
Introduction toIntroduction to
Relational Database Relational Database

Lucia D. Krisnawati

2

OverviewOverview

● Database & Database Management System

● Relational Database

● Simple SQL Queries

● Database normalization

● RDBMS for an Inverted Text Index

3

Database System TodayDatabase System Today

4

Database System TodayDatabase System Today

5

Database System TodayDatabase System Today

● Tremendously huge
data processing

● Horizontal Scalability
● Concurrency Model

6

What are DB & DBMS than?What are DB & DBMS than?

● A database (DB) is a collection of data describing the activities
of 1 or more related organization, eg. University database:

– Entities: students, faculty, courses, classrooms

– Relationship between entities:
● Students' enrollment in courses
● Faculty teaching courses
● The use of rooms for courses

● A Database Management System (DBMS) is a software
designed to assist in maintaining & utilizing large collection of
data eg.:

– Part of software industry: Oracle, Microsoft, Sybase

– Open source:
● Relational: MySQL, PostgreSQL, SQLite
● Text search: APACHE Lucene (SOLR, HADOOP), Ferret, ….

7

Storing Data: File System vs DBMSStoring Data: File System vs DBMS

● Data can be stored in RAM

– That is what most programming language offers

– RAM is fast, random access but volatile
● File System offered by every OS:

– Stores data in files with diverse formats in disk
● Implication ⇨ program using these files depend on the

knowledge about that format

– Allows data manipulation (open, read, write, etc.)

– Allows protection to be set on a file

– Drawbacks:
● No standards of format
● Data duplication & dependence
● No provision for concurrency & security

8

QuizzesQuizzes

● Quiz 1:

– You & your colleague are editing the same file.

– You both save it at the same time

– Whose changes survive?
● Quiz 2:

– You & your colleagues login in the LMU portal.

– Both of you are editing your addresses.

– You both click the send button at the same time

– Whose changes survive?

9

Storing Data: File System vs DBMSStoring Data: File System vs DBMS

● Database Management system:

– Simple, efficient, ad hoc queries

– Concurrency controls

– Recovery, Benefits of good data modelling

– Stores information in disks

– This has implication for database design:
● READ : transfer data from disk to main memory (RAM)
● WRITE : transfer data from RAM to disk

– In relational DBMS:
● Information is stored as tuples or records in relations

or tables.
● Making use of relational Algebra

10

Relational DatabaseRelational Database

● Relational Database Management System (RDBMS)
consists of:

– A set of tables

– A schema
● A schema:

– is a description of data in terms of data model

– Defines tables and their attributes (field or column)
● The central data description construct is a relation:

– Can be thought as records

– eg. information on student is stored in a relation with
the following schema:

Student(sid: string, sname: string, login: string, gpa:
numeric)

11

Relational DatabaseRelational Database

● Tables ≡ relation:

– is a subset of the Cartesian product of the domains of the column
data type.

– Stores information about an entity or theme

– Consist of columns (fields) and rows (records).

– Rows ≡ tuple, describing information about a single item, eg. A
specific student

– columns ≡ attributes, describing a single characteristic
(attributes) of its item, eg. Its ID number, GPA, etc

– Every row is unique & identified by a key
● Entity is

– an object in the real world that is distinguishable from other
objects. eg. Students, lecturers, courses, rooms.

– Described using a set of attributes whose domain values must be
identified.

● The attribute 'name of Student' ⇨ 20-character strings

12

Creating Relational DatabaseCreating Relational Database

● How to create relational database?

– Need RDBMS (MySQL, Oracle, etc)

– Just take MySQL as an open source RDBMS
● With user Inteface

– eg. phpMyAdmin → providing graphical user interface
– Free to use any scripts or programming languages

● Using SQL commands in terminal
● Using SQL integrated in your code

13

Creating Relational DatabaseCreating Relational Database

● How to create relational database in GUI?

– Step 1: install XAMPP (just an example)

a cross-platform Apache HTTP Server, MySQL
Server & interpreters for script

– Step 2: start your XAMPP first:

/xampp_or_lampp_path start

eg. /opt/lampp/lampp start

– Open your browser, and type:

localhost/phpmyadmin

14

RDBMS ExampleRDBMS Example

● Database Server: MySQL 5.5.27

● Web Server: Apache through XAMPP Package

15

RDBMS ExampleRDBMS Example

● Creating table, defining attributes & their domains

16

RDBMS ExampleRDBMS Example
● Creating table, defining attributes & their domains

17

RDBMS ExampleRDBMS Example

● Each relation is defined to be a set of unique
tuples of rows

Tuples
(Recods
, row)

Fields (Attributes, Columns)

18

Key ConstraintsKey Constraints

● Key constraint is a statement that a certain
minimal subset of the relation is a unique
identifier for a tuple.

● Two Types of keys:

– Primary key:

– Foreign key
● Primary key:

– a unique identifier for a tuple (row)
● Sid is a primary key for student,
● Cid is a primary key for Course

– Primary key fields are indexed

19

Key ConstraintsKey Constraints

● Foreign key:

– A kind of a logical pointer

– a key to refer to relation with other tables & should
match the primary key of the referenced relation

– Foreign key fields are also often indexed if they are
important for retrieval.

courses(Cid, Cname, Instructor, Semester)

Student(Sid, Sname, login, GPA)

How do you express which students take which course?

20

Key ConstraintsKey Constraints

● Need a new table :

– enrolled(Cid, grade, Sid)

– Sid/Cid in enrolled are foreign keys refering to Sid in
Student table & Cid in Courses.

Enrolled StudentCourses

21

RelationsRelations

● One to one :

– Each primary key relates only one record in
related table

● One to many:

– The primary key relates to one or many records in
related table

● Many to Many:

– The primary key relates to many records in related
table, and a record in related table can relate to
many primary keys on another table

22

Storing Relationships using KeysStoring Relationships using Keys

● Modeling data is one thing, storing it in a database
is another one.

● In relational database, the 'rules' are:

– If the relationship to be stored is 1:N, place the
attribute identified as the primary key from the one
table as a foreign key in another table.

– If the relationship to be stored is M:N, a new table
structure must be created to hold the association.
This 'bridge' table will have as foreign key attributes,
the primary key of each table that is part of
relationship

● The key for the 'bridge' table then becomes either:
– The combination of all the foreign keys OR
– A new attribute will be added as a surrogate key

23

Storing Relationships using KeysStoring Relationships using Keys

24

Indexes in MySQLIndexes in MySQL
● A database index is

– a data structure that improves the speed of operations
in a table

– Unseen table created by DB engine that keeps indexed
fields and its pointers to each record into the actual
table.

● Indexes in MySQL:

– Primary key

– Unique indexes:
● All values in the indexed column must be distinct though

it's unnecessarily indexed as a primary key

– Index:
● Refers to a non-unique index, used for speeding the

retrieval

25

Indexes in MySQLIndexes in MySQL

● Indexes in MySQL:

– Fulltext:
● An index created for full text searches
● Supporting storage engines: InnoDB & MyISAM
● Data type: CHAR, VARCHAR, TEXT

– Spatial Index:
● for spatial data types
● Uses R-tree indexes

● Example of index usage:

– „Find all students with GPA < 1.7“
● May need to scan the entire table
● Index consists of a set of entries pointing to locations of

each search key

26

Data Type in MySqlData Type in MySql

● String:

– Char, varchar, text, (tiny, medium, long)

– Binary, varbinary

– Blob (tiny, medium, long), enum, set
● Date & time

● Numeric

– Int (tiny, small, medium, big)

– Decimal, float, double, real

– BIT, boolean, serial
● Spatial:

– Geometry, point, linestring, polygon, etc

27

SQLSQL

● Structured Query Language (SQL):

– Is a standard language used to communicate with a
relational database.

– Is used in conjunction with procedural or object-oriented
languages/scripts such as Java, Perl, Ruby, Python, etc

● Sql basic conventions:

– Each statement begins with a command, eg. CREATE,
SELECT

– Each statement ends with delimiter usually a semicolon
(;)

– Statements are written in a free-form style, eg.
SELECT...FROM... WHERE...

– SQL statement is not case-sensitive, except inside string
constant, eg SELECT...FROM... WHERE SName = 'Yadoll'

28

Simple SQL QueriesSimple SQL Queries

● The basic form of SQL Queries is:

SELECT select-list (column_name)

FROM from-list (table_name)

WHERE condition
● Selecting all students with GPA above 1.7

SELECT Sid, Sname FROM student WHERE GPA <= 1.7
● Selecting all information from a table

SELECT * FROM enrolled
● Selecting course name with pattern matching

SELECT Cname FROM Courses WHERE Cname LIKE
'Machine %'

29

Simple SQL QueriesSimple SQL Queries

● INSERT:

INSERT INTO ˋStudentsˋ VALUES (CL0001, David, david@cis,
1,3)

INSERT INTO ˋStudentsˋ VALUES (sid, sname, login, gpa)

● ALTER:

ALTER TABLE ˋStudentsˋ ADD ˋIntakeyearˋ

ALTER TABLE ˋLecturerˋ ADD INDEX(ˋcoursesˋ)
● Using logical connectives:

– AND, OR, NOT may be used to construct a condition

SELECT ˋcnameˋ FROM ˋcoursesˋ WHERE semester =
'summer' AND ctype = 'seminar'

● Joining Tables:

– SELECT ˋSnameˋ FROM ˋStudentsˋ, ˋCoursesˋ WHERE
Students.sid = Courses.sid

30

Simple SQL QueriesSimple SQL Queries

● Creating Table:

CREATE TABLE ˋStudentsˋ (

 ˋSidˋ varchar(6) NOT NULL,

 ˋSNameˋ varchar(35) NOT NULL,

 ˋLoginˋ varchar(25) NOT NULL,

 ˋGPAˋ float(2,1) NOT NULL,

 PRIMARY KEY (ˋSidˋ)

) ENGINE=InnoDB CHARSET= Latin1;

31

Creating Database Through TerminalCreating Database Through Terminal

● Open your terminal console

● Go to the path where you save your MySql

● If you install XAMPP :

– You need to start XAMPP as a SU/root

– to get the action commands (in Linux), type:
/opt/lampp/lampp

– Start only MySQL Server, type:
/opt/lampp/lampp startmysql

– To stop MySQL, type:
/opt/lampp/lampp stopmysql

– To start XAMPP (Apache, MySQL & others), type:
/opt/lampp/lampp start

32

Creating Database Through TerminalCreating Database Through Terminal

● If you install XAMPP :

– go to the path where mysql is saved, in Linux it is usually
saved in bin, so type:

/opt/lampp/bin/mysql -uusername -ppassword

– If you are already in mysql path:
● To see the databases. Type:

SHOW DATABASES ;
● To create a databae, use SQL command:

CREATE DATABASE database_name ;
● Creating database does not select it for use, so type:

USE database_name ;
● To delete database:

DROP DATABASE database_name ;
● Use SQL commands to create tables, do table operation, etc

33

Creating Database Through TerminalCreating Database Through Terminal

● Demo

34

Database NormalizationDatabase Normalization

● Normalization:

– is the process of evaluating & correcting the
structures of the tables in a database

– The goal:
● to minimize or remove data redundancy
● To optimalize the data structure
● Accomplished by thoroughly investigating the

various data type and their relationships with one
another.

● Data redundancy:

– The repeat of key fields usages in other tables

35

Database NormalizationDatabase Normalization

● Functional dependencies:

– Require that the value for a certain set of attributes
determines uniquely the value for another set of
attributes

– are akin to a generalization of the notion of a key

– Let R be a relation and

α ⊆ R and β ⊆ R

The functional dependency :

 α → β

holds on R and only if dor any tuples t1 & t2 that agree
on the attributes α, they also agree on the attributes β.

– That is, t1[α] = t2[α] → t1[β] = t2[β]

36

Database NormalizationDatabase Normalization

● Functional dependencies

Example: consider student(Sid, Sname, DeptId)

instance of student.

37

Database NormalizationDatabase Normalization

● Functional dependencies

Example: consider student(Sid, Sname, DeptId)

instance of student.

✔
✔

✔

✔

✔

✔

38

Database NormalizationDatabase Normalization

● examine the following poor database design:

● Problems:

– No need to repeatedly store the class time & Professor ID

– Which one is the key?

39

Database NormalizationDatabase Normalization

● First Normal Form (1NF):

– A row of data cannot contain a repeating group of data.

– Each row of data must have a unique identifier, i.e primary
key

● This can be done by

– Eliminating the repeated groups of data through creating
separate tables of related data

– Identify each set of related data with a primary key

– All attributes are single valued (1 data type) & non-repeating
● Student information:

Sid Sname Major Minor IntakeYear

● Course information
Cid Cname Lid Time Room

● Lecturer Information

Lid Lname Ltitle

40

Database NormalizationDatabase Normalization

● Second Normal form (2NF):

– A table should meet 1NF

– There must not be any partial dependency of any
column on primary key (Records should not
depend on anything other than a table's primary
key)

● Recall our poor database design:

Sid → Cname or Cname → time ?

41

Database NormalizationDatabase Normalization

● Second Normal Form (2NF) solution:

– Create separate tables for sets of values that
apply to multiple records

– Relates the tables with a foreign key

– Remove subsets of data that apply to multiple
rows of a table and place them in separate tables

enrolled

Sid Cid grade (?)

– What do we do with the attribute time, room, &
Lid?

42

Database NormalizationDatabase Normalization

● Third Normal Form (3NF):

– Eliminate all attributes (columns) that do not
directly dependent upon the primary key

– Each non-primary key attribute must be
dependent only on primary key (no transitive
dependency)

– Example:

Student:
Sid Sname Major Minor IntakeYear

● Which attribute is not directly dependent on Sid?

Student:

Sid Sname Major Minor

43

Database NormalizationDatabase Normalization

● Old design

● New design

44

Database NormalizationDatabase Normalization

● Storing the relation among tables in database

45

Database NormalizationDatabase Normalization

● Exercise:

– Which normal form does this table violate?

– And how do you normalize it?

46

RDBMS for Inverted Text IndexRDBMS for Inverted Text Index

47

RDBMS & Full Text SearchingRDBMS & Full Text Searching

● Applying RDBMS for full text searching

– What is the goal?
● Creating an Inverted index consisting of:

– Dictionary &
– Posting list

– What will be the entities?
● Document
● Term

– How to start?
● You need a specific algorithm, take for examples:

– BSBI
– SPIMI

● What kind of information do you want to save in posting list?
– Term – DocId only?
– Term – DocId, TF, DF?

48

Database Design for BSBI Database Design for BSBI

● A review on Blocked Sort-Based Indexing
Algorithm

49

Database Design for BSBI Database Design for BSBI

● 2 core tables:

– Document table

– Term tables
● How do their schemas look like?

– Doc (did CHAR(5),

 dname CHAR(6),

 dcontent TEXT,

 PRIMARY KEY (did), UNIQUE (dname))

– Doc (did INT(INC),

 dname CHAR(6),

 dcontent BLOB,

 PRIMARY KEY (did), UNIQUE (dname))

– What are the advantages of the first scemas compared to the
second or vice versa?

50

Database Design for BSBIDatabase Design for BSBI

● How do their schemas look like?

– Term (tid INT(INC),

 term CHAR(25),

 PRIMARY KEY (tid),

 UNIQUE (term))
● The number of tables for posting list?

– N-block tables + 1 merged posting table OR

– 1 posting list table ?

51

Database Design for BSBIDatabase Design for BSBI

52

Database Design for BSBIDatabase Design for BSBI

● The former table merging is right algorithmically, but
it is a bad design in relational database. Why?

● There are several strategies for improving the design
for the benefit of searching process.

● This strategy depends on the application you are
developing

● Some strategies are:

– Combining the use of file system & RDBMS for storing
your data:

● Block tables → file system
● Merged posting list → RDBMS

– Applying the relation & normalization concepts for
merged posting list table

53

Database Design for BSBIDatabase Design for BSBI

● The schema for posting list may look like as follows:

– Posting(tid INT(), did CHAR(5), tf INT(5),

 INDEX (tid, did)

 FOREIGN KEY (tid, did) REFERENCES (Term,
 Doc))

– Posting(tid INT(), did STRING/TEXT(),

 tf STRING/TEXT(), INDEX (tid, did)

 FOREIGN KEY (tid, did) REFERENCES (Term,
 Doc))

– Posting(tid INT(), did SET(),

 tf SET(), INDEX (tid, did)

 FOREIGN KEY (tid, did) REFERENCES (Term,
 Doc))

54

Database Design for SPIMIDatabase Design for SPIMI

● SPIMI differs from BSBI in:

– The processing of dictionary → using Term instead of
TermID-Term pair.

– Memory allocation for posting list of a term.

– Adding a posting directly to a posting list
● These differences affect little to database design.

● The former database design can be applied both to
BSBI & SPIMI with one difference:

– Term (term CHAR(25), PRIMARY KEY (term))

– If you have only one field/column in a table, is it
worth to save your data in a RDBMS?

55

ExerciseExercise

● Suppose you have 3 tables in your database, the
dictionary (term), document (doc), and the
posting list tables.

● Suppose you will compute the weight of each
term using tf-idf weighting.

● How do you design your table schema for
term_weight table? How do you state its relation
to other tables in your database?

56

ReferencesReferences

● Ramakrishnan, R. & Gehrke R. 2003. Database
Management System, 2nd Ed , McGraw-Hill
eduction.

● Delisle, M. 2006. Creating Your MySQL databases:
Practical Design Tips and Techniques.
Birmingham: Packt Publishing.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56

