driver</td>
<td>1</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
</tbody>
</table>

- Training examples: triples of the form $\Phi_j = (d_j, q_j, r(d_j, q_j))$
- A given training document d_j and a given training query q_j are assessed by a human who decides $r(d_j, q_j)$ (either relevant or nonrelevant)
Learning weights: determine g from training examples

<table>
<thead>
<tr>
<th>Example</th>
<th>DocID</th>
<th>Query</th>
<th>s_T</th>
<th>s_B</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux</td>
<td>1</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin</td>
<td>0</td>
<td>1</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>system</td>
<td>0</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>penguin</td>
<td>0</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_5</td>
<td>1741</td>
<td>kernel</td>
<td>1</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_6</td>
<td>2094</td>
<td>driver</td>
<td>0</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_7</td>
<td>3194</td>
<td>driver</td>
<td>1</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
</tbody>
</table>
Learning weights: determine g from training examples

<table>
<thead>
<tr>
<th>Example</th>
<th>DocID</th>
<th>Query</th>
<th>s_T</th>
<th>s_B</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux</td>
<td>1</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin</td>
<td>0</td>
<td>1</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>system</td>
<td>0</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>penguin</td>
<td>0</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_5</td>
<td>1741</td>
<td>kernel</td>
<td>1</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_6</td>
<td>2094</td>
<td>driver</td>
<td>0</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_7</td>
<td>3194</td>
<td>driver</td>
<td>1</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
</tbody>
</table>

For each training example Φ_j we have Boolean values $s_T(d_j, q_j)$ and $s_B(d_j, q_j)$ that we use to compute a score:

$$\text{score}(d_j, q_j) = g \cdot s_T(d_j, q_j) + (1 - g) \cdot s_B(d_j, q_j)$$
Learning weights

- We compare this score \(\text{score}(d_j, q_j) \) with the human relevance judgment for the same query-document pair \((d_j, q_j)\).
We compare this score $score(d_j, q_j)$ with the human relevance judgment for the same query-document pair (d_j, q_j).

We define the error of the scoring function with weight g as

$$
\epsilon(g, \Phi_j) = (r(d_j, q_j) - score(d_j, q_j))^2
$$
Learning weights

- We compare this score $\text{score}(d_j, q_j)$ with the human relevance judgment for the same query-document pair (d_j, q_j).
- We define the error of the scoring function with weight g as
 \[
 \epsilon(g, \Phi_j) = (r(d_j, q_j) - \text{score}(d_j, q_j))^2
 \]
- Then, the total error of a set of training examples is given by
 \[
 \sum_j \epsilon(g, \Phi_j)
 \]
Learning weights

- We compare this score \(\text{score}(d_j, q_j) \) with the human relevance judgment for the same query-document pair \((d_j, q_j)\).
- We define the error of the scoring function with weight \(g \) as
 \[
 \epsilon(g, \Phi_j) = (r(d_j, q_j) - \text{score}(d_j, q_j))^2
 \]
- Then, the total error of a set of training examples is given by
 \[
 \sum_j \epsilon(g, \Phi_j)
 \]
- The problem of learning the constant \(g \) from the given training examples then reduces to picking the value of \(g \) that minimizes the total error.
Minimizing the total error ε: Example (1)
Minimizing the total error ε: Example (1)

Training examples

<table>
<thead>
<tr>
<th>Example</th>
<th>DocID</th>
<th>Query</th>
<th>s_T</th>
<th>s_B</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux</td>
<td>1</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin</td>
<td>0</td>
<td>1</td>
<td>0 (nonrelevant)</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>system</td>
<td>0</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>penguin</td>
<td>0</td>
<td>0</td>
<td>0 (nonrelevant)</td>
</tr>
<tr>
<td>Φ_5</td>
<td>1741</td>
<td>kernel</td>
<td>1</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_6</td>
<td>2094</td>
<td>driver</td>
<td>0</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_7</td>
<td>3194</td>
<td>driver</td>
<td>1</td>
<td>0</td>
<td>0 (nonrelevant)</td>
</tr>
</tbody>
</table>
Minimizing the total error ϵ: Example (1)

<table>
<thead>
<tr>
<th>Example</th>
<th>DocID</th>
<th>Query</th>
<th>s_T</th>
<th>s_B</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux</td>
<td>1</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin</td>
<td>0</td>
<td>1</td>
<td>0 (nonrelevant)</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>system</td>
<td>0</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>penguin</td>
<td>0</td>
<td>0</td>
<td>0 (nonrelevant)</td>
</tr>
<tr>
<td>Φ_5</td>
<td>1741</td>
<td>kernel</td>
<td>1</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_6</td>
<td>2094</td>
<td>driver</td>
<td>0</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_7</td>
<td>3194</td>
<td>driver</td>
<td>1</td>
<td>0</td>
<td>0 (nonrelevant)</td>
</tr>
</tbody>
</table>

Compute score:

$$score(d_j, q_j) = g \cdot s_T(d_j, q_j) + (1 - g) \cdot s_B(d_j, q_j)$$
Minimizing the total error ϵ: Example (1)

Training examples

<table>
<thead>
<tr>
<th>Example</th>
<th>DocID</th>
<th>Query</th>
<th>s_T</th>
<th>s_B</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux</td>
<td>1</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin</td>
<td>0</td>
<td>1</td>
<td>0 (nonrelevant)</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>system</td>
<td>0</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>penguin</td>
<td>0</td>
<td>0</td>
<td>0 (nonrelevant)</td>
</tr>
<tr>
<td>Φ_5</td>
<td>1741</td>
<td>kernel</td>
<td>1</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_6</td>
<td>2094</td>
<td>driver</td>
<td>0</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_7</td>
<td>3194</td>
<td>driver</td>
<td>1</td>
<td>0</td>
<td>0 (nonrelevant)</td>
</tr>
</tbody>
</table>

- Compute score:
 \[\text{score}(d_j, q_j) = g \cdot s_T(d_j, q_j) + (1 - g) \cdot s_B(d_j, q_j) \]

- Compute total error: \[\sum_j \epsilon(g, \Phi_j) \text{, where} \]
 \[\epsilon(g, \Phi_j) = (r(d_j, q_j) - \text{score}(d_j, q_j))^2 \]
Minimizing the total error ε: Example (1)

Training examples

<table>
<thead>
<tr>
<th>Example</th>
<th>DocID</th>
<th>Query</th>
<th>s_T</th>
<th>s_B</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux</td>
<td>1</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin</td>
<td>0</td>
<td>1</td>
<td>0 (nonrelevant)</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>system</td>
<td>0</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>penguin</td>
<td>0</td>
<td>0</td>
<td>0 (nonrelevant)</td>
</tr>
<tr>
<td>Φ_5</td>
<td>1741</td>
<td>kernel</td>
<td>1</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_6</td>
<td>2094</td>
<td>driver</td>
<td>0</td>
<td>1</td>
<td>1 (relevant)</td>
</tr>
<tr>
<td>Φ_7</td>
<td>3194</td>
<td>driver</td>
<td>1</td>
<td>0</td>
<td>0 (nonrelevant)</td>
</tr>
</tbody>
</table>

- **Compute score:**
 \[
 \text{score}(d_j, q_j) = g \cdot s_T(d_j, q_j) + (1 - g) \cdot s_B(d_j, q_j)
 \]

- **Compute total error:**
 \[
 \sum_j \varepsilon(g, \Phi_j), \text{ where }
 \varepsilon(g, \Phi_j) = (r(d_j, q_j) - \text{score}(d_j, q_j))^2
 \]

- **Pick the value of** g **that minimizes the total error**
Minimizing the total error ε: Example (2)
Minimizing the total error ε: Example (2)

- Compute score $score(d_j, q_j)$

 - $score(d_1, q_1) = g \cdot 1 + (1 - g) \cdot 1 = g + 1 - g = 1$
 - $score(d_2, q_2) = g \cdot 0 + (1 - g) \cdot 1 = 0 + 1 - g = 1 - g$
 - $score(d_3, q_3) = g \cdot 0 + (1 - g) \cdot 1 = 0 + 1 - g = 1 - g$
 - $score(d_4, q_4) = g \cdot 0 + (1 - g) \cdot 0 = 0 + 0 = 0$
 - $score(d_5, q_5) = g \cdot 1 + (1 - g) \cdot 1 = g + 1 - g = 1$
 - $score(d_6, q_6) = g \cdot 0 + (1 - g) \cdot 1 = 0 + 1 - g = 1 - g$
 - $score(d_7, q_7) = g \cdot 1 + (1 - g) \cdot 0 = g + 0 = g$
Minimizing the total error ϵ: Example (2)

- **Compute score** $\text{score}(d_j, q_j)$

 $\text{score}(d_1, q_1) = g \cdot 1 + (1 - g) \cdot 1 = g + 1 - g = 1$

 $\text{score}(d_2, q_2) = g \cdot 0 + (1 - g) \cdot 1 = 0 + 1 - g = 1 - g$

 $\text{score}(d_3, q_3) = g \cdot 0 + (1 - g) \cdot 1 = 0 + 1 - g = 1 - g$

 $\text{score}(d_4, q_4) = g \cdot 0 + (1 - g) \cdot 0 = 0 + 0 = 0$

 $\text{score}(d_5, q_5) = g \cdot 1 + (1 - g) \cdot 1 = g + 1 - g = 1$

 $\text{score}(d_6, q_6) = g \cdot 0 + (1 - g) \cdot 1 = 0 + 1 - g = 1 - g$

 $\text{score}(d_7, q_7) = g \cdot 1 + (1 - g) \cdot 0 = g + 0 = g$

- **Compute total error** $\sum_j \epsilon(g, \Phi_j)$

 $\sum_j \epsilon(g, \Phi_j) = (1 - 1)^2 + (0 - 1 + g)^2 + (1 - 1 + g)^2 + (0 - 0)^2 + (1 - 1)^2 + (1 - 1 + g)^2 + (0 - g)^2$

 $= 0 + (-1 + g)^2 + g^2 + 0 + 0 + g^2 + g^2$

 $= 1 - 2g + 4g^2$
Minimizing the total error ϵ: Example (2)

- **Compute score** $score(d_j, q_j)$

 $score(d_1, q_1) = g \cdot 1 + (1 - g) \cdot 1 = g + 1 - g = 1$

 $score(d_2, q_2) = g \cdot 0 + (1 - g) \cdot 1 = 0 + 1 - g = 1 - g$

 $score(d_3, q_3) = g \cdot 0 + (1 - g) \cdot 1 = 0 + 1 - g = 1 - g$

 $score(d_4, q_4) = g \cdot 0 + (1 - g) \cdot 0 = 0 + 0 = 0$

 $score(d_5, q_5) = g \cdot 1 + (1 - g) \cdot 1 = g + 1 - g = 1$

 $score(d_6, q_6) = g \cdot 0 + (1 - g) \cdot 1 = 0 + 1 - g = 1 - g$

 $score(d_7, q_7) = g \cdot 1 + (1 - g) \cdot 0 = g + 0 = g$

- **Compute total error** $\sum_j \epsilon(g, \Phi_j)$

 $(1-1)^2 + (0-1+g)^2 + (1-1+g)^2 + (0-0)^2 + (1-1)^2 + (1-1+g)^2 + (0-g)^2 = 0 + (1+g)^2 + g^2 + 0 + 0 + g^2 + g^2 = 1 - 2g + 4g^2$

- **Pick the value of g that minimizes the total error**

 Setting derivative to 0, gives you a minimum of $g = \frac{1}{4}$.
Weight g that minimizes error in the general case.
Weight g that minimizes error in the general case

$$
g = \frac{n_{10r} + n_{01n}}{n_{10r} + n_{10n} + n_{01r} + n_{01n}}
$$
Weight g that minimizes error in the general case

$$
g = \frac{n_{10r} + n_{01n}}{n_{10r} + n_{10n} + n_{01r} + n_{01n}}
$$

n_{\ldots} are the counts of rows of the training set table with the corresponding properties:

- n_{10r}: $s_T = 1$, $s_B = 0$ document relevant
- n_{10n}: $s_T = 1$, $s_B = 0$ document nonrelevant
- n_{01r}: $s_T = 0$, $s_B = 1$ document relevant
- n_{01n}: $s_T = 0$, $s_B = 1$ document nonrelevant
Weight g that minimizes error in the general case

$$g = \frac{n_{10r} + n_{01n}}{n_{10r} + n_{10n} + n_{01r} + n_{01n}}$$

$n_{...}$ are the counts of rows of the training set table with the corresponding properties:

- n_{10r} $s_T = 1$ $s_B = 0$ document relevant
- n_{10n} $s_T = 1$ $s_B = 0$ document nonrelevant
- n_{01r} $s_T = 0$ $s_B = 1$ document relevant
- n_{01n} $s_T = 0$ $s_B = 1$ document nonrelevant

Derivation: see book
Weight g that minimizes error in the general case

\[g = \frac{n_{10r} + n_{01n}}{n_{10r} + n_{10n} + n_{01r} + n_{01n}} \]

- n_{10r} are the counts of rows of the training set table with the corresponding properties:
 - $s_T = 1$ $s_B = 0$ document relevant
 - $s_T = 1$ $s_B = 0$ document nonrelevant
 - $s_T = 0$ $s_B = 1$ document relevant
 - $s_T = 0$ $s_B = 1$ document nonrelevant

- Derivation: see book

- Note that we ignore documents that have 0 match scores for both zones or 1 match scores for both zones – the value of g does not change their final score.
Exercise: Compute g that minimizes the error
Exercise: Compute g that minimizes the error

<table>
<thead>
<tr>
<th>DocID</th>
<th>Query</th>
<th>s_T</th>
<th>s_B</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux</td>
<td>0</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin</td>
<td>1</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>system</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>penguin</td>
<td>1</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_5</td>
<td>238</td>
<td>redmond</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_6</td>
<td>1741</td>
<td>kernel</td>
<td>0</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_7</td>
<td>2094</td>
<td>driver</td>
<td>1</td>
<td>Relevant</td>
</tr>
<tr>
<td>Φ_8</td>
<td>3194</td>
<td>driver</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
<tr>
<td>Φ_9</td>
<td>3194</td>
<td>redmond</td>
<td>0</td>
<td>Nonrelevant</td>
</tr>
</tbody>
</table>
Solution

Recap

Zone scoring

Machine-learned scoring

Ranking SVMs

\[
g = \frac{n_{10r} + n_{01n}}{n_{10r} + n_{10n} + n_{01r} + n_{01n}} = \frac{2 + 2}{2 + 0 + 2 + 0} = 1
\]

2 \(n_{10r} \) \(s_T = 1 \) \(s_B = 0 \) document relevant

0 \(n_{10n} \) \(s_T = 1 \) \(s_B = 0 \) document nonrelevant

0 \(n_{01r} \) \(s_T = 0 \) \(s_B = 1 \) document relevant

2 \(n_{01n} \) \(s_T = 0 \) \(s_B = 1 \) document nonrelevant
Outline

1 Recap

2 Zone scoring

3 Machine-learned scoring

4 Ranking SVMs
More general setup of machine learned scoring
More general setup of machine learned scoring

- So far, we have considered a case where we combined match scores (Boolean indicators of relevance).
More general setup of machine learned scoring

- So far, we have considered a case where we combined match scores (Boolean indicators of relevance).
- Now consider more general factors that go beyond Boolean functions of query term presence in document zones.
Two examples of typical features
Two examples of typical features

- The vector space cosine similarity between query and document (denoted α)
Two examples of typical features

- The vector space cosine similarity between query and document (denoted α)
- The minimum window width within which the query terms lie (denoted ω)
Two examples of typical features

- The vector space cosine similarity between query and document (denoted α)
- The minimum window width within which the query terms lie (denoted ω)
 - Query term proximity is often indicative of topical relevance.
Two examples of typical features

- The vector space cosine similarity between query and document (denoted α)
- The minimum window width within which the query terms lie (denoted ω)
 - Query term proximity is often indicative of topical relevance.

Thus, we have one feature that captures overall query-document similarity and one features that captures proximity of query terms in the document.
Learning to rank setup for these two features
Learning to rank setup for these two features

<table>
<thead>
<tr>
<th>Example</th>
<th>DocID</th>
<th>Query</th>
<th>(\alpha)</th>
<th>(\omega)</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi_1)</td>
<td>37</td>
<td>linux</td>
<td>0.032</td>
<td>3</td>
<td>relevant</td>
</tr>
<tr>
<td>(\Phi_2)</td>
<td>37</td>
<td>penguin</td>
<td>0.02</td>
<td>4</td>
<td>nonrelevant</td>
</tr>
<tr>
<td>(\Phi_3)</td>
<td>238</td>
<td>operating system</td>
<td>0.043</td>
<td>2</td>
<td>relevant</td>
</tr>
<tr>
<td>(\Phi_4)</td>
<td>238</td>
<td>runtime</td>
<td>0.004</td>
<td>2</td>
<td>nonrelevant</td>
</tr>
<tr>
<td>(\Phi_5)</td>
<td>1741</td>
<td>kernel layer</td>
<td>0.022</td>
<td>3</td>
<td>relevant</td>
</tr>
<tr>
<td>(\Phi_6)</td>
<td>2094</td>
<td>device driver</td>
<td>0.03</td>
<td>2</td>
<td>relevant</td>
</tr>
<tr>
<td>(\Phi_7)</td>
<td>3191</td>
<td>device driver</td>
<td>0.027</td>
<td>5</td>
<td>nonrelevant</td>
</tr>
</tbody>
</table>

\(\alpha\) is the cosine score. \(\omega\) is the window width.

This is exactly the same setup as for zone scoring except we now have more complex features that capture whether a document is relevant to a query.
Graphic representation of the training set
Graphic representation of the training set

This should look familiar.
In this case: LTR approach learns a linear classifier in 2D
In this case: LTR approach learns a linear classifier in 2D

- A linear classifier in 2D is a line described by the equation \(w_1d_1 + w_2d_2 = \theta \)
- Example for a 2D linear classifier
- Points \((d_1, d_2)\) with \(w_1d_1 + w_2d_2 \geq \theta \) are in the class \(c \).
- Points \((d_1, d_2)\) with \(w_1d_1 + w_2d_2 < \theta \) are in the complement class \(\overline{c} \).
In this case: LTR approach learns a linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $w_1 d_1 + w_2 d_2 = \theta$
- Example for a 2D linear classifier
- Points (d_1, d_2) with $w_1 d_1 + w_2 d_2 \geq \theta$ are in the class c.
- Points (d_1, d_2) with $w_1 d_1 + w_2 d_2 < \theta$ are in the complement class \overline{c}.
Learning to rank setup for two features
Learning to rank setup for two features

- Again, two classes: relevant = 1 and nonrelevant = 0
Learning to rank setup for two features

- Again, two classes: relevant = 1 and nonrelevant = 0
- We now seek a scoring function that combines the values of the features to generate a value that is (close to) 0 or 1.
Learning to rank setup for two features

- Again, two classes: relevant = 1 and nonrelevant = 0
- We now seek a scoring function that combines the values of the features to generate a value that is (close to) 0 or 1.
- We wish this function to be in agreement with our set of training examples as much as possible.
Learning to rank setup for two features

- Again, two classes: relevant = 1 and nonrelevant = 0
- We now seek a scoring function that combines the values of the features to generate a value that is (close to) 0 or 1.
- We wish this function to be in agreement with our set of training examples as much as possible.
- A linear classifier is defined by an equation of the form:

\[
Score(d, q) = Score(\alpha, \omega) = a\alpha + b\omega + c,
\]

where we learn the coefficients \(a, b, c\) from training data.
Learning to rank setup for two features

- Again, two classes: relevant = 1 and nonrelevant = 0
- We now seek a scoring function that combines the values of the features to generate a value that is (close to) 0 or 1.
- We wish this function to be in agreement with our set of training examples as much as possible.
- A linear classifier is defined by an equation of the form:

\[\text{Score}(d, q) = \text{Score}(\alpha, \omega) = a\alpha + b\omega + c, \]

where we learn the coefficients \(a, b, c \) from training data.
- Regression vs. classification
Learning to rank setup for two features

- Again, two classes: relevant = 1 and nonrelevant = 0
- We now seek a scoring function that combines the values of the features to generate a value that is (close to) 0 or 1.
- We wish this function to be in agreement with our set of training examples as much as possible.
- A linear classifier is defined by an equation of the form:

\[
Score(d, q) = Score(\alpha, \omega) = a\alpha + b\omega + c,
\]

where we learn the coefficients \(a, b, c\) from training data.

- Regression vs. classification
 - We have only covered binary classification so far.
Learning to rank setup for two features

- Again, two classes: relevant = 1 and nonrelevant = 0
- We now seek a scoring function that combines the values of the features to generate a value that is (close to) 0 or 1.
- We wish this function to be in agreement with our set of training examples as much as possible.
- A linear classifier is defined by an equation of the form:

 \[\text{Score}(d, q) = \text{Score}(\alpha, \omega) = a\alpha + b\omega + c, \]

 where we learn the coefficients \(a, b, c\) from training data.

- Regression vs. classification
 - We have only covered binary classification so far.
 - We can also cast the problem as a regression problem.
Learning to rank setup for two features

- Again, two classes: relevant = 1 and nonrelevant = 0
- We now seek a scoring function that combines the values of the features to generate a value that is (close to) 0 or 1.
- We wish this function to be in agreement with our set of training examples as much as possible.
- A linear classifier is defined by an equation of the form:

\[
Score(d, q) = Score(\alpha, \omega) = a\alpha + b\omega + c,
\]

where we learn the coefficients \(a, b, c\) from training data.
- Regression vs. classification
 - We have only covered binary classification so far.
 - We can also cast the problem as a regression problem.
 - This is what we did for zone scoring just now.
Different geometric interpretation of what’s happening
Different geometric interpretation of what’s happening
Different geometric interpretation of what’s happening
The function $\text{Score}(\alpha, \omega)$ represents a plane “hanging above” the figure.
Different geometric interpretation of what’s happening

- The function $Score(\alpha, \omega)$ represents a plane “hanging above” the figure.
- Ideally this plane assumes values close to 1 above the points marked R, and values close to 0 above the points marked N.
Different geometric interpretation of what’s happening

- The function $\text{Score}(\alpha, \omega)$ represents a plane “hanging above” the figure.
- Ideally this plane assumes values close to 1 above the points marked R, and values close to 0 above the points marked N.
Linear classification in this case
<table>
<thead>
<tr>
<th>Recap</th>
<th>Zone scoring</th>
<th>Machine-learned scoring</th>
<th>Ranking SVMs</th>
</tr>
</thead>
</table>

Linear classification in this case
Linear classification in this case
Linear classification in this case

- We pick a threshold θ.
Linear classification in this case

- We pick a threshold θ.
- If $\text{Score}(\alpha, \omega) > \theta$, we declare the document relevant, otherwise we declare it nonrelevant.
Linear classification in this case

- We pick a threshold θ.
- If $\text{Score}(\alpha, \omega) > \theta$, we declare the document \textbf{relevant}, otherwise we declare it \textbf{nonrelevant}.
- As before, all points that satisfy $\text{Score}(\alpha, \omega) = \theta$ form a line (dashed here) → linear classifier that separates relevant from nonrelevant instances.
Linear classification in this case

- We pick a threshold θ.
- If $\text{Score}(\alpha, \omega) > \theta$, we declare the document relevant, otherwise we declare it nonrelevant.
- As before, all points that satisfy $\text{Score}(\alpha, \omega) = \theta$ form a line (dashed here) → linear classifier that separates relevant from nonrelevant instances.
Summary

- The problem of making a binary relevant/nonrelevant judgment is cast as a classification or regression problem, based on a training set of query-document pairs and associated relevance judgments.
The problem of making a binary relevant/nonrelevant judgment is cast as a classification or regression problem, based on a training set of query-document pairs and associated relevance judgments.

In the example: The classifier corresponds to a line $Score(\alpha, \omega) = \theta$ in the α-ω plane.
Summary

- The problem of making a binary relevant/nonrelevant judgment is cast as a classification or regression problem, based on a training set of query-document pairs and associated relevance judgments.
- In the example: The classifier corresponds to a line $\text{Score}(\alpha, \omega) = \theta$ in the α-ω plane.
- In principle, any method learning a linear classifier (including least squares regression) can be used to find this line.
Summary

- The problem of making a binary relevant/nonrelevant judgment is cast as a classification or regression problem, based on a training set of query-document pairs and associated relevance judgments.

- In the example: The classifier corresponds to a line $Score(\alpha, \omega) = \theta$ in the α-ω plane.

- In principle, any method learning a linear classifier (including least squares regression) can be used to find this line.

- Big advantage of learning to rank: we can avoid hand-tuning scoring functions and simply learn them from training data.
Summary

The problem of making a binary relevant/nonrelevant judgment is cast as a classification or regression problem, based on a training set of query-document pairs and associated relevance judgments.

In the example: The classifier corresponds to a line $\text{Score}(\alpha, \omega) = \theta$ in the α-ω plane.

In principle, any method learning a linear classifier (including least squares regression) can be used to find this line.

Big advantage of learning to rank: we can avoid hand-tuning scoring functions and simply learn them from training data.

Bottleneck of learning to rank: maintaining a representative set of training examples whose relevance assessments must be made by humans.
Learning to rank for more than two features
The approach can be readily generalized to a large number of features.
Learning to rank for more than two features

- The approach can be readily generalized to a large number of features.
- In addition to cosine similarity and query term window, there are lots of other indicators of relevance: PageRank-style measures, document age, zone contributions, document length, etc.
Learning to rank for more than two features

- The approach can be readily generalized to a large number of features.
- In addition to cosine similarity and query term window, there are lots of other indicators of relevance: PageRank-style measures, document age, zone contributions, document length, etc.
- If these measures can be calculated for a training document collection with relevance judgments, any number of such measures can be used to machine-learn a classifier.
LTR features used by Microsoft Research (1)
Zones: body, anchor, title, url, whole document
Zones: body, anchor, title, url, whole document

Features derived from standard IR models: query term number, query term ratio, length, idf, sum of term frequency, min of term frequency, max of term frequency, mean of term frequency, variance of term frequency, sum of length normalized term frequency, min of length normalized term frequency, max of length normalized term frequency, mean of length normalized term frequency, variance of length normalized term frequency, sum of tf-idf, min of tf-idf, max of tf-idf, mean of tf-idf, variance of tf-idf, boolean model, BM25
LTR features used by Microsoft Research (2)
LTR features used by Microsoft Research (2)

- Language model features: LMIR.ABS, LMIR.DIR, LMIR.JM
LTR features used by Microsoft Research (2)

- Language model features: LMIR.ABS, LMIR.DIR, LMIR.JM
- Web-specific features: number of slashes in url, length of url, inlink number, outlink number, PageRank, SiteRank
LTR features used by Microsoft Research (2)

- Language model features: LMIR.ABS, LMIR.DIR, LMIR.JM
- Web-specific features: number of slashes in url, length of url, inlink number, outlink number, PageRank, SiteRank
- Spam features: QualityScore
LTR features used by Microsoft Research (2)

- Language model features: LMIR.ABS, LMIR.DIR, LMIR.JM
- Web-specific features: number of slashes in url, length of url, inlink number, outlink number, PageRank, SiteRank
- Spam features: QualityScore
- Usage-based features: query-url click count, url click count, url dwell time
LTR features used by Microsoft Research (2)

- Language model features: LMIR.ABS, LMIR.DIR, LMIR.JM
- Web-specific features: number of slashes in url, length of url, inlink number, outlink number, PageRank, SiteRank
- Spam features: QualityScore
- Usage-based features: query-url click count, url click count, url dwell time
- See link in resources for more information
Shortcoming of our LTR approach so far
Shortcoming of our LTR approach so far

- Approaching IR ranking like we have done so far is not necessarily the right way to think about the problem.
Shortcoming of our LTR approach so far

- Approaching IR ranking like we have done so far is not necessarily the right way to think about the problem.
- Statisticians normally first divide problems into classification problems (where a categorical variable is predicted) versus regression problems (where a real number is predicted).
Shortcoming of our LTR approach so far

- Approaching IR ranking like we have done so far is not necessarily the right way to think about the problem.
- Statisticians normally first divide problems into classification problems (where a categorical variable is predicted) versus regression problems (where a real number is predicted).
- In between is the specialized field of ordinal regression where a ranking is predicted.
Shortcoming of our LTR approach so far

- Approaching IR ranking like we have done so far is not necessarily the right way to think about the problem.
- Statisticians normally first divide problems into classification problems (where a categorical variable is predicted) versus regression problems (where a real number is predicted).
- In between is the specialized field of ordinal regression where a ranking is predicted.
- Machine learning for ad hoc retrieval is most properly thought of as an ordinal regression problem, where the goal is to rank a set of documents for a query, given training data of the same sort.
Shortcoming of our LTR approach so far

- Approaching IR ranking like we have done so far is not necessarily the right way to think about the problem.
- Statisticians normally first divide problems into classification problems (where a categorical variable is predicted) versus regression problems (where a real number is predicted).
- In between is the specialized field of ordinal regression where a ranking is predicted.
- Machine learning for ad hoc retrieval is most properly thought of as an ordinal regression problem, where the goal is to rank a set of documents for a query, given training data of the same sort.
- Next up: ranking SVMs, a machine learning method that learns an ordering directly.
Exercise
Exercise

Example

<table>
<thead>
<tr>
<th>Example</th>
<th>DocID</th>
<th>Query</th>
<th>Cosine</th>
<th>(\omega)</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi_1)</td>
<td>37</td>
<td>linux</td>
<td>0.051</td>
<td>3</td>
<td>relevant</td>
</tr>
<tr>
<td>(\Phi_2)</td>
<td>37</td>
<td>linux</td>
<td>0.04</td>
<td>5</td>
<td>nonrelevant</td>
</tr>
<tr>
<td>(\Phi_3)</td>
<td>238</td>
<td>operating system</td>
<td>0.3</td>
<td>2</td>
<td>relevant</td>
</tr>
<tr>
<td>(\Phi_4)</td>
<td>238</td>
<td>operating system</td>
<td>0.12</td>
<td>3</td>
<td>relevant</td>
</tr>
<tr>
<td>(\Phi_5)</td>
<td>518</td>
<td>runtime</td>
<td>0.04</td>
<td>2</td>
<td>relevant</td>
</tr>
<tr>
<td>(\Phi_6)</td>
<td>518</td>
<td>runtime</td>
<td>0.005</td>
<td>10</td>
<td>nonrelevant</td>
</tr>
</tbody>
</table>

Give parameters \(a, b, c\) of a line \(a\alpha + b\omega + c\) that separates relevant from nonrelevant.
Basic setup for ranking SVMs
Basic setup for ranking SVMs

- As before we begin with a set of judged query-document pairs.
Basic setup for ranking SVMs

- As before we begin with a set of judged query-document pairs.
- But we do not represent them as query-document-judgment triples.
Basic setup for ranking SVMs

- As before we begin with a set of judged query-document pairs.
- But we do not represent them as query-document-judgment triples.
- Instead, we ask judges, for each training query q, to order the documents that were returned by the search engine with respect to relevance to the query.
Basic setup for ranking SVMs

- As before we begin with a set of judged query-document pairs.
- But we do not represent them as query-document-judgment triples.
- Instead, we ask judges, for each training query q, to order the documents that were returned by the search engine with respect to relevance to the query.
- We again construct a vector of features $\psi_j = \psi(d_j, q)$ for each query-document pair – exactly as we did before.
Basic setup for ranking SVMs

- As before we begin with a set of judged query-document pairs.
- But we do not represent them as query-document-judgment triples.
- Instead, we ask judges, for each training query \(q \), to order the documents that were returned by the search engine with respect to relevance to the query.
- We again construct a vector of features \(\psi_j = \psi(d_j, q) \) for each query-document pair – exactly as we did before.
- For two documents \(d_i \) and \(d_j \), we then form the vector of feature differences:

\[
\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)
\]
Training a ranking SVM

- Vector of feature differences: $\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)$
Training a ranking SVM

- Vector of feature differences: \(\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q) \)
- By hypothesis, one of \(d_i \) and \(d_j \) has been judged more relevant.
Training a ranking SVM

- Vector of feature differences: \(\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q) \)
- By hypothesis, one of \(d_i \) and \(d_j \) has been judged more relevant.
- Notation: We write \(d_i \prec d_j \) for “\(d_i \) precedes \(d_j \) in the results ordering”.
Training a ranking SVM

- Vector of feature differences: \(\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q) \)
- By hypothesis, one of \(d_i \) and \(d_j \) has been judged more relevant.
- Notation: We write \(d_i \prec d_j \) for “\(d_i \) precedes \(d_j \) in the results ordering”.
- If \(d_i \) is judged more relevant than \(d_j \), then we will assign the vector \(\Phi(d_i, d_j, q) \) the class \(y_{ijq} = +1 \); otherwise \(-1\).
Training a ranking SVM

- Vector of feature differences: $\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)$
- By hypothesis, one of d_i and d_j has been judged more relevant.
- Notation: We write $d_i \prec d_j$ for “d_i precedes d_j in the results ordering”.
- If d_i is judged more relevant than d_j, then we will assign the vector $\Phi(d_i, d_j, q)$ the class $y_{ijq} = +1$; otherwise -1.
- This gives us a training set of pairs of vectors and “precedence indicators”. Each of the vectors is computed as the difference of two query-document vectors.
Training a ranking SVM

- Vector of feature differences: $\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q)$
- By hypothesis, one of d_i and d_j has been judged more relevant.
- Notation: We write $d_i \prec d_j$ for “d_i precedes d_j in the results ordering”.
- If d_i is judged more relevant than d_j, then we will assign the vector $\Phi(d_i, d_j, q)$ the class $y_{ijq} = +1$; otherwise -1.
- This gives us a training set of pairs of vectors and “precedence indicators”. Each of the vectors is computed as the difference of two query-document vectors.
- We can then train an SVM on this training set with the goal of obtaining a classifier that returns

$$\vec{w}^T \Phi(d_i, d_j, q) > 0 \text{ iff } d_i \prec d_j$$
Advantages of Ranking SVMs vs. Classification/regression
Advantages of Ranking SVMs vs. Classification/regression

- Documents can be evaluated relative to other candidate documents for the same query, rather than having to be mapped to a global scale of goodness.
Advantages of Ranking SVMs vs. Classification/regression

- Documents can be evaluated relative to other candidate documents for the same query, rather than having to be mapped to a global scale of goodness.
- This often is an easier problem to solve since just a ranking is required rather than an absolute measure of relevance.
Advantages of Ranking SVMs vs. Classification/regression

- Documents can be evaluated *relative* to other candidate documents for the same query, rather than having to be mapped to a *global scale* of goodness.
- This often is an easier problem to solve since just a ranking is required rather than an absolute measure of relevance.
- Especially germane in web search, where the ranking at the very top of the results list is exceedingly important.
Why simple ranking SVMs don’t work that well
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
 - Other violations are big problems, e.g., ranking a nonrelevant document ahead of a relevant document.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
 - Other violations are big problems, e.g., ranking a nonrelevant document ahead of a relevant document.
- Some queries have many relevant documents, others few.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
 - Other violations are big problems, e.g., ranking a nonrelevant document ahead of a relevant document.
- Some queries have many relevant documents, others few.
 - Depending on the training regime, too much emphasis may be put on queries with many relevant documents.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
 - Other violations are big problems, e.g., ranking a nonrelevant document ahead of a relevant document.
- Some queries have many relevant documents, others few.
 - Depending on the training regime, too much emphasis may be put on queries with many relevant documents.
- In most IR settings, getting the order of the top documents right is key.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
 - Other violations are big problems, e.g., ranking a nonrelevant document ahead of a relevant document.

- Some queries have many relevant documents, others few.
 - Depending on the training regime, too much emphasis may be put on queries with many relevant documents.

- In most IR settings, getting the order of the top documents right is key.
 - In the simple setting we have described, top and bottom ranks will not be treated differently.
Why simple ranking SVMs don’t work that well

- Ranking SVMs treat all ranking violations alike.
 - But some violations are minor problems, e.g., getting the order of two relevant documents wrong.
 - Other violations are big problems, e.g., ranking a nonrelevant document ahead of a relevant document.
- Some queries have many relevant documents, others few.
 - Depending on the training regime, too much emphasis may be put on queries with many relevant documents.
- In most IR settings, getting the order of the top documents right is key.
 - In the simple setting we have described, top and bottom ranks will not be treated differently.
- → Learning-to-rank frameworks actually used in IR are more complicated than what we have presented here.
Example for superior performance of LTR
Example for superior performance of LTR

SVM algorithm that directly optimizes MAP (as opposed to ranking).
Example for superior performance of LTR

SVM algorithm that directly optimizes MAP (as opposed to ranking).
Proposed by: Yue, Finley, Radlinski, Joachims, ACM SIGIR 2007.
Example for superior performance of LTR

SVM algorithm that directly optimizes MAP (as opposed to ranking).
Proposed by: Yue, Finley, Radlinski, Joachims, ACM SIGIR 2007.
Performance compared to state-of-the-art models: cosine, tf-idf, BM25, language models (Dirichlet and Jelinek-Mercer)
Example for superior performance of LTR

SVM algorithm that directly optimizes MAP (as opposed to ranking).
Proposed by: Yue, Finley, Radlinski, Joachims, ACM SIGIR 2007. Performance compared to state-of-the-art models: cosine, tf-idf, BM25, language models (Dirichlet and Jelinek-Mercer)

<table>
<thead>
<tr>
<th>Model</th>
<th>TREC 9 MAP</th>
<th>TREC 9 W/L</th>
<th>TREC 10 MAP</th>
<th>TREC 10 W/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM$^A_{map}$</td>
<td>0.242</td>
<td>–</td>
<td>0.236</td>
<td>–</td>
</tr>
<tr>
<td>Best Func.</td>
<td>0.204</td>
<td>39/11 **</td>
<td>0.181</td>
<td>37/13 **</td>
</tr>
<tr>
<td>2nd Best</td>
<td>0.199</td>
<td>38/12 **</td>
<td>0.174</td>
<td>43/7 **</td>
</tr>
<tr>
<td>3rd Best</td>
<td>0.188</td>
<td>34/16 **</td>
<td>0.174</td>
<td>38/12 **</td>
</tr>
</tbody>
</table>
SVM algorithm that directly optimizes MAP (as opposed to ranking).

Proposed by: Yue, Finley, Radlinski, Joachims, ACM SIGIR 2007.
Performance compared to state-of-the-art models: cosine, tf-idf, BM25, language models (Dirichlet and Jelinek-Mercer)

<table>
<thead>
<tr>
<th>Model</th>
<th>TREC 9</th>
<th>TREC 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAP</td>
<td>W/L</td>
</tr>
<tr>
<td>SVM_{map}^Δ</td>
<td>0.242</td>
<td>–</td>
</tr>
<tr>
<td>Best Func.</td>
<td>0.204</td>
<td>39/11 **</td>
</tr>
<tr>
<td>2nd Best</td>
<td>0.199</td>
<td>38/12 **</td>
</tr>
<tr>
<td>3rd Best</td>
<td>0.188</td>
<td>34/16 **</td>
</tr>
</tbody>
</table>

Learning-to-rank clearly better than non-machine-learning approaches
Optimizing scaling/representation of features
Both of the methods that we’ve seen treat the features as given and do not attempt to modify the basic representation of the query-document pairs.
Both of the methods that we’ve seen treat the features as given and do not attempt to modify the basic representation of the query-document pairs.

Much of traditional IR weighting involves nonlinear scaling of basic measurements (such as log-weighting of term frequency, or idf).
Both of the methods that we’ve seen treat the features as given and do not attempt to modify the basic representation of the query-document pairs.

Much of traditional IR weighting involves nonlinear scaling of basic measurements (such as log-weighting of term frequency, or idf).

At the present time, machine learning is very good at producing optimal weights for features in a linear combination, but it is not good at coming up with good nonlinear scalings of basic measurements.
Both of the methods that we’ve seen treat the features as given and do not attempt to modify the basic representation of the query-document pairs.

Much of traditional IR weighting involves nonlinear scaling of basic measurements (such as log-weighting of term frequency, or idf).

At the present time, machine learning is very good at producing optimal weights for features in a linear combination, but it is not good at coming up with good nonlinear scalings of basic measurements.

This area remains the domain of human feature engineering.
Assessment of learning to rank
The idea of learning to rank is old.
Assessment of learning to rank

- The idea of learning to rank is old.
 - Early work by Norbert Fuhr and William S. Cooper
Assessment of learning to rank

- The idea of learning to rank is old.
 - Early work by Norbert Fuhr and William S. Cooper
- But it is only very recently that sufficient machine learning knowledge, training document collections, and computational power have come together to make this method practical and exciting.
The idea of learning to rank is old.
- Early work by Norbert Fuhr and William S. Cooper

But it is only very recently that sufficient machine learning knowledge, training document collections, and computational power have come together to make this method practical and exciting.

While skilled humans can do a very good job at defining ranking functions by hand, hand tuning is difficult, and it has to be done again for each new document collection and class of users.
The idea of learning to rank is old.

- Early work by Norbert Fuhr and William S. Cooper

But it is only very recently that sufficient machine learning knowledge, training document collections, and computational power have come together to make this method practical and exciting.

While skilled humans can do a very good job at defining ranking functions by hand, hand tuning is difficult, and it has to be done again for each new document collection and class of users.

The more features are used in ranking, the more difficult it is to manually integrate them into one ranking function.
The idea of learning to rank is old.

- Early work by Norbert Fuhr and William S. Cooper

But it is only very recently that sufficient machine learning knowledge, training document collections, and computational power have come together to make this method practical and exciting.

While skilled humans can do a very good job at defining ranking functions by hand, hand tuning is difficult, and it has to be done again for each new document collection and class of users.

The more features are used in ranking, the more difficult it is to manually integrate them into one ranking function.

Web search engines use a large number of features → web search engines need some form of learning to rank.
Exercise

Write down the training set from the last exercise as a training set for a ranking SVM.

Recall: Vector of feature differences:
\[\Phi(d_i, d_j, q) = \psi(d_i, q) - \psi(d_j, q), \]
\[\vec{w}^T \Phi(d_i, d_j, q) > 0 \text{ iff } d_i \prec d_j \]

<table>
<thead>
<tr>
<th>Example</th>
<th>DocID</th>
<th>Query</th>
<th>Cosine</th>
<th>(\omega)</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Phi_1)</td>
<td>37</td>
<td>linux</td>
<td>0.03</td>
<td>3</td>
<td>relevant</td>
</tr>
<tr>
<td>(\Phi_2)</td>
<td>37</td>
<td>penguin</td>
<td>0.04</td>
<td>5</td>
<td>nonrelevant</td>
</tr>
<tr>
<td>(\Phi_3)</td>
<td>238</td>
<td>operating system</td>
<td>0.04</td>
<td>2</td>
<td>relevant</td>
</tr>
<tr>
<td>(\Phi_4)</td>
<td>238</td>
<td>runtime</td>
<td>0.02</td>
<td>3</td>
<td>nonrelevant</td>
</tr>
</tbody>
</table>
Take-away today

- Basic idea of learning to rank (LTR): We use machine learning to learn the relevance score (retrieval status value) of a document with respect to a query.
- Zone scoring: a particularly simple instance of LTR
- Machine-learned scoring as a general approach to ranking
- Ranking SVMs
Resources

- Chapters 6 and 15 of IIR
- Resources at http://cislmu.org
 - References to ranking SVM results
 - Microsoft learning to rank datasets