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Recap

Applications of clustering in IR

Application Whatis  Benet Example
clustered?
Search result clustering search more e ective infor-
results mation presentation
to user

Scatter-Gather (subsets alternative user inter-

of) col- face: \search without

lection typing”

Collection clustering | collection e ective information McKeown et al. 2002,
presentation for ex- news.google.com
ploratory browsing

Cluster-based retrieval| collection higher e ciency: Salton 1971
faster search
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Recap
K-means algorithm

(CRE ;sK) SelectRandomSeeds (fxg;:::;%*nGg; K)
fork 1to K

do ~

while stopping criterion has not been met

do for k 1to K

do!y fg
forn 1to N
doj argminoj~jo Xnj
i 1 [f %9 (reassignment of vectors)
fork 1to
do ~¢ J,lkJ <21, % (recomputation of centroids)
return f~q;:::;~kg
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Recap

Initialization ofK -means

o Random seed selection is just one of many wiyseans can
be initialized.

o Random seed selection is not very robust: It's easy to get a
suboptimal clustering.
o Better heuristics:

o Select seeds not randomly, but using some heuristic (e.ger It
out outliers or nd a set of seeds that has \good coverage" of
the document space)

s Use hierarchical clustering to nd good seeds (next class)

e Selecti (e.g.,i = 10) di erent sets of seeds, do & -means
clustering for each, select the clustering with lowest RSS
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o Introduction to hierarchical clustering

o Single-link and complete-link clustering
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Recap

Take-away today

o Introduction to hierarchical clustering

o Single-link and complete-link clustering

o Centroid and group-average agglomerative clustering (GAAC)
o Bisecting K-means

o How to label clusters automatically O
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Introduction
Hierarchical clustering

Our goal in hierarchical clustering is to create a
hierarchy like the one we saw earlier in Reuters:
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Introduction
Hierarchical clustering

Our goal in hierarchical clustering is to create a
hierarchy like the one we saw earlier in Reuters:

We want to create this hierarcnytomatically

We can do this eithéop-downor bottom-up
The best known bottom-up methodhisrarchical
agglomerative clustering ]
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Introduction

Hierarchical agglomerative clustering (HAC)

o HAC creates a hierachy in the form of a binary tree.
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Introduction

Hierarchical agglomerative clustering (HAC)

o HAC creates a hierachy in the form of a binary tree.

o Assumes a similarity measure for determining the similarity of
two clusters

@ Up to now, our similarity measures were fdocuments
o We will look at four di erent cluster similarity measures. [
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Introduction

HAC: Basic algorithm

o Start with each document in a separate cluster
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o Then repeatedly mergehe two clusters that are most similar
o Until there is only one cluster.

o The history of merging is a hierarchy in the form of a binary
tree.
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Introduction

HAC: Basic algorithm

o Start with each document in a separate cluster
o Then repeatedly mergehe two clusters that are most similar
o Until there is only one cluster.
o The history of merging is a hierarchy in the form of a binary
tree.
o The standard way of depicting this history is a
dendrogram O
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Introduction

Divisive clustering

o

Divisive clustering is top-down.
Alternative to HAC (which is bottom up).

Divisive clustering:

s Start with all docs in one big cluster
s Then recursively split clusters
o Eventually each node forms a cluster on its own.

¢ ©

©

I BisectingK-means at the end
For now: HAC (= bottom-up) O

©
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Naive HAC algorithm

1 forn 1to N
2 do for i 1to N
3 do C[n][i]  Sim(dy;d;)

4 I[n] 1 (keeps track of active clusters)

5 A [] (collects clustering as a sequence of merges)
6 fork 1toN 1

7 dohimi  arg madyimi:igmnifij=1~i{mi=1 g Cli1M]
8 A:Append (h;mi) (store merge)

9 forj 1to N

10 do (use i as representative fer i;m>)

11 Clilli] Sim(< i;m>;j)

12 Clillil  Sim(< i;m>;j)

13 I[[m] O (deactivate cluster)

14 return A
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Computational complexity of the naive algorithm

o First, we compute the similarity of alN N pairs of
documents.

Schatze & Krisnawati: Hierarchical clustering 15/ 66



Computational complexity of the naive algorithm

o First, we compute the similarity of alN N pairs of
documents.

o Then, in each ofN iterations:

Schatze & Krisnawati: Hierarchical clustering 15/ 66



Computational complexity of the naive algorithm

o First, we compute the similarity of alN N pairs of
documents.

o Then, in each ofN iterations:

o We scan theO(N N) similarities to nd the maximum
similarity.

Schatze & Krisnawati: Hierarchical clustering 15/ 66



Computational complexity of the naive algorithm

o First, we compute the similarity of alN N pairs of
documents.
@ Then, in each ofN iterations:
o We scan theO(N N) similarities to nd the maximum
similarity.
s We merge the two clusters with maximum similarity.

Schatze & Krisnawati: Hierarchical clustering 15/ 66



Introduction

Computational complexity of the naive algorithm

o First, we compute the similarity of alN N pairs of
documents.
@ Then, in each ofN iterations:
o We scan theO(N N) similarities to nd the maximum
similarity.
s We merge the two clusters with maximum similarity.
s We compute the similarity of the new cluster with all other
(surviving) clusters.

Schatze & Krisnawati: Hierarchical clustering 15/ 66



Computational complexity of the naive algorithm

o First, we compute the similarity of alN N pairs of
documents.
@ Then, in each ofN iterations:
o We scan theO(N N) similarities to nd the maximum
similarity.
s We merge the two clusters with maximum similarity.
s We compute the similarity of the new cluster with all other
(surviving) clusters.
o There areO(N) iterations, each performing ®(N N)
\scan" operation.

Schatze & Krisnawati: Hierarchical clustering 15/ 66



Computational complexity of the naive algorithm

o First, we compute the similarity of alN N pairs of
documents.
@ Then, in each ofN iterations:
o We scan theO(N N) similarities to nd the maximum
similarity.
s We merge the two clusters with maximum similarity.
s We compute the similarity of the new cluster with all other
(surviving) clusters.
o There areO(N) iterations, each performing ®(N N)
\scan" operation.

o Overall complexity iO(N3).

Schatze & Krisnawati: Hierarchical clustering 15/ 66



Computational complexity of the naive algorithm

o First, we compute the similarity of alN N pairs of
documents.
@ Then, in each ofN iterations:
o We scan theO(N N) similarities to nd the maximum
similarity.
s We merge the two clusters with maximum similarity.
s We compute the similarity of the new cluster with all other
(surviving) clusters.
o There areO(N) iterations, each performing ®(N N)
\scan" operation.

o Overall complexity iO(N3).
o We'll look at more e cient algorithms later. O
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Introduction

Key question: How to de ne cluster similarity

o Single-link: Maximum similarity
o Maximum similarity of any two documents
o Complete-link: Minimum similarity
s Minimum similarity of any two documents
o Centroid: Average \intersimilarity"
o Average similarity of all document pairs (but excluding gzadf
docs in the same cluster)
s This is equivalent to the similarity of the centroids.
o Group-average: Average \intrasimilarity”
@ Average similary of all document pairs, including pairs otd
in the same cluster O
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Introduction

Cluster similarity: Example
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Single-link: Maximum similarity
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Single-link: Maximum similarity
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Introduction

Complete-link: Minimum similarity
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Complete-link: Minimum similarity
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Introduction

Centroid: Average intersimilarity

intersimilarity = similarity of two documents irdi erent clusters
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Centroid: Average intersimilarity
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Introduction

Group average: Average intrasimilarity

intrasimilarity = similarity of any pair including cases where the
two documents are in the same cluster
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Introduction

Cluster similarity: Larger Example
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Single-link: Maximum similarity
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Complete-link: Minimum similarity
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Centroid: Average intersimilarity
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Single-link/Complete-link

Outline

© Single-link/Complete-link

Schatze & Krisnawati: Hierarchical clustering 27 | 66



Single-link/Complete-link

Single link HAC

@ The similarity of two clusters is thenaximumintersimilarity {
the maximum similarity of a document from the rst cluster
and a document from the second cluster.
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Single-link/Complete-link

Single link HAC

@ The similarity of two clusters is thenaximumintersimilarity {
the maximum similarity of a document from the rst cluster
and a document from the second cluster.

@ Once we have merged two clusters, how do we update the
similarity matrix?
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Single-link/Complete-link

Single link HAC

@ The similarity of two clusters is thenaximumintersimilarity {
the maximum similarity of a document from the rst cluster
and a document from the second cluster.

@ Once we have merged two clusters, how do we update the
similarity matrix?
@ This is simple for single link:

sim(! i5 (M iy [ ! k) = max(sim(! ;! );sim(! st k,))

Schatze & Krisnawati: Hierarchical clustering 28 / 66



(7]
Q
=
N
@
20
@
Z
]
=
2
X
@
2
(e}
=
o
f
Q
=
(7}
@
ES
«Q

0.2

0.0

Ag trade reform.

Back-to-school spending is up
loyd's CEO questioned ———

Lloy 's chief / U.S. grilling [

Viag stays positive

Chrysler Lat\n merica

Cross

Ohio Blue
Japanese prime. mlnlster 1 Mexico

e reports loss
Spnnt/ Inteme} access service ——

Hollywood

Trocadero: tnplmg of

German unions split
War hero Colin Powell ——

War hero Colln Powell ——
rices slip

Chains may ralse prices
on signs law

Lawsuit against tobacco companies
suits against tobacco firms E
Indiana tobacco lawsuit
Most active stocks —————————————
Mexican markets

Hog prlces tumble
NVSE closi

Britis h FTSE index ——————
Fed holds mterest rates steady I S—
Fed to keep interest rates steady
Fed keeps interest rates steady e —
Fed keeps interest rates steady

_|
=
»
o
)
-
o
=
o
Q
=
N
=
S
)
n
ge]
o
Q
c
o
@
o
o
<
28
-]
Q
®
i
=
=

yui-e181dwopjul-ajbuls




1.0 0.8 0.6 0.4 0.2 0.0

Ag trade reform.

Back-to-: school spending is up
EO questioned ———

Lloy schlef/ .S. griling ——F

Viag stays positive

Chrysler Lat\n merica

Ohio Blue Cross

Japanese prime. mlnlster 1 Mexico

e reports loss
Spnnt/ Internet access service ——
Planet Hollywood

Trocadero: tnpllng of
German unions split
War hero Colin Powell ——
War hero Colln Powell ——
rices slip
Chains may ralse prices
on signs law

Lawsuit against tobacco companies
suits against tobacco firms E
Indiana tobacco lawsuit
Most active stocks —————————————
Mexican markets
Hog prlces tumble
NVSE closi

(7]
Q
=
N
@
20
@
Z
]
=
2
X
@
)
=
o
f
Q
=
(7}
@
ES
«Q

Britis h FTSE index ——————

Fed holds mterest rates steady I S—
Fed to keep interest rates steady

Fed keeps interest rates steady e —
Fed keeps interest rates steady

Q010N ©

—
=1
wn
o
®
>
o
=
o
(@]
Q
=]
=
Q
n
e
=
o
o
c
o
@D
o
(=)
<
=,
-]
=
@D
=
=
=

2 10 1) s1a1sn|o

1a1snpo urew ay) 0}
[rews Auew

pappe bulaq (siaquaw




1.0 0.8 0.6 0.4 0.2 0.0

Ag trade reform.

Back-to-: school spending is up
EO questioned ———

Lloy schlef/ .S. griling ——F

Viag stays positive

Chrysler Lat\n merica

Ohio Blue Cross

Japanese prime. mlnlster 1 Mexico

e reports loss
Spnnt/ Internet access service ——
Planet Hollywood

Trocadero: tnplmg of
German unions split
War hero Colin Powell ——
War hero Colln Powell ——
rices slip
Chains may ralse prices
on signs law

Lawsuit against tobacco companies
suits against tobacco firms E
Indiana tobacco lawsuit
Most active stocks —————————————

Mexican markets

Hog prlces tumble
NVSE closi

[
=3
G
=
N
[}
)
Fa)
=
3
2
g
I
[}
o
(2]
=
o
f
Q
c
(7}
©
=

3

Britis h FTSE index ——————

Fed holds mterest rates steady I S—
Fed to keep interest rates steady

Fed keeps interest rates steady e —
Fed keeps interest rates steady

—
=1
n
o
®
>
o
=
o
(@]
Q
=]
=
Q
(2]
e
=
o
o
c
o
@D
o
(=)
<
Z,
-]
=
@D
=
=
=

© ©
cooNvHdZ 30z
mmccl,:rogco
S = n =0 = n =
Q_<HC—=33-—rO
—xq)('Dm('Dngt'D
@@ 528403
305_‘030'0%
e aPoT e S<
:*.Oc_>9_’g:|\>m
39_)(:9),_,.@ 3
Q50 32y o
= O = =l
So®e & T
Jo o )
o




Single-link/Complete-link

Complete link HAC

@ The similarity of two clusters is theninimum intersimilarity {
the minimum similarity of a document from the rst cluster
and a document from the second cluster.
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Complete link HAC

@ The similarity of two clusters is theninimum intersimilarity {
the minimum similarity of a document from the rst cluster
and a document from the second cluster.

@ Once we have merged two clusters, how do we update the
similarity matrix?
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Single-link/Complete-link

Complete link HAC

@ The similarity of two clusters is theninimum intersimilarity {
the minimum similarity of a document from the rst cluster
and a document from the second cluster.

@ Once we have merged two clusters, how do we update the
similarity matrix?

@ Again, this is simple:

sim(! i5 (kg [ ! k) = min(sim(t 5! ;) sim(! 5! )
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Single-link/Complete-link

Complete link HAC

@ The similarity of two clusters is theninimum intersimilarity {
the minimum similarity of a document from the rst cluster
and a document from the second cluster.

@ Once we have merged two clusters, how do we update the
similarity matrix?

@ Again, this is simple:
sim(! i5 (kg [ ! k) = min(sim(t 5! ;) sim(! 5! )

@ We measure the similarity of two clusters by computing the
diameter of the cluster that we would get if we merged
them. n
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Single-link/Complete-link

Exercise: Compute single and complete link clustering

d d d3 ds
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Single-link/Complete-link
Single-link clustering
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2T ds dg d; dg
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Single-link/Complete-link
Single-link clustering

d do d3 ds
|
|
27T ds dg d; dg

0 —t—+—

0O 1 2 3 4
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Single-link/Complete-link
Complete link clustering

o
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Complete link clustering
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Single-link/Complete-link

Single-link vs. Complete link clustering

di d» ds ds di d d3 dg
31 31 D
|
2T ds dg d; dg 2T ds \ds d; dg
1} 1} -
0 —t —t 0 % —t %
0O 1 2 3 4 0O 1 2 3 4
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Single-link/Complete-link

Single-link: Chaining
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Single-link/Complete-link

Single-link: Chaining

i
i

| | | | |

%%% T T 1T T
0123456178

T T T
9 101112
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Single-link/Complete-link

Single-link: Chaining

O | | | | | | | | | | |
I T T T T T T T T

012345678 9101112

Single-link clustering often produces long, straggly cluste¥sr
most applications, these are undesirable. O
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Single-link/Complete-link

What 2-cluster clustering will complete-link produce?

1
0 +—F—F——F+—F—"F—"F—
0123458¢67

Coordinates: 1+2 ;4,5+2 :6,7 . O

+ dq dy d3 ds ds
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Single-link/Complete-link

What 2-cluster clustering will complete-link produce?

dq dy d3 ds ds

1+ DT>
0 +————+—+——
01234567

Coordinates: 1+2 ;4,5+2 :6,7 . O
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Single-link/Complete-link

Complete-link: Sensitivity to outliers

@ The complete-link clustering of this set splith from its right
neighbors { clearly undesirable.
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Single-link/Complete-link

Complete-link: Sensitivity to outliers

@ The complete-link clustering of this set splith from its right
neighbors { clearly undesirable.
@ The reason is the outlied;.
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Single-link/Complete-link

Complete-link: Sensitivity to outliers

@ The complete-link clustering of this set splith from its right
neighbors { clearly undesirable.

@ The reason is the outlied;.

o This shows that a single outlier can negatively a ect the
outcome of complete-link clustering.
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Single-link/Complete-link

Complete-link: Sensitivity to outliers

@ The complete-link clustering of this set splith from its right
neighbors { clearly undesirable.

@ The reason is the outlied;.

o This shows that a single outlier can negatively a ect the
outcome of complete-link clustering.

o Single-link clustering does better in this case. O

Schatze & Krisnawati: Hierarchical clustering 38 /66



Centroid/GAAC

Outline

O Centroid/GAAC
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Centroid/GAAC

Centroid HAC

@ The similarity of two clusters is the average intersimilarity {
the average similarity of documents from the rst cluster with
documents from the second cluster.
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Centroid/GAAC

Centroid HAC

@ The similarity of two clusters is the average intersimilarity {
the average similarity of documents from the rst cluster with
documents from the second cluster.

o A naive implementation of this de nition is ine cient
(O(N?)), but the de nition is equivalent tocomputing the
similarity of the centroids

sim-cent (!i;!) = ~("i) ~('))
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@ The similarity of two clusters is the average intersimilarity {
the average similarity of documents from the rst cluster with
documents from the second cluster.

o A naive implementation of this de nition is ine cient
(O(N?)), but the de nition is equivalent tocomputing the
similarity of the centroids

sim-cent (!i;!) = ~("i) ~('))

@ Hence the name: centroid HAC
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Centroid/GAAC

Centroid HAC

@ The similarity of two clusters is the average intersimilarity {
the average similarity of documents from the rst cluster with
documents from the second cluster.

o A naive implementation of this de nition is ine cient
(O(N?)), but the de nition is equivalent tocomputing the
similarity of the centroids

sim-cent (!i;!) = ~("i) ~('))

@ Hence the name: centroid HAC
o Note: this is the dot product, not cosine similarity! O
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Centroid/GAAC
Exercise: Compute centroid clustering
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Centroid/GAAC
Centroid clustering
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Centroid/GAAC
Centroid clustering

5+ ,: d1 ’ d3

4 + ° 2

3+ ¢ d T ods

2 +

14 ds "--.& dg
1

0 — "+
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Centroid/GAAC
Centroid clustering

5+ ,: d1 ’ d3
4 + ° 2
3+ ¢ d - ody
2T 3.
14 ds "---€&.5 dg
1
0 — "+
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Centroid/GAAC
Inversion in centroid clustering

@ In an inversion, the similarityncreaseguring a merge
sequence. Results in an \inverted" dendrogram.

O rh v wh

— d d d3
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Centroid/GAAC
Inversion in centroid clustering

@ In an inversion, the similarityncreaseguring a merge
sequence. Results in an \inverted" dendrogram.

o Below: Similarity of the rst merger ¢, [ d,) is -4.0,
similarity of second merger ¢ [ do) [ d3) is 3:5.

5 d
’ 4
4 €1
3
T 2
2+ d; dz
. 1
1 4 c
[ R B 0
0 L e d; do ds
012345

Schatze & Krisnawati: Hierarchical clustering 43 / 66



Centroid/GAAC

Inversions

o Hierarchical clustering algorithms that allow inversions are
inferior.
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Centroid/GAAC

Inversions

o Hierarchical clustering algorithms that allow inversions are
inferior.

o The rationale for hierarchical clustering is that at any given
point, we've found the most coherent clustering for a givi€n

o Intuitively: smaller clusterings should be more coherent than
larger clusterings.
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Centroid/GAAC

Inversions

o Hierarchical clustering algorithms that allow inversions are
inferior.

o The rationale for hierarchical clustering is that at any given
point, we've found the most coherent clustering for a givi€n

o Intuitively: smaller clusterings should be more coherent than
larger clusterings.

@ An inversion contradicts this intuition: we have a large cluste
that is more coherent than one of its subclusters.
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Centroid/GAAC

Inversions

o Hierarchical clustering algorithms that allow inversions are
inferior.

o The rationale for hierarchical clustering is that at any given
point, we've found the most coherent clustering for a givi€n

o Intuitively: smaller clusterings should be more coherent than
larger clusterings.

@ An inversion contradicts this intuition: we have a large cluste
that is more coherent than one of its subclusters.

@ The fact that inversions can occur in centroid clustering is a
reason not to use it. O
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Centroid/GAAC

Group-average agglomerative clustering (GAAC)

o GAAC also has an \average-similarity" criterion, but does not
have inversions.
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Centroid/GAAC

Group-average agglomerative clustering (GAAC)

o GAAC also has an \average-similarity" criterion, but does not
have inversions.

@ The similarity of two clusters is the averagetrasimilarity {
the average similarity of all document pairs (including those
from the same cluster).
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Centroid/GAAC

Group-average agglomerative clustering (GAAC)

o GAAC also has an \average-similarity" criterion, but does not
have inversions.

@ The similarity of two clusters is the averagetrasimilarity {
the average similarity of all document pairs (including those
from the same cluster).

o But we exclude self-similarities. O
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Centroid/GAAC

Group-average agglomerative clustering (GAAC)

e Again, a naive implementation is ine cient@(N?)) and there
is an equivalent, more e cient, centroid-based de nition:

sim-ga(!i;!j) =

1
(Ni + Nj)(Ni + N 1)

X
[( dm)® (i + Nj)]
dm2!i[ !
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Centroid/GAAC

Group-average agglomerative clustering (GAAC)

e Again, a naive implementation is ine cient@(N?)) and there
is an equivalent, more e cient, centroid-based de nition:

sim-ga(!i;!j) =

1
(Ni + Nj)(Ni + N 1)

X
[( dm)® (i + Nj)]
dm2!i[ !

o Again, this is the dot product, not cosine similarity. O
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Centroid/GAAC

Which HAC clustering should | use?

o Don't use centroid HAC because of inversions.
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Centroid/GAAC

Which HAC clustering should | use?

o Don't use centroid HAC because of inversions.

o In most cases: GAAC is best since it isn't subject to chaining
and sensitivity to outliers.
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Centroid/GAAC

Which HAC clustering should | use?

o Don't use centroid HAC because of inversions.

o In most cases: GAAC is best since it isn't subject to chaining
and sensitivity to outliers.

o However, we can only use GAAC for vector representations.
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Centroid/GAAC

Which HAC clustering should | use?

o Don't use centroid HAC because of inversions.

o In most cases: GAAC is best since it isn't subject to chaining
and sensitivity to outliers.

o However, we can only use GAAC for vector representations.

o For other types of document representations (or if only
pairwise similarities for documents are available): use
complete-link.
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Centroid/GAAC

Which HAC clustering should | use?

o Don't use centroid HAC because of inversions.

o In most cases: GAAC is best since it isn't subject to chaining
and sensitivity to outliers.

o However, we can only use GAAC for vector representations.

o For other types of document representations (or if only
pairwise similarities for documents are available): use
complete-link.

o There are also some applications for single-link (e.g., dugié
detection in web search). O
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Centroid/GAAC
Flat or hierarchical clustering?

o For high e ciency, use at clustering (or perhaps bisecting
k-means)
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o For high e ciency, use at clustering (or perhaps bisecting
k-means)

o For deterministic results: HAC
@ When a hierarchical structure is desired: hierarchical algorithm
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Centroid/GAAC
Flat or hierarchical clustering?

o For high e ciency, use at clustering (or perhaps bisecting
k-means)

o For deterministic results: HAC
@ When a hierarchical structure is desired: hierarchical algorithm

o HAC also can be applied K cannot be predetermined (can
start without knowingK) O

Schatze & Krisnawati: Hierarchical clustering 48 / 66



Labeling clusters

Outline

© Labeling clusters
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Labeling clusters
Major issue in clustering { labeling

o After a clustering algorithm nds a set of clusters: how can
they be useful to the end user?
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@ We need a pithy label for each cluster.
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Labeling clusters

Major issue in clustering { labeling

o After a clustering algorithm nds a set of clusters: how can
they be useful to the end user?

@ We need a pithy label for each cluster.

o For example, in search result clustering for \jaguar”, The
labels of the three clusters could be \animal”, \car", and
\operating system".

Schatze & Krisnawati: Hierarchical clustering 50 / 66



Labeling clusters

Major issue in clustering { labeling

o After a clustering algorithm nds a set of clusters: how can
they be useful to the end user?

@ We need a pithy label for each cluster.

o For example, in search result clustering for \jaguar”, The
labels of the three clusters could be \animal”, \car", and
\operating system".

o Topic of this section: How can we automatically nd good
labels for clusters? O
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Labeling clusters

Exercise

o Come up with an algorithm for labeling clusters

o Input: a set of documents, partitioned int& clusters ( at
clustering)

o Output: A label for each cluster

o Part of the exercise: What types of labels should we consider?
Words? O
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Labeling clusters

Discriminative labeling

o To label cluster! , compare! with all other clusters

Schatze & Krisnawati: Hierarchical clustering 52 / 66



Labeling clusters

Discriminative labeling

o To label cluster! , compare! with all other clusters

o Find terms or phrases that distinguidh from the other
clusters
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Labeling clusters

Discriminative labeling

o To label cluster! , compare! with all other clusters

o Find terms or phrases that distinguidh from the other
clusters

@ We can use any of the feature selection criteria we introduced
in text classi cation to identify discriminating terms: mutl
information, 2 and frequency.
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Labeling clusters

Discriminative labeling

o To label cluster! , compare! with all other clusters

o Find terms or phrases that distinguidh from the other
clusters

@ We can use any of the feature selection criteria we introduced
in text classi cation to identify discriminating terms: mutl
information, 2 and frequency.

o (but the latter is actually not discriminative) O

Schatze & Krisnawati: Hierarchical clustering 52 / 66



Labeling clusters

Non-discriminative labeling

o Select terms or phrases based solely on information from the
cluster itself
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o Select terms or phrases based solely on information from the
cluster itself

o E.g., select terms with high weights in the centroid (if we are
using a vector space model)
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Labeling clusters

Non-discriminative labeling

o Select terms or phrases based solely on information from the
cluster itself
o E.g., select terms with high weights in the centroid (if we are
using a vector space model)
o Non-discriminative methods sometimes select frequent terms
that do not distinguish clusters.
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Labeling clusters

Non-discriminative labeling

o Select terms or phrases based solely on information from the
cluster itself

o E.g., select terms with high weights in the centroid (if we are
using a vector space model)

o Non-discriminative methods sometimes select frequent terms
that do not distinguish clusters.

o For exampleMonday , Tuesday , ...in newspaper text [
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Labeling clusters

Using titles for labeling clusters
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Labeling clusters

Using titles for labeling clusters

o Terms and phrases are hard to scan and condense into a
holistic idea of what the cluster is about.
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Labeling clusters

Using titles for labeling clusters

o Terms and phrases are hard to scan and condense into a
holistic idea of what the cluster is about.

o Alternative: titles

o For example, the titles of two or three documents that are
closest to the centroid.
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Labeling clusters

Using titles for labeling clusters

o Terms and phrases are hard to scan and condense into a
holistic idea of what the cluster is about.

o Alternative: titles

o For example, the titles of two or three documents that are
closest to the centroid.

o Titles are easier to scan than a list of phrases. O
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Labeling clusters

Cluster labeling: Example

labeling method
# docs | centroid mutual information title
. - plant oil production )
oil plant mexico pro- MEXICO: Hurricane
. barrels crude bpd
4 | 622 duction crude power - Dolly heads for Mex-
000 re nery gas bpd mexicodolly capac- ico coast
ity petroleum
9 | 1017 peop Y P Lebed meets rebel
peace killed told| troops forces rebels o
chief in Chechnya
grozny court people
?(1 000 torrl]nest traQer: ;jellveryt tradetrs fu- USA: Export Business
10 | 1259 utures wheat priceg tures tonne tonnes o i iiceeds com-
cents september | desk  wheat prices plex
tonne 000 00

@ Three methods: most prominent terms in centroid, di erential ldlmg using
M, title of doc closest to centroid
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Labeling clusters

Cluster labeling: Example

labeling method
# docs | centroid mutual information title
. - plant oil production )
oil plant mexico pro- MEXICO: Hurricane
. barrels crude bpd
4 | 622 duction crude power - Dolly heads for Mex-
000 re nery gas bpd mexicodolly capac- ico coast
ity petroleum
9 | 1017 peop Y P Lebed meets rebel
peace killed told| troops forces rebels o
chief in Chechnya
grozny court people
?(1 000 torrl]nest traQer: ;jellveryt tradetrs fu- USA: Export Business
10 | 1259 utures wheat priceg tures tonne tonnes o i iiceeds com-
cents september | desk  wheat prices plex
tonne 000 00

@ Three methods: most prominent terms in centroid, di erential ldlmg using
M, title of doc closest to centroid
o All three methods do a pretty good job.
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Variants

Outline

© Variants
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Variants

BisectingK -means: A top-down algorithm

o Start with all documents in one cluster
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Variants

BisectingK -means: A top-down algorithm

o Start with all documents in one cluster
o Split the cluster into 2 usinK -means

o Of the clusters produced so far, select one to split (e.g. select
the largest one)
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Variants

BisectingK -means: A top-down algorithm

o Start with all documents in one cluster
o Split the cluster into 2 usinK -means

o Of the clusters produced so far, select one to split (e.g. select
the largest one)

o Repeat until we have produced the desired nhumber of
clusters O
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Variants
BisectingK -means

1
2 leaves f !og

3 fork 1toK 1

4 do!y PickClusterFrom (leave$
5 fli;ljg KMeans (! ¢;2)

6 leaves leavesnf! g[f !i;!jg
7 return leaves
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Variants

BisectingK -means

o If we don't generate a complete hierarchy, then a top-down
algorithm like bisectingk -means ismuch more e cient than
HAC algorithms.
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Variants

BisectingK -means

o If we don't generate a complete hierarchy, then a top-down
algorithm like bisectingk -means ismuch more e cient than
HAC algorithms.

o But bisectingK -means is not deterministic.

o There are deterministic versions of bisectikgmeans (see
resources at the end), but they are much less e cient. [
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Variants

E cient single link clustering

SingleLinkClustering (dg;:::;dn; K)
1 forn 1toN
2 dofori 1to N
do C[n][i]:sim  SIM (dn;d;)
C[n][il:index i
IInN] n
NBM[n]  arg max o cinij:ns ig X :SiM
Al
foorn 1toN 1
doiy  argmax;,j=igNBM[i]:sim
10 i I[NBMJii]:index]
11 A:Append (hi;i2i)
12 fori 1to N
13 doif I[i]=i”"i6i17"i6 i

©ooo~NOOObhWw

14 then CliJlil:sim  C[iJli]:sim  max(Clia][i]:sim; Cliz][i]:sim)
15 if 1[] = i

16 then I[i] i1

17 NBM[i1]  argmax o cfiyjfiy1fi=irigisg X :SIM

18 return A
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Time complexity of HAC

o The single-link algorithm we just saw ®(N?).
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Time complexity of HAC

o The single-link algorithm we just saw ®(N?).

e Much more e cient than the O(N?3) algorithm we looked at
earlier!
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Time complexity of HAC

o The single-link algorithm we just saw ®(N?).
e Much more e cient than the O(N?3) algorithm we looked at

earlier!
e There are alsd(N?) algorithms for complete-link, centroid
and GAAC. O
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Variants

Combination similarities of the four algorithms

clustering algorithm| sim(; ky; k2)

single-link max(sim(; k1); sim(’; k2))
complete-link min(sim(’; ky); sim(; k»))
centroid (Rev¥m) (%)

group-average

M m + )2 (Nm+ N O
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Variants

Comparison of HAC algorithms

method \ combination similarity time compl. optimal? comment
single-link max intersimilarity of any 2 docs (%) yes chaining e ect
complete-link | min intersimilarity of any 2 docs ~ (N?logN) no sensitive to outliers
group-average average of all sims NZlogN) no best choiqe fgr

most applications
centroid average intersimilarity (N?logN) no inversions can occur ]
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Variants

What to do with the hierarchy?

o Use as is (e.g., for browsing as in Yahoo hierarchy)
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Variants

What to do with the hierarchy?

o Use as is (e.g., for browsing as in Yahoo hierarchy)
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o Cut to get a predetermined number of clusteiks
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Variants

What to do with the hierarchy?

o Use as is (e.g., for browsing as in Yahoo hierarchy)

o Cut at a predetermined threshold
o Cut to get a predetermined number of clusteiks
o Ignores hierarchy below and above cutting line. O
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Variants

Take-away today

o Introduction to hierarchical clustering

o Single-link and complete-link clustering

o Centroid and group-average agglomerative clustering (GAAC)
o Bisecting K-means

o How to label clusters automatically O
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Variants

Resources

o Chapter 17 of IR
o Resources ahttp://cisimu.org

o Columbia Newsblaster (a precursor of Google News):
McKeown et al. (2002)
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Variants

Resources

o Chapter 17 of IR
o Resources ahttp://cisimu.org

o Columbia Newsblaster (a precursor of Google News):
McKeown et al. (2002)

s BisectingK-means clustering: Steinbach et al. (2000)

s PDDP (similar to bisectingK -means; deterministic, but also
less e cient): Saravesi and Boley (2004) O
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