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Abstract

The Levenshtein-distance between two words is the minimal number of insertions,
deletions or substitutions that are needed to transform one word into the other.
Levenshtein-automata of degree n for a word W are defined as finite state automata
that regognize the set of all words V' where the Levenshtein-distance between V' and
W does not exceed n. We show how to compute, for any fixed bound n and any
input word W, a deterministic Levenshtein-automaton of degree n for W in time
linear in the length of W. Given an electronic dictionary that is implemented in the
form of a trie or a finite state automaton, the Levenshtein-automaton for W can be
used to control search in the lexicon in such a way that exactly the lexical words V
are generated where the Levenshtein-distance between V and W does not exceed the
given bound. This leads to a very fast method for correcting corrupted input words
of unrestricted text using large electronic dictionaries. We then introduce a second
method that avoids the explicit computation of Levenshtein-automata and leads to
even improved efficiency. We also describe how to extend both methods to variants
of the Levenshtein-distance where further primitive edit operations (transpositions,
merges and splits) may be used.

Keywords: Spelling correction, Levenshtein-distance, optical character recogni-
tion, electronic dictionaries.
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Chapter 1

Introduction and Motivation

The problem of how to find good correction candidates for a garbled input word is
important for many fundamental applications, including spelling correction, speech
recognition, OCR-recognition, as well as internet and bibliographic search. Due
to its relevance the problem has been considered by many authors (e.g., [Bla60,
RET71, Ul77, AFW83, SHC83, Sri85, TIAY90, Kuk92, ZD95, DHH97]). Most
contributions suggest methods for correcting isolated words of a text.! Since purely
statistical methods cannot offer sufficient correction accuracy, modern approaches
are generally built on top of lexical techniques.

If an electronic dictionary is available that covers the possible input words,
a simple procedure may be used for detecting and correcting errors. Given an
input word W, it is first checked if the word is in the dictionary. In the negative
case, the words of the dictionary that are most similar to W are suggested as
correction candidates. If necessary, appropriate statistical data can be used for
refinement of ranking. Similarity between two words can be measured in several
ways. Most useful are (dis)similarity measures based on variants of the Levenshtein-
distance [Lev66, WF74, WBR95, SKS96, OL97] or on n-gram distances [AFW8&3,
Ukk92, KST92, KST94]. In this paper, we take the Levenshtein-distance as a basis.

The standard algorithm for computing the Levenshtein-distance between two
words by Wagner and Fisher [WF74] uses a dynamic programming scheme that
leads to quadratic time complexity. Even with more sophisticated algorithms (cf.
[Ukk85]) it is not realistic to compute the Levenshtein-distance between the input
word W and each of the words in the dictionary, already for dictionaries of a modest
size. The problem becomes even more serious when using dictionaries for highly
inflectional or agglutinating languages (e.g., Russian, German, Turkish, Finnish,
Hungarian), dictionaries for languages that allow for composition of nouns (ger-
man), or multi-lingual dictionaries. In these cases, dictionaries may contain several
millions of entries. The problem arises of how to compute the lexical Levenshtein-
neighbours of a garbled input word while respecting the efficiency constraints that
arise from realistic industrial applications.

Several solutions have been proposed for fast selection of possible corrections.
Often the dictionary is offline partitioned using a similarity key [Sin90, Kuk92,
dBdBT95, ZD95], or it is enriched with a special index structure [OM88, KST92,

I'Some more recent work tries to use the sentence or document context for correcting errors and
resolving ambiguities, e.g., [Hul92, KEW91, Hon95].
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ZD95]. Correction of a given input word is divided in two steps, In a first step, the
similarity key or the index is used for coarse search, extracting a list of dictionary
words that is guaranteed to contain all interesting corrections of the input string. In
the second step (fine search), for each candidate the distance to the garbled input
word is computed, using a fine-graded measure. Candidates are ranked according
to this distance and the best candidates are suggested as correction words.

Oflazer [Of196] suggested another method that can deal even with infinite dic-
tionaries of agglutinating languages. The set of all dictionary words is treated as
a regular language over the alphabet of letters. As a prerequisite, a deterministic
finite state automaton recognizing this language has to be given.? Faced with an
input word W, Oflazer starts an exhaustive traversal of the dictionary automaton.
At each step, the prefix of all letters that are consumed on the path from the initial
state to the current state is maintained. A variant of the Wagner-Fisher algorithm is
used to control the walk through the automaton in such a way that only prefixes are
generated that potentially lead to a correction candidate V' where the Levenshtein-
distance between V' and W does not exceed a fixed bound n. Each dictionary word
V within the given distance to W is added to the output list. Oflazer shows that for
bounds n = 1,2,3 the control mechanism helps to avoid the inspection of most of
the states of the dictionary automaton. The method leads to an efficient generation
of an appropriate list of correction candidates, even for very large — or infinite —
dictionaries.

The first correction procedure that we suggest in this paper can be considered as
a variant of Oflazer’s approach. We also assume that the dictionary is represented
as a deterministic finite state automaton. However, we completely avoid the com-
putation of the Levenshtein-distance during the traversal of the automaton. Given
the input word W and a bound k, we first compute a deterministic finite state
automaton A that accepts exactly all words V' where the Levenshtein-distance be-
tween V' and W does not exceed k. A is called a Levenshtein-automaton for W.
Levenshtein-automaton and dictionary automaton are then traversed in parallel. In
this way, each move in the dictionary automaton is controlled by the Levenshtein-
automaton and vice versa. We obtain the intersection of the languages of the two
automata as our list of correction candidates. Clearly, this intersection is the set of
all dictionary words V' where the Levenshtein-distance between V' and W does not
exceed n.

Our main algorithmic result shows that for any fixed degree n and input W a
deterministic Levenshtein-automaton Ay, for W can be computed in linear time
and space in |WW|. In order to maximize practical efficiency, the computation of
Aw for fixed distance bound n is based on a pre-compiled table T, that contains
a parametric and generic description of states and transitions of Ay,. At runtime,
given input W, parametric states and transitions of T, are instantiated, yielding
the automaton Ay,. The instantiation of the parametric transition rules of T}, is
triggered by Boolean vectors that characterize the distribution of letters of W in
subwords of length 2n+1. The table-based approach leads to an improved variant of
the correction method where the traversal of the dictionary automaton is controlled
using the table T;, itself. Moves in Ay are simulated and the actual computation
of the Levenshtein-automaton Ay is avoided, thus improving efficiency.

The above results always refer to the “standard” Levenshtein-distance where the
distance between two words W and V is defined as the minimal number of insertions,

2For finite dictionaries, an efficient algorithm for computing the minimal deterministic finite
state automaton for the dictionary has been described in [Mih98, DMWWO00].



deletions and substitutions that are needed to transform W into V. For specific
applications, variants of this metrics are preferable. In a typesetting context often
two symbols are transposed. In the context of OCR-recognition, two symbols are
often merged into one symbol, or conversely one symbol is split into two symbols.
Motivated by these cases we also study Levenshtein-automata for the modified
Levenshtein-distance where insertions, deletions, substitutions and transpositions
are used as primitive edit operations, and for the variant where insertions, deletions,
substitutions, merges and splits are treated as primitive edit operations. In both
cases, techniques and results obtained for the standard Levenshtein-distance can be
lifted.

Our evaluation results show that string correction with (simulated) Levenshtein-
automata is in fact very fast. For example, using a Bulgarian dictionary with
870,000 entries and (standard) distance bound n = 1, the average time to compute
and output all lexical Levenshtein-neighbours of a garbled input word on are around
0.4 milliseconds on a Pentium III. Using a german dictionary including composite
nouns with 6.058.198 entries the average time was between 1.3 milliseconds (short
words) and 2.5 milliseconds. Further results for modified Levenshtein distances,
other distance bounds and other lexicon sizes are given below.

The paper is structured as follows. Chapter 2 gives some general technical
background. In Chapter 3 we formally define Levensthein-automata and we de-
scribe the first string correction method sketched above in more detail. Section 4
gives a generic description of a deterministic Levenshtein-automaton of arbitrary
degree n for arbitrary input word W. In Chapter 5 we show how to use this descrip-
tion to derive tables Ty,T5, T3, ... which contain parametric descriptions of states
and transitions of a deterministic Levenshtein-automata of degree n = 1,2,3...
for arbitrary input word W. Using these tables it is trivial to generate a deter-
ministic Levenshtein-automaton for input W in time linear in the length of W.
Section 6 discusses the second correction method where the actual computation of
the Levenshtein-automaton for the input word W is avoided. Chapter 7 describes
computation of Levenshtein-automata for the modified distance where transposi-
tions are treated as primitive edit operations. Chapter 8 describes computation
of Levenshtein-automata for the metrics where merges and splits are treated as
primitive edit operations. In Chapter 8.3 experimental results for string correction
and approximate string matching using Levenshtein-automata are added. We fin-
ish with a short Conclusion where we mention some side results of our work and
comment on related and future work.
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Chapter 2

Formal Preliminaries

We assume that the reader is familiar with the basic notions of formal language
theory as described, e.g., in [HU79, Koz97]. As usual, finite state automata (FSA)
are treated as tuples of the form A = (X, Q, qo, F, A) where X is the input alphabet,
@ is the set of states, gop € @ is the initial state, F' is the set of final states, and
A C Q x Xf x Q is the transition relation. Here “€” denotes the empty word and
Y :=3¥ U {e}. We write L£(A) for the language accepted by A.

A finite state automaton A is deterministic if the transition relation is a function
0:Q%xX = Q. Let A=(%,Q,qo, F,J) be a deterministic FSA, let 6* : @ xX* — @
denote the generalized transition function, which is defined as usual. For g € @ we
write L(q) := {U € ¥* | §*(¢q,U) € F} for the language of all words that lead from
q to a final state.

The length of a word W is denoted |W|. Regular languages over ¥ are defined
as usual. With £; o L5 we denote the concatenation of the languages £; and Ls.

Two words V and W are called isomorphic iff V' can be obtained from W by a
permutation of the alphabet ¥. The notion of isomorphism carries over to automata
in the obvious sense.

The Levenshtein-distance between two words

The Levenshtein-distance between two words is based on the notion of a primitive
edit operation. In this paper we first consider the standard Levenshtein-distance.
Here the primitive operations are the substitution of a symbol by another symbol,
the deletion of a symbol, and the insertion of a symbol. Obviously, given two
words W and V over the alphabet ¥, it is always possible to rewrite W into V,
using primitive edit operations.

Definition 2.0.1 Let V, W be words over the alphabet 3. The (standard) Levenshtein-
distance between V and W is the minimal number of edit operations (substitutions,
deletions, or insertions) that are needed to transform V into W.

With dr(V,W) we denote the Levenshtein-distance between V' and W. It can be
computed using the following simple dynamic programming scheme (cf. [WF74]):

dp(e, W) = [W|
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dp(Vie) = |V
_ dr,(V,W) ifa="0
dp(aV,bW) - = { 14 min(dy (V, W), di.(aV, W), ds,(V,bW)) if a # b
for VW € ¥* and a,b € ¥. The following simple observation follows immediately.
Lemma 2.0.2 Let W = UW' and V =UV'. Then dr,(V,W) =dp(V',W').

Let W = z125--- 2, and V = yyy2 - - -y, be two words with Levenshtein-distance
n > 0. Consider a sequence v of edit operations of minimal length leading from W
to V. If we substitute a letter x; by another symbol z, the latter symbol will not
be erased or subsituted by one of the following edit operations of v since otherwise
v would not have minimal length. Hence there exists a unique letter y; of V' that
represents the descendant of z in V' and the substitution result of x;. In the so-called
trace representation (cf. [WF74]) of v we introduce a stroke from z; to y;. Similarly
we introduce a stroke from z; to y; if z; is not touched by any edit operation and
if y; represents the descendant of x; in the new word V. Assume that all strokes
of the above form are introduced. Clearly, two strokes never cross. Moreover, each
letter x; of W that does not represent the starting point of a stroke is deleted by
some operation of v, and each letter y; of V that does not represent the end point
of a stroke is an inserted symbol.

Remark 2.0.3 Let W =122z and V = y1ys - - - y» be two words with Leven-
shtein-distance n > 1. Assume that neither V is a prefix of W nor vice versa. Let
U =22 x; (where 0 < i < v,w) denote the maximal common prefix of V' and
W. Then, in any trace representation of a minimal sequence v of edit operations
leading from W to V exactly one of the following three cases holds:

1. Insertion case. A stroke is starting at x;4; that points to some y;1; where
7>1,

2. Substitution case. Letters x;11 and y;41 are connected by a stroke,

3. Deletion case. A stroke is ending at y;yi that starts at some z;4; where
Jj>i+1.

In fact, the only remaining case would be the situation where neither z;; nor ;11
represent the end point of a stroke. This would mean that z;y is deleted and ;11
is inserted in v. Using one substitution instead, we would get a shorter sequence of
edit operations from V' to W, which gives a contradiction. The three possible cases
are indicated in Figure 2.1.



Insertion
\Y | \ | \ | | | | | [y —
W \ \ | | [ X | X | -
Substitution
\% | | | \ | \ | \ | Y
W \ \ \ \ | % | X |
Deletion
W | | | [ [ O

Figure 2.1: Possible trace pictures for situation of Remark 2.0.3.
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Chapter 3

String correction with
Levenshtein-automata

As indicated in the introduction, we face a situation where we use an eletronic
dictionary for detecting and correcting misspelled words. Given any input word W,
it is first checked if W is a word of the lexicon. In the negative case, the lexicon is
used to generate a list of candidate corrections. The words V' of the lexicon that are
most similar to W are considered to be good correction candidates. Dissimilarity
is measured in terms of the Levenshtein-distance between W and V.

In the sequel, ¥ denotes the background alphabet. We assume that the dic-
tionary is implemented in the form of a deterministic FSA or a trie. A trie can
be considered as a finite state automaton as well. The language of the automaton
represents the set of all correct words. We assume that the automaton has the
form Ap = (2,QP,¢P, FP,§P). Ap will be called the dictionary automaton in the

sequel.

Definition 3.0.4 Let W be a word over the alphabet . With Lre,(n, W) we
denote the set of all words V' € ¥* such that dr,(W,V) < n.

We now introduce the central concept of this paper.

Definition 3.0.5 Let W be a word over the alphabet X, let n € IN. A finite state
automaton A is a Levenshtein-automaton of degree n for W iff L(A) = Liev(n, W).

The first correction method suggested in this paper follows a simple idea. In or-
der to generate a list of correction candidates for a garbled input word W, we
select a number n and compute a deterministic Levenshtein-automaton Ay =
(2,QW,qV, FW W) of degree n for W. Using the following simple backtrack-
ing procedure, we traverse the two automata Ay and Ap in parallel.

push (<e,¢8,qV>);

while not empty(stack) do begin
pop (<V,q”,q">);
for z in ¥ do begin

13
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a’ :=6"(¢",2);
A = 6 (Vo)
if (qP <> NIL) and (¢/¥ <> NIL) then begin
Vi := concat(V,z);
push(<V1,¢P,q!">);
if (¢P € FP) and (¢/¥ € FV) then output(V});
end;
end;
end;

Starting with the pair of initial states (g2, ¢y’ ) and the empty word &, each step
of the traversal adds a new letter € X to the actual word V' and leads from a pair
of states {(¢”,q¢") € QP x QW to (6P (¢”,x),0" (¢, x)). We proceed as long as
both components are distinct from the empty failure state! NIL. Whenever in both
automata a final state is reached, the actual word is added to the output.

It is trivial to see that the list of all output words is £(Ap) N L(A), hence it
contains exactly the “grammatical” words in Ly, (n, W). With a good choice of n,
we obtain an appropriate set of correction candidates for the input W.

We shall also introduce a second and related correction method. This method,
which avoids the actual computation of Levenshtein-automata, can only be de-
scribed later, once we have introduced a number of additional concepts.

LA failure state is a state ¢ whose language £(q) is empty.



Chapter 4

A family of deterministic
Levenshtein-automata

In this chapter we introduce a deterministic Levenshtein-automaton LEV , (W) of
degree n for an input word W. The description is generic in the sense that we
neither make any specific assumption on the degree n, nor on the length or the form
of the input word W. The description will be the basis for efficient computation of
Levenshtein-automata for fixed degree n, to be described in the following section.

Profile sequences and characteristic vectors

We first introduce some notions that help to characterize the structural properties
of the input word W that determine the structure of the automaton LEV ,,(W).

Definition 4.0.6 Let U = z;---z, € X% be a sequence of characters. The profil
Pr(U) of U is the sequence of naturals (n ---n,) obtained in the following way.
Define n; := 1. Assume that nq,...,n; are defined for some 1 < k < wu. If
Tp+1 € {®1,...,2}, say, p41 = x; (where 1 < i < k), then ngyy := n;. In the
other case we define ny41 := max{n; | 1 <i <k} + 1.

Example 4.0.7 We have Pr(aachen) = (112345), Pr(odd) = (122), and Pr(even) =
(1213).

Let W and W’ denote two words of the same length. It should be clear that for
any fixed degree n we can use isomorphic deterministic Levenshtein-automata for
input words W and W' whenever Pr(W) = Pr(W'). A stronger relationship can
be established. We shall see that the structure of the deterministic Levenshtein-
automaton for an input word W to be described below depends — in a sense to be
made precise — only on local subprofiles of the input word.

Definition 4.0.8 Let U = 21 - - 2., let &k > 1. The k-profile sequence of W is the
sequence of profiles

PI'(Zl “e e Zk)Pr(Z2 e Zk+1) e Pr(zu_k+1 “e e Zu)

for k < w. For k > u, the k-profile sequence of U is Pr(z; - - - z,).

15
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G s dn gu ds gn gn jadge
o e e e e e g
B B 8 g 3 o g8 8 gi
2 R g g e gr 2 gi
o g g g g gn o gh
o o o5 0 G0 g o g

Figure 4.1: Positions and accepting positions.

The k-profile sequences of two words can be identical even for non-isomorphic words.

Example 4.0.9 The 3-profile sequence of butteris (1,2, 3), (1,2,2), (1,1, 2), (1,2, 3).
The 3-profile sequence of setter is the same sequence.

The following notion plays a key role when defining the images of the states of
Levenshtein-automata under input symbols z € X.

Definition 4.0.10 Let z € Y and let V =y ...y, € ¥*. The characteristic vector
of x with respect to V is the bit-vector x(z,V) := (b1,...,b,) where b; := 1 iff
y; = x and b; := 0 otherwise.

The following remark shows how the information contained in a profile can be
modularized using characteristic vectors. The technique will be used when we define
the transitions of LEV,, (W).

Remark 4.0.11 Given the profile of a word V' we can derive all characteristic vec-
tors of the form x(x, V), just using the characteristic vectors of number 1,2, ... with
respect to Pr(V). For example, if Pr(V) = (1,2,1,2,3,1,2), then the characteristic
vectors x(z,V) have the form (1,0,1,0,0,1,0), (0,1,0,1,0,0,1), (0,0,0,0,1,0,0)
and (0,0,0,0,0,0,0) (assuming that ¥ has at least four letters). Conversely, given
the set of all characteristic vectors of the form y(z,V) we may obviously derive
Pr(V).

Positions and states

We fix an arbitrary input word W = 1 ---x,, and a number n € IN that denotes
the maximal Levenshtein-distance that we want to capture. Numbers ¢ € 0,...,w
will be called the boundaries of W. The states of the L, (n, W) are composed of
symbolic expressions of a special kind.

Definition 4.0.12 A position is an expression of the form i*¢ where 0 < i < w and
0 < e < n. Position i* is raised iff e > 0, otherwise it is called a base position.

Intuitively, an exponent fe is meant to denote a situation where e edit operations
have occurred.
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Figure 4.2: Subsumption triangles.

Definition 4.0.13 A position i is accepting iff w —i <n —e.
Example 4.0.14 For n = 5 and w = 8, the set of all positions is depicted in

Figure 4.1. Accepting positions are marked.

Definition 4.0.15 A position i*® subsumes a position j*/ iff e < f and |j —i| <
f —e. The set of all positions that are subsumed by i is called the subsumption
triangle of .

Example 4.0.16 Let n = 5 and assume that w = 8. Figure 4.2 illustrates the
subsumption triangles of 1%2, 3% and 8*'. Since subsumption is irreflexive, the
positions 1#2, 33 and 8*' do not belong to the respective triangles.

The following lemma indicates the background for the notion of subsumption.

Lemma 4.0.17 Let W = x1 - - -z, and n as above. Let ® denote the function that
assigns to each position i*® the language

B(i*) == Lrev(n — €, zip1 -+ T0).

Let w:=i* and 7' := j* be two distinct positions. If m subsumes 7', then ®(n') is
a subset of ®(r).

Proof. Assume that 7 = i*® subsumes 7/ = j*/. Then e < f and |j —i| < f —e.
Since 41 --- &, can be obtained from ;41 --- 2, by a series of |j — i| insertions
(for j <) or deletions (for j > i) it follows easily that ®(7') is a subset of ®(7).0

The states of Lr,.,(n, W) are sets of positions of a particular type.

Definition 4.0.18 Let 0 < i < w. A state with base position i*® is a set M of
positions, not necessarily containing i*°, that safisfies the following properties:

1. for each position j* in M we have |i — j| < e. Le., each position of M, with
the possible exception of i*?, lies in the subsumption triangle of i*.

2. M does not contain any position that is subsumed by another element of M.
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Let us note that a state may have several possible base positions.

Example 4.0.19 First assume that n = 1 and w = 2. Then the states are ), {00},
{190}, {290}, {091}, {191}, {261}, {091,191}, {091,241}, {1¥1,241}, and {0°1,1%1,2¢1}.
Assume now that w = 0. Let n be any natural number. Then the set of non-empty
states is {{0%} | 0 < e < n}. Third, assume that n = 0. Let w be any natural
number, denoting the length of the input word. Then the set of non-empty states
is {{i**} | 0 <i < w}.

Definition 4.0.20 Let M be a non-empty state. The minimal number i such that
M contains a position of the form i¢ (for some e) is called the minimal boundary of
M.

It is trivial to verify the following lemma.

Lemma 4.0.21 Let M be a state with minimal boundary i and let j*7 € M. Then
j—i<n+f.

At various places we shall consider the union of two states M and N with a common
base position i0. We write MUN for the set that is obtained from MUN by omission
of states that are subsumed by other states. Since the subsumption relation is well-
founded, this operation is well-defined. Note that M L IV is again a state with base
position i*0. M U N will be called the reduced union of M and N.

Elementary transitions

The transitions of the Levenshtein-automaton of degree n will be defined with the
help of transitions that act on single positions. The latter transitions are called
elementary transitions of degree n. The image of a position under an elementary
transition with an input symbol z depends on the distribution of z in a subword of

w.

Definition 4.0.22 Let W = z1 ---z, as above. Let 7 := 3¢ be a position, and
let k := min{n — e + 1,w — i}. The relevant subword of W for position m, denoted
Wiz, is the subword @11 -+ - @i of W.

Note that the length of Wi, cannot exceed n + 1.

Example 4.0.23 Let w = 8 and n = 5. Then the relevant subwords for positions
212 and 340 respectively are x3x4252¢ and z4x5x62723, as illustrated in Figure 4.3.

Definition 4.0.24 Let W and n as above. An elementary transition assigns to
each position 7 = i*® and each symbol = € ¥ a state 6(i*, z). The complete set of
elementary transitions is specified in Table 4.1. Notation (0, bs, ..., bg) : j indicates
that j is the minimal index in {2,...,k} where b; = 1. This implies that such an
index exists.

The following — informal —comments explain the intuition behind these transitions.
In Part (I) of the table for i« < w — 1 we distinguish three situations:
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w

Figure 4.3: Relevant subwords for elementary transitions.

(I) 0<e<n-1
( {(i+1)F}
for x(z, Wx)) = (1,b2,...,br),
{afet (i + 1)t (i -l-J)”e+J '}
for )(((x, (x]) = (0,b2,...,bx) : 4,
(

i<w—2 | 6(it,x) =
{51 (i 4 1))

(| for x(z, Wiz) =(0,...,0).
( {(i+1>ﬁe}

(| for (ﬂf W[ﬂ]) (0)-
I =w 5(wﬁe ) — {wue+1}
(I {) en_}nf I
; n i+ 1)} for x(z, Wi, ,
i<w—1] 8 {@ ey

i =w S(w', x) == .

Table 4.1: Table of elementary transitions for = = i,

1. The first entry of x(x, W) is 1

2. The first entry of x(x, W) is 0, but x (2, W5) has an entry 1, the minimal
one has index index 7,

3. all entries of x(z, W) are 0.

In Situation 3, = does not occur in Wi;). The transition can be interpreted as a
default transition. Image element i#***! captures the insertion of 2 at boundary i,
image element (i + 1)*+! captures the substitution of ;4 with x. Other possible
explanations for the occurrence of x are covered via subsumption. For example,
assume that x;41 is deleted and ;o is substituted by z. The position reached in
this case is (i + 2)**2. We do not add this position to the image set since it is
subsumed by (i 4+ 1)#**!. Note that default transitions for e = n lead to the failure
state @ (cf. Part (IT)).

In Situation 2, the image element i***! again covers the situation where symbol
x is inserted before z;y;. Element (i + l)ﬁ“"+1 covers the situation where x;; is
substituted by z. Element (i + 5)**7~! covers the situation where the elements
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[
w X1|X2|X3|X4|X5|X6|X7|X8!
L] L] L] L] ./.

0’5 75 g
o g
0" 78 gn
0 72 g
ot 7 g
070 70 go

Figure 4.4: Geometric interpretation of elementary transitions.

Tit1,.-.,Tirj—1 are deleted. The reader might wonder why only the entry 1 with
minimal index j is essential. This entry corresponds to the first occurrence of x
in Wi, Assume that j = j; < ... < jp is the list of all indices where x (2, W)
has an entry 1. In this situation position (i 4+ j)**/~! subsumes all positions
(i+ji)**ti=1 for 1 # 1. Hence, elimination of subsumed positions leads to the state
{ifetl (i + 1)kt (i + 5)#T7~1} which is used as image above. See Example 4.0.25
below for an illustration.

In Situation 1 we might expect that the image is rather the set {i***! (i +
1)¥e*1 (i +1)%}. But note that (i + 1)#¢ subsumes both other elements. Hence, via
elimination of subsumed positions we arrive at {(i + 1)%}.

Example 4.0.25 Let w = 8 and n = 5. In Figure 4.4 we consider the image of
7 = 2% under z € ¥. We have Wi} = z3---x5. We assume that x(z, W) =
(0,0,1,0,1,1). This means that x5, 27 and g are the symbols of W, that are
identical to . In this situation we have §(2¢,z) = {21, 3% 5/} as illustrated in
Figure 4.4.

The proof of the following lemma is straightforward.

Lemma 4.0.26 Let M be a set of positions. Assume that all elements of M are
subsumed by i* where i < w. Then the image of any element of M under any
elementary transition contains only positions that are subsumed by (i + 1), If all
elements of M are subsumed by w'®, then the image of any element of M under
any elementary transition has only positions that are subsumed by whe.

We now ask how the elementary transitions for Levenshtein-automata of different
degrees n for the same input word W are related. In order to avoid notational
ambiguities we write 6(" for the function that describes the elementary transitions
for the Levenshtein-automaton of degree n. If e is a natural number we write [i*/]%
for the “lifted” position /¢ (it will be guaranteed that each such expression in
fact denotes a position). If M is a state we define the lifted version [M]* := {[r]* |
m € M}. The following lemma shows that once the elementary transitions from
positions i*® for degrees 0, ..., n — 1 are fixed, the elementary transitions of degree
n for positions i*¢ for 1 < e < n are simply defined by “raising”.

Lemma 4.0.27 (Raising Lemma for elementary transitions) Letn > 0 and



21

1 < e <n. Then for any position i*¢ of degree n and any x € ¥ we have

ot (i, x) = [607 (i, )P,

Proof. Since min{n —e+1,w—i} = min{(n —e) —0+ 1,w — i} it follows that the
relevant subword for i#¢ for degree n is identical to the relevant subword of i*° for
degree n — e. We may denote it in the form W,. First assume that i < w — 2 and
the first entry of x(x,W,) is 1. Then we have

(i + 1))
= [{G+ DOy
0= (20, )],

5(m) (iﬁe, )

The remaining cases are similar. O

The Levenshtein automaton

We can now introduce the family of Levenshtein-automata that we use in for string
correction.

Definition 4.0.28 Let W =z - - 2, where w > 0, let n > 0. Then LEV (W) is
the deterministic finite state automaton (X, @, go, F, A) where

1. the set of states ) contains all states in the sense of Definition 4.0.18,
2. the initial state is qo := {09},

3. the set F of final states contains all states M € @ that contain an accepting
position,

4. the transition function A is defined in the following way: for any symbol y € &
and any state M € Q, A(M,y) := | |,cp 0(m,y).

It follows from Lemma 4.0.26 that A assigns to each state M € @ and each y € &
again a state M € Q. In fact, a state with base position i*® (i < w) is always mapped
to a state with base position (i +1)%°, and states with base position w*® are mapped
to states with base position w®°. This shows that LEV (W) is a deterministic finite
state automaton.

As a first step we discuss how the transition functions for Levensthein-automata
of different, degrees for the same input word W are related. We write A(™ for the
transition function of the Levenshtein-automaton of degree n.

Lemma 4.0.29 (Raising Lemma for transitions) Letn > 0 and 1 < e < n.
Then for state of degree n of the form [M]* and any x € ¥ we have

A (M, ) = [AC 9 (M, )]

Proof. Using our earlier notation and Lemma 4.0.27 we obtain

AO(MP,2) = | 8 (A, a)

TEM



22CHAPTER 4. A FAMILY OF DETERMINISTIC LEVENSHTEIN-AUTOMATA

= @

TEM

L] 8", 2))
TEM

= AP

The result follows. |

In the sequel, let LEV,,(W) = (2, Q, qo, F, A) as in Definition 4.0.28.
Proposition 4.0.30 The following properties hold:

1. £0) =0,
2. for all states M, N with a common base position and all y € X:
A(MUN,y) = A(M,y) UA(N,y),

3. for all states M, N with a common base position and all V € ¥*:
A*(MUN,V)=A*(M,V)UJA*(N,V),

4. for all states M C Q \ {{0°°}, ..., {w®}}: L(M) =U,crr LUT}).

Proof. Part 1 is trivial.

Proof of Part 2. Since M and N have a common base position it follows that
M U N is again a state. We have

AMUN,y) = || o=y

TeEMUN

|| 6(my)u | ] o(m,y)

TeEM TEN
= A(M,y)UA(N,y).

Proof of Part 3. Follows from Part 2 by a trivial induction on the length of V.

Proof of Part 4. Let RA denote the set of all raised accepting positions. Using
Part 3 we obtain

VeLM) o AMV)eF
|| A*({r} V) e F

TeM

If€RA: fe | | A*({n},V)

TeM
If € RA: fe |J A*({n},V)
TeM
3f e RA,Imr e M: f € A*({n},V)
dr e M: A*({n},V) e F
Ire M:V e L{r})
ve lJ Ldnp.

TeM

OB

:Uj*

t o ¢
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To see the marked equivalence notice that all positions in (J ., A*({7},V) are
raised. Each position of this set that subsumes a raised accepting position is itself
a raised accepting position. O

Proposition 4.0.31 For all 0 <i < w and all 0 < e <n we have
E({iue}) =Lrey(n —€,Ti11 " Ty)-

Proof. We proceed by induction on n. The case n = 0 is simple: the set of positions
is {i*0 | 0 < i < w}. Only w* is an accepting position. States have the form () or
{i*} (0 < i < w). Transitions from states {i®’} can be considered as elementary
transitions from positions i**. By Part 1 of Proposition 4.0.30, £(()) = (). Part (II)
of Table 4.1 shows that only transitions leading from states {i**} for i < w with
input z;41 to {(i+ 1)} are relevant — all other transitions lead to the failure state
0. Hence L£({i**}) = {zi11 7w} = LLev(0,Ti41 -+ 3y) for all 0 < i < w.

Now let n > 1 and assume that the Proposition is correct for all 0 < n’ < n. The
case e = n is simple since all relevant transitions are of the form {i*"} ~ {(i+1)*}
under z;11 (i < w). Hence assume that e < n. Since for 1 < e < n transitions
from states {i**} are defined by raising of transitions of degree n’ = n — e (cf.
Lemma 4.0.29) the induction hypothesis shows that

L) = Lrev(n — e,zip1--z0) (0<i<w,1<e<n). (1)
Hence it only remains to prove that for all 0 < i < w we have
L{i*Y) = Lrep(n, zip1 - To)-

In the sequel, let W; denote the suffix z;11 - 2z of W (0 < i < w). From ()
and Lemma, 4.0.17 we obtain the following : for all positions i*® and j%/ such that
e # 0 # f: if i* is subsumed by j*/, then £({i*}) is a proper subset of £({j%*/})
(1)

I. We first show that Lrc,(n, W;) C L({i**}). Let V € Lo, (n, W).

Case 1.1: 'V is obtained from W; by deleting a suffix of length k (0 < k <n) of
W;. Starting from state {i**} and consuming V we reach state {(w — k)¥}. Since
(w — k)* is an accepting position, state {(w — &)} is final, hence V € L£({i**}).

Case 1.2: W; is obtained from V by deleting a suffix of length k (1 < k < n)
of V. Starting from state {i**} and first consuming W; we reach {w®°}. The k
additional transitions lead to {w®*}. Since w** is an accepting position, the latter
state is final, hence V € L({i*°}).

Case 2: 1In the remaining cases there exists an index j < w such that V =
Tip1 - 2;yV" where y # zj41.

V X+ | | | | L (-

WI Xi+1‘ | | | | X | Xj+1 Xy |

We have yV' € Lrey(n,zj41 - 2y) by Lemma 2.0.2. We fix a sequence v of edit
operations leading from ;1 - - - €, to yV' of minimal length and consider the three
cases described in Remark 2.0.3.
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2.1. If the occurrence of y is an insertion before x;41 (where i < j < w),
then V! € Lrey(n — 1,241 -+ -Ty). Since y # x;41, starting from state {i*°} and
consuming the letters z;;1,...7;,y we reach states {(i + 1)¥°},...,{j*}, M where
M contains j* (cf. elementary transitions). It follows from () and Part 4 of
Proposition 4.0.30 that V' € £(M). Hence V € L({i*°}).

2.2. If the occurrence of y substitutes ;41 (where i < j < w), then V' belongs
to Lrev(n — 1,242 - 2y). Starting from state {i**} and consuming the letters
Tit1,...2j,y we reach states {(i +1)},..., {j*°}, M where M contains (j + 1)*..
It follows from () and Part 4 of Proposition 4.0.30 that V' € £(M). Hence V €

L{i*}).

2.3. In the remaining cases, by Remark 2.0.3 there exists some 1 < k£ < n such
that we have a stroke from x;, ;41 to y in the trace representation of v.

y v’

\Y Xisa | | | | l | | | [

W, Xis1 | | \ | L% | X [ [ X ] X
This means that the k letters £;41,2j42,..., 241 are erased. The distance between
Tjyk41 - Ty and yV' is bounded by n — k. In the sequel, let ko be the smallest
index in {1,...,k 4+ 1} such that z;1x+1 = xj1k,. It follows from the definition of

elementary transitions (cf. Table 4.1) that we reach state M := {1 (5 + 1) (5 +
ko)#*0=1} from {j*°} by consuming z;ix, = Tj4k+1-

2.3.1. Assume first that ;4441 = y. Then the distance between x ;542 Ty
and V' is bounded by n — k. By (1), V' € L{(j + k + 1)**}). Since (j + k + 1)
is subsumed by (j + ko)**o~1 also V' € L({(j + ko)**°~1}), by (1) and V' € L(M)
by Part 4 of Proposition 4.0.30. It follows that V' € £({i**}).

2.3.2. Assume that ;yr+1 # y. Then the distance between x;yr42 - -- %, and
V' is bounded by n — k — 1. Starting from state {i**} and consuming the letters
Zit1,...25,y we eventually reach a state M containing (j + 1)¥1. This position
subsumes (j + k 4+ 1)¥+1_ Tt follows from (1), (11) and Part 4 of Proposition 4.0.30
that V' € £L(M). Hence V € L({i**}).

I1. It remains to prove that £({i**}) C Lrey(n,W;) for 0 < i < w. Let V €
L({i*}). If V is accepted - starting from {i*} - on a path of singleton sets with basic
positions {(i+1)8}, {(i4+2)%}, ..., {k*}, then k% is accepting which implies that V'
has the form ;41 - - - 1, where w —k < n. This shows that V' € L., (n, W;). In the
other case, starting from state {i*°} and consuming the prefix V'y of V = V'yV"
we reach states {(i + 1)¥},... {4%}, M where M # {(j + 1)*°}.

Case (a): j <w and M has the form {j*',(j + 1)¥'}. In this case, by (f) and
Part 4 of Proposition 4.0.30, either V" has distance < n —1 to Zj41 -+ -2, or V"
has distance <n—1to 12 xy. In the former case, with an additional insertion
of y we see that V' has distance < n to W;. In the latter case, using a substitution
zj41 — y we see V has distance < n to W;.

Case (b): j <w and M has the form {j**, (j +1)¥,(j + k)**~1}. Here we have
to consider the additional case where V" has distance < n—(k—1) t0 Zj1gt1 - - Toy-
However, we know that y = x;44. Deleting z;41,...,2;1£—1 we see that yV' has
distance < n to 41 ... Ty, hence the same holds for V' and W;.
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Case (c): j = w. 1In this case M = {w*'} and V' = W;. Tt follows from (f)
that V" has distance < n — 1 to the empty word . Hence V has distance < n to
W;. O

Theorem 4.0.32 LEV (W) is a deterministic and acyclic Levenshtein-automaton
of degree n for W. For fized degree n, the size of LEV (W) is linear in |W|.

Proof. Proposition 4.0.31 shows that
L(LEV,(W)) = L{0}) = Lrev(n, W),

hence LEV (W) is a deterministic Levenshtein-automaton of degree n for W. If
§* is in the image set of position i*®, then i +e < j + f. Hence it is easy to see that
LEV,, (W) is acyclic. Obviously the number of possible base positions for states is
linear in |[W|, and for fixed degree n there exists a uniform bound on the number
of distinct states with a fixed base position 0. It follows that the number of states
of LEV (W) is linear in |W|. Since the alphabet ¥ is fixed, the size of LEV (W)
is linear in |W|. O

The rest of this chapter will be used to introduce some notions that help to obtain
a concrete description of the transition function A of LEV (W) in the situation
where the degree n is fixed. Recall that the above definition of A is indirect in the
sense that the image of a state is only defined in terms of the images of its members
under elementary transitions. Clearly, if M is a state and z € ¥, in order to directly
define the image A(M, x) we have to distinguish appropriate subcases that take the
distribution of the occurrences of z in W into account. As it turns out, it suffices
to consider the occurrences of z in a particular subword of W.

Definition 4.0.33 Let W and n as above. Let M be a non-empty state with
minimal boundary i. Let k := min{2n + 1,w — i}. The relevant subword of M,
denoted W[M], is the subword x;41 - - - 2445 of W.

Since the relevant subword does not depend on the state M itself, but only on the
minimal boundary i, we also write Wp; for Wi Note that the length of Wi,
cannot, exceed 2n + 1. It follows from Lemma 4.0.21 and from Definitions 4.0.22
and 4.0.33 that for each position 7 € M always Wi, is a subword of W[y. Table 4.1
shows that for any position 7 the image §(m, ) only depends on x(z, Ws). Thus,
given a state M, the image A(M, z) is completely determined by the characteristic
vector x(z, Wipg). In the following chapter we shall see that for fixed degree n this
observation can be used to describe A in terms of a finite table.

Remark 4.0.34 The transition function A is completely determined by the char-
acteristic vectors x(z, Wp;) of symbols z € ¥ with respect to the subwords W7;; of
the form Wy = 441 - -+ 2i4¢ where k := min{2n + 1,w —i}. If W and W' are two
words of the same length, and if the (2n + 1)-profile sequences of W and W' are
identical, then LEV (W) and LEV ,(W') are isomorphic modulo transition labels.
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Chapter 5

Computation of deterministic
Levenshtein-automata of
fixed degree

The general description of the Levensthein-automaton LEV (W) given in the previ-
ous chapter can be used to derive, for any fized bound n, an algorithm that actually
computes the automaton LEV,,(WW) in linear time, given any input word W. The
principle will first be illustrated for degree n = 1.

5.1 Computing the Levensthein-automaton of de-
gree 1

Using the general description of LEV (W) we derive a generic description of LEV 1 (W)
for arbitrary input W in terms of

e a parametric list of states, with a fixed initial state {0},
e a parametric list of final states,

e a table 77 which gives a parametric description of the transition function A.

Parametric list of states and final states

For input W = z; -- -z, and n = 1 the list of positions is

It follows easily from Definition 4.0.18 that we have the following states:

0 failure state,
A = {7} (0<i<w),
B; = {i"} (0<i<w),

27
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C; = {*FLE+1DM) (0<i<w-—1),
D; = {ifL6+2%} (0<i<w-—2),
B = {0+ 1D)",60+2) 0<i<w-2).

The initial state is Ag. Accepting positions are w®', w®, as well as (w — 1) for
w > 1. Tt follows immediately that the final states are
Aw;Awflan;walwa727Ew72 for w Z 2,
Aw,Aw—l,Bw,Ow—l for w = 1,
Ay, By for w = 0.

Parametric description of the transitions function

In order to derive the parametric description of the transition function we first refine
the general description of elementary descriptions given in Table 4.1. For the case
n = 1, we obtain the set of elementary transitions given in Table 5.1. Using this

(D e=0
({+1)%}
for X(CU,CUZ'+1£L”H_2) = <1, b2>,
{1, (i + 1) (i +2)H)
for X($,$i+1ﬂfi+2) = <0’ 1):
{i#, i+ DF}
[ for x(z,zip12i42) = (0,0).
'{%+DW} :
i=w—1] 66" z) = {iﬂf,r(;(ixiﬁiﬁl) = (1),
_ for x(z,ziy1) = (0).
i=w S(w, ) .= {wf}
(I1) e=1
. 41 i {(’L + 1)111} for (iL’,iL”i 1) = <1>,
1<w-—1 (S(Zli ,35) = { 0 for X(m,miil)xz <0>+

i<w—2| 6%, )=

i=w S(w, x) = 0.

Table 5.1: Table of elementary transitions for degree 1.

table it is simple to compute a parametric description of the full transition function
A, following the remarks at the end of the previous chapter. The description is
given in Table 5.2. Images A(M,x) are specified using a subcase analysis where the
possible characteristic vectors x(x, Wias) are distinguished. The following example
shows how the entries of Table 5.2 are computed.

Example 5.1.1 Let us ask for the image A(C;, ) of state C; = {if!, (i + 1)#
under x € ¥, assuming that that i <w —3 and x(z, W¢,)) = X(2, Tiy1Tip22it3) =
(1,1,0). We have W[iul] = Tjt1, W[(i+1)u1] = Ti42, hence X(ZL”,W[iul]) = <1> =
X (@, W(iz1)21))- Using Table 5.1 we obtain

ACir) = 8(™,) Ub(( + 1), )
{G+ D"y u{i+2)"}
{@+ 1", (i +2)"}
= Cipr.
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0<i<w—-3
X@, wipiwiporigs) | A | Bi | Ci | Di | E
(0,0,0 Ci ] ] 0 0
,0, Aig1 | Biy1 | Biy1 | Big1 | Bipa
)1 E; 0 Bii2 0 Biia
,0, C; 0 0 Biys | Bits

Aiv1 | Bivi | Ciga | Biv1 | Cip
Aix1 | Biy1 | Biy1 | Dig1 | Dina

E; 0 | Birs | Biys | Ciyo
Ais1 | Biy1 | Ciy1 | Dig1 | Eia

T=w—2
X(@,zipiwi2) | A | Bi | Ci | Di | E;
(0,0) C; 0 0 0 0
(1,0) Aiy1 | Biy1 | Biy1 | Biy1 | Bina
(0,1) E; 0 | Biva| 0 | Bigo
(1,1) Aip1 | Biy1 | Cig1 | By | Cia
1=w-—1
x(z,zip) | A | B | Ci
(0) C; [} 0
(1) Ait1 | Biy1 | Bipa
i=w
x(z,e) | Ai | Bs
L O [B:i]0]

Table 5.2: Table T}: parametric transitions for LEV 1 (W).

In the same way, all other entries of Table 5.2 can be computed.

Computation of the actual automaton

Obviously, given the above generic description of LEV; it is possible to generate
for any concrete input W the automaton LEV{(W) in time O(|]W]).

Theorem 5.1.2 There ezists an algorithm that computes for any input word W
the automaton LEV (W) in time and space O(|W)).

Corollary 5.1.3 For any input W, the minimal deterministic Levenshtein-automaton
of degree 1 for W can be computed in time and space O(|W|).

Proof. A result by D. Revuz [Rev92] shows that acyclic deterministic finite state
automata can be minimalized in linear time. Since LEV (W) is deterministic and
acyclic the result follows. O

Example 5.1.4 Figure 5.1 describes the automaton LEV (W) for the input word
“atlas”. For each word W of length 5 with 3-profile sequence (1, 2, 3), (1,2, 3), (1,2, 3)
the automaton LEV 1 (W) has the same structure, modulo renaming of transition la-
bels. Similarly Figure 5.2 describes the structure of LEV; (W) for the word “otter”.
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Figure 5.2: Deterministic Levenshtein-automaton LEV 1 (W) for input W = “otter”.

Here for each word W of length 5 with 3-profile sequence (1,2,2),(1,1,2),(1,2,3)
the automaton LEV{(W) has the same structure, modulo renaming of transition
labels.

5.2 Computing Levensthein-automata of higher de-
gree

For any fixed degree n > 2, the computation of LEV,,(W) essentially follows the
same ideas as in the case n = 1. Given the degree n, an offline-computation is used
to compute

1. a parametric description of the set of all states of LEV (W) for arbitrary
input word W, using the minimal boundary i of states as a parameter,

2. a parametric description of the set of all finite states,
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3. a parametric transition table T, that define the images of parametric states
M under input z € %, subject to the form of the characteristic x(z, Wip).

In each case, the initial state is {0?°}. Once we have the parametric description
of LEV, (W) for arbitrary W at our disposal, we may use it to compute for any
concrete input word W the automaton LEV,, (W) in time linear in |WW|.

Theorem 5.2.1 For any fixed degree n, there exists an algorithm that computes
for input word W the automaton LEV (W) in time and space O(|W]).

Corollary 5.2.2 For any input W, the minimal deterministic Levenshtein-automaton
of fized degree n for W can be computed in time and space O(|W|).

Proof. As in the case n = 1. O

Remark 5.2.3 Whereas five parametric states (i.e., A;, B;, B;, D;, and E;) are
sufficient for degree n = 1, the number of parametric states that are needed for
degrees 2,3,4, ... grows quickly. For n = 2 there are 30 parametric states (ignoring
state (0), which are listed in Example 5.2.4. Since relevant subwords War) may have
length 2n 4+ 1 = 5 the boolean vectors that have to be considered when defining
the transition function have maximal length 5. Hence the maximal subtable of A
has dimension 30 x 32. For n = 3, the number of parametric states is 196, the
maximal subtable for A has dimension 196 x 128. For n = 4, there are alread 1353
parametric states, the maximal subtable for A has dimension 1352 x 512.

Example 5.2.4 The non-empty states of LEVy(W) are the following:

(i} (0<i<w),
(i} (0<i<w),
G+ (0<i<w-—1),
{i*,0+2)%"}  (0<i<w-2),
GG+ DR +2)Y (0<i<w-—2),
{i*2, (i + 2)"} (0<i<w-—2),
{i”,i+3)""} (0<i<w-3),
{(i”,0+47,(i+2""}  (0<i<w-4),
(26 + D)2, +3)")  (0<i<w-—3),
{i”,(i+2",(i+3)"}  (0<i<w-3),
{i*,i+3)"  (0<i<w-3),
{i*', (i + 2)*} (0<i<w-—2),
GG+ DR, +3)2) (0<i<w-—3),
(", (i+2)P,(i+3)"}  (0<i<w=3),
(i} (0<i<w),
{i*, (i + 1)} 0<i<w-—1),
{i*2, (i + 2)**} (0<i<w-—2),
{i”,i+3)"}  (0<i<w-3),
{i”,i+4)"} (0<i<w-4),
G260+ D)2, +2)% (0<i<w-—2),
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{260+ D2, +3)%2}  (0<i<w-23),
{26+ D2, (i +4%2}  (0<i<w-4),
{2,60+2)2,(i+3)2)  (0<i<w-3),

{20422, +4%2}  (0<i<w-—4),
{i*2,(i+3)2,(i+42)  (0<i<w-—4)

(2,60 + D2, (i +2)2,i+3)%2}  (0<i<w-3),

(G260 + D2, (0 +2)2, 0 +4%2)  (0<i<w-—4),

(G260 + D2, +3)2, i +4%2)  (0<i<w-—4),

(2,0 +2)2,(i+3)2, (i +42}  (0<i<w-4),
(2,60+ D2, 4+2)2, 60 +3)2,60+492}  (0<i<w-—4).



Chapter 6

String correction using
imitation of
Levensthein-automata

We now introduce a variant of the correction method described in Chapter 3.
The main advantage of the new method is that it avoids the actual computa-
tion of Levenshtein-automata. As before we assume that for some fixed degree
n we have at our disposal a generic description of the automaton LEV,(W) =
(£,QW, {0}, FW AW) for arbitrary input W, as presented in the previous chap-
ter for degree n = 1. With A;V we denote the variant of the the transition function
where characteristic vectors are treated as input. Note that the tables T, yield
parametric descriptions of AZV . For example, from table T7 we see that Ao maps
to Cp under vector (0,0, 0).

As in Chapter 3 we assume that the dictionary is implemented in the form of a
deterministic finite state automaton Ap = (X, QP ¢P, FP,6P).

Given any concrete input word W, we first compute the set of all characteristic
vectors of the form x(z,Wy;) where 2 € ¥ and ¢ denotes a boundary of W. Using
this vectors, the backtracking procedure given in Chapter 3 can now be replaced by
the following variant:

push (<e,qf, {0°}}>);
while not empty(stack) do begin
pop (<V,qP, M>);
for z in ¥ do begin
a’ :=6"(¢",z);
M' = A;V(M,X(ZL”,W[M]));
if (¢P <> NIL) and (M' <> NIL) then begin
Vi := concat(V,z);
push(<Vy,qP, M'>);
if (¢P € FP) and (M' € FW) then output(V});
end;
end;
end;
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Note that in contrast to the situation described in Chapter 3, we do not assume
that the Levenshtein-automaton for the concrete input word W is available. Given
the generic description of LEV ,,, states of LEV (W) are only introduced on demand
in line 6. It is important to note that each image state A;V(M, x (2, Wia)) can be
found in constant time since both x(z,Wys) and the table T;, for A, have been
precomputed. The following example illustrates the modified acceptance procedure.

Example 6.0.5 We consider the case n = 1. Assume that the (misspelled) input
word W has the form “chold”. We consider the path of the dictionary automaton
for the dictionary entry “child”, which is assumed to lead to a final state. The
following transition sequence illustrates how states of LEV(chold) are generated
on demand, using precomputed characteristic vectors and Table 5.2.

Ap input x(c,cho) = (1,0,0) +— Ay
Aq input x(h,hol) = (1,0,0) — A,
As input x(i,0ld) = (0,0,0) — Cy
C5 input x(I,old) = (0,1, 0)

B, input x(d,d) = (1)

— By
— Bs
Now Bj is a final state. Hence, in the above procedure, the word “child” is suggested

as one correction of the input “chold”. Assume now that the dictionary also contains
the word “cold”. In this case we reach the following states of LEV(chold):

Ap input x(e,cho) = (1,0,0) +— Ay
Ay input x(o, hol) = (0,1,0) — E;
E; input x(I, hol) = (0,0,1) +— By

By input x(d,d) = (1) + Bs

Since Bs is final, also “cold” is suggested as a correction candidate.



Chapter 7

Adding Transpositions

As a matter of fact, the structure of Levenshtein-automata is affected if further
primitive edit operations are used. In this chapter we consider the situation where
insertions, deletions, substitutions and transpositions are treated as primitive edit
operations. The methodology for defining states and transitions presented in Chap-
ter 4 can be extended.

7.1 A family of deterministic Levenshtein-automata
for primitive edit operations including trans-
positions

Motivated by the intended application of the correction methods in a typesetting
context we assume that primitive edit operatios are applied in parallel. This means
that if V' is obtained from W = z; - - - z,, with a transposition of the letters z; 1 x;12,
then V has an occurrence of the transposed sequence ;12x;11." In the sequel, with
Levenshtein-distance we always mean the distance where transpositions are treated
as primitive edit operations. With DI(V, W) we denote the distance between V and
W, and LT, (n, W) denotes the set of all words V € ¥* such that df (W, V) < n.

Since primitive edit operations are applied in parallel, the concept of a trace
representation can be extended. Each transposition is represented by means of a
pair of crossing strokes. Endpoints are neighboured letters.

Remark 7.1.1 Let W =122+ -z and V = y1ys - - - y» be two words with Leven-
shtein-distance n > 1. Assume that neither V is a prefix of W nor vice versa. Let
U =xx2---x; (where 0 < i < v,w) denote the maximal common prefix of V' and
W. Then, in any trace representation of a minimal sequence v of edit operations
leading from W to V exactly one of the following four cases holds:

1.-3. Insertion, substitution, deletion cases. As in Remark 2.0.3.

IWhen using transpositions, the question if operations are applied sequentially or in parallel
is in fact relevant. Our assumption implies, for example, that the words “ab” and “bca” have
distance 3.
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4. Transposition case. x;+1 and x;4o are respectively connected with y; - and
Yi+1, strokes are crossing.

Let W = x; - - - 2, denote the input word and let n denote the degree. As before,
the elements of {0,1,...,w} are called boundaries of W.

Definition 7.1.2 A standard position is an expression of the form i* where i is
a boundary and 0 < e < n. A t-position is an expression of the form ige where
0<i<w-2and1<e<n A position is either a standard position or a t-
position. A position 7 is an accepting position iff T = i*¢ is a standard position and
fw—i<n-—e.

The intuitive interpretation of expressions i€ is as before. Expressions ige are

reached from positions i#¢~! under input 2;, in situations where we have a trans-
position of the letters z;,1 and z;,.

Definition 7.1.3 Subsumption between positions is explained as follows:

1. A position i*¢ subsumes a position j* iff e < f and |j —i| < f —e.

2. A position i* subsumes a position ji/ iff f>eand |j — (i —1)] < f—e.

. A position i§6 subsumes a position j# iff n = f > e and i = j.

. A position i§6 subsumes a position jff iff f>eandi=yj.

= W

As in Chapter 4, with each position 7= we associate a language ® (7).

(P(Zﬁe) = ﬁ%ev(n_eaxi+1 "'l'w),
®(if°) = {wi1}o Ll (n— e mips - Tw).

Lemma 7.1.4 Let m and 7' denote two distinct positions. If m subsumes 7', then
o(r') C O(n).

Definition 7.1.5 Let 0 < i < w. A state with base position i is a set M of
positions, not necessarily containing i%°, that safisfies the following properties:

1. for each position j* or j** in M we have |i — j| < e. In addition, for each

t-position j¢° we have |j — (i — 1)| < e,

2. M does not contain any position that is subsumed by another element of M.

Definition 7.1.6 Let W = z; - - -z, as above. Let 7 := i*¢ be a position, and let
k:=min{n —e+1,w —i}. The relevant subword of W for position m, denoted Wiy,
is the subword ;4 - - - x;p of W. Now let i« < w — 2. The relevant subword of W
for position 7 := ige, denoted Wi, is the subword x;yq - @iy of W.

Definition 7.1.7 Let W and n as above. An elementary transition assigns to each
position 7w and each symbol z € ¥ a state §(m,z). The complete set of elementary
transitions is specified in Table 7.1.
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Lemma 7.1.8 Let M be a state with base position i*C where i < w. Then the
image of any element of M under an elementary transition is always a state with
base position (i +1)¥. If M is a state with base position w', then the image of any
element of M under an elementary transition is always a state with base position
wO,

Proof. Let i < w, assume that % subsumes a t-position jff € M. Then
i—e < j<i+e—1. The only non-empty possible image of jff is {(j +2)H}. We
havei+1—e<j+2<i+1+e. It follows that (i + 1) subsumes (j +2)#/. The
remaining cases are straightforward. (|

The proof of the following lemma is straightforward.

Lemma 7.1.9 (Raising Lemma for elementary transitions) Let n > 0 and
1 < e < n. Then for any position of degree n of the form [r]¢ and any x € ¥ we
have

0" ([, z) = [8) (m, )]

In the sequel, with M LUN we denote the reduced union of the states M and N with
common base position where we refer to the new notion of subsumption introduced
in Definition 7.1.3.

Definition 7.1.10 Let W = z; - - -z, where w > 0, let n. > 0. Then LEV (W) is
the deterministic finite state automaton (X, Q, qo, F, A) where

1. the set of states ) contains all states in the sense of Definition 7.1.5,

2. the initial state is qo := {0},

3. the set F of final states contains all states M € @ that contain an accepting
position,

4. the transition function A is defined in the following way: for any symbol y € ¥
and any state M € Q, A(M,y) := ||, 0(m,y).

It follows from Lemma 7.1.8 that A assigns to each state M € @ and each y € ¥
again a state M € Q. In fact, a state with base position i*0 (i < w) is always
mapped to a state with base position (i + 1)*°, and states with base position w?°
are mapped to states with base position w®. This shows that LEV. (W) is a
deterministic finite state automaton.

The raising lemma holds also in the new situation. We write A for the
transition function of LEV'Y (W),

Lemma 7.1.11 (Raising Lemma for transitions) Letn > 0 and 1 < e < n.
Then for any state of degree n of the form [M]*® and any x € ¥ we have

AP (M), 2) = [A") (M, 2)]*.
Proof. As for Lemma 4.0.29. O

In the sequel, let LEVY (W) = (2, Q, qo, F, A) as in Definition 7.1.10.
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Proposition 7.1.12 The following properties hold:

1. L) =0,
2. for all states M, N with a common base position and all y € X:

A(M UN,y) = A(M,y) UA(N,y),

3. for all states M, N with a common base position and all V € ¥*:

A* (M UN,V) = A*(M,V)UA*(N, V),
4. for all states M C Q \ {{0%°}, ..., {w®®}}: L(M) = U, cp LUTY)-

Proof. As for Proposition 4.0.30. |

Proposition 7.1.13 The following holds:

L({ii"}) {zis1}o L, (n—e,miys--2y) (0<i<w—21<e<n)
ﬁ({zﬂe}) = ‘C%ev(n — 6T v -,’L‘w) (0 S i < ’U},O <e< TL)

Proof. We proceed by induction on n. The case n = 0 can be treated as before (cf.
proof of Prop. 4.0.31).

Now let n > 1 and assume that the Proposition is correct for all 0 < n’ < n. The
case e = n is simple since all relevant transitions are of the form {i*?} ~ {(i +1)*"}
under z;1 (i < w) or {i;"} = {(i +2)*"} under z;41 (i < w — 1). Hence assume
that e < n. Since for 1 < e < n transitions from states {i*} are defined by raising
of transitions of degree n’ = n — e the induction hypothesis shows that

L@} = {mip}oLl,(n—ewips - zw) (0<i<w—2,2<e<n|7.1)
‘C({Zﬁe}) = ﬁfev(n —€Tip1 l’w) (0 S S w, 1<e< TL) (72)

It remains to prove that

LY = {win}oLl,(n—1ays-zy) (0<i<w-2) (7.3)
LU = Lhy(nwir-ma) (07 <w) (7.4)
In the sequel, let W; denote the suffix z;11 - 2z, of W (0 < i < w). From (7.2)

and Lemma 7.1.4 we obtain the following : for all positions i* and j*/ such that
e # 0 # f: if i*¢ is subsumed by j*/, then £({i*}) is a proper subset of £({j*/})
(t1)-

L. We first show that {z; 1 }oLf,, (n—1,2;43 - 3y) C L({i'}). The elementary
transitions show that from {i#'} we reach {(i+2)*'} consuming z;,1. Now (2) shows
that {zi41} 0 LT, (n — 1,243 z) C L{i}'}).

II. We show that £({i!'}) C {zis1} 0 LT, (n —1,Wiys). The only possibility
to proceed from £({i%'}) is using input ;41 to reach {(i + 2)"}. By (2), L({(i +
2)tY) = LT (n — 1,2i15---2,). It follows that £({i!'}) C {is1} o LT, (n —
1, Wi+2).

III. We show that £, (n,W;) C L({i*}). Let V € LT, (n,W}).
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Case 1.1: 'V is obtained from W; by deleting a suffix of length k (0 < k <n) of
W;. Starting from state {i*°} and consuming V' we reach state {(w — k)*}. Since
(w — k) is an accepting position, state {(w — &)} is final, hence V € L£({i**}).

Case 1.2: W; is obtained from V by deleting a suffix of length k (1 < k < n)
of V. Starting from state {i**} and first consuming W; we reach {w®}. The k
additional transitions lead to {w®*}. Since w** is an accepting position, the latter
state is final, hence V € L({i*°}).

Case 2: In the remaining cases there exists an index j < w such that V =
Zip1 - -2;yV" where y # 4.

\% Xeo| | 1 1| (.

Wi Xi+1‘ | | | | Xj | Xj+1 X |

We have yV' € LT, (n,xj11 - 7y) by Lemma 2.0.2. We fix a sequence v of edit
operations leading from x4 - - -2, to yV' of minimal length and consider the four
cases described in Remark 7.1.1.

2.1. If the occurrence of y is an insertion before x;41 (where i < j < w),
then V' € LT, (n — 1,2j41 - 2y). Since y # zj11, starting from state {i**} and
consuming the letters @;41,...7;,y we reach states {(i + 1)*°},..., {j*°}, M where
M contains j*' (cf. elementary transitions). It follows from (2) and Part 4 of
Proposition 4.0.30 that V' € £(M). Hence V € L({i*}).

2.2. If the occurrence of y substitutes ;41 (where i < j < w), then V' belongs
to LT (n — 1,xj42-+2y). Starting from state {i*} and consuming the letters
Tit1,...Tj,y we reach states {(i + 1)}, ..., {j*°}, M where M contains (j + 1)*..
It follows from (2) and Part 4 of Proposition 7.1.12 that V' € £(M). Hence V €

L({i*}).

2.3. If the occurrence of y = x4 is caused by a transposition of z;4; and x4
(where j < w —2), then V' = ;.1 V" where V"' € LT, (n —1,2j415---2,). Since
Yy # Tj41, starting from state {i**} and consuming the letters g1y T, Tjga
we reach states {(i + 1)¥},...,{j*}, M where M contains ji* (cf. elementary
transitions). From M consuming z ;41 we reach a state M’ with a position identical
to or subsuming (5 + 2)#!. It is easy to see that all positions of M’ must be raised,
hence M’ contains (j + 2)#'. From part IT we see that V" € £(M'). Tt follows that
V€ L({i*}).

2.4. In the remaining case there exists some 1 < k < n such that we have a
stroke from z;; ;41 to y in the trace representation of v.

y v’
\Y Xisa | | | | l | | | [
W, X | | | X I [ o (X ] X |
This means that the k letters £;41,2j42,..., 241 are erased. The distance between

Zjtk+1 - Ty and yV' is bounded by n — k. In the sequel, let ko be the smallest
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index in {1,...,k + 1} such that 2 x41 = 2j4k,. It follows from the definition of
elementary transitions (cf. Table 4.1) that we reach state M := {1 (5 + 1) (5 +
ko)**ko=1} from {j*°} by consuming ;i x, = Tjtk+1-

2.4.1. Assume first that ;4441 = y. Then the distance between x ;542 Ty
and V' is bounded by n — k. By (2), V' € L({(j + k + 1)**}). Since (j + k + 1)#*
is subsumed by (j + ko)**o~1 also V' € L({(j + ko) °~1}), by (1) and V' € L(M)
by Part 4 of Proposition 4.0.30. It follows that V' € £({i**}).

2.4.2. Assume that =41 # y. Then the distance between «;yi42 -z, and
V' is bounded by n — k — 1. Starting from state {i**} and consuming the letters
Zit1,...%5,y we eventually reach a state M containing (j + 1)#1. This position
subsumes (j + k + 1)#+1. Tt follows from (2), (11) and Part 4 of Proposition 4.0.30
that V' € L(M). Hence V € L({i**}).

IV. Tt remains to prove that £({i*'}) C LT, (n,W;) for 0 < i < w. Let V €
L({i*}). If V is accepted - starting from {i*} - on a path of singleton sets with basic
positions {(i+1)#}, {(i+2)%°}, ..., {k*°}, then &k is accepting which implies that V'
has the form x;41 - - - 7, where w —k < n. This shows that V € £T_ (n,W;). In the
other case, starting from state {i*°} and consuming the prefix V'y of V = V'yV"
we reach states {(i + 1)©°},... {4}, M where M # {(j + 1)#°}.

Case (a): j <w and M has the form {j*' (j + 1)*'}. In this case, by (2) and
Part 4 of Proposition 4.0.30, either V' has distance < n —1 to ;41 --- &, or V"
has distance < n—1to ;42 --- ¥,. In the former case, with an additional insertion
of y we see that V' has distance < n to W;. In the latter case, using a substitution
xjy1 — y we see V has distance < n to W;.

Case (b): j <w and M has the form {j**, (j +1)¥,(j + k)**~1}. Here we have
to consider the additional case where V" has distance < n—(k—1) t0 Zj1gt1 - - Toy-
However, we know that y = x;44. Deleting z41,...,2;45,—1 we see that yV' has
distance < n to 41 ... Ty, hence the same holds for V' and W;.

Case (c): j <w—1 and M has the form {j*',j*, (j + 1), (j + k)*~1}. This
is similar to (b), but y = ;4> and we have the possibility that V' = ;41 V" where
V' has distance < n — 1 to 43 &y. Here xjpoz,41V" has distance < n to
Zjy1 - Ty, hence V has distance <n to W;.

Case (d): 7 = w. In this case M = {w*'} and V' = W,. It follows from (2)
that V" has distance < n — 1 to the empty word e. Hence V has distance < n to
Wi;. O

From Proposition 7.1.13 we obtain the parallel result to Theorem 4.0.32.

Theorem 7.1.14 LEVZ (W) is a deterministic and acyclic Levenshtein-automaton
of degree n for W for primitive edit operations including transpositions. For fized
degree n, the size of LEV (W) is linear in |[W|.
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7.2 Computation of deterministic Levenshtein-automata
for primitive edit operations including trans-
positions

As for LEV (W), the general description of the Levensthein-automaton LEV” (W)
can be used to derive, for any fixed number n, an algorithm that actually computes
the automaton LEV%(W) in linear time, given any input word W. The principle
will be illustrated for degree n = 1.

For input W = z1 - -z, and n = 1 the list of positions is

0’10,...,11Jﬁ°,0ﬁl,...,w’il

1 1
0, L (w—2)".
It suffices to consider the following states:

failure state,

= {i"} (0<i<w),

{i"} (0<i<w),

= {0+ D)"} (0<i<w-1),

= {i"(+2%"} (0<i<w-2),

= G+ 42 (0<i<w—2),
= PG+ DT G+ (0<i<w-2),

mEPAFE S
[

The initial state is Ag. Accepting positions are w#!, w*®, as well as (w — 1) for
w > 1. Tt follows immediately that the final states are

AwaAwflanacwflaDwf%Ew727Fw72 for w Z 27
AwaAw—lanacw—l for w = 17
Ay, By for w = 0.

For the case n = 1, we obtain the set of elementary transitions given in Table 7.2.
Using this Table 7.2 it is simple to compute a parametric description of the full
transition function A as before. The description is given in Table 7.3.

Obviously, given the above generic description of LEVlT it is possible to generate
for any concrete input W the automaton LEVT (W) in time O(|W]).

Theorem 7.2.1 There ezists an algorithm that computes for any input word W
the automaton LEVT (W) in time and space O(|W]).

Corollary 7.2.2 For any input W , the minimal deterministic Levenshtein-automaton
of degree 1 for W where primitive edit operations include transpositions can be com-
puted in time and space O(|W)).

Example 7.2.3 Figure 7.1 describes the automaton LEVT (W) for the input word
“atlas”. For each word W of length 5 with 3-profile sequence (1, 2, 3), (1,2, 3), (1,2, 3)
the automaton LEVT (W) has the same structure, modulo transition labels. Sim-
ilarly Figure 7.2 describes the structure of LEVT (W) for the word “otter”. Here
for each word W of length 5 with 3-profile sequence (1,2,2),(1,1,2),(1,2,3) the
automaton LEVT (W) has the same structure, modulo transition labels.
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Figure 7.1: Deterministic Levenshtein-automaton LEVT (W) for input W = “atlas”.

Figure 7.2: Deterministic Levenshtein-automaton LEVT (W) for input W = “ot-
ter”.
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As a matter of fact, the same method can be used for any fixed degree n.

Theorem 7.2.4 For any fixed degree n, there exists an algorithm that computes
for any input word W the automaton LEVL (W) in time and space O(|W]).

Corollary 7.2.5 For any input W, the minimal deterministic Levenshtein-automaton
of degree n for W where primitive edit operations include transpositions can be com-
puted in time and space O(|W|).
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(D e=0<n
( {(i+1)"}
for x(z, Wia) = (1,b2,....,bk>,
(i, + D, G+ )97y
, . for x(x, Win) =(0,1,b3,...,b),
_ 10 2) .= X [7] ,
e R NN TN
{ﬂflor(X(xi;/gq[ir]) = <0a07 b2a EEER bk> : j7
v, (e +
| for x(z, W) = (0,...,0).
[ {G+1)%}
. f y g =(1 y
i=w—1]6(i*,z):= {iﬂlo,r(}fngif}l) (1)
[ for x(z,ziy1) = (0).
i =w S(w, z) = {wh}
(IT) 1<e<n-1
({Gi+ 1)}
for X(ZL”,W[T,.]) = (1,b2, .. .,bk>, '
EL T (G )
) e _ for X(a: Wﬁ) (0,1,b3,...,bg),
i<w—2|8(i*,x) = {ite+1] (Z+1[)u]e+1 (,L+])ﬂ36+] 1
{ ﬁfO—i“lX(( )ﬂ )+1}<0 0 bg,.. bk> 2j,
ke 1+ 1)%¢
[ for x(=, W) = (0,...,0).
{G +2)*}
S 0) = ) or x(anWi) = (o)
else.
{(i+ D}
e for x(x,x;11) = (1),
i=w—1 §(Zu ,T) = {Z'ﬁe+1, ((Z + ]_;ﬁle)+1}< )
for x(z,zi11) = (0).
i=w S(wke, ) := {whet1}
(T1IT) e=n
i<w—1]| 86", _:{ é(l ;;rl)x(g V{f{f)j)xi (()V;f ) = (1),
_ an v [ AE+2)) for x(z, Win) = (1),
P<w=2 ) 0i" x) = { 0 for x(z, W) = (0).
i=w S(wt, x) .= ).

Table 7.1: Table of elementary transitions for m = ¢
sitions are treated as primitive edit operations.

resp. 7 = ii° where transpo-
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(D e=0
( {(i+ 1)}
for x(z, zit12iy2) = (1, b2),
{45, (0 + 1P, (6 + 2))
for x(z, zit12i42) = (0,1),
{if, (i + 1)81Y}
| for x(z, W) = (0,0).
g
i<w—1] 831 z) = {Z'ﬁflor(;(_s_xi;iﬁl) = (1),
for x(z,2i11) = (0).
i=w S(w™, 2) _{wﬁl}
@M e=1
. o [ {GE T Tor x(e i) = (1)
i<w-—2| 6", z) = { 0 for x(z x:rl)x <0>.+

i<w—2| 6%, ) =

{ {(i+2)"} for x(w,zi11) = (1),

0 for x(z,wir1) = (0).

i<w—1]06G",2) ‘:{ éHl )7} for x(@2i11) = (1),
0.

for x(z,zit1) = (0).

i=w Sl x) .=

Table 7.2: Table of elementary transitions for n = 1, primitive edit operations
including transpositions.

0<i<w—-3
X@, wipiwiorins) | A | Bi | Ci | Di | Ei | F
(0,0,0) C; 0 0 0 0 0
(1,0,0) Ait1 | Biy1 | Biy1 | Big1 | Big1 | Cipa
(0,1,0) F; 0 | Biyo 0 Bits | Biyo
(0,0,1) C; 0 0 Biiz | Biys | Biys
(1,1,0) T | B [ Cos [ Bin [ ot [ it
(1,0,1) Aigr | Biy1 | Big1 | Dig1 | Digq | Eia
0,1,1) F; 0 Bito | Biys | Cizo | Cigo
(1,1,1) Aigr | Big1 | Cigr | Dig1 | Eipr | Eia
t=w—2
X(T, Tit1Tiq2) || A; | B; | C; | D; | E; | F;

(0,0) C; 0 0 0 [} 0

(1,0) Ait1 | Biy1 | Bit1 | Big1 | Big1 | Ciga

(0,1) F; 0 B 0 Biys | Bijo

(1,1) Aitv1 | Biya | Cix1 | Big1 | Ciqr | Ciga

t=w—1
X(CU, xi—i—l) || Az | Bi | Cz
(0) Cs 0 0
(1) Ait1 | Biy1 | Bina
i=w
x(z,€) || A; | B;
L O B[]0 ]

Table 7.3: Transitions of LEVT ().



46

CHAPTER 7. ADDING TRANSPOSITIONS



Chapter 8

Adding Merges and Splits

The last case that we consider is the situation where insertions, deletions, substitu-
tions, merges and splits are treated as primitive edit operations. The methodology
for defining states and transitions remains the same.

8.1 A family of deterministic Levenshtein-automata
for primitive edit operations including merges
and splits

We assume that primitive edit operatios are applied in parallel. This means that if

V is obtained from W = z; - - - z,, by splitting letter z; into z}z!, then ¥V must have

[ 2ad 24

an occurrence of the split sequence z}z!. We write d5(V, W) for the Levenshtein-
distance where merges and splits are treated as primitive edit operations, with

LMS(n, W) we denote the set of all word V' € %* where d¥°(V,W) < n.

Since primitive edit operations are applied in parallel, the concept of a trace
representation can be extended. Splits (resp. merges) are indicated connecting the
source letter (letter pair) with its target pair of image letters (target letter).

Remark 8.1.1 Let W = z122 -z and V = y1ys - - - y» be two words with Leven-
shtein-distance n > 1. Assume that neither V is a prefix of W nor vice versa. Let
U=mxx2- - x; (where 0 < i < v,w) denote the maximal common prefix of V' and
W. Then, in any trace representation of a minimal sequence v of edit operations
leading from W to V exactly one of the following five cases holds:

1.-3. Insertion, substitution, deletion cases. As in Remark 2.0.3.
4. Merge case. The pair z;12;42 is connected with y;41.

5. Split case. Letter x;y1 is connected with ;1 1¥y;i2-

Let W = x; - - - 2, denote the input word and let n denote the degree. As before,
the elements of {0, 1,...,w} are called boundaries of W.

47
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Definition 8.1.2 A standard position is an expression of the form i* where i is
a boundary and 0 < e < n. An s-position is an expression of the form 7% where
0<i<w-1and 1 < e < n. A position is either a standard position or an
s-position. A position 7 is an accepting position iff m = i*¢ is a standard position
and if w—1<mn—e.

The intuitive interpretation of expressions i*® is as before. Expressions iﬂse are

reached from positions i*¢~! under input rj,, in situations where we have a split
! "

Tit1 7 i Tiqq-

Definition 8.1.3 Subsumption between positions is explained as follows:

1. A position i*¢ subsumes a position j* iff e < f and |j —i| < f —e.
2. A position i*¢ subsumes a position ji iff f > eand |j —i| < f —e.

3. A position % subsumes a position j iff f > eand |j —i| < f —e.

As in the previous cases, with each position m we associate a language ®():

@(iue) = ﬁﬁ/fe‘g(n—e,xiﬂ---xw),

(%) = DoLlYS(n—e zips-Ty).

The reader might ask why s-positions do not subsume standard positions. With
Definition 8.1.3 we only want to capture subsumption relations that hold in a uni-
form way. Standard positions 7 can be accepting positions. In this case, the empty
word ¢ belongs ®(7). However, our assumption that edit operations are applied in
parallel implies that the language associated with an s-position does not contain €.
Hence, there are cases where we do not have a containment on the language side.

Lemma 8.1.4 Let m and ©' denote two distinct positions. If m subsumes ', then
o(r') C B(n).

Proof. Assume that standard position i*¢ subsumes the s-position j&/. Then
f>eand (f—e)+i < j < (f—e)+i An an example, we consider the case
where i < j. From j < w — 1 it follows that i < w — 2. Let V € ®(j%/). Then
V' has the form 2V’ where V' € Lieo(n — f, 212 2y). The distance between
Tip1 Ty and 2x;43--+ Xy iS 1 since merges are primitive edit operations. The
distance between zz;i3 -y and zzj40 - - Ty is § — i — 1. The distance between
ZTjio Ty and 2V’ is < n — f. Hence the distance between x;41 - - 2, and 2V’
is <m—f+j—i. Since j < f — e+ the latter distance does not exceed n — e and
we have V € ®(i*¢). The remaining cases are similar. O

Definition 8.1.5 Let 0 < i < w. A state with base position i is a set M of
positions, not necessarily containing i*°, that safisfies the following properties:

1. for each position j# or jge in M we have |i — j| < e. Le., each position of M,
with the possible exception of i*?, is subsumed by 0.

2. M does not contain any position that is subsumed by another element of M.
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Definition 8.1.6 Let W = z; ---,, as above. Let 7 := i*® be a position, and let
k :=min{n —e+1,w —i}. The relevant subword of W for position m, denoted Wiy,
is the subword x;41 + -+ 244 of W.

Definition 8.1.7 Let W and n as above. An elementary transition assigns to each
position 7w and each symbol z € ¥ a state §(m,z). The complete set of elementary
transitions is specified in Table 8.1.

) e=0<n
(G+ D]
;OjB((g:jiV[ﬁ]) = <ﬂ1,+b12, e bk37+1
{afett gbeth (i 4+ D)fett (i 4 2)Fet1}
L {(for )()(ux,}W[,T]) = (0,ba,...,bg).
( {(i + 1)fe
e for x(xz, W) = (1),
6(2ﬁ ,l‘) = {iﬁe+1>,<i(ﬁse+1,[(i])_i_ 1)<ﬂe>+1}
| for x(, W) = (0).
i=w S(wke, ) := {whet1}
(IT) 0<e<n—1
(G + D7)
for X(ZL”, W[ﬂ.]) = <1, bg, Ceey bk>,
{Z-ﬁe-i-l, iﬁse-i-l, (l + 1)ﬂe+1, (Z + 2)ﬂe+1}
f(;r X(:L”, W[ﬂ.]) = <0, bg, ey bk>
i+ 1)%.
[ {(i+1)%}
for x(z, Wiy) = (1),
{iﬁe—i-l’ iﬁse—i-l’ (Z + 1)ﬂe+1}
| for x(z, W) = (0).
5(i£e,m) = (i + 1)116.
i=w S(wke, ) := {whetT}
(T1IT) e=n
) = { {(l + ]_)ﬂn} for X(xaw[w]) = <1>7
B for x(z, W) = (0).
,x) = (i + 1)k,
i=w S(wt, x) .= ).

i<w—2| 6%, x) =

i<w—2 |6t x) =

—~
r

s(ite, x) =

s )

i=w-1|6(%x):=

Table 8.1: Table of elementary transitions for 7 = i%.

Lemma 8.1.8 Let M be a state with base position i** where i < w. Then the
image of any element of M wunder an elementary transition is always a state with
base position (i +1)80. If M is a state with base position w'®, then the image of any
element of M under an elementary transition is always a state with base position
wo,

Lemma 8.1.9 (Raising Lemma for elementary transitions) Let n > 0 and
1 < e < n. Then for any position of degree n of the form [r]¢ and any x € ¥ we
have

8 ([x]°, ) = [61"9) (m, )]

In the sequel, with M LUN we denote the reduced union of the states M and N with
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common base position where we refer to the new notion of subsumption introduced
in Definition 8.1.3.

Definition 8.1.10 Let W = zy - - - 2, where w > 0, let n > 0. Then LEV S (W)
is the deterministic finite state automaton (3, Q, qo, F, A) where

1. the set of states () contains all states in the sense of Definition 8.1.5,
2. the initial state is qo := {09},

3. the set F of final states contains all states M € @ that contain an accepting
position,

4. the transition function A is defined in the following way: for any symbol y € &
and any state M € Q, A(M,y) := ||, 0(m,y).

It follows from Lemma 8.1.8 that A assigns to each state M € @ and each y € &
again a state M € (). This shows that LEVQ/[S(W) is a deterministic finite state
automaton.

The raising lemma holds also in the new situation. We write A for the
transition function of LEVM =5 ().

Lemma 8.1.11 (Raising Lemma for transitions) Letn > 0 and 1 < e < n.
Then for state of degree n of the form [M]* and any x € ¥ we have

A (M, 2) = [A") (M, 2)]*.
Proof. As for Lemma 4.0.29. O

In the sequel, let LEV,];/[S(W) =(%,Q, qo, F, A) as in Definition 8.1.10.
Proposition 8.1.12 The following properties hold:

1. L(©0) =0,
2. for all states M, N with a common base position and all y € X:

A(M UN,y) = A(M,y) UA(N,y),

3. for all states M, N with a common base position and all V € ¥*:

A*(MUN,V) = A*(M,V) U A*(N, V),
4. for all states M C Q \ {{0°°}, ..., {w®}}: L(M) =U,crr LUT}).

Proof. As for Proposition 4.0.30. |

Proposition 8.1.13 The following holds:

L{i#Y) = SoLMin—e it 1) (0<i<w-1,1<e<n)
E({iﬁe}) = Eﬁf(n—e,aziﬂ---mw) (0<i<w,0<e<n)
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Proof. We proceed by induction on n. The case n = 0 can be treated as before (cf.
proof of Prop. 4.0.31).

Now let n > 1 and assume that the Proposition is correct for all 0 < n’ < n. The
case e = n is simple since all relevant transitions are of the form {i*"} — {(i+1)*}
under z;11 (i < w) or {i!"} = {(i + 1)¥"} under z;41 (i < w — 1). Hence assume
that e < n. Since for 1 < e < n transitions from states {i*} are defined by raising
of transitions of degree n’ = n — e the induction hypothesis shows that

L{iEY) = SoLliin—ewis--zw) (0<i<w—1,2<e<n) (8.1)
E({i”e}) = Eﬁf(n —e, i1 Ty) (0<i<w,1<e<n) (8.2)

It remains to prove that

LY = SoLMSn—1,240---2,) (0<i<w-—1) (8.3
LAY = Lrgnai o) (0<i<w) (84
In the sequel, let W; denote the suffix z;11 - 2y of W (0 < i < w). From (8.2
we obtain the following : for all positions i*¢ and j%/ such that e # 0 # f: if i*¢ i
subsumed by j#/, then L£({i**}) is a proper subset of L({j*/}) (11).

0 ~— ~— N

I. We first show that X o LM5(n — 1, 2,15+ 2,) C L({i¥'}). The elementary
transitions show that from {i%'} we reach {(i + 1)*'} under any z € ¥. (8.2) shows
that Do LMS(n — 1,210 2) C L({i21}).

I1. We show that L£({if'}) C So LMS(n—1,W,;15). With any input € ¥, from
L) we xeach {(i + D'}, By (82), LG+ D)) = LHS (1 — Lage - 20).
It follows that £({i%'}) C S o LXS(n — 1, W;2).

III. We show that L5 (n, W;) C L({i*°}). Let V € LM% (n, W;).

Case 1.1: 'V is obtained from W; by deleting a suffix of length k (0 < k <n) of
W;. Starting from state {i**} and consuming V we reach state {(w — k)¥}. Since
(w — k)* is an accepting position, state {(w — k)¥°} is final, hence V € £({i**}).

Case 1.2: W; is obtained from V by deleting a suffix of length k (1 < k < n)
of V. Starting from state {i**} and first consuming W; we reach {w®}. The k
additional transitions lead to {w®*}. Since w** is an accepting position, the latter
state is final, hence V € L({i*°}).

Case 2: 1In the remaining cases there exists an index j < w such that V =
Tip1 - -2;yV" where y # 4.

y V'
Vv X1 | | | | | | | | | (-
WI Xit+1 ‘ | | | | X | Xj+1 e Xy |

We have yV' € L’%’[e‘g(n, Zj41 - Ty). We fix a sequence v of edit operations leading
from x;41 - -z to yV' of minimal length and consider the five cases described in
Remark 8.1.1.

2.1. If the occurrence of y is an insertion before x;41 (where i < j < w),
then V' € Lrey(n — 1,241 - y). Since y # 241, starting from state {i**} and
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consuming the letters @;41,...7;,y we reach states {(i + 1)*°},..., {j*°}, M where
M contains j*' (cf. elementary transitions). It follows from (8.2) and Part 4 of
Proposition 8.1.12 that V' € £(M). Hence V € L({i*°}).

2.2. If the occurrence of y substitutes ;41 (where i < j < w), then V' belongs
to Lrey(n — 1,x42 -+ 2y). Starting from state {i®°} and consuming the letters
Tit1,...75,y we reach states {(i + 1)¥},..., {j*°}, M where M contains (j + 1)*!.
It follows from (8.2) and Part 4 of Proposition 8.1.12 that V' € L(M). Hence
V € L({i*}).

2.3. If the occurrence of y is caused by a merge of ;41 and z;o (where j <
w—2), then V' € LMS(n— 1,245+ 1y). Since y # x;11, starting from state {i®}
and consuming the letters z;;1,...7;,y we reach states {(i + 1)},... {j*}, M
where M contains (j + 2)# (cf. elementary transitions). The induction hypothesis
(8.2) and Part 4 of Proposition 8.1.12 show that V' € L(M). Tt follows that
Ve L({i*}).

2.4. If the occurrence of y is caused by a split z;+1 — yy', then V' has the form
y'V" where V" € LYS(n— 1,245 7y). Starting from state {i*} and consuming
the letters x;41,...2;,y we arrive at state M containing jgl. It follows from Parts
I and I that £({j#'}) =S o LMS(n — 1,2j42---7,). Hence V € L({i*}).

2.5. In the remaining case there exists some 1 < k < n such that we have a
stroke from ;4441 to y in the trace representation of v.

y v
vV Xisa | | | \ | | | [
W, X1 | | l | | X | % | S [ K| X |
e have j <w — 2 an e k letters ;4 1,2i42,...,2,1; are erased. e distance
We have j < w — 2 and the k letters 241,z 42, ..., i+ d. The dist

between 4g41 -y and yV' is bounded by n — k. It follows from the definition
of elementary transitions (cf. Table 8.1) that we reach state M := {j* ji (j +
1), (5 + 2)#} from {j*°} by consuming ;1.

2.5.1. Assume first that ;4441 = y. Then the distance between x ;542 Ty
and V' is bounded by n — k. By (8.2), V' € L({(j +k + 1)**}). Since (j + k + 1)
is subsumed by (j + 2)*! also V' € L({(j + 2)*'}), by (f1), hence V' € L(M) by
Part 4 of Proposition 8.1.12. Tt follows that V € L£L({i**}).

2.5.2. Assume that =41 # y. Then the distance between «;yj42 -z, and
V' is bounded by n — k — 1. Starting from state {i**} and consuming the letters
Zit1,...%5,y we eventually reach a state M containing (j + 1)#1. This position
subsumes (j +k+1)#+1_ It follows from (8.2), (1) and Part 4 of Proposition 8.1.12
that V' € £L(M). Hence V € L({i**}).

IV. It remains to prove that £({i®*}) C LM5(n, W;) for 0 < i < w. Let V €
L({i*}). If V is accepted - starting from {i*} - on a path of singleton sets with basic
positions {(i +1)¥}, {(i +2)*}, ..., {k*°}, then k*® is accepting, which implies that
V has the form z;11 - - -z where w — k < n. This shows that V € L., (n, W;). In
the other case, starting from state {i*°} and consuming the prefix V'y of V = V'yV"
we reach states {(i + 1)©°},... {4}, M where M # {(j + 1)#°}.

Case (a): j < w —2 and M has the form {j*' 5 (j + 1), (j + 2)"'}. The
induction hypothesis (8.1) and (8.2) and Part IV of Lemma 8.1.12 show that V"
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belongs to
Lie(n—1,W))
U SoLl¥S(n—1,W;1)
U LPo(n—1,Wji)
U LYS(n—1,Wjia).
Treating y as in insertion (resp. the first letter of a split, a substitution, a merged

symbol) it easily follows that V € LM% (n, W;).

Case (b): j <w —1 and M has the form {j*',j8 (j 4+ 1)*}. Similar to case
(a).

Case (c): j = w. In this case M = {w*'} and V' = W;. It follows from (8.2)
that V" has distance < n — 1 to the empty word . Hence V has distance < n to
W;. O

From Proposition 7.1.13 we obtain the parallel result to Theorem 4.0.32.

Theorem 8.1.14 LEVnMS (W) is a deterministic and acyclic Levenshtein-autormaton
of degree n. for W for primitive edit operations including merges and splits. For fized
degree n, the size of LEVMS (W) is linear in |W|.

8.2 Computation of deterministic Levenshtein-automata
for primitive edit operations including merges
and splits

As in the previous cases, the general description of the Levensthein-automaton
LEV,I;/[S (W) can be used to derive, for any fixed number n, an algorithm that
actually computes the automaton LEVnM S (W) in linear time, given any input word
W. The principle will be illustrated for degree n = 1.

For input W = x; - - -z, and n = 1 the list of positions is

0%, ... w0, 0% ... wf

0, ..., (w—2)M.
It suffices to consider the following states:

] failure state,
{i} (0<i<w),

=
i

B; = {i*} (0<i<w),

C; = {FLE+1DM (0<i<w-—1),

D, = {i*L60+2"} (0<i<w-2),

E, = {*G+1)",60+2)") 0<i<w-2),
Fp o= {8 60+ 042 (0<i<w-2),
Gi = {LiB G+ D" (0<i<w-—1),

The initial state is Ag. Accepting positions are w!, w*®, as well as (w — 1) for
w > 1. Tt follows immediately that the final states are

AwaAwflanawalaDw72aEw72aFw72aGw71 for w Z 2:
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AwaAwflanacwflawal for w = ]-7

Ay, By for w = 0.

For the case n = 1, we obtain the set of elementary transitions given in Table 8.2.
Using Table 8.2 it is simple to compute a parametric description of the full transition

M =0
({i+1D7}
. _ for x(z, Wiz) = (1,b2),
B 0 N (7]
PSw =2 00 E) =0 1) (o 9y
[ for x(z, Wix) = (0, D).
({6 +1)%}
. - for x(x, Wia) = (1),
i=w—1|6(",2):= {iﬁl,iﬁl,(i+[1)]’“}
\ for x(z, W[w]) = (0).

i=w S(w®, x) := {wf}
) e=1
— { {G+1)"} for x(z, Win) = (1),
=10 for x(, Wi = (0)
= (i + 1)L,

Table 8.2: Table of elementary transitions for n = 1, primitive edit operations
including merges and splits.

function A as before. The description is given in Table 8.3.

Obviously, given the above generic description of LEV{V[ it is possible to gen-
erate for any concrete input W the automaton LEVM® (W) in time O(|W]).

Theorem 8.2.1 There ezists an algorithm that computes for any input word W
the automaton LEVMS(W) in time and space O(|W]).

Corollary 8.2.2 For any input W, the minimal deterministic Levenshtein-automaton
of degree 1 for W where primitive edit operations include merges and splits can be
computed in time and space O(|W|).

Example 8.2.3 Figure 8.1 describes the automaton LEV{V[S(W) for the input

word “atlas”. For each word W of length 5 with 3-profile sequence (1,2, 3), (1,2, 3), (1,2, 3)
the automaton LEV (W) has the same structure, modulo transition labels. Sim-
ilarly Figure 8.2 describes the structure of LEVMS (W) for the word “otter”. Here

for each word W of length 5 with 3-profile sequence (1,2,2),(1,1,2),(1,2,3) the
automaton LEV M o (W) has the same structure, modulo transition labels.

Theorem 8.2.4 For any fixed degree n, there exists an algorithm that computes
for any input word W the automaton LEVMS(W) in time and space O(|W]).

Corollary 8.2.5 For any input W, the minimal deterministic Levenshtein-automaton
of degree n for W where primitive edit operations include merges and splits can be
computed in time and space O(|W|).
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Figure 8.1: Deterministic Levenshtein-automaton LEVM s (W) for input W = “at-
las”.

Figure 8.2: Deterministic Levenshtein-automaton LEV ™S (W) for input W = “ot-
ter”.
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0<i<w—-3
X@ wipiwiomins) | A4 | Bi | G | Di | Bi | F; | G
(0,0,0) F; 0 0 0 0 Biy1 | Biva
(1,0,0) Aigr | Biy1 | Big1 | Big1 | Big1 | Biy1 | Biya
(0,1,0) F; 0 Biio [} Bito | Ciy1 | Cipa
(0,0,1) Fi 0 0 Bitsz | Bits | Dit1 | Bia
(1,1,0) Aiv1 | Bit1 | Ciz1 | Biy1 | Cig1 | Cig1 | Ciga
(1,0,1) Aigr | Biy1 | Big1 | Dig1 | Digr | Dig1 | Biya
(0,1,1) F; 0 Bito | Biys | Cito | Eix1 | Cipa
(1,1,1) A1 | Biy1 | Ciga | Digq | Eipr | By | Cia
t=w—2

(0,0) F; 0 0 0 0 | Biy1 | Bina

(1,0) Ait1 | Bit1 | Bit1 | Biy1 | Biy1 | Biy1 | Biya

(0,1) F; 0 By 0 Bito | Cip1 | Cipa

(1,1) Aip1 | Biy1 | Civ1 | Biya | Cip1 | Cigr | Cipr

t=w—1
(1) Ais1 | Biy1 | Biy1 | Bina
i=w
x(z,€) || A; | B;
L O [Bi]0]

Table 8.3: Transitions of LEV S ().

8.3 Experimental results

Experimental results were made using a Bulgarian lexicon BL with 870,000 word
entries and a dictionary of german composite nouns GL with 6,058,198 entries.
The following algorithms were implemented in C and tested on a 500 MHz (BL)
resp. 600 MHz (GL) Pentium IIT machine under Linux:

e The algorithm for computing, given input W, the automaton LEV ,,(W) (n =
]‘7 27 3)7

e the correction algorithm based on Levenshtein-automata described in Sec-
tion 3 (n =1,2,3),

e the correction algorithm based on imitation of Levensthein-automata described
in Section 6 (n =1,2,3),

e the variants of the above algorithms for the modified Levenshtein distances
where transpositions (resp. merges and splits) are treated as additional edit
operations (see [?] for a detailled description of Levenshtein-automata for
these modified distances).
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Evaluation of correction with BL

For the Bulgarian lexicon BL we used the prefixes of length 3,4, ...,19 of all dic-
tionary words as garbled input “words” and computed the correction candidates.
The number of test words of each length can be seen from the following table.

Length 3 4 5 6 7 8

f prefixes 3,152 12,121 | 30,243 | 59,835 | 101.763 | 150,046
Length 9 10 11 12 13 14

f prefixes | 190,318 | 203,520 | 184,138 | 139,982 | 91,252 | 52,603
Length 15 16 17 18 19 20

f prefixes || 27,997 | 14,763 8.179 4.601 2.790 1.585

The tables given below describe the results for

1. correction with BL and standard Levenshtein-distance with bound n =1,2,3
(Tables 8.4, 8.5 and 8.6),

2. correction with BL and Levenshtein-distance where transpositions are treated
as primitive edit operations, with bounds n = 1,2,3 (Table 8.7),

3. correction with BL and Levenshtein-distance where merges and splits are
treated as primitive edit operations, with bound n = 1,2,3 (Table 8.8).

In Tables 8.4, 8.5 and 8.6, column 1 gives the length of the input words. Col-
umn 2 (LA) describes the average time that is needed to compute the Levenshtein-
automaton for an input word. Column 3 describes the average time that is needed
for parallel traversal (PT) of dictionary automaton and Levenshtein-automaton.
Column 4 (TCT1) gives the average total correction time for the correction method
based on computation of Levenshtein-automata. Column 6 (TCT2) gives the av-
erage total correction time for the correction method based on imitation of Leven-
shtein-automata. Column 7 (NC) yields the average number of correction candi-
dates per word. Times are in milliseconds. It is important to note that the time
that is needed to output the correction candidates is always included.

As a résumé, the second correction method based on simulation of Levenshtein-
automata is more efficient. The smaller number of correction candidates for large
prefixes leads to the effect that for prefixes of length > 13 correction times decrease
for longer input words when using the second correction method. The use of trans-
positions as primitive edit operations does not influence correction times and the
number of correction candidates in a significant way. In contrast, much more search
is needed when treating merges and splits as additional primitive edit operations.
Both correction times and number of correction candidates grow.

Evaluation of correction with GL

Table 8.9 describes the results for correction with the german dictionary of compos-
ite nouns GL with 6,058,198 entries. For each length [ = 5,...,19, we randomly
selected 1,000 prefixes of length [ of entries and computed for each prefix all entries
of GL where the standard Levenshtein-distance does not exceed bound n = 1,2, 3.
We give the correction time (including output of correction candidates) and the
average number of corrections.
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| Length | LA | PT | TCT1 | TCT2 | NC |
3 0.228 | 0.152 | 0.381 | 0.324 | 10.31
0.251 | 0.183 | 0.434 | 0.351 | 8.66
0.272 | 0.201 | 0473 | 0.351 | 6.97
0.294 | 0.213 | 0.507 | 0.355 | 6.66
0.318 | 0.222 | 0.540 | 0.362 | 6.44
0.340 | 0.233 | 0.573 | 0.375 | 6.34
9 0.362 | 0.244 | 0.607 | 0.389 | 5.84
10 0.385 | 0.255 | 0.639 | 0.403 | 5.25
11 0.410 | 0.261 | 0.671 | 0.413 | 4.65
12 0.430 | 0.270 | 0.700 | 0.421 | 4.01
13 0.452 | 0.273 | 0.726 | 0.424 | 3.61
14 0.474 | 0.273 | 0.748 | 0.422 | 3.24
15 0.497 | 0.270 | 0.767 | 0.414 | 2.98
16 0.520 | 0.266 | 0.786 | 0.404 | 2.73
17 0.544 | 0.260 | 0.804 | 0.400 | 2.62
18 0.565 | 0.263 | 0.828 | 0.398 | 2.51
19 0.588 | 0.262 | 0.849 | 0.394 | 2.35

QO | | Oy =

Table 8.4: Results for BL, standard Levenshtein-distance, bound n = 1.

| Length | LA | PT | TCT1 | TCT2 | NC |
3 140 | 218 | 3.57 3.19 | 227
1.62 | 2.56 | 4.18 3.68 | 175
1.78 | 2.76 | 4.55 3.74 | 111
1.94 | 2.85 | 4.80 3.75 | 76.2
210 | 291 | 5.02 3.65 | 57.3
226 | 3.00 | 5.26 3.64 | 48.2
9 242 | 3.08 | 5.50 3.66 | 39.1
10 258 | 3.16 | 5.74 3.72 | 32.2
11 274 | 3.22 | 5.95 3.77 | 26.2
12 289 | 3.25 | 6.15 3.80 | 20.7
13 3.06 | 3.27 | 6.33 3.81 | 16.3
14 3.21 | 3.25 | 6.46 3.77 | 12.8
15 3.37 | 3.19 | 6.56 3.70 | 10.7
16 3.53 | 3.12 | 6.65 3.63 | 9.19
17 3.68 | 3.08 | 6.77 3.58 | 8.29
18 3.84 | 3.05 | 6.89 3.54 | 7.84
19 4.00 | 3.03 | 7.03 3.52 | 735

QO [ O] O =~

Table 8.5: Results for BL, standard Levenshtein-distance, bound n = 2.



8.3. EXPERIMENTAL RESULTS

Table 8.6: Results for BL, standard Levenshtein-distance, bound n = 3.

| Length | n =1 time | NC | n=2 time | NC

| Length | LA | PT | TCT1 | TCT2 | NC |

3 13.3 | 11.6 | 25.0 16.1 | 2411
4 14.8 | 13.8 | 28.6 18.9 | 2108
) 16.3 | 15.0 | 314 20.4 | 1397
6 18.0 | 15.7 | 33.7 21.2 852
7 19.2 | 16.0 | 35.2 20.9 938
8 203 | 164 | 36.7 20.9 381
9 215 | 16.7 | 38.2 20.6 269
10 228 | 16.9 | 39.7 20.4 192
11 239 | 171 | 411 20.3 138
12 276 | 22.8 | 50.4 256 | 96.0
13 30.9 | 21.7 | 52.6 252 | 63.7
14 322 | 219 | 54.2 25.1 | 41.8
15 33.6 | 20.9 | 54.5 24.0 | 286
16 34.8 | 21.2 | 56.0 240 | 21.8
17 36.8 | 20.1 | 56.9 23.8 18.3
18 381|198 | 57.8 23.0 16.0
19 39.0 | 19.9 | 58.9 22.9 14.6

|n:3time| NC |

3 0.330 10.4 4.03 231 17.0 2143
4 0.362 8.75 4.58 178 21.0 2139
) 0.357 7,04 4.67 114 23.5 1428
6 0.360 6.69 4.69 77.3 21.5 869
7 0.367 6.46 4.57 o7.8 21.2 047
8 0.379 6.36 4.58 48.6 21.5 386
9 0.394 5.85 4.62 39.4 21.1 272
10 0.407 5.25 4.69 32.3 22.6 194
11 0.416 4.66 4.85 26.4 20.9 140
12 0.428 4.10 4.78 20.8 20.7 96.8
13 0.430 3.62 4.78 16.3 20.5 64.1
14 0.428 3.24 4.73 12.8 21.9 42.0
15 0.424 2.98 4.74 10.8 21.3 26.7
16 0.416 2.73 4.59 9.21 20.9 21.8
17 0.410 2.62 4.54 8.30 21.0 18.3
18 0.404 2.51 4.50 7.85 24.5 15.9
19 0.405 2.35 4.43 7.36 26.7 14.6
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Table 8.7: Results for BL, Levenshtein-distance where transpositions are treated as

primitive edit operations, bounds n = 1, 2, 3, times in milliseconds.
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|Length|n:1time| NC |n=2time| NC |n=3time| NC |

3 1.86 48.1 30.3 3216 139 > 10*
4 1.79 31.6 32.3 2125 161 > 10%
5 1.79 21.3 33.7 1195 167 9998
6 1.78 16.7 34.0 667 175 8050
7 1.82 14.8 31.8 404 182 8106
8 2.32 13.9 314 278 186 5606
9 2.38 12.6 31.5 197 184 3654
10 2.41 11.1 31.8 144 174 2291
11 2.43 9.64 34.2 107 168 1433
12 2.47 8.19 34.3 775 169 872
13 2.47 6.88 33.8 53.8 175 493
14 2.45 5.85 35.4 36.8 171 257
15 2.39 5.20 30.6 26.1 170 116
16 2.34 4.65 30.1 20.2 165 54.7
17 2.29 4.26 29.7 17.0 166 35.8
18 2.25 4.17 20.5 14.8 166 27.9
19 2.22 3.85 29.3 13.7 163 24.3

Table 8.8: Results for BL, Levenshtein-distance where merges and splits are treated
as primitive edit operations, bounds n = 1, 2, 3, times in milliseconds.

|Length | n:ltime| NC |n=2time| NC |n=3time| NC |

) 1.33 4.41 41.5 51.3 313 434
6 1.44 3.40 42.5 34.7 321 337
7 1.59 2.95 39.9 21.9 307 216
8 1.63 2.71 38.7 13.1 307 120
9 1.66 248 40.4 9.86 306 80.2
10 1.73 2.32 39.0 7.46 288 50.3
11 1.77 2.14 39.5 6.15 290 36.7
12 1.82 2.01 39.1 4.67 288 23.8
13 1.85 1.89 39.8 4.34 293 19.5
14 1.89 1.80 40.2 3.72 296 14.2
15 1.92 1.71 40.2 3.17 295 10.7
16 1.95 1.65 40.0 2.82 291 7.7
17 1.99 1.60 38.9 2.52 285 6.22
18 2.02 1.56 38.3 2.37 281 5.36
19 2.04 1.34 37.8 1.89 274 3.77

Table 8.9: Results for GL, standard Levenshtein-distance, bounds n = 1,2, 3, times
in milliseconds.
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Remark 8.3.1 Oflazer gives the following average correction times for a german
dictionary with 174,573 words. For distance bound n = 1, 27.09 milliseconds, for
n = 2, 169.88 milliseconds, for n = 3, 582.45 milliseconds. Oflazer’s experiments
were made on a SPARCstation 10/41. Since we used for our test series a faster
machine on the one-hand side, but much larger dictionaries on the other side, an
exact comparison of both approaches is impossible. We think, however, that our
results show that our method is clearly superior in terms of efficiency.
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Chapter 9

Conclusion

We introduced two related methods for correcting garbled words using an electronic
dictionary that is implemented as a deterministic finite state automaton. The cor-
rection procedures are similar to Oflazer’s approach [Ofl96], but completely avoid
the computation of Levenshtein-distances. Instead, Levenshtein-automata for the
input words are used to control lexical search. We have shown that appropriate
deterministic Levenshtein-automata can be computed in time linear in the length
of the input. Our second method shows that even the actual computation of a
deterministic Levenshtein-automaton for the input word can be avoided since pre-
compiled tables may be used to simulate transitions in the automaton. The exper-
imental results show that our techniques lead to a very fast selection of correction
candidates for garbled words.

The complexity results for computing the (minimal) deterministic Levensthein-
automaton for a given input word immediately lead to the following side results.

Lemma 9.0.2 For any fixzed number n, given two words W and V of length w
and v respectively, it is decidable in time O(max(w,v)) if the Levenshitein-distance
between W and V is <n.

Lemma 9.0.3 For any fized number n, given a text of words of length h and a
word W of length w we can compute in time O(max(h,w)) all words V of the text
where the Levenshtein-distance between V and W does not exceed n.

The results obtained in this paper should be extended in several directions. The
situation should be considered where edit operations come with specific costs that
depend on the symbols of the operation. Eventually, in application scenarios dif-
ferent methods for ranking correction candidates should be tested that take the
frequency of occurrences of a given correction candidate into account.

As to related work, two other approaches, both using methods from automata
theory for string correction should be mentioned. Bunke [Bun93] has shown that
for any given word W the columns of the table computed in the Fisher-Wagner
algorithm can be compiled into a deterministic finite state automaton. For any word
V the automaton may be used to compute the Levenshtein-distance between V' and
W in time linear in the length |V'| of V. Given a dictionary of words Wi, ..., Wy, a
similar automaton can be given that computes the Levenshtein-distance between V'
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and each of the words W; in time O(|V]). The problem with the approach is that
the size of the automaton is exponential in the sum of the length of the words in
the dictionary. Hence the approach can only be used for very small dictionaries.

Another interesting approach is described in [CSY99]. Recall that we assign
to each input word a Levenshtein-automaton and leave the dictionary automaton
unmodified. In [CSY99] a construction is given for computing, given a finite state
automaton A, a lifted version A™ that accepts all words V' that have Levenshtein-
distance < n to some word accepted by A.' In principle, the construction can be
used to lift a dictionary automaton A in order to compute a ,,correction transducer “
A™ that yields, given input V, all dictionary words with Levenshtein-distance < n
to V. Assuming that A, is deterministic, a run — hence correction of an input
word — does not involve any search, or backtracking. However, determinization of
a non-deterministic correction transducer is likely be too space-comsuming for large
dictionaries. Nevertheless, is seems promising to consider variants of the techniques
described in [CSY99] for lexical correction.

I This description is simplified. Tn [CSY99] distinct metrics for defining neighbourhoods are
considered, and a generalization of finite state automata is used, so-called ,,lexical analyzers“.
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