
Introduction toIntroduction to
Relational Database Relational Database 

Lucia D. Krisnawati 



2

OverviewOverview

● Database & Database Management System

● Relational Database

● Simple SQL Queries

● Database normalization

● RDBMS for an Inverted Text Index
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Database System TodayDatabase System Today
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Database System TodayDatabase System Today
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Database System TodayDatabase System Today

● Tremendously huge 
data processing 

● Horizontal Scalability
● Concurrency Model
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What are DB & DBMS than?What are DB & DBMS than?

● A database (DB) is  a collection of data describing the activities 
of 1 or more related organization, eg. University database:

– Entities: students, faculty, courses, classrooms

– Relationship between entities:
● Students' enrollment in courses
● Faculty teaching courses  
● The use of rooms for courses

● A Database Management System (DBMS) is a software 
designed to assist in maintaining & utilizing large collection of 
data eg.:

– Part of software industry: Oracle, Microsoft, Sybase

– Open source:
● Relational: MySQL, PostgreSQL, SQLite
● Text search: APACHE Lucene (SOLR, HADOOP), Ferret, …. 
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Storing Data: File System vs DBMSStoring Data: File System vs DBMS

● Data can be stored in RAM

– That is what most programming language offers

– RAM is fast, random access but volatile
● File System offered by every OS:

– Stores data in files with diverse formats in disk
● Implication ⇨ program using these files depend on the 

knowledge about that format 

– Allows data manipulation (open, read, write, etc.)

– Allows protection to be set on a file

– Drawbacks: 
● No standards of format
● Data duplication & dependence
● No provision for concurrency & security
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QuizzesQuizzes

● Quiz 1:

– You & your colleague are editing the same file.

– You both save it at the same time

– Whose changes survive?
● Quiz 2:

– You & your colleagues login in the LMU portal.

– Both of you are editing your addresses.

– You both click the send button at the same time

– Whose changes survive?
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Storing Data: File System vs DBMSStoring Data: File System vs DBMS

● Database Management system:

– Simple, efficient, ad hoc queries

– Concurrency controls

– Recovery, Benefits of good data modelling

– Stores information in disks

– This has implication for database design:
● READ : transfer data from disk to main memory (RAM)
● WRITE : transfer data from RAM to disk

– In relational DBMS:
● Information is stored as tuples or records in relations 

or tables.
● Making use of relational Algebra
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Relational DatabaseRelational Database

● Relational Database Management System (RDBMS) 
consists of:

– A set of tables

– A  schema 
● A schema:

– is a description of data in terms of data model

– Defines tables and their attributes (field or column)
● The central data description construct is a relation:

– Can be thought as records

– eg. information on student is stored in a relation with 
the following schema:

Student(sid: string, sname: string, login: string, gpa: 
numeric)
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Relational DatabaseRelational Database

● Tables ≡ relation:

– is a subset of the Cartesian product of the domains of the column 
data type.

– Stores information about an entity or theme

– Consist of columns (fields) and rows (records).

– Rows ≡ tuple, describing information about a single item, eg. A 
specific student

– columns ≡ attributes, describing a single characteristic 
(attributes) of its item, eg. Its ID number, GPA, etc

– Every row is unique & identified by a key
● Entity is 

– an object in the real world that is distinguishable from other 
objects. eg. Students, lecturers, courses, rooms.

– Described using a set of attributes whose domain values must be 
identified.

● The attribute 'name of Student' ⇨ 20-character strings
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Creating Relational DatabaseCreating Relational Database

● How to create relational database?

– Need RDBMS (MySQL, Oracle, etc)

– Just take MySQL as an open source RDBMS
● With user Inteface

– eg. phpMyAdmin → providing graphical user interface
– Free to use any scripts or programming languages

● Using SQL commands in terminal
● Using SQL integrated in your code
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Creating Relational DatabaseCreating Relational Database

● How to create relational database in GUI?

– Step 1: install XAMPP (just an example)

a cross-platform Apache HTTP Server, MySQL 
Server & interpreters for script

– Step 2: start your XAMPP first:

/xampp_or_lampp_path start

eg. /opt/lampp/lampp start

– Open your browser, and type:

localhost/phpmyadmin
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RDBMS ExampleRDBMS Example

● Database Server: MySQL 5.5.27

● Web Server: Apache through XAMPP Package
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RDBMS ExampleRDBMS Example

● Creating table, defining attributes & their domains
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RDBMS ExampleRDBMS Example
● Creating table, defining attributes & their domains
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RDBMS ExampleRDBMS Example

● Each relation is defined to be a set of unique 
tuples of rows

Tuples
(Recods
, row)

Fields (Attributes, Columns)
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Key ConstraintsKey Constraints

● Key constraint is a statement that a certain 
minimal subset of the relation is a unique 
identifier for a tuple.

● Two Types of keys:

– Primary key: 

– Foreign key
● Primary key:

– a unique identifier for a tuple (row)
● Sid is a primary key for student, 
● Cid is a primary key for Course

– Primary key fields are indexed
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Key ConstraintsKey Constraints

● Foreign key: 

– A kind of a logical pointer

– a key to refer to relation with other tables & should 
match the primary key of the referenced relation

– Foreign key fields are also often indexed if they are 
important for retrieval.

courses(Cid, Cname, Instructor, Semester )

Student(Sid, Sname, login, GPA)

How do you express which students take which course?



20

Key ConstraintsKey Constraints

● Need a new table :

– enrolled(Cid, grade, Sid)

– Sid/Cid in enrolled are foreign keys refering to Sid in 
Student table & Cid in Courses.

Enrolled StudentCourses
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RelationsRelations

● One to one : 

– Each primary key relates only one record in 
related table

● One to many:

– The primary key relates to one or many records in 
related table

● Many to Many:

– The primary key relates to many records in related 
table, and a record in related table can relate to 
many primary keys on another table
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Storing Relationships using KeysStoring Relationships using Keys

● Modeling data is one thing, storing it in a database 
is another one.

● In relational database, the 'rules' are:

– If the relationship to be stored is 1:N, place the 
attribute identified as the primary key from the one 
table as a foreign key in another table.

– If the relationship to be stored is M:N, a new table 
structure must be created to hold the association. 
This 'bridge' table will have as foreign key attributes, 
the primary key of each table that is part of 
relationship

● The key for the 'bridge' table then becomes either:
– The combination of all the foreign keys OR
– A new attribute will be added as a surrogate key



23

Storing Relationships using KeysStoring Relationships using Keys
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Indexes in MySQLIndexes in MySQL
● A database index is 

– a data structure that improves the speed of operations 
in a table

– Unseen table created by DB engine that keeps indexed 
fields and its pointers to each record into the actual 
table.

● Indexes in MySQL:

– Primary key

– Unique indexes:
● All values in the indexed column must be distinct though 

it's unnecessarily indexed as a primary key

– Index:
● Refers to a non-unique index, used for speeding the 

retrieval
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Indexes in MySQLIndexes in MySQL

● Indexes in MySQL:

– Fulltext:
● An index created for full text searches
● Supporting storage engines: InnoDB & MyISAM
● Data type: CHAR, VARCHAR, TEXT

– Spatial Index:
● for spatial data types
● Uses R-tree indexes

● Example of index usage:

– „Find all students with GPA < 1.7“
● May need to scan the entire table
● Index consists of  a set of entries pointing to locations of 

each search key 
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Data Type in MySqlData Type in MySql

● String:

– Char, varchar, text, (tiny, medium, long)

– Binary, varbinary

– Blob (tiny, medium, long),  enum, set
● Date & time

● Numeric

– Int (tiny, small, medium, big)

– Decimal, float, double, real

– BIT, boolean, serial
● Spatial:

– Geometry, point, linestring, polygon, etc
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SQLSQL

● Structured Query Language (SQL):

– Is a standard language used to communicate with a 
relational database.

– Is used in conjunction with procedural or object-oriented 
languages/scripts such as Java, Perl, Ruby, Python, etc

●  Sql basic conventions:

– Each statement begins with a command, eg. CREATE, 
SELECT

– Each statement ends with delimiter usually a semicolon 
(;)

– Statements are written in a free-form style, eg. 
SELECT...FROM... WHERE... 

– SQL statement is not case-sensitive, except inside string 
constant, eg SELECT...FROM... WHERE SName = 'Yadoll'
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Simple SQL QueriesSimple SQL Queries

● The basic form of SQL Queries is:

SELECT select-list (column_name)

FROM  from-list (table_name)

WHERE condition 
● Selecting all students with GPA above 1.7

SELECT Sid, Sname FROM student WHERE GPA <= 1.7
● Selecting all information from a table

SELECT * FROM enrolled
● Selecting course name with pattern matching

SELECT  Cname FROM Courses WHERE Cname LIKE 
'Machine %' 
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Simple SQL QueriesSimple SQL Queries

● INSERT:

INSERT INTO ˋStudentsˋ VALUES (CL0001, David, david@cis, 
1,3 )

INSERT INTO ˋStudentsˋ VALUES (sid, sname, login, gpa )

● ALTER:

ALTER TABLE ˋStudentsˋ ADD ˋIntakeyearˋ

ALTER TABLE ˋLecturerˋ ADD INDEX(ˋcoursesˋ)
● Using logical connectives:

– AND, OR, NOT may be used to construct a condition

SELECT  ˋcnameˋ FROM ˋcoursesˋ WHERE semester = 
'summer'  AND ctype = 'seminar'

● Joining Tables:

– SELECT ˋSnameˋ FROM ˋStudentsˋ, ˋCoursesˋ WHERE 
Students.sid = Courses.sid 
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Simple SQL QueriesSimple SQL Queries

● Creating Table:

CREATE TABLE ˋStudentsˋ (

   ˋSidˋ varchar(6) NOT NULL,

   ˋSNameˋ varchar(35) NOT NULL,

   ˋLoginˋ varchar(25) NOT NULL,

   ˋGPAˋ float(2,1) NOT NULL,

   PRIMARY KEY (ˋSidˋ)

) ENGINE=InnoDB CHARSET= Latin1;
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Creating Database Through TerminalCreating Database Through Terminal

● Open your terminal console

● Go to the path where you save your MySql

● If you install XAMPP :

– You need to start XAMPP as a SU/root

– to get the action commands (in Linux), type: 
/opt/lampp/lampp 

– Start only MySQL Server, type:           
/opt/lampp/lampp startmysql

– To stop MySQL, type:                          
/opt/lampp/lampp stopmysql

– To start XAMPP (Apache, MySQL & others ), type: 
/opt/lampp/lampp start
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Creating Database Through TerminalCreating Database Through Terminal

● If you install XAMPP :

– go to the path where mysql is saved, in Linux it is usually 
saved in bin, so type:

/opt/lampp/bin/mysql -uusername -ppassword

– If you are already in mysql path:
● To see the databases. Type:

SHOW DATABASES ;
● To create a databae, use SQL command:

CREATE DATABASE database_name ;
● Creating database does not select it for use, so type:

USE database_name ;
● To delete database:

DROP DATABASE database_name ;
● Use SQL commands to create tables, do table operation, etc
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Creating Database Through TerminalCreating Database Through Terminal

● Demo
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Database NormalizationDatabase Normalization

● Normalization:

– is the process of evaluating & correcting the 
structures of the tables in a database

– The goal: 
● to minimize or remove data redundancy 
● To optimalize the data structure
● Accomplished  by thoroughly investigating the 

various data type and their relationships with one 
another.

● Data redundancy:

– The repeat of key fields usages in other tables
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Database NormalizationDatabase Normalization

● Functional dependencies:

– Require that the value for a certain set of attributes 
determines uniquely the value for another set of 
attributes

– are akin to a generalization of the notion of a key

– Let R be a relation and

α ⊆ R and β ⊆ R 

The functional dependency :

 α → β

holds on R and only if dor any tuples t1 & t2 that agree 
on the attributes  α, they also agree on the attributes β. 

– That is, t1[α] = t2[α] → t1[β]  = t2[β]
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Database NormalizationDatabase Normalization

● Functional dependencies

Example: consider student(Sid, Sname, DeptId)

instance of student.
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Database NormalizationDatabase Normalization

● Functional dependencies

Example: consider student(Sid, Sname, DeptId)

instance of student. 

✔
✔

✔

✔

✔

✔
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Database NormalizationDatabase Normalization

● examine the following poor database design:

● Problems:

– No need to repeatedly store the class time & Professor ID

– Which one is the key?
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Database NormalizationDatabase Normalization

● First Normal Form (1NF): 

– A row of data cannot contain a repeating group of data. 

– Each row of data must have a unique identifier, i.e primary 
key

● This can be done by

– Eliminating the repeated groups of data through creating 
separate tables of related data

– Identify each set of related data with a primary key

– All attributes are single valued (1 data type) & non-repeating
● Student information:

Sid  Sname Major Minor IntakeYear

● Course information
Cid  Cname Lid Time Room

● Lecturer Information

Lid  Lname Ltitle
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Database NormalizationDatabase Normalization

● Second Normal form (2NF):

– A table should meet 1NF

– There must not be any partial dependency of any 
column on primary key (Records should not 
depend on anything other than a table's primary 
key)

● Recall our poor database design:

Sid → Cname or Cname → time ?
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Database NormalizationDatabase Normalization

● Second Normal Form (2NF) solution:

– Create separate tables for sets of values that 
apply to multiple records

– Relates the tables with a foreign key

– Remove subsets of data that apply to multiple 
rows of a table and place them in separate tables

enrolled

Sid Cid grade (?)

– What do we do with the attribute time, room, & 
Lid?
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Database NormalizationDatabase Normalization

● Third Normal Form (3NF):

– Eliminate all attributes (columns) that do not 
directly dependent upon the primary key

– Each non-primary key attribute must be 
dependent only on primary key (no transitive 
dependency)

– Example:

Student:
Sid Sname Major Minor   IntakeYear

● Which attribute is not directly dependent on Sid?

Student:

Sid Sname Major Minor 
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Database NormalizationDatabase Normalization

● Old design

● New design
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Database NormalizationDatabase Normalization

● Storing the relation among tables in database
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Database NormalizationDatabase Normalization

● Exercise:

– Which normal form does this table violate?

– And how do you normalize it?
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RDBMS for Inverted Text IndexRDBMS for Inverted Text Index
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RDBMS & Full Text SearchingRDBMS & Full Text Searching

● Applying RDBMS for full text searching

– What is the goal?
● Creating an Inverted index consisting of:

– Dictionary &
– Posting list

– What will be the entities?
● Document
● Term

– How to start?
● You need a specific algorithm, take for examples:

– BSBI
– SPIMI 

● What kind of information do you want to save in posting list?
– Term – DocId only?
– Term – DocId, TF, DF?
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Database Design for BSBI Database Design for BSBI 

● A review on Blocked Sort-Based Indexing 
Algorithm
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Database Design for BSBI Database Design for BSBI 

● 2 core tables:

– Document table

– Term tables
● How do their schemas look like?

– Doc ( did CHAR(5), 

         dname CHAR(6), 

         dcontent TEXT, 

         PRIMARY KEY (did), UNIQUE (dname) )

– Doc ( did INT(INC),               

         dname CHAR(6), 

         dcontent BLOB,

         PRIMARY KEY (did), UNIQUE (dname) )

– What are the advantages of the first scemas compared to the 
second or vice versa?
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Database Design for BSBIDatabase Design for BSBI

● How do their schemas look like?

– Term ( tid INT(INC),

           term CHAR(25),

           PRIMARY KEY (tid),

           UNIQUE (term) )
● The number of tables for posting list?

– N-block tables + 1 merged posting table OR

– 1 posting list table ?
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Database Design for BSBIDatabase Design for BSBI
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Database Design for BSBIDatabase Design for BSBI

● The former table merging is right algorithmically, but 
it is a bad design in relational database. Why?

● There are several strategies for improving the design 
for the benefit of searching process.

● This strategy depends on the application you are 
developing

● Some strategies are:

– Combining the use of file system & RDBMS for storing 
your data:

● Block tables → file system
● Merged posting list → RDBMS

– Applying the relation & normalization concepts for 
merged posting list table
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Database Design for BSBIDatabase Design for BSBI

● The schema for posting list may look like as follows:

– Posting(  tid INT(),  did CHAR(5), tf INT(5),

            INDEX (tid, did)

            FOREIGN KEY (tid, did) REFERENCES (Term,          
            Doc)  )

– Posting(  tid INT(),  did STRING/TEXT(),   

            tf STRING/TEXT(), INDEX (tid, did)

            FOREIGN KEY (tid, did) REFERENCES (Term,          
            Doc)  )

– Posting(  tid INT(),  did SET(),   

            tf  SET(), INDEX (tid, did)

            FOREIGN KEY (tid, did) REFERENCES (Term,          
            Doc)  )
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Database Design for SPIMIDatabase Design for SPIMI

● SPIMI differs from BSBI in:

– The processing of dictionary → using Term instead of 
TermID-Term pair.

– Memory allocation for posting list of a term.

– Adding a posting directly to a posting list
● These differences affect little to database design.

● The former database design can be applied both to 
BSBI & SPIMI with one difference:

– Term ( term CHAR(25), PRIMARY KEY (term) )

– If you have only one field/column in a table, is it 
worth to save your data in a RDBMS?
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ExerciseExercise

● Suppose you have 3 tables in your database, the 
dictionary (term), document (doc),  and the 
posting list tables.

● Suppose you will compute the weight of each 
term using tf-idf weighting.

● How do you design your table schema for 
term_weight table? How do you state its relation 
to other tables in your database?
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