Assignment
 Language Models and Part-of-Speech Tagging

Problem 1

Questions:

- What is a statistical language model?
- What is the formula for a bigram language model?
- What is part-of-speech tagging?
- What do the following POS tags stand for?

AT, BEZ, IN, JJ, MD, NN, NNP, NNS, RB, TO, VB, VBD, VBG, VBN, VBZ, WDT

- What are the tags of the following parts of speech (or morphosyntactic "feature bundles")?
article, the word "is", preposition, adjective, modal, singular or mass non-proper noun, singular proper noun, plural non-proper noun, adverb, the infinitive marker "to", verb (base form), verb (past tense), verb (present participle), verb (past participle), verb (3rd sng. present), wh-determiner
- What are the two sources of information used in statistical POS tagging?
- What is the form of the word bias (emission) parameter in POS tagging?
- What is the form of the context (transition) parameter in POS tagging?
- What is the advantage of Laplace estimation compared to ML estimation?

Problem 2

Give examples for the following.

- Using word bias (emission) probability is useful for POS tagging.
- Using context (transition) probability is useful for POS tagging.

Problem 3

Estimate the word bias (emission) parameters P (authorization|NN) and P (restrict $\mid \mathrm{VB}$) based on the following training text. Give ML und Laplace estimates.

The/DT bill/NN intends/VBZ to/TO restrict/VB the/DT RTC/NNP to/IN Treasury/NNP borrowings/NNS only/RB ,/, unless/IN the/DT agency/NN receives/VBZ specific/JJ congressional/JJ authorization/NN ./.

Problem 4

Estimate the context (transition) parameters $P(\mathrm{VB} \mid \mathrm{TO})$ and $P(\mathrm{TO} \mid \mathrm{VB})$ based on the following training text. Give ML und Laplace estimates.

The/DT bill/NN intends/VBZ to/TO restrict/VB the/DT RTC/NNP to/IN Treasury/NNP borrowings/NNS only/RB ,/, unless/IN the/DT agency/NN receives/VBZ specific/JJ congressional/JJ authorization/NN ./.

Problem 5

Estimate the probabilities P (wenige|nur) and P (in \mid nur) based on the following training text. Give ML und Laplace estimates.
nur wenige Zoos halten Greifstachler, in Deutschland nur der Frankfurter .

Problem 6

Suppose a speech recognition program returns two recognition hypotheses h_{1} and h_{2} for a spoken sentence.

- h_{1} : ich komme vom Hauptbahnhof
- h_{2} : ich komme vom Haupt Bahn Hof

A language model $P_{\text {LM }}$ trained on a large German corpus will assign a much higher probability to h_{1} than to h_{2} :

$$
P_{\mathrm{LM}}\left(h_{1}\right) \gg P_{\mathrm{LM}}\left(h_{2}\right)
$$

Explain why.

