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1 IntroductionMany CLP dialects, and some of the related formalisms used in computa-tional linguistics, provide for a combination of several \primitive" constraintlanguages. For example, in Prolog III [Col90], mixed constraints can be usedto express lists of rational trees where some nodes can again be lists etc.;Mukai [Muk91] combines rational trees and record structures, and a domainthat integrates rational trees and feature structures has been used in [SmT94];Rounds [Rou88] introduces set-valued feature structures that interweave or-dinary feature structures and non-wellfounded sets, and many other sugge-stions for integrating sets into logic programming exist [DOP91, DoR93].In this paper, we study techniques for combining symbolic constraintsfrom a more general point of view. On the practical side, these considerationsmay facilitate the design and implementation of new combined constraintlanguages and solvers. On the theoretical side, we hope to obtain a betterunderstanding of the principles underlying existing combination methods.This should show their essential similarities and di�erences, and clarify theirlimitations.When combining di�erent constraint systems, at least three problemsmust be solved. The �rst problem, namely how to de�ne the set of \mixed"constraints, is usually relatively trivial. The two remaining problems|whichwill be addressed in this paper|are(1) how to de�ne the combined solution structure over which the mixedconstraints are to be solved, and(2) once this combined structure is �xed, how to combine constraint solversfor the single languages in order to obtain a constraint solver for themixed language.The �rst part of this paper is concerned with the �rst aspect. So far, the pro-blem of combining solution domains has not been discussed in a general andsystematic way. The reason is that most of the general combination resultsobtained until now were concerned with cases where the solution structuresare de�ned by logical theories. In this case, the combined structures are de�-ned by the union of the theories. For example, in uni�cation modulo equatio-nal theories, the single solution structures are term algebras T (�1; X)==E1and T (�2; X)==E2 modulo equational theories E1 and E2. Thus, the obvi-ous candidate for the combined structure is T (�1[�2; X)==E1[E2 , the termalgebra modulo the union E1 [E2 of the theories. It is, however, easy to seethat feature structures and the \non-wellfounded" solution domains (such as3



rational trees) mentioned above cannot be described as such quotient termalgebras. For this reason, it is not a priori clear whether there is a canonicalway of combining such structures. The same problem also arises for othersolution domains of symbolic constraints.As a possible solution to this problem, we introduce the abstract notionof a \free amalgamated product" of two arbitrary structures in Section 3.Whenever the free amalgamated product of two given structures A and Bexists, it is unique up to isomorphism, and it is the most general elementamong all structures that can be considered as a reasonable combinationof A and B. For the case of quotient term algebras T (�1; X)==E1 andT (�2; X)==E2 , the free amalgamated product yields the combined term al-gebra T (�1[�2; X)==E1[E2 . This shows that it makes sense to propose thefree amalgamated product of two solution structures as an adequate combi-ned solution structure.With respect to the second problem{the problem of combining constraintsolvers{rather general results have been obtained for uni�cation in the unionof equational theories over disjoint signatures [SS89, Bou90, BS92]. Theseresults have been generalized to the case of signatures sharing constants[Rin92, KiR94], and to disuni�cation [BaS93]. Prima facie, such an exten-sion of results seems to be mainly an algorithmic problem. The di�culty,one might think, is to �nd the correct combination method. A closer lookat the results reveals, however, that most of the recent combination algo-rithms use, modulo details, the same transformation steps.1 In each case,the real problem is to show correctness of the \old" algorithm in the newsituation. In [BaS94a] we have tried to isolate the essential algebraic and lo-gical principles that guarantee that the|seemingly universal|combinationscheme works. We found a simple and abstract algebraic condition|calledcombinability|that guarantees correctness of the combination scheme, andallows for a rather simple proof of this fact. In addition, it was shown thatthis condition characterizes the class of quotient term algebras (i.e., free al-gebras), or more generally (if additional predicates are present), the classof free structures. In the above mentioned proof, an explicit constructionwas given that can be used to amalgamate two quotient term algebras overdisjoint signatures, and which yields the combined quotient term algebra asresult.In the second part of this paper it is shown that the concept of a combina-ble structure and the amalgamation construction can considerably be gene-1Sometimes, additional steps are introduced just to adapt the general scheme to specialsituations (e.g., [KiR94, BaS93]). For optimization purposes, steps may be applied indi�erent orders, and delay mechanisms are employed (e.g., [Bou90]).4



ralized. This yields combination results that apply to most of the structuresmentioned above, and which go far beyond the level of quotient term alge-bras. To this purpose, a weakened notion of \combinability" is introduced(Section 4). Structures that satisfy this weak form of combinability will becalled simply-combinable structures (SC-structures).2 The algebra of rationaltrees [Col84, Mah88], feature structures [APS94, SmT94], but also domainsover hereditarily �nite (wellfounded or non-wellfounded) nested sets and liststurn out to be SC-structures. The main di�erence between free structures(treated in [BaS94a]) and SC-structures is that free structures are generatedby a (countably in�nite) set of (free) generators, whereas this need not be thecase for SC-structures (e.g., an in�nite rational tree is not generated|in thealgebraic sense|by its leaf nodes). This di�erence makes it necessary to giverather involved proofs for facts that are trivial for the case of free structures.Nevertheless, a variant of the amalgamation construction of [BaS94a] can beused to combine arbitrary SC-structures A and B over disjoint signatures� and � (Section 6). As a �-structure (resp. �-structure), the amalgamA
B is isomorphic to A (resp. B). Consequently, pure �-constraints (resp.�-constraints) are solvable in A (resp. B) i� they are solvable in A
B. If Aand B belong to the subclass of strong SC-structures, then it can be shownthat A 
 B is in fact the free amalgamated product of A and B as de�nedin Section 3. In this case, the amalgamation construction can be appliediteratedly since A
 B is again a strong SC-structure.The combination scheme, in the form given in [BS92, BaS94a], can be usedto combine constraint solvers for two arbitrary SC-structures A and B overdisjoint signatures into a solver for A
B (Section 7). In this general setting,we consider existential positive sentences as constraints, and the constraintsolvers are decision procedures for validity of such formulae in the givensolution structure. Thus, decidability of the existential positive theory ofA
B can be reduced to decidability of the positive theories of A and B. Forthe case of strong SC-structures A and B, the combination method can alsotreat general positive sentences (Section 8). Thus, in this case, decidabilityof the full positive theory of A 
 B can be reduced to decidability of thepositive theories of A and B. As one concrete application we show thatvalidity of positive sentences is decidable in domains that interweave rationalfeature trees, (�nite or rational) trees, hereditarily �nite (wellfounded or non-wellfounded) sets, and hereditarily �nite (wellfounded or non-wellfounded)lists.2It has turned out that the notion of an SC-structure is closely related to the conceptof a \uni�cation algebra" [SS88], and to the notion of an \instantiation system" [Wil91].5



2 Formal PreliminariesA signature � consists of a �nite set �F of function symbols and a �nite set�P of predicate symbols, each of �xed arity. We assume that equality \=" isa logical constant that does not occur in �P , and which is always interpretedas the identity relation. An atomic �-formula is an equation s = t between�F -terms s; t, or a relational formula p[s1; : : : ; sm] where p is a predicatesymbol in �P of arity m and s1; : : : ; sm are �F -terms. A positive �-matrixis any �-formula obtained from atomic �-formulae using conjunction anddisjunction only. A positive �-formula is obtained from a positive �-matrixby adding an arbitrary quanti�er pre�x, and an existential positive �-formulais a positive formula where the pre�x consists of existential quanti�ers only.Sentences are formulae without free variables. The notation t(v1; : : : ; vn)(resp. '(v1; : : : ; vn)) indicates that the set of all (free) variables of the termt (of the formula ') forms a subset of fv1; : : : ; vng. Letters u; v; : : : denotevariables, and expressions ~u;~v; : : : denote �nite (possibly empty) sequencesof variables.A �-structure A� has a non-empty carrier set A, and it interprets eachf 2 �F of arity n as an n-ary (total) function fA on A, and each p 2�P of arity m as an m-ary relation pA on A. Whenever we use a romanletter like A and an expression A� in the same context, the former symboldenotes the carrier set of the �-structure denoted by the latter expression.For a formula '(v1; : : : ; vn) with free variables in fv1; : : : ; vng, we write A� j='(a1; : : : ; an) to express that the formula' is valid inA� under the evaluationthat maps vi to ai 2 A (1 � i � n). Sometimes we will consider severalsignatures simultaneously. If � is a subset of the signature �, then any�-structure A� can be considered as a �-structure (called the �-reduct ofA�) by just forgetting about the interpretation of the additional symbols. Inthis situation, A� denotes the �-reduct of A�. Expressions ~a denote �nite(possibly empty) sequences ha1; : : : ; aki of elements of A. In order to simplifynotation we will sometimes use ~a also to denote the set fa1; : : : ; akg.If A� is a �-structure, each assignment � : Var ! A has a unique ex-tension to an evaluation �̂ that maps each �-term t = t(v1; : : : ; vn) to anelement �̂(t) 2 A. An element a 2 A is generated by the subset A0 of Aif there exists a �-term t = t(v1; : : : ; vn) and an assignment � : Var ! Asuch that �̂(t) = a and �(vi) 2 A0 for i = 1; : : : ; n. The subset A1 of A isgenerated by A0 � A if every element a 2 A1 is generated by A0.A �-homomorphism is a mapping h between two structures A� and B�6



such that h(fA(a1; : : : ; an)) = fB(h(a1); : : : ; h(an));pA[a1; : : : ; an] ) pB[h(a1); : : : ; h(an)]for all f 2 �F , p 2 �P , and a1; : : : ; an 2 A. Letters h; g; : : :, possibly withsubscript, denote homomorphisms. Whenever the signature � is not clearfrom the context, expressions h�; g�; : : : will be used. A �-isomorphism is abijective �-homomorphism h : A� ! B� such thatpA[a1; : : : ; an]() pB[h(a1); : : : ; h(an)];for all p 2 �P , and all a1; : : : ; an 2 A. Equivalently, one can require that theinverse mapping h�1 is also homomorphic.As a matter of fact, validity of arbitrary formulae is preserved underisomorphisms. There is a less trivial connection between surjective homo-morphisms and positive formulae, which will become important in the proofof correctness of our method for combining constraint solvers (see [Mal73],pp. 143, 144 for a proof).Lemma 2.1 Let h : A� ! B� be a surjective homomorphism betweenthe �-structures A� and B�, '(v1; : : : ; vm) be a positive �-formula, anda1; : : : ; am be elements of A. Then A� j= '(a1; : : : ; am) implies B� j='(h(a1); : : : ; h(am)).Since validity of existential formulae is preserved in a superstructure (see,e.g., [Mal71] pp.) the following variant of Lemma 2.1 for arbitrary homomor-phisms follows.Lemma 2.2 Let h : A� ! B� be a homomorphism between the �-structuresA� and B�, '(v1; : : : ; vm) be an existential positive �-formula, and a1; : : : ; ambe elements of A. Then A� j= '(a1; : : : ; am) implies B� j= '(h(a1); : : : ; h(am)).A �-endomorphism of A� is a homomorphism h� : A� ! A�. WithEnd�A we denote the monoid of all endomorphisms of the �-structure A�,with composition as operation. The notation M� End�A expresses that Mis a submonoid of End�A.If g : A ! B and h : B ! C are mappings, then g � h : A ! C denotestheir composition. Note that g � h means that g is applied �rst, and then h.Let g1 : A ! C and g2 : B ! D be two mappings. We say that g1 and g27



coincide on E � A\B if g1(e) = g2(e) for all e 2 E. For a set A, we denotethe identity mapping on A by IdA. If A is the carrier of a �-structure A,then IdA is the unit of the monoid End�A.Given a signature �, \constraints" are usually introduced as �-formulae(of a particular syntactic type) '(v1; : : : ; vn) with free variables. The cons-traint '(v1; : : : ; vn) is solvable in the structure A� i� there are a1; : : : ; an 2 Asuch that A� j= '(a1; : : : ; an). Thus solvability of ' in A� and validity ofthe sentence 9v1 : : :9vn '(v1; : : : ; vn) in A� are equivalent. In this paper weshall always use the second point of view. As constraints we consider exi-stential positive and positive sentences. We are mainly interested in solving\mixed" constraints. This means that we consider two di�erent signatures� and �, with �xed solution structures B�1 and B�2 . A mixed constraint is apositive (or existential positive) (�[�)-sentence. Thus, one needs a (�[�)-structure as solution structure. Obviously, if we want to reduce solvabilityof mixed constraints to solvability of pure �i-constraints in the �i-structuresBi (i = 1; 2), this \combined" solution structure should be in an appropriaterelationship with the single structures B�1 and B�2 .3 Combination of StructuresSuppose that B�1 and B�2 are two structures. In the �rst part of this sectionwe shall discuss the following question: What conditions should a (� [�)-structure C�[� satisfy to be called a \combination" of B�1 and B�2 ? This willlead to the de�nition of the free amalgamated product. In the second partof the section, we shall show that, under certain restrictions, the productconstruction is associative.3.1 The free amalgamated productThe central de�nition of this section will be obtained after three steps, eachintroducing a restriction that is motivated by the example of the combinationof term algebras modulo equational theories. The structures B�1 and B�2 willbe called the components in the sequel.\Restriction 1:" Homomorphisms that \embed" the components intothe combined structure must exist. If the components share a common sub-structure, then the homomorphisms must agree on this substructure.In fact, a minimal requirement seems to be that both structures mustin some sense be embedded in their combination. It would, however, be too8



restrictive to demand that the components are substructures of the combinedstructure. For the case of consistent equational theories E;F over disjoint si-gnatures �;�, there exist 1{1-embeddings of T (�; V )==E and T (�; V )==Finto T (� [�; V )==E[F . For non-disjoint signatures, however, these \em-beddings" need no longer be 1{1. Note that even for disjoint signatures �and � there is a common part, namely the trivial structure represented bythe set V of variables. A reasonable requirement is that elements of the com-mon part are mapped to the same element of the combined structure by thehomomorphic embeddings. To be as general as possible, we do not assumethat the \common part" is really a substructure of B�1 and B�2 . Instead,we assume that it is just homomorphically embedded in both structures.Restriction 1 motivates the following de�nition.De�nition 3.1 Let � and � be signatures, and let � � � \ �. A triple(A�;B�1 ;B�2 ) with given homomorphic embeddingsh�A�B1 : A� ! B�1 and h�A�B2 : A� ! B�2is called an amalgamation base. The structure D�[� closes the amalgamationbase (A�;B�1 ;B�2 ) i� there are homomorphismsh�B1�D : B�1 ! D� and h�B2�D : B�2 ! D�such that h�A�B1 �h�B1�D = h�A�B2 �h�B2�D. We call (D�[�; h�B1�D; h�B2�D) anamalgamated product of (A�;B�1 ;B�2 ).If the \embedding" homomorphisms are irrelevant or clear from the con-text, we shall also call the structure D�[� an amalgamated product of B�1and B�2 over A�. It should be clear that it is not reasonable to accept anarbitrary amalgamated product as the combined structure of B�1 and B�2 .\Restriction 2:" The combined structure should share \relevant" struc-tural properties with the components.This principle accounts for the fact that there must be some kind of(logical, algebraic, algorithmic) relationship between the components andthe combined structure. In the case of quotient term algebras T (�; V )==Eand T (�; V )==F , the combined algebra T (� [ �; V )==E[F satis�es E [ F .In general, we cannot use this as a condition on the structures that closethe amalgamation base since we need not have theories de�ning B�1 andB�2 . However, for the case of quotient term algebras there is an equivalentalgebraic reformulation: 9



Proposition 3.2 For a (� [ �)-algebra C�[� and a countably in�nite set(of variables) V , the following conditions are equivalent:1. The structure C�[� satis�es all axioms of E [ F .2. For every mapping gV�C : V ! C there exist unique homomorphisms h�T1�C :T (�; V )==E ! C� and h�T2�C : T (�; V )==F ! C� extending gV�C.Proof. First, we show \1! 2." Since the (�[�)-algebra C�[� satis�esE [ F , its �-reduct C� satis�es E and its �-reduct C� satis�es F . Thus,existence and uniqueness of the desired homomorphisms follows from thefact that T (�; V )==E is free over V for the class of all models of E, andT (�; V )==F is free over V for the class of all models of F .In order to show \2 ! 1," assume that C�[� satis�es the algebraic cha-racterization (2). Let s(v1; : : : ; vn) = t(v1; : : : ; vn) be an equation in E [ F ,where the variables v1; : : : ; vn occurring in s = t are (without loss of gene-rality) assumed to be in V . Now, assume that C�[� does not satisfy s = t.Thus, there exist elements c1; : : : ; cn of C such thatC�[� 6j= s(c1; : : : ; cn) = t(c1; : : : ; cn):Without loss of generality, we assume that s = t is an equation in E. Letg : V ! C be a mapping such that g(vi) = ci (for 1 � i � n). By (2), thereexists a homomorphism h� : T (�; V )==E ! C� that extends g. However,s = t 2 E implies s =E t, and thus s and t belong to the same =E-class inT (�; V )==E . This shows that h(s) = h(t), which contradicts our assumptionthat C�[� 6j= s(c1; : : : ; cn) = t(c1; : : : ; cn).In Section 6 we shall restrict the admissible structures for closing anamalgamation base (A�;B�1 ;B�2 ) to structures satisfying the second condi-tion of the proposition. In the remainder of this section it is su�cient toassume that some class Adm(B�1 ;B�2 ) of admissible structures for closing theamalgamation base has been �xed.De�nition 3.3 Let (A�;B�1 ;B�2 ) be an amalgamation base, let Adm(B�1 ;B�2 )be a class of (�[�)-structures, to be called admissible structures. An amal-gamated product (D�[�; h�B1�D; h�B2�D) of (A�;B�1 ;B�2 ) is called admissiblewith respect to Adm(B�1 ;B�2 ) (or simply admissible, if the class of admissiblestructures is clear from the context) i� D�[� 2 Adm(B�1 ;B�2 ).In the case of term algebras, the combined algebra T (� [�; V )==E[F isnot just any algebra satisfying E [ F|it is the free algebra.10



\Restriction 3:" Whenever possible, we want to obtain a most generalelement among all admissible amalgamated products of the components.This motivates the de�nition of the free amalgamated product by a uni-versal property that is similar to the one of free algebras.De�nition 3.4 Let (A�;B�1 ;B�2 ) be an amalgamation base, and assume thatAdm(B�1 ;B�2 ) is the class of admissible (� [�)-structures. The admissibleamalgamated product (C�[�; h�B1�C; h�B2�C) of B�1 and B�2 over A� is calleda free amalgamated product with respect to Adm(B�1 ;B�2 ) i� for every ad-missible amalgamated product (D�[�; h�B1�D; h�B2�D) of B�1 and B�2 over A�there exists a unique homomorphism h�[�C�D : C�[� ! D�[� such thath�B1�D = h�B1�C � h�[�C�D and h�B2�D = h�B2�C � h�[�C�D:����@@@R QQQQQs�����3 -����������������:XXXXXXXXXXXXXXXXzA� B�1B�2 C�[� D�[�hA�B1hA�B2 hB1�ChB2�C hB1�DhB2�DhC�DFree amalgamated products need not exist, but if they exist they areunique up to isomorphism.Theorem 3.5 Let (A�;B�1 ;B�2 ) be an amalgamation base with �xed homo-morphic embeddings h�A�B1 : A� ! B�1 and h�A�B2 : A� ! B�2 . The freeamalgamated product of B�1 and B�2 over A� with respect to a given classAdm(B�1 ;B�2 ) is unique up to (� [�)-isomorphism.Proof. Let C�[� and D�[� be free amalgamated products of B�1 andB�2 over A� with respect to Adm(B�1 ;B�2 ). It follows that both structuresbelong to the class of admissible structures Adm(B�1 ;B�2 ). Since C�[� is anamalgamated product, there exist homomorphisms h�B1�C : B�1 ! C� andh�B2�C : B�2 ! C� such that h�A�B1 �h�B1�C = h�A�B2 � h�B2�C. Similarly thereexist homomorphisms h�B1�D : B�1 ! D� and h�B2�D : B�2 ! D� such thath�A�B1 � h�B1�D = h�A�B2 � h�B2�D.Since C�[� is a free amalgamated product, there exists a unique homo-morphism f�[�C�D : C�[� ! D�[� such thath�B1�D = h�B1�C � f�[�C�D and h�B2�D = h�B2�C � f�[�C�D:11



Similarly, there exists a unique homomorphism f�[�D�C : D�[� ! C�[� suchthat h�B1�C = h�B1�D � f�[�D�C and h�B2�C = h�B2�D � f�[�D�C:This implies h�B1�C = h�B1�D � f�[�D�C = h�B1�C � f�[�C�D � f�[�D�C, and similarlywe obtain h�B2�C = h�B2�C � f�[�C�D � f�[�D�C.Since C�[� is a free amalgamated product, and since C�[� 2 Adm(B�1 ;B�2 ),there exists a unique (� [�)-endomorphism h�[� of C�[� such thath�B1�C = h�B1�C � h�[�h�B2�C = h�B2�C � h�[�:We have just seen that f�[�C�D � f�[�D�C satis�es these properties, and obviously,IdC satis�es them as well. This shows that f�[�C�D � f�[�D�C = IdC. Symmetri-cally, one can also show f�[�D�C � f�[�C�D = IdD.To sum up, we have shown that f�[�C�D and f�[�D�C are isomorphisms thatare inverse to each other.The theorem justi�es to speak about the free amalgamated product oftwo structures (provided that the embedding homomorphisms and the classof admissible structures are �xed). In this situation, we shall often writeB1 � B2 for the free amalgamated product of B1 and B2.In Section 6 we shall give an explicit construction of the free amalgamatedproduct for the class of \strong SC-structures." For our standard example,term algebras modulo equational theories, the free amalgamated productyields the combined quotient term algebra, which shows that the de�nitionof the free amalgamated product makes sense.Proposition 3.6 Let B�1 = T (�; V )==E and B�2 = T (�; V )==F for consi-stent equational theories E and F . Let Adm(B�1 ;B�2 ) be the class of algebrassatisfying (one of) the conditions of Proposition 3.2. For the amalgamationbase (T (� \ �; V );B�1 ;B�2 ), the free amalgamated product with respect toAdm(B�1 ;B�2 ) is isomorphic to the combined algebra T (� [�; V )==E[F .Proof. Since C�[� := T (� [ �; V )==E[F satis�es all axioms of E [ F ,it is clearly an admissible algebra in Adm(B�1 ;B�2 ). The �-reduct C� ofC�[� satis�es E, and the �-reduct C� satis�es F . Since B�1 is free overV for the class of all models of E, there exists a unique �-homomorphismh�B1�C : B�1 ! C� that extends IdV . Similarly, there exists a unique �-homomorphism h�B2�C : B�2 ! C� extending IdV .12



In addition, since A� := T (� \ �; V ) is the (absolutely) free �-algebra,there exist unique homomorphisms h�A�B1 : A� ! B�1 and h�A�B2 : A� ! B�2extending IdV . It follows thath�A�B1 � h�B1�C = h�A�B2 � h�B2�C;since both homomorphisms represent the unique extension of IdV to a �-homomorphism A� ! C�. Thus, we have shown that C�[� is in fact anadmissible amalgamated product of B�1 and B�2 over A� with respect toAdm(B�1 ;B�2 ).In order to show that it is free, assume that D�[� is an admissible algebrain Adm(B�1 ;B�2 ), and that homomorphisms h�B1�D : B�1 ! D�[� and h�B2�D :B�2 ! D�[� satisfyingh�A�B1 � h�B1�D = h�A�B2 � h�B2�Dare given. Let f0 : V ! D be the restriction of h�A�B1�h�B1�D = h�A�B2�h�B2�Dto V . Since D�[� is an admissible structure, it satis�es all axioms of E [F ,and since C�[� is free over V for the class of all models of E [ F , themapping f0 : V ! D has a unique extension to a homomorphism f�[�C�D :C�[� ! D�[�.Since hB1�C and hA�B1 coincides with IdV on V , h�B1�C �f�[�C�D and h�B1�Dare two �-homomorphisms B�1 ! D� that coincide on V . Thus h�B1�C �f�[�C�D = h�B1�D, since B�1 is free over V for the class of all models of E,and the �-reduct D� of D�[� satis�es E. Similarly, one can prove thath�B2�C � f�[�C�D = h�B2�D.It remains to be shown that f�[�C�D is unique with this property. SincehB1�C coincides with IdV on V , any (� [ �)-homomorphism f : C�[� !D�[� satisfying h�B1�C � f = h�B1�D coincides with h�B1�D on V . Since C�[�is free, there can be only one such homomorphism.Notions of \amalgamated product," similar to the one given above, canbe found in universal algebra, model theory, and in category theory (see, e.g.,[Mal73, Che76, DG93]). There are, however, certain di�erences between oursituation and the typical situations in which amalgamation occurs in otherareas. In algebra or model theory, amalgamation has been introduced forparticular classes of algebraic structures such as groups, �elds, skew �eldsetc. Amalgamation is studied for such a �xed class of structures over thesame signature, and it is assumed that these structures all satisfy the sameset of axioms (e.g., those for groups, �elds, skew �elds, etc.). In our case,algebras over di�erent signatures are amalgamated, and these algebras satisfydi�erent types of axioms (or are not de�ned by axioms at all).13



3.2 Associativity of free amalgamationThe product construction is obviously commutative if the de�nition of theclass of admissible structures satis�es Adm(B�1 ;B�2 ) = Adm(B�2 ;B�1 ). Inorder to obtain associativity as well, we need some additional conditions onthe class of admissible structures.Before formulating these restrictions, we extend the de�nition of an amal-gamation base and of the free amalgamated product to the case of threestructures. Let � � �1 \ �2 \ �3. A quadruple (A�;B�11 ;B�22 ;B�33 ) withgiven homomorphic embeddingsh�A�Bi : A� ! B�ii (i = 1; 2; 3)is called a simultaneous amalgamation base. The structure D�1[�2[�3 closesthe simultaneous amalgamation base (A�;B�11 ;B�22 ;B�33 ) i�, for i = 1; 2; 3,there are homomorphisms h�iBi�D : B�ii ! D�isuch that h�A�B1 � h�1B1�D = h�A�B2 � h�2B2�D = h�A�B3 � h�3B3�D. In this case,(D�1[�2[�3 ; h�1B1�D; h�2B2�D; h�3B3�D) is a simultaneous amalgamated product ofB1;B2;B3 over A�.Now, assume that a class of admissible structures Adm(B1;B2;B3) is �xed.The simultaneous amalgamated product (C�1[�2[�3 ; h�1B1�C; h�2B2�C; h�3B3�C) iscalled admissible i� C�1[�2[�3 2 Adm(B1;B2;B3). The admissible simultane-ous amalgamated product (C�1[�2[�3 ; h�1B1�C; h�2B2�C; h�3B3�C) of B�11 ;B�22 ;B�33over A� is called a free simultaneous amalgamated product with respect toAdm(B1;B2;B3) i� for every admissible simultaneous amalgamated product(D�1[�2[�3 ; h�1B1�D; h�2B2�D; h�3B3�D) there exists a unique homomorphismf�1[�2[�3C�D : C�1[�2[�3 ! D�1[�2[�3such that for all i = 1; 2; 3,g�iBi�D = h�iBi�C � f�1[�2[�3C�D :As for the binary free amalgamated product, one can show that the freesimultaneous amalgamated product is unique up to isomorphism, providedthat it exists. For this reason, associativity of the free amalgamated product(under certain restrictions) is an easy consequence of the next lemma and itsdual. 14



Lemma 3.7 Let � � �1 \ �2 \ �3, and let A�;B�11 ;B�22 ;B�33 be structureswith �xed homomorphic embeddings h�A�B1 : A� ! B�11 , h�A�B2 : A� ! B�22 ,and h�A�B3 : A� ! B�33 . Assume that the free amalgamated product B2 � B3of B2 and B3, and the free amalgamated product B1 � (B2 � B3) of B1 andB2 � B3 exist, and that the classes of admissible structures satisfyB1 � (B2 �B3) 2 Adm(B1;B2;B3) � Adm(B2;B3) \ Adm(B1;B2 � B3):Then B1� (B2�B3) is the free simultaneous amalgamated product of B1, B2,and B3 over A�.Proof. Let B23 := B2 � B3 denote the free amalgamated product of B2and B3, and let hBi�B23 (i = 2; 3) be the corresponding embeddings. Thus,we have hA�B2 � hB2�B23 = hA�B3 � hB3�B23 : (3.8)Now, we consider (A;B1;B23) with the embeddings hA�B1 : A ! B1 andhA�B2 � hB2�B23 : A ! B23 as amalgamation base. Let B123 := B1 � B23be the corresponding free amalgamated product with embeddings hB1�B123and hB23�B123 . By de�nition of the amalgamated product, these embeddingssatisfy hA�B1 � hB1�B123 = (hA�B2 � hB2�B23) � hB23�B123 : (3.9)We show that B123 closes the simultaneous amalgamationbase (A;B1;B2;B3).To this purpose, we de�nehBi�B123 := hBi�B23 � hB23�B123 (i = 2; 3): (3.10)It is easy to see that, with this de�nition, (3:8) and (3:9) implyhA�B1 � hB1�B123 = hA�B2 � hB2�B123 = hA�B3 � hB3�B123 ;i.e., B123 indeed closes the simultaneous amalgamation base. Because of theassumption that B1 � (B2 � B3) 2 Adm(B1;B2;B3), we know that B123 2Adm(B1;B2;B3). Thus, it remains to be shown that the admissible simulta-neous amalgamated product B123 is in fact free.Assume that D 2 Adm(B1;B2;B3) is an admissible simultaneous amal-gamated product with embeddings gBi�D : Bi ! D (i = 1; 2; 3), which thussatisfy hA�B1 � gB1�D = hA�B2 � gB2�D = hA�B3 � gB3�D: (3.11)15



Equation (3:11), together with our assumption that the classes of admissiblestructures satisfy Adm(B1;B2;B3) � Adm(B2;B3), implies that D is alsoan admissible amalgamated product of B2 and B3. Since B23 is the freeamalgamated product of B2 and B3, there exists a unique homomorphismfB23�D : B23 ! D such thatgBi�D = hBi�B23 � fB23�D (i = 2; 3): (3.12)Because of our assumption Adm(B1;B2;B3) � Adm(B1;B2 � B3), we knowthat D 2 Adm(B1;B2 � B3). In addition, we have hA�B1 � gB1�D = hA�B2 �gB2�D = hA�B2 � hB2�B23 � fB23�D (the �rst identity holds because of (3:11)and the second because of (3:12)). This shows that D with the embeddingsgB1�D and fB23�D is an admissible amalgamated product of B1 and B23. SinceB123 is the free amalgamated product of B1 and B23, there exists a uniquehomomorphism fB123�D : B123 ! D such thatgB1�D = hB1�B123 � fB123�D; (3.13)fB23�D = hB23�B123 � fB123�D: (3.14)We must show that gBi�D = hBi�B123 � fB123�D for i = 1; 2; 3. For i = 1, thisis just identity (3:13). For i = 2; 3, we have hBi�B123 � fB123�D = hBi�B23 �hB23�B123 � fB123�D = hBi�B23 � fB23�D = gBi�D (the �rst identity holds by(3:10), the second by (3:14), and the third by (3:12)).It remains to be shown that fB123�D is unique with this property. Thus,assume that eB123�D : B123 ! D is a homomorphism satisfyinggBi�D = hBi�B123 � eB123�D (i = 1; 2; 3): (3.15)The identity (3:15) together with (3:10) yieldsgBi�D = hBi�B23 � hB23�B123 � eB123�D (i = 2; 3):Since fB23�D is the unique morphism satisfying (3:12), this impliesfB23�D = hB23�B123 � eB123�D: (3.16)Now, consider (3:15) for i = 1 and (3:16): Since fB123�D is the unique homo-morphism satisfying (3:13) and (3:14), these two identities imply fB123�D =eB123�D.Obviously, a dual lemma holds for (B1 � B2) �B3. Since the free simul-taneous amalgamated product is unique, this implies the next theorem.16



Theorem 3.17 (Associativity of free amalgamation)Let � � �1 \ �2 \ �3, and let A�;B�11 ;B�22 ;B�33 be structures with �xedhomomorphic embeddings h�A�B1 : A� ! B�11 , h�A�B2 : A� ! B�22 , andh�A�B3 : A� ! B�33 . Assume that the free amalgamated products B2 � B3,B1 � (B2 � B3), B1 � B2, and (B1 � B2) � B3 exist, and that the classes ofadmissible structures satisfyfB1 � (B2 �B3); (B1 � B2)�B3g � Adm(B1;B2;B3); andAdm(B1;B2;B3) � Adm(B1;B2) \ Adm(B1 �B2;B3) \Adm(B2;B3) \ Adm(B1;B2 �B3):Then we have (B1�B2)�B3 ' B1� (B2�B3), and this structure is the freesimultaneous amalgamated product of B1, B2, and B3 over A�.4 Simply Combinable StructuresIn this section we shall introduce the concept of a simply combinable (SC-)structure. This purely algebraic notion yields a large class of structures forwhich an amalgamated product can be obtained by an explicit construction,provided that the component structures have disjoint signatures. Quotientterm algebras, but also other typical domains for constraint based reasoningsuch as the algebra of rational trees and (certain types of) feature structuresbelong to this class. Quotient term algebras will serve as motivating examplefor the abstract de�nitions. The need for using more general notions will beillustrated with the help of the algebra of rational trees [Col84, Mah88] andfeature structures [APS94, SmT94].4.1 Stable hulls and atom setsLet E be an equational theory and V be a countably in�nite set (of variables).The quotient algebra T := T (�F ; V )==E is the free algebra over V forthe class of all models of E. In particular, this means that this algebrais generated by V , and that every mapping from V into its carrier can beextended to an endomorphism of T (�F ; V )==E . For every element [t] of thisalgebra, there exists a �nite subset U � V such that [t] is \generated by U ,"i.e., [t] is in the subalgebra T (�F ; U)==E of T (�F ; V )==E . Obviously, if [t]is generated by U , then two homomorphisms that coincide on U also coincideon [t]. 17



When de�ning SC-structures we shall keep most of these properties. Inparticular, every SC-structure will have a distinguished subset of \atoms",and these atoms almost behave like variables of a quotient term algebra.However, we shall not demand that the underlying algebra of an SC-structureis generated by its atom set. Consider, as an example, the algebra of rationaltrees where leaves are labeled by constants or variables. This algebra is notgenerated by the set of variables (since \generated by" talks about a �niteprocess whereas rational trees may be in�nite). Still, two endomorphisms ofthis algebra that coincide on a set U of variables coincide on all trees thatare built over U . This motivates the de�nition of stable hulls and atom setsgiven below.De�nition 4.1 Let A0; A1 be subsets of the �-structure A�, and let M �End�A. Then A0 stabilizes A1 with respect to M i� all elements h1 and h2of M that coincide on A0 also coincide on A1. If M = End�A, then we saythat A0 strictly stabilizes A1.The reason for considering submonoids of End�A is that in some cases(such as for feature structures) not all endomorphisms will be of interest inour context. In the sequel, we consider a �xed �-structure A�; M alwaysdenotes a submonoid of End�A.De�nition 4.2 For A0 � A the stable hull of A0 with respect to M is theset SHAM(A0) := fa 2 A; A0 stabilizes fag with respect to Mg:The following two lemmas show that the stable hull of a set A0 has pro-perties that are similar to those of the subalgebra generated by A0. Note,however, that the stable hull can be larger than the generated subalgebra(see Example 4.9).Lemma 4.3 Let A0 be a subset of the carrier A of A� such that SHAM(A0) 6=;. Then SHAM(A0) is a �-substructure of A�, and A0 � SHAM(A0).Proof. Obviously, A0 � SHAM(A0). Let f 2 � be an n-ary functionsymbol, and let a1; : : : ; an be elements of SHAM(A0). We must show thatfA(a1; : : : ; an) 2 SHAM(A0). Let h1 and h2 be two endomorphisms in Mthat coincide on A0. By assumption, h1 and h2 coincide on a1; : : : ; an.Thus h1(fA(a1; : : : ; an)) = fA(h1(a1); : : : ; h1(an)) = fA(h2(a1); : : : ; h2(an)) =h2(fA(a1; : : : ; an)). 18



Lemma 4.4 Let A0; A1 be subsets of the �-structure A�, and let h 2M. Ifh(A0) � SHAM(A1), then h(SHAM(A0)) � SHAM(A1).Proof. Suppose that h(A0) � SHAM(A1). Let g1 and g2 be two endomor-phisms in M that coincide on A1. Then g1 and g2 coincide on SHAM(A1).Thus h�g1 and h�g2 coincide on A0. It follows that h�g1 and h�g2 coincideon SHAM(A0), and g1 and g2 coincide on h(SHAM(A0)).De�nition 4.5 The set X � A is an M-atom set for A� if every mappingX ! A can be extended to an endomorphism in M. If M = End�A, then Xis simply called an atom set for A�.For T , the set of variables V is an atom set. Two subalgebras generatedby subsets V0; V1 of V of the same cardinality are isomorphic. The sameholds for atom sets and their stable hulls.Lemma 4.6 Let X0; X1 be two non-empty M-atom sets of A� of the samecardinality. Then every bijection h0 : X0 ! X1 can be extended to an iso-morphism between SHAM(X0) and SHAM(X1).Proof. Let h0 : X0 ! X1 be bijective, and let h1 : X1 ! X0 denote theinverse mapping. Since X0 and X1 are M-atom sets, both mappings canbe extended to endomorphisms bh0 and bh1 in M. Now (bh0 � bh1) 2 M is anendomorphism that coincides with IdA 2 M on X0. Therefore, it coincideswith IdA on SHAM(X0).Let gi denote the restriction of bhi to SHAM(Xi) (i = 0; 1). The previouslemma shows that g0 : SHAM(X0) ! SHAM(X1);g1 : SHAM(X1) ! SHAM(X0):We have g0 � g1 = IdSHAM(X0), which implies that g0 is injective and g1 issurjective. Symmetrically, we can show that g0 is surjective and g1 is injective.Thus, g0 and g1 are bijective homomorphisms, and gi is the inverse of g1�i(i = 0; 1).Another important property of generators in free algebras that can begeneralized to atom sets is given by the next lemma:19



Lemma 4.7 Let X be an in�nite M-atom set of the countably in�nite �-structure A�, and let X0 � X be �nite. Then every mapping h0 : X0 ! Acan be extended to a surjective endomorphism in M.Proof. Obviously, h0 can be extended to a surjective mapping h1 : X !A. Since X is an M-atom set, h1 can be extended to an endomorphismh2 2 M of A�. By construction, h2 is surjective.4.2 SC-structures|examples and basic propertiesWe are now ready to introduce the main concept of this paper.De�nition 4.8 A countably in�nite �-structure A� is an SC-structure i�there exists a monoid M � End�A such that A� has an in�nite M-atomset X where every a 2 A is stabilized by a �nite subset of X with respectto M. We denote this SC-structure by (A�;M; X). If M = End�A, then(A�;End�A; X) is called a strong SC-structure.Examples 4.9 The following list of examples shows that in fact many solu-tion domains for symbolic constraints are SC-structures.(1) Let �F be a �nite set of function symbols. The free algebra T (�F ; V )==Emodulo the equational theory E with countably in�nite generator set V is astrong SC-structure with atom set V . The same holds for free structures, asconsidered in [BaS94a].(2) Let K be a �eld, let �K := f+g [ fsk; k 2 Kg. The K-vector space spannedby a countably in�nite basis X is a strong SC-structure over the atom setX. Here \+" is interpreted as addition of vectors, and sk denotes scalarmultiplication with k 2 K.(3) Let �F be a �nite set of function symbols, and let R�F be the algebra ofrational trees ([Col84, Mah88]) where leaves are labelled with constants from�F or with variables from the countably in�nite set (of variables) V . Itis easy to see that every mapping V ! R can be extended to a uniqueendomorphism of R�F , and that (R�F ;End�FR ; V ) is a strong SC-structure.Note, however, that R�F is not generated by V : it is only|and exactly|thesubset of �nite trees which is generated by V .20



(4) Let Vhfs(Y ) be the set of all nested, hereditarily �nite (standard, i.e., well-founded) sets over the countably in�nite set of \urelements" Y . Thus,each M 2 Vhfs(Y ) is �nite, and the elements of M are either in Y or inVhfs(Y ), the same holds for elements of elements etc. There are no in�-nite descending membership sequences. Since union is not de�ned for theurelements y 2 Y , the urelements will not be treated as sets here. LetX := ffyg j y 2 Y g. Let h : X ! Vhfs(Y ) be an arbitrary mapping.We want to show that there exists a unique extension of h to a mappingĥ : Vhfs(Y ) ! Vhfs(Y ) that is homomorphic with respect a signature thatcontains a binary symbol for union \[", a unary symbol for set construc-tion f�g, and a constant � that denotes the empty set. We have to de�neh(;) := ;. Each non-empty M 2 Vhfs(Y ) can uniquely be represented in theformM = x1[ : : :[xk [fM1g[ : : :[fMlg where xi 2 X, for 1 � i � k, andwhere theMi are the elements ofM that belong to Vhfs(Y ). By induction (onnesting depth), we may assume that ĥ(Mi) is already de�ned (1 � i � l).Obviously ĥ(M) := h(x1)[ : : :[ h(xk)[ fĥ(M1)g [ : : :[ fĥ(Ml)g is one andthe only way of extending ĥ in a homomorphic way to the set M of deepernesting. For M = x 2 X we obtain ĥ(x) = h(x), thus ĥ is an extension of h.Moreover, each mapping ĥ is in fact homomorphic with respect to the givensignature. Thus Vhfs(Y ), under the given signature, is a strong SC-structurewith atom set X.(5) Similarly it can be seen that the domain Vhfnws(Y ) of heriditarily �nite non-wellfounded sets3 over a countably in�nite set of urelements Y , under thesame signature, is a strong SC-structure over the atom set X = ffyg j y 2Y g.(6) The two domains Vh(Y ) and Vhfnwl(Y ) of nested, hereditarily �nite (1) well-founded or (2) non-wellfounded lists over the countably in�nite set of urele-ments Y , under a signature with a binary symbol for concatenation \�", a(unary) symbol for list construction h�i : l 7! hli, and a constant nil for theempty list, are strong SC-structures over the atom set X = fhyi; y 2 Y g ofall lists with one element y 2 Y . Formally, these domains can be describedas the set of all (1) �nite or (2) rational trees where the topmost node haslabel \h i" (representing a list constructor of varying �nite arity), nodes withsuccessors have label \h i", and leaves have labels y 2 Y or \h i".(7) Let Lab, Fea, and X be mutually disjoint in�nite sets of labels, features,and atoms respectively. Following [APS94], we de�ne a feature tree to be a3Non-wellfounded sets, sometimes called hypersets, became prominent through [Acz88].They can have in�nite descending membership sequences. The heriditarily �nite non-wellfounded sets are those having a \�nite picture," see [Acz88] for details.21



partial function t : Fea� ! Lab [ X whose domain is pre�x closed (i.e., ifpq 2 dom(t) then p 2 dom(t) for all words p; q 2 Fea�), and in which atomsdo not label interior nodes (i.e., if p(t) = x 2 X then there is no f 2 Feawith pf 2 dom(t)). As usual, rational feature trees are required to have only�nitely many subtrees. In addition, they must be �nitely branching.We use the set R of all rational feature trees as carrier set of a structure R�whose signature contains a unary predicate L for every label L 2 Lab, anda binary predicate f for every f 2 Fea. The interpretation LR of L in R isthe set of all rational feature trees having root label L. The interpretationfR of f consists of all pairs (t1; t2) 2 R�R such that t1(f) is de�ned and t2is the subtree of t1 at f . The structure R� de�ned this way can be seen asa non-ground version of the solution domain used in [APS94].Each mapping h : X ! R has a unique extension to an endomorphism ofR� that acts like a substitution, replacing each leaf with label x 2 X bythe feature tree h(x). With composition, the set of these substitution-likeendomorphisms yield a monoid M. Thus (R�;M; X) is an SC-structure.We shall call it the non-ground structure of rational feature trees. In thiscase, we do not have a strong SC-structure since R� has endomorphismsthat modify non-leaf nodes (e.g., by introducing new feature-edges for suchinternal nodes).Now suppose that we introduce, following [SmT94], additional arity predi-cates F for every �nite set F � Fea. The interpretation FR of F consists ofall feature trees t where the root of t has a label L 2 Lab and where F is(exactly) the set of all features departing from the root of t. Let � be theextended signature. Then (R�;M; X) is a strong SC-structure. We shallcall it the non-ground structure of rational feature trees with arity.As we may see from the previous examples, there is often a ground variantof a given SC-structure. The following de�nition formalizes this relationship.De�nition 4.10 Let (A�;M; X) be an SC-structure such that SHAM(;) isnon-empty. Then A�H := SHAM(;) is called the ground substructure of (A�;M; X).Before we can turn to the combination of SC-structures, we must establishsome useful properties of these structures.Lemma 4.11 Let (A�;M; X) be an SC-structure.1. A� = SHAM(X) and every mapping X ! A has a unique extension to anendomorphism of A� in M. 22



2. Let X0 � X. Then we have SHAM(X0) \X = X0.3. For all �nite sets fa1; : : : ; ang � A there exists a unique minimal �nite subsetY of X such that fa1; : : : ; ang � SHAM(Y ).Proof. (1) Since every element of A is stabilized by a �nite subset ofX, the M-atom set X stabilizes the whole structure A with respect to M,which means that A� = SHAM(X). Existence of the extension in M followsfrom the fact that X is an M-atom set, and uniqueness is an immediateconsequence of A� = SHAM(X).(2) The inclusion X0 � SHAM(X0) follows from Lemma 4.3. For theother direction, assume that an M-atom x 2 X is in SHAM(X0) n X0. Leth1; h2 : X ! A be mappings that coincide on X0, but di�er on x. BecauseX is anM-atom set, there are endomorphisms bh1; bh2 2 M extending h1; h2.Since bh1 and bh2 coincide on X0, they coincide on x 2 SHAM(X0). This is acontradiction to our assumption that h1 and h2 di�er on x.(3) Since (A�;M; X) is an SC-structure, every �nite set fa1; : : : ; ang � Ais stabilized by a �nite subset of X with respect to M. Let X0; X1 be two�nite subsets of X such that fa1; : : : ; ang � SHAM(Xi) for i = 0; 1. We claimthat fa1; : : : ; ang � SHAM(X0 \ X1). In fact, let h0; h1 2 M be two endo-morphisms that coincide on X0 \ X1. We may choose an endomorphismh0;1 2 M that coincides with h0 on X0 and with h1 on X1. Such an endo-morphism exists in M since (A�;M; X) is an SC-structure. Now h0 andh0;1 coincide on fa1; : : : ; ang, and h1 and h0;1 coincide on fa1; : : : ; ang. Thisshows that h0 and h1 coincide on fa1; : : : ; ang, and thus we have provedfa1; : : : ; ang � SHAM(X0 \ X1). Obviously, this implies that there exists aunique minimal �nite subset Y of X such that fa1; : : : ; ang � SHAM(Y ).The third statement of the lemma shows that the notion \is stabilizedby" behaves better than the notion \is generated by." In fact, minimal setsof generators need not be unique, as demonstrated by the next example.Example 4.12 We consider the quotient term algebra T (�F ; V )==E , where�F consists of one unary function symbol f , V is countably in�nite, andE = ff(x) = f(y)g. Obviously, the carrier of T (�F ; V )==E consists of the=E-classes fxig for xi 2 V and one additional class [f(�)] := ff(t) j t 2T (�F ; V )g.It is easy to see that for all xi 2 V , the element [f(�)] of T (�F ; V )==Eis generated by fxig. However, [f(�)] is not generated by ;. Thus, there arein�nitely many minimal sets of generators of [f(�)].23



De�nition 4.13 Let (A�;M; X) be an SC-structure, and let fa1; : : : ; ang �A. The stabilizer StabM(a1; : : : ; an) of fa1; : : : ; ang is the (unique) minimal�nite subset Y of X such that fa1; : : : ; ang � SHAM(Y ).Using this notion of stabilizers, the validity of positive formulae in SC-structure can be characterized in an algebraic way. This characterizationis essential for proving correctness of our method of combining constraintsolvers for SC-structures.Lemma 4.14 Let (A�;M; X) be an SC-structure, and let = 8~u19~v1 : : :8~uk9~vk '(~u1; ~v1; : : : ; ~uk; ~vk)be a positive �-sentence. Then the following conditions are equivalent:1. A� j= 8~u19~v1 : : : 8~uk9~vk '(~u1; ~v1; : : : ; ~uk; ~vk),2. there exist ~x1 2 ~X;~e1 2 ~A; : : : ; ~xk 2 ~X;~ek 2 ~A such that(a) A� j= '(~x1; ~e1; : : : ; ~xk; ~ek),(b) all M-atoms in the sequences ~x1; : : : ; ~xk are distinct,(c) for all j; 1 � j � k, the components of ~xj are not contained in StabM(~e1) [: : : [ StabM(~ej�1).Proof. \1 ) 2". First, select an arbitrary sequence ~x1 of distinct M-atoms from X such that this tuple has the same length as ~u1. Since A�satis�es , there exists a sequence ~e1 2 ~A such that(�) A� j= 8~u29~v2 : : :8~uk9~vk '(~x1; ~e1; ~u2; ~v2; : : : ; ~uk; ~vk):Now, we may choose a �nite sequence ~x2 of distinct M-atoms from X suchthat this sequence has the same length as ~u2, and none of its components oc-curs in StabM(~e1) or ~x1. This is possible becauseX is in�nite by assumption,and StabM(~e1) is �nite.Because of (�), there exist a sequence ~e2 2 ~A such thatA� j= 8~u39~v3 : : : 8~uk9~vk '(~x1; ~e1; ~x2; ~e2; ~u3; ~v3; : : : ; ~uk; ~vk):Obviously, this argument can be iterated until Condition 2 of the lemma isproved.\2 ) 1". Let ~x1 2 ~X;~e1 2 ~A; : : : ; ~xk 2 ~X;~ek 2 ~A as in Condition 2 begiven. We claim that this implies, for all i; 0 � i � k, the following conditionCi: 24



Ci: For all ~a1 2 ~A there exists ~b1 2 ~A, ..., for all ~ai 2 ~A there exists ~bi 2 ~A,and there exist ~yi+1; : : : ; ~yk 2 ~X , ~bi+1; : : : ;~bk 2 ~A such that(a') A� j= '(~a1;~b1; : : : ;~ai;~bi; ~yi+1;~bi+1; : : : ; ~yk;~bk),(b') all atoms occurring in the tuples ~yi+1; : : : ; ~yk are distinct,(c') for all j; i < j � k, no component of ~yj occurs in Sj�1�=1 StabM(~b�)[Si�=1 StabM(~a�).Obviously, the condition Ck is just Condition 1 of the lemma. We showthat condition Ci holds for all i; 0 � i � k, by induction on i. For i = 0,validity of C0 follows from Condition 2.Now, assume that Ci holds for some i; 0 � i < k. To show Ci+1, assumethat an arbitrary sequence ~ai+1 2 ~A is given. For j = i+1; :::; k, we de�ne amapping hj from a �nite set of atoms Xj to A by induction on j.For j = i + 1, the set Xi+1 consists of StabM(~bi+1) [ Si�=1(StabM(~a�) [StabM(~b�)) and the components of ~yi+1. The mapping hi+1 leaves all elementsof Si�=1(StabM(~a�)[StabM(~b�)) invariant. It maps (each component of) ~yi+1to (the corresponding component of) ~ai+1. The elements of StabM(~bi+1) thathave not yet obtained an image this way are mapped in an arbitrary way.Note that this de�nition of hi+1 is consistent because of (b') and (c') of Ci.Now assume that Xj; hj are already de�ned (for some i+1 � j < k). ThesetXj+1 is obtained as the union ofXj with StabM(~bj+1) and the componentsof ~yj+1. The mapping hj+1 is obtained as follows:1. Its restriction to Xj coincides with hj .2. Let ~zj be a tuple of distinct atoms such that no component of ~zj occursin StabM(hj(Xj)). (Such a tuple exists since the set of atoms wasassumed to be in�nite, and StabM(hj(Xj)) is �nite.) The mappinghj+1 maps (each component of) ~yj+1 to (the corresponding componentof) ~zj+1.3. The elements of StabM(~bi+1) that have not yet obtained an image thisway are mapped in an arbitrary way.Note that Condition 1 does not conict with Condition 2 since (b') and (c')of Ci imply that none of the components of ~yj+1 occurs in Xj.25



Since X is an in�nite M-atom set of the countably in�nite �-structureA�, and Xk is a �nite subset of X, Lemma 4.7 implies that there exists asurjective endomorphism H 2 M that extends hk. By de�nition of hk, wehave H(~a1) = ~a1, H(~b1) = ~b1, ..., H(~ai) = ~ai, H(~bi) = ~bi, H(~yi+1) = ~ai+1,and for i+ 1 < j � k, H(~yj) = ~zj. Thus, Lemma 2.1 impliesA� j= '(~a1;~b1; : : : ;~ai;~bi;~ai+1; H(~bi+1); ~zi+2; H(~bi+2); : : : ; ~zk; H(~bk)):This yields (a') of Ci+1. It is easy to see that the mapping hk was constructedsuch that (b') and (c') hold as well.5 SC-Substructures and SC-SuperstructuresIn Section 6, where we describe how to construct amalgamated products ofSC-structures, it will be helpful to embed a given SC-structure in a larger(isomorphic) SC-structure. For the case of term algebras modulo an equa-tional theory this is trivial. In fact, if V1 is any countable superset of thecountably in�nite set V then T (�F ; V )==E is isomorphic to T (�F ; V1)==E .For SC-structures, a similar property holds, which is, however, harder toprove. For this reason, we treat this problem in a separate, rather techni-cal section. The reader who is eager to see how amalgamated products canbe constructed may skip this section, and|for the moment|just believe itsresults.Let (A�;M; X) be an SC-structure, letX0 be an in�nite subset ofX, andlet A�0 := SHAM(X0). Our �rst goal is to show that A�0 is an SC-structurewith atom set X0, and that there are close connections between this SC-structure and the SC-structure (A�;M; X). This will justify to call A�0 anisomorphic SC-substructure of A�.Lemma 5.1 There exists an isomorphism hA�A0 : A� ! A�0 that maps Xbijectively to X0.Proof. By Lemma 4.11, A� = SHAM(X), and thus Lemma 4.6 impliesthat every bijection between X and X0 can be extended to an isomorphismfrom A� to A�0 .Let hA0�A := h�1A�A0 be the inverse isomorphism. For m 2 End�A, themappingm# := hA0�A �m � hA�A0 is obviously an endomorphism of A�0 . Wede�ne M0 := fm# j m 2 Mg. 26



Lemma 5.21. M0 is a submonoid of End�A0.2. The mapping H# : m 7! m# is an isomorphism between the monoids End�Aand End�A0 .3. M0 = End�A0 if, and only if, M = End�A.Proof. (1) Sincem# �m0# = hA0�A �m � hA�A0 � hA0�A �m0 � hA�A0= hA0�A �m �m0 � hA�A0= (m �m0)#;M0 is a submonoid of End�A0 , and H# is a homomorphism between the mo-noids End�A and End�A0 .(2) There is a dual homomorphismH" : End�A0 ! End�A : m 7! m" := hA�A0 �m � hA0�A;and it is easy to see that H# � H" is the identity on End�A, and H" � H# isthe identity on End�A0. Thus, both are isomorphisms that are inverse to eachother.(3) SinceH# is bijective, the imagesM0 ofM under H# is equal to End�A0i�M = End�A.Lemma 5.31. (A�0 ;M0; X0) is an SC-structure.2. (A�0 ;M0; X0) is strong i� (A�;M; X) is strong.3. Every mapping gX0�A : X0 ! A can be extended to a homomorphism gA0�A :A�0 ! A�. If (A�0 ;M0; X0) is strong, then this extension is unique.4. Let X 00 be such that X0 � X 00 � X. Every bijection g0 : X0 ! X 00 canbe extended to an isomorphism between A�0 = SHAM(X0) and SHAM(X 00). If(A�0 ;M0; X0) is strong, then this extension is unique.Proof. (1.1) First, we show that X0 is an M0-atom set of A�0 . LetgX0�A0 : X0 ! A0 be a mapping. There is a corresponding mappinggX�A : X ! A : x 7! hA0�A(gX0�A0(hA�A0(x)):44Recall that hA�A0 maps X to X0. 27



Since (A�;M; X) is an SC-structure, there exists an extension gA�A of gX�Ato an endomorphism in M. Its image (gA�A)# is an endomorphism in M0,and it is easy to see that this endomorphism extends gX0�A0 .(1.2) Second, we show that every element a of A0 is stabilized by the sethA�A0(StabM(hA0�A(a))). Letm# andm0# be two endomorphisms inM0 thatcoincide on hA�A0(StabM(hA0�A(a))). For x 2 StabM(hA0�A(a)) we havem(x) = hA0�A(m#(hA�A0(x)))= hA0�A(m0#(hA�A0(x))) = m0(x);which shows that m and m0 coincide on StabM(hA0�A(a)). Thus m and m0coincide on hA0�A(a). We obtainm#(a) = hA�A0(m(hA0�A(a)))= hA�A0(m0(hA0�A(a)))= m0#(a):(1.3) Since StabM(hA0�A(a)) is a �nite subset of X, we know that theset hA�A0(StabM(hA0�A(a))) is a �nite subset of X0. Thus, every elementof A0 is stabilized by a �nite subset of X0, which completes the proof that(A�0 ;M0; X0) is an SC-structure.(2) Obviously, the third statement in Lemma 5.2 implies that the SC-structure (A�0 ;M0; X0) is strong i� (A�;M; X) is strong.(3) Let gX0�A : X0 ! A be a mapping. We choose an arbitrary extensiongX�A : X ! A of gX0�A. Since X is an M-atom set, gX�A can be extendedto an endomorphism gA�A : A� ! A� in M. The restriction gA0�A of gA�Ato A0 = SHAM(X0) is a homomorphism between A�0 and A� that extendsgX0�A.If (A�0 ;M0; X0) is strong, then (A�;M; X) is also strong. Let hX�X0 :X ! X0 be a bijection, and let hA�A0 be an extension of hX�X0 to anisomorphism from A� = SHAM(X) to A�0 = SHAM(X0) (see Lemma 4.6).For all homomorphisms g0 : A�0 ! A� that extend gX0�A, the compositionhA�A0 � g0 is an endomorphism of A� that extends the mapping hX�X0 �gX0�A : X ! A. Since (A�;M; X) is strong, all these endomorphismshA�A0 � g0 coincide.5 Because hA�A0 is an isomorphism, this implies thatall homomorphisms g0 extending gX0�A coincide, which yields the desireduniqueness result.5The assumption \(A�;M;X) strong" is necessary, since otherwise uniqueness onlyholds for elements ofM, and we could not be sure that all gA�A0 � g0 belong toM.28



(4) Let g0 : X0 ! X 00 be a bijection, whereX0 � X 00 � X. By Lemma 4.6,g0 can be extended to an isomorphism between A�0 = SHAM(X0) and A0�0 :=SHAM(X 00).Suppose that (A�0 ;M0; X0) is strong. Then (A�;M; X) is also strong.Let hX�X0 and hA�A0 be de�ned as in part (3) of the proof. For all homo-morphisms g00 : A�0 ! A0�0 that extend g0, the composition hA�A0 � g00 is anendomorphism ofA� that extends the mapping hX�X0�g0. Since (A�;M; X)is strong, all these endomorphisms hA�A0 � g00 coincide, Because hA�A0 is anisomorphism, this implies that all homomorphisms g00 extending g0 coincide.Until now, we have seen that any countably in�nite subset X0 of theatom set X of an SC-structure (A�;M; X) is an atom set for an appropriateisomorphic SC-substructure (A�0 ;M0; X0) of (A�;M; X). In the remainderof this section, we use this result to go in the other direction, i.e., we showthat a given SC-structure (A�;M; X) can be embedded into an isomorphicSC-superstructure.Theorem 5.4 Let (A�;M; X) be an SC-structure. There exists an SC-structure (A�1;M1; X1) such that:(a0) A� and A�1 are isomorphic.(a1) A� = SHA1M1(X), X � X1, and X1 nX is in�nite.(a2) (A�1;M1; X1) is strong i� (A�;M; X) is strong.(a3) Every mapping X ! A1 can be extended to a homomorphisms h�A�A1 :A� ! A�1. If (A�;M; X) is a strong SC-structure, then this extension isunique.(a4) For every X 0 such that X � X 0 � X1, every bijection g : X ! X 0 can be ex-tended to an isomorphism between SHA1M1(X) and SHA1M1(X 0). If (A�;M; X)is a strong SC-structure, then this extension is unique.Proof. (1) In the �rst part of the proof, we de�ne the structure A�1and show that is isomorphic to A�. Let X0 be an in�nite subset of X suchthat X nX0 is in�nite, and let (A�0 ;M0; X0) = SHAM(X0) be the isomorphicSC-substructure satisfying the properties stated in Lemma 5.3. Let hA0�A :A�0 ! A� be an isomorphism that extends a bijection between the atom setsX0 and X. 29



As carrier of the SC-superstructure to be constructed, we take an arbi-trary countably in�nite superset A1 of A such that A1 n A is in�nite. LetX1 be a subset of A1 such that1. X � X1 and X1 nX is in�nite,2. X1 \ A = X,3. the sets A n (A0 [X) and A1 n (A [X1) have the same cardinality.We extend hA0�A to a bijection hA�A1 : A ! A1 such that hA�A1(X) =X1. This is possible because of our choice of hA0�A and of X1. In fact,by Lemma 4.11, A = A0 ] (X nX0) ] (A n (A0 [X)) is a partitioning of A,and our assumptions ensure that A1 = A ] (X1 nX) ] (A1 n (A [X1)) isa partitioning of A1. In addition, both X n X0 and X1 n X are countablyin�nite, and A n (A0 [X) and A1 n (A [X1) have the same cardinality byassumption.The bijection hA�A1 and its inverse hA1�A := h�1A�A1 can be used tode�ne a �-structure A�1 on the carrier A1 as follows: Let f 2 � be an n-aryfunction symbol, and a1; : : : ; an 2 A1. We de�ne the interpretation of f inA�1 by fA1(a1; : : : ; an) := hA�A1(fA(hA1�A(a1); : : : ; hA1�A(an))):Let p 2 � be an m-ary predicate symbol, and a1; : : : ; am 2 A1. We de�nethe interpretation of p in A�1 bypA1[a1; : : : ; an] :() pA[hA1�A(a1); : : : ; hA1�A(an)]:Note that this de�nition is compatible with the given �-structure on A � A1since hA0�A, i.e., the restriction of hA�A1 to A0, is a �-isomorphism. Withthis de�nition, the mapping hA�A1 becomes an isomorphism between the�-structures A�1 and A�, and hA1�A is the inverse isomorphism.(2) In the second part of the proof, we de�ne the monoidM1, show that(A�1;M1; X1) is an SC-structure, and that (a2) holds. The submonoidMof End�A induces a corresponding submonoidM1 of End�A1 as follows: Foreach m 2 End�A we may de�ne a corresponding endomorphism m1 : a 7!m1(a) := hA�A1(m(hA1�A(a))) ofA1. LetM1 be the set fm1 j m 2 Mg.Since m1 �m01(a) = hA�A1(m0(hA1�A(hA�A1(m(hA1�A(a))))))= hA�A1(m �m0(hA1�A(a)))= (m �m0)1(a);30



M1 is in fact a submonoid of End�A1. As in the proof of Lemma 5.3, we canshow that the mapping m 7! m1 is an isomorphism between the monoidsEnd�A and End�A1. In particular, this implies that M1 = End�A1 if, andonly if, M = End�A. Again, this will imply (a2) as soon as we have provedthat (A�1;M1; X1) is an SC-structure.To this purpose, we show that X1 is an M1-atom set of A�1. LetgX1�A1 : X1 ! A1 be a mapping. There is a corresponding mappinggX�A : X ! A : x 7! hA1�A(gX1�A1(hA�A1(x))):Since (A�;M; X) is an SC-structure, there exists an extension gA�A of gX�Ato an endomorphism inM. Its image (gA�A)1 is an endomorphisms inM1,and it is easy to see that this endomorphism extends gX1�A1. Thus, X1 isin fact an M1-atom set of of A�1.For a given a 2 A1 is also straightforward to verify that the �nite sethA�A1(StabM(hA1�A(a)) � X1 stabilizes a with respect to M1. Thus wehave shown that (A�1;M1; X1) is an SC-structure. As mentioned before,(a2) holds.(3) In order to prove (a1), it remains to be shown that A� = SHA1M1(X).We know that A�0 = SHAM(X0).First, assume that a 2 A. Since hA�A1 maps A0 bijectively onto A, thereexists a0 2 A0 such that a = hA�A1(a0). Now assume that m1 and m01coincide on X. It follows that m;m0 coincide on X0. In fact, let x0 2 X0.Then hA�A1(x0) 2 X, and thusm(x0) = hA1�A(m1(hA�A1(x0)))= hA1�A(m01(hA�A1(x0)))= m0(x0):Thus, we know that m;m0 coincide on A�0 = SHAM(X0). It follows thatm1(a) = hA�A1(m(hA1�A(a)))= hA�A1(m(a0))= hA�A1(m0(a0))= hA�A1(m0(hA1�A(a)))= m01(a);and thus we have proved a 2 SHA1M1(X).Second, assume that a 2 SHA1M1(X). We show that this implies that itsimage hA1�A(a) 2 SHAM(X0) = A�0 . Since the restriction of hA�A1 to A031



maps A0 onto A, it follows that a = hA�A1(hA1�A(a)) 2 A. Thus, assumethat m;m0 2 M coincide on X0. It is easy to see that this implies thatm1;m01 coincide on X, and thus they coincide on a 2 SHA1M1(X). It followsthat m(hA1�A(a)) = hA1�A(m1(a))= hA1�A(m01(a))= m0(hA1�A(a));which proves hA1�A(a) 2 SHAM(X0).(4) In order to prove (a3), assume that gX�A1 : X ! A1 is an arbitrarymapping. There is a corresponding mappinggX0�A : X0 ! A : x 7! hA1�A(gX�A1(hA�A1(x))):By Lemma 5.3, gX0�A can be extended to a homomorphism g�A0�A : A�0 !A�. Now g�A�A1 : A� ! A�1 : a 7! hA�A1(gA0�A(hA1�A(a)))is a homomorphism that extends gX�A1. It is easy to see that there isa 1{1 correspondence between the extensions of gX�A1 to homomorphismsA� ! A�1 and the extensions of gX0�A to homomorphismsA�0 ! A�. Thus,in the case of strong SC-structures, uniqueness of the extension gA0�A ofgX0�A implies uniqueness of the extension gA�A1 of gX�A1.(5) In order to prove (a4), assume that X 0 is a set with X � X 0 � X1.Let X 00 := hA1�A(X 0). It is easy to check that a 2 A1 is stabilized by X 0with respect to M1 if, and only if, hA1�A(a) 2 A is stabilized by X 00 withrespect to M. Thus hA�A1(SHAM(X 00)) = SHA1M1(X 0). Let g : X ! X 0 bea bijection, and de�ne g0 : X0 ! X 00 by g0(x0) := hA1�A(g(hA�A1(x0))).It is easy to see that there is a 1{1 correspondence between the extensionsof g to isomorphisms SHA1M1(X) ! SHA1M1(X 0) and the extensions of g0to isomorphisms SHAM(X0) ! SHAM(X 00). Thus, (a4) follows from (4) ofLemma 5.3.6 Amalgamation of Simply Combinable Struc-turesOur motivation for introducing the class of SC-structures was, on the onehand, that it comprises many solution structures for interesting constraint32



languages. On the other hand, SC-structures over disjoint signatures allowfor an explicit construction that closes any amalgamation base, as we shallsee below. For two strong SC-structures over disjoint signatures, this con-struction yields the free amalgamated product of these structures. In thegeneral case, the resulting structure also seems to play a unique role, buta precise characterization of this intuition has not yet been obtained. Thefollowing construction is almost identical to the amalgamation constructiongiven in [BaS94a] for the case of free structures. There is just one essentialdi�erence. In [BaS94a], substructures that are generated by increasing setsof free generators are used in each step of the construction. Here, in the caseof SC-structures, stable hulls (as de�ned in De�nition 4.2) of increasing setsof atoms must be used instead.6.1 The amalgamation constructionLet (A�;M; X) and (B�;N ; X) be two SC-structures over disjoint signa-tures � and �. We consider the amalgamation base (X;A�;B�), wherethe common part is just the set of atoms X. Thus, the embedding \homo-morphisms" hX�A : X ! A� and hX�B : X ! B� are given by IdX . Inorder to close this amalgamation base, we shall �rst embed A� and B� intoisomorphic superstructures. Let (A�1;M1; X1) be an SC-superstructure of(A�;M; X) satisfying (a0){(a4) of Theorem 5.4. Analogously, there exists anSC-superstructure (B�1;N1; Y1) of (B�;N ; X) such that the correspondingproperties (b0){(b4) hold.Starting from A�0 := A� and B�0 := B�, we shall make a zig-zag con-struction that de�nes an ascending tower of �-structures A�n , and similarlyan ascending tower of �-structures B�n . These structures are connected bybijective mappings hn and gn. The amalgamated product is obtained as the li-mit structure, which obtains its functional and relational structure from bothtowers by means of the limits of the mappings hn and gn. Let X0 := Y0 := X.n = 0: Consider A�0 = A� = SHA1M1(X0)�. We interpret the \new"elements in A0nX0 as atoms in B�1. For this purpose, select a subset Y1 � Y1such that Y1 \ Y0 = ;, jY1j = jA0 n X0j, and the remaining complementY1 n (Y0 [ Y1) is countably in�nite. Choose any bijection h0 : Y0 [ Y1 ! A0where h0jY0 = IdY0 .Consider B�0 = B� = SHB1N1(Y0)�. As for A0, we interpret the \new"elements in B0 n Y0 as atoms in A1. Select a subset X1 � X1 such thatX1\X0 = ;, jX1j = jB0 nY0j and the remaining complementX1 n (X0[X1)is countably in�nite. Choose any bijection g0 : X0 [X1 ! B0 where g0jX0 =33



IdX0 .n ! n + 1: Suppose that the structures A�n = SHA1M1(Sni=0Xi)� andB�n = SHB1N1(Sni=0 Yi)� and the atom sets Xn+1 � (X1 nSni=0Xi) and Yn+1 �(Y1 n Sni=0 Yi) are already de�ned. We assume that the complements X1 nSn+1i=0 Xi and Y1 nSn+1i=0 Yi are in�nite. In addition, we assume that bijectionshn : Bn�1 [ Yn [ Yn+1 ! Angn : An�1 [Xn [Xn+1 ! Bnare de�ned such that(�) gn(hn(b)) = b for b 2 Bn�1 [ Ynhn(gn(a)) = a for a 2 An�1 [Xn(��) hn(Yn+1) = An n (An�1 [Xn)gn(Xn+1) = Bn n (Bn�1 [ Yn):Note that (��) implies that hn(Bn�1[Yn) = An�1[Xn and gn(An�1[Xn) =Bn�1[Yn. We de�neA�n+1 := SHA1M1(Sn+1i=0 Xi)� and B�n+1 = SHB1N1(Sn+1i=0 Yi)�and select subsets Yn+2 � Y1 and Xn+2 � X1 such that Yn+2 \ Sn+1i=0 Yi =; = Xn+2 \ Sn+1i=0 Xi. In addition, the cardinalities must satisfy jYn+2j =jAn+1 n (An [Xn+1)j and jXn+2j = jBn+1 n (Bn [ Yn+1)j, and the remainingcomplements Y1 nSn+2i=0 Yi and X1 nSn+2i=0 Xi must be countably in�nite. Let�n+1 : Yn+2 ! An+1 n (An [Xn+1);�n+1 : Xn+2 ! Bn+1 n (Bn [ Yn+1)be arbitrary bijections. We de�ne hn+1 := �n+1 [ g�1n [ hn and gn+1 :=�n+1 [ h�1n [ gn. In more detail:hn+1(b) = 8><>: �n+1(b) for b 2 Yn+2hn(b) for b 2 Bn�1 [ Yn [ Yn+1g�1n (b) for b 2 Bn n (Bn�1 [ Yn)and gn+1(a) = 8><>: �n+1(a) for a 2 Xn+2gn(a) for a 2 An�1 [Xn [Xn+1h�1n (a) for a 2 An n (An�1 [Xn):Without loss of generality we may assume (for notational convenience) thatthe construction eventually covers all atoms in X1 and Y1; in other words,we assume that S1i=0Xi = X1 and S1i=0 Yi = Y1, and thus S1i=0Ai = A134



and S1i=0Bi = B1. We de�ne the limit mappingsh1 := 1[i=0hi : B1 ! A1;g1 := 1[i=0 gi : A1 ! B1:It is easy to see that h1 and g1 are bijections that are inverse to each other:in fact, given b 2 B1 there is a minimal n such that b 2 Bn�1. By (�) itfollows that gn(hn(b)) = b and thus g1(h1(b)) = b. Accordingly, we obtainh1(g1(a)) = a for all a 2 A1.The bijections h1 and g1 may be used to carry the �-structure of B�1to A�1 and to carry the �-structure of A�1 to B�1: let f (f 0) be an n-aryfunction symbol of � (�) and a1; : : : ; an 2 A1 (b1; : : : ; bn 2 B1). We de�nefA1(a1; : : : ; an) := h1(fB1(g1(a1); : : : ; g1(an)));f 0B1(b1; : : : ; bn) := g1(f 0A1(h1(b1); : : : ; h1(bn))):Let p (q) be an n-ary predicate symbol of � (�) and a1; : : : ; an 2 A1(b1; : : : ; bn 2 B1). We de�nepA1[a1; : : : ; an] :() pB1[g1(a1); : : : ; g1(an)];qB1[b1; : : : ; bn] :() qA1[h1(b1); : : : ; h1(bn)]:With this de�nition, the mappings h1 and g1 are inverse isomorphisms bet-ween the (�[�)-structures A�[�1 and B�[�1 . For this reason, it is irrelevantwhether we take A�[�1 or B�[�1 as the combined structure de�ned by theconstruction. In the following, we shall use A�[�1 as combined structure,and denote it by A� 
B�.Lemma 6.1 A�
B� closes the amalgamation base (X;A�;B�), i.e., A�
B� is an amalgamated product of A� and B�.Proof. Obviously, IdA gives the embedding homomorphism from A� toA�[�1 . The restriction of h1 to B� yields an embedding homomorphismfrom B� to A�[�1 . Note that the embedding homomorphisms are even 1{1 in this case. These homomorphisms agree on the shared substructure Xsince h1(x) = x for all x 2 X by construction. Thus, (A�[�1 ; IdA; h1jB) isan amalgamated product of A� and B�.35



6.2 Free amalgamation of strong SC-structuresIn order to obtain a better characterization of what the above constructiongenerates, we restrict our attention to strong SC-structures. First, we mustde�ne a class of admissible structures. To this purpose we use the algebraiccondition of Proposition 3.2:De�nition 6.2 For strong SC-structures (A�;M; X) and (B�;N ; X), theclass of admissible structures, Adm(A�;B�), consists of all structures C�[�such that for every mapping gX�C : X ! C there exist unique homomor-phisms g�A�C : A� ! C� and g�B�C : B� ! C� extending gX�C.Lemma 6.3 Let (A�;M; X) and (B�;N ; X) be strong SC-structures. ThenA� 
 B� is in the chosen class Adm(A�;B�) of admissible structures.Proof. Let gX�A1 : X ! A1 be a mapping. By property (a3), thereexists a unique6 homomorphism gA�A1 : A� ! A�1 that extends gX�A1. Byproperty (b3), the mapping gX�B1 := gX�A1 � g1 : X ! B1 has a uniqueextension to a �-homomorphism gB�B1 : B� ! B�1. Thus, gB�A1 :=gB�B1 � h1 : B� ! A�1 is a �-homomorphism. Restricted to X, gB�A1is equal to to gX�A1 � g1 � h1 = gX�A1, i.e., it is in fact an extension ofgX�A1. It remains to be shown that this extension is unique. It is easy to seethat for any g0B�A1 extending gX�A1, the composition g0B�B1 := g0B�A1 �g1is a homomorphism extending gX�B1 = gX�A1 � g1. By property (b3), thisimplies g0B�A1 � g1 = gB�B1 , and thus g0B�A1 = gB�B1 � h1 = gB�A1 .The lemma shows that, for strong SC-structures, our construction yieldsan admissible amalgamated product with respect to Adm(A�;B�). Beforewe can prove that this product is in fact the free amalgamated product, weneed one more technical lemma.Lemma 6.4 Assume that our construction is applied to strong SC-structures(A�;M; X) and (B�;N ; X). Let D�[� 2 Adm(A�;B�) be an admissiblestructure.1. For every mapping fn : Sni=0Xi ! D there exists a unique homomorphismf�An�D : A�n ! D� that extends fn.2. Moreover, if fn+1 : Sn+1i=0 Xi ! D extends fn, then f�An+1�D extends f�An�D.6The assumption \(A�;M;X) strong" is necessary to have uniqueness.36



3. For every mapping gn : Sni=0 Yi ! D there exists a unique homomorphismf�Bn�D : B�n ! D� that extends gn.4. Moreover, if gn+1 : Sn+1i=0 Yi ! D extends gn, then g�Bn+1�D extends g�Bn�D.Proof. (1) For n = 0, the existence of a unique homomorphisms f�A0�Dextending the given mappings f0 : X = X0 ! D follows from the de�nitionof Adm(A�;B�).For n > 0, let � : X ! cXn := Sni=0Xi be an arbitrary bijection. Byproperty (a4), � has a unique extension �� to an isomorphism from A� =SHA1M1(X) to A�n = SHA1M1(cXn). Because of the de�nition of Adm(A�;B�),the mapping � �fn has a unique extension to a homomorphism f�A�D : A� !D�. Thus, f�An�D := ��1� � f�A�D is a homomorphism from A�n to D� thatextends f�n .In order to show uniqueness, assume that bf�An�D : A�n ! D� is anotherextension of fn. It follows that �� � bf�An�D extends � � fn, and thus f�A�D =�� � bf�An�D. Obviously, this implies ��1� � f�A�D = bf�An�D.(2) Suppose that fn+1 : Sn+1i=0 Xi ! D extends fn : Sni=0Xi ! D. Therestriction of f�An+1�D to A�n is a homomorphism A�n ! D� that extends fn.Since there is a unique homomorphism with this property, namely f�An�D, itcoincides with this homomorphism.(3) and (4) follow by symmetry of our construction.Theorem 6.5 If (A�;M; X) and (B�;N ; X) are strong SC-structures overdisjoint signatures, then A�[�1 is the free amalgamated product of A� andB� over X with respect to the class Adm(A�;B�) of admissible structuresde�ned above.Proof. We have already shown that A�[�1 is an admissible amalgamatedproduct of A� and B�. Recall that IdA is the embedding homomorphismhA�A1 : A� ! A�[�1 , and h1 is the embedding homomorphism hB�A1 :B� ! A�[�1 .In order to show that this admissible amalgamated product is free, assumethat D�[� 2 Adm(A�;B�) is another admissible amalgamated product, i.e.,there are homomorphic embeddings g�A�D : A� ! D� and g�B�D : B� ! D�such that hX�A � g�A�D = hX�B � g�B�D. The embeddings hX�A and hX�Bof the amalgamation base (X;A�;B�) are the identity on X, which impliesthat gA�D and gB�D coincide on X. Let gX�D denote the restriction of both37



gA�D and gB�D to X. Because D�[� was assumed to be admissible, we knowthat(�) every extension of gX�D to a homomorphism A� ! D� coincides withg�A�D,(��) every extension of gX�D to a homomorphism B� ! D� coincides withg�B�D.We must show that there exists a unique homomorphismh�[�A1�D : A�[�1 ! D�[�such that (#) IdA � h�[�A1�D = g�A�D;(##) h1 jB �h�[�A1�D = g�B�D:This situation is illustrated in the �gure. In the �rst part of the proof we����@@@R QQQQQs�����3 -����������������:XXXXXXXXXXXXXXXXzX A�B� (A
 B)�[� D�[�IdId Idh1 gA�DgB�D!show that such a homomorphism hA1�D exists. In the second part, we showuniqueness.(1) It is su�cient to show that the mapping gX�D can be extended to ahomomorphism h�[�A1�D : A�[�1 ! D�[�. In fact, it is easy to see that in thiscase IdA�hA1�D is a homomorphism from A� to D� that extends gX�D, andh1 jB �hA1�D is a homomorphism from B� to D� that extends gX�D. Thus(#) and (##) are immediate consequences of (�) and (��), respectively.In order to construct an appropriate homomorphism h�[�A1�D : A�[�1 !D�[�, we de�ne mappings h�An�D : An ! Dh�Bn�D : Bn ! Dthat satisfy the following properties:1. h�An�D is a �-homomorphism and h�Bn�D is a �-homomorphism.38



2. If n > 0 then, for all x 2 Sni=1Xi,h�An�D(x) = h�Bn�1�D(g1(x));and, for all y 2 Sni=1 Yi,h�Bn�D(y) = h�An�1�D(h1(y)):3. If n > 0 then the restriction of h�An�D to An�1 yields h�An�1�D and therestriction of h�Bn�D to Bn�1 yields h�Bn�1�D.4. For all x 2 X, h�An�D(x) = gX�D(x) = h�Bn�D(x).n = 0: Recall that X0 = X = Y0. By Lemma 6.4, there exist uniqueextensions of gX�D to homomorphismsh�A0�D : A0 ! D;h�B0�D : B0 ! D:Obviously, Conditions 1{4 are satis�ed.n! n+1: Assume that mappings h�An�D and h�Bn�D satisfying Conditions1{4 are given. We de�ne mappings f�n+1 : Sn+1i=0 Xi ! D and f�n+1 : Sn+1i=0 Yi !D by f�n+1(x) = ( h�Bn�D(g1(x)) if x 2 Xn+1h�An�D(x) else,f�n+1(y) = ( h�An�D(h1(y)) if y 2 Yn+1h�Bn�D(y) else.By Lemma 6.4, there exists a unique extension of f�n+1 to a �-homomorphismh�An+1�D : An+1 ! D, and a unique extension of f�n+1 to a �-homomorphismh�Bn+1�D : Bn+1 ! D. In addition, these homomorphisms extend h�An�D andh�Bn�D, respectively. Thus Conditions 1, 3 and 4 are again satis�ed. Withoutloss of generality, we prove Condition 2 only for h�An+1�D. For x 2 Xn+1, thecondition is satis�ed by de�nition of f�n+1(x). For x 2 Sni=0Xi we haveh�An+1�D(x) = f�n+1(x) = h�An�D(x). By assumption, we know h�An�D(x) =h�Bn�1�D(g1(x)). Looking back at the de�nition of A�[�1 , we see that g1(x)is an element of Bn�1. By assumption, we know that h�Bn�1�D and h�Bn�Dagree on Bn�1.This completes the construction of the mappings h�An�D and h�Bn�D (n �0). Because of Condition 3, we know that (h�An�D)n�0 and (h�Bn�D)n�0 are39



ascending chains of mappings. Thus there exist limit mappings h�A1�D :A1 ! D and h�B1�D : B1 ! D. Obviously, the restriction of h�A1�D to Ancoincides with h�An�D (resp. the restriction of h�B1�D to Bn coincides withh�Bn�D).It is easy to see that hA1�D is a �-homomorphism and hB1�D is a �-homomorphism. For instance, assume that f is an n-ary function symbol in�, and that a1; : : : ; an 2 A1 = S1i=0Ai. Thus, there exists k � 0 such thata1; : : : ; an 2 Ak. By Lemma 4.3, we know that Ak = SH�M1(Ski=0Xi) is asubstructure of A1, and thus fA1(a1; : : : ; an) 2 Ak. Since h�A1�D coincideswith h�Ak�D on Ak, we obtainhA1�D(fA1(a1; : : : ; an)) = hAk�D(fAk(a1; : : : ; an))= fD(hAk�D(a1); : : : ; hAk�D(an))= fD(hA1�D(a1); : : : ; hA1�D(an)):It remains to be shown that hA1�D and hB1�D are even (� [�)-homo-morphisms. In order to show this we prove the following claim:(y) h1 � h�A1�D = h�B1�D and g1 � h�B1�D = h�A1�D:From the second identity of (y) we can easily deduce that h�A1�D is a (�[�)-homomorphism. In fact, we already know that it is a �-homomorphism. Inaddition, h�B1�D is a �-homomorphism and g1 is a (�[�)-homomorphism.Thus the composition g1 � h�B1�D is a �-homomorphism. Accordingly, the�rst identity of (y) implies that h�B1�D is a (� [�)-homomorphism.To complete Part 1 of the proof, we show the �rst identity of (y). (Thesecond follows by symmetry.) Let b be an element of B1. Thus there is ann � 0 such that b 2 Bn n Bn�1. First, assume that b 2 Yn. By constructionof A�[�1 , this implies h1(b) 2 An�1, and thus we haveh�A1�D(h1(b)) = h�An�1�D(h1(b)) = h�Bn�D(b) = h�B1�D(b):The second identity holds by Condition 2 in the construction of the mappingsh�Bn�D and h�An�D, and the third follows from the de�nition of h�B1�D.Second, assume that b 2 Bn n (Bn�1 [ Yn). In this case we have h1(b) =g�11 (b) 2 Xn+1, and thush�A1�D(h1(b)) = h�An+1�D(g�11 (b))= h�Bn�D(g1(g�11 (b))) = h�Bn�D(b)= h�B1�D(b):40



To sum up, we have shown the existence of a (�[�)-homomorphism h�A1�Dthat extends gX�D, which completes the �rst part of the proof.(2) In order to show uniqueness, assume that there exists a (� [ �)-homomorphism h0A1�D such thath0�[�A1�D : A�[�1 ! D�[�such that (#0) IdA � h0�[�A1�D = g�A�D;(#0#0) h1 jB �h0�[�A1�D = g�B�D:Let h0�[�B1�D := h1 � h0�[�A1�D. It follows that h0�[�A1�D = g1 � h0�[�B1�D. Byinduction on n we shall show that h0�[�A1�D and h�[�A1�D coincide on An, andthat h0�[�B1�D and h�[�B1�D coincide on Bn. This implies that h0�[�A1�D andh�[�A1�D coincide on A1 = S1n=0An.n = 0. The conditions (#0) and (#0#0) imply that the restriction ofh0�[�A1�D to A = A0 coincides with gA�D, and the restriction of h0�[�B1�D toB = B0 coincides with gB�D. Thus, both coincide with gX�D on X. Since,by Lemma 6.4, there exist unique extensions of gX�D to homomorphismsA0 ! D and B0 ! D, we are done.n ! n + 1. Suppose that h0�[�A1�D and h�[�A1�D coincide on An, and thath0�[�B1�D and h�[�B1�D coincide on Bn. For x 2 Xn+1 we have g1(x) 2 Bn,and thus h0�[�A1�D(x) = h0�[�B1�D(g1(x)) = h�[�B1�D(g1(x)) = h�[�A1�D(x). Thush0�[�A1�D and h�[�A1�D also coincide on Sn+1i=0 Xi. It follows from Lemma 6.4that both homomorphisms coincide on An+1. Similarly, it can be shown thath0�[�B1�D and h�[�B1�D coincide on Bn+1.For strong SC-structures, the amalgamation construction can be appliediteratedly because the obtained structure is again a strong SC-structure:Theorem 6.6 The free amalgamated product of two strong SC-structureswith common atom set X is a strong SC-structure with atom set X.Proof. We must show that (A�[�1 ;End�[�A1 ; X) is an SC-structure. If wechoose D�[� = A�[�1 , the �rst part of the previous proof shows that everymapping hX�A1 : X ! A1 can be extended to an endomorphism of A�[�1 .Thus X is an atom set for A�[�1 . It remains to be shown that every elementa 2 A1 is stabilized|with respect to End�[�A1 |by a �nite subset of X. Byinduction on n (n � 0) we shall show that every a 2 An and every b 2 Bnis stabilized|with respect to End�[�A1 and End�[�B1 , respectively|by a �nitesubset of X. 41



n = 0. Let a 2 A0 = SHA1M1(X). Thus a is stabilized by X = X0with respect to End�A1. In addition, since (A�1;End�A1; X1) is a strong SC-structure, a is stabilized by a �nite subset of X1. Both facts together implythat the stabilizer of a with respect to End�A1 is a �nite subset, say Z, ofX = X0. Since every (� [ �)-endomorphism is a �-endomorphism, Z alsostabilizes a with respect to End�[�A1 . A symmetric argument shows that everyb 2 B0 = SHB1N1(X) is stabilized by a �nite subset of X = Y0 with respect toEnd�[�B1 .n! n+ 1. Suppose that every a0 2 An and every b0 2 Bn is stabilized|with respect to End�[�A1 and End�[�B1 respectively|by a �nite subset of X.For a 2 An+1, let Z denote the stabilizer of a with respect to End�A1. Thus,Z is �nite, and as in the case \n = 0" one can deduce Z � Sn+1i=0 Xi. It iseasy to see that Z 0 := g1(Z) stabilizes b := g1(a) with respect to End�B1,and thus also with respect to End�[�B1 . By de�nition of the mapping g1, weknow that Z 0 � Bn, and thus we can apply the induction hypothesis. Thisyields a �nite set R � X that stabilizes all elements of Z 0 with respect toEnd�[�B1 . Consequently, R stabilizes b with respect to End�[�B1 . It followsthat h1(R) = R � X stabilizes a = h1(b) with respect to End�[�A1 . Thus,we have shown that every element of An+1 is stabilized by a �nite subset ofX with respect to End�[�A1 . Symmetrically, one can prove that every elementof Bn+1 is stabilized by a �nite subset of X with respect to End�[�B1 .Obviously, the set of admissible structures, as introduced in De�nition 6.2above, satis�es Adm(A�;B�) = Adm(B�;A�). Thus, the amalgamationconstruction is commutative. In order to show associativity, we must provethat the assumptions of Theorem 3.17 are satis�ed.First, we extend the de�nition of the class of admissible structures tothe case of the simultaneous amalgamation of three structures: For strongSC-structures (B�ii ;Mi; X) (i = 1; 2; 3), the class of admissible structures,Adm(B1;B2;B3), consists of all structures C�1[�2[�3 such that for every map-ping gX�C : X ! C there exist unique homomorphisms g�iBi�C : B�ii ! C�i(i = 1; 2; 3) extending gX�C. As an obvious consequence of this de�nition weobtain:Lemma 6.7 Adm(B1;B2;B3) � Adm(B1;B2) \ Adm(B2;B3).Thus, we have proved that the assumptions of Theorem 3.17 are satis�ed,as soon as we have shown the next two lemmas.Lemma 6.8 Adm(B1;B2;B3) � Adm(B1;B2 
B3) \ Adm(B1 
 B2;B3).42



Proof. We show Adm(B1;B2;B3) � Adm(B1;B2 
 B3). (The other in-clusion follows by symmetry.) Thus, assume that C 2 Adm(B1;B2;B3), andthat g : X ! C is given. By de�nition of Adm(B1;B2;B3), the mapping gcan uniquely be extended to homomorphisms gBi�C : Bi ! C (for i = 1; 2; 3).Now, we apply the amalgamation construction to B2 and B3, which yieldsthe free amalgamated product B23 := B2 
 B3. Since the common part Xof B2 and B3 is embedded via IdX , the embedding homomorphisms hBi�B23 :Bi ! B23 of this product satisfy hB2�B23 jX = hB3�B23 jX , i.e., their restrictionto X coincide. By construction, this restriction to X coincides with IdX ,which means that we havehB2�B23 jX = IdX = hB3�B23 jX : (6.9)By Lemma 6.7, C is also an element of Adm(B2;B3). In addition, theembedding homomorphisms gB2�C : B2 ! C and gB3�C : B3 ! C satisfyIdX � gB2�C = gB2�CjX = g = gB3�CjX = IdX � gB3�C, which shows that Cis an admissible amalgamated product of B2 and B3. Since B23 is the freeamalgamated product, there exists a unique homomorphism hB23�C : B23 !C such that gBi�C = hBi�B23 � hB23�C (i = 2; 3): (6.10)We show that the restriction of hB23�C to X coincides with g. In fact,hB23�CjX = (hB2�B23 � hB23�C)jX = gB2�CjX = g:The �rst identity holds because of (6:9), the second because of (6:10), andthe third because gB2�C extends g. This shows that there exists an extensionof g to a homomorphism from B23 to C.In order to prove C 2 Adm(B1;B2 
 B3), it remains to be shown thatthis extension is unique. Thus, assume that fB23�C : B23 ! C is anotherhomomorphism that extends g. Because of (6:9), we can deduce that thecomposition hB2�B23 � fB23�C is a homomorphism of B2 into C that extendsg. Since gB2�C is unique with this property, we obtaingB2�C = hB2�B23 � fB23�C: (6.11)Similarly, it can be shown thatgB3�C = hB3�B23 � fB23�C: (6.12)Because hB23�C is the unique homomorphism satisfying (6:10), the identities(6:11) and (6:12) imply fB23�C = hB23�C.43



Lemma 6.13 fB1 
 (B2 
B3); (B1 
B2)
 B3g � Adm(B1;B2;B3):Proof. We show B1
 (B2
B3) 2 Adm(B1;B2;B3). (The other inclusionfollows by symmetry.) As before, we denote B1 
 (B2 
 B3) by B123 andB2 
 B3 by B23.Let g : X ! B123 be a mapping. We know that B123 = B1 
 (B2 
B3) is an element of Adm(B1;B2 
 B3), and thus there exists a unique �1-homomorphism gB1�B123 : B1 ! B123 that extends g.As a (�2 [ �3)-structure, B23 is isomorphic to B123 (by property (b0) inthe construction). Let h�2[�3B23�B123 be the corresponding isomorphism, and letk�2[�3B123�B23 be its inverse. We consider the mapping g0 = g � kB123�B23 : X !B23. Since B23 = B2 
 B3 is in Adm(B2;B3), there exist unique extensionsof g0 to �i-homomorphisms gBi�B23 : Bi ! B23 (for i = 2; 3). Obviously,gBi�B23 �hB23�B123 is a �i-homomorphism from Bi to B123 that extends g (fori = 2; 3).It remains to be shown that these extensions are unique. Assume thatfBi�B123 : Bi ! B123 are �i-homomorphisms extending g (i = 2; 3). ThenfBi�B123 � kB123�B23 : Bi ! B23 is a �i-homomorphism extending g0 = g �kB123�B23 , and thus uniqueness of gBi�B23 with this property implies fBi�B123 �kB123�B23 = gBi�B23 . It follows thatgBi�B23 � hB23�B123 = fBi�B123 � kB123�B23 � hB23�B123 = fBi�B123 ;which yields the desired uniqueness result.To sum up, we have shown that Theorem 3.17 can be applied, whichyields:Theorem 6.14 Free amalgamation of strong SC-structures with disjoint si-gnatures over the same atom set is associative.7 Combining Constraint Solvers for arbitrarySC-Structures: The Existential PositiveCaseLet (A�;M; X) and (B�;N ; X) be two SC-structures over disjoint signa-tures � and �; let A� 
 B� = A�[�1 denote their amalgamated product,as constructed in the previous section. In this section we shall prove thefollowing result. 44



Theorem 7.1 The existential positive theory of A� 
 B� is decidable, pro-vided that the positive theories of A� and of B� are decidable.Note that this theorem holds for arbitrary SC-structures, i.e., it is notrequired that A� and B� are strong. In this general setting, however, it isnot yet clear in which sense the amalgamated product A� 
 B� obtainedby our construction plays a unique rôle among all possible closures of theamalgamation base (X;A�;B�). For strong SC-structures we know thatA� 
 B� is the free amalgamated product.7.1 The decomposition algorithmThe decomposition algorithm described below decomposes a positive existen-tial (�[�)-sentence '0 into a �nite set of pairs (�; �), where � is a positive�-sentence and � is a positive �-sentence. This algorithm coincides with theone described in [BaS94a], where it has been used in the restricted contextof combination problems for free structures.Before we can describe the algorithm, we must introduce some notation.In the following, V denotes an in�nite set of variables used by the �rst orderlanguages under consideration. Let t be a (�[�)-term. This term is calledpure i� it is either a �-term or a �-term. An equation is pure i� it is anequation between pure terms of the same signature. A relational formulap[s1; : : : ; sm] is pure i� s1; : : : ; sm are pure terms of the signature of p. Nowassume that t is a non-pure term whose topmost function symbol is in �.A subterm s of t is called alien subterm of t i� its topmost function symbolbelongs to � and every proper superterm of s in t has its top symbol in �.Alien subterms of terms with top symbol in � are de�ned analogously. Fora relational formula p[s1; : : : ; sm], alien subterms are de�ned as follows: if sihas a top symbol whose signature is di�erent from the signature of p thensi itself is an alien subterm; otherwise, any alien subterm of si is an aliensubterm of p[s1; : : : ; sm].Algorithm 1Let '0 be a positive existential (�[�)-sentence. Without loss of generality,we may assume that '0 has the form 9~u0 0, where 0 is a conjunction of ato-mic formulae. Indeed, since existential quanti�ers distribute over disjunction,a sentence 9~u0 (1 _ 2) is valid i� 9~u0 1 or 9~u0 2 is valid.45



Step 1: Transform non-pure atomic formulae.(1) Equations s = t of 0 where s and t have topmost function symbolsbelonging to di�erent signatures are replaced by (the conjunction of)two new equations u = s; u = t, where u is a new variable. Thequanti�er pre�x is extended by adding an existential quanti�cation foru.(2) As a result, we may assign a unique label � or � to each atomicformula that is not an equation between variables. The label of anequation s = t is the signature of the topmost function symbols of sand/or t. The label of a relational formula p[s1; : : : ; sm] is the signatureof p.(3) Now alien subterms occurring in atomic formulae are successivelyreplaced by new variables. For example, assume that s = t is anequation in the current formula, and that s contains the alien subterms1. Let u be a variable not occurring in the current formula, and let s0be the term obtained from s by replacing s1 by u. Then the originalequation is replaced by (the conjunction of) the two equations s0 = tand u = s1. The quanti�er pre�x is extended by adding an existentialquanti�cation for u. The equation s0 = t keeps the label of s = t, andthe label of u = s1 is the signature of the top symbol of s1. Relationalatomic formulae with alien subterms are treated analogously. Thisprocess is iterated until all atomic formulae occurring in the conjunctivematrix are pure. It is easy to see that this is achieved after �nitely manyiterations.Step 2: Remove atomic formulae without label.Equations between variables occurring in the conjunctive matrix areremoved as follows: If u = v is such an equation then one removes 9ufrom the quanti�er pre�x and u = v from the matrix. In addition, everyoccurrence of u in the remaining matrix is replaced by v. This step isiterated until the matrix contains no equations between variables.Let '1 be the new sentence obtained this way. The matrix of '1 canbe written as a conjunction 1;� ^ 1;�, where 1;� is a conjunction of allatomic formulae from '1 with label �, and 1;� is a conjunction of all atomicformulae from '1 with label �. There are three di�erent types of variablesoccurring in '1: shared variables occur both in 1;� and in 1;�; �-variablesoccur only in 1;�; and �-variables occur only in 1;�. Let ~u1;� be the tupleof all �-variables, ~u1;� be the tuple of all �-variables, and ~u1 be the tuple of46



all shared variables.7 Obviously, '1 is equivalent to the sentence9~u1 (9~u1;� 1;� ^ 9~u1;� 1;�) :The next two steps of the algorithm are nondeterministic, i.e., a givensentence is transformed into �nitely many new sentences. Here the idea isthat the original sentence is valid i� at least one of the new sentences is valid.Step 3: Variable identi�cation.Consider all possible partitions of the set of all shared variables. Eachof these partitions yields one of the new sentences as follows. The va-riables in each class of the partition are \identi�ed" with each other bychoosing an element of the class as representative, and replacing in thesentence all occurrences of variables of the class by this representative.Quanti�ers for replaced variables are removed.Let 9~u2 (9~u1;� 2;� ^ 9~u1;� 2;�) denote one of the sentences obtained byStep 3.Step 4: Choose signature labels and ordering.We choose a label � or � for every (shared) variable in ~u2, and a linearordering < on these variables.For each of the choices made in Step 3 and 4, the algorithm yields a pair(�; �) of sentences as output.Step 5: Generate output sentences.The sentence 9~u2(9~u1;� 2;� ^ 9~u1;� 2;�) is split into two sentences� = 8~v19~w1 : : :8~vk9~wk9~u1;� 2;�and � = 9~v18~w1 : : :9~vk8~wk9~u1;� 2;�:Here ~v1 ~w1 : : : ~vk ~wk is the unique re-ordering of ~u2 along <. The varia-bles ~vi (~wi) are the variables with label � (label �).Thus, the overall output of the algorithm is a �nite set of pairs of sent-ences. Note that the sentences � and � are positive formulae, but they needno longer be existential positive formulae.Obviously, Theorem 7.1 follows immediately as soon as we have shownthat the decomposition algorithm is sound and complete.7The order in these tuples can be chosen arbitrarily.47



7.2 Correctness of the Decomposition AlgorithmThis proof is very similar to the one given in [BaS94a] for the combinationof constraint solvers in free structures. First, we show soundness of thealgorithm, i.e., if one of the output pairs is valid then the original sentencewas valid.Lemma 7.2 A�[�1 j= '0 if A� j= � and B� j= � for some output pair(�; �).Proof. Since A� and A�1 are isomorphic �-structures (see the points(a0) and (b0) in the amalgamation construction), we know that A�1 j= �.Accordingly, we also have B�1 j= �. Moreover, since A�[�1 and B�[�1 areisomorphic, we know that A�1 j= �, i.e., the �-reduct of the (�[�)-structureA�[�1 satis�es �. This means(�) A�1 j= 8~v19~w1 : : :8~vk9~wk9~u1;� 2;�(~v1; ~w1; : : : ; ~vk; ~wk ; ~u1;�);(��) A�1 j= 9~v18~w1 : : :9~vk8~wk9~u1;� 2;�(~v1; ~w1; : : : ; ~vk; ~wk; ~u1;�):Because of the existential quanti�cation over ~v1 in (��), there exist elements~a1 2 ~A1 such that(� � �) A�1 j= 8~w1 : : :9~vk8~wk9~u1;� 2;�(~a1; ~w1; : : : ; ~vk; ~wk ; ~u1;�):Because of the universal quanti�cation over ~v1 in (�) we haveA�1 j= 9~w1 : : :8~vk9~wk9~u1;� 2;�(~a1; ~w1; : : : ; ~vk; ~wk; ~u1;�):Because of the existential quanti�cation over ~w1 in this formula there existelements ~c1 2 ~A1 such thatA�1 j= 8~v29~w2 : : : 8~vk9~wk9~u1;� 2;�(~a1;~c1; ~v2; ~w2; : : : ; ~vk; ~wk; ~u1;�):Because of the universal quanti�cation over ~w1 in (� � �) we haveA�1 j= 9~v28~w2 : : : 9~vk8~wk9~u1;� 2;�(~a1;~c1; ~v2; ~w2; : : : ; ~vk; ~wk; ~u1;�):Iterating this argument, we thus obtainA�1 j= 9~u1;� 2;�(~a1;~c1; : : : ;~ak;~ck; ~u1;�);A�1 j= 9~u1;� 2;�(~a1;~c1; : : : ;~ak;~ck; ~u1;�):It follows thatA�[�1 j= 9~u1;� 2;�(~a1;~c1; : : : ;~ak;~ck; ~u1;�)^9~u1;� 2;�(~a1;~c1; : : : ;~ak;~ck; ~u1;�):48



Obviously, this implies thatA�[�1 j= 9~u2 (9~u1;� 2;� ^ 9~u1;� 2;�) ;i.e., one of the sentences obtained after Step 3 of the algorithm holds inA�[�1 . It is easy to see that this implies that A�[�1 j= '0.Next, we show completeness of the decomposition algorithm, i.e., if theinput sentence was valid then there exists a valid output pair.Lemma 7.3 If A�[�1 j= '0 then A� j= � and B� j= � for some output pair(�; �).Proof. Assume that A�[�1 ' B�[�1 j= 9~u00. Obviously, this impliesthat B�[�1 j= 9~u1 (9~u1;� 1;�(~u1; ~u1;�) ^ 9~u1;� 1;�(~u1; ~u1;�)), i.e., B�[�1 sa-tis�es the sentence that is obtained after Step 2 of the decomposition algo-rithm. Thus there exists an assignment � : V ! B1 such that B�[�1 j=9~u1;� 1;�(�(~u1); ~u1;�) ^ 9~u1;� 1;�(�(~u1); ~u1;�).In Step 3 of the decomposition algorithm, we identify two shared variablesu and u0 of ~u1 if, and only if, �(u) = �(u0). With this choice, B�[�1 j=9~u1;� 2;�(�(~u2); ~u1;�) ^ 9~u1;� 2;�(�(~u2); ~u1;�), and all components of �(~u2)are distinct.In Step 4, a shared variable u in ~u2 is labeled with � if �(u) 2 B1 n(S1i=1 Yi), and with � otherwise. In order to choose the linear ordering onthe shared variables, we partition the range B1 of � as follows:B0; Y1; B1 n (B0 [ Y1); Y2; B2 n (B1 [ Y2); Y3; B3 n (B2 [ Y3); : : :Now, let ~v1; ~w1; : : : ; ~vk; ~wk be a re-ordering of the tuple ~u2 such that thefollowing holds:1. The tuple ~v1 contains exactly the shared variables whose �-images arein B0.2. For all i; 1 � i � k, the tuple ~wi contains exactly the shared variableswhose �-images are in Yi.3. For all i; 1 < i � k, the tuple ~vi contains exactly the shared variableswhose �-images are in Bi�1 n (Bi�2 [ Yi�1).Obviously, this implies that the variables in the tuples ~wi have label �,whereas the variables in the tuples ~vi have label �. Note that some of these49



tuples may be of dimension 0. The re-ordering determines the linear orderingwe choose in Step 4. Let� = 8~v19~w1 : : :8~vk9~wk9~u1;� 2;�� = 9~v18~w1 : : :9~vk8~wk9~u1;� 2;�be the output pair that is obtained by these choices. Let ~yi := �(~wi) 2 ~Yand ~bi := �(~vi) 2 ~B1. We claim that the sequence ~b1; ~y1; : : : ;~bk; ~yk satis�esCondition 2 of Lemma 4.14 for ' = 9~u1;� 2;� and B�1.8Part (a) of this condition is satis�ed since B�[�1 j= 9~u1;� 2;�(�(~u2); ~u1;�),and thus B�1 j= 9~u1;� 2;�(~b1; ~y1; : : : ;~bk; ~yk; ~u1;�):Part (b) of the condition is satis�ed since the �-images of all shared variablesin ~u2 are distinct according to our choice in the variable identi�cation step.Finally, part (c) is satis�ed because of our choice of the linear ordering.In fact, any component b of ~bj belongs to Bj�1, and is thus an elementof SHB1N1(Sj�1i=0 Yi)�. For this reason, StabN1(~bj) � Sj�1i=0 Yi, whereas thecomponents of ~yj are in Yj. Thus, the components of ~yj are not contained inStabN1(~b1) [ : : : [ StabN1(~bj�1) � Sj�1i=0 Yi.This shows that we can apply Lemma 4.14, which yields B� ' B�1 j= �.In order to show A� j= �, we use the fact that h1 : B�[� ! A�[� is a(� [ �)-isomorphism. Thus, B�[�1 j= 9~u1;� 2;�(�(~u2); ~u1;�) implies thatA�1 j= 9~u1;� 2;�(h1(�(~u2)); ~u1;�).Let ~xi := h1(~bi) = h1(�(~vi)) and ~ai := h1(~yi) = h1(�(~wi)) (for i =1; : : : ; k). We claim that the sequence ~x1;~a1; : : : ; ~xk;~ak satis�es Condition 2of Lemma 4.14 for ' = 9~u1;� 2;� and A�1.Obviously, A�1 j= 9~u1;� 2;�(h1(�(~u2)); ~u1;�) implies that part (a) of thecondition is satis�ed. To see that part (b) is satis�ed, recall that, by ourchoice in the variable identi�cation step, the �-images of di�erent sharedvariables in ~u2 are distinct. Since h1 is a bijection, this holds for their(h1 � �)-images as well.Part (c) is an easy consequence of the following properties, which in turnare consequences of the de�nition of the bijection h1 and and its inverse g1:1. Since the components of ~b1 are in B0, we know that the components of~x1 are in X0 [X1.8Note that, in contrast to the formulation of the lemma, our sequence starts with atuple of structure elements instead of atoms. The lemma applies nevertheless since in itsformulation we did not assume that all tuples have a non-zero dimension.50



2. For 1 < i � k, the components of ~bi are in Bi�1 n (Bi�2 [ Yi�1). Thus,the components of ~xi are in Xi.3. For 1 � i � k, the components of ~yi are in Yi. Thus, the componentsof ~ai are in Ai�1 n (Ai�2 [ Yi�1).Thus, we can apply Lemma 4.14, and obtain A� ' A�1 j= �.8 Combining Constraint Solvers for StrongSC-Structures: The General Positive CaseFor strong SC-structures (A�;M; X) and (B�;N ; X), the structure A�
B�is the free amalgamated product of A� and B� over X with respect toAdm(A�;B�). In this case, our combination method is not restricted toexistential positive sentences. The main idea is to transform positive sent-ences (with arbitrary quanti�er pre�x) into existential positive sentences bySkolemizing the universally quanti�ed variables. In principle, the decompo-sition algorithm for positive sentences is now applied twice to decomposethe input sentence into three positive sentences �; �; �, whose validity mustrespectively be decided in A�, B�, and the absolutely free term algebra overthe Skolem functions (see Algorithm 2 below). The restriction to strongSC-structures is necessary since Theorem 6.14 (associativity of free amalga-mation) is used in the proof of correctness, and this theorem was proved onlyfor the case of strong SC-structures.Algorithm 2The input is a positive sentence '1 in the mixed signature �[�. We assumethat '1 is in prenex normalform, and that the matrix of '1 is in disjunctivenormalform. The algorithm proceeds in two phases.Phase 1Via Skolemization of universally quanti�ed variables,9 '1 is transformed intoan existential sentence '01 over the signature � [ � [ �1. Here �1 is the9We are Skolemizing universally quanti�ed variables since we are interested in validityof the sentence and not in satis�ability. 51



signature consisting of all the new Skolem function symbols that have beenintroduced.Suppose that '01 is of the form 9~u1(W 1;i), where the 1;i are conjunctionsof atomic formulae. Obviously, '01 is equivalent to W(9~u1 1;i), and thus it issu�cient to decide validity of the sentences 9~u1 1;i. Each of these sentencesis used as input for the decomposition algorithm.The atomic formulae in 1;i may contain symbols from the two (disjoint)signatures � and � [ �1. In Phase 1 we treat the sentences 9~u11;i bymeans of Steps 1{4 of the decomposition algorithm, �nally splitting theminto positive �-sentences � and positive (� [ �1)-sentences '2. Thus, theoutput of Phase 1 is a �nite set of pairs (�; '2).Phase 2In the second phase, '2 is treated exactly as '1 was treated before, app-lying Skolemization to universally quanti�ed variables and Steps 1{4 of thedecomposition algorithm a second time. Now we consider the two (disjoint)signatures � and � = �1 [ �2, where �2 contains the Skolem functions thatare introduced by the Skolemization step of Phase 2. We obtain output pairsof the form (�; �), where � is a positive sentence over the signature � and �is a positive sentence over the signature �. Together with the correspondingsentence � (over the signature �) we thus obtain triples (�; �; �) as output.For each of these triple, the sentence � is now tested for validity in A�,� is tested for validity in B�, and � is tested for validity in the absolutelyfree term algebra T (�; X) with countably many generators X, i.e., the freealgebra over X for the class of all �-algebras.10 We have seen that thisstructure is a strong SC-structure with atom set X (Examples 4.9 (3)).Correctness of Algorithm 2We want to show that the original sentence '1 is valid i� for one of theoutput triples, all three components are valid in the respective structures.The proof depends on the following lemma, which exhibits an interestingconnection between Skolemization and free amalgamation with an absolutelyfree algebra.10Note that � contains no predicate symbols.52



Lemma 8.1 Let A� be a strong SC-structure with atom set X, and let be a positive �-sentence. Suppose that the existential positive sentence  0 isobtained from  via Skolemization of the universally quanti�ed variables in, introducing the set of Skolem function symbols �. Let B� := T (�; X), andlet A�[�1 be the free amalgamated product of A� and B� as constructed inSection 6. Then A� j=  if, and only if, A�[�1 j=  0.Proof. In order to avoid notational overhead, we assume without loss ofgenerality that existential and universal quanti�ers alternate in ,11 i.e.,  =8u19v1 : : :8uk9vk '(u1; v1; : : : ; uk; vk). Skolemization yields the existentialformula  0 = 9v1 : : : 9vk '(f1; v1; f2(v1); v2; : : : ; fk(v1; : : : ; vk�1); vk). Thus, �consists of k distinct new Skolem functions f1; f2; : : : ; fk having the arities0; 1; : : : ; k � 1, respectively.First, assume that A� j= . The structures A� and A�1 are isomorphic,and thus (�) A�1 j= 8u19v1 : : : 8uk9vk '(u1; v1; : : : ; uk; vk):Suppose that the Skolem symbols f1; f2; : : : ; fk are interpreted by the func-tions fA11 ; : : : ; fA1k on the carrier A1 of A�[�1 . Because of (�) there existsa1 2 A1 such that A�[�1 j= 8u29v2 : : :8uk9vk '(fA11 ; a1; u2; v2; : : : ; uk; vk).Iterating this argument, we obtain a1; : : : ; ak 2 A1 such thatA�[�1 j= '(fA11 ; a1; fA12 (a1); a2; : : : ; fA1k (a1; : : : ; ak�1); ak):This yieldsA�[�1 j= 9v1 : : : 9vk '(f1; v1; f2(v1); v2; : : : ; fk(v1; : : : ; vk�1); vk);i.e., A�[�1 j=  0.For the converse direction, assume thatA�[�1 j= 9v1 : : : 9vk '(f1; v1; f2(v1); v2; : : : ; fk(v1; : : : ; vk�1); vk):There exist a1; : : : ; ak 2 A1 such that(��) A�[�1 j= '(fA11 ; a1; fA12 (a1); a2; : : : ; fA1k (a1; : : : ; ak�1); ak);where fA11 ; : : : ; fA1k again denote the functions on A1 that interpret thesymbols f1; : : : ; fk.Our goal is to apply Lemma 4.14. Obviously, (��) shows that the sequencefA11 ; a1; fA12 (a1); a2; : : : ; fA1k (a1; : : : ; ak�1); ak satis�es part (a) of Condition 211Obviously one can introduce additional quanti�ers over variables not occurring in to generate an equivalent formula of this form.53



of Lemma 4.14. It remains to be shown that part (b) and (c) are valid aswell. The proof will depend on the following four properties, which are aneasy consequence of the fact that B�1 is an absolutely free �-algebra. Notethat the carrier of B�1 consists of the �-terms over the set (of variables) Y1,i.e., the symbols fi interpret themselves.(p1) Elements of B1 of the form fi(b1; : : : ; bi�1) and fj(b01; : : : ; b0j�1) aredistinct if i 6= j.(p2) Elements of B1 of the form fi(b1; : : : ; bi�1) are elements of B1 n Y1.(p3) If b 2 Bm+1 n Bm, then fj(: : : ; b; : : :) 62 Bm [ Ym+1.(p4) Terms fj(b1; : : : ; bj�1) are distinct from all their arguments b� .Now, (p1) and (p2) can be used to show part (b) of Condition 2 ofLemma 4.14. By de�nition of the bijections h1 and g1, the h1-image of B1nY1 is in X1, and thus fA1i (a1; : : : ; ai�1) = h1(fi(g1(a1); : : : ; g1(ai�1))) 2X1 by (p2). This shows that the elements fA1i (a1; : : : ; ai�1) of the sequenceare in fact atoms, i.e., elements of X1. All these atoms are di�erent becauseof (p1). Indeed, since h1 is a bijection, (p1) impliesfA1i (a1; : : : ; ai�1) = h1(fi(g1(a1); : : : ; g1(ai�1))) 6=h1(fj(g1(a1); : : : ; g1(aj�1))) = fA1j (a1; : : : ; aj�1)for all i 6= j.To prove (c), we must show that (for all i; 1 < i � k) fA1i (a1; : : : ; ai�1)is not an element of StabM1(a1) [ : : : [ StabM1(ai�1). Let b1; : : : ; bi�1 bethe images of a1; : : : ; ai�1 under the bijection g1, and let m be the mini-mal number such that fa1; : : : ; ai�1g � Am. Obviously, this implies thatStabM1(a1) [ : : : [ StabM1(ai�1) � Smj=0Xj.First, we consider the case where the sequence a1; : : : ; ai�1 contains anelement aj 2 Amn(Am�1[Xm). Then bj = g1(aj) is an element of Ym+1. Pro-perty (p3) yields fi(b1; : : : ; bi�1) 62 Bm [ Ym+1, and thus fA1i (a1; : : : ; ai�1) =h1(fi(b1; : : : ; bi�1)) 62 Am [ Xm+1. Hence fA1i (a1; : : : ; ai�1) 62 Smj=0Xj �Am [Xm+1, and we are done.Otherwise, the sequence a1; : : : ; aj�1 contains a non-zero number of ele-ments of Xm (these will be called atoms of type 1), and possibly some ele-ments of Am�1. The latter elements are stabilized by atoms in Sm�1j=0 Xj(which will be called atoms of type 2). Recall that g1(Xm) = Bm�1n(Bm�2[Ym�1). By (p3), fi(b1; : : : ; bi�1) 62 Bm�2[Ym�1, and thus fA1i (a1; : : : ; ai�1) =54



h1(fi(b1; : : : ; bi�1)) 62 Am�2 [ Xm�1. This implies that fA1i (a1; : : : ; ai�1) isdi�erent from all atoms of type 2. In addition, (p4) says that fi(b1; : : : ; bi�1) isdi�erent from all its arguments b1; : : : ; bi�1. Consequently, fA1i (a1; : : : ; ai�1)is distinct from all its arguments a1; : : : ; ai�1, and thus from all atoms of type1. This completes the proof that Condition 2 of Lemma 4.14 is satis�ed.Applying the lemma, we obtainA�[�1 j= 8u19v1 : : :8uk9vk '(u1; v1; : : : ; uk; vk):Since  = 8u19v1 : : : 8uk9vk '(u1; v1; : : : ; uk; vk) is a pure �-formula, andsince A� and A�1 are isomorphic, this shows A� j= .Correctness of Algorithm 2 is an easy consequence of this lemma.Proposition 8.2 A�[�1 j= '1 if, and only if, there exists an output triple(�; �; �) such that A� j= �, B� j= �, and T (�; X) j= �, where � consists ofthe Skolem functions introduced in Phase 1 and 2 of the algorithm.Proof. As before, let \
" denote the free amalgamated product of twostrong SC-structures, as constructed in Section 6.1. Assume that A�[�1 'A� 
 B� j= '1. By Lemma 8.1 and Theorem 6.14, this implies that (A� 
B�) 
 T (�1; X) ' A� 
 (B� 
 T (�1; X)) j= '01, where '01 is the formulaobtained from '1 by Skolemization. Let 9~u11 be one of the disjuncts in '01satis�ed by A�
(B�
T (�1; X)). Since the decomposition algorithm is cor-rect, one of the output pairs (�; '2) generated by applying the decompositionalgorithm to 9~u11 satis�es A� j= � and B� 
 T (�1; X) j= '2.We have shown in Proposition 3.6 that T (�1; X) 
 T (�2; X) ' T (�1 [�2; X). Applying Lemma 8.1 and Theorem 6.14 a second time, we obtain(B� 
 T (�1; X)) 
 T (�2; X) ' B� 
 T (�1 [ �2; X) j= '02, where '02 is thepositive existential sentence that is obtained from '2 via Skolemization. Thedecomposition algorithm, applied to '02, thus yields an output pair (�; �) atthe end of Phase 2 such that B� j= � and T (�1 [ �2; X) j= �.It is easy to see that all arguments used during this proof also apply inthe other direction.The proposition shows that decidability of the positive theory of the freeamalgamated product A�
B� can be reduced to decidability of the positivetheories of A�, B�, and of an absolutely free term algebra T (�; X). It iswell-known that the whole �rst-order theory of absolutely free term algebrasis decidable [Mal71, Mah88, CL89]. 55



Theorem 8.3 If (A�;M; X) and (B�;N ; X) are strong SC-structures overdisjoint signatures, then the (full) positive theory of the free amalgamatedproduct A� 
 B� is decidable, provided that the positive theories of A� andof B� are decidable.In connection with the Theorems 6.14 and 6.6, this provides the basisfor constraint solving in the combination of any �nite number of strong SC-structures.Theorem 8.4 If (A�11 ;M1; X); : : : ; (A�nn ;Mn; X) are strong SC-structuresover disjoint signatures, then the (full) positive theory of A�11 
 � � � 
A�nn isdecidable, provided that the positive theories of all structures A�ii are decida-ble (1 � i � n).9 ApplicationsThe prerequisite for combining constraint solvers with the help of our decom-position algorithms is that validity of arbitrary positive sentences is decidablein both components (Theorems 7.1 and 8.3). If we leave the realm of freestructures, not many results are known that show that the positive theory ofa particular SC-structure is decidable. Nevertheless, two SC-structures thatwe mentioned in our list of examples 4.9 are known to have a decidable full�rst order theory:� The �rst order theory of the algebra of rational trees|like the theoryof the algebra of �nite trees|is decidable [Mah88].12� The �rst order theory of the structure of rational feature trees with arity(compare Examples 4.9, (7)) is decidable. The decidability result hasbeen obtained for the ground structure [BaT94] by giving a completeaxiomatization. But it is simple to see that all axioms hold in the non-ground structure as well. Thus, ground and non-ground variant areelementary equivalent, which implies that the �rst order theory of thenon-ground structure is decidable, too.In general, the problem of deciding validity of existential positive sentencesand the problem of deciding validity of arbitrary positive sentences in a given12Maher considers ground tree algebras, but over possibly in�nite signatures. Thereforehis result can be lifted to the non-ground case by treating variables as constants.56



structure can be quite di�erent. For the case of SC-structures, however, thefollowing variant of Lemma 4.14 shows that the di�erence is not drastic.Lemma 9.1 Let (A�;M; X) be an SC-structure such that SHAM(;) 6= ;, let8~u19~v1 : : : 8~uk9~vk '(~u1; ~v1; : : : ; ~uk; ~vk)be a positive �-sentence, and let, for each i; 1 � i � k, ~xi be an arbitrary (but�xed) sequence of length j~uij of distinct atoms such that distinct sequences~xi and ~xj do not have common elements. Let X1;i denote the set of allatoms occurring in the sequences ~x1; : : : ; ~xi (i = 1; : : : ; k). Then the followingconditions are equivalent:1. A� j= 8~u19~v1 : : : 8~uk9~vk '(~u1; ~v1; : : : ; ~uk; ~vk),2. there exist ~e1 2 SHAM(X1;1); : : : ; ~ek 2 SHAM(X1;k) such thatA� j= '(~x1; ~e1; : : : ; ~xk; ~ek).Proof. Recall that we do not assume that sequences ~ui or ~vi are non-empty. In the present lemma (in contrast to the situation in Lemma 4.14)there is a subtle di�erence between the case where the quanti�er pre�x startwith a non-empty block of universal quanti�ers and the case where the quan-ti�er pre�x start with an empty block of universal quanti�ers. Here we shalltreat the latter case. It is this case where the condition that SHAM(;) 6= ; isneeded.To prove the �rst direction, assume thatA� j= 9~v18~u29~v2 : : : 8~uk9~vk '(~v1; ~u2; ~v2; : : : ; ~uk; ~vk):Then there exist elements ~c 2 ~A such thatA� j= 8~u29~v2 : : :8~uk9~vk '(~c1; ~u2; ~v2; : : : ; ~uk; ~vk):Since SHAM(;) 6= ; we may apply a surjective endomorphism m1 2 M suchthat all elements in the stabilizer of ~c1 are mapped to SHAM(;). This impliesthat ~e1 := m1(~c1) � SHAM(;) and StabA�(~e1) = ;. Since m1 is surjective wehave A� j= 8~u29~v2 : : :8~uk9~vk '(~e1; ~u2; ~v2; : : : ; ~uk; ~vk);by Lemma 2.1. Hence there are elements ~c2 2 ~A such thatA� j= 8~u39~v3 : : :8~uk9~vk '(m(~e1); ~x2;~c2; : : : ; ~uk; ~vk);57



where ~x2 is the sequence given in the lemma. We apply a second surjec-tive endomorphism m2 2 M such that all elements in the stabilizer of ~c2are mapped to SHAM(~x2). This implies that ~e2 := m2(~c2) � SHAM(~x2) andStabA�(~e2) � ~x2. Since m2 is surjective we haveA� j= 8~u39~v3 : : :8~uk9~vk '(~e1; ~x2; ~e2; ~u3; ~v3; : : : ; ~uk; ~vk);by Lemma 2.1. Proceedings this way, always applying surjective endomor-phisms mi that leave previously selected atoms ~x1; : : : ; ~xi�1 �xed, we ob-tain the desired sequences ~e1 2 SHAM(X1;1); : : : ; ~ek 2 SHAM(X1;k) such thatA� j= '(~x1; ~e1; : : : ; ~xk; ~ek).The converse direction is an immediate consequence of Lemma 4.14.Looking at the second condition of the lemma, one sees that a positivesentence can be reduced to an existential positive sentence where the univer-sally quanti�ed variables are replaced by atoms (i.e., free constants), and ad-ditional restrictions are imposed on the values of the existentially quanti�edvariables. For this reason, it is often not hard to extend decision proceduresfor the existential positive theory of an SC-structure to a decision procedurefor the full positive theory.In the next two subsections this way of proceeding will be used to provethat the positive theories of the two domains of nested, heriditarily �nitewellfounded or non-wellfounded lists (compare Examples 4.9 (6)) are deci-dable. Similar proofs show that the positive theories of the two domainsof nested, heriditarily �nite wellfounded or non-wellfounded sets (compareExamples 4.9 (4), (5)) are decidable.Corollary 9.2 Simultaneous free amalgamated products have a decidable po-sitive theory if the components are non-ground rational feature structureswith arity, �nite or rational tree algebras, or nested, heriditarily �nite well-founded or non-wellfounded sets, or nested, heriditarily �nite wellfounded ornon-wellfounded lists, and if the signatures of the components are disjoint.9.1 Nested, hereditarily �nite non-wellfounded listsFor the convenience of the reader, let us recall some notation. Let Y denotea countably in�nite set of \urelements". The domain Lhfnwl(Y ) of nested,hereditarily �nite non-wellfounded lists over Y contains all ordered, rational13trees where the topmost node has label \h i" (representing a list constructor13A �nite or in�nite tree is rational if it has only a �nite number of distinct substrees.58



of variable �nite arity), each node that has at least one successor has label\h i", and leaves have label y 2 Y or \h i". Let X = fhyi; y 2 Y g denote theatom set. As operations we consider concatenation \�" and (singleton-) listconstruction h�i : l 7! hli. Accordingly, formulas are built over the signature� := f�; h�ig. Expressions h�i(t) will be written in the form hti, and lettersu; v; w; : : : denote variables of the language.Lemma 9.3 Validity of positive sentences over Lhfnwl(Y )� is decidable.Proof. Let '0 be a positive �-sentence. We may assume that '0 starts witha mixed quanti�er pre�x, followed by a quanti�er free positive matrix 0. Inorder to decide if '0 holds in Lhfnwl(Y )�, we shall �rst compute an equivalentsentence '1 where the atomic subformulae have the form v = l1 � � � � � ls(s � 1) where v is a variable and the arguments li are either variables orthey have the form hwi, where w is a variable. Obviously, the formula '1may obtained from 0 by adding equations u = l, where u is a new variable,to the matrix, and adding existential quanti�cations 9u immediately in frontof the actual quanti�er free matrix. Let us assume that '1 has the form8~u19~v1 : : :8~uk9~vk 1(~u1; ~v1; : : : ; ~uk; ~vk), where 1 is the new quanti�er freematrix.Our next aim is to apply Lemma 9.1. For each i, 1 � i � k, let ~xi bean arbitrary, but �xed sequence of distinct atoms of length j~uij, such thatdistinct sequences ~xi and ~xj do not have common elements. Let X1;i denotethe set of all atoms occurring in the sequences ~x1; : : : ; ~xi (i = 1; : : : ; k). ByLemma 9.1, we have to ask if 1(~x1; ~v1; : : : ; ~xk; ~vk)14 has a solution such thatthe value of each variable v occurring in ~vi belongs to the stable hull ofX1;i. By assumption, 1(~x1; ~v1; : : : ; ~xk; ~vk) is a positive Boolean combinationof equations. Thus the new equations have the form l0 = l1 � � � � � ls (s � 1),where l0 may be an atom hyi or a variable, and the remaining arguments liare either variables, atoms, or lists of the form hwi, where w is a variable oran atom. All atoms are in X1;k. Without loss of generality we may assumethat 1 is just a system (i.e., a conjunction) of equations. To simplify thefollowing arguments we consider an equivalent system 2 where each equationhas the form v = l1 � � � � � ls (s � 1), where the arguments li are variables, oratoms of the form hyi, or lists of the form hwi, where w is a variable. As weindicated above, such a system can be reached by introducing new equations.For this purpose, a set ~v of new variables has to be introduced by need.14The informal notation 1(~x1; ~v1; : : : ; ~xk; ~vk) indicates that we �x the evaluation of thevariables ~u1; : : : ; ~uk by mapping them to ~x1; : : : ; ~xk. Alternatively, we might think of the~x1; : : : ; ~xk as new constants that are, for simplicity, notationally not distinguished fromthe corresponding atoms that represent their interpretation.59



Let us now assign to each variable v of ~vi its \set of licensed stabilizers"Dv := X1;i. For the remaining variables v occurring in � := 2 we de�neDv := X1;k. We shall now give a non-deterministic algorithm, consisting oftwo steps.Algorithm 3The input is a system of equations �(~x1; ~v1; : : : ; ~xk; ~vk; ~v), with given setsof licensed stabilizers Dv, for each variable v occurring in the system. LetW = ~v1 [ : : : [ ~vk [ v be the set of variables occurring in �.Step 1: Non-deterministically identify variables as usual (cf. Algorithm 1in Subsection 7.1). Let W0 denote the set of representants. To each repre-sentant v 2 W0 assign the set D0v := TfDu j u 2 [v]g as its new set oflicensed stabilizers. Let �0 denote the system that is obtained via variableidenti�cation.Step 2: We choose a new set of licensed stabilizers Ev � D0v, for eachv 2 W0.Step 3: We introduce a new constant _w for each w 2 W0, and one addi-tional new constant c. In each equation v = l1 � � � � � ls of �0, we replace everyargument li of the form hwi (for w 2 W0) by the new argument l0i := h _wi.The arguments li of the form u 2 W0 or hyi (with y 2 Y ) are not modi�ed.To each variable v 2 W0, we assign its licensed alphabetFv := fyjhyi 2 Evg [ f _wjEw � Evg [ fcg:Each resulting system �1, with �xed licensed alphabet Fv for each variablev 2 W0, is one output system.Each output system can be considered as a system �1 of word equations,where for each variable v 2 W0 a �nite alphabet Fv is speci�ed. In fact,all symbols occurring as elements of list expressions in �1 are constants (ofthe form _w or y 2 Y ), and all indecomposable arguments li are variables.A solution of such a system is a mapping � that assigns to each variablev 2 W0 a word over its licensed alphabet Fv and solves all equations of �1.Solvability of these kind of \constrained" systems of word equations is knownto be decidable ([Sc90]). Thus, in order to prove Lemma 9.3 it su�ces toshow that Algorithm 3 is sound and complete.Lemma 9.4 (Completeness of Algorithm 3)If the input system �(~x1; ~v1; : : : ; ~xk; ~vk; ~v) of Algorithm 3, with given sets of li-60



censed stabilizersDv, has a solution in Lhfnwl(Y )�, then there exists a solvableoutput system �1.Proof. Suppose that �(~x1; ~v1; : : : ; ~xk; ~vk; ~v), with given sets of licensed stabi-lizersDv, has a solution �. In Step 1 of Algorithm 3 we identify two variablesv; w 2 W i� �(v) = �(w). Note that this implies that each representant vis mapped to an element whose stabilizer is a subset of the set D0v de�nedin Step 1 of the algorithm. Moreover, all elements of W0 (the set of repre-sentants) are mapped to distinct elements under �. Moreover, � solves thesystem �0 with the new sets of licensed stabilizers D0v.In Step 2, we assign to each variable v 2 W0 the new set of licensedstabilizers Ev := fx 2 X;x occurs in v�g. Since � solves �0, respectinglicensed stabilizers, we have Ev � D0v, for all variables v. Thus our choice isadmissible and de�nes a unique output system �1.The solution � assigns to each variable v 2 W0 a list v� = hm1; : : : ;mki.Let us distinguish three types of elements. Elements mi of type 1 have theform y where hyi 2 Ev. Elements mi of type 2 are the lists which have theform w�, for some variable w 2 W0. Note that in this case Ew � Ev and_w 2 Fv, by de�nition of Fv. Elements of type 3 are lists of another form.We now de�ne a projection � on lists. The projection acts on the ele-ments, henceforth it commutes with concatenation. In more detail, � lea-ves each element mi of the form y (type 1) �xed, maps each element miof the form w� (type 2) to the constant m0i := _w, and maps elements miof type 3 to the constant m0i := c. Note that � is well-de�ned since allrepresentants have distinct images under �, by the choice of the variableidenti�cation. Let us now assign to each variable v 2 W0 the new valuev�0 := �(v�) = �(hm1; : : : ;mki) = hm01; : : : ;m0ki. We have seen that eachletter m0i is in the licensed alphabet Fv of v.Consider an equation v = l1 � � � � � ls of �0. Since v� = l�1 � � � � � l�s we havev�0 = �(v�) = �(l�1 ) � � � � � �(l�s ). Let v = l01 � � � � � l0s be the correspondingequation of �1. In order to prove that �0 solves the equation we show that�(l�i ) = l0i�0, for 1 � i � s. If li has the form hwi, then l0i�0 = l0i = h _wi = �(l�i ).If li has the form hyi, for some urelement y, then l0i�0 = l0i = li = l�i = �(l�i ).In the remaining case, l0i = li = u is a variable and �(l�i ) = �(u�) = u�0 = l0i�0.Thus �0 is a solution of the constrained output system �1.Lemma 9.5 (Soundness of Algorithm 3)If an output system �1 of Algorithm 3, with licensed alphabet Fv for each61



variable v 2 W0, has a solution, then the input system � has a solution inLhfnwl(Y )�.Proof. Suppose that �0 is a solution of �1 that assigns to each variable v 2 W0a word over Fv = fy; hyi 2 Evg [ f _w;Ew � Evg [ fcg, its licensed alphabet.We show how to �nd a solution of �0, the system reached after Step 1 of thealgorithm. It is then trivial to construct a solution of the input system �.Let v = l1 � � � � � ls be an equation of �0, let v = l01 � � � � � l0s be thecorresponding equation of �1. We havev�0 = l01�0 � � � � � l0s�0:In order to �nd an admissible solution � of �0, we shall give an assignment� that maps each element of f _wjw 2 W0g [ fcg to an element of Lhfnwl(Y )and leaves urelements y 2 Y �xed. The mapping � will be identi�ed with itshomomorphic extension on nested (non-wellfounded) lists with urelements inY [ f _wjw 2 W0g [ fcg. Thus we obtain v�0� = l01�0� � � � � � l0s�0� . Hence, inorder to show that � := �0 � � is a solution of �0 it su�ces to prove (a) thateach atom hyi occurring in the value w� of a variable w is always licensed byD0w, and (b) that h _wi�0� (= h _wi� ) = hwi�, for all w 2W0.Let us now start with the de�nition of � . Consider the mapping� : 8><>: _w 7! w�0 for w 2 W0;y 7! y for y 2 Y;c 7! h i empty list.We identify � with its homomorphic extension on the set of nested non-wellfounded lists with urelements in Y [ _f _wjw 2 W0g [ fcg. Let n � 1be a natural number, and suppose that (1) hyi 2 Ew, for all urelements yoccurring in _w�n , and that (2) Eu � Ew for all dotted variables _u occurringin _w�n. We assume that (1) and (2) hold for all w 2 W0. From the de�nitionof � and from the choice of the licensed alphabets Fw it follows that (1) and(2) hold for each value w�n+1 as well.It is simple to see that the limit of each sequence ( _w�n)n�1 de�nes a uniquenon-wellfounded hereditarily �nite nested list over the set of urelements Y ,which we take to be the value of _w under � . Furthermore, we de�ne c� :=c� = h i. Note that (1) and (2) guarantee that hyi 2 Ew, for all urelements yoccurring in _w� . If _w occurs in v�0 , then Ew � Ev � D0v, by de�nition of Fv.It follows that � := �0 � � assigns licensed values to each variable v. Thus (a)is satis�ed. Since w� = w�0� = _w�� = _w� also (b) is satis�ed.62



9.2 Nested, hereditarily �nite wellfounded listsThe domain Lh(Y ) of nested, hereditarily �nite wellfounded lists over Ycontains all ordered, �nite trees where the topmost node has label \h i" (re-presenting a list constructor of variable �nite arity), each node that has atleast one successor has label \h i", and leaves have label y 2 Y or \h i".Atom set X, signature �, formulas, and operations (lists construction, con-catenation) are as before.Lemma 9.6 Validity of positive sentences over Lh(Y )� is decidable.Proof. To prove the lemma, we must show, as before, that it is decidable ifa system of equations �(~x1; ~v1; : : : ; ~xk; ~vk) has a solution in L�h(Y ) such thatthe value of each variable v occurring in ~vi belongs to the stable hull of X1;i(where X1;i denotes the set of all atoms occurring in ~x1; : : : ; ~xi, for each i,1 � i � k). Equations have the form v = l1 � � � � � ls (s � 1), where thearguments li are variables, or atoms of the form hyi, or lists of the form hwi,where w is a variable. We assign to each variable v of ~vi its \set of licensedstabilizers" Dv := X1;i.Algorithm 4The input is the constraint system �(~x1; ~v1; : : : ; ~xk; ~vk) with given sets oflicensed stabilizers Dv, for each variable v occurring in the system. Let Wdenote the set of variables occurring in �.Step 1: Non-deterministically identify variables as usual (cf. Algorithm 1in Subsection 7.1). Let W0 denote the set of representants. To each repre-sentant v 2 W0 assign D0v := TfDu j u 2 [v]g as its new set of licensedstabilizers. Let �0 denote the system that is obtained via variable identi�ca-tion.Step 2: For each v 2 W0, choose a new set of licensed stabilizers Ev � D0v.In addition, choose a partial ordering < on W0 such that v < w impliesEv � Ew.Step 3: Let c be a new constant. In each equation v = l1 � � � � � lk of�0, replace every element li of the form hwi by the new element l0i := h _wi,introducing a new constant _w for each variable w 2 W0. The elements li ofthe form u 2 W0 or hyi (with y 2 Y ) are not modi�ed. The new system�1 is a system of word equations. To each variable v, we assign its licensedalphabet Fv := fy; hyi 2 Evg [ f _w;w < vg [ fcg.63



Each system �1, with a �xed licensed alphabet Fv for each variable v 2W0,is one output system. Again, the proof of Lemma 9.6 is complete when weshow that Algorithm 4 is complete and sound.Lemma 9.7 (Completeness of Algorithm 4)If the input system �(~x1; ~v1; : : : ; ~xk; ~vk) of Algorithm 4, with given sets Dv,has a solution in Lh(Y )�, then there exists a solvable output system �1.Proof. Suppose that �(~x1; ~v1; : : : ; ~xk; ~vk), with given sets Dv, has a solution�. In Step 1 of Algorithm 4 we identify two variables v; w 2 W i� �(v) =�(w). Note that this implies that each representant v is mapped to an elementwhose stabilizer is a subset of the set D0v de�ned in Step 1 of the algorithm.Moreover, all elements ofW0 (the set of representants) are mapped to distinctelements under �. Thirdly, � solves the system �0 with the new sets of licensedstabilizers D0v.In Step 2 of Algorithm 4 we assign to each variable v 2 W0 the new set oflicensed stabilizers Ev := fx 2 X;x occurs in v�g. Since � solves the system�0 we have Ev � D0v, for all variables v 2W0. Furthermore, we de�ne v < wi� v� is a proper subtree of w�. Obviously, \<" is a partial ordering on W0and v < w implies that Ev � Ew. Thus our choices are admissible and de�nea unique output system �1 of Algorithm 4.The solution � assigns to each variable v a list v� = hm1; : : : ;mki. Weshall distinguish three types of elements. Elementsmi of type 1 have the formy where hyi 2 Ev. Elements mj of type 2 are the lists which have the formw�, for some variable w 2 W0. Note that in this case Ew � Ev and w < v,by de�nition of <. Hence _w 2 Fv, by de�nition of Fv. Moreover w is unique,by the variable identi�cation step. Elements of type 3 are lists of anotherform. We de�ne a projection � on lists that leaves each element mi of type 1�xed, maps each elementmi of the form w� (type 2) to the constant m0i := _wand maps elements mi of type 3 to the constant m0i := c. Let us assignto each variable v 2 W0 the new value v�0 := �(v�) = �(hm1; : : : ;mki) =hm01; : : : ;m0ki. We have seen that each letter m0i is in the licensed alphabetFv of v.Consider an equation v = l1 � � � � � ls of �0. We have v� = l�1 � � � � � l�sund thus v�0 = �(v�) = �(l�1 ) � � � � � �(l�s ). Take the corresponding equationv = l01 � � � � � l0s of �1. In order to prove that �0 solves the latter equation weshow that �(l�i ) = l0i�0, for 1 � i � s. If li has the form hwi for some w 2W0,then l0i�0 = l0i = h _wi = �(l�i ). If li has the form hyi, for some urelement y, then64



l0i�0 = l0i = li = l�i = �(l�0i ). In the remaining case, l0i = li = u is a variableand �(l�i ) = �(u�) = u�0 = l0i�0. Thus �0 is a solution of the constrainedoutput system.Lemma 9.8 (Soundness of Algorithm 4)If an output system �1 of Algorithm 4, with licensed alphabet Fv for eachvariable v in �1, has a solution, then the input system � has a solution inLh(Y )�.Proof. Suppose that �0 is a solution of �1 that assigns to each variable v 2 W0a word over Fv = fy; hyi 2 Evg [ f _w;w < vg [ fcg, the licensed alphabet.We show that the system �0 reached after Step 1 has a solution. It followsimmediately that the input system � has a solution.Let v = l1 � � � � � ls be an equation of �0, let v = l01 � � � � � l0s be thecorresponding equation of �1. We havev�0 = l01�0 � � � � � l0s�0:In order to �nd an admissible solution � of �0, we shall give an assignment� that maps each element of f _wjw 2 W0g [ fcg to an element of Lh(Y )and leaves urelements y 2 Y �xed. The mapping � will be identi�ed withits homomorphic extension on nested wellfounded lists with urelements inY [ f _wjw 2 W0g [ fcg. Thus we obtain v�0� = l01�0� � � � � � l0s�0� . Hence, inorder to show that � := �0 � � is a solution of �0 it su�ces to prove (a) thateach stabilizer hyi occurring in the value w� of a variable w 2 W0 is licensedby D0w, and (b) that h _w�0�i (= h _w� i) = hw�i, for all w 2 W0.Let c� := h i. The remaining part of the mapping � will be de�ned byinduction, using the partial ordering < on W0. Let _v be a dotted variable,and suppose that � has been de�ned for all _w such that w < v. We assume(*) that each atom occurring in _w� 2 Lh(Y ) belongs to Ew, for all w < v.We may now de�ne _v� := v�0� . In fact, the de�nition is well-de�ned sincew < v for all dotted _w occurring in v�0 , by de�nition of Fv. This also showsthat condition (*) holds again, by induction hypothesis, since w < v impliesEw � Ev, according to Step 2.If the atom hyi occurs in w� = w�0� , then either hyi occurs in w�0, or hyioccurs in a value _u� for some u < w. In the former case we have hyi 2 Ew,since �0 respects the licensed alphabet Fw. In the latter case, condition (*)shows that hyi 2 Eu � Ew. Thus hyi 2 D0w, which shows that (a) is satis�ed.Similarly (b) holds since h _w�0� i = h _w� i = hw�0� i = hw�i.65



10 ConclusionThis paper should be seen as a �rst step to provide an abstract framework forthe combination of constraint languages and constraint solvers. We have in-troduced the notion \admissible amalgamated product" in order to capture|in an abstract algebraic setting|our intuition of what a combined solutionstructure should satisfy. It was shown that in certain cases there exists a ca-nonical structure|called the free amalgamated product|that yields a mostgeneral admissible closure of a given amalgamation base.We have introduced a class of structures|called SC-structures|that areequipped with structural properties that guarantee (1) that a canonical amal-gamation construction can be applied to SC-structures over disjoint signatu-res, and (2) that validity of positive existential formulae in the amalgama-ted structure obtained by this construction can be reduced to validity ofpositive formulae in the component structures. For the subclass of strongSC-structures we have obtained stronger results. Interestingly, a very simi-lar class of structures has independently been introduced in [SS88, Wil91]in order to characterize a maximal class of algebras where equation (andconstraint) solving essentially behaves like uni�cation.15It is interesting to compare the concrete combined solution domains thatcan be found in the literature with the combined domains obtained by ouramalgamation construction. It turns out that there can be di�erences if theelements of the components have a tree-like structure that allows for in�nitepaths (as in the examples of non-wellfounded sets and rational trees). Inthese cases, frequently a combined solution structure is chosen where anin�nite number of \signature changes" may occur when following an in�nitepath in an element of the combined domain. In contrast, our amalgamationconstruction yields a combined structure where elements allow for a �nitenumber of signature changes only. This indicates that the free amalgamatedproduct, even if it exists, is not necessarily the only interesting combineddomain. It remains to be seen which additional natural ways to combinestructures exist, and how di�erent ways of combining structures are formallyrelated.It should be noted that for most of the results presented in the paperthe presence of countably many atoms (\variables") in the structures to becombined is an essential precondition. On the other hand, many constraint-based approaches consider ground structures as solution domains. In most15The notion of an SC-structure can be considered as a sort-free version of the conceptsthat have been discussed in [SS88, Wil91]. 66



cases, however, a corresponding non-ground structure containing the neces-sary atoms exists. Thus, our combination method can be applied to thesenon-ground variants. Of course, the combined structure obtained in this wayis again non-ground. For existential positive formulae, however, validity inthe non-ground combined structure is equivalent to validity in the groundvariant of the combined structure.16 This observation has the following in-teresting consequence. Even in cases where the (full) positive theory of aground component structure is undecidable, our combination methods canbe applied to show decidability of the existential positive theory even forthe ground combined structure, provided that the (full) positive theories ofthe non-ground component structures are decidable. Our remark followingLemma 9.1 shows that decidability of the full positive theory of such a non-ground structure can sometimes be obtained by an easy modi�cation of thedecision method for the existential positive case. Free semigroups are an ex-ample for this situation: the positive theory of a free semigroup with a �nitenumber n � 2 of generators is undecidable, whereas the positive theory of thecountably generated free semigroup (which corresponds to our non-groundcase) is decidable [VaR83].

16We assume here that the ground structure is a substructure of the non-ground struc-ture and that \substitution" of ground elements for atoms is homomorphic.67
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