
Fast String Corretion with Levenshtein-AutomataKlaus U. ShulzCISUniversity of Munihshulz�is.uni-muenhen.de Stoyan MihovLinguisti Modelling LaboratoryLPDP { Bulgarian Aademy of Sienesstoyan�lml.bas.bg

2 AbstratThe Levenshtein-distane between two words is the minimal number of insertions,deletions or substitutions that are needed to transform one word into the other.Levenshtein-automata of degree n for a wordW are de�ned as �nite state automatathat regognize the set of all words V where the Levenshtein-distane between V andW does not exeed n. We show how to ompute, for any �xed bound n and anyinput word W , a deterministi Levenshtein-automaton of degree n for W in timelinear in the length of W . Given an eletroni ditionary that is implemented in theform of a trie or a �nite state automaton, the Levenshtein-automaton for W an beused to ontrol searh in the lexion in suh a way that exatly the lexial words Vare generated where the Levenshtein-distane between V andW does not exeed thegiven bound. This leads to a very fast method for orreting orrupted input wordsof unrestrited text using large eletroni ditionaries. We then introdue a seondmethod that avoids the expliit omputation of Levenshtein-automata and leads toeven improved eÆieny. We also desribe how to extend both methods to variantsof the Levenshtein-distane where further primitive edit operations (transpositions,merges and splits) may be used.Keywords: Spelling orretion, Levenshtein-distane, optial harater reogni-tion, eletroni ditionaries.

Contents
1 Introdution and Motivation 52 Formal Preliminaries 93 String orretion with Levenshtein-automata 134 A family of deterministi Levenshtein-automata 155 Computation of deterministi Levenshtein-automata of �xed de-gree 275.1 Computing the Levensthein-automaton of degree 1 275.2 Computing Levensthein-automata of higher degree 306 String orretion using imitation of Levensthein-automata 337 Adding Transpositions 357.1 A family of deterministi Levenshtein-automata for primitive editoperations inluding transpositions 357.2 Computation of deterministi Levenshtein-automata for primitive editoperations inluding transpositions 418 Adding Merges and Splits 478.1 A family of deterministi Levenshtein-automata for primitive editoperations inluding merges and splits 478.2 Computation of deterministi Levenshtein-automata for primitive editoperations inluding merges and splits 538.3 Experimental results . 569 Conlusion 633

4 CONTENTS

Chapter 1Introdution and Motivation
The problem of how to �nd good orretion andidates for a garbled input word isimportant for many fundamental appliations, inluding spelling orretion, speehreognition, OCR-reognition, as well as internet and bibliographi searh. Dueto its relevane the problem has been onsidered by many authors (e.g., [Bla60,RE71, Ull77, AFW83, SHC83, Sri85, TIAY90, Kuk92, ZD95, DHH+97℄). Mostontributions suggest methods for orreting isolated words of a text.1 Sine purelystatistial methods annot o�er suÆient orretion auray, modern approahesare generally built on top of lexial tehniques.If an eletroni ditionary is available that overs the possible input words,a simple proedure may be used for deteting and orreting errors. Given aninput word W , it is �rst heked if the word is in the ditionary. In the negativease, the words of the ditionary that are most similar to W are suggested asorretion andidates. If neessary, appropriate statistial data an be used forre�nement of ranking. Similarity between two words an be measured in severalways. Most useful are (dis)similarity measures based on variants of the Levenshtein-distane [Lev66, WF74, WBR95, SKS96, OL97℄ or on n-gram distanes [AFW83,Ukk92, KST92, KST94℄. In this paper, we take the Levenshtein-distane as a basis.The standard algorithm for omputing the Levenshtein-distane between twowords by Wagner and Fisher [WF74℄ uses a dynami programming sheme thatleads to quadrati time omplexity. Even with more sophistiated algorithms (f.[Ukk85℄) it is not realisti to ompute the Levenshtein-distane between the inputwordW and eah of the words in the ditionary, already for ditionaries of a modestsize. The problem beomes even more serious when using ditionaries for highlyinetional or agglutinating languages (e.g., Russian, German, Turkish, Finnish,Hungarian), ditionaries for languages that allow for omposition of nouns (ger-man), or multi-lingual ditionaries. In these ases, ditionaries may ontain severalmillions of entries. The problem arises of how to ompute the lexial Levenshtein-neighbours of a garbled input word while respeting the eÆieny onstraints thatarise from realisti industrial appliations.Several solutions have been proposed for fast seletion of possible orretions.Often the ditionary is o�ine partitioned using a similarity key [Sin90, Kuk92,dBdBT95, ZD95℄, or it is enrihed with a speial index struture [OM88, KST92,1Some more reent work tries to use the sentene or doument ontext for orreting errors andresolving ambiguities, e.g., [Hul92, KEW91, Hon95℄.5

6 CHAPTER 1. INTRODUCTION AND MOTIVATIONZD95℄. Corretion of a given input word is divided in two steps, In a �rst step, thesimilarity key or the index is used for oarse searh, extrating a list of ditionarywords that is guaranteed to ontain all interesting orretions of the input string. Inthe seond step (�ne searh), for eah andidate the distane to the garbled inputword is omputed, using a �ne-graded measure. Candidates are ranked aordingto this distane and the best andidates are suggested as orretion words.Oazer [O96℄ suggested another method that an deal even with in�nite di-tionaries of agglutinating languages. The set of all ditionary words is treated asa regular language over the alphabet of letters. As a prerequisite, a deterministi�nite state automaton reognizing this language has to be given.2 Faed with aninput word W , Oazer starts an exhaustive traversal of the ditionary automaton.At eah step, the pre�x of all letters that are onsumed on the path from the initialstate to the urrent state is maintained. A variant of the Wagner-Fisher algorithm isused to ontrol the walk through the automaton in suh a way that only pre�xes aregenerated that potentially lead to a orretion andidate V where the Levenshtein-distane between V and W does not exeed a �xed bound n. Eah ditionary wordV within the given distane toW is added to the output list. Oazer shows that forbounds n = 1; 2; 3 the ontrol mehanism helps to avoid the inspetion of most ofthe states of the ditionary automaton. The method leads to an eÆient generationof an appropriate list of orretion andidates, even for very large | or in�nite |ditionaries.The �rst orretion proedure that we suggest in this paper an be onsidered asa variant of Oazer's approah. We also assume that the ditionary is representedas a deterministi �nite state automaton. However, we ompletely avoid the om-putation of the Levenshtein-distane during the traversal of the automaton. Giventhe input word W and a bound k, we �rst ompute a deterministi �nite stateautomaton A that aepts exatly all words V where the Levenshtein-distane be-tween V and W does not exeed k. A is alled a Levenshtein-automaton for W .Levenshtein-automaton and ditionary automaton are then traversed in parallel. Inthis way, eah move in the ditionary automaton is ontrolled by the Levenshtein-automaton and vie versa. We obtain the intersetion of the languages of the twoautomata as our list of orretion andidates. Clearly, this intersetion is the set ofall ditionary words V where the Levenshtein-distane between V and W does notexeed n.Our main algorithmi result shows that for any �xed degree n and input W adeterministi Levenshtein-automaton AW for W an be omputed in linear timeand spae in jW j. In order to maximize pratial eÆieny, the omputation ofAW for �xed distane bound n is based on a pre-ompiled table Tn that ontainsa parametri and generi desription of states and transitions of AW . At runtime,given input W , parametri states and transitions of Tn are instantiated, yieldingthe automaton AW . The instantiation of the parametri transition rules of Tn istriggered by Boolean vetors that haraterize the distribution of letters of W insubwords of length 2n+1. The table-based approah leads to an improved variant ofthe orretion method where the traversal of the ditionary automaton is ontrolledusing the table Tn itself. Moves in AW are simulated and the atual omputationof the Levenshtein-automaton AW is avoided, thus improving eÆieny.The above results always refer to the \standard" Levenshtein-distane where thedistane between two wordsW and V is de�ned as the minimal number of insertions,2For �nite ditionaries, an eÆient algorithm for omputing the minimal deterministi �nitestate automaton for the ditionary has been desribed in [Mih98, DMWW00℄.

7deletions and substitutions that are needed to transform W into V . For spei�appliations, variants of this metris are preferable. In a typesetting ontext oftentwo symbols are transposed. In the ontext of OCR-reognition, two symbols areoften merged into one symbol, or onversely one symbol is split into two symbols.Motivated by these ases we also study Levenshtein-automata for the modi�edLevenshtein-distane where insertions, deletions, substitutions and transpositionsare used as primitive edit operations, and for the variant where insertions, deletions,substitutions, merges and splits are treated as primitive edit operations. In bothases, tehniques and results obtained for the standard Levenshtein-distane an belifted.Our evaluation results show that string orretion with (simulated) Levenshtein-automata is in fat very fast. For example, using a Bulgarian ditionary with870,000 entries and (standard) distane bound n = 1, the average time to omputeand output all lexial Levenshtein-neighbours of a garbled input word on are around0:4 milliseonds on a Pentium III. Using a german ditionary inluding ompositenouns with 6.058.198 entries the average time was between 1:3 milliseonds (shortwords) and 2:5 milliseonds. Further results for modi�ed Levenshtein distanes,other distane bounds and other lexion sizes are given below.The paper is strutured as follows. Chapter 2 gives some general tehnialbakground. In Chapter 3 we formally de�ne Levensthein-automata and we de-sribe the �rst string orretion method skethed above in more detail. Setion 4gives a generi desription of a deterministi Levenshtein-automaton of arbitrarydegree n for arbitrary input wordW . In Chapter 5 we show how to use this desrip-tion to derive tables T1; T2; T3; : : : whih ontain parametri desriptions of statesand transitions of a deterministi Levenshtein-automata of degree n = 1; 2; 3 : : :for arbitrary input word W . Using these tables it is trivial to generate a deter-ministi Levenshtein-automaton for input W in time linear in the length of W .Setion 6 disusses the seond orretion method where the atual omputation ofthe Levenshtein-automaton for the input word W is avoided. Chapter 7 desribesomputation of Levenshtein-automata for the modi�ed distane where transposi-tions are treated as primitive edit operations. Chapter 8 desribes omputationof Levenshtein-automata for the metris where merges and splits are treated asprimitive edit operations. In Chapter 8.3 experimental results for string orretionand approximate string mathing using Levenshtein-automata are added. We �n-ish with a short Conlusion where we mention some side results of our work andomment on related and future work.

8 CHAPTER 1. INTRODUCTION AND MOTIVATION

Chapter 2Formal Preliminaries
We assume that the reader is familiar with the basi notions of formal languagetheory as desribed, e.g., in [HU79, Koz97℄. As usual, �nite state automata (FSA)are treated as tuples of the form A = h�; Q; q0; F;�i where � is the input alphabet,Q is the set of states, q0 2 Q is the initial state, F is the set of �nal states, and� � Q� �" �Q is the transition relation. Here \"" denotes the empty word and�" := � [f"g. We write L(A) for the language aepted by A.A �nite state automaton A is deterministi if the transition relation is a funtionÆ : Q��! Q. Let A = h�; Q; q0; F; Æi be a deterministi FSA, let Æ� : Q��� ! Qdenote the generalized transition funtion, whih is de�ned as usual. For q 2 Q wewrite L(q) := fU 2 �� j Æ�(q; U) 2 Fg for the language of all words that lead fromq to a �nal state.The length of a word W is denoted jW j. Regular languages over � are de�nedas usual. With L1 Æ L2 we denote the onatenation of the languages L1 and L2.Two words V and W are alled isomorphi i� V an be obtained from W by apermutation of the alphabet �. The notion of isomorphism arries over to automatain the obvious sense.The Levenshtein-distane between two wordsThe Levenshtein-distane between two words is based on the notion of a primitiveedit operation. In this paper we �rst onsider the standard Levenshtein-distane.Here the primitive operations are the substitution of a symbol by another symbol,the deletion of a symbol, and the insertion of a symbol. Obviously, given twowords W and V over the alphabet �, it is always possible to rewrite W into V ,using primitive edit operations.De�nition 2.0.1 Let V ,W be words over the alphabet �. The (standard) Levenshtein-distane between V andW is the minimal number of edit operations (substitutions,deletions, or insertions) that are needed to transform V into W .With dL(V;W) we denote the Levenshtein-distane between V and W . It an beomputed using the following simple dynami programming sheme (f. [WF74℄):dL(";W) = jW j 9

10 CHAPTER 2. FORMAL PRELIMINARIESdL(V; ") = jV jdL(aV; bW) = � dL(V;W) if a = b1 +min(dL(V;W); dL(aV;W); dL(V; bW)) if a 6= bfor V;W 2 �� and a; b 2 �. The following simple observation follows immediately.Lemma 2.0.2 Let W = UW 0 and V = UV 0. Then dL(V;W) = dL(V 0;W 0).Let W = x1x2 � � �xw and V = y1y2 � � � yv be two words with Levenshtein-distanen � 0. Consider a sequene � of edit operations of minimal length leading from Wto V . If we substitute a letter xi by another symbol z, the latter symbol will notbe erased or subsituted by one of the following edit operations of � sine otherwise� would not have minimal length. Hene there exists a unique letter yj of V thatrepresents the desendant of z in V and the substitution result of xi. In the so-alledtrae representation (f. [WF74℄) of � we introdue a stroke from xi to yj . Similarlywe introdue a stroke from xi to yj if xi is not touhed by any edit operation andif yj represents the desendant of xi in the new word V . Assume that all strokesof the above form are introdued. Clearly, two strokes never ross. Moreover, eahletter xi of W that does not represent the starting point of a stroke is deleted bysome operation of �, and eah letter yj of V that does not represent the end pointof a stroke is an inserted symbol.Remark 2.0.3 LetW = x1x2 � � �xw and V = y1y2 � � � yv be two words with Leven-shtein-distane n � 1. Assume that neither V is a pre�x of W nor vie versa. LetU = x1x2 � � �xi (where 0 � i � v; w) denote the maximal ommon pre�x of V andW . Then, in any trae representation of a minimal sequene � of edit operationsleading from W to V exatly one of the following three ases holds:1. Insertion ase. A stroke is starting at xi+1 that points to some yi+j wherej > 1,2. Substitution ase. Letters xi+1 and yi+1 are onneted by a stroke,3. Deletion ase. A stroke is ending at yi+1 that starts at some xi+j wherej > i+ 1.In fat, the only remaining ase would be the situation where neither xi+1 nor yi+1represent the end point of a stroke. This would mean that xi+1 is deleted and yi+1is inserted in �. Using one substitution instead, we would get a shorter sequene ofedit operations from V to W , whih gives a ontradition. The three possible asesare indiated in Figure 2.1.

11

W

V

xi+1 …

…
Insertion

xi

yi

W

V

xi+1 …

…
Substitution

xi

yi

W

V

xi+1 …

…
Deletion

xi

yi

Figure 2.1: Possible trae pitures for situation of Remark 2.0.3.

12 CHAPTER 2. FORMAL PRELIMINARIES

Chapter 3String orretion withLevenshtein-automata
As indiated in the introdution, we fae a situation where we use an eletroniditionary for deteting and orreting misspelled words. Given any input wordW ,it is �rst heked if W is a word of the lexion. In the negative ase, the lexion isused to generate a list of andidate orretions. The words V of the lexion that aremost similar to W are onsidered to be good orretion andidates. Dissimilarityis measured in terms of the Levenshtein-distane between W and V .In the sequel, � denotes the bakground alphabet. We assume that the di-tionary is implemented in the form of a deterministi FSA or a trie. A trie anbe onsidered as a �nite state automaton as well. The language of the automatonrepresents the set of all orret words. We assume that the automaton has theform AD = h�; QD; qD0 ; FD; ÆDi. AD will be alled the ditionary automaton in thesequel.De�nition 3.0.4 Let W be a word over the alphabet �. With LLev(n;W) wedenote the set of all words V 2 �� suh that dL(W;V) � n.We now introdue the entral onept of this paper.De�nition 3.0.5 Let W be a word over the alphabet �, let n 2 IN. A �nite stateautomaton A is a Levenshtein-automaton of degree n for W i� L(A) = LLev(n;W).The �rst orretion method suggested in this paper follows a simple idea. In or-der to generate a list of orretion andidates for a garbled input word W , weselet a number n and ompute a deterministi Levenshtein-automaton AW =h�; QW ; qW0 ; FW ; ÆW i of degree n for W . Using the following simple baktrak-ing proedure, we traverse the two automata AW and AD in parallel.push (<"; qD0 ; qW0 >);while not empty(stak) do beginpop (<V; qD; qW >);for x in � do begin 13

14CHAPTER 3. STRING CORRECTION WITH LEVENSHTEIN-AUTOMATAqD1 := ÆD(qD; x);qW1 := ÆW (qW ; x);if (qD1 <> NIL) and (qW1 <> NIL) then beginV1 := onat(V; x);push(<V1; qD1 ; qW1 >);if (qD1 2 FD) and (qW1 2 FW) then output(V1);end;end;end;Starting with the pair of initial states hqD0 ; qW0 i and the empty word ", eah stepof the traversal adds a new letter x 2 � to the atual word V and leads from a pairof states hqD; qW i 2 QD � QW to hÆD(qD; x); ÆW (qW ; x)i. We proeed as long asboth omponents are distint from the empty failure state1 NIL. Whenever in bothautomata a �nal state is reahed, the atual word is added to the output.It is trivial to see that the list of all output words is L(AD) \ L(A), hene itontains exatly the \grammatial" words in LLev(n;W). With a good hoie of n,we obtain an appropriate set of orretion andidates for the input W .We shall also introdue a seond and related orretion method. This method,whih avoids the atual omputation of Levenshtein-automata, an only be de-sribed later, one we have introdued a number of additional onepts.

1A failure state is a state q whose language L(q) is empty.

Chapter 4A family of deterministiLevenshtein-automata
In this hapter we introdue a deterministi Levenshtein-automaton LEVn(W) ofdegree n for an input word W . The desription is generi in the sense that weneither make any spei� assumption on the degree n, nor on the length or the formof the input word W . The desription will be the basis for eÆient omputation ofLevenshtein-automata for �xed degree n, to be desribed in the following setion.Pro�le sequenes and harateristi vetorsWe �rst introdue some notions that help to haraterize the strutural propertiesof the input word W that determine the struture of the automaton LEVn(W).De�nition 4.0.6 Let U = z1 � � � zu 2 �u be a sequene of haraters. The pro�lPr(U) of U is the sequene of naturals (n1 � � �nu) obtained in the following way.De�ne n1 := 1. Assume that n1; : : : ; nk are de�ned for some 1 � k < u. Ifxk+1 2 fx1; : : : ; xkg, say, xk+1 = xi (where 1 � i � k), then nk+1 := ni. In theother ase we de�ne nk+1 := maxfni j 1 � i � kg+ 1.Example 4.0.7 We havePr(aahen) = (112345), Pr(odd) = (122), and Pr(even) =(1213).Let W and W 0 denote two words of the same length. It should be lear that forany �xed degree n we an use isomorphi deterministi Levenshtein-automata forinput words W and W 0 whenever Pr(W) = Pr(W 0). A stronger relationship anbe established. We shall see that the struture of the deterministi Levenshtein-automaton for an input word W to be desribed below depends | in a sense to bemade preise | only on loal subpro�les of the input word.De�nition 4.0.8 Let U = z1 � � � zu, let k � 1. The k-pro�le sequene of W is thesequene of pro�lesPr(z1 � � � zk)Pr(z2 � � � zk+1) � � �Pr(zu�k+1 � � � zu)for k � u. For k > u, the k-pro�le sequene of U is Pr(z1 � � � zu).15

16CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA
8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•Figure 4.1: Positions and aepting positions.The k-pro�le sequenes of two words an be idential even for non-isomorphi words.Example 4.0.9 The 3-pro�le sequene of butter is (1; 2; 3); (1; 2; 2); (1; 1; 2); (1; 2; 3).The 3-pro�le sequene of setter is the same sequene.The following notion plays a key role when de�ning the images of the states ofLevenshtein-automata under input symbols x 2 �.De�nition 4.0.10 Let x 2 � and let V = y1 : : : yv 2 ��. The harateristi vetorof x with respet to V is the bit-vetor �(x; V) := hb1; : : : ; bvi where bj := 1 i�yj = x and bj := 0 otherwise.The following remark shows how the information ontained in a pro�le an bemodularized using harateristi vetors. The tehnique will be used when we de�nethe transitions of LEVn(W).Remark 4.0.11 Given the pro�le of a word V we an derive all harateristi ve-tors of the form �(x; V), just using the harateristi vetors of number 1; 2; : : : withrespet to Pr(V). For example, if Pr(V) = (1; 2; 1; 2; 3; 1; 2), then the harateristivetors �(x; V) have the form h1; 0; 1; 0; 0; 1; 0i, h0; 1; 0; 1; 0; 0; 1i, h0; 0; 0; 0; 1; 0; 0iand h0; 0; 0; 0; 0; 0; 0i (assuming that � has at least four letters). Conversely, giventhe set of all harateristi vetors of the form �(x; V) we may obviously derivePr(V).Positions and statesWe �x an arbitrary input word W = x1 � � �xw and a number n 2 IN that denotesthe maximal Levenshtein-distane that we want to apture. Numbers i 2 0; : : : ; wwill be alled the boundaries of W . The states of the LLev(n;W) are omposed ofsymboli expressions of a speial kind.De�nition 4.0.12 A position is an expression of the form i℄e where 0 � i � w and0 � e � n. Position i℄e is raised i� e > 0, otherwise it is alled a base position.Intuitively, an exponent ℄e is meant to denote a situation where e edit operationshave ourred.

17
8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
• Figure 4.2: Subsumption triangles.De�nition 4.0.13 A position i℄e is aepting i� w � i � n� e.Example 4.0.14 For n = 5 and w = 8, the set of all positions is depited inFigure 4.1. Aepting positions are marked.De�nition 4.0.15 A position i℄e subsumes a position j℄f i� e < f and jj � ij �f � e. The set of all positions that are subsumed by i℄e is alled the subsumptiontriangle of i℄e.Example 4.0.16 Let n = 5 and assume that w = 8. Figure 4.2 illustrates thesubsumption triangles of 1℄2, 3℄3 and 8℄1. Sine subsumption is irreexive, thepositions 1℄2, 3℄3 and 8℄1 do not belong to the respetive triangles.The following lemma indiates the bakground for the notion of subsumption.Lemma 4.0.17 Let W = x1 � � �xw and n as above. Let � denote the funtion thatassigns to eah position i℄e the language�(i℄e) := LLev(n� e; xi+1 � � �xw):Let � := i℄e and �0 := j℄f be two distint positions. If � subsumes �0, then �(�0) isa subset of �(�).Proof. Assume that � = i℄e subsumes �0 = j℄f . Then e < f and jj � ij � f � e.Sine xj+1 � � �xw an be obtained from xi+1 � � �xw by a series of jj � ij insertions(for j � i) or deletions (for j > i) it follows easily that �(�0) is a subset of �(�).The states of LLev(n;W) are sets of positions of a partiular type.De�nition 4.0.18 Let 0 � i � w. A state with base position i℄0 is a set M ofpositions, not neessarily ontaining i℄0, that sa�s�es the following properties:1. for eah position j℄e in M we have ji� jj � e. I.e., eah position of M , withthe possible exeption of i℄0, lies in the subsumption triangle of i℄0.2. M does not ontain any position that is subsumed by another element of M .

18CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATALet us note that a state may have several possible base positions.Example 4.0.19 First assume that n = 1 and w = 2. Then the states are ;, f0℄0g,f1℄0g, f2℄0g, f0℄1g, f1℄1g, f2℄1g, f0℄1; 1℄1g, f0℄1; 2℄1g, f1℄1; 2℄1g, and f0℄1; 1℄1; 2℄1g.Assume now that w = 0. Let n be any natural number. Then the set of non-emptystates is ff0℄eg j 0 � e � ng. Third, assume that n = 0. Let w be any naturalnumber, denoting the length of the input word. Then the set of non-empty statesis ffi℄0g j 0 � i � wg.De�nition 4.0.20 Let M be a non-empty state. The minimal number i suh thatM ontains a position of the form ie (for some e) is alled the minimal boundary ofM .It is trivial to verify the following lemma.Lemma 4.0.21 Let M be a state with minimal boundary i and let j℄f 2M . Thenj � i � n+ f .At various plaes we shall onsider the union of two statesM and N with a ommonbase position i℄0. We writeMtN for the set that is obtained fromM[N by omissionof states that are subsumed by other states. Sine the subsumption relation is well-founded, this operation is well-de�ned. Note that M tN is again a state with baseposition i℄0. M tN will be alled the redued union of M and N .Elementary transitionsThe transitions of the Levenshtein-automaton of degree n will be de�ned with thehelp of transitions that at on single positions. The latter transitions are alledelementary transitions of degree n. The image of a position under an elementarytransition with an input symbol x depends on the distribution of x in a subword ofW .De�nition 4.0.22 Let W = x1 � � �xw as above. Let � := i℄e be a position, andlet k := minfn� e+ 1; w � ig. The relevant subword of W for position �, denotedW[�℄, is the subword xi+1 � � �xi+k of W .Note that the length of W[�℄ annot exeed n+ 1.Example 4.0.23 Let w = 8 and n = 5. Then the relevant subwords for positions2℄2 and 3℄0 respetively are x3x4x5x6 and x4x5x6x7x8, as illustrated in Figure 4.3.De�nition 4.0.24 Let W and n as above. An elementary transition assigns toeah position � = i℄e and eah symbol x 2 � a state Æ(i℄e; x). The omplete set ofelementary transitions is spei�ed in Table 4.1. Notation h0; b2; : : : ; bki : j indiatesthat j is the minimal index in f2; : : : ; kg where bj = 1. This implies that suh anindex exists.The following { informal |omments explain the intuition behind these transitions.In Part (I) of the table for i � w � 1 we distinguish three situations:

19
8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

x1 x2 x3 x4 x5 x6 x7 x8W

Figure 4.3: Relevant subwords for elementary transitions.(I) 0 � e � n� 1i � w � 2 Æ(i℄e; x) :=8>>>>>><>>>>>>: f(i+ 1)℄egfor �(x;W[�℄) = h1; b2; : : : ; bki;fi℄e+1; (i+ 1)℄e+1; (i+ j)℄e+j�1gfor �(x;W[�℄) = h0; b2; : : : ; bki : j;fi℄e+1; (i+ 1)℄e+1gfor �(x;W[�℄) = h0; : : : ; 0i:i = w � 1 Æ(i℄e; x) :=8>><>>: f(i+ 1)℄egfor �(x;W[�℄) = h1i;fi℄e+1; (i+ 1)℄e+1gfor �(x;W[�℄) = h0i:i = w Æ(w℄e; x) := fw℄e+1g(II) e = ni � w � 1 Æ(i℄n; x) := � f(i+ 1)℄ng for �(x;W[�℄) = h1i;; for �(x;W[�℄) = h0i:i = w Æ(w℄n; x) := ;.Table 4.1: Table of elementary transitions for � = i℄e.1. The �rst entry of �(x;W[�℄) is 1,2. The �rst entry of �(x;W[�℄) is 0, but �(x;W[�℄) has an entry 1, the minimalone has index index j,3. all entries of �(x;W[�℄) are 0.In Situation 3, x does not our in W[�℄. The transition an be interpreted as adefault transition. Image element i℄e+1 aptures the insertion of x at boundary i,image element (i+ 1)℄e+1 aptures the substitution of xi+1 with x. Other possibleexplanations for the ourrene of x are overed via subsumption. For example,assume that xi+1 is deleted and xi+2 is substituted by x. The position reahed inthis ase is (i + 2)℄e+2. We do not add this position to the image set sine it issubsumed by (i+1)℄e+1. Note that default transitions for e = n lead to the failurestate ; (f. Part (II)).In Situation 2, the image element i℄e+1 again overs the situation where symbolx is inserted before xi+1. Element (i + 1)℄e+1 overs the situation where xi+1 issubstituted by x. Element (i + j)℄e+j�1 overs the situation where the elements

20CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA
8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

x1 x2 x3 x4 x5 x6 x7 x8W

Figure 4.4: Geometri interpretation of elementary transitions.xi+1; : : : ; xi+j�1 are deleted. The reader might wonder why only the entry 1 withminimal index j is essential. This entry orresponds to the �rst ourrene of xin W[�℄. Assume that j = j1 < : : : < jh is the list of all indies where �(x;W[�℄)has an entry 1. In this situation position (i + j)℄e+j�1 subsumes all positions(i+jl)℄e+jl�1 for 1 6= l. Hene, elimination of subsumed positions leads to the statefi℄e+1; (i+1)℄e+1; (i+ j)℄e+j�1g whih is used as image above. See Example 4.0.25below for an illustration.In Situation 1 we might expet that the image is rather the set fi℄e+1; (i +1)℄e+1; (i+1)℄eg. But note that (i+1)℄e subsumes both other elements. Hene, viaelimination of subsumed positions we arrive at f(i+ 1)℄eg.Example 4.0.25 Let w = 8 and n = 5. In Figure 4.4 we onsider the image of� = 2℄0 under x 2 �. We have W[�℄ = x3 � � �x8. We assume that �(x;W[�℄) =h0; 0; 1; 0; 1; 1i. This means that x5; x7 and x8 are the symbols of W[�℄ that areidential to x. In this situation we have Æ(2℄0; x) = f2℄1; 3℄1; 5℄2g as illustrated inFigure 4.4.The proof of the following lemma is straightforward.Lemma 4.0.26 Let M be a set of positions. Assume that all elements of M aresubsumed by i℄e where i < w. Then the image of any element of M under anyelementary transition ontains only positions that are subsumed by (i+ 1)℄e. If allelements of M are subsumed by w℄e, then the image of any element of M underany elementary transition has only positions that are subsumed by w℄e.We now ask how the elementary transitions for Levenshtein-automata of di�erentdegrees n for the same input word W are related. In order to avoid notationalambiguities we write Æ(n) for the funtion that desribes the elementary transitionsfor the Levenshtein-automaton of degree n. If e is a natural number we write [i℄f ℄℄efor the \lifted" position i℄f+e (it will be guaranteed that eah suh expression infat denotes a position). If M is a state we de�ne the lifted version [M ℄℄e := f[�℄℄e j� 2 Mg. The following lemma shows that one the elementary transitions frompositions i℄0 for degrees 0, : : :, n� 1 are �xed, the elementary transitions of degreen for positions i℄e for 1 � e � n are simply de�ned by \raising".Lemma 4.0.27 (Raising Lemma for elementary transitions) Let n > 0 and

211 � e � n. Then for any position i℄e of degree n and any x 2 � we haveÆ(n)(i℄e; x) = [Æ(n�e)(i℄0; x)℄℄e:Proof. Sine minfn� e+1; w� ig = minf(n� e)� 0+ 1; w� ig it follows that therelevant subword for i℄e for degree n is idential to the relevant subword of i℄0 fordegree n� e. We may denote it in the form Wr. First assume that i � w � 2 andthe �rst entry of �(x;Wr) is 1. Then we haveÆ(n)(i℄e; x) = f(i+ 1)℄eg= [f(i+ 1)℄0g℄℄e= [Æ(n�e)(i℄0; x)℄℄e:The remaining ases are similar.The Levenshtein automatonWe an now introdue the family of Levenshtein-automata that we use in for stringorretion.De�nition 4.0.28 Let W = x1 � � �xw where w � 0, let n � 0. Then LEVn(W) isthe deterministi �nite state automaton h�; Q; q0; F;�i where1. the set of states Q ontains all states in the sense of De�nition 4.0.18,2. the initial state is q0 := f0℄0g,3. the set F of �nal states ontains all states M 2 Q that ontain an aeptingposition,4. the transition funtion � is de�ned in the following way: for any symbol y 2 �and any state M 2 Q, �(M; y) := F�2M Æ(�; y).It follows from Lemma 4.0.26 that � assigns to eah state M 2 Q and eah y 2 �again a stateM 2 Q. In fat, a state with base position i℄0 (i < w) is always mappedto a state with base position (i+1)℄0, and states with base position w℄0 are mappedto states with base position w℄0. This shows that LEVn(W) is a deterministi �nitestate automaton.As a �rst step we disuss how the transition funtions for Levensthein-automataof di�erent degrees for the same input word W are related. We write �(n) for thetransition funtion of the Levenshtein-automaton of degree n.Lemma 4.0.29 (Raising Lemma for transitions) Let n > 0 and 1 � e � n.Then for state of degree n of the form [M ℄℄e and any x 2 � we have�(n)([M ℄℄e; x) = [�(n�e)(M;x)℄℄e:Proof. Using our earlier notation and Lemma 4.0.27 we obtain�(n)([M ℄℄e; x) = G�2M Æ(n)([�℄℄e; x)

22CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA= G�2M [Æ(n�e)(�; x)℄℄e= [G�2M Æ(n�e)(�; x)℄℄e= [�(n�e)(M;x)℄℄eThe result follows.In the sequel, let LEVn(W) = h�; Q; q0; F;�i as in De�nition 4.0.28.Proposition 4.0.30 The following properties hold:1. L(;) = ;,2. for all states M;N with a ommon base position and all y 2 �:�(M tN; y) = �(M; y) t�(N; y);3. for all states M;N with a ommon base position and all V 2 ��:��(M tN; V) = ��(M;V) t��(N; V);4. for all states M � Q n ff0℄0g; : : : ; fw℄0gg: L(M) = S�2M L(f�g).Proof. Part 1 is trivial.Proof of Part 2. Sine M and N have a ommon base position it follows thatM tN is again a state. We have�(M tN; y) = G�2MtN Æ(�; y)= G�2M Æ(�; y) t G�2N Æ(�; y)= �(M; y) t�(N; y):Proof of Part 3. Follows from Part 2 by a trivial indution on the length of V .Proof of Part 4. Let RA denote the set of all raised aepting positions. UsingPart 3 we obtainV 2 L(M) , ��(M;V) 2 F, G�2M��(f�g; V) 2 F, 9f 2 RA: f 2 G�2M��(f�g; V)�, 9f 2 RA: f 2 [�2M��(f�g; V), 9f 2 RA; 9� 2M : f 2 ��(f�g; V), 9� 2M : ��(f�g; V) 2 F, 9� 2M : V 2 L(f�g), V 2 [�2M L(f�g):

23To see the marked equivalene notie that all positions in S�2M ��(f�g; V) areraised. Eah position of this set that subsumes a raised aepting position is itselfa raised aepting position.Proposition 4.0.31 For all 0 � i � w and all 0 � e � n we haveL(fi℄eg) = LLev(n� e; xi+1 � � �xw):Proof. We proeed by indution on n. The ase n = 0 is simple: the set of positionsis fi℄0 j 0 � i � wg. Only w℄0 is an aepting position. States have the form ; orfi℄0g (0 � i � w). Transitions from states fi℄0g an be onsidered as elementarytransitions from positions i℄0. By Part 1 of Proposition 4.0.30, L(;) = ;. Part (II)of Table 4.1 shows that only transitions leading from states fi℄0g for i < w withinput xi+1 to f(i+1)℄0g are relevant | all other transitions lead to the failure state;. Hene L(fi℄0g) = fxi+1 � � �xwg = LLev(0; xi+1 � � �xw) for all 0 � i � w.Now let n � 1 and assume that the Proposition is orret for all 0 � n0 < n. Thease e = n is simple sine all relevant transitions are of the form fi℄ng 7! f(i+1)℄ngunder xi+1 (i < w). Hene assume that e < n. Sine for 1 � e < n transitionsfrom states fi℄eg are de�ned by raising of transitions of degree n0 = n � e (f.Lemma 4.0.29) the indution hypothesis shows thatL(fi℄eg) = LLev(n� e; xi+1 � � �xw) (0 � i � w; 1 � e � n): (y)Hene it only remains to prove that for all 0 � i � w we haveL(fi℄0g) = LLev(n; xi+1 � � �xw):In the sequel, let Wi denote the suÆx xi+1 � � �xw of W (0 � i � w). From (y)and Lemma 4.0.17 we obtain the following : for all positions i℄e and j℄f suh thate 6= 0 6= f : if i℄e is subsumed by j℄f , then L(fi℄eg) is a proper subset of L(fj℄fg)(yy).I. We �rst show that LLev(n;Wi) � L(fi℄0g). Let V 2 LLev(n;Wi).Case 1.1: V is obtained from Wi by deleting a suÆx of length k (0 � k � n) ofWi. Starting from state fi℄0g and onsuming V we reah state f(w � k)℄0g. Sine(w � k)℄0 is an aepting position, state f(w � k)℄0g is �nal, hene V 2 L(fi℄0g).Case 1.2: Wi is obtained from V by deleting a suÆx of length k (1 � k � n)of V . Starting from state fi℄0g and �rst onsuming Wi we reah fw℄0g. The kadditional transitions lead to fw℄kg. Sine w℄k is an aepting position, the latterstate is �nal, hene V 2 L(fi℄0g).Case 2: In the remaining ases there exists an index j < w suh that V =xi+1 � � �xjyV 0 where y 6= xj+1.
Wi

V

xj+1 …xjxi+1

xi+1 xj

xw

y V’

We have yV 0 2 LLev(n; xj+1 � � �xw) by Lemma 2.0.2. We �x a sequene � of editoperations leading from xj+1 � � �xw to yV 0 of minimal length and onsider the threeases desribed in Remark 2.0.3.

24CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA2.1. If the ourrene of y is an insertion before xj+1 (where i � j � w),then V 0 2 LLev(n � 1; xj+1 � � �xw). Sine y 6= xj+1, starting from state fi℄0g andonsuming the letters xi+1; : : : xj ; y we reah states f(i+ 1)℄0g; : : : ; fj℄0g;M whereM ontains j℄1 (f. elementary transitions). It follows from (y) and Part 4 ofProposition 4.0.30 that V 0 2 L(M). Hene V 2 L(fi℄0g).2.2. If the ourrene of y substitutes xj+1 (where i � j < w), then V 0 belongsto LLev(n � 1; xj+2 � � �xw). Starting from state fi℄0g and onsuming the lettersxi+1; : : : xj ; y we reah states f(i+ 1)℄0g; : : : ; fj℄0g;M where M ontains (j + 1)℄1.It follows from (y) and Part 4 of Proposition 4.0.30 that V 0 2 L(M). Hene V 2L(fi℄0g).2.3. In the remaining ases, by Remark 2.0.3 there exists some 1 � k � n suhthat we have a stroke from xj+k+1 to y in the trae representation of �.
Wi

V

xj+1 …xjxi+1

xi+1 xj

y V’

xj+k+1 … xwThis means that the k letters xj+1; xj+2; : : : ; xj+k are erased. The distane betweenxj+k+1 � � �xw and yV 0 is bounded by n � k. In the sequel, let k0 be the smallestindex in f1; : : : ; k + 1g suh that xj+k+1 = xj+k0 . It follows from the de�nition ofelementary transitions (f. Table 4.1) that we reah state M := fj℄1; (j +1)℄1; (j +k0)℄k0�1g from fj℄0g by onsuming xj+k0 = xj+k+1.2.3.1. Assume �rst that xj+k+1 = y. Then the distane between xj+k+2 � � �xwand V 0 is bounded by n� k. By (y), V 0 2 L(f(j + k + 1)℄kg). Sine (j + k + 1)℄kis subsumed by (j + k0)℄k0�1 also V 0 2 L(f(j + k0)℄k0�1g), by (yy) and V 0 2 L(M)by Part 4 of Proposition 4.0.30. It follows that V 2 L(fi℄0g).2.3.2. Assume that xj+k+1 6= y. Then the distane between xj+k+2 � � �xw andV 0 is bounded by n � k � 1. Starting from state fi℄0g and onsuming the lettersxi+1; : : : xj ; y we eventually reah a state M ontaining (j + 1)℄1. This positionsubsumes (j + k+1)℄k+1. It follows from (y), (yy) and Part 4 of Proposition 4.0.30that V 0 2 L(M). Hene V 2 L(fi℄0g).II. It remains to prove that L(fi℄0g) � LLev(n;Wi) for 0 � i � w. Let V 2L(fi℄0g). If V is aepted - starting from fi℄0g - on a path of singleton sets with basipositions f(i+1)℄0g; f(i+2)℄0g; : : : ; fk℄0g, then k℄0 is aepting whih implies that Vhas the form xi+1 � � �xk where w�k � n. This shows that V 2 LLev(n;Wi). In theother ase, starting from state fi℄0g and onsuming the pre�x V 0y of V = V 0yV 00we reah states f(i+ 1)℄0g; : : : fj℄0g;M where M 6= f(j + 1)℄0g.Case (a): j < w and M has the form fj℄1; (j + 1)℄1g. In this ase, by (y) andPart 4 of Proposition 4.0.30, either V 00 has distane � n � 1 to xj+1 � � �xw or V 00has distane � n�1 to xj+2 � � �xw. In the former ase, with an additional insertionof y we see that V has distane � n to Wi. In the latter ase, using a substitutionxj+1 7! y we see V has distane � n to Wi.Case (b): j < w and M has the form fj℄1; (j+1)℄1; (j+k)℄k�1g. Here we haveto onsider the additional ase where V 00 has distane � n�(k�1) to xj+k+1 � � �xw.However, we know that y = xj+k . Deleting xj+1; : : : ; xj+k�1 we see that yV 0 hasdistane � n to xj+1 : : : xw, hene the same holds for V and Wi.

25Case (): j = w. In this ase M = fw℄1g and V 0 = Wi. It follows from (y)that V 00 has distane � n � 1 to the empty word ". Hene V has distane � n toWi.Theorem 4.0.32 LEVn(W) is a deterministi and ayli Levenshtein-automatonof degree n for W . For �xed degree n, the size of LEVn(W) is linear in jW j.Proof. Proposition 4.0.31 shows thatL(LEVn(W)) = L(f0g) = LLev(n;W);hene LEVn(W) is a deterministi Levenshtein-automaton of degree n for W . Ifj℄f is in the image set of position i℄e, then i+e < j+f . Hene it is easy to see thatLEVn(W) is ayli. Obviously the number of possible base positions for states islinear in jW j, and for �xed degree n there exists a uniform bound on the numberof distint states with a �xed base position i℄0. It follows that the number of statesof LEVn(W) is linear in jW j. Sine the alphabet � is �xed, the size of LEVn(W)is linear in jW j.The rest of this hapter will be used to introdue some notions that help to obtaina onrete desription of the transition funtion � of LEVn(W) in the situationwhere the degree n is �xed. Reall that the above de�nition of � is indiret in thesense that the image of a state is only de�ned in terms of the images of its membersunder elementary transitions. Clearly, ifM is a state and x 2 �, in order to diretlyde�ne the image �(M;x) we have to distinguish appropriate subases that take thedistribution of the ourrenes of x in W into aount. As it turns out, it suÆesto onsider the ourrenes of x in a partiular subword of W .De�nition 4.0.33 Let W and n as above. Let M be a non-empty state withminimal boundary i. Let k := minf2n + 1; w � ig. The relevant subword of M ,denoted W[M ℄, is the subword xi+1 � � �xi+k of W .Sine the relevant subword does not depend on the state M itself, but only on theminimal boundary i, we also write W[i℄ for W[M ℄. Note that the length of W[i℄annot exeed 2n + 1. It follows from Lemma 4.0.21 and from De�nitions 4.0.22and 4.0.33 that for eah position � 2M alwaysW[�℄ is a subword ofW[M ℄. Table 4.1shows that for any position � the image Æ(�; x) only depends on �(x;W[�℄). Thus,given a state M , the image �(M;x) is ompletely determined by the harateristivetor �(x;W[M ℄). In the following hapter we shall see that for �xed degree n thisobservation an be used to desribe � in terms of a �nite table.Remark 4.0.34 The transition funtion � is ompletely determined by the har-ateristi vetors �(x;W[i℄) of symbols x 2 � with respet to the subwords W[i℄ ofthe form W[i℄ = xi+1 � � �xi+k where k := minf2n+ 1; w � ig. If W and W 0 are twowords of the same length, and if the (2n + 1)-pro�le sequenes of W and W 0 areidential, then LEVn(W) and LEVn(W 0) are isomorphi modulo transition labels.

26CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA

Chapter 5Computation of deterministiLevenshtein-automata of�xed degree
The general desription of the Levensthein-automaton LEVn(W) given in the previ-ous hapter an be used to derive, for any �xed bound n, an algorithm that atuallyomputes the automaton LEVn(W) in linear time, given any input word W . Thepriniple will �rst be illustrated for degree n = 1.5.1 Computing the Levensthein-automaton of de-gree 1Using the general desription of LEVn(W) we derive a generi desription of LEV 1(W)for arbitrary input W in terms of� a parametri list of states, with a �xed initial state f0℄0g,� a parametri list of �nal states,� a table T1 whih gives a parametri desription of the transition funtion �.Parametri list of states and �nal statesFor input W = x1 � � �xw and n = 1 the list of positions is0℄0; : : : ; w℄0;0℄1; : : : ; w℄1:It follows easily from De�nition 4.0.18 that we have the following states:; failure state,Ai := fi℄0g (0 � i � w);Bi := fi℄1g (0 � i � w);27

28CHAPTER 5. COMPUTATIONOFDETERMINISTIC LEVENSHTEIN-AUTOMATAOF FIXED DEGREECi := fi℄1; (i+ 1)℄1g (0 � i � w � 1);Di := fi℄1; (i+ 2)℄1g (0 � i � w � 2);Ei := fi℄1; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2):The initial state is A0. Aepting positions are w℄1, w℄0, as well as (w � 1)℄0 forw � 1. It follows immediately that the �nal states areAw; Aw�1; Bw; Cw�1; Dw�2; Ew�2 for w � 2,Aw; Aw�1; Bw; Cw�1 for w = 1,Aw; Bw for w = 0.Parametri desription of the transitions funtionIn order to derive the parametri desription of the transition funtion we �rst re�nethe general desription of elementary desriptions given in Table 4.1. For the asen = 1, we obtain the set of elementary transitions given in Table 5.1. Using this(I) e = 0i � w � 2 Æ(i℄0; x) :=8>>>>>><>>>>>>: f(i+ 1)℄0gfor �(x; xi+1xi+2) = h1; b2i;fi℄1; (i+ 1)℄1; (i+ 2)℄1gfor �(x; xi+1xi+2) = h0; 1i;fi℄1; (i+ 1)℄1gfor �(x; xi+1xi+2) = h0; 0i:i = w � 1 Æ(i℄0; x) :=8>><>>: f(i+ 1)℄0gfor �(x; xi+1) = h1i;fi℄1; (i+ 1)℄1gfor �(x; xi+1) = h0i:i = w Æ(w℄0; x) := fw℄1g(II) e = 1i � w � 1 Æ(i℄1; x) := � f(i+ 1)℄1g for �(x; xi+1) = h1i;; for �(x; xi+1) = h0i:i = w Æ(w℄1; x) := ;.Table 5.1: Table of elementary transitions for degree 1.table it is simple to ompute a parametri desription of the full transition funtion�, following the remarks at the end of the previous hapter. The desription isgiven in Table 5.2. Images �(M;x) are spei�ed using a subase analysis where thepossible harateristi vetors �(x;W[M ℄) are distinguished. The following exampleshows how the entries of Table 5.2 are omputed.Example 5.1.1 Let us ask for the image �(Ci; x) of state Ci = fi℄1; (i + 1)℄1gunder x 2 �, assuming that that i � w� 3 and �(x;W[Ci℄) = �(x; xi+1xi+2xi+3) =h1; 1; 0i. We have W[i℄1℄ = xi+1, W[(i+1)℄1℄ = xi+2, hene �(x;W[i℄1℄) = h1i =�(x;W[(i+1)℄1℄). Using Table 5.1 we obtain�(Ci; x) = Æ(i℄1; x) t Æ((i+ 1)℄1; x)= f(i+ 1)℄1g t f(i+ 2)℄1g= f(i+ 1)℄1; (i+ 2)℄1g= Ci+1:

5.1. COMPUTING THE LEVENSTHEIN-AUTOMATON OF DEGREE 1 290 � i � w � 3�(x; xi+1xi+2xi+3) Ai Bi Ci Di Eih0; 0; 0i Ci ; ; ; ;h1; 0; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1h0; 1; 0i Ei ; Bi+2 ; Bi+2h0; 0; 1i Ci ; ; Bi+3 Bi+3h1; 1; 0i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1h1; 0; 1i Ai+1 Bi+1 Bi+1 Di+1 Di+1h0; 1; 1i Ei ; Bi+2 Bi+3 Ci+2h1; 1; 1i Ai+1 Bi+1 Ci+1 Di+1 Ei+1i = w � 2�(x; xi+1xi+2) Ai Bi Ci Di Eih0; 0i Ci ; ; ; ;h1; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1h0; 1i Ei ; Bi+2 ; Bi+2h1; 1i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1i = w � 1�(x; xi+1) Ai Bi Cih0i Ci ; ;h1i Ai+1 Bi+1 Bi+1i = w�(x; ") Ai Bihi Bi ;Table 5.2: Table T1: parametri transitions for LEV 1(W).In the same way, all other entries of Table 5.2 an be omputed.Computation of the atual automatonObviously, given the above generi desription of LEV 1 it is possible to generatefor any onrete input W the automaton LEV 1(W) in time O(jW j).Theorem 5.1.2 There exists an algorithm that omputes for any input word Wthe automaton LEV 1(W) in time and spae O(jW j).Corollary 5.1.3 For any inputW , the minimal deterministi Levenshtein-automatonof degree 1 for W an be omputed in time and spae O(jW j).Proof. A result by D. Revuz [Rev92℄ shows that ayli deterministi �nite stateautomata an be minimalized in linear time. Sine LEV 1(W) is deterministi andayli the result follows.Example 5.1.4 Figure 5.1 desribes the automaton LEV 1(W) for the input word\atlas". For eah wordW of length 5 with 3-pro�le sequene (1; 2; 3); (1; 2; 3); (1; 2; 3)the automaton LEV 1(W) has the same struture, modulo renaming of transition la-bels. Similarly Figure 5.2 desribes the struture of LEV 1(W) for the word \otter".

30CHAPTER 5. COMPUTATIONOFDETERMINISTIC LEVENSHTEIN-AUTOMATAOF FIXED DEGREE

a

t

t

l

l

a

a

s

s

t l a s

t l a s
a

0#0

1#1

1#0 2#0 3#0 4#0 5#0

2#1 3#1 4#1 5#1

0#1,1#1,2#1 1#1,2#1,3#1 2#1,3#1,4#1 3#1,4#1,5#1
0#1,1#1 1#1,2#1 2#1,3#1 3#1,4#1

4#1,5#1

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C0 C4

E0
E3E1 E2

C1 C2 C3

Figure 5.1: Deterministi Levenshtein-automaton LEV 1(W) for inputW = \atlas".

o

t

t

e

t e r4

t t e r

t

t e ro

t

t
0#1,1#1 2#1,3#1 3#1,4#1

4#1,5#10#1,1#1,2#1

1#1,2#1

2#1,3#1,4#1 3#1,4#1,5#1

r

0#0 1#0 2#0 3#0 4#0 5#0

1#1 2#1 3#1 4#1 5#1

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C0

C1

C2 C3
C4

E3E2E0

Figure 5.2: Deterministi Levenshtein-automaton LEV 1(W) for inputW = \otter".Here for eah word W of length 5 with 3-pro�le sequene (1; 2; 2); (1; 1; 2); (1; 2; 3)the automaton LEV 1(W) has the same struture, modulo renaming of transitionlabels.5.2 Computing Levensthein-automata of higher de-greeFor any �xed degree n � 2, the omputation of LEVn(W) essentially follows thesame ideas as in the ase n = 1. Given the degree n, an o�ine-omputation is usedto ompute1. a parametri desription of the set of all states of LEVn(W) for arbitraryinput word W , using the minimal boundary i of states as a parameter,2. a parametri desription of the set of all �nite states,

5.2. COMPUTING LEVENSTHEIN-AUTOMATA OF HIGHER DEGREE 313. a parametri transition table Tn that de�ne the images of parametri statesM under input x 2 �, subjet to the form of the harateristi �(x;W[M ℄).In eah ase, the initial state is f0℄0g. One we have the parametri desriptionof LEVn(W) for arbitrary W at our disposal, we may use it to ompute for anyonrete input word W the automaton LEVn(W) in time linear in jW j.Theorem 5.2.1 For any �xed degree n, there exists an algorithm that omputesfor input word W the automaton LEVn(W) in time and spae O(jW j).Corollary 5.2.2 For any inputW , the minimal deterministi Levenshtein-automatonof �xed degree n for W an be omputed in time and spae O(jW j).Proof. As in the ase n = 1.Remark 5.2.3 Whereas �ve parametri states (i.e., Ai, Bi, Bi, Di, and Ei) aresuÆient for degree n = 1, the number of parametri states that are needed fordegrees 2; 3; 4; : : : grows quikly. For n = 2 there are 30 parametri states (ignoringstate ;), whih are listed in Example 5.2.4. Sine relevant subwordsW[M ℄ may havelength 2n + 1 = 5 the boolean vetors that have to be onsidered when de�ningthe transition funtion have maximal length 5. Hene the maximal subtable of �has dimension 30 � 32. For n = 3, the number of parametri states is 196, themaximal subtable for � has dimension 196� 128. For n = 4, there are alread 1353parametri states, the maximal subtable for � has dimension 1352� 512.Example 5.2.4 The non-empty states of LEV 2(W) are the following:fi℄0g (0 � i � w);fi℄1g (0 � i � w);fi℄1; (i+ 1)℄1g (0 � i � w � 1);fi℄1; (i+ 2)℄1g (0 � i � w � 2);fi℄1; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2);fi℄2; (i+ 2)℄1g (0 � i � w � 2);fi℄2; (i+ 3)℄1g (0 � i � w � 3);fi℄2; (i+ 4)℄2; (i+ 2)℄1g (0 � i � w � 4);fi℄2; (i+ 1)℄2; (i+ 3)℄1g (0 � i � w � 3);fi℄2; (i+ 2)℄1; (i+ 3)℄1g (0 � i � w � 3);fi℄1; (i+ 3)℄2g (0 � i � w � 3);fi℄1; (i+ 2)℄2g (0 � i � w � 2);fi℄1; (i+ 1)℄1; (i+ 3)℄2g (0 � i � w � 3);fi℄1; (i+ 2)℄2; (i+ 3)℄2g (0 � i � w � 3);fi℄2g (0 � i � w);fi℄2; (i+ 1)℄2g (0 � i � w � 1);fi℄2; (i+ 2)℄2g (0 � i � w � 2);fi℄2; (i+ 3)℄2g (0 � i � w � 3);fi℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 1)℄2; (i+ 2)℄2g (0 � i � w � 2);

32CHAPTER 5. COMPUTATIONOFDETERMINISTIC LEVENSHTEIN-AUTOMATAOF FIXED DEGREEfi℄2; (i+ 1)℄2; (i+ 3)℄2g (0 � i � w � 3);fi℄2; (i+ 1)℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 2)℄2; (i+ 3)℄2g (0 � i � w � 3);fi℄2; (i+ 2)℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 3)℄2; (i+ 4)℄2g (0 � i � w � 4)fi℄2; (i+ 1)℄2; (i+ 2)℄2; (i+ 3)℄2g (0 � i � w � 3);fi℄2; (i+ 1)℄2; (i+ 2)℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 1)℄2; (i+ 3)℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 2)℄2; (i+ 3)℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 1)℄2; (i+ 2)℄2; (i+ 3)℄2; (i+ 4)℄2g (0 � i � w � 4):

Chapter 6String orretion usingimitation ofLevensthein-automata
We now introdue a variant of the orretion method desribed in Chapter 3.The main advantage of the new method is that it avoids the atual omputa-tion of Levenshtein-automata. As before we assume that for some �xed degreen we have at our disposal a generi desription of the automaton LEVn(W) =h�; QW ; f0℄0g; FW ;�W i for arbitrary input W , as presented in the previous hap-ter for degree n = 1. With �W� we denote the variant of the the transition funtionwhere harateristi vetors are treated as input. Note that the tables Tn yieldparametri desriptions of �W� . For example, from table T1 we see that A0 mapsto C0 under vetor h0; 0; 0i.As in Chapter 3 we assume that the ditionary is implemented in the form of adeterministi �nite state automaton AD = h�; QD; qD0 ; FD ; ÆDi.Given any onrete input word W , we �rst ompute the set of all harateristivetors of the form �(x;W[i℄) where x 2 � and i denotes a boundary of W . Usingthis vetors, the baktraking proedure given in Chapter 3 an now be replaed bythe following variant:push (<"; qD0 ; f0℄0gg>);while not empty(stak) do beginpop (<V; qD;M>);for x in � do beginqD1 := ÆD(qD; x);M 0 := �W� (M;�(x;W[M ℄));if (qD1 <> NIL) and (M 0 <> NIL) then beginV1 := onat(V; x);push(<V1; qD1 ;M 0>);if (qD1 2 FD) and (M 0 2 FW) then output(V1);end;end;end; 33

34CHAPTER 6. STRING CORRECTIONUSING IMITATIONOF LEVENSTHEIN-AUTOMATANote that in ontrast to the situation desribed in Chapter 3, we do not assumethat the Levenshtein-automaton for the onrete input word W is available. Giventhe generi desription of LEVn, states of LEVn(W) are only introdued on demandin line 6. It is important to note that eah image state �W� (M;�(x;W[M ℄)) an befound in onstant time sine both �(x;W[M ℄) and the table Tn for �� have beenpreomputed. The following example illustrates the modi�ed aeptane proedure.Example 6.0.5 We onsider the ase n = 1. Assume that the (misspelled) inputword W has the form \hold". We onsider the path of the ditionary automatonfor the ditionary entry \hild", whih is assumed to lead to a �nal state. Thefollowing transition sequene illustrates how states of LEV 1(hold) are generatedon demand, using preomputed harateristi vetors and Table 5.2.A0 input �(; ho) = h1; 0; 0i 7! A1A1 input �(h; hol) = h1; 0; 0i 7! A2A2 input �(i; old) = h0; 0; 0i 7! C2C2 input �(l; old) = h0; 1; 0i 7! B4B4 input �(d; d) = h1i 7! B5Now B5 is a �nal state. Hene, in the above proedure, the word \hild" is suggestedas one orretion of the input \hold". Assume now that the ditionary also ontainsthe word \old". In this ase we reah the following states of LEV 1(hold):A0 input �(; ho) = h1; 0; 0i 7! A1A1 input �(o; hol) = h0; 1; 0i 7! E1E1 input �(l; hol) = h0; 0; 1i 7! B4B4 input �(d; d) = h1i 7! B5Sine B5 is �nal, also \old" is suggested as a orretion andidate.

Chapter 7Adding Transpositions
As a matter of fat, the struture of Levenshtein-automata is a�eted if furtherprimitive edit operations are used. In this hapter we onsider the situation whereinsertions, deletions, substitutions and transpositions are treated as primitive editoperations. The methodology for de�ning states and transitions presented in Chap-ter 4 an be extended.7.1 A family of deterministi Levenshtein-automatafor primitive edit operations inluding trans-positionsMotivated by the intended appliation of the orretion methods in a typesettingontext we assume that primitive edit operatios are applied in parallel. This meansthat if V is obtained fromW = x1 � � �xw with a transposition of the letters xi+1xi+2,then V has an ourrene of the transposed sequene xi+2xi+1.1 In the sequel, withLevenshtein-distane we always mean the distane where transpositions are treatedas primitive edit operations. With DTL(V;W) we denote the distane between V andW , and LTLev(n;W) denotes the set of all words V 2 �� suh that dTL(W;V) � n.Sine primitive edit operations are applied in parallel, the onept of a traerepresentation an be extended. Eah transposition is represented by means of apair of rossing strokes. Endpoints are neighboured letters.Remark 7.1.1 LetW = x1x2 � � �xw and V = y1y2 � � � yv be two words with Leven-shtein-distane n � 1. Assume that neither V is a pre�x of W nor vie versa. LetU = x1x2 � � �xi (where 0 � i � v; w) denote the maximal ommon pre�x of V andW . Then, in any trae representation of a minimal sequene � of edit operationsleading from W to V exatly one of the following four ases holds:1.-3. Insertion, substitution, deletion ases. As in Remark 2.0.3.1When using transpositions, the question if operations are applied sequentially or in parallelis in fat relevant. Our assumption implies, for example, that the words \ab" and \ba" havedistane 3. 35

36 CHAPTER 7. ADDING TRANSPOSITIONS4. Transposition ase. xi+1 and xi+2 are respetively onneted with yi+2 andyi+1, strokes are rossing.LetW = x1 � � �xw denote the input word and let n denote the degree. As before,the elements of f0; 1; : : : ; wg are alled boundaries of W .De�nition 7.1.2 A standard position is an expression of the form i℄e where i isa boundary and 0 � e � n. A t-position is an expression of the form i℄et where0 � i � w � 2 and 1 � e � n. A position is either a standard position or a t-position. A position � is an aepting position i� � = i℄e is a standard position andif w � i � n� e.The intuitive interpretation of expressions i℄e is as before. Expressions i℄et arereahed from positions i℄e�1 under input xi+2 in situations where we have a trans-position of the letters xi+1 and xi+2.De�nition 7.1.3 Subsumption between positions is explained as follows:1. A position i℄e subsumes a position j℄f i� e < f and jj � ij � f � e.2. A position i℄e subsumes a position j℄ft i� f > e and jj � (i� 1)j � f � e.3. A position i℄et subsumes a position j℄f i� n = f > e and i = j.4. A position i℄et subsumes a position j℄ft i� f > e and i = j.As in Chapter 4, with eah position � we assoiate a language �(�).�(i℄e) := LTLev(n� e; xi+1 � � �xw);�(i℄et) := fxi+1g Æ LTLev(n� e; xi+3 � � �xw):Lemma 7.1.4 Let � and �0 denote two distint positions. If � subsumes �0, then�(�0) � �(�).De�nition 7.1.5 Let 0 � i � w. A state with base position i℄0 is a set M ofpositions, not neessarily ontaining i℄0, that sa�s�es the following properties:1. for eah position j℄e or j℄et in M we have ji � jj � e. In addition, for eaht-position j℄et we have jj � (i� 1)j � e,2. M does not ontain any position that is subsumed by another element of M .De�nition 7.1.6 Let W = x1 � � �xw as above. Let � := i℄e be a position, and letk := minfn�e+1; w� ig. The relevant subword of W for position �, denoted W[�℄,is the subword xi+1 � � �xi+k of W . Now let i � w � 2. The relevant subword of Wfor position � := i℄et , denoted W[�℄, is the subword xi+1 � � �xi+k of W .De�nition 7.1.7 LetW and n as above. An elementary transition assigns to eahposition � and eah symbol x 2 � a state Æ(�; x). The omplete set of elementarytransitions is spei�ed in Table 7.1.

7.1. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDING TRANSPOSITIONS37Lemma 7.1.8 Let M be a state with base position i℄0 where i < w. Then theimage of any element of M under an elementary transition is always a state withbase position (i+1)℄0. If M is a state with base position w℄0, then the image of anyelement of M under an elementary transition is always a state with base positionw℄0.Proof. Let i < w, assume that i℄0 subsumes a t-position j℄ft 2 M . Theni� e � j � i+ e� 1. The only non-empty possible image of j℄ft is f(j + 2)℄fg. Wehave i+1� e � j +2 � i+1+ e. It follows that (i+1)℄e subsumes (j +2)℄f . Theremaining ases are straightforward.The proof of the following lemma is straightforward.Lemma 7.1.9 (Raising Lemma for elementary transitions) Let n > 0 and1 � e � n. Then for any position of degree n of the form [�℄e and any x 2 � wehave Æ(n)([�℄e; x) = [Æ(n�e)(�; x)℄℄e:In the sequel, with M tN we denote the redued union of the statesM and N withommon base position where we refer to the new notion of subsumption introduedin De�nition 7.1.3.De�nition 7.1.10 Let W = x1 � � �xw where w � 0, let n � 0. Then LEVTn (W) isthe deterministi �nite state automaton h�; Q; q0; F;�i where1. the set of states Q ontains all states in the sense of De�nition 7.1.5,2. the initial state is q0 := f0℄0g,3. the set F of �nal states ontains all states M 2 Q that ontain an aeptingposition,4. the transition funtion � is de�ned in the following way: for any symbol y 2 �and any state M 2 Q, �(M; y) := F�2M Æ(�; y).It follows from Lemma 7.1.8 that � assigns to eah state M 2 Q and eah y 2 �again a state M 2 Q. In fat, a state with base position i℄0 (i < w) is alwaysmapped to a state with base position (i + 1)℄0, and states with base position w℄0are mapped to states with base position w℄0. This shows that LEVTn (W) is adeterministi �nite state automaton.The raising lemma holds also in the new situation. We write �(n) for thetransition funtion of LEVTn (W).Lemma 7.1.11 (Raising Lemma for transitions) Let n > 0 and 1 � e � n.Then for any state of degree n of the form [M ℄℄e and any x 2 � we have�(n)([M ℄℄e; x) = [�(n�e)(M;x)℄℄e:Proof. As for Lemma 4.0.29.In the sequel, let LEVTn (W) = h�; Q; q0; F;�i as in De�nition 7.1.10.

38 CHAPTER 7. ADDING TRANSPOSITIONSProposition 7.1.12 The following properties hold:1. L(;) = ;,2. for all states M;N with a ommon base position and all y 2 �:�(M tN; y) = �(M; y) t�(N; y);3. for all states M;N with a ommon base position and all V 2 ��:��(M tN; V) = ��(M;V) t��(N; V);4. for all states M � Q n ff0℄0g; : : : ; fw℄0gg: L(M) = S�2M L(f�g).Proof. As for Proposition 4.0.30.Proposition 7.1.13 The following holds:L(fi℄et g) = fxi+1g Æ LTLev(n� e; xi+3 � � �xw) (0 � i � w � 2; 1 � e � n)L(fi℄eg) = LTLev(n� e; xi+1 � � �xw) (0 � i � w; 0 � e � n)Proof. We proeed by indution on n. The ase n = 0 an be treated as before (f.proof of Prop. 4.0.31).Now let n � 1 and assume that the Proposition is orret for all 0 � n0 < n. Thease e = n is simple sine all relevant transitions are of the form fi℄ng 7! f(i+1)℄ngunder xi+1 (i < w) or fi℄nt g 7! f(i+ 2)℄ng under xi+1 (i < w � 1). Hene assumethat e < n. Sine for 1 � e < n transitions from states fi℄eg are de�ned by raisingof transitions of degree n0 = n� e the indution hypothesis shows thatL(fi℄et g) = fxi+1g Æ LTLev(n� e; xi+3 � � �xw) (0 � i � w � 2; 2 � e � n)(7.1)L(fi℄eg) = LTLev(n� e; xi+1 � � �xw) (0 � i � w; 1 � e � n) (7.2)It remains to prove thatL(fi℄1t g) = fxi+1g Æ LTLev(n� 1; xi+3 � � �xw) (0 � i � w � 2) (7.3)L(fi℄0g) = LTLev(n; xi+1 � � �xw) (0 � i � w) (7.4)In the sequel, let Wi denote the suÆx xi+1 � � �xw of W (0 � i � w). From (7.2)and Lemma 7.1.4 we obtain the following : for all positions i℄e and j℄f suh thate 6= 0 6= f : if i℄e is subsumed by j℄f , then L(fi℄eg) is a proper subset of L(fj℄fg)(yy).I. We �rst show that fxi+1gÆLTLev(n�1; xi+3 � � �xw) � L(fi℄1t g). The elementarytransitions show that from fi℄1t g we reah f(i+2)℄1g onsuming xi+1. Now (2) showsthat fxi+1g Æ LTLev(n� 1; xi+3 � � �xw) � L(fi℄1t g).II. We show that L(fi℄1t g) � fxi+1g Æ LTLev(n � 1;Wi+2). The only possibilityto proeed from L(fi℄1t g) is using input xi+1 to reah f(i+ 2)℄1g. By (2), L(f(i+2)℄eg) = LTLev(n � 1; xi+3 � � �xw). It follows that L(fi℄1t g) � fxi+1g Æ LTLev(n �1;Wi+2).III. We show that LTLev(n;Wi) � L(fi℄0g). Let V 2 LTLev(n;Wi).

7.1. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDING TRANSPOSITIONS39Case 1.1: V is obtained from Wi by deleting a suÆx of length k (0 � k � n) ofWi. Starting from state fi℄0g and onsuming V we reah state f(w � k)℄0g. Sine(w � k)℄0 is an aepting position, state f(w � k)℄0g is �nal, hene V 2 L(fi℄0g).Case 1.2: Wi is obtained from V by deleting a suÆx of length k (1 � k � n)of V . Starting from state fi℄0g and �rst onsuming Wi we reah fw℄0g. The kadditional transitions lead to fw℄kg. Sine w℄k is an aepting position, the latterstate is �nal, hene V 2 L(fi℄0g).Case 2: In the remaining ases there exists an index j < w suh that V =xi+1 � � �xjyV 0 where y 6= xj+1.
Wi

V

xj+1 …xjxi+1

xi+1 xj

xw

y V’

We have yV 0 2 LTLev(n; xj+1 � � �xw) by Lemma 2.0.2. We �x a sequene � of editoperations leading from xj+1 � � �xw to yV 0 of minimal length and onsider the fourases desribed in Remark 7.1.1.2.1. If the ourrene of y is an insertion before xj+1 (where i � j � w),then V 0 2 LTLev(n � 1; xj+1 � � �xw). Sine y 6= xj+1, starting from state fi℄0g andonsuming the letters xi+1; : : : xj ; y we reah states f(i+ 1)℄0g; : : : ; fj℄0g;M whereM ontains j℄1 (f. elementary transitions). It follows from (2) and Part 4 ofProposition 4.0.30 that V 0 2 L(M). Hene V 2 L(fi℄0g).2.2. If the ourrene of y substitutes xj+1 (where i � j < w), then V 0 belongsto LTLev(n � 1; xj+2 � � �xw). Starting from state fi℄0g and onsuming the lettersxi+1; : : : xj ; y we reah states f(i+ 1)℄0g; : : : ; fj℄0g;M where M ontains (j + 1)℄1.It follows from (2) and Part 4 of Proposition 7.1.12 that V 0 2 L(M). Hene V 2L(fi℄0g).2.3. If the ourrene of y = xj+2 is aused by a transposition of xj+1 and xj+2(where j � w � 2), then V 0 = xj+1V 00 where V 00 2 LTLev(n � 1; xj+3 � � �xw). Siney 6= xj+1, starting from state fi℄0g and onsuming the letters xi+1; : : : xj ; xj+2we reah states f(i + 1)℄0g; : : : ; fj℄0g;M where M ontains j℄1t (f. elementarytransitions). FromM onsuming xj+1 we reah a stateM 0 with a position identialto or subsuming (j + 2)℄1. It is easy to see that all positions of M 0 must be raised,hene M 0 ontains (j +2)℄1. From part II we see that V 00 2 L(M 0). It follows thatV 2 L(fi℄0g).2.4. In the remaining ase there exists some 1 � k � n suh that we have astroke from xj+k+1 to y in the trae representation of �.
Wi

V

xj+1 …xjxi+1

xi+1 xj

y V’

xj+k+1 … xwThis means that the k letters xj+1; xj+2; : : : ; xj+k are erased. The distane betweenxj+k+1 � � �xw and yV 0 is bounded by n � k. In the sequel, let k0 be the smallest

40 CHAPTER 7. ADDING TRANSPOSITIONSindex in f1; : : : ; k + 1g suh that xj+k+1 = xj+k0 . It follows from the de�nition ofelementary transitions (f. Table 4.1) that we reah state M := fj℄1; (j +1)℄1; (j +k0)℄k0�1g from fj℄0g by onsuming xj+k0 = xj+k+1.2.4.1. Assume �rst that xj+k+1 = y. Then the distane between xj+k+2 � � �xwand V 0 is bounded by n� k. By (2), V 0 2 L(f(j + k + 1)℄kg). Sine (j + k + 1)℄kis subsumed by (j + k0)℄k0�1 also V 0 2 L(f(j + k0)℄k0�1g), by (yy) and V 0 2 L(M)by Part 4 of Proposition 4.0.30. It follows that V 2 L(fi℄0g).2.4.2. Assume that xj+k+1 6= y. Then the distane between xj+k+2 � � �xw andV 0 is bounded by n � k � 1. Starting from state fi℄0g and onsuming the lettersxi+1; : : : xj ; y we eventually reah a state M ontaining (j + 1)℄1. This positionsubsumes (j + k+1)℄k+1. It follows from (2), (yy) and Part 4 of Proposition 4.0.30that V 0 2 L(M). Hene V 2 L(fi℄0g).IV. It remains to prove that L(fi℄0g) � LTLev(n;Wi) for 0 � i � w. Let V 2L(fi℄0g). If V is aepted - starting from fi℄0g - on a path of singleton sets with basipositions f(i+1)℄0g; f(i+2)℄0g; : : : ; fk℄0g, then k℄0 is aepting whih implies that Vhas the form xi+1 � � �xk where w�k � n. This shows that V 2 LTLev(n;Wi). In theother ase, starting from state fi℄0g and onsuming the pre�x V 0y of V = V 0yV 00we reah states f(i+ 1)℄0g; : : : fj℄0g;M where M 6= f(j + 1)℄0g.Case (a): j < w and M has the form fj℄1; (j + 1)℄1g. In this ase, by (2) andPart 4 of Proposition 4.0.30, either V 00 has distane � n � 1 to xj+1 � � �xw or V 00has distane � n�1 to xj+2 � � �xw. In the former ase, with an additional insertionof y we see that V has distane � n to Wi. In the latter ase, using a substitutionxj+1 7! y we see V has distane � n to Wi.Case (b): j < w and M has the form fj℄1; (j+1)℄1; (j+k)℄k�1g. Here we haveto onsider the additional ase where V 00 has distane � n�(k�1) to xj+k+1 � � �xw.However, we know that y = xj+k . Deleting xj+1; : : : ; xj+k�1 we see that yV 0 hasdistane � n to xj+1 : : : xw, hene the same holds for V and Wi.Case (): j < w � 1 and M has the form fj℄1; j℄1t ; (j + 1)℄1; (j + k)℄k�1g. Thisis similar to (b), but y = xj+2 and we have the possibility that V 0 = xj+1V 00 whereV 00 has distane � n � 1 to xj+3 � � �xw . Here xj+2xj+1V 00 has distane � n toxj+1 � � �xw, hene V has distane � n to Wi.Case (d): j = w. In this ase M = fw℄1g and V 0 = Wi. It follows from (2)that V 00 has distane � n � 1 to the empty word ". Hene V has distane � n toWi.
From Proposition 7.1.13 we obtain the parallel result to Theorem 4.0.32.

Theorem 7.1.14 LEVTn (W) is a deterministi and ayli Levenshtein-automatonof degree n for W for primitive edit operations inluding transpositions. For �xeddegree n, the size of LEVTn (W) is linear in jW j.

7.2. COMPUTATIONOF DETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDING TRANSPOSITIONS417.2 Computation of deterministi Levenshtein-automatafor primitive edit operations inluding trans-positionsAs for LEVn(W), the general desription of the Levensthein-automaton LEVTn (W)an be used to derive, for any �xed number n, an algorithm that atually omputesthe automaton LEVTn (W) in linear time, given any input word W . The priniplewill be illustrated for degree n = 1.For input W = x1 � � �xw and n = 1 the list of positions is0℄0; : : : ; w℄0; 0℄1; : : : ; w℄10℄1t ; : : : ; (w � 2)℄1t :It suÆes to onsider the following states:; failure state,Ai := fi℄0g (0 � i � w);Bi := fi℄1g (0 � i � w);Ci := fi℄1; (i+ 1)℄1g (0 � i � w � 1);Di := fi℄1; (i+ 2)℄1g (0 � i � w � 2);Ei := fi℄1; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2);Fi := fi℄1; i℄1t ; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2);The initial state is A0. Aepting positions are w℄1, w℄0, as well as (w � 1)℄0 forw � 1. It follows immediately that the �nal states areAw; Aw�1; Bw; Cw�1; Dw�2; Ew�2; Fw�2 for w � 2,Aw; Aw�1; Bw; Cw�1 for w = 1,Aw; Bw for w = 0.For the ase n = 1, we obtain the set of elementary transitions given in Table 7.2.Using this Table 7.2 it is simple to ompute a parametri desription of the fulltransition funtion � as before. The desription is given in Table 7.3.Obviously, given the above generi desription of LEVT1 it is possible to generatefor any onrete input W the automaton LEVT1 (W) in time O(jW j).Theorem 7.2.1 There exists an algorithm that omputes for any input word Wthe automaton LEVT1 (W) in time and spae O(jW j).Corollary 7.2.2 For any inputW , the minimal deterministi Levenshtein-automatonof degree 1 for W where primitive edit operations inlude transpositions an be om-puted in time and spae O(jW j).Example 7.2.3 Figure 7.1 desribes the automaton LEVT1 (W) for the input word\atlas". For eah wordW of length 5 with 3-pro�le sequene (1; 2; 3); (1; 2; 3); (1; 2; 3)the automaton LEVT1 (W) has the same struture, modulo transition labels. Sim-ilarly Figure 7.2 desribes the struture of LEVT1 (W) for the word \otter". Herefor eah word W of length 5 with 3-pro�le sequene (1; 2; 2); (1; 1; 2); (1; 2; 3) theautomaton LEVT1 (W) has the same struture, modulo transition labels.

42 CHAPTER 7. ADDING TRANSPOSITIONS

a

t

t

l

l

a

a

s

s

t l a s

t l a s
a

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C0
C4F0 F3F1 F2C1 C2 C3

a t l
a

Figure 7.1: Deterministi Levenshtein-automaton LEVT1 (W) for inputW = \atlas".

o

t

t

e

t e r4

t t e r

t

t e ro

t

t

r

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C0

C1

C2 C3
C4F3F2F0

t e
o

Figure 7.2: Deterministi Levenshtein-automaton LEVT1 (W) for input W = \ot-ter".

7.2. COMPUTATIONOF DETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDING TRANSPOSITIONS43As a matter of fat, the same method an be used for any �xed degree n.Theorem 7.2.4 For any �xed degree n, there exists an algorithm that omputesfor any input word W the automaton LEVTn (W) in time and spae O(jW j).Corollary 7.2.5 For any inputW , the minimal deterministi Levenshtein-automatonof degree n for W where primitive edit operations inlude transpositions an be om-puted in time and spae O(jW j).

44 CHAPTER 7. ADDING TRANSPOSITIONS
(I) e = 0 < ni � w � 2 Æ(i℄0; x) := 8>>>>>>>>>><>>>>>>>>>>:
f(i+ 1)℄0gfor �(x;W[�℄) = h1; b2; : : : ; bki;fi℄1; i℄1t ; (i+ 1)℄1; (i+ j)℄j�1gfor �(x;W[�℄) = h0; 1; b3; : : : ; bki;fi℄1; (i+ 1)℄1; (i+ j)℄j�1gfor �(x;W[�℄) = h0; 0; b2; : : : ; bki : j;fi℄1; (i+ 1)℄1gfor �(x;W[�℄) = h0; : : : ; 0i:i = w � 1 Æ(i℄0; x) := 8>><>>: f(i+ 1)℄0gfor �(x; xi+1) = h1i;fi℄1; (i+ 1)℄1gfor �(x; xi+1) = h0i:i = w Æ(w℄0; x) := fw℄1g(II) 1 � e � n� 1i � w � 2 Æ(i℄e; x) :=8>>>>>>>>>><>>>>>>>>>>:
f(i+ 1)℄egfor �(x;W[�℄) = h1; b2; : : : ; bki;fi℄e+1; i℄e+1t ; (i+ 1)℄e+1; (i+ j)℄e+j�1gfor �(x;W[�℄) = h0; 1; b3; : : : ; bki;fi℄e+1; (i+ 1)℄e+1; (i+ j)℄e+j�1gfor �(x;W[�℄) = h0; 0; b2; : : : ; bki : j;fi℄e+1; (i+ 1)℄e+1gfor �(x;W[�℄) = h0; : : : ; 0i:Æ(i℄et ; x) :=8<: f(i+ 2)℄egfor �(x;W[�℄) = h1; b2 : : : ; bki;; else:i = w � 1 Æ(i℄e; x) :=8>><>>: f(i+ 1)℄egfor �(x; xi+1) = h1i;fi℄e+1; (i+ 1)℄e+1gfor �(x; xi+1) = h0i:i = w Æ(w℄e; x) := fw℄e+1g(III) e = ni � w � 1 Æ(i℄n; x) := � f(i+ 1)℄ng for �(x;W[�℄) = h1i;; for �(x;W[�℄) = h0i:i � w � 2 Æ(i℄nt ; x) := � f(i+ 2)℄ng for �(x;W[�℄) = h1i;; for �(x;W[�℄) = h0i:i = w Æ(w℄n; x) := ;.Table 7.1: Table of elementary transitions for � = i℄e resp. � = i℄et where transpo-sitions are treated as primitive edit operations.

7.2. COMPUTATIONOF DETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDING TRANSPOSITIONS45(I) e = 0i � w � 2 Æ(i℄0; x) :=8>>>>>><>>>>>>: f(i+ 1)℄0gfor �(x; xi+1xi+2) = h1; b2i;fi℄1; i℄1t ; (i+ 1)℄1; (i+ 2)℄1gfor �(x; xi+1xi+2) = h0; 1i;fi℄1; (i+ 1)℄1gfor �(x;W[�℄) = h0; 0i:i � w � 1 Æ(i℄0; x) :=8>><>>: f(i+ 1)℄0gfor �(x; xi+1) = h1i;fi℄1; (i+ 1)℄1gfor �(x; xi+1) = h0i:i = w Æ(w℄0; x) := fw℄1g(II) e = 1i � w � 2 Æ(i℄1; x) := � f(i+ 1)℄1g for �(x; xi+1) = h1i;; for �(x; xi+1) = h0i:Æ(i℄1t ; x) := � f(i+ 2)℄1g for �(x; xi+1) = h1i;; for �(x; xi+1) = h0i:i � w � 1 Æ(i℄1; x) := � f(i+ 1)℄1g for �(x; xi+1) = h1i;; for �(x; xi+1) = h0i:i = w Æ(w℄1; x) := ;.Table 7.2: Table of elementary transitions for n = 1, primitive edit operationsinluding transpositions. 0 � i � w � 3�(x; xi+1xi+2xi+3) Ai Bi Ci Di Ei Fih0; 0; 0i Ci ; ; ; ; ;h1; 0; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1 Ci+1h0; 1; 0i Fi ; Bi+2 ; Bi+2 Bi+2h0; 0; 1i Ci ; ; Bi+3 Bi+3 Bi+3h1; 1; 0i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1 Ci+1h1; 0; 1i Ai+1 Bi+1 Bi+1 Di+1 Di+1 Ei+1h0; 1; 1i Fi ; Bi+2 Bi+3 Ci+2 Ci+2h1; 1; 1i Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Ei+1i = w � 2�(x; xi+1xi+2) Ai Bi Ci Di Ei Fih0; 0i Ci ; ; ; ; ;h1; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1 Ci+1h0; 1i Fi ; Bi+2 ; Bi+2 Bi+2h1; 1i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1 Ci+1i = w � 1�(x; xi+1) Ai Bi Cih0i Ci ; ;h1i Ai+1 Bi+1 Bi+1i = w�(x; ") Ai Bihi Bi ;Table 7.3: Transitions of LEVT1 (W).

46 CHAPTER 7. ADDING TRANSPOSITIONS

Chapter 8Adding Merges and Splits
The last ase that we onsider is the situation where insertions, deletions, substitu-tions, merges and splits are treated as primitive edit operations. The methodologyfor de�ning states and transitions remains the same.8.1 A family of deterministi Levenshtein-automatafor primitive edit operations inluding mergesand splitsWe assume that primitive edit operatios are applied in parallel. This means that ifV is obtained fromW = x1 � � �xw by splitting letter xi into x0ix00i , then V must havean ourrene of the split sequene x0ix00i . We write dMSL (V;W) for the Levenshtein-distane where merges and splits are treated as primitive edit operations, withLMSLev(n;W) we denote the set of all word V 2 �� where dMSL (V;W) � n.Sine primitive edit operations are applied in parallel, the onept of a traerepresentation an be extended. Splits (resp. merges) are indiated onneting thesoure letter (letter pair) with its target pair of image letters (target letter).Remark 8.1.1 LetW = x1x2 � � �xw and V = y1y2 � � � yv be two words with Leven-shtein-distane n � 1. Assume that neither V is a pre�x of W nor vie versa. LetU = x1x2 � � �xi (where 0 � i � v; w) denote the maximal ommon pre�x of V andW . Then, in any trae representation of a minimal sequene � of edit operationsleading from W to V exatly one of the following �ve ases holds:1.-3. Insertion, substitution, deletion ases. As in Remark 2.0.3.4. Merge ase. The pair xi+1xi+2 is onneted with yi+1.5. Split ase. Letter xi+1 is onneted with yi+1yi+2.LetW = x1 � � �xw denote the input word and let n denote the degree. As before,the elements of f0; 1; : : : ; wg are alled boundaries of W .47

48 CHAPTER 8. ADDING MERGES AND SPLITSDe�nition 8.1.2 A standard position is an expression of the form i℄e where i isa boundary and 0 � e � n. An s-position is an expression of the form i℄es where0 � i � w � 1 and 1 � e � n. A position is either a standard position or ans-position. A position � is an aepting position i� � = i℄e is a standard positionand if w � i � n� e.The intuitive interpretation of expressions i℄e is as before. Expressions i℄es arereahed from positions i℄e�1 under input x0i+1 in situations where we have a splitxi+1 7! x0i+1x00i+1.De�nition 8.1.3 Subsumption between positions is explained as follows:1. A position i℄e subsumes a position j℄f i� e < f and jj � ij � f � e.2. A position i℄e subsumes a position j℄fs i� f > e and jj � ij � f � e.3. A position i℄es subsumes a position j℄fs i� f > e and jj � ij � f � e.As in the previous ases, with eah position � we assoiate a language �(�):�(i℄e) := LMSLev(n� e; xi+1 � � �xw);�(i℄es) := � Æ LMSLev(n� e; xi+2 � � �xw):The reader might ask why s-positions do not subsume standard positions. WithDe�nition 8.1.3 we only want to apture subsumption relations that hold in a uni-form way. Standard positions � an be aepting positions. In this ase, the emptyword " belongs �(�). However, our assumption that edit operations are applied inparallel implies that the language assoiated with an s-position does not ontain ".Hene, there are ases where we do not have a ontainment on the language side.Lemma 8.1.4 Let � and �0 denote two distint positions. If � subsumes �0, then�(�0) � �(�).Proof. Assume that standard position i℄e subsumes the s-position j℄fs . Thenf > e and (f � e) + i � j � (f � e) + i. An an example, we onsider the asewhere i < j. From j � w � 1 it follows that i � w � 2. Let V 2 �(j℄fs). ThenV has the form zV 0 where V 0 2 LLev(n � f; xj+2 � � �xw). The distane betweenxi+1 � � �xw and zxi+3 � � �xw is 1 sine merges are primitive edit operations. Thedistane between zxi+3 � � �xw and zxj+2 � � �xw is j � i � 1. The distane betweenzxj+2 � � �xw and zV 0 is � n � f . Hene the distane between xi+1 � � �xw and zV 0is � n� f + j � i. Sine j � f � e+ i the latter distane does not exeed n� e andwe have V 2 �(i℄e). The remaining ases are similar.De�nition 8.1.5 Let 0 � i � w. A state with base position i℄0 is a set M ofpositions, not neessarily ontaining i℄0, that sa�s�es the following properties:1. for eah position j℄e or j℄es in M we have ji� jj � e. I.e., eah position of M ,with the possible exeption of i℄0, is subsumed by i℄0.2. M does not ontain any position that is subsumed by another element of M .

8.1. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDINGMERGES AND SPLITS49De�nition 8.1.6 Let W = x1 � � �xw as above. Let � := i℄e be a position, and letk := minfn�e+1; w� ig. The relevant subword of W for position �, denoted W[�℄,is the subword xi+1 � � �xi+k of W .De�nition 8.1.7 LetW and n as above. An elementary transition assigns to eahposition � and eah symbol x 2 � a state Æ(�; x). The omplete set of elementarytransitions is spei�ed in Table 8.1.(I) e = 0 < ni � w � 2 Æ(i℄e; x) := 8>><>>: f(i+ 1)℄egfor �(x;W[�℄) = h1; b2; : : : ; bki;fi℄e+1; i℄e+1s ; (i+ 1)℄e+1; (i+ 2)℄e+1gfor �(x;W[�℄) = h0; b2; : : : ; bki:i = w � 1 Æ(i℄e; x) := 8>><>>: f(i+ 1)℄egfor �(x;W[�℄) = h1i;fi℄e+1; i℄e+1s ; (i+ 1)℄e+1gfor �(x;W[�℄) = h0i:i = w Æ(w℄e; x) := fw℄e+1g(II) 0 < e � n� 1i � w � 2 Æ(i℄e; x) := 8>><>>: f(i+ 1)℄egfor �(x;W[�℄) = h1; b2; : : : ; bki;fi℄e+1; i℄e+1s ; (i+ 1)℄e+1; (i+ 2)℄e+1gfor �(x;W[�℄) = h0; b2; : : : ; bki:Æ(i℄es ; x) := (i+ 1)℄e.i = w � 1 Æ(i℄e; x) := 8>><>>: f(i+ 1)℄egfor �(x;W[�℄) = h1i;fi℄e+1; i℄e+1s ; (i+ 1)℄e+1gfor �(x;W[�℄) = h0i:Æ(i℄es ; x) := (i+ 1)℄e.i = w Æ(w℄e; x) := fw℄e+1g(III) e = ni � w � 1 Æ(i℄n; x) := � f(i+ 1)℄ng for �(x;W[�℄) = h1i;; for �(x;W[�℄) = h0i:Æ(i℄es ; x) := (i+ 1)℄e.i = w Æ(w℄n; x) := ;.Table 8.1: Table of elementary transitions for � = i℄e.Lemma 8.1.8 Let M be a state with base position i℄0 where i < w. Then theimage of any element of M under an elementary transition is always a state withbase position (i+1)℄0. If M is a state with base position w℄0, then the image of anyelement of M under an elementary transition is always a state with base positionw℄0.Lemma 8.1.9 (Raising Lemma for elementary transitions) Let n > 0 and1 � e � n. Then for any position of degree n of the form [�℄e and any x 2 � wehave Æ(n)([�℄e; x) = [Æ(n�e)(�; x)℄℄e:In the sequel, with M tN we denote the redued union of the statesM and N with

50 CHAPTER 8. ADDING MERGES AND SPLITSommon base position where we refer to the new notion of subsumption introduedin De�nition 8.1.3.De�nition 8.1.10 Let W = x1 � � �xw where w � 0, let n � 0. Then LEVMSn (W)is the deterministi �nite state automaton h�; Q; q0; F;�i where1. the set of states Q ontains all states in the sense of De�nition 8.1.5,2. the initial state is q0 := f0℄0g,3. the set F of �nal states ontains all states M 2 Q that ontain an aeptingposition,4. the transition funtion � is de�ned in the following way: for any symbol y 2 �and any state M 2 Q, �(M; y) := F�2M Æ(�; y).It follows from Lemma 8.1.8 that � assigns to eah state M 2 Q and eah y 2 �again a state M 2 Q. This shows that LEVMSn (W) is a deterministi �nite stateautomaton.The raising lemma holds also in the new situation. We write �(n) for thetransition funtion of LEVM�Sn (W).Lemma 8.1.11 (Raising Lemma for transitions) Let n > 0 and 1 � e � n.Then for state of degree n of the form [M ℄℄e and any x 2 � we have�(n)([M ℄℄e; x) = [�(n�e)(M;x)℄℄e:Proof. As for Lemma 4.0.29.In the sequel, let LEVMSn (W) = h�; Q; q0; F;�i as in De�nition 8.1.10.Proposition 8.1.12 The following properties hold:1. L(;) = ;,2. for all states M;N with a ommon base position and all y 2 �:�(M tN; y) = �(M; y) t�(N; y);3. for all states M;N with a ommon base position and all V 2 ��:��(M tN; V) = ��(M;V) t��(N; V);4. for all states M � Q n ff0℄0g; : : : ; fw℄0gg: L(M) = S�2M L(f�g).Proof. As for Proposition 4.0.30.Proposition 8.1.13 The following holds:L(fi℄es g) = � Æ LMSLev(n� e; xi+2 � � �xw) (0 � i � w � 1; 1 � e � n)L(fi℄eg) = LMSLev(n� e; xi+1 � � �xw) (0 � i � w; 0 � e � n)

8.1. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDINGMERGES AND SPLITS51Proof. We proeed by indution on n. The ase n = 0 an be treated as before (f.proof of Prop. 4.0.31).Now let n � 1 and assume that the Proposition is orret for all 0 � n0 < n. Thease e = n is simple sine all relevant transitions are of the form fi℄ng 7! f(i+1)℄ngunder xi+1 (i < w) or fi℄ns g 7! f(i+ 1)℄ng under xi+1 (i < w � 1). Hene assumethat e < n. Sine for 1 � e < n transitions from states fi℄eg are de�ned by raisingof transitions of degree n0 = n� e the indution hypothesis shows thatL(fi℄es g) = � Æ LMSLev(n� e; xi+2 � � �xw) (0 � i � w � 1; 2 � e � n) (8.1)L(fi℄eg) = LMSLev(n� e; xi+1 � � �xw) (0 � i � w; 1 � e � n) (8.2)It remains to prove thatL(fi℄1s g) = � Æ LMSLev(n� 1; xi+2 � � �xw) (0 � i � w � 1) (8.3)L(fi℄0g) = LMSLev(n; xi+1 � � �xw) (0 � i � w) (8.4)In the sequel, let Wi denote the suÆx xi+1 � � �xw of W (0 � i � w). From (8.2)we obtain the following : for all positions i℄e and j℄f suh that e 6= 0 6= f : if i℄e issubsumed by j℄f , then L(fi℄eg) is a proper subset of L(fj℄fg) (yy).I. We �rst show that � Æ LMSLev(n � 1; xi+2 � � �xw) � L(fi℄1s g). The elementarytransitions show that from fi℄1s g we reah f(i+1)℄1g under any x 2 �. (8.2) showsthat � Æ LMSLev(n� 1; xi+2 � � �xw) � L(fi℄1s g).II. We show that L(fi℄1s g) � �ÆLMSLev(n�1;Wi+2). With any input x 2 �, fromL(fi℄1s g) we reah f(i + 1)℄1g. By (8.2), L(f(i + 1)℄eg) = LMSLev(n � 1; xi+2 � � �xw).It follows that L(fi℄1s g) � � Æ LMSLev(n� 1;Wi+2).III. We show that LMSLev(n;Wi) � L(fi℄0g). Let V 2 LMSLev(n;Wi).Case 1.1: V is obtained from Wi by deleting a suÆx of length k (0 � k � n) ofWi. Starting from state fi℄0g and onsuming V we reah state f(w � k)℄0g. Sine(w � k)℄0 is an aepting position, state f(w � k)℄0g is �nal, hene V 2 L(fi℄0g).Case 1.2: Wi is obtained from V by deleting a suÆx of length k (1 � k � n)of V . Starting from state fi℄0g and �rst onsuming Wi we reah fw℄0g. The kadditional transitions lead to fw℄kg. Sine w℄k is an aepting position, the latterstate is �nal, hene V 2 L(fi℄0g).Case 2: In the remaining ases there exists an index j < w suh that V =xi+1 � � �xjyV 0 where y 6= xj+1.
Wi

V

xj+1 …xjxi+1

xi+1 xj

xw

y V’

We have yV 0 2 LMSLev(n; xj+1 � � �xw). We �x a sequene � of edit operations leadingfrom xj+1 � � �xw to yV 0 of minimal length and onsider the �ve ases desribed inRemark 8.1.1.2.1. If the ourrene of y is an insertion before xj+1 (where i � j � w),then V 0 2 LLev(n � 1; xj+1 � � �xw). Sine y 6= xj+1, starting from state fi℄0g and

52 CHAPTER 8. ADDING MERGES AND SPLITSonsuming the letters xi+1; : : : xj ; y we reah states f(i+ 1)℄0g; : : : ; fj℄0g;M whereM ontains j℄1 (f. elementary transitions). It follows from (8.2) and Part 4 ofProposition 8.1.12 that V 0 2 L(M). Hene V 2 L(fi℄0g).2.2. If the ourrene of y substitutes xj+1 (where i � j < w), then V 0 belongsto LLev(n � 1; xj+2 � � �xw). Starting from state fi℄0g and onsuming the lettersxi+1; : : : xj ; y we reah states f(i+ 1)℄0g; : : : ; fj℄0g;M where M ontains (j + 1)℄1.It follows from (8.2) and Part 4 of Proposition 8.1.12 that V 0 2 L(M). HeneV 2 L(fi℄0g).2.3. If the ourrene of y is aused by a merge of xj+1 and xj+2 (where j �w�2), then V 0 2 LMSLev(n�1; xj+3 � � �xw). Sine y 6= xj+1, starting from state fi℄0gand onsuming the letters xi+1; : : : xj ; y we reah states f(i + 1)℄0g; : : : ; fj℄0g;Mwhere M ontains (j + 2)℄1 (f. elementary transitions). The indution hypothesis(8.2) and Part 4 of Proposition 8.1.12 show that V 0 2 L(M). It follows thatV 2 L(fi℄0g).2.4. If the ourrene of y is aused by a split xi+1 7! yy0, then V 0 has the formy0V 00 where V 00 2 LMSLev(n�1; xj+2 � � �xw). Starting from state fi℄0g and onsumingthe letters xi+1; : : : xj ; y we arrive at state M ontaining j℄1s . It follows from PartsI and II that L(fj℄1s g) = � Æ LMSLev(n� 1; xj+2 � � �xw). Hene V 2 L(fi℄0g).2.5. In the remaining ase there exists some 1 � k � n suh that we have astroke from xj+k+1 to y in the trae representation of �.
Wi

V

xj+1 …xjxi+1

xi+1 xj

y V’

xj+k+1 … xwWe have j � w � 2 and the k letters xj+1; xj+2; : : : ; xj+k are erased. The distanebetween xj+k+1 � � �xw and yV 0 is bounded by n� k. It follows from the de�nitionof elementary transitions (f. Table 8.1) that we reah state M := fj℄1; j℄1s ; (j +1)℄1; (j + 2)℄1g from fj℄0g by onsuming xj+k+1.2.5.1. Assume �rst that xj+k+1 = y. Then the distane between xj+k+2 � � �xwand V 0 is bounded by n� k. By (8.2), V 0 2 L(f(j + k + 1)℄kg). Sine (j + k +1)℄kis subsumed by (j + 2)℄1 also V 0 2 L(f(j + 2)℄1g), by (yy), hene V 0 2 L(M) byPart 4 of Proposition 8.1.12. It follows that V 2 L(fi℄0g).2.5.2. Assume that xj+k+1 6= y. Then the distane between xj+k+2 � � �xw andV 0 is bounded by n � k � 1. Starting from state fi℄0g and onsuming the lettersxi+1; : : : xj ; y we eventually reah a state M ontaining (j + 1)℄1. This positionsubsumes (j+k+1)℄k+1. It follows from (8.2), (yy) and Part 4 of Proposition 8.1.12that V 0 2 L(M). Hene V 2 L(fi℄0g).IV. It remains to prove that L(fi℄0g) � LMSLev(n;Wi) for 0 � i � w. Let V 2L(fi℄0g). If V is aepted - starting from fi℄0g - on a path of singleton sets with basipositions f(i+1)℄0g; f(i+2)℄0g; : : : ; fk℄0g, then k℄0 is aepting, whih implies thatV has the form xi+1 � � �xk where w � k � n. This shows that V 2 LLev(n;Wi). Inthe other ase, starting from state fi℄0g and onsuming the pre�x V 0y of V = V 0yV 00we reah states f(i+ 1)℄0g; : : : fj℄0g;M where M 6= f(j + 1)℄0g.Case (a): j < w � 2 and M has the form fj℄1; j℄1s ; (j + 1)℄1; (j + 2)℄1g. Theindution hypothesis (8.1) and (8.2) and Part IV of Lemma 8.1.12 show that V 00

8.2. COMPUTATIONOF DETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDINGMERGES AND SPLITS53belongs to LMSLev(n� 1;Wj)[� Æ LMSLev(n� 1;Wj+1)[LMSLev(n� 1;Wj+1)[LMSLev(n� 1;Wj+2):Treating y as in insertion (resp. the �rst letter of a split, a substitution, a mergedsymbol) it easily follows that V 2 LMSLev(n;Wi).Case (b): j < w � 1 and M has the form fj℄1; j℄1s ; (j + 1)℄1g. Similar to ase(a).Case (): j = w. In this ase M = fw℄1g and V 0 = Wi. It follows from (8.2)that V 00 has distane � n � 1 to the empty word ". Hene V has distane � n toWi.From Proposition 7.1.13 we obtain the parallel result to Theorem 4.0.32.Theorem 8.1.14 LEVMSn (W) is a deterministi and ayli Levenshtein-automatonof degree n for W for primitive edit operations inluding merges and splits. For �xeddegree n, the size of LEVMSn (W) is linear in jW j.8.2 Computation of deterministi Levenshtein-automatafor primitive edit operations inluding mergesand splitsAs in the previous ases, the general desription of the Levensthein-automatonLEVMSn (W) an be used to derive, for any �xed number n, an algorithm thatatually omputes the automaton LEVMSn (W) in linear time, given any input wordW . The priniple will be illustrated for degree n = 1.For input W = x1 � � �xw and n = 1 the list of positions is0℄0; : : : ; w℄0; 0℄1; : : : ; w℄10℄1t ; : : : ; (w � 2)℄1t :It suÆes to onsider the following states:; failure state,Ai := fi℄0g (0 � i � w);Bi := fi℄1g (0 � i � w);Ci := fi℄1; (i+ 1)℄1g (0 � i � w � 1);Di := fi℄1; (i+ 2)℄1g (0 � i � w � 2);Ei := fi℄1; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2);Fi := fi℄1; i℄1s ; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2);Gi := fi℄1; i℄1s ; (i+ 1)℄1g (0 � i � w � 1);The initial state is A0. Aepting positions are w℄1, w℄0, as well as (w � 1)℄0 forw � 1. It follows immediately that the �nal states areAw; Aw�1; Bw; Cw�1; Dw�2; Ew�2; Fw�2; Gw�1 for w � 2,

54 CHAPTER 8. ADDING MERGES AND SPLITSAw; Aw�1; Bw; Cw�1; Gw�1 for w = 1,Aw; Bw for w = 0.For the ase n = 1, we obtain the set of elementary transitions given in Table 8.2.Using Table 8.2 it is simple to ompute a parametri desription of the full transition(I) e = 0i � w � 2 Æ(i℄0; x) :=8>><>>: f(i+ 1)℄0gfor �(x;W[�℄) = h1; b2i;fi℄1; i℄1s ; (i+ 1)℄1; (i+ 2)℄1gfor �(x;W[�℄) = h0; b2i:i = w � 1 Æ(i℄0; x) :=8>><>>: f(i+ 1)℄0gfor �(x;W[�℄) = h1i;fi℄1; i℄1s ; (i+ 1)℄1gfor �(x;W[�℄) = h0i:i = w Æ(w℄0; x) := fw℄1g(III) e = 1i � w � 1 Æ(i℄1; x) := � f(i+ 1)℄1g for �(x;W[�℄) = h1i;; for �(x;W[�℄) = h0i:Æ(i℄1s ; x) := (i+ 1)℄1.i = w Æ(w℄1; x) := ;.Table 8.2: Table of elementary transitions for n = 1, primitive edit operationsinluding merges and splits.funtion � as before. The desription is given in Table 8.3.Obviously, given the above generi desription of LEVMS1 it is possible to gen-erate for any onrete input W the automaton LEVMS1 (W) in time O(jW j).Theorem 8.2.1 There exists an algorithm that omputes for any input word Wthe automaton LEVMS1 (W) in time and spae O(jW j).Corollary 8.2.2 For any inputW , the minimal deterministi Levenshtein-automatonof degree 1 for W where primitive edit operations inlude merges and splits an beomputed in time and spae O(jW j).Example 8.2.3 Figure 8.1 desribes the automaton LEVMS1 (W) for the inputword \atlas". For eah wordW of length 5 with 3-pro�le sequene (1; 2; 3); (1; 2; 3); (1; 2; 3)the automaton LEVMS1 (W) has the same struture, modulo transition labels. Sim-ilarly Figure 8.2 desribes the struture of LEVMS1 (W) for the word \otter". Herefor eah word W of length 5 with 3-pro�le sequene (1; 2; 2); (1; 1; 2); (1; 2; 3) theautomaton LEVMS1 (W) has the same struture, modulo transition labels.Theorem 8.2.4 For any �xed degree n, there exists an algorithm that omputesfor any input word W the automaton LEVMSn (W) in time and spae O(jW j).Corollary 8.2.5 For any inputW , the minimal deterministi Levenshtein-automatonof degree n for W where primitive edit operations inlude merges and splits an beomputed in time and spae O(jW j).

8.2. COMPUTATIONOF DETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDINGMERGES AND SPLITS55

a t l a s

t l a s

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

F0 F1 F2 F3 G4

C1

D1t

l

t l

C2

D2l

C3

D3

a

a

s

C4

s

a s

Figure 8.1: Deterministi Levenshtein-automaton LEVMS1 (W) for input W = \at-las".

o t t e r

t t e r

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

F0 F1 F2 F3 G4

E1

t

t

C2

D2t

C3

D3

e

e

r

C4

r

e r

t

Figure 8.2: Deterministi Levenshtein-automaton LEVMS1 (W) for input W = \ot-ter".

56 CHAPTER 8. ADDING MERGES AND SPLITS0 � i � w � 3�(x; xi+1xi+2xi+3) Ai Bi Ci Di Ei Fi Gih0; 0; 0i Fi ; ; ; ; Bi+1 Bi+1h1; 0; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1 Bi+1 Bi+1h0; 1; 0i Fi ; Bi+2 ; Bi+2 Ci+1 Ci+1h0; 0; 1i Fi ; ; Bi+3 Bi+3 Di+1 Bi+1h1; 1; 0i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1 Ci+1 Ci+1h1; 0; 1i Ai+1 Bi+1 Bi+1 Di+1 Di+1 Di+1 Bi+1h0; 1; 1i Fi ; Bi+2 Bi+3 Ci+2 Ei+1 Ci+1h1; 1; 1i Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Ei+1 Ci+1i = w � 2�(x; xi+1xi+2) Ai Bi Ci Di Ei Fi Gih0; 0i Fi ; ; ; ; Bi+1 Bi+1h1; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1 Bi+1 Bi+1h0; 1i Fi ; Bi+2 ; Bi+2 Ci+1 Ci+1h1; 1i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1 Ci+1 Ci+1i = w � 1�(x; xi+1) Ai Bi Ci Gih0i Gi ; ; Bi+1h1i Ai+1 Bi+1 Bi+1 Bi+1i = w�(x; ") Ai Bihi Bi ;Table 8.3: Transitions of LEVMS1 (W).8.3 Experimental resultsExperimental results were made using a Bulgarian lexion BL with 870; 000 wordentries and a ditionary of german omposite nouns GL with 6; 058; 198 entries.The following algorithms were implemented in C and tested on a 500 MHz (BL)resp. 600 MHz (GL) Pentium III mahine under Linux:� The algorithm for omputing, given input W , the automaton LEVn(W) (n =1; 2; 3),� the orretion algorithm based on Levenshtein-automata desribed in Se-tion 3 (n = 1; 2; 3),� the orretion algorithm based on imitation of Levensthein-automata desribedin Setion 6 (n = 1; 2; 3),� the variants of the above algorithms for the modi�ed Levenshtein distaneswhere transpositions (resp. merges and splits) are treated as additional editoperations (see [?℄ for a detailled desription of Levenshtein-automata forthese modi�ed distanes).

8.3. EXPERIMENTAL RESULTS 57Evaluation of orretion with BLFor the Bulgarian lexion BL we used the pre�xes of length 3; 4; : : : ; 19 of all di-tionary words as garbled input \words" and omputed the orretion andidates.The number of test words of eah length an be seen from the following table.Length 3 4 5 6 7 8℄ pre�xes 3,152 12,121 30,243 59,835 101.763 150,046Length 9 10 11 12 13 14℄ pre�xes 190,318 203,520 184,138 139,982 91,252 52,603Length 15 16 17 18 19 20℄ pre�xes 27,997 14,763 8.179 4.601 2.790 1.585The tables given below desribe the results for1. orretion with BL and standard Levenshtein-distane with bound n = 1; 2; 3(Tables 8.4, 8.5 and 8.6),2. orretion with BL and Levenshtein-distane where transpositions are treatedas primitive edit operations, with bounds n = 1; 2; 3 (Table 8.7),3. orretion with BL and Levenshtein-distane where merges and splits aretreated as primitive edit operations, with bound n = 1; 2; 3 (Table 8.8).In Tables 8.4, 8.5 and 8.6, olumn 1 gives the length of the input words. Col-umn 2 (LA) desribes the average time that is needed to ompute the Levenshtein-automaton for an input word. Column 3 desribes the average time that is neededfor parallel traversal (PT) of ditionary automaton and Levenshtein-automaton.Column 4 (TCT1) gives the average total orretion time for the orretion methodbased on omputation of Levenshtein-automata. Column 6 (TCT2) gives the av-erage total orretion time for the orretion method based on imitation of Leven-shtein-automata. Column 7 (NC) yields the average number of orretion andi-dates per word. Times are in milliseonds. It is important to note that the timethat is needed to output the orretion andidates is always inluded.As a r�esum�e, the seond orretion method based on simulation of Levenshtein-automata is more eÆient. The smaller number of orretion andidates for largepre�xes leads to the e�et that for pre�xes of length > 13 orretion times dereasefor longer input words when using the seond orretion method. The use of trans-positions as primitive edit operations does not inuene orretion times and thenumber of orretion andidates in a signi�ant way. In ontrast, muh more searhis needed when treating merges and splits as additional primitive edit operations.Both orretion times and number of orretion andidates grow.Evaluation of orretion with GLTable 8.9 desribes the results for orretion with the german ditionary of ompos-ite nouns GL with 6; 058; 198 entries. For eah length l = 5; : : : ; 19, we randomlyseleted 1; 000 pre�xes of length l of entries and omputed for eah pre�x all entriesof GL where the standard Levenshtein-distane does not exeed bound n = 1; 2; 3.We give the orretion time (inluding output of orretion andidates) and theaverage number of orretions.

58 CHAPTER 8. ADDING MERGES AND SPLITSLength LA PT TCT1 TCT2 NC3 0:228 0:152 0:381 0:324 10.314 0:251 0:183 0:434 0:351 8.665 0:272 0:201 0:473 0:351 6.976 0:294 0:213 0:507 0:355 6.667 0:318 0:222 0:540 0:362 6.448 0:340 0:233 0:573 0:375 6.349 0:362 0:244 0:607 0:389 5.8410 0:385 0:255 0:639 0:403 5.2511 0:410 0:261 0:671 0:413 4.6512 0:430 0:270 0:700 0:421 4.0113 0:452 0:273 0:726 0:424 3.6114 0:474 0:273 0:748 0:422 3.2415 0:497 0:270 0:767 0:414 2.9816 0:520 0:266 0:786 0:404 2.7317 0:544 0:260 0:804 0:400 2.6218 0:565 0:263 0:828 0:398 2.5119 0:588 0:262 0:849 0:394 2.35Table 8.4: Results for BL, standard Levenshtein-distane, bound n = 1.
Length LA PT TCT1 TCT2 NC3 1:40 2:18 3:57 3:19 2274 1:62 2:56 4:18 3:68 1755 1:78 2:76 4:55 3:74 1116 1:94 2:85 4:80 3:75 76.27 2:10 2:91 5:02 3:65 57.38 2:26 3:00 5:26 3:64 48.29 2:42 3:08 5:50 3:66 39.110 2:58 3:16 5:74 3:72 32.211 2:74 3:22 5:95 3:77 26.212 2:89 3:25 6:15 3:80 20.713 3:06 3:27 6:33 3:81 16.314 3:21 3:25 6:46 3:77 12.815 3:37 3:19 6:56 3:70 10.716 3:53 3:12 6:65 3:63 9.1917 3:68 3:08 6:77 3:58 8.2918 3:84 3:05 6:89 3:54 7.8419 4:00 3:03 7:03 3:52 7.35Table 8.5: Results for BL, standard Levenshtein-distane, bound n = 2.

8.3. EXPERIMENTAL RESULTS 59Length LA PT TCT1 TCT2 NC3 13:3 11:6 25:0 16:1 24114 14:8 13:8 28:6 18:9 21085 16:3 15:0 31:4 20:4 13976 18:0 15:7 33:7 21:2 8527 19:2 16:0 35:2 20:9 5388 20:3 16:4 36:7 20:9 3819 21:5 16:7 38:2 20:6 26910 22:8 16:9 39:7 20:4 19211 23:9 17:1 41:1 20:3 13812 27:6 22:8 50:4 25:6 96.013 30:9 21:7 52:6 25:2 63.714 32:2 21:9 54:2 25:1 41.815 33:6 20:9 54:5 24:0 28.616 34:8 21:2 56:0 24:0 21.817 36:8 20:1 56:9 23:8 18.318 38:1 19:8 57:8 23:0 16.019 39:0 19:9 58:9 22:9 14.6Table 8.6: Results for BL, standard Levenshtein-distane, bound n = 3.
Length n = 1 time NC n=2 time NC n = 3 time NC3 0:330 10.4 4:03 231 17:0 21434 0:362 8.75 4:58 178 21:0 21395 0:357 7,04 4:67 114 23:5 14286 0:360 6.69 4:69 77.3 21:5 8697 0:367 6.46 4:57 57.8 21:2 5478 0:379 6.36 4:58 48.6 21:5 3869 0:394 5.85 4:62 39.4 21:1 27210 0:407 5.25 4:69 32.3 22:6 19411 0:416 4.66 4:85 26.4 20:9 14012 0:428 4.10 4:78 20.8 20:7 96.813 0:430 3.62 4:78 16.3 20:5 64.114 0:428 3.24 4:73 12.8 21:9 42.015 0:424 2.98 4:74 10.8 21:3 26.716 0:416 2.73 4:59 9.21 20:9 21.817 0:410 2.62 4:54 8.30 21:0 18.318 0:404 2.51 4:50 7.85 24:5 15.919 0:405 2.35 4:43 7.36 26:7 14.6Table 8.7: Results for BL, Levenshtein-distane where transpositions are treated asprimitive edit operations, bounds n = 1; 2; 3, times in milliseonds.

60 CHAPTER 8. ADDING MERGES AND SPLITSLength n = 1 time NC n = 2 time NC n = 3 time NC3 1:86 48.1 30:3 3216 139 > 1044 1:79 31.6 32:3 2125 161 > 1045 1:79 21.3 33:7 1195 167 99986 1:78 16.7 34:0 667 175 80507 1:82 14.8 31:8 404 182 81068 2:32 13.9 31:4 278 186 56069 2:38 12.6 31:5 197 184 365410 2:41 11.1 31:8 144 174 229111 2:43 9.64 34:2 107 168 143312 2:47 8.19 34:3 77.5 169 87213 2:47 6.88 33:8 53.8 175 49314 2:45 5.85 35:4 36.8 171 25715 2:39 5.20 30:6 26.1 170 11616 2:34 4.65 30:1 20.2 165 54.717 2:29 4.26 29:7 17.0 166 35.818 2:25 4.17 29:5 14.8 166 27.919 2:22 3.85 29:3 13.7 163 24.3Table 8.8: Results for BL, Levenshtein-distane where merges and splits are treatedas primitive edit operations, bounds n = 1; 2; 3, times in milliseonds.
Length n = 1 time NC n = 2 time NC n = 3 time NC5 1:33 4.41 41:5 51:3 313 4346 1:44 3.40 42:5 34:7 321 3377 1:59 2.95 39:9 21:9 307 2168 1:63 2.71 38:7 13:1 307 1209 1:66 2.48 40:4 9:86 306 80:210 1:73 2.32 39:0 7:46 288 50:311 1:77 2.14 39:5 6:15 290 36:712 1:82 2.01 39:1 4:67 288 23:813 1:85 1.89 39:8 4:34 293 19:514 1:89 1.80 40:2 3:72 296 14:215 1:92 1.71 40:2 3:17 295 10:716 1:95 1.65 40:0 2:82 291 7:7717 1:99 1.60 38:9 2:52 285 6:2218 2:02 1.56 38:3 2:37 281 5:3619 2:04 1.34 37:8 1:89 274 3:77Table 8.9: Results for GL, standard Levenshtein-distane, bounds n = 1; 2; 3, timesin milliseonds.

8.3. EXPERIMENTAL RESULTS 61Remark 8.3.1 Oazer gives the following average orretion times for a germanditionary with 174; 573 words. For distane bound n = 1, 27:09 milliseonds, forn = 2, 169:88 milliseonds, for n = 3, 582:45 milliseonds. Oazer's experimentswere made on a SPARCstation 10/41. Sine we used for our test series a fastermahine on the one-hand side, but muh larger ditionaries on the other side, anexat omparison of both approahes is impossible. We think, however, that ourresults show that our method is learly superior in terms of eÆieny.

62 CHAPTER 8. ADDING MERGES AND SPLITS

Chapter 9Conlusion
We introdued two related methods for orreting garbled words using an eletroniditionary that is implemented as a deterministi �nite state automaton. The or-retion proedures are similar to Oazer's approah [O96℄, but ompletely avoidthe omputation of Levenshtein-distanes. Instead, Levenshtein-automata for theinput words are used to ontrol lexial searh. We have shown that appropriatedeterministi Levenshtein-automata an be omputed in time linear in the lengthof the input. Our seond method shows that even the atual omputation of adeterministi Levenshtein-automaton for the input word an be avoided sine pre-ompiled tables may be used to simulate transitions in the automaton. The exper-imental results show that our tehniques lead to a very fast seletion of orretionandidates for garbled words.The omplexity results for omputing the (minimal) deterministi Levensthein-automaton for a given input word immediately lead to the following side results.Lemma 9.0.2 For any �xed number n, given two words W and V of length wand v respetively, it is deidable in time O(max(w; v)) if the Levenshtein-distanebetween W and V is � n.Lemma 9.0.3 For any �xed number n, given a text of words of length h and aword W of length w we an ompute in time O(max(h;w)) all words V of the textwhere the Levenshtein-distane between V and W does not exeed n.The results obtained in this paper should be extended in several diretions. Thesituation should be onsidered where edit operations ome with spei� osts thatdepend on the symbols of the operation. Eventually, in appliation senarios dif-ferent methods for ranking orretion andidates should be tested that take thefrequeny of ourrenes of a given orretion andidate into aount.As to related work, two other approahes, both using methods from automatatheory for string orretion should be mentioned. Bunke [Bun93℄ has shown thatfor any given word W the olumns of the table omputed in the Fisher-Wagneralgorithm an be ompiled into a deterministi �nite state automaton. For any wordV the automaton may be used to ompute the Levenshtein-distane between V andW in time linear in the length jV j of V . Given a ditionary of wordsW1; : : : ;Wd, asimilar automaton an be given that omputes the Levenshtein-distane between V63

64 CHAPTER 9. CONCLUSIONand eah of the words Wi in time O(jV j). The problem with the approah is thatthe size of the automaton is exponential in the sum of the length of the words inthe ditionary. Hene the approah an only be used for very small ditionaries.Another interesting approah is desribed in [CSY99℄. Reall that we assignto eah input word a Levenshtein-automaton and leave the ditionary automatonunmodi�ed. In [CSY99℄ a onstrution is given for omputing, given a �nite stateautomaton A, a lifted version An that aepts all words V that have Levenshtein-distane � n to some word aepted by A.1 In priniple, the onstrution an beused to lift a ditionary automaton A in order to ompute a ,,orretion transduer\An that yields, given input V , all ditionary words with Levenshtein-distane � nto V . Assuming that An is deterministi, a run | hene orretion of an inputword | does not involve any searh, or baktraking. However, determinization ofa non-deterministi orretion transduer is likely be too spae-omsuming for largeditionaries. Nevertheless, is seems promising to onsider variants of the tehniquesdesribed in [CSY99℄ for lexial orretion.

1This desription is simpli�ed. In [CSY99℄ distint metris for de�ning neighbourhoods areonsidered, and a generalization of �nite state automata is used, so-alled ,,lexial analyzers\.

Bibliography[AFW83℄ R.C. Angell, G.E. Freund, and P. Willett. Automati spelling orre-tion using a trigram similarity measure. Information Proessing andManagement, 19:255{261, 1983.[Bla60℄ C.R. Blair. A program for orreting spelling errors. Information andControl, 3:60{67, 1960.[Bun93℄ Horst Bunke. A fast algorithm for �nding the nearest neighbor ofa word in a ditionary, 1993. Aus http://iteseer.nj.ne.om/s Re-searhIndex.[CSY99℄ Christian S. Calude, Kai Salomaa, and Sheng Yu. Metri lexial anal-ysis. Tehnial report, 1999. from http://iteseer.nj.ne.om.[dBdBT95℄ Franois de Bertrand de Beuvron and Philippe Trigano. Hierarhi-ally oded lexion with variants. International Journal of PatternReognition and Arti�ial Intelligene, 9(1):145{165, 1995.[DHH+97℄ A. Dengel, R. Hoh, F. H�ones, T. J�ager, M. Malburg, and A. Weigel.Tehniques for improving OCR results. In H. Bunke and P.S.P.Wang, editors, Handbook of Charater Reognition and Doument Im-age Analysis. World Sienti�, 1997.[DMWW00℄ J. Daiuk, S. Mihov, B. Watson, and R. Watson. Inremental on-strution of minimal ayli �nite state automata. ComputationalLinguistis, 26(1), 2000.[Hon95℄ Tao Hong. Degraded Text Reognition Using Visual and LinguistiContext. PhD thesis, CEDAR, State Uniersity of New York at Buf-falo, 1995.[HU79℄ J.E. Hoproft and J.D. Ullman. Introdution to Automata Theory,Languages, and Computation. Addison-Wesley, Reading, MA, 1979.[Hul92℄ J.J. Hull. A hidden markov model for language syntax in text reog-nition. In Pro. of the 11th IAPR Int. Conf. on Pattern Reognition,pages 416{423, The Hague, The Netherlands, 1992. IEEE ComputerSoiety Press.[KEW91℄ F.G. Keenan, L.J. Evett, and R.J. Withrow. A large voabularystohasti analyser for handwriting reognition. In Pro. of the FirstInternational Conferene on Doument Analysis and Reognition (IC-DAR 91), pages 794{802, 1991.[Koz97℄ Dexter C. Kozen. Automata and Computability. Springer, New York,Berlin, 1997. 65

66 BIBLIOGRAPHY[KST92℄ J.Y. Kim and J. Shawe-Taylor. An approximate string-mathing al-gorithm. Theoretial Computer Siene, 92:107{117, 1992.[KST94℄ J.Y. Kim and J. Shawe-Taylor. Fast string mathing using an n-gramalgorithm. Software{Pratie and Experiene, 94(1):79{88, 1994.[Kuk92℄ Karen Kukih. Tehniques for automatially orreting words in texts.ACM Computing Surveys, pages 377{439, 1992.[Lev66℄ V.I. Levenshtein. Binary odes apable of orreting deletions, inser-tions, and reversals. Sov. Phys. Dokl., 1966.[Mih98℄ Stoyan Mihov. Diret building of minimal automaton for given list.Annuaire de l'Universit�e de So�a \St. Kl. Ohridski", 91, livre 1, 1998.[O96℄ Kemal Oazer. Error-tolerant �nite-state reognition with applia-tions to morphologial analysis and spelling orretion. ComputationalLinguistis, 22(1):73{89, 1996.[OL97℄ B.J. Oommen and R.K.S. Loke. Pattern reognition of strings withsubstitutions, insertions, deletions, and generalized transpositions.Pattern Reognition, 30(5):789{800, 1997.[OM88℄ O. Owolabi and D.R. MGregor. Fast approximate string mathing.Software - Pratie and Experiene, 18(4):387{393, 1988.[RE71℄ E.M. Riseman and R.W. Ehrih. Contextual word reognition usingbinary digrams. IEEE Transations on Computers, C-20, 1971.[Rev92℄ Dominique Revuz. Minimalization of ayli deterministi automatain linear time. Theoretial Computer Siene, 92(1), 1992.[SHC83℄ Sargur N. Srihari, Jonathan J. Hull, and Ramesh Choudhari. Integrat-ing diverse knowledge soures in text reognition. ACM Transationson OÆe Information Systems, 1983.[Sin90℄ R.M.K. Sinha. On partitioning a ditionary for visual text reognition.Pattern Reognition, 23(5):497{500, 1990.[SKS96℄ Giovanni Seni, V. Kripasundar, and Rohini K. Srihari. Generalizingedit distane to inorporate domain information: Handwritten textreognition as a ase study. Pattern Reognition, 29(3), 1996.[Sri85℄ S.N. Srihari. Computer Text Reognition and Error Corretion. Tuto-rial, IEEE Computer Soiety Press, Silver Spring, MD, 1985.[TIAY90℄ H. Takahashi, N. Itoh, T. Amano, and A. Yamashita. A spellingorretion method and its appliation to an OCR system. PatternReognition, 23(3/4):363{377, 1990.[Ukk85℄ E. Ukkonen. Algorithms for approximate string mathing. Informationand Control, 64:100{118, 1985.[Ukk92℄ E. Ukkonen. Approximate string-mathing with q-grams and maximalmathes. Theoretial Computer Siene, 92:191{211, 1992.[Ull77℄ J.R. Ullmann. A binary n-gram tehnique for automati orretionof substitution, deletion, insertion and reversal errors. The ComputerJournal, 20(2):141{147, 1977.

BIBLIOGRAPHY 67[WBR95℄ F. Weigel, S. Baumann, and J. Rohrshneider. Lexial postproessingby heuristi searh and automati determination of the edit osts. InPro. of the Third International Conferene on Doument Analysisand Reognition (ICDAR 95), pages 857{860, 1995.[WF74℄ R.A. Wagner and M. Fisher. The string-to-string orretion problem.Journal of the ACM, 1974.[ZD95℄ Justin Zobel and Philip Dart. Finding approximate mathes in largelexions. Software{Pratie and Experiene, 25(3):331{345, 1995.

