
Fast String Corre
tion with Levenshtein-AutomataKlaus U. S
hulzCISUniversity of Muni
hs
hulz�
is.uni-muen
hen.de Stoyan MihovLinguisti
 Modelling LaboratoryLPDP { Bulgarian A
ademy of S
ien
esstoyan�lml.bas.bg

2 Abstra
tThe Levenshtein-distan
e between two words is the minimal number of insertions,deletions or substitutions that are needed to transform one word into the other.Levenshtein-automata of degree n for a wordW are de�ned as �nite state automatathat regognize the set of all words V where the Levenshtein-distan
e between V andW does not ex
eed n. We show how to
ompute, for any �xed bound n and anyinput word W , a deterministi
 Levenshtein-automaton of degree n for W in timelinear in the length of W . Given an ele
troni
 di
tionary that is implemented in theform of a trie or a �nite state automaton, the Levenshtein-automaton for W
an beused to
ontrol sear
h in the lexi
on in su
h a way that exa
tly the lexi
al words Vare generated where the Levenshtein-distan
e between V andW does not ex
eed thegiven bound. This leads to a very fast method for
orre
ting
orrupted input wordsof unrestri
ted text using large ele
troni
 di
tionaries. We then introdu
e a se
ondmethod that avoids the expli
it
omputation of Levenshtein-automata and leads toeven improved eÆ
ien
y. We also des
ribe how to extend both methods to variantsof the Levenshtein-distan
e where further primitive edit operations (transpositions,merges and splits) may be used.Keywords: Spelling
orre
tion, Levenshtein-distan
e, opti
al
hara
ter re
ogni-tion, ele
troni
 di
tionaries.

Contents
1 Introdu
tion and Motivation 52 Formal Preliminaries 93 String
orre
tion with Levenshtein-automata 134 A family of deterministi
 Levenshtein-automata 155 Computation of deterministi
 Levenshtein-automata of �xed de-gree 275.1 Computing the Levensthein-automaton of degree 1 275.2 Computing Levensthein-automata of higher degree 306 String
orre
tion using imitation of Levensthein-automata 337 Adding Transpositions 357.1 A family of deterministi
 Levenshtein-automata for primitive editoperations in
luding transpositions 357.2 Computation of deterministi
 Levenshtein-automata for primitive editoperations in
luding transpositions 418 Adding Merges and Splits 478.1 A family of deterministi
 Levenshtein-automata for primitive editoperations in
luding merges and splits 478.2 Computation of deterministi
 Levenshtein-automata for primitive editoperations in
luding merges and splits 538.3 Experimental results . 569 Con
lusion 633

4 CONTENTS

Chapter 1Introdu
tion and Motivation
The problem of how to �nd good
orre
tion
andidates for a garbled input word isimportant for many fundamental appli
ations, in
luding spelling
orre
tion, spee
hre
ognition, OCR-re
ognition, as well as internet and bibliographi
 sear
h. Dueto its relevan
e the problem has been
onsidered by many authors (e.g., [Bla60,RE71, Ull77, AFW83, SHC83, Sri85, TIAY90, Kuk92, ZD95, DHH+97℄). Most
ontributions suggest methods for
orre
ting isolated words of a text.1 Sin
e purelystatisti
al methods
annot o�er suÆ
ient
orre
tion a

ura
y, modern approa
hesare generally built on top of lexi
al te
hniques.If an ele
troni
 di
tionary is available that
overs the possible input words,a simple pro
edure may be used for dete
ting and
orre
ting errors. Given aninput word W , it is �rst
he
ked if the word is in the di
tionary. In the negative
ase, the words of the di
tionary that are most similar to W are suggested as
orre
tion
andidates. If ne
essary, appropriate statisti
al data
an be used forre�nement of ranking. Similarity between two words
an be measured in severalways. Most useful are (dis)similarity measures based on variants of the Levenshtein-distan
e [Lev66, WF74, WBR95, SKS96, OL97℄ or on n-gram distan
es [AFW83,Ukk92, KST92, KST94℄. In this paper, we take the Levenshtein-distan
e as a basis.The standard algorithm for
omputing the Levenshtein-distan
e between twowords by Wagner and Fisher [WF74℄ uses a dynami
 programming s
heme thatleads to quadrati
 time
omplexity. Even with more sophisti
ated algorithms (
f.[Ukk85℄) it is not realisti
 to
ompute the Levenshtein-distan
e between the inputwordW and ea
h of the words in the di
tionary, already for di
tionaries of a modestsize. The problem be
omes even more serious when using di
tionaries for highlyin
e
tional or agglutinating languages (e.g., Russian, German, Turkish, Finnish,Hungarian), di
tionaries for languages that allow for
omposition of nouns (ger-man), or multi-lingual di
tionaries. In these
ases, di
tionaries may
ontain severalmillions of entries. The problem arises of how to
ompute the lexi
al Levenshtein-neighbours of a garbled input word while respe
ting the eÆ
ien
y
onstraints thatarise from realisti
 industrial appli
ations.Several solutions have been proposed for fast sele
tion of possible
orre
tions.Often the di
tionary is o�ine partitioned using a similarity key [Sin90, Kuk92,dBdBT95, ZD95℄, or it is enri
hed with a spe
ial index stru
ture [OM88, KST92,1Some more re
ent work tries to use the senten
e or do
ument
ontext for
orre
ting errors andresolving ambiguities, e.g., [Hul92, KEW91, Hon95℄.5

6 CHAPTER 1. INTRODUCTION AND MOTIVATIONZD95℄. Corre
tion of a given input word is divided in two steps, In a �rst step, thesimilarity key or the index is used for
oarse sear
h, extra
ting a list of di
tionarywords that is guaranteed to
ontain all interesting
orre
tions of the input string. Inthe se
ond step (�ne sear
h), for ea
h
andidate the distan
e to the garbled inputword is
omputed, using a �ne-graded measure. Candidates are ranked a

ordingto this distan
e and the best
andidates are suggested as
orre
tion words.O
azer [O
96℄ suggested another method that
an deal even with in�nite di
-tionaries of agglutinating languages. The set of all di
tionary words is treated asa regular language over the alphabet of letters. As a prerequisite, a deterministi
�nite state automaton re
ognizing this language has to be given.2 Fa
ed with aninput word W , O
azer starts an exhaustive traversal of the di
tionary automaton.At ea
h step, the pre�x of all letters that are
onsumed on the path from the initialstate to the
urrent state is maintained. A variant of the Wagner-Fisher algorithm isused to
ontrol the walk through the automaton in su
h a way that only pre�xes aregenerated that potentially lead to a
orre
tion
andidate V where the Levenshtein-distan
e between V and W does not ex
eed a �xed bound n. Ea
h di
tionary wordV within the given distan
e toW is added to the output list. O
azer shows that forbounds n = 1; 2; 3 the
ontrol me
hanism helps to avoid the inspe
tion of most ofthe states of the di
tionary automaton. The method leads to an eÆ
ient generationof an appropriate list of
orre
tion
andidates, even for very large | or in�nite |di
tionaries.The �rst
orre
tion pro
edure that we suggest in this paper
an be
onsidered asa variant of O
azer's approa
h. We also assume that the di
tionary is representedas a deterministi
 �nite state automaton. However, we
ompletely avoid the
om-putation of the Levenshtein-distan
e during the traversal of the automaton. Giventhe input word W and a bound k, we �rst
ompute a deterministi
 �nite stateautomaton A that a

epts exa
tly all words V where the Levenshtein-distan
e be-tween V and W does not ex
eed k. A is
alled a Levenshtein-automaton for W .Levenshtein-automaton and di
tionary automaton are then traversed in parallel. Inthis way, ea
h move in the di
tionary automaton is
ontrolled by the Levenshtein-automaton and vi
e versa. We obtain the interse
tion of the languages of the twoautomata as our list of
orre
tion
andidates. Clearly, this interse
tion is the set ofall di
tionary words V where the Levenshtein-distan
e between V and W does notex
eed n.Our main algorithmi
 result shows that for any �xed degree n and input W adeterministi
 Levenshtein-automaton AW for W
an be
omputed in linear timeand spa
e in jW j. In order to maximize pra
ti
al eÆ
ien
y, the
omputation ofAW for �xed distan
e bound n is based on a pre-
ompiled table Tn that
ontainsa parametri
 and generi
 des
ription of states and transitions of AW . At runtime,given input W , parametri
 states and transitions of Tn are instantiated, yieldingthe automaton AW . The instantiation of the parametri
 transition rules of Tn istriggered by Boolean ve
tors that
hara
terize the distribution of letters of W insubwords of length 2n+1. The table-based approa
h leads to an improved variant ofthe
orre
tion method where the traversal of the di
tionary automaton is
ontrolledusing the table Tn itself. Moves in AW are simulated and the a
tual
omputationof the Levenshtein-automaton AW is avoided, thus improving eÆ
ien
y.The above results always refer to the \standard" Levenshtein-distan
e where thedistan
e between two wordsW and V is de�ned as the minimal number of insertions,2For �nite di
tionaries, an eÆ
ient algorithm for
omputing the minimal deterministi
 �nitestate automaton for the di
tionary has been des
ribed in [Mih98, DMWW00℄.

7deletions and substitutions that are needed to transform W into V . For spe
i�
appli
ations, variants of this metri
s are preferable. In a typesetting
ontext oftentwo symbols are transposed. In the
ontext of OCR-re
ognition, two symbols areoften merged into one symbol, or
onversely one symbol is split into two symbols.Motivated by these
ases we also study Levenshtein-automata for the modi�edLevenshtein-distan
e where insertions, deletions, substitutions and transpositionsare used as primitive edit operations, and for the variant where insertions, deletions,substitutions, merges and splits are treated as primitive edit operations. In both
ases, te
hniques and results obtained for the standard Levenshtein-distan
e
an belifted.Our evaluation results show that string
orre
tion with (simulated) Levenshtein-automata is in fa
t very fast. For example, using a Bulgarian di
tionary with870,000 entries and (standard) distan
e bound n = 1, the average time to
omputeand output all lexi
al Levenshtein-neighbours of a garbled input word on are around0:4 millise
onds on a Pentium III. Using a german di
tionary in
luding
ompositenouns with 6.058.198 entries the average time was between 1:3 millise
onds (shortwords) and 2:5 millise
onds. Further results for modi�ed Levenshtein distan
es,other distan
e bounds and other lexi
on sizes are given below.The paper is stru
tured as follows. Chapter 2 gives some general te
hni
alba
kground. In Chapter 3 we formally de�ne Levensthein-automata and we de-s
ribe the �rst string
orre
tion method sket
hed above in more detail. Se
tion 4gives a generi
 des
ription of a deterministi
 Levenshtein-automaton of arbitrarydegree n for arbitrary input wordW . In Chapter 5 we show how to use this des
rip-tion to derive tables T1; T2; T3; : : : whi
h
ontain parametri
 des
riptions of statesand transitions of a deterministi
 Levenshtein-automata of degree n = 1; 2; 3 : : :for arbitrary input word W . Using these tables it is trivial to generate a deter-ministi
 Levenshtein-automaton for input W in time linear in the length of W .Se
tion 6 dis
usses the se
ond
orre
tion method where the a
tual
omputation ofthe Levenshtein-automaton for the input word W is avoided. Chapter 7 des
ribes
omputation of Levenshtein-automata for the modi�ed distan
e where transposi-tions are treated as primitive edit operations. Chapter 8 des
ribes
omputationof Levenshtein-automata for the metri
s where merges and splits are treated asprimitive edit operations. In Chapter 8.3 experimental results for string
orre
tionand approximate string mat
hing using Levenshtein-automata are added. We �n-ish with a short Con
lusion where we mention some side results of our work and
omment on related and future work.

8 CHAPTER 1. INTRODUCTION AND MOTIVATION

Chapter 2Formal Preliminaries
We assume that the reader is familiar with the basi
 notions of formal languagetheory as des
ribed, e.g., in [HU79, Koz97℄. As usual, �nite state automata (FSA)are treated as tuples of the form A = h�; Q; q0; F;�i where � is the input alphabet,Q is the set of states, q0 2 Q is the initial state, F is the set of �nal states, and� � Q� �" �Q is the transition relation. Here \"" denotes the empty word and�" := � [f"g. We write L(A) for the language a

epted by A.A �nite state automaton A is deterministi
 if the transition relation is a fun
tionÆ : Q��! Q. Let A = h�; Q; q0; F; Æi be a deterministi
 FSA, let Æ� : Q��� ! Qdenote the generalized transition fun
tion, whi
h is de�ned as usual. For q 2 Q wewrite L(q) := fU 2 �� j Æ�(q; U) 2 Fg for the language of all words that lead fromq to a �nal state.The length of a word W is denoted jW j. Regular languages over � are de�nedas usual. With L1 Æ L2 we denote the
on
atenation of the languages L1 and L2.Two words V and W are
alled isomorphi
 i� V
an be obtained from W by apermutation of the alphabet �. The notion of isomorphism
arries over to automatain the obvious sense.The Levenshtein-distan
e between two wordsThe Levenshtein-distan
e between two words is based on the notion of a primitiveedit operation. In this paper we �rst
onsider the standard Levenshtein-distan
e.Here the primitive operations are the substitution of a symbol by another symbol,the deletion of a symbol, and the insertion of a symbol. Obviously, given twowords W and V over the alphabet �, it is always possible to rewrite W into V ,using primitive edit operations.De�nition 2.0.1 Let V ,W be words over the alphabet �. The (standard) Levenshtein-distan
e between V andW is the minimal number of edit operations (substitutions,deletions, or insertions) that are needed to transform V into W .With dL(V;W) we denote the Levenshtein-distan
e between V and W . It
an be
omputed using the following simple dynami
 programming s
heme (
f. [WF74℄):dL(";W) = jW j 9

10 CHAPTER 2. FORMAL PRELIMINARIESdL(V; ") = jV jdL(aV; bW) = � dL(V;W) if a = b1 +min(dL(V;W); dL(aV;W); dL(V; bW)) if a 6= bfor V;W 2 �� and a; b 2 �. The following simple observation follows immediately.Lemma 2.0.2 Let W = UW 0 and V = UV 0. Then dL(V;W) = dL(V 0;W 0).Let W = x1x2 � � �xw and V = y1y2 � � � yv be two words with Levenshtein-distan
en � 0. Consider a sequen
e � of edit operations of minimal length leading from Wto V . If we substitute a letter xi by another symbol z, the latter symbol will notbe erased or subsituted by one of the following edit operations of � sin
e otherwise� would not have minimal length. Hen
e there exists a unique letter yj of V thatrepresents the des
endant of z in V and the substitution result of xi. In the so-
alledtra
e representation (
f. [WF74℄) of � we introdu
e a stroke from xi to yj . Similarlywe introdu
e a stroke from xi to yj if xi is not tou
hed by any edit operation andif yj represents the des
endant of xi in the new word V . Assume that all strokesof the above form are introdu
ed. Clearly, two strokes never
ross. Moreover, ea
hletter xi of W that does not represent the starting point of a stroke is deleted bysome operation of �, and ea
h letter yj of V that does not represent the end pointof a stroke is an inserted symbol.Remark 2.0.3 LetW = x1x2 � � �xw and V = y1y2 � � � yv be two words with Leven-shtein-distan
e n � 1. Assume that neither V is a pre�x of W nor vi
e versa. LetU = x1x2 � � �xi (where 0 � i � v; w) denote the maximal
ommon pre�x of V andW . Then, in any tra
e representation of a minimal sequen
e � of edit operationsleading from W to V exa
tly one of the following three
ases holds:1. Insertion
ase. A stroke is starting at xi+1 that points to some yi+j wherej > 1,2. Substitution
ase. Letters xi+1 and yi+1 are
onne
ted by a stroke,3. Deletion
ase. A stroke is ending at yi+1 that starts at some xi+j wherej > i+ 1.In fa
t, the only remaining
ase would be the situation where neither xi+1 nor yi+1represent the end point of a stroke. This would mean that xi+1 is deleted and yi+1is inserted in �. Using one substitution instead, we would get a shorter sequen
e ofedit operations from V to W , whi
h gives a
ontradi
tion. The three possible
asesare indi
ated in Figure 2.1.

11

W

V

xi+1 …

…
Insertion

xi

yi

W

V

xi+1 …

…
Substitution

xi

yi

W

V

xi+1 …

…
Deletion

xi

yi

Figure 2.1: Possible tra
e pi
tures for situation of Remark 2.0.3.

12 CHAPTER 2. FORMAL PRELIMINARIES

Chapter 3String
orre
tion withLevenshtein-automata
As indi
ated in the introdu
tion, we fa
e a situation where we use an eletroni
di
tionary for dete
ting and
orre
ting misspelled words. Given any input wordW ,it is �rst
he
ked if W is a word of the lexi
on. In the negative
ase, the lexi
on isused to generate a list of
andidate
orre
tions. The words V of the lexi
on that aremost similar to W are
onsidered to be good
orre
tion
andidates. Dissimilarityis measured in terms of the Levenshtein-distan
e between W and V .In the sequel, � denotes the ba
kground alphabet. We assume that the di
-tionary is implemented in the form of a deterministi
 FSA or a trie. A trie
anbe
onsidered as a �nite state automaton as well. The language of the automatonrepresents the set of all
orre
t words. We assume that the automaton has theform AD = h�; QD; qD0 ; FD; ÆDi. AD will be
alled the di
tionary automaton in thesequel.De�nition 3.0.4 Let W be a word over the alphabet �. With LLev(n;W) wedenote the set of all words V 2 �� su
h that dL(W;V) � n.We now introdu
e the
entral
on
ept of this paper.De�nition 3.0.5 Let W be a word over the alphabet �, let n 2 IN. A �nite stateautomaton A is a Levenshtein-automaton of degree n for W i� L(A) = LLev(n;W).The �rst
orre
tion method suggested in this paper follows a simple idea. In or-der to generate a list of
orre
tion
andidates for a garbled input word W , wesele
t a number n and
ompute a deterministi
 Levenshtein-automaton AW =h�; QW ; qW0 ; FW ; ÆW i of degree n for W . Using the following simple ba
ktra
k-ing pro
edure, we traverse the two automata AW and AD in parallel.push (<"; qD0 ; qW0 >);while not empty(sta
k) do beginpop (<V; qD; qW >);for x in � do begin 13

14CHAPTER 3. STRING CORRECTION WITH LEVENSHTEIN-AUTOMATAqD1 := ÆD(qD; x);qW1 := ÆW (qW ; x);if (qD1 <> NIL) and (qW1 <> NIL) then beginV1 :=
on
at(V; x);push(<V1; qD1 ; qW1 >);if (qD1 2 FD) and (qW1 2 FW) then output(V1);end;end;end;Starting with the pair of initial states hqD0 ; qW0 i and the empty word ", ea
h stepof the traversal adds a new letter x 2 � to the a
tual word V and leads from a pairof states hqD; qW i 2 QD � QW to hÆD(qD; x); ÆW (qW ; x)i. We pro
eed as long asboth
omponents are distin
t from the empty failure state1 NIL. Whenever in bothautomata a �nal state is rea
hed, the a
tual word is added to the output.It is trivial to see that the list of all output words is L(AD) \ L(A), hen
e it
ontains exa
tly the \grammati
al" words in LLev(n;W). With a good
hoi
e of n,we obtain an appropriate set of
orre
tion
andidates for the input W .We shall also introdu
e a se
ond and related
orre
tion method. This method,whi
h avoids the a
tual
omputation of Levenshtein-automata,
an only be de-s
ribed later, on
e we have introdu
ed a number of additional
on
epts.

1A failure state is a state q whose language L(q) is empty.

Chapter 4A family of deterministi
Levenshtein-automata
In this
hapter we introdu
e a deterministi
 Levenshtein-automaton LEVn(W) ofdegree n for an input word W . The des
ription is generi
 in the sense that weneither make any spe
i�
 assumption on the degree n, nor on the length or the formof the input word W . The des
ription will be the basis for eÆ
ient
omputation ofLevenshtein-automata for �xed degree n, to be des
ribed in the following se
tion.Pro�le sequen
es and
hara
teristi
 ve
torsWe �rst introdu
e some notions that help to
hara
terize the stru
tural propertiesof the input word W that determine the stru
ture of the automaton LEVn(W).De�nition 4.0.6 Let U = z1 � � � zu 2 �u be a sequen
e of
hara
ters. The pro�lPr(U) of U is the sequen
e of naturals (n1 � � �nu) obtained in the following way.De�ne n1 := 1. Assume that n1; : : : ; nk are de�ned for some 1 � k < u. Ifxk+1 2 fx1; : : : ; xkg, say, xk+1 = xi (where 1 � i � k), then nk+1 := ni. In theother
ase we de�ne nk+1 := maxfni j 1 � i � kg+ 1.Example 4.0.7 We havePr(aa
hen) = (112345), Pr(odd) = (122), and Pr(even) =(1213).Let W and W 0 denote two words of the same length. It should be
lear that forany �xed degree n we
an use isomorphi
 deterministi
 Levenshtein-automata forinput words W and W 0 whenever Pr(W) = Pr(W 0). A stronger relationship
anbe established. We shall see that the stru
ture of the deterministi
 Levenshtein-automaton for an input word W to be des
ribed below depends | in a sense to bemade pre
ise | only on lo
al subpro�les of the input word.De�nition 4.0.8 Let U = z1 � � � zu, let k � 1. The k-pro�le sequen
e of W is thesequen
e of pro�lesPr(z1 � � � zk)Pr(z2 � � � zk+1) � � �Pr(zu�k+1 � � � zu)for k � u. For k > u, the k-pro�le sequen
e of U is Pr(z1 � � � zu).15

16CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA
8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•Figure 4.1: Positions and a

epting positions.The k-pro�le sequen
es of two words
an be identi
al even for non-isomorphi
 words.Example 4.0.9 The 3-pro�le sequen
e of butter is (1; 2; 3); (1; 2; 2); (1; 1; 2); (1; 2; 3).The 3-pro�le sequen
e of setter is the same sequen
e.The following notion plays a key role when de�ning the images of the states ofLevenshtein-automata under input symbols x 2 �.De�nition 4.0.10 Let x 2 � and let V = y1 : : : yv 2 ��. The
hara
teristi
 ve
torof x with respe
t to V is the bit-ve
tor �(x; V) := hb1; : : : ; bvi where bj := 1 i�yj = x and bj := 0 otherwise.The following remark shows how the information
ontained in a pro�le
an bemodularized using
hara
teristi
 ve
tors. The te
hnique will be used when we de�nethe transitions of LEVn(W).Remark 4.0.11 Given the pro�le of a word V we
an derive all
hara
teristi
 ve
-tors of the form �(x; V), just using the
hara
teristi
 ve
tors of number 1; 2; : : : withrespe
t to Pr(V). For example, if Pr(V) = (1; 2; 1; 2; 3; 1; 2), then the
hara
teristi
ve
tors �(x; V) have the form h1; 0; 1; 0; 0; 1; 0i, h0; 1; 0; 1; 0; 0; 1i, h0; 0; 0; 0; 1; 0; 0iand h0; 0; 0; 0; 0; 0; 0i (assuming that � has at least four letters). Conversely, giventhe set of all
hara
teristi
 ve
tors of the form �(x; V) we may obviously derivePr(V).Positions and statesWe �x an arbitrary input word W = x1 � � �xw and a number n 2 IN that denotesthe maximal Levenshtein-distan
e that we want to
apture. Numbers i 2 0; : : : ; wwill be
alled the boundaries of W . The states of the LLev(n;W) are
omposed ofsymboli
 expressions of a spe
ial kind.De�nition 4.0.12 A position is an expression of the form i℄e where 0 � i � w and0 � e � n. Position i℄e is raised i� e > 0, otherwise it is
alled a base position.Intuitively, an exponent ℄e is meant to denote a situation where e edit operationshave o

urred.

17
8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
• Figure 4.2: Subsumption triangles.De�nition 4.0.13 A position i℄e is a

epting i� w � i � n� e.Example 4.0.14 For n = 5 and w = 8, the set of all positions is depi
ted inFigure 4.1. A

epting positions are marked.De�nition 4.0.15 A position i℄e subsumes a position j℄f i� e < f and jj � ij �f � e. The set of all positions that are subsumed by i℄e is
alled the subsumptiontriangle of i℄e.Example 4.0.16 Let n = 5 and assume that w = 8. Figure 4.2 illustrates thesubsumption triangles of 1℄2, 3℄3 and 8℄1. Sin
e subsumption is irre
exive, thepositions 1℄2, 3℄3 and 8℄1 do not belong to the respe
tive triangles.The following lemma indi
ates the ba
kground for the notion of subsumption.Lemma 4.0.17 Let W = x1 � � �xw and n as above. Let � denote the fun
tion thatassigns to ea
h position i℄e the language�(i℄e) := LLev(n� e; xi+1 � � �xw):Let � := i℄e and �0 := j℄f be two distin
t positions. If � subsumes �0, then �(�0) isa subset of �(�).Proof. Assume that � = i℄e subsumes �0 = j℄f . Then e < f and jj � ij � f � e.Sin
e xj+1 � � �xw
an be obtained from xi+1 � � �xw by a series of jj � ij insertions(for j � i) or deletions (for j > i) it follows easily that �(�0) is a subset of �(�).The states of LLev(n;W) are sets of positions of a parti
ular type.De�nition 4.0.18 Let 0 � i � w. A state with base position i℄0 is a set M ofpositions, not ne
essarily
ontaining i℄0, that sa�s�es the following properties:1. for ea
h position j℄e in M we have ji� jj � e. I.e., ea
h position of M , withthe possible ex
eption of i℄0, lies in the subsumption triangle of i℄0.2. M does not
ontain any position that is subsumed by another element of M .

18CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATALet us note that a state may have several possible base positions.Example 4.0.19 First assume that n = 1 and w = 2. Then the states are ;, f0℄0g,f1℄0g, f2℄0g, f0℄1g, f1℄1g, f2℄1g, f0℄1; 1℄1g, f0℄1; 2℄1g, f1℄1; 2℄1g, and f0℄1; 1℄1; 2℄1g.Assume now that w = 0. Let n be any natural number. Then the set of non-emptystates is ff0℄eg j 0 � e � ng. Third, assume that n = 0. Let w be any naturalnumber, denoting the length of the input word. Then the set of non-empty statesis ffi℄0g j 0 � i � wg.De�nition 4.0.20 Let M be a non-empty state. The minimal number i su
h thatM
ontains a position of the form ie (for some e) is
alled the minimal boundary ofM .It is trivial to verify the following lemma.Lemma 4.0.21 Let M be a state with minimal boundary i and let j℄f 2M . Thenj � i � n+ f .At various pla
es we shall
onsider the union of two statesM and N with a
ommonbase position i℄0. We writeMtN for the set that is obtained fromM[N by omissionof states that are subsumed by other states. Sin
e the subsumption relation is well-founded, this operation is well-de�ned. Note that M tN is again a state with baseposition i℄0. M tN will be
alled the redu
ed union of M and N .Elementary transitionsThe transitions of the Levenshtein-automaton of degree n will be de�ned with thehelp of transitions that a
t on single positions. The latter transitions are
alledelementary transitions of degree n. The image of a position under an elementarytransition with an input symbol x depends on the distribution of x in a subword ofW .De�nition 4.0.22 Let W = x1 � � �xw as above. Let � := i℄e be a position, andlet k := minfn� e+ 1; w � ig. The relevant subword of W for position �, denotedW[�℄, is the subword xi+1 � � �xi+k of W .Note that the length of W[�℄
annot ex
eed n+ 1.Example 4.0.23 Let w = 8 and n = 5. Then the relevant subwords for positions2℄2 and 3℄0 respe
tively are x3x4x5x6 and x4x5x6x7x8, as illustrated in Figure 4.3.De�nition 4.0.24 Let W and n as above. An elementary transition assigns toea
h position � = i℄e and ea
h symbol x 2 � a state Æ(i℄e; x). The
omplete set ofelementary transitions is spe
i�ed in Table 4.1. Notation h0; b2; : : : ; bki : j indi
atesthat j is the minimal index in f2; : : : ; kg where bj = 1. This implies that su
h anindex exists.The following { informal |
omments explain the intuition behind these transitions.In Part (I) of the table for i � w � 1 we distinguish three situations:

19
8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

x1 x2 x3 x4 x5 x6 x7 x8W

Figure 4.3: Relevant subwords for elementary transitions.(I) 0 � e � n� 1i � w � 2 Æ(i℄e; x) :=8>>>>>><>>>>>>: f(i+ 1)℄egfor �(x;W[�℄) = h1; b2; : : : ; bki;fi℄e+1; (i+ 1)℄e+1; (i+ j)℄e+j�1gfor �(x;W[�℄) = h0; b2; : : : ; bki : j;fi℄e+1; (i+ 1)℄e+1gfor �(x;W[�℄) = h0; : : : ; 0i:i = w � 1 Æ(i℄e; x) :=8>><>>: f(i+ 1)℄egfor �(x;W[�℄) = h1i;fi℄e+1; (i+ 1)℄e+1gfor �(x;W[�℄) = h0i:i = w Æ(w℄e; x) := fw℄e+1g(II) e = ni � w � 1 Æ(i℄n; x) := � f(i+ 1)℄ng for �(x;W[�℄) = h1i;; for �(x;W[�℄) = h0i:i = w Æ(w℄n; x) := ;.Table 4.1: Table of elementary transitions for � = i℄e.1. The �rst entry of �(x;W[�℄) is 1,2. The �rst entry of �(x;W[�℄) is 0, but �(x;W[�℄) has an entry 1, the minimalone has index index j,3. all entries of �(x;W[�℄) are 0.In Situation 3, x does not o

ur in W[�℄. The transition
an be interpreted as adefault transition. Image element i℄e+1
aptures the insertion of x at boundary i,image element (i+ 1)℄e+1
aptures the substitution of xi+1 with x. Other possibleexplanations for the o

urren
e of x are
overed via subsumption. For example,assume that xi+1 is deleted and xi+2 is substituted by x. The position rea
hed inthis
ase is (i + 2)℄e+2. We do not add this position to the image set sin
e it issubsumed by (i+1)℄e+1. Note that default transitions for e = n lead to the failurestate ; (
f. Part (II)).In Situation 2, the image element i℄e+1 again
overs the situation where symbolx is inserted before xi+1. Element (i + 1)℄e+1
overs the situation where xi+1 issubstituted by x. Element (i + j)℄e+j�1
overs the situation where the elements

20CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA
8#5
•

7#5
•

6#5
•

5#5
•

4#5
•

3#5
•

2#5
•

1#5
•

0#5
•

8#4
•

7#4
•

6#4
•

5#4
•

4#4
•

3#4
•

2#4
•

1#4
•

0#4
•

8#3
•

7#3
•

6#3
•

5#3
•

4#3
•

3#3
•

2#3
•

1#3
•

0#3
•

8#2
•

7#2
•

6#2
•

5#2
•

4#2
•

3#2
•

2#2
•

1#2
•

0#2
•

8#1
•

7#1
•

6#1
•

5#1
•

4#1
•

3#1
•

2#1
•

1#1
•

0#1
•

8#0
•

7#0
•

6#0
•

5#0
•

4#0
•

3#0
•

2#0
•

1#0
•

0#0
•

x1 x2 x3 x4 x5 x6 x7 x8W

Figure 4.4: Geometri
 interpretation of elementary transitions.xi+1; : : : ; xi+j�1 are deleted. The reader might wonder why only the entry 1 withminimal index j is essential. This entry
orresponds to the �rst o

urren
e of xin W[�℄. Assume that j = j1 < : : : < jh is the list of all indi
es where �(x;W[�℄)has an entry 1. In this situation position (i + j)℄e+j�1 subsumes all positions(i+jl)℄e+jl�1 for 1 6= l. Hen
e, elimination of subsumed positions leads to the statefi℄e+1; (i+1)℄e+1; (i+ j)℄e+j�1g whi
h is used as image above. See Example 4.0.25below for an illustration.In Situation 1 we might expe
t that the image is rather the set fi℄e+1; (i +1)℄e+1; (i+1)℄eg. But note that (i+1)℄e subsumes both other elements. Hen
e, viaelimination of subsumed positions we arrive at f(i+ 1)℄eg.Example 4.0.25 Let w = 8 and n = 5. In Figure 4.4 we
onsider the image of� = 2℄0 under x 2 �. We have W[�℄ = x3 � � �x8. We assume that �(x;W[�℄) =h0; 0; 1; 0; 1; 1i. This means that x5; x7 and x8 are the symbols of W[�℄ that areidenti
al to x. In this situation we have Æ(2℄0; x) = f2℄1; 3℄1; 5℄2g as illustrated inFigure 4.4.The proof of the following lemma is straightforward.Lemma 4.0.26 Let M be a set of positions. Assume that all elements of M aresubsumed by i℄e where i < w. Then the image of any element of M under anyelementary transition
ontains only positions that are subsumed by (i+ 1)℄e. If allelements of M are subsumed by w℄e, then the image of any element of M underany elementary transition has only positions that are subsumed by w℄e.We now ask how the elementary transitions for Levenshtein-automata of di�erentdegrees n for the same input word W are related. In order to avoid notationalambiguities we write Æ(n) for the fun
tion that des
ribes the elementary transitionsfor the Levenshtein-automaton of degree n. If e is a natural number we write [i℄f ℄℄efor the \lifted" position i℄f+e (it will be guaranteed that ea
h su
h expression infa
t denotes a position). If M is a state we de�ne the lifted version [M ℄℄e := f[�℄℄e j� 2 Mg. The following lemma shows that on
e the elementary transitions frompositions i℄0 for degrees 0, : : :, n� 1 are �xed, the elementary transitions of degreen for positions i℄e for 1 � e � n are simply de�ned by \raising".Lemma 4.0.27 (Raising Lemma for elementary transitions) Let n > 0 and

211 � e � n. Then for any position i℄e of degree n and any x 2 � we haveÆ(n)(i℄e; x) = [Æ(n�e)(i℄0; x)℄℄e:Proof. Sin
e minfn� e+1; w� ig = minf(n� e)� 0+ 1; w� ig it follows that therelevant subword for i℄e for degree n is identi
al to the relevant subword of i℄0 fordegree n� e. We may denote it in the form Wr. First assume that i � w � 2 andthe �rst entry of �(x;Wr) is 1. Then we haveÆ(n)(i℄e; x) = f(i+ 1)℄eg= [f(i+ 1)℄0g℄℄e= [Æ(n�e)(i℄0; x)℄℄e:The remaining
ases are similar.The Levenshtein automatonWe
an now introdu
e the family of Levenshtein-automata that we use in for string
orre
tion.De�nition 4.0.28 Let W = x1 � � �xw where w � 0, let n � 0. Then LEVn(W) isthe deterministi
 �nite state automaton h�; Q; q0; F;�i where1. the set of states Q
ontains all states in the sense of De�nition 4.0.18,2. the initial state is q0 := f0℄0g,3. the set F of �nal states
ontains all states M 2 Q that
ontain an a

eptingposition,4. the transition fun
tion � is de�ned in the following way: for any symbol y 2 �and any state M 2 Q, �(M; y) := F�2M Æ(�; y).It follows from Lemma 4.0.26 that � assigns to ea
h state M 2 Q and ea
h y 2 �again a stateM 2 Q. In fa
t, a state with base position i℄0 (i < w) is always mappedto a state with base position (i+1)℄0, and states with base position w℄0 are mappedto states with base position w℄0. This shows that LEVn(W) is a deterministi
 �nitestate automaton.As a �rst step we dis
uss how the transition fun
tions for Levensthein-automataof di�erent degrees for the same input word W are related. We write �(n) for thetransition fun
tion of the Levenshtein-automaton of degree n.Lemma 4.0.29 (Raising Lemma for transitions) Let n > 0 and 1 � e � n.Then for state of degree n of the form [M ℄℄e and any x 2 � we have�(n)([M ℄℄e; x) = [�(n�e)(M;x)℄℄e:Proof. Using our earlier notation and Lemma 4.0.27 we obtain�(n)([M ℄℄e; x) = G�2M Æ(n)([�℄℄e; x)

22CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA= G�2M [Æ(n�e)(�; x)℄℄e= [G�2M Æ(n�e)(�; x)℄℄e= [�(n�e)(M;x)℄℄eThe result follows.In the sequel, let LEVn(W) = h�; Q; q0; F;�i as in De�nition 4.0.28.Proposition 4.0.30 The following properties hold:1. L(;) = ;,2. for all states M;N with a
ommon base position and all y 2 �:�(M tN; y) = �(M; y) t�(N; y);3. for all states M;N with a
ommon base position and all V 2 ��:��(M tN; V) = ��(M;V) t��(N; V);4. for all states M � Q n ff0℄0g; : : : ; fw℄0gg: L(M) = S�2M L(f�g).Proof. Part 1 is trivial.Proof of Part 2. Sin
e M and N have a
ommon base position it follows thatM tN is again a state. We have�(M tN; y) = G�2MtN Æ(�; y)= G�2M Æ(�; y) t G�2N Æ(�; y)= �(M; y) t�(N; y):Proof of Part 3. Follows from Part 2 by a trivial indu
tion on the length of V .Proof of Part 4. Let RA denote the set of all raised a

epting positions. UsingPart 3 we obtainV 2 L(M) , ��(M;V) 2 F, G�2M��(f�g; V) 2 F, 9f 2 RA: f 2 G�2M��(f�g; V)�, 9f 2 RA: f 2 [�2M��(f�g; V), 9f 2 RA; 9� 2M : f 2 ��(f�g; V), 9� 2M : ��(f�g; V) 2 F, 9� 2M : V 2 L(f�g), V 2 [�2M L(f�g):

23To see the marked equivalen
e noti
e that all positions in S�2M ��(f�g; V) areraised. Ea
h position of this set that subsumes a raised a

epting position is itselfa raised a

epting position.Proposition 4.0.31 For all 0 � i � w and all 0 � e � n we haveL(fi℄eg) = LLev(n� e; xi+1 � � �xw):Proof. We pro
eed by indu
tion on n. The
ase n = 0 is simple: the set of positionsis fi℄0 j 0 � i � wg. Only w℄0 is an a

epting position. States have the form ; orfi℄0g (0 � i � w). Transitions from states fi℄0g
an be
onsidered as elementarytransitions from positions i℄0. By Part 1 of Proposition 4.0.30, L(;) = ;. Part (II)of Table 4.1 shows that only transitions leading from states fi℄0g for i < w withinput xi+1 to f(i+1)℄0g are relevant | all other transitions lead to the failure state;. Hen
e L(fi℄0g) = fxi+1 � � �xwg = LLev(0; xi+1 � � �xw) for all 0 � i � w.Now let n � 1 and assume that the Proposition is
orre
t for all 0 � n0 < n. The
ase e = n is simple sin
e all relevant transitions are of the form fi℄ng 7! f(i+1)℄ngunder xi+1 (i < w). Hen
e assume that e < n. Sin
e for 1 � e < n transitionsfrom states fi℄eg are de�ned by raising of transitions of degree n0 = n � e (
f.Lemma 4.0.29) the indu
tion hypothesis shows thatL(fi℄eg) = LLev(n� e; xi+1 � � �xw) (0 � i � w; 1 � e � n): (y)Hen
e it only remains to prove that for all 0 � i � w we haveL(fi℄0g) = LLev(n; xi+1 � � �xw):In the sequel, let Wi denote the suÆx xi+1 � � �xw of W (0 � i � w). From (y)and Lemma 4.0.17 we obtain the following : for all positions i℄e and j℄f su
h thate 6= 0 6= f : if i℄e is subsumed by j℄f , then L(fi℄eg) is a proper subset of L(fj℄fg)(yy).I. We �rst show that LLev(n;Wi) � L(fi℄0g). Let V 2 LLev(n;Wi).Case 1.1: V is obtained from Wi by deleting a suÆx of length k (0 � k � n) ofWi. Starting from state fi℄0g and
onsuming V we rea
h state f(w � k)℄0g. Sin
e(w � k)℄0 is an a

epting position, state f(w � k)℄0g is �nal, hen
e V 2 L(fi℄0g).Case 1.2: Wi is obtained from V by deleting a suÆx of length k (1 � k � n)of V . Starting from state fi℄0g and �rst
onsuming Wi we rea
h fw℄0g. The kadditional transitions lead to fw℄kg. Sin
e w℄k is an a

epting position, the latterstate is �nal, hen
e V 2 L(fi℄0g).Case 2: In the remaining
ases there exists an index j < w su
h that V =xi+1 � � �xjyV 0 where y 6= xj+1.
Wi

V

xj+1 …xjxi+1

xi+1 xj

xw

y V’

We have yV 0 2 LLev(n; xj+1 � � �xw) by Lemma 2.0.2. We �x a sequen
e � of editoperations leading from xj+1 � � �xw to yV 0 of minimal length and
onsider the three
ases des
ribed in Remark 2.0.3.

24CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA2.1. If the o

urren
e of y is an insertion before xj+1 (where i � j � w),then V 0 2 LLev(n � 1; xj+1 � � �xw). Sin
e y 6= xj+1, starting from state fi℄0g and
onsuming the letters xi+1; : : : xj ; y we rea
h states f(i+ 1)℄0g; : : : ; fj℄0g;M whereM
ontains j℄1 (
f. elementary transitions). It follows from (y) and Part 4 ofProposition 4.0.30 that V 0 2 L(M). Hen
e V 2 L(fi℄0g).2.2. If the o

urren
e of y substitutes xj+1 (where i � j < w), then V 0 belongsto LLev(n � 1; xj+2 � � �xw). Starting from state fi℄0g and
onsuming the lettersxi+1; : : : xj ; y we rea
h states f(i+ 1)℄0g; : : : ; fj℄0g;M where M
ontains (j + 1)℄1.It follows from (y) and Part 4 of Proposition 4.0.30 that V 0 2 L(M). Hen
e V 2L(fi℄0g).2.3. In the remaining
ases, by Remark 2.0.3 there exists some 1 � k � n su
hthat we have a stroke from xj+k+1 to y in the tra
e representation of �.
Wi

V

xj+1 …xjxi+1

xi+1 xj

y V’

xj+k+1 … xwThis means that the k letters xj+1; xj+2; : : : ; xj+k are erased. The distan
e betweenxj+k+1 � � �xw and yV 0 is bounded by n � k. In the sequel, let k0 be the smallestindex in f1; : : : ; k + 1g su
h that xj+k+1 = xj+k0 . It follows from the de�nition ofelementary transitions (
f. Table 4.1) that we rea
h state M := fj℄1; (j +1)℄1; (j +k0)℄k0�1g from fj℄0g by
onsuming xj+k0 = xj+k+1.2.3.1. Assume �rst that xj+k+1 = y. Then the distan
e between xj+k+2 � � �xwand V 0 is bounded by n� k. By (y), V 0 2 L(f(j + k + 1)℄kg). Sin
e (j + k + 1)℄kis subsumed by (j + k0)℄k0�1 also V 0 2 L(f(j + k0)℄k0�1g), by (yy) and V 0 2 L(M)by Part 4 of Proposition 4.0.30. It follows that V 2 L(fi℄0g).2.3.2. Assume that xj+k+1 6= y. Then the distan
e between xj+k+2 � � �xw andV 0 is bounded by n � k � 1. Starting from state fi℄0g and
onsuming the lettersxi+1; : : : xj ; y we eventually rea
h a state M
ontaining (j + 1)℄1. This positionsubsumes (j + k+1)℄k+1. It follows from (y), (yy) and Part 4 of Proposition 4.0.30that V 0 2 L(M). Hen
e V 2 L(fi℄0g).II. It remains to prove that L(fi℄0g) � LLev(n;Wi) for 0 � i � w. Let V 2L(fi℄0g). If V is a

epted - starting from fi℄0g - on a path of singleton sets with basi
positions f(i+1)℄0g; f(i+2)℄0g; : : : ; fk℄0g, then k℄0 is a

epting whi
h implies that Vhas the form xi+1 � � �xk where w�k � n. This shows that V 2 LLev(n;Wi). In theother
ase, starting from state fi℄0g and
onsuming the pre�x V 0y of V = V 0yV 00we rea
h states f(i+ 1)℄0g; : : : fj℄0g;M where M 6= f(j + 1)℄0g.Case (a): j < w and M has the form fj℄1; (j + 1)℄1g. In this
ase, by (y) andPart 4 of Proposition 4.0.30, either V 00 has distan
e � n � 1 to xj+1 � � �xw or V 00has distan
e � n�1 to xj+2 � � �xw. In the former
ase, with an additional insertionof y we see that V has distan
e � n to Wi. In the latter
ase, using a substitutionxj+1 7! y we see V has distan
e � n to Wi.Case (b): j < w and M has the form fj℄1; (j+1)℄1; (j+k)℄k�1g. Here we haveto
onsider the additional
ase where V 00 has distan
e � n�(k�1) to xj+k+1 � � �xw.However, we know that y = xj+k . Deleting xj+1; : : : ; xj+k�1 we see that yV 0 hasdistan
e � n to xj+1 : : : xw, hen
e the same holds for V and Wi.

25Case (
): j = w. In this
ase M = fw℄1g and V 0 = Wi. It follows from (y)that V 00 has distan
e � n � 1 to the empty word ". Hen
e V has distan
e � n toWi.Theorem 4.0.32 LEVn(W) is a deterministi
 and a
y
li
 Levenshtein-automatonof degree n for W . For �xed degree n, the size of LEVn(W) is linear in jW j.Proof. Proposition 4.0.31 shows thatL(LEVn(W)) = L(f0g) = LLev(n;W);hen
e LEVn(W) is a deterministi
 Levenshtein-automaton of degree n for W . Ifj℄f is in the image set of position i℄e, then i+e < j+f . Hen
e it is easy to see thatLEVn(W) is a
y
li
. Obviously the number of possible base positions for states islinear in jW j, and for �xed degree n there exists a uniform bound on the numberof distin
t states with a �xed base position i℄0. It follows that the number of statesof LEVn(W) is linear in jW j. Sin
e the alphabet � is �xed, the size of LEVn(W)is linear in jW j.The rest of this
hapter will be used to introdu
e some notions that help to obtaina
on
rete des
ription of the transition fun
tion � of LEVn(W) in the situationwhere the degree n is �xed. Re
all that the above de�nition of � is indire
t in thesense that the image of a state is only de�ned in terms of the images of its membersunder elementary transitions. Clearly, ifM is a state and x 2 �, in order to dire
tlyde�ne the image �(M;x) we have to distinguish appropriate sub
ases that take thedistribution of the o

urren
es of x in W into a

ount. As it turns out, it suÆ
esto
onsider the o

urren
es of x in a parti
ular subword of W .De�nition 4.0.33 Let W and n as above. Let M be a non-empty state withminimal boundary i. Let k := minf2n + 1; w � ig. The relevant subword of M ,denoted W[M ℄, is the subword xi+1 � � �xi+k of W .Sin
e the relevant subword does not depend on the state M itself, but only on theminimal boundary i, we also write W[i℄ for W[M ℄. Note that the length of W[i℄
annot ex
eed 2n + 1. It follows from Lemma 4.0.21 and from De�nitions 4.0.22and 4.0.33 that for ea
h position � 2M alwaysW[�℄ is a subword ofW[M ℄. Table 4.1shows that for any position � the image Æ(�; x) only depends on �(x;W[�℄). Thus,given a state M , the image �(M;x) is
ompletely determined by the
hara
teristi
ve
tor �(x;W[M ℄). In the following
hapter we shall see that for �xed degree n thisobservation
an be used to des
ribe � in terms of a �nite table.Remark 4.0.34 The transition fun
tion � is
ompletely determined by the
har-a
teristi
 ve
tors �(x;W[i℄) of symbols x 2 � with respe
t to the subwords W[i℄ ofthe form W[i℄ = xi+1 � � �xi+k where k := minf2n+ 1; w � ig. If W and W 0 are twowords of the same length, and if the (2n + 1)-pro�le sequen
es of W and W 0 areidenti
al, then LEVn(W) and LEVn(W 0) are isomorphi
 modulo transition labels.

26CHAPTER 4. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA

Chapter 5Computation of deterministi
Levenshtein-automata of�xed degree
The general des
ription of the Levensthein-automaton LEVn(W) given in the previ-ous
hapter
an be used to derive, for any �xed bound n, an algorithm that a
tually
omputes the automaton LEVn(W) in linear time, given any input word W . Theprin
iple will �rst be illustrated for degree n = 1.5.1 Computing the Levensthein-automaton of de-gree 1Using the general des
ription of LEVn(W) we derive a generi
 des
ription of LEV 1(W)for arbitrary input W in terms of� a parametri
 list of states, with a �xed initial state f0℄0g,� a parametri
 list of �nal states,� a table T1 whi
h gives a parametri
 des
ription of the transition fun
tion �.Parametri
 list of states and �nal statesFor input W = x1 � � �xw and n = 1 the list of positions is0℄0; : : : ; w℄0;0℄1; : : : ; w℄1:It follows easily from De�nition 4.0.18 that we have the following states:; failure state,Ai := fi℄0g (0 � i � w);Bi := fi℄1g (0 � i � w);27

28CHAPTER 5. COMPUTATIONOFDETERMINISTIC LEVENSHTEIN-AUTOMATAOF FIXED DEGREECi := fi℄1; (i+ 1)℄1g (0 � i � w � 1);Di := fi℄1; (i+ 2)℄1g (0 � i � w � 2);Ei := fi℄1; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2):The initial state is A0. A

epting positions are w℄1, w℄0, as well as (w � 1)℄0 forw � 1. It follows immediately that the �nal states areAw; Aw�1; Bw; Cw�1; Dw�2; Ew�2 for w � 2,Aw; Aw�1; Bw; Cw�1 for w = 1,Aw; Bw for w = 0.Parametri
 des
ription of the transitions fun
tionIn order to derive the parametri
 des
ription of the transition fun
tion we �rst re�nethe general des
ription of elementary des
riptions given in Table 4.1. For the
asen = 1, we obtain the set of elementary transitions given in Table 5.1. Using this(I) e = 0i � w � 2 Æ(i℄0; x) :=8>>>>>><>>>>>>: f(i+ 1)℄0gfor �(x; xi+1xi+2) = h1; b2i;fi℄1; (i+ 1)℄1; (i+ 2)℄1gfor �(x; xi+1xi+2) = h0; 1i;fi℄1; (i+ 1)℄1gfor �(x; xi+1xi+2) = h0; 0i:i = w � 1 Æ(i℄0; x) :=8>><>>: f(i+ 1)℄0gfor �(x; xi+1) = h1i;fi℄1; (i+ 1)℄1gfor �(x; xi+1) = h0i:i = w Æ(w℄0; x) := fw℄1g(II) e = 1i � w � 1 Æ(i℄1; x) := � f(i+ 1)℄1g for �(x; xi+1) = h1i;; for �(x; xi+1) = h0i:i = w Æ(w℄1; x) := ;.Table 5.1: Table of elementary transitions for degree 1.table it is simple to
ompute a parametri
 des
ription of the full transition fun
tion�, following the remarks at the end of the previous
hapter. The des
ription isgiven in Table 5.2. Images �(M;x) are spe
i�ed using a sub
ase analysis where thepossible
hara
teristi
 ve
tors �(x;W[M ℄) are distinguished. The following exampleshows how the entries of Table 5.2 are
omputed.Example 5.1.1 Let us ask for the image �(Ci; x) of state Ci = fi℄1; (i + 1)℄1gunder x 2 �, assuming that that i � w� 3 and �(x;W[Ci℄) = �(x; xi+1xi+2xi+3) =h1; 1; 0i. We have W[i℄1℄ = xi+1, W[(i+1)℄1℄ = xi+2, hen
e �(x;W[i℄1℄) = h1i =�(x;W[(i+1)℄1℄). Using Table 5.1 we obtain�(Ci; x) = Æ(i℄1; x) t Æ((i+ 1)℄1; x)= f(i+ 1)℄1g t f(i+ 2)℄1g= f(i+ 1)℄1; (i+ 2)℄1g= Ci+1:

5.1. COMPUTING THE LEVENSTHEIN-AUTOMATON OF DEGREE 1 290 � i � w � 3�(x; xi+1xi+2xi+3) Ai Bi Ci Di Eih0; 0; 0i Ci ; ; ; ;h1; 0; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1h0; 1; 0i Ei ; Bi+2 ; Bi+2h0; 0; 1i Ci ; ; Bi+3 Bi+3h1; 1; 0i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1h1; 0; 1i Ai+1 Bi+1 Bi+1 Di+1 Di+1h0; 1; 1i Ei ; Bi+2 Bi+3 Ci+2h1; 1; 1i Ai+1 Bi+1 Ci+1 Di+1 Ei+1i = w � 2�(x; xi+1xi+2) Ai Bi Ci Di Eih0; 0i Ci ; ; ; ;h1; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1h0; 1i Ei ; Bi+2 ; Bi+2h1; 1i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1i = w � 1�(x; xi+1) Ai Bi Cih0i Ci ; ;h1i Ai+1 Bi+1 Bi+1i = w�(x; ") Ai Bihi Bi ;Table 5.2: Table T1: parametri
 transitions for LEV 1(W).In the same way, all other entries of Table 5.2
an be
omputed.Computation of the a
tual automatonObviously, given the above generi
 des
ription of LEV 1 it is possible to generatefor any
on
rete input W the automaton LEV 1(W) in time O(jW j).Theorem 5.1.2 There exists an algorithm that
omputes for any input word Wthe automaton LEV 1(W) in time and spa
e O(jW j).Corollary 5.1.3 For any inputW , the minimal deterministi
 Levenshtein-automatonof degree 1 for W
an be
omputed in time and spa
e O(jW j).Proof. A result by D. Revuz [Rev92℄ shows that a
y
li
 deterministi
 �nite stateautomata
an be minimalized in linear time. Sin
e LEV 1(W) is deterministi
 anda
y
li
 the result follows.Example 5.1.4 Figure 5.1 des
ribes the automaton LEV 1(W) for the input word\atlas". For ea
h wordW of length 5 with 3-pro�le sequen
e (1; 2; 3); (1; 2; 3); (1; 2; 3)the automaton LEV 1(W) has the same stru
ture, modulo renaming of transition la-bels. Similarly Figure 5.2 des
ribes the stru
ture of LEV 1(W) for the word \otter".

30CHAPTER 5. COMPUTATIONOFDETERMINISTIC LEVENSHTEIN-AUTOMATAOF FIXED DEGREE

a

t

t

l

l

a

a

s

s

t l a s

t l a s
a

0#0

1#1

1#0 2#0 3#0 4#0 5#0

2#1 3#1 4#1 5#1

0#1,1#1,2#1 1#1,2#1,3#1 2#1,3#1,4#1 3#1,4#1,5#1
0#1,1#1 1#1,2#1 2#1,3#1 3#1,4#1

4#1,5#1

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C0 C4

E0
E3E1 E2

C1 C2 C3

Figure 5.1: Deterministi
 Levenshtein-automaton LEV 1(W) for inputW = \atlas".

o

t

t

e

t e r4

t t e r

t

t e ro

t

t
0#1,1#1 2#1,3#1 3#1,4#1

4#1,5#10#1,1#1,2#1

1#1,2#1

2#1,3#1,4#1 3#1,4#1,5#1

r

0#0 1#0 2#0 3#0 4#0 5#0

1#1 2#1 3#1 4#1 5#1

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C0

C1

C2 C3
C4

E3E2E0

Figure 5.2: Deterministi
 Levenshtein-automaton LEV 1(W) for inputW = \otter".Here for ea
h word W of length 5 with 3-pro�le sequen
e (1; 2; 2); (1; 1; 2); (1; 2; 3)the automaton LEV 1(W) has the same stru
ture, modulo renaming of transitionlabels.5.2 Computing Levensthein-automata of higher de-greeFor any �xed degree n � 2, the
omputation of LEVn(W) essentially follows thesame ideas as in the
ase n = 1. Given the degree n, an o�ine-
omputation is usedto
ompute1. a parametri
 des
ription of the set of all states of LEVn(W) for arbitraryinput word W , using the minimal boundary i of states as a parameter,2. a parametri
 des
ription of the set of all �nite states,

5.2. COMPUTING LEVENSTHEIN-AUTOMATA OF HIGHER DEGREE 313. a parametri
 transition table Tn that de�ne the images of parametri
 statesM under input x 2 �, subje
t to the form of the
hara
teristi
 �(x;W[M ℄).In ea
h
ase, the initial state is f0℄0g. On
e we have the parametri
 des
riptionof LEVn(W) for arbitrary W at our disposal, we may use it to
ompute for any
on
rete input word W the automaton LEVn(W) in time linear in jW j.Theorem 5.2.1 For any �xed degree n, there exists an algorithm that
omputesfor input word W the automaton LEVn(W) in time and spa
e O(jW j).Corollary 5.2.2 For any inputW , the minimal deterministi
 Levenshtein-automatonof �xed degree n for W
an be
omputed in time and spa
e O(jW j).Proof. As in the
ase n = 1.Remark 5.2.3 Whereas �ve parametri
 states (i.e., Ai, Bi, Bi, Di, and Ei) aresuÆ
ient for degree n = 1, the number of parametri
 states that are needed fordegrees 2; 3; 4; : : : grows qui
kly. For n = 2 there are 30 parametri
 states (ignoringstate ;), whi
h are listed in Example 5.2.4. Sin
e relevant subwordsW[M ℄ may havelength 2n + 1 = 5 the boolean ve
tors that have to be
onsidered when de�ningthe transition fun
tion have maximal length 5. Hen
e the maximal subtable of �has dimension 30 � 32. For n = 3, the number of parametri
 states is 196, themaximal subtable for � has dimension 196� 128. For n = 4, there are alread 1353parametri
 states, the maximal subtable for � has dimension 1352� 512.Example 5.2.4 The non-empty states of LEV 2(W) are the following:fi℄0g (0 � i � w);fi℄1g (0 � i � w);fi℄1; (i+ 1)℄1g (0 � i � w � 1);fi℄1; (i+ 2)℄1g (0 � i � w � 2);fi℄1; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2);fi℄2; (i+ 2)℄1g (0 � i � w � 2);fi℄2; (i+ 3)℄1g (0 � i � w � 3);fi℄2; (i+ 4)℄2; (i+ 2)℄1g (0 � i � w � 4);fi℄2; (i+ 1)℄2; (i+ 3)℄1g (0 � i � w � 3);fi℄2; (i+ 2)℄1; (i+ 3)℄1g (0 � i � w � 3);fi℄1; (i+ 3)℄2g (0 � i � w � 3);fi℄1; (i+ 2)℄2g (0 � i � w � 2);fi℄1; (i+ 1)℄1; (i+ 3)℄2g (0 � i � w � 3);fi℄1; (i+ 2)℄2; (i+ 3)℄2g (0 � i � w � 3);fi℄2g (0 � i � w);fi℄2; (i+ 1)℄2g (0 � i � w � 1);fi℄2; (i+ 2)℄2g (0 � i � w � 2);fi℄2; (i+ 3)℄2g (0 � i � w � 3);fi℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 1)℄2; (i+ 2)℄2g (0 � i � w � 2);

32CHAPTER 5. COMPUTATIONOFDETERMINISTIC LEVENSHTEIN-AUTOMATAOF FIXED DEGREEfi℄2; (i+ 1)℄2; (i+ 3)℄2g (0 � i � w � 3);fi℄2; (i+ 1)℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 2)℄2; (i+ 3)℄2g (0 � i � w � 3);fi℄2; (i+ 2)℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 3)℄2; (i+ 4)℄2g (0 � i � w � 4)fi℄2; (i+ 1)℄2; (i+ 2)℄2; (i+ 3)℄2g (0 � i � w � 3);fi℄2; (i+ 1)℄2; (i+ 2)℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 1)℄2; (i+ 3)℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 2)℄2; (i+ 3)℄2; (i+ 4)℄2g (0 � i � w � 4);fi℄2; (i+ 1)℄2; (i+ 2)℄2; (i+ 3)℄2; (i+ 4)℄2g (0 � i � w � 4):

Chapter 6String
orre
tion usingimitation ofLevensthein-automata
We now introdu
e a variant of the
orre
tion method des
ribed in Chapter 3.The main advantage of the new method is that it avoids the a
tual
omputa-tion of Levenshtein-automata. As before we assume that for some �xed degreen we have at our disposal a generi
 des
ription of the automaton LEVn(W) =h�; QW ; f0℄0g; FW ;�W i for arbitrary input W , as presented in the previous
hap-ter for degree n = 1. With �W� we denote the variant of the the transition fun
tionwhere
hara
teristi
 ve
tors are treated as input. Note that the tables Tn yieldparametri
 des
riptions of �W� . For example, from table T1 we see that A0 mapsto C0 under ve
tor h0; 0; 0i.As in Chapter 3 we assume that the di
tionary is implemented in the form of adeterministi
 �nite state automaton AD = h�; QD; qD0 ; FD ; ÆDi.Given any
on
rete input word W , we �rst
ompute the set of all
hara
teristi
ve
tors of the form �(x;W[i℄) where x 2 � and i denotes a boundary of W . Usingthis ve
tors, the ba
ktra
king pro
edure given in Chapter 3
an now be repla
ed bythe following variant:push (<"; qD0 ; f0℄0gg>);while not empty(sta
k) do beginpop (<V; qD;M>);for x in � do beginqD1 := ÆD(qD; x);M 0 := �W� (M;�(x;W[M ℄));if (qD1 <> NIL) and (M 0 <> NIL) then beginV1 :=
on
at(V; x);push(<V1; qD1 ;M 0>);if (qD1 2 FD) and (M 0 2 FW) then output(V1);end;end;end; 33

34CHAPTER 6. STRING CORRECTIONUSING IMITATIONOF LEVENSTHEIN-AUTOMATANote that in
ontrast to the situation des
ribed in Chapter 3, we do not assumethat the Levenshtein-automaton for the
on
rete input word W is available. Giventhe generi
 des
ription of LEVn, states of LEVn(W) are only introdu
ed on demandin line 6. It is important to note that ea
h image state �W� (M;�(x;W[M ℄))
an befound in
onstant time sin
e both �(x;W[M ℄) and the table Tn for �� have beenpre
omputed. The following example illustrates the modi�ed a

eptan
e pro
edure.Example 6.0.5 We
onsider the
ase n = 1. Assume that the (misspelled) inputword W has the form \
hold". We
onsider the path of the di
tionary automatonfor the di
tionary entry \
hild", whi
h is assumed to lead to a �nal state. Thefollowing transition sequen
e illustrates how states of LEV 1(
hold) are generatedon demand, using pre
omputed
hara
teristi
 ve
tors and Table 5.2.A0 input �(
;
ho) = h1; 0; 0i 7! A1A1 input �(h; hol) = h1; 0; 0i 7! A2A2 input �(i; old) = h0; 0; 0i 7! C2C2 input �(l; old) = h0; 1; 0i 7! B4B4 input �(d; d) = h1i 7! B5Now B5 is a �nal state. Hen
e, in the above pro
edure, the word \
hild" is suggestedas one
orre
tion of the input \
hold". Assume now that the di
tionary also
ontainsthe word \
old". In this
ase we rea
h the following states of LEV 1(
hold):A0 input �(
;
ho) = h1; 0; 0i 7! A1A1 input �(o; hol) = h0; 1; 0i 7! E1E1 input �(l; hol) = h0; 0; 1i 7! B4B4 input �(d; d) = h1i 7! B5Sin
e B5 is �nal, also \
old" is suggested as a
orre
tion
andidate.

Chapter 7Adding Transpositions
As a matter of fa
t, the stru
ture of Levenshtein-automata is a�e
ted if furtherprimitive edit operations are used. In this
hapter we
onsider the situation whereinsertions, deletions, substitutions and transpositions are treated as primitive editoperations. The methodology for de�ning states and transitions presented in Chap-ter 4
an be extended.7.1 A family of deterministi
 Levenshtein-automatafor primitive edit operations in
luding trans-positionsMotivated by the intended appli
ation of the
orre
tion methods in a typesetting
ontext we assume that primitive edit operatios are applied in parallel. This meansthat if V is obtained fromW = x1 � � �xw with a transposition of the letters xi+1xi+2,then V has an o

urren
e of the transposed sequen
e xi+2xi+1.1 In the sequel, withLevenshtein-distan
e we always mean the distan
e where transpositions are treatedas primitive edit operations. With DTL(V;W) we denote the distan
e between V andW , and LTLev(n;W) denotes the set of all words V 2 �� su
h that dTL(W;V) � n.Sin
e primitive edit operations are applied in parallel, the
on
ept of a tra
erepresentation
an be extended. Ea
h transposition is represented by means of apair of
rossing strokes. Endpoints are neighboured letters.Remark 7.1.1 LetW = x1x2 � � �xw and V = y1y2 � � � yv be two words with Leven-shtein-distan
e n � 1. Assume that neither V is a pre�x of W nor vi
e versa. LetU = x1x2 � � �xi (where 0 � i � v; w) denote the maximal
ommon pre�x of V andW . Then, in any tra
e representation of a minimal sequen
e � of edit operationsleading from W to V exa
tly one of the following four
ases holds:1.-3. Insertion, substitution, deletion
ases. As in Remark 2.0.3.1When using transpositions, the question if operations are applied sequentially or in parallelis in fa
t relevant. Our assumption implies, for example, that the words \ab" and \b
a" havedistan
e 3. 35

36 CHAPTER 7. ADDING TRANSPOSITIONS4. Transposition
ase. xi+1 and xi+2 are respe
tively
onne
ted with yi+2 andyi+1, strokes are
rossing.LetW = x1 � � �xw denote the input word and let n denote the degree. As before,the elements of f0; 1; : : : ; wg are
alled boundaries of W .De�nition 7.1.2 A standard position is an expression of the form i℄e where i isa boundary and 0 � e � n. A t-position is an expression of the form i℄et where0 � i � w � 2 and 1 � e � n. A position is either a standard position or a t-position. A position � is an a

epting position i� � = i℄e is a standard position andif w � i � n� e.The intuitive interpretation of expressions i℄e is as before. Expressions i℄et arerea
hed from positions i℄e�1 under input xi+2 in situations where we have a trans-position of the letters xi+1 and xi+2.De�nition 7.1.3 Subsumption between positions is explained as follows:1. A position i℄e subsumes a position j℄f i� e < f and jj � ij � f � e.2. A position i℄e subsumes a position j℄ft i� f > e and jj � (i� 1)j � f � e.3. A position i℄et subsumes a position j℄f i� n = f > e and i = j.4. A position i℄et subsumes a position j℄ft i� f > e and i = j.As in Chapter 4, with ea
h position � we asso
iate a language �(�).�(i℄e) := LTLev(n� e; xi+1 � � �xw);�(i℄et) := fxi+1g Æ LTLev(n� e; xi+3 � � �xw):Lemma 7.1.4 Let � and �0 denote two distin
t positions. If � subsumes �0, then�(�0) � �(�).De�nition 7.1.5 Let 0 � i � w. A state with base position i℄0 is a set M ofpositions, not ne
essarily
ontaining i℄0, that sa�s�es the following properties:1. for ea
h position j℄e or j℄et in M we have ji � jj � e. In addition, for ea
ht-position j℄et we have jj � (i� 1)j � e,2. M does not
ontain any position that is subsumed by another element of M .De�nition 7.1.6 Let W = x1 � � �xw as above. Let � := i℄e be a position, and letk := minfn�e+1; w� ig. The relevant subword of W for position �, denoted W[�℄,is the subword xi+1 � � �xi+k of W . Now let i � w � 2. The relevant subword of Wfor position � := i℄et , denoted W[�℄, is the subword xi+1 � � �xi+k of W .De�nition 7.1.7 LetW and n as above. An elementary transition assigns to ea
hposition � and ea
h symbol x 2 � a state Æ(�; x). The
omplete set of elementarytransitions is spe
i�ed in Table 7.1.

7.1. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDING TRANSPOSITIONS37Lemma 7.1.8 Let M be a state with base position i℄0 where i < w. Then theimage of any element of M under an elementary transition is always a state withbase position (i+1)℄0. If M is a state with base position w℄0, then the image of anyelement of M under an elementary transition is always a state with base positionw℄0.Proof. Let i < w, assume that i℄0 subsumes a t-position j℄ft 2 M . Theni� e � j � i+ e� 1. The only non-empty possible image of j℄ft is f(j + 2)℄fg. Wehave i+1� e � j +2 � i+1+ e. It follows that (i+1)℄e subsumes (j +2)℄f . Theremaining
ases are straightforward.The proof of the following lemma is straightforward.Lemma 7.1.9 (Raising Lemma for elementary transitions) Let n > 0 and1 � e � n. Then for any position of degree n of the form [�℄e and any x 2 � wehave Æ(n)([�℄e; x) = [Æ(n�e)(�; x)℄℄e:In the sequel, with M tN we denote the redu
ed union of the statesM and N with
ommon base position where we refer to the new notion of subsumption introdu
edin De�nition 7.1.3.De�nition 7.1.10 Let W = x1 � � �xw where w � 0, let n � 0. Then LEVTn (W) isthe deterministi
 �nite state automaton h�; Q; q0; F;�i where1. the set of states Q
ontains all states in the sense of De�nition 7.1.5,2. the initial state is q0 := f0℄0g,3. the set F of �nal states
ontains all states M 2 Q that
ontain an a

eptingposition,4. the transition fun
tion � is de�ned in the following way: for any symbol y 2 �and any state M 2 Q, �(M; y) := F�2M Æ(�; y).It follows from Lemma 7.1.8 that � assigns to ea
h state M 2 Q and ea
h y 2 �again a state M 2 Q. In fa
t, a state with base position i℄0 (i < w) is alwaysmapped to a state with base position (i + 1)℄0, and states with base position w℄0are mapped to states with base position w℄0. This shows that LEVTn (W) is adeterministi
 �nite state automaton.The raising lemma holds also in the new situation. We write �(n) for thetransition fun
tion of LEVTn (W).Lemma 7.1.11 (Raising Lemma for transitions) Let n > 0 and 1 � e � n.Then for any state of degree n of the form [M ℄℄e and any x 2 � we have�(n)([M ℄℄e; x) = [�(n�e)(M;x)℄℄e:Proof. As for Lemma 4.0.29.In the sequel, let LEVTn (W) = h�; Q; q0; F;�i as in De�nition 7.1.10.

38 CHAPTER 7. ADDING TRANSPOSITIONSProposition 7.1.12 The following properties hold:1. L(;) = ;,2. for all states M;N with a
ommon base position and all y 2 �:�(M tN; y) = �(M; y) t�(N; y);3. for all states M;N with a
ommon base position and all V 2 ��:��(M tN; V) = ��(M;V) t��(N; V);4. for all states M � Q n ff0℄0g; : : : ; fw℄0gg: L(M) = S�2M L(f�g).Proof. As for Proposition 4.0.30.Proposition 7.1.13 The following holds:L(fi℄et g) = fxi+1g Æ LTLev(n� e; xi+3 � � �xw) (0 � i � w � 2; 1 � e � n)L(fi℄eg) = LTLev(n� e; xi+1 � � �xw) (0 � i � w; 0 � e � n)Proof. We pro
eed by indu
tion on n. The
ase n = 0
an be treated as before (
f.proof of Prop. 4.0.31).Now let n � 1 and assume that the Proposition is
orre
t for all 0 � n0 < n. The
ase e = n is simple sin
e all relevant transitions are of the form fi℄ng 7! f(i+1)℄ngunder xi+1 (i < w) or fi℄nt g 7! f(i+ 2)℄ng under xi+1 (i < w � 1). Hen
e assumethat e < n. Sin
e for 1 � e < n transitions from states fi℄eg are de�ned by raisingof transitions of degree n0 = n� e the indu
tion hypothesis shows thatL(fi℄et g) = fxi+1g Æ LTLev(n� e; xi+3 � � �xw) (0 � i � w � 2; 2 � e � n)(7.1)L(fi℄eg) = LTLev(n� e; xi+1 � � �xw) (0 � i � w; 1 � e � n) (7.2)It remains to prove thatL(fi℄1t g) = fxi+1g Æ LTLev(n� 1; xi+3 � � �xw) (0 � i � w � 2) (7.3)L(fi℄0g) = LTLev(n; xi+1 � � �xw) (0 � i � w) (7.4)In the sequel, let Wi denote the suÆx xi+1 � � �xw of W (0 � i � w). From (7.2)and Lemma 7.1.4 we obtain the following : for all positions i℄e and j℄f su
h thate 6= 0 6= f : if i℄e is subsumed by j℄f , then L(fi℄eg) is a proper subset of L(fj℄fg)(yy).I. We �rst show that fxi+1gÆLTLev(n�1; xi+3 � � �xw) � L(fi℄1t g). The elementarytransitions show that from fi℄1t g we rea
h f(i+2)℄1g
onsuming xi+1. Now (2) showsthat fxi+1g Æ LTLev(n� 1; xi+3 � � �xw) � L(fi℄1t g).II. We show that L(fi℄1t g) � fxi+1g Æ LTLev(n � 1;Wi+2). The only possibilityto pro
eed from L(fi℄1t g) is using input xi+1 to rea
h f(i+ 2)℄1g. By (2), L(f(i+2)℄eg) = LTLev(n � 1; xi+3 � � �xw). It follows that L(fi℄1t g) � fxi+1g Æ LTLev(n �1;Wi+2).III. We show that LTLev(n;Wi) � L(fi℄0g). Let V 2 LTLev(n;Wi).

7.1. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDING TRANSPOSITIONS39Case 1.1: V is obtained from Wi by deleting a suÆx of length k (0 � k � n) ofWi. Starting from state fi℄0g and
onsuming V we rea
h state f(w � k)℄0g. Sin
e(w � k)℄0 is an a

epting position, state f(w � k)℄0g is �nal, hen
e V 2 L(fi℄0g).Case 1.2: Wi is obtained from V by deleting a suÆx of length k (1 � k � n)of V . Starting from state fi℄0g and �rst
onsuming Wi we rea
h fw℄0g. The kadditional transitions lead to fw℄kg. Sin
e w℄k is an a

epting position, the latterstate is �nal, hen
e V 2 L(fi℄0g).Case 2: In the remaining
ases there exists an index j < w su
h that V =xi+1 � � �xjyV 0 where y 6= xj+1.
Wi

V

xj+1 …xjxi+1

xi+1 xj

xw

y V’

We have yV 0 2 LTLev(n; xj+1 � � �xw) by Lemma 2.0.2. We �x a sequen
e � of editoperations leading from xj+1 � � �xw to yV 0 of minimal length and
onsider the four
ases des
ribed in Remark 7.1.1.2.1. If the o

urren
e of y is an insertion before xj+1 (where i � j � w),then V 0 2 LTLev(n � 1; xj+1 � � �xw). Sin
e y 6= xj+1, starting from state fi℄0g and
onsuming the letters xi+1; : : : xj ; y we rea
h states f(i+ 1)℄0g; : : : ; fj℄0g;M whereM
ontains j℄1 (
f. elementary transitions). It follows from (2) and Part 4 ofProposition 4.0.30 that V 0 2 L(M). Hen
e V 2 L(fi℄0g).2.2. If the o

urren
e of y substitutes xj+1 (where i � j < w), then V 0 belongsto LTLev(n � 1; xj+2 � � �xw). Starting from state fi℄0g and
onsuming the lettersxi+1; : : : xj ; y we rea
h states f(i+ 1)℄0g; : : : ; fj℄0g;M where M
ontains (j + 1)℄1.It follows from (2) and Part 4 of Proposition 7.1.12 that V 0 2 L(M). Hen
e V 2L(fi℄0g).2.3. If the o

urren
e of y = xj+2 is
aused by a transposition of xj+1 and xj+2(where j � w � 2), then V 0 = xj+1V 00 where V 00 2 LTLev(n � 1; xj+3 � � �xw). Sin
ey 6= xj+1, starting from state fi℄0g and
onsuming the letters xi+1; : : : xj ; xj+2we rea
h states f(i + 1)℄0g; : : : ; fj℄0g;M where M
ontains j℄1t (
f. elementarytransitions). FromM
onsuming xj+1 we rea
h a stateM 0 with a position identi
alto or subsuming (j + 2)℄1. It is easy to see that all positions of M 0 must be raised,hen
e M 0
ontains (j +2)℄1. From part II we see that V 00 2 L(M 0). It follows thatV 2 L(fi℄0g).2.4. In the remaining
ase there exists some 1 � k � n su
h that we have astroke from xj+k+1 to y in the tra
e representation of �.
Wi

V

xj+1 …xjxi+1

xi+1 xj

y V’

xj+k+1 … xwThis means that the k letters xj+1; xj+2; : : : ; xj+k are erased. The distan
e betweenxj+k+1 � � �xw and yV 0 is bounded by n � k. In the sequel, let k0 be the smallest

40 CHAPTER 7. ADDING TRANSPOSITIONSindex in f1; : : : ; k + 1g su
h that xj+k+1 = xj+k0 . It follows from the de�nition ofelementary transitions (
f. Table 4.1) that we rea
h state M := fj℄1; (j +1)℄1; (j +k0)℄k0�1g from fj℄0g by
onsuming xj+k0 = xj+k+1.2.4.1. Assume �rst that xj+k+1 = y. Then the distan
e between xj+k+2 � � �xwand V 0 is bounded by n� k. By (2), V 0 2 L(f(j + k + 1)℄kg). Sin
e (j + k + 1)℄kis subsumed by (j + k0)℄k0�1 also V 0 2 L(f(j + k0)℄k0�1g), by (yy) and V 0 2 L(M)by Part 4 of Proposition 4.0.30. It follows that V 2 L(fi℄0g).2.4.2. Assume that xj+k+1 6= y. Then the distan
e between xj+k+2 � � �xw andV 0 is bounded by n � k � 1. Starting from state fi℄0g and
onsuming the lettersxi+1; : : : xj ; y we eventually rea
h a state M
ontaining (j + 1)℄1. This positionsubsumes (j + k+1)℄k+1. It follows from (2), (yy) and Part 4 of Proposition 4.0.30that V 0 2 L(M). Hen
e V 2 L(fi℄0g).IV. It remains to prove that L(fi℄0g) � LTLev(n;Wi) for 0 � i � w. Let V 2L(fi℄0g). If V is a

epted - starting from fi℄0g - on a path of singleton sets with basi
positions f(i+1)℄0g; f(i+2)℄0g; : : : ; fk℄0g, then k℄0 is a

epting whi
h implies that Vhas the form xi+1 � � �xk where w�k � n. This shows that V 2 LTLev(n;Wi). In theother
ase, starting from state fi℄0g and
onsuming the pre�x V 0y of V = V 0yV 00we rea
h states f(i+ 1)℄0g; : : : fj℄0g;M where M 6= f(j + 1)℄0g.Case (a): j < w and M has the form fj℄1; (j + 1)℄1g. In this
ase, by (2) andPart 4 of Proposition 4.0.30, either V 00 has distan
e � n � 1 to xj+1 � � �xw or V 00has distan
e � n�1 to xj+2 � � �xw. In the former
ase, with an additional insertionof y we see that V has distan
e � n to Wi. In the latter
ase, using a substitutionxj+1 7! y we see V has distan
e � n to Wi.Case (b): j < w and M has the form fj℄1; (j+1)℄1; (j+k)℄k�1g. Here we haveto
onsider the additional
ase where V 00 has distan
e � n�(k�1) to xj+k+1 � � �xw.However, we know that y = xj+k . Deleting xj+1; : : : ; xj+k�1 we see that yV 0 hasdistan
e � n to xj+1 : : : xw, hen
e the same holds for V and Wi.Case (
): j < w � 1 and M has the form fj℄1; j℄1t ; (j + 1)℄1; (j + k)℄k�1g. Thisis similar to (b), but y = xj+2 and we have the possibility that V 0 = xj+1V 00 whereV 00 has distan
e � n � 1 to xj+3 � � �xw . Here xj+2xj+1V 00 has distan
e � n toxj+1 � � �xw, hen
e V has distan
e � n to Wi.Case (d): j = w. In this
ase M = fw℄1g and V 0 = Wi. It follows from (2)that V 00 has distan
e � n � 1 to the empty word ". Hen
e V has distan
e � n toWi.
From Proposition 7.1.13 we obtain the parallel result to Theorem 4.0.32.

Theorem 7.1.14 LEVTn (W) is a deterministi
 and a
y
li
 Levenshtein-automatonof degree n for W for primitive edit operations in
luding transpositions. For �xeddegree n, the size of LEVTn (W) is linear in jW j.

7.2. COMPUTATIONOF DETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDING TRANSPOSITIONS417.2 Computation of deterministi
 Levenshtein-automatafor primitive edit operations in
luding trans-positionsAs for LEVn(W), the general des
ription of the Levensthein-automaton LEVTn (W)
an be used to derive, for any �xed number n, an algorithm that a
tually
omputesthe automaton LEVTn (W) in linear time, given any input word W . The prin
iplewill be illustrated for degree n = 1.For input W = x1 � � �xw and n = 1 the list of positions is0℄0; : : : ; w℄0; 0℄1; : : : ; w℄10℄1t ; : : : ; (w � 2)℄1t :It suÆ
es to
onsider the following states:; failure state,Ai := fi℄0g (0 � i � w);Bi := fi℄1g (0 � i � w);Ci := fi℄1; (i+ 1)℄1g (0 � i � w � 1);Di := fi℄1; (i+ 2)℄1g (0 � i � w � 2);Ei := fi℄1; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2);Fi := fi℄1; i℄1t ; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2);The initial state is A0. A

epting positions are w℄1, w℄0, as well as (w � 1)℄0 forw � 1. It follows immediately that the �nal states areAw; Aw�1; Bw; Cw�1; Dw�2; Ew�2; Fw�2 for w � 2,Aw; Aw�1; Bw; Cw�1 for w = 1,Aw; Bw for w = 0.For the
ase n = 1, we obtain the set of elementary transitions given in Table 7.2.Using this Table 7.2 it is simple to
ompute a parametri
 des
ription of the fulltransition fun
tion � as before. The des
ription is given in Table 7.3.Obviously, given the above generi
 des
ription of LEVT1 it is possible to generatefor any
on
rete input W the automaton LEVT1 (W) in time O(jW j).Theorem 7.2.1 There exists an algorithm that
omputes for any input word Wthe automaton LEVT1 (W) in time and spa
e O(jW j).Corollary 7.2.2 For any inputW , the minimal deterministi
 Levenshtein-automatonof degree 1 for W where primitive edit operations in
lude transpositions
an be
om-puted in time and spa
e O(jW j).Example 7.2.3 Figure 7.1 des
ribes the automaton LEVT1 (W) for the input word\atlas". For ea
h wordW of length 5 with 3-pro�le sequen
e (1; 2; 3); (1; 2; 3); (1; 2; 3)the automaton LEVT1 (W) has the same stru
ture, modulo transition labels. Sim-ilarly Figure 7.2 des
ribes the stru
ture of LEVT1 (W) for the word \otter". Herefor ea
h word W of length 5 with 3-pro�le sequen
e (1; 2; 2); (1; 1; 2); (1; 2; 3) theautomaton LEVT1 (W) has the same stru
ture, modulo transition labels.

42 CHAPTER 7. ADDING TRANSPOSITIONS

a

t

t

l

l

a

a

s

s

t l a s

t l a s
a

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C0
C4F0 F3F1 F2C1 C2 C3

a t l
a

Figure 7.1: Deterministi
 Levenshtein-automaton LEVT1 (W) for inputW = \atlas".

o

t

t

e

t e r4

t t e r

t

t e ro

t

t

r

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

C0

C1

C2 C3
C4F3F2F0

t e
o

Figure 7.2: Deterministi
 Levenshtein-automaton LEVT1 (W) for input W = \ot-ter".

7.2. COMPUTATIONOF DETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDING TRANSPOSITIONS43As a matter of fa
t, the same method
an be used for any �xed degree n.Theorem 7.2.4 For any �xed degree n, there exists an algorithm that
omputesfor any input word W the automaton LEVTn (W) in time and spa
e O(jW j).Corollary 7.2.5 For any inputW , the minimal deterministi
 Levenshtein-automatonof degree n for W where primitive edit operations in
lude transpositions
an be
om-puted in time and spa
e O(jW j).

44 CHAPTER 7. ADDING TRANSPOSITIONS
(I) e = 0 < ni � w � 2 Æ(i℄0; x) := 8>>>>>>>>>><>>>>>>>>>>:
f(i+ 1)℄0gfor �(x;W[�℄) = h1; b2; : : : ; bki;fi℄1; i℄1t ; (i+ 1)℄1; (i+ j)℄j�1gfor �(x;W[�℄) = h0; 1; b3; : : : ; bki;fi℄1; (i+ 1)℄1; (i+ j)℄j�1gfor �(x;W[�℄) = h0; 0; b2; : : : ; bki : j;fi℄1; (i+ 1)℄1gfor �(x;W[�℄) = h0; : : : ; 0i:i = w � 1 Æ(i℄0; x) := 8>><>>: f(i+ 1)℄0gfor �(x; xi+1) = h1i;fi℄1; (i+ 1)℄1gfor �(x; xi+1) = h0i:i = w Æ(w℄0; x) := fw℄1g(II) 1 � e � n� 1i � w � 2 Æ(i℄e; x) :=8>>>>>>>>>><>>>>>>>>>>:
f(i+ 1)℄egfor �(x;W[�℄) = h1; b2; : : : ; bki;fi℄e+1; i℄e+1t ; (i+ 1)℄e+1; (i+ j)℄e+j�1gfor �(x;W[�℄) = h0; 1; b3; : : : ; bki;fi℄e+1; (i+ 1)℄e+1; (i+ j)℄e+j�1gfor �(x;W[�℄) = h0; 0; b2; : : : ; bki : j;fi℄e+1; (i+ 1)℄e+1gfor �(x;W[�℄) = h0; : : : ; 0i:Æ(i℄et ; x) :=8<: f(i+ 2)℄egfor �(x;W[�℄) = h1; b2 : : : ; bki;; else:i = w � 1 Æ(i℄e; x) :=8>><>>: f(i+ 1)℄egfor �(x; xi+1) = h1i;fi℄e+1; (i+ 1)℄e+1gfor �(x; xi+1) = h0i:i = w Æ(w℄e; x) := fw℄e+1g(III) e = ni � w � 1 Æ(i℄n; x) := � f(i+ 1)℄ng for �(x;W[�℄) = h1i;; for �(x;W[�℄) = h0i:i � w � 2 Æ(i℄nt ; x) := � f(i+ 2)℄ng for �(x;W[�℄) = h1i;; for �(x;W[�℄) = h0i:i = w Æ(w℄n; x) := ;.Table 7.1: Table of elementary transitions for � = i℄e resp. � = i℄et where transpo-sitions are treated as primitive edit operations.

7.2. COMPUTATIONOF DETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDING TRANSPOSITIONS45(I) e = 0i � w � 2 Æ(i℄0; x) :=8>>>>>><>>>>>>: f(i+ 1)℄0gfor �(x; xi+1xi+2) = h1; b2i;fi℄1; i℄1t ; (i+ 1)℄1; (i+ 2)℄1gfor �(x; xi+1xi+2) = h0; 1i;fi℄1; (i+ 1)℄1gfor �(x;W[�℄) = h0; 0i:i � w � 1 Æ(i℄0; x) :=8>><>>: f(i+ 1)℄0gfor �(x; xi+1) = h1i;fi℄1; (i+ 1)℄1gfor �(x; xi+1) = h0i:i = w Æ(w℄0; x) := fw℄1g(II) e = 1i � w � 2 Æ(i℄1; x) := � f(i+ 1)℄1g for �(x; xi+1) = h1i;; for �(x; xi+1) = h0i:Æ(i℄1t ; x) := � f(i+ 2)℄1g for �(x; xi+1) = h1i;; for �(x; xi+1) = h0i:i � w � 1 Æ(i℄1; x) := � f(i+ 1)℄1g for �(x; xi+1) = h1i;; for �(x; xi+1) = h0i:i = w Æ(w℄1; x) := ;.Table 7.2: Table of elementary transitions for n = 1, primitive edit operationsin
luding transpositions. 0 � i � w � 3�(x; xi+1xi+2xi+3) Ai Bi Ci Di Ei Fih0; 0; 0i Ci ; ; ; ; ;h1; 0; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1 Ci+1h0; 1; 0i Fi ; Bi+2 ; Bi+2 Bi+2h0; 0; 1i Ci ; ; Bi+3 Bi+3 Bi+3h1; 1; 0i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1 Ci+1h1; 0; 1i Ai+1 Bi+1 Bi+1 Di+1 Di+1 Ei+1h0; 1; 1i Fi ; Bi+2 Bi+3 Ci+2 Ci+2h1; 1; 1i Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Ei+1i = w � 2�(x; xi+1xi+2) Ai Bi Ci Di Ei Fih0; 0i Ci ; ; ; ; ;h1; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1 Ci+1h0; 1i Fi ; Bi+2 ; Bi+2 Bi+2h1; 1i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1 Ci+1i = w � 1�(x; xi+1) Ai Bi Cih0i Ci ; ;h1i Ai+1 Bi+1 Bi+1i = w�(x; ") Ai Bihi Bi ;Table 7.3: Transitions of LEVT1 (W).

46 CHAPTER 7. ADDING TRANSPOSITIONS

Chapter 8Adding Merges and Splits
The last
ase that we
onsider is the situation where insertions, deletions, substitu-tions, merges and splits are treated as primitive edit operations. The methodologyfor de�ning states and transitions remains the same.8.1 A family of deterministi
 Levenshtein-automatafor primitive edit operations in
luding mergesand splitsWe assume that primitive edit operatios are applied in parallel. This means that ifV is obtained fromW = x1 � � �xw by splitting letter xi into x0ix00i , then V must havean o

urren
e of the split sequen
e x0ix00i . We write dMSL (V;W) for the Levenshtein-distan
e where merges and splits are treated as primitive edit operations, withLMSLev(n;W) we denote the set of all word V 2 �� where dMSL (V;W) � n.Sin
e primitive edit operations are applied in parallel, the
on
ept of a tra
erepresentation
an be extended. Splits (resp. merges) are indi
ated
onne
ting thesour
e letter (letter pair) with its target pair of image letters (target letter).Remark 8.1.1 LetW = x1x2 � � �xw and V = y1y2 � � � yv be two words with Leven-shtein-distan
e n � 1. Assume that neither V is a pre�x of W nor vi
e versa. LetU = x1x2 � � �xi (where 0 � i � v; w) denote the maximal
ommon pre�x of V andW . Then, in any tra
e representation of a minimal sequen
e � of edit operationsleading from W to V exa
tly one of the following �ve
ases holds:1.-3. Insertion, substitution, deletion
ases. As in Remark 2.0.3.4. Merge
ase. The pair xi+1xi+2 is
onne
ted with yi+1.5. Split
ase. Letter xi+1 is
onne
ted with yi+1yi+2.LetW = x1 � � �xw denote the input word and let n denote the degree. As before,the elements of f0; 1; : : : ; wg are
alled boundaries of W .47

48 CHAPTER 8. ADDING MERGES AND SPLITSDe�nition 8.1.2 A standard position is an expression of the form i℄e where i isa boundary and 0 � e � n. An s-position is an expression of the form i℄es where0 � i � w � 1 and 1 � e � n. A position is either a standard position or ans-position. A position � is an a

epting position i� � = i℄e is a standard positionand if w � i � n� e.The intuitive interpretation of expressions i℄e is as before. Expressions i℄es arerea
hed from positions i℄e�1 under input x0i+1 in situations where we have a splitxi+1 7! x0i+1x00i+1.De�nition 8.1.3 Subsumption between positions is explained as follows:1. A position i℄e subsumes a position j℄f i� e < f and jj � ij � f � e.2. A position i℄e subsumes a position j℄fs i� f > e and jj � ij � f � e.3. A position i℄es subsumes a position j℄fs i� f > e and jj � ij � f � e.As in the previous
ases, with ea
h position � we asso
iate a language �(�):�(i℄e) := LMSLev(n� e; xi+1 � � �xw);�(i℄es) := � Æ LMSLev(n� e; xi+2 � � �xw):The reader might ask why s-positions do not subsume standard positions. WithDe�nition 8.1.3 we only want to
apture subsumption relations that hold in a uni-form way. Standard positions �
an be a

epting positions. In this
ase, the emptyword " belongs �(�). However, our assumption that edit operations are applied inparallel implies that the language asso
iated with an s-position does not
ontain ".Hen
e, there are
ases where we do not have a
ontainment on the language side.Lemma 8.1.4 Let � and �0 denote two distin
t positions. If � subsumes �0, then�(�0) � �(�).Proof. Assume that standard position i℄e subsumes the s-position j℄fs . Thenf > e and (f � e) + i � j � (f � e) + i. An an example, we
onsider the
asewhere i < j. From j � w � 1 it follows that i � w � 2. Let V 2 �(j℄fs). ThenV has the form zV 0 where V 0 2 LLev(n � f; xj+2 � � �xw). The distan
e betweenxi+1 � � �xw and zxi+3 � � �xw is 1 sin
e merges are primitive edit operations. Thedistan
e between zxi+3 � � �xw and zxj+2 � � �xw is j � i � 1. The distan
e betweenzxj+2 � � �xw and zV 0 is � n � f . Hen
e the distan
e between xi+1 � � �xw and zV 0is � n� f + j � i. Sin
e j � f � e+ i the latter distan
e does not ex
eed n� e andwe have V 2 �(i℄e). The remaining
ases are similar.De�nition 8.1.5 Let 0 � i � w. A state with base position i℄0 is a set M ofpositions, not ne
essarily
ontaining i℄0, that sa�s�es the following properties:1. for ea
h position j℄e or j℄es in M we have ji� jj � e. I.e., ea
h position of M ,with the possible ex
eption of i℄0, is subsumed by i℄0.2. M does not
ontain any position that is subsumed by another element of M .

8.1. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDINGMERGES AND SPLITS49De�nition 8.1.6 Let W = x1 � � �xw as above. Let � := i℄e be a position, and letk := minfn�e+1; w� ig. The relevant subword of W for position �, denoted W[�℄,is the subword xi+1 � � �xi+k of W .De�nition 8.1.7 LetW and n as above. An elementary transition assigns to ea
hposition � and ea
h symbol x 2 � a state Æ(�; x). The
omplete set of elementarytransitions is spe
i�ed in Table 8.1.(I) e = 0 < ni � w � 2 Æ(i℄e; x) := 8>><>>: f(i+ 1)℄egfor �(x;W[�℄) = h1; b2; : : : ; bki;fi℄e+1; i℄e+1s ; (i+ 1)℄e+1; (i+ 2)℄e+1gfor �(x;W[�℄) = h0; b2; : : : ; bki:i = w � 1 Æ(i℄e; x) := 8>><>>: f(i+ 1)℄egfor �(x;W[�℄) = h1i;fi℄e+1; i℄e+1s ; (i+ 1)℄e+1gfor �(x;W[�℄) = h0i:i = w Æ(w℄e; x) := fw℄e+1g(II) 0 < e � n� 1i � w � 2 Æ(i℄e; x) := 8>><>>: f(i+ 1)℄egfor �(x;W[�℄) = h1; b2; : : : ; bki;fi℄e+1; i℄e+1s ; (i+ 1)℄e+1; (i+ 2)℄e+1gfor �(x;W[�℄) = h0; b2; : : : ; bki:Æ(i℄es ; x) := (i+ 1)℄e.i = w � 1 Æ(i℄e; x) := 8>><>>: f(i+ 1)℄egfor �(x;W[�℄) = h1i;fi℄e+1; i℄e+1s ; (i+ 1)℄e+1gfor �(x;W[�℄) = h0i:Æ(i℄es ; x) := (i+ 1)℄e.i = w Æ(w℄e; x) := fw℄e+1g(III) e = ni � w � 1 Æ(i℄n; x) := � f(i+ 1)℄ng for �(x;W[�℄) = h1i;; for �(x;W[�℄) = h0i:Æ(i℄es ; x) := (i+ 1)℄e.i = w Æ(w℄n; x) := ;.Table 8.1: Table of elementary transitions for � = i℄e.Lemma 8.1.8 Let M be a state with base position i℄0 where i < w. Then theimage of any element of M under an elementary transition is always a state withbase position (i+1)℄0. If M is a state with base position w℄0, then the image of anyelement of M under an elementary transition is always a state with base positionw℄0.Lemma 8.1.9 (Raising Lemma for elementary transitions) Let n > 0 and1 � e � n. Then for any position of degree n of the form [�℄e and any x 2 � wehave Æ(n)([�℄e; x) = [Æ(n�e)(�; x)℄℄e:In the sequel, with M tN we denote the redu
ed union of the statesM and N with

50 CHAPTER 8. ADDING MERGES AND SPLITS
ommon base position where we refer to the new notion of subsumption introdu
edin De�nition 8.1.3.De�nition 8.1.10 Let W = x1 � � �xw where w � 0, let n � 0. Then LEVMSn (W)is the deterministi
 �nite state automaton h�; Q; q0; F;�i where1. the set of states Q
ontains all states in the sense of De�nition 8.1.5,2. the initial state is q0 := f0℄0g,3. the set F of �nal states
ontains all states M 2 Q that
ontain an a

eptingposition,4. the transition fun
tion � is de�ned in the following way: for any symbol y 2 �and any state M 2 Q, �(M; y) := F�2M Æ(�; y).It follows from Lemma 8.1.8 that � assigns to ea
h state M 2 Q and ea
h y 2 �again a state M 2 Q. This shows that LEVMSn (W) is a deterministi
 �nite stateautomaton.The raising lemma holds also in the new situation. We write �(n) for thetransition fun
tion of LEVM�Sn (W).Lemma 8.1.11 (Raising Lemma for transitions) Let n > 0 and 1 � e � n.Then for state of degree n of the form [M ℄℄e and any x 2 � we have�(n)([M ℄℄e; x) = [�(n�e)(M;x)℄℄e:Proof. As for Lemma 4.0.29.In the sequel, let LEVMSn (W) = h�; Q; q0; F;�i as in De�nition 8.1.10.Proposition 8.1.12 The following properties hold:1. L(;) = ;,2. for all states M;N with a
ommon base position and all y 2 �:�(M tN; y) = �(M; y) t�(N; y);3. for all states M;N with a
ommon base position and all V 2 ��:��(M tN; V) = ��(M;V) t��(N; V);4. for all states M � Q n ff0℄0g; : : : ; fw℄0gg: L(M) = S�2M L(f�g).Proof. As for Proposition 4.0.30.Proposition 8.1.13 The following holds:L(fi℄es g) = � Æ LMSLev(n� e; xi+2 � � �xw) (0 � i � w � 1; 1 � e � n)L(fi℄eg) = LMSLev(n� e; xi+1 � � �xw) (0 � i � w; 0 � e � n)

8.1. A FAMILY OFDETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDINGMERGES AND SPLITS51Proof. We pro
eed by indu
tion on n. The
ase n = 0
an be treated as before (
f.proof of Prop. 4.0.31).Now let n � 1 and assume that the Proposition is
orre
t for all 0 � n0 < n. The
ase e = n is simple sin
e all relevant transitions are of the form fi℄ng 7! f(i+1)℄ngunder xi+1 (i < w) or fi℄ns g 7! f(i+ 1)℄ng under xi+1 (i < w � 1). Hen
e assumethat e < n. Sin
e for 1 � e < n transitions from states fi℄eg are de�ned by raisingof transitions of degree n0 = n� e the indu
tion hypothesis shows thatL(fi℄es g) = � Æ LMSLev(n� e; xi+2 � � �xw) (0 � i � w � 1; 2 � e � n) (8.1)L(fi℄eg) = LMSLev(n� e; xi+1 � � �xw) (0 � i � w; 1 � e � n) (8.2)It remains to prove thatL(fi℄1s g) = � Æ LMSLev(n� 1; xi+2 � � �xw) (0 � i � w � 1) (8.3)L(fi℄0g) = LMSLev(n; xi+1 � � �xw) (0 � i � w) (8.4)In the sequel, let Wi denote the suÆx xi+1 � � �xw of W (0 � i � w). From (8.2)we obtain the following : for all positions i℄e and j℄f su
h that e 6= 0 6= f : if i℄e issubsumed by j℄f , then L(fi℄eg) is a proper subset of L(fj℄fg) (yy).I. We �rst show that � Æ LMSLev(n � 1; xi+2 � � �xw) � L(fi℄1s g). The elementarytransitions show that from fi℄1s g we rea
h f(i+1)℄1g under any x 2 �. (8.2) showsthat � Æ LMSLev(n� 1; xi+2 � � �xw) � L(fi℄1s g).II. We show that L(fi℄1s g) � �ÆLMSLev(n�1;Wi+2). With any input x 2 �, fromL(fi℄1s g) we rea
h f(i + 1)℄1g. By (8.2), L(f(i + 1)℄eg) = LMSLev(n � 1; xi+2 � � �xw).It follows that L(fi℄1s g) � � Æ LMSLev(n� 1;Wi+2).III. We show that LMSLev(n;Wi) � L(fi℄0g). Let V 2 LMSLev(n;Wi).Case 1.1: V is obtained from Wi by deleting a suÆx of length k (0 � k � n) ofWi. Starting from state fi℄0g and
onsuming V we rea
h state f(w � k)℄0g. Sin
e(w � k)℄0 is an a

epting position, state f(w � k)℄0g is �nal, hen
e V 2 L(fi℄0g).Case 1.2: Wi is obtained from V by deleting a suÆx of length k (1 � k � n)of V . Starting from state fi℄0g and �rst
onsuming Wi we rea
h fw℄0g. The kadditional transitions lead to fw℄kg. Sin
e w℄k is an a

epting position, the latterstate is �nal, hen
e V 2 L(fi℄0g).Case 2: In the remaining
ases there exists an index j < w su
h that V =xi+1 � � �xjyV 0 where y 6= xj+1.
Wi

V

xj+1 …xjxi+1

xi+1 xj

xw

y V’

We have yV 0 2 LMSLev(n; xj+1 � � �xw). We �x a sequen
e � of edit operations leadingfrom xj+1 � � �xw to yV 0 of minimal length and
onsider the �ve
ases des
ribed inRemark 8.1.1.2.1. If the o

urren
e of y is an insertion before xj+1 (where i � j � w),then V 0 2 LLev(n � 1; xj+1 � � �xw). Sin
e y 6= xj+1, starting from state fi℄0g and

52 CHAPTER 8. ADDING MERGES AND SPLITS
onsuming the letters xi+1; : : : xj ; y we rea
h states f(i+ 1)℄0g; : : : ; fj℄0g;M whereM
ontains j℄1 (
f. elementary transitions). It follows from (8.2) and Part 4 ofProposition 8.1.12 that V 0 2 L(M). Hen
e V 2 L(fi℄0g).2.2. If the o

urren
e of y substitutes xj+1 (where i � j < w), then V 0 belongsto LLev(n � 1; xj+2 � � �xw). Starting from state fi℄0g and
onsuming the lettersxi+1; : : : xj ; y we rea
h states f(i+ 1)℄0g; : : : ; fj℄0g;M where M
ontains (j + 1)℄1.It follows from (8.2) and Part 4 of Proposition 8.1.12 that V 0 2 L(M). Hen
eV 2 L(fi℄0g).2.3. If the o

urren
e of y is
aused by a merge of xj+1 and xj+2 (where j �w�2), then V 0 2 LMSLev(n�1; xj+3 � � �xw). Sin
e y 6= xj+1, starting from state fi℄0gand
onsuming the letters xi+1; : : : xj ; y we rea
h states f(i + 1)℄0g; : : : ; fj℄0g;Mwhere M
ontains (j + 2)℄1 (
f. elementary transitions). The indu
tion hypothesis(8.2) and Part 4 of Proposition 8.1.12 show that V 0 2 L(M). It follows thatV 2 L(fi℄0g).2.4. If the o

urren
e of y is
aused by a split xi+1 7! yy0, then V 0 has the formy0V 00 where V 00 2 LMSLev(n�1; xj+2 � � �xw). Starting from state fi℄0g and
onsumingthe letters xi+1; : : : xj ; y we arrive at state M
ontaining j℄1s . It follows from PartsI and II that L(fj℄1s g) = � Æ LMSLev(n� 1; xj+2 � � �xw). Hen
e V 2 L(fi℄0g).2.5. In the remaining
ase there exists some 1 � k � n su
h that we have astroke from xj+k+1 to y in the tra
e representation of �.
Wi

V

xj+1 …xjxi+1

xi+1 xj

y V’

xj+k+1 … xwWe have j � w � 2 and the k letters xj+1; xj+2; : : : ; xj+k are erased. The distan
ebetween xj+k+1 � � �xw and yV 0 is bounded by n� k. It follows from the de�nitionof elementary transitions (
f. Table 8.1) that we rea
h state M := fj℄1; j℄1s ; (j +1)℄1; (j + 2)℄1g from fj℄0g by
onsuming xj+k+1.2.5.1. Assume �rst that xj+k+1 = y. Then the distan
e between xj+k+2 � � �xwand V 0 is bounded by n� k. By (8.2), V 0 2 L(f(j + k + 1)℄kg). Sin
e (j + k +1)℄kis subsumed by (j + 2)℄1 also V 0 2 L(f(j + 2)℄1g), by (yy), hen
e V 0 2 L(M) byPart 4 of Proposition 8.1.12. It follows that V 2 L(fi℄0g).2.5.2. Assume that xj+k+1 6= y. Then the distan
e between xj+k+2 � � �xw andV 0 is bounded by n � k � 1. Starting from state fi℄0g and
onsuming the lettersxi+1; : : : xj ; y we eventually rea
h a state M
ontaining (j + 1)℄1. This positionsubsumes (j+k+1)℄k+1. It follows from (8.2), (yy) and Part 4 of Proposition 8.1.12that V 0 2 L(M). Hen
e V 2 L(fi℄0g).IV. It remains to prove that L(fi℄0g) � LMSLev(n;Wi) for 0 � i � w. Let V 2L(fi℄0g). If V is a

epted - starting from fi℄0g - on a path of singleton sets with basi
positions f(i+1)℄0g; f(i+2)℄0g; : : : ; fk℄0g, then k℄0 is a

epting, whi
h implies thatV has the form xi+1 � � �xk where w � k � n. This shows that V 2 LLev(n;Wi). Inthe other
ase, starting from state fi℄0g and
onsuming the pre�x V 0y of V = V 0yV 00we rea
h states f(i+ 1)℄0g; : : : fj℄0g;M where M 6= f(j + 1)℄0g.Case (a): j < w � 2 and M has the form fj℄1; j℄1s ; (j + 1)℄1; (j + 2)℄1g. Theindu
tion hypothesis (8.1) and (8.2) and Part IV of Lemma 8.1.12 show that V 00

8.2. COMPUTATIONOF DETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDINGMERGES AND SPLITS53belongs to LMSLev(n� 1;Wj)[� Æ LMSLev(n� 1;Wj+1)[LMSLev(n� 1;Wj+1)[LMSLev(n� 1;Wj+2):Treating y as in insertion (resp. the �rst letter of a split, a substitution, a mergedsymbol) it easily follows that V 2 LMSLev(n;Wi).Case (b): j < w � 1 and M has the form fj℄1; j℄1s ; (j + 1)℄1g. Similar to
ase(a).Case (
): j = w. In this
ase M = fw℄1g and V 0 = Wi. It follows from (8.2)that V 00 has distan
e � n � 1 to the empty word ". Hen
e V has distan
e � n toWi.From Proposition 7.1.13 we obtain the parallel result to Theorem 4.0.32.Theorem 8.1.14 LEVMSn (W) is a deterministi
 and a
y
li
 Levenshtein-automatonof degree n for W for primitive edit operations in
luding merges and splits. For �xeddegree n, the size of LEVMSn (W) is linear in jW j.8.2 Computation of deterministi
 Levenshtein-automatafor primitive edit operations in
luding mergesand splitsAs in the previous
ases, the general des
ription of the Levensthein-automatonLEVMSn (W)
an be used to derive, for any �xed number n, an algorithm thata
tually
omputes the automaton LEVMSn (W) in linear time, given any input wordW . The prin
iple will be illustrated for degree n = 1.For input W = x1 � � �xw and n = 1 the list of positions is0℄0; : : : ; w℄0; 0℄1; : : : ; w℄10℄1t ; : : : ; (w � 2)℄1t :It suÆ
es to
onsider the following states:; failure state,Ai := fi℄0g (0 � i � w);Bi := fi℄1g (0 � i � w);Ci := fi℄1; (i+ 1)℄1g (0 � i � w � 1);Di := fi℄1; (i+ 2)℄1g (0 � i � w � 2);Ei := fi℄1; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2);Fi := fi℄1; i℄1s ; (i+ 1)℄1; (i+ 2)℄1g (0 � i � w � 2);Gi := fi℄1; i℄1s ; (i+ 1)℄1g (0 � i � w � 1);The initial state is A0. A

epting positions are w℄1, w℄0, as well as (w � 1)℄0 forw � 1. It follows immediately that the �nal states areAw; Aw�1; Bw; Cw�1; Dw�2; Ew�2; Fw�2; Gw�1 for w � 2,

54 CHAPTER 8. ADDING MERGES AND SPLITSAw; Aw�1; Bw; Cw�1; Gw�1 for w = 1,Aw; Bw for w = 0.For the
ase n = 1, we obtain the set of elementary transitions given in Table 8.2.Using Table 8.2 it is simple to
ompute a parametri
 des
ription of the full transition(I) e = 0i � w � 2 Æ(i℄0; x) :=8>><>>: f(i+ 1)℄0gfor �(x;W[�℄) = h1; b2i;fi℄1; i℄1s ; (i+ 1)℄1; (i+ 2)℄1gfor �(x;W[�℄) = h0; b2i:i = w � 1 Æ(i℄0; x) :=8>><>>: f(i+ 1)℄0gfor �(x;W[�℄) = h1i;fi℄1; i℄1s ; (i+ 1)℄1gfor �(x;W[�℄) = h0i:i = w Æ(w℄0; x) := fw℄1g(III) e = 1i � w � 1 Æ(i℄1; x) := � f(i+ 1)℄1g for �(x;W[�℄) = h1i;; for �(x;W[�℄) = h0i:Æ(i℄1s ; x) := (i+ 1)℄1.i = w Æ(w℄1; x) := ;.Table 8.2: Table of elementary transitions for n = 1, primitive edit operationsin
luding merges and splits.fun
tion � as before. The des
ription is given in Table 8.3.Obviously, given the above generi
 des
ription of LEVMS1 it is possible to gen-erate for any
on
rete input W the automaton LEVMS1 (W) in time O(jW j).Theorem 8.2.1 There exists an algorithm that
omputes for any input word Wthe automaton LEVMS1 (W) in time and spa
e O(jW j).Corollary 8.2.2 For any inputW , the minimal deterministi
 Levenshtein-automatonof degree 1 for W where primitive edit operations in
lude merges and splits
an be
omputed in time and spa
e O(jW j).Example 8.2.3 Figure 8.1 des
ribes the automaton LEVMS1 (W) for the inputword \atlas". For ea
h wordW of length 5 with 3-pro�le sequen
e (1; 2; 3); (1; 2; 3); (1; 2; 3)the automaton LEVMS1 (W) has the same stru
ture, modulo transition labels. Sim-ilarly Figure 8.2 des
ribes the stru
ture of LEVMS1 (W) for the word \otter". Herefor ea
h word W of length 5 with 3-pro�le sequen
e (1; 2; 2); (1; 1; 2); (1; 2; 3) theautomaton LEVMS1 (W) has the same stru
ture, modulo transition labels.Theorem 8.2.4 For any �xed degree n, there exists an algorithm that
omputesfor any input word W the automaton LEVMSn (W) in time and spa
e O(jW j).Corollary 8.2.5 For any inputW , the minimal deterministi
 Levenshtein-automatonof degree n for W where primitive edit operations in
lude merges and splits
an be
omputed in time and spa
e O(jW j).

8.2. COMPUTATIONOF DETERMINISTIC LEVENSHTEIN-AUTOMATA FOR PRIMITIVE EDIT OPERATIONS INCLUDINGMERGES AND SPLITS55

a t l a s

t l a s

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

F0 F1 F2 F3 G4

C1

D1t

l

t l

C2

D2l

C3

D3

a

a

s

C4

s

a s

Figure 8.1: Deterministi
 Levenshtein-automaton LEVMS1 (W) for input W = \at-las".

o t t e r

t t e r

A0 A1 A2 A3 A4 A5

B1 B2 B3 B4 B5

F0 F1 F2 F3 G4

E1

t

t

C2

D2t

C3

D3

e

e

r

C4

r

e r

t

Figure 8.2: Deterministi
 Levenshtein-automaton LEVMS1 (W) for input W = \ot-ter".

56 CHAPTER 8. ADDING MERGES AND SPLITS0 � i � w � 3�(x; xi+1xi+2xi+3) Ai Bi Ci Di Ei Fi Gih0; 0; 0i Fi ; ; ; ; Bi+1 Bi+1h1; 0; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1 Bi+1 Bi+1h0; 1; 0i Fi ; Bi+2 ; Bi+2 Ci+1 Ci+1h0; 0; 1i Fi ; ; Bi+3 Bi+3 Di+1 Bi+1h1; 1; 0i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1 Ci+1 Ci+1h1; 0; 1i Ai+1 Bi+1 Bi+1 Di+1 Di+1 Di+1 Bi+1h0; 1; 1i Fi ; Bi+2 Bi+3 Ci+2 Ei+1 Ci+1h1; 1; 1i Ai+1 Bi+1 Ci+1 Di+1 Ei+1 Ei+1 Ci+1i = w � 2�(x; xi+1xi+2) Ai Bi Ci Di Ei Fi Gih0; 0i Fi ; ; ; ; Bi+1 Bi+1h1; 0i Ai+1 Bi+1 Bi+1 Bi+1 Bi+1 Bi+1 Bi+1h0; 1i Fi ; Bi+2 ; Bi+2 Ci+1 Ci+1h1; 1i Ai+1 Bi+1 Ci+1 Bi+1 Ci+1 Ci+1 Ci+1i = w � 1�(x; xi+1) Ai Bi Ci Gih0i Gi ; ; Bi+1h1i Ai+1 Bi+1 Bi+1 Bi+1i = w�(x; ") Ai Bihi Bi ;Table 8.3: Transitions of LEVMS1 (W).8.3 Experimental resultsExperimental results were made using a Bulgarian lexi
on BL with 870; 000 wordentries and a di
tionary of german
omposite nouns GL with 6; 058; 198 entries.The following algorithms were implemented in C and tested on a 500 MHz (BL)resp. 600 MHz (GL) Pentium III ma
hine under Linux:� The algorithm for
omputing, given input W , the automaton LEVn(W) (n =1; 2; 3),� the
orre
tion algorithm based on Levenshtein-automata des
ribed in Se
-tion 3 (n = 1; 2; 3),� the
orre
tion algorithm based on imitation of Levensthein-automata des
ribedin Se
tion 6 (n = 1; 2; 3),� the variants of the above algorithms for the modi�ed Levenshtein distan
eswhere transpositions (resp. merges and splits) are treated as additional editoperations (see [?℄ for a detailled des
ription of Levenshtein-automata forthese modi�ed distan
es).

8.3. EXPERIMENTAL RESULTS 57Evaluation of
orre
tion with BLFor the Bulgarian lexi
on BL we used the pre�xes of length 3; 4; : : : ; 19 of all di
-tionary words as garbled input \words" and
omputed the
orre
tion
andidates.The number of test words of ea
h length
an be seen from the following table.Length 3 4 5 6 7 8℄ pre�xes 3,152 12,121 30,243 59,835 101.763 150,046Length 9 10 11 12 13 14℄ pre�xes 190,318 203,520 184,138 139,982 91,252 52,603Length 15 16 17 18 19 20℄ pre�xes 27,997 14,763 8.179 4.601 2.790 1.585The tables given below des
ribe the results for1.
orre
tion with BL and standard Levenshtein-distan
e with bound n = 1; 2; 3(Tables 8.4, 8.5 and 8.6),2.
orre
tion with BL and Levenshtein-distan
e where transpositions are treatedas primitive edit operations, with bounds n = 1; 2; 3 (Table 8.7),3.
orre
tion with BL and Levenshtein-distan
e where merges and splits aretreated as primitive edit operations, with bound n = 1; 2; 3 (Table 8.8).In Tables 8.4, 8.5 and 8.6,
olumn 1 gives the length of the input words. Col-umn 2 (LA) des
ribes the average time that is needed to
ompute the Levenshtein-automaton for an input word. Column 3 des
ribes the average time that is neededfor parallel traversal (PT) of di
tionary automaton and Levenshtein-automaton.Column 4 (TCT1) gives the average total
orre
tion time for the
orre
tion methodbased on
omputation of Levenshtein-automata. Column 6 (TCT2) gives the av-erage total
orre
tion time for the
orre
tion method based on imitation of Leven-shtein-automata. Column 7 (NC) yields the average number of
orre
tion
andi-dates per word. Times are in millise
onds. It is important to note that the timethat is needed to output the
orre
tion
andidates is always in
luded.As a r�esum�e, the se
ond
orre
tion method based on simulation of Levenshtein-automata is more eÆ
ient. The smaller number of
orre
tion
andidates for largepre�xes leads to the e�e
t that for pre�xes of length > 13
orre
tion times de
reasefor longer input words when using the se
ond
orre
tion method. The use of trans-positions as primitive edit operations does not in
uen
e
orre
tion times and thenumber of
orre
tion
andidates in a signi�
ant way. In
ontrast, mu
h more sear
his needed when treating merges and splits as additional primitive edit operations.Both
orre
tion times and number of
orre
tion
andidates grow.Evaluation of
orre
tion with GLTable 8.9 des
ribes the results for
orre
tion with the german di
tionary of
ompos-ite nouns GL with 6; 058; 198 entries. For ea
h length l = 5; : : : ; 19, we randomlysele
ted 1; 000 pre�xes of length l of entries and
omputed for ea
h pre�x all entriesof GL where the standard Levenshtein-distan
e does not ex
eed bound n = 1; 2; 3.We give the
orre
tion time (in
luding output of
orre
tion
andidates) and theaverage number of
orre
tions.

58 CHAPTER 8. ADDING MERGES AND SPLITSLength LA PT TCT1 TCT2 NC3 0:228 0:152 0:381 0:324 10.314 0:251 0:183 0:434 0:351 8.665 0:272 0:201 0:473 0:351 6.976 0:294 0:213 0:507 0:355 6.667 0:318 0:222 0:540 0:362 6.448 0:340 0:233 0:573 0:375 6.349 0:362 0:244 0:607 0:389 5.8410 0:385 0:255 0:639 0:403 5.2511 0:410 0:261 0:671 0:413 4.6512 0:430 0:270 0:700 0:421 4.0113 0:452 0:273 0:726 0:424 3.6114 0:474 0:273 0:748 0:422 3.2415 0:497 0:270 0:767 0:414 2.9816 0:520 0:266 0:786 0:404 2.7317 0:544 0:260 0:804 0:400 2.6218 0:565 0:263 0:828 0:398 2.5119 0:588 0:262 0:849 0:394 2.35Table 8.4: Results for BL, standard Levenshtein-distan
e, bound n = 1.
Length LA PT TCT1 TCT2 NC3 1:40 2:18 3:57 3:19 2274 1:62 2:56 4:18 3:68 1755 1:78 2:76 4:55 3:74 1116 1:94 2:85 4:80 3:75 76.27 2:10 2:91 5:02 3:65 57.38 2:26 3:00 5:26 3:64 48.29 2:42 3:08 5:50 3:66 39.110 2:58 3:16 5:74 3:72 32.211 2:74 3:22 5:95 3:77 26.212 2:89 3:25 6:15 3:80 20.713 3:06 3:27 6:33 3:81 16.314 3:21 3:25 6:46 3:77 12.815 3:37 3:19 6:56 3:70 10.716 3:53 3:12 6:65 3:63 9.1917 3:68 3:08 6:77 3:58 8.2918 3:84 3:05 6:89 3:54 7.8419 4:00 3:03 7:03 3:52 7.35Table 8.5: Results for BL, standard Levenshtein-distan
e, bound n = 2.

8.3. EXPERIMENTAL RESULTS 59Length LA PT TCT1 TCT2 NC3 13:3 11:6 25:0 16:1 24114 14:8 13:8 28:6 18:9 21085 16:3 15:0 31:4 20:4 13976 18:0 15:7 33:7 21:2 8527 19:2 16:0 35:2 20:9 5388 20:3 16:4 36:7 20:9 3819 21:5 16:7 38:2 20:6 26910 22:8 16:9 39:7 20:4 19211 23:9 17:1 41:1 20:3 13812 27:6 22:8 50:4 25:6 96.013 30:9 21:7 52:6 25:2 63.714 32:2 21:9 54:2 25:1 41.815 33:6 20:9 54:5 24:0 28.616 34:8 21:2 56:0 24:0 21.817 36:8 20:1 56:9 23:8 18.318 38:1 19:8 57:8 23:0 16.019 39:0 19:9 58:9 22:9 14.6Table 8.6: Results for BL, standard Levenshtein-distan
e, bound n = 3.
Length n = 1 time NC n=2 time NC n = 3 time NC3 0:330 10.4 4:03 231 17:0 21434 0:362 8.75 4:58 178 21:0 21395 0:357 7,04 4:67 114 23:5 14286 0:360 6.69 4:69 77.3 21:5 8697 0:367 6.46 4:57 57.8 21:2 5478 0:379 6.36 4:58 48.6 21:5 3869 0:394 5.85 4:62 39.4 21:1 27210 0:407 5.25 4:69 32.3 22:6 19411 0:416 4.66 4:85 26.4 20:9 14012 0:428 4.10 4:78 20.8 20:7 96.813 0:430 3.62 4:78 16.3 20:5 64.114 0:428 3.24 4:73 12.8 21:9 42.015 0:424 2.98 4:74 10.8 21:3 26.716 0:416 2.73 4:59 9.21 20:9 21.817 0:410 2.62 4:54 8.30 21:0 18.318 0:404 2.51 4:50 7.85 24:5 15.919 0:405 2.35 4:43 7.36 26:7 14.6Table 8.7: Results for BL, Levenshtein-distan
e where transpositions are treated asprimitive edit operations, bounds n = 1; 2; 3, times in millise
onds.

60 CHAPTER 8. ADDING MERGES AND SPLITSLength n = 1 time NC n = 2 time NC n = 3 time NC3 1:86 48.1 30:3 3216 139 > 1044 1:79 31.6 32:3 2125 161 > 1045 1:79 21.3 33:7 1195 167 99986 1:78 16.7 34:0 667 175 80507 1:82 14.8 31:8 404 182 81068 2:32 13.9 31:4 278 186 56069 2:38 12.6 31:5 197 184 365410 2:41 11.1 31:8 144 174 229111 2:43 9.64 34:2 107 168 143312 2:47 8.19 34:3 77.5 169 87213 2:47 6.88 33:8 53.8 175 49314 2:45 5.85 35:4 36.8 171 25715 2:39 5.20 30:6 26.1 170 11616 2:34 4.65 30:1 20.2 165 54.717 2:29 4.26 29:7 17.0 166 35.818 2:25 4.17 29:5 14.8 166 27.919 2:22 3.85 29:3 13.7 163 24.3Table 8.8: Results for BL, Levenshtein-distan
e where merges and splits are treatedas primitive edit operations, bounds n = 1; 2; 3, times in millise
onds.
Length n = 1 time NC n = 2 time NC n = 3 time NC5 1:33 4.41 41:5 51:3 313 4346 1:44 3.40 42:5 34:7 321 3377 1:59 2.95 39:9 21:9 307 2168 1:63 2.71 38:7 13:1 307 1209 1:66 2.48 40:4 9:86 306 80:210 1:73 2.32 39:0 7:46 288 50:311 1:77 2.14 39:5 6:15 290 36:712 1:82 2.01 39:1 4:67 288 23:813 1:85 1.89 39:8 4:34 293 19:514 1:89 1.80 40:2 3:72 296 14:215 1:92 1.71 40:2 3:17 295 10:716 1:95 1.65 40:0 2:82 291 7:7717 1:99 1.60 38:9 2:52 285 6:2218 2:02 1.56 38:3 2:37 281 5:3619 2:04 1.34 37:8 1:89 274 3:77Table 8.9: Results for GL, standard Levenshtein-distan
e, bounds n = 1; 2; 3, timesin millise
onds.

8.3. EXPERIMENTAL RESULTS 61Remark 8.3.1 O
azer gives the following average
orre
tion times for a germandi
tionary with 174; 573 words. For distan
e bound n = 1, 27:09 millise
onds, forn = 2, 169:88 millise
onds, for n = 3, 582:45 millise
onds. O
azer's experimentswere made on a SPARCstation 10/41. Sin
e we used for our test series a fasterma
hine on the one-hand side, but mu
h larger di
tionaries on the other side, anexa
t
omparison of both approa
hes is impossible. We think, however, that ourresults show that our method is
learly superior in terms of eÆ
ien
y.

62 CHAPTER 8. ADDING MERGES AND SPLITS

Chapter 9Con
lusion
We introdu
ed two related methods for
orre
ting garbled words using an ele
troni
di
tionary that is implemented as a deterministi
 �nite state automaton. The
or-re
tion pro
edures are similar to O
azer's approa
h [O
96℄, but
ompletely avoidthe
omputation of Levenshtein-distan
es. Instead, Levenshtein-automata for theinput words are used to
ontrol lexi
al sear
h. We have shown that appropriatedeterministi
 Levenshtein-automata
an be
omputed in time linear in the lengthof the input. Our se
ond method shows that even the a
tual
omputation of adeterministi
 Levenshtein-automaton for the input word
an be avoided sin
e pre-
ompiled tables may be used to simulate transitions in the automaton. The exper-imental results show that our te
hniques lead to a very fast sele
tion of
orre
tion
andidates for garbled words.The
omplexity results for
omputing the (minimal) deterministi
 Levensthein-automaton for a given input word immediately lead to the following side results.Lemma 9.0.2 For any �xed number n, given two words W and V of length wand v respe
tively, it is de
idable in time O(max(w; v)) if the Levenshtein-distan
ebetween W and V is � n.Lemma 9.0.3 For any �xed number n, given a text of words of length h and aword W of length w we
an
ompute in time O(max(h;w)) all words V of the textwhere the Levenshtein-distan
e between V and W does not ex
eed n.The results obtained in this paper should be extended in several dire
tions. Thesituation should be
onsidered where edit operations
ome with spe
i�

osts thatdepend on the symbols of the operation. Eventually, in appli
ation s
enarios dif-ferent methods for ranking
orre
tion
andidates should be tested that take thefrequen
y of o

urren
es of a given
orre
tion
andidate into a

ount.As to related work, two other approa
hes, both using methods from automatatheory for string
orre
tion should be mentioned. Bunke [Bun93℄ has shown thatfor any given word W the
olumns of the table
omputed in the Fisher-Wagneralgorithm
an be
ompiled into a deterministi
 �nite state automaton. For any wordV the automaton may be used to
ompute the Levenshtein-distan
e between V andW in time linear in the length jV j of V . Given a di
tionary of wordsW1; : : : ;Wd, asimilar automaton
an be given that
omputes the Levenshtein-distan
e between V63

64 CHAPTER 9. CONCLUSIONand ea
h of the words Wi in time O(jV j). The problem with the approa
h is thatthe size of the automaton is exponential in the sum of the length of the words inthe di
tionary. Hen
e the approa
h
an only be used for very small di
tionaries.Another interesting approa
h is des
ribed in [CSY99℄. Re
all that we assignto ea
h input word a Levenshtein-automaton and leave the di
tionary automatonunmodi�ed. In [CSY99℄ a
onstru
tion is given for
omputing, given a �nite stateautomaton A, a lifted version An that a

epts all words V that have Levenshtein-distan
e � n to some word a

epted by A.1 In prin
iple, the
onstru
tion
an beused to lift a di
tionary automaton A in order to
ompute a ,,
orre
tion transdu
er\An that yields, given input V , all di
tionary words with Levenshtein-distan
e � nto V . Assuming that An is deterministi
, a run | hen
e
orre
tion of an inputword | does not involve any sear
h, or ba
ktra
king. However, determinization ofa non-deterministi

orre
tion transdu
er is likely be too spa
e-
omsuming for largedi
tionaries. Nevertheless, is seems promising to
onsider variants of the te
hniquesdes
ribed in [CSY99℄ for lexi
al
orre
tion.

1This des
ription is simpli�ed. In [CSY99℄ distin
t metri
s for de�ning neighbourhoods are
onsidered, and a generalization of �nite state automata is used, so-
alled ,,lexi
al analyzers\.

Bibliography[AFW83℄ R.C. Angell, G.E. Freund, and P. Willett. Automati
 spelling
orre
-tion using a trigram similarity measure. Information Pro
essing andManagement, 19:255{261, 1983.[Bla60℄ C.R. Blair. A program for
orre
ting spelling errors. Information andControl, 3:60{67, 1960.[Bun93℄ Horst Bunke. A fast algorithm for �nding the nearest neighbor ofa word in a di
tionary, 1993. Aus http://
iteseer.nj.ne
.
om/
s Re-sear
hIndex.[CSY99℄ Christian S. Calude, Kai Salomaa, and Sheng Yu. Metri
 lexi
al anal-ysis. Te
hni
al report, 1999. from http://
iteseer.nj.ne
.
om.[dBdBT95℄ Fran
ois de Bertrand de Beuvron and Philippe Trigano. Hierar
hi-
ally
oded lexi
on with variants. International Journal of PatternRe
ognition and Arti�
ial Intelligen
e, 9(1):145{165, 1995.[DHH+97℄ A. Dengel, R. Ho
h, F. H�ones, T. J�ager, M. Malburg, and A. Weigel.Te
hniques for improving OCR results. In H. Bunke and P.S.P.Wang, editors, Handbook of Chara
ter Re
ognition and Do
ument Im-age Analysis. World S
ienti�
, 1997.[DMWW00℄ J. Da
iuk, S. Mihov, B. Watson, and R. Watson. In
remental
on-stru
tion of minimal a
y
li
 �nite state automata. ComputationalLinguisti
s, 26(1), 2000.[Hon95℄ Tao Hong. Degraded Text Re
ognition Using Visual and Linguisti
Context. PhD thesis, CEDAR, State Uni
ersity of New York at Buf-falo, 1995.[HU79℄ J.E. Hop
roft and J.D. Ullman. Introdu
tion to Automata Theory,Languages, and Computation. Addison-Wesley, Reading, MA, 1979.[Hul92℄ J.J. Hull. A hidden markov model for language syntax in text re
og-nition. In Pro
. of the 11th IAPR Int. Conf. on Pattern Re
ognition,pages 416{423, The Hague, The Netherlands, 1992. IEEE ComputerSo
iety Press.[KEW91℄ F.G. Keenan, L.J. Evett, and R.J. Withrow. A large vo
abularysto
hasti
 analyser for handwriting re
ognition. In Pro
. of the FirstInternational Conferen
e on Do
ument Analysis and Re
ognition (IC-DAR 91), pages 794{802, 1991.[Koz97℄ Dexter C. Kozen. Automata and Computability. Springer, New York,Berlin, 1997. 65

66 BIBLIOGRAPHY[KST92℄ J.Y. Kim and J. Shawe-Taylor. An approximate string-mat
hing al-gorithm. Theoreti
al Computer S
ien
e, 92:107{117, 1992.[KST94℄ J.Y. Kim and J. Shawe-Taylor. Fast string mat
hing using an n-gramalgorithm. Software{Pra
ti
e and Experien
e, 94(1):79{88, 1994.[Kuk92℄ Karen Kuki
h. Te
hniques for automati
ally
orre
ting words in texts.ACM Computing Surveys, pages 377{439, 1992.[Lev66℄ V.I. Levenshtein. Binary
odes
apable of
orre
ting deletions, inser-tions, and reversals. Sov. Phys. Dokl., 1966.[Mih98℄ Stoyan Mihov. Dire
t building of minimal automaton for given list.Annuaire de l'Universit�e de So�a \St. Kl. Ohridski", 91, livre 1, 1998.[O
96℄ Kemal O
azer. Error-tolerant �nite-state re
ognition with appli
a-tions to morphologi
al analysis and spelling
orre
tion. ComputationalLinguisti
s, 22(1):73{89, 1996.[OL97℄ B.J. Oommen and R.K.S. Loke. Pattern re
ognition of strings withsubstitutions, insertions, deletions, and generalized transpositions.Pattern Re
ognition, 30(5):789{800, 1997.[OM88℄ O. Owolabi and D.R. M
Gregor. Fast approximate string mat
hing.Software - Pra
ti
e and Experien
e, 18(4):387{393, 1988.[RE71℄ E.M. Riseman and R.W. Ehri
h. Contextual word re
ognition usingbinary digrams. IEEE Transa
tions on Computers, C-20, 1971.[Rev92℄ Dominique Revuz. Minimalization of a
y
li
 deterministi
 automatain linear time. Theoreti
al Computer S
ien
e, 92(1), 1992.[SHC83℄ Sargur N. Srihari, Jonathan J. Hull, and Ramesh Choudhari. Integrat-ing diverse knowledge sour
es in text re
ognition. ACM Transa
tionson OÆ
e Information Systems, 1983.[Sin90℄ R.M.K. Sinha. On partitioning a di
tionary for visual text re
ognition.Pattern Re
ognition, 23(5):497{500, 1990.[SKS96℄ Giovanni Seni, V. Kripasundar, and Rohini K. Srihari. Generalizingedit distan
e to in
orporate domain information: Handwritten textre
ognition as a
ase study. Pattern Re
ognition, 29(3), 1996.[Sri85℄ S.N. Srihari. Computer Text Re
ognition and Error Corre
tion. Tuto-rial, IEEE Computer So
iety Press, Silver Spring, MD, 1985.[TIAY90℄ H. Takahashi, N. Itoh, T. Amano, and A. Yamashita. A spelling
orre
tion method and its appli
ation to an OCR system. PatternRe
ognition, 23(3/4):363{377, 1990.[Ukk85℄ E. Ukkonen. Algorithms for approximate string mat
hing. Informationand Control, 64:100{118, 1985.[Ukk92℄ E. Ukkonen. Approximate string-mat
hing with q-grams and maximalmat
hes. Theoreti
al Computer S
ien
e, 92:191{211, 1992.[Ull77℄ J.R. Ullmann. A binary n-gram te
hnique for automati

orre
tionof substitution, deletion, insertion and reversal errors. The ComputerJournal, 20(2):141{147, 1977.

BIBLIOGRAPHY 67[WBR95℄ F. Weigel, S. Baumann, and J. Rohrs
hneider. Lexi
al postpro
essingby heuristi
 sear
h and automati
 determination of the edit
osts. InPro
. of the Third International Conferen
e on Do
ument Analysisand Re
ognition (ICDAR 95), pages 857{860, 1995.[WF74℄ R.A. Wagner and M. Fisher. The string-to-string
orre
tion problem.Journal of the ACM, 1974.[ZD95℄ Justin Zobel and Philip Dart. Finding approximate mat
hes in largelexi
ons. Software{Pra
ti
e and Experien
e, 25(3):331{345, 1995.

