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Abstract

In a recent paper!, the concept of “free amalgamation” has been intro-
duced as a general methodology for interweaving solution structures for
symbolic constraints, and it was shown how constraint solvers for two com-
ponents can be lifted to a constraint solver for the free amalgam. Here
we discuss a second general way for combining solution domains, called
rational amalgamation. In praxis, rational amalgamation seems to be the
preferred combination principle if the two solution structures to be combi-
ned are “rational” or “non-wellfounded” domains. It represents, e.g., the
way how rational trees and rational lists are interwoven in the solution
domain of Prolog I, and a variant has been used by W. Rounds for com-
bining feature structures and hereditarily finite non-wellfounded sets. We
show that rational amalgamation is a general combination principle, app-
licable to a large class of structures. As in the case of free amalgamation,
constraint solvers for two component structures can be combined to a cons-
traint solver for their rational amalgam. From this algorithmic point of
view, rational amalgamation seems to be interesting since the combination
technique for rational amalgamation avoids one source of non-determinism
that is needed in the corresponding scheme for free amalgamation.

1 Introduction

The present paper, as its predecessor [BS95], marks one step in a program
where we try to characterize the most important general constructions for com-
bining solution domains and constraint solvers for symbolic constraints. In
[BS95] the notion of the free amalgamated product of two component structures
was introduced. This product is characterized by a universality-property: it

*This work was supported by a DFG grant (SSP “Deduktion”) and by the EC Working
Group CCL, EP6028.
!see [BS95].



represents a most general object among all structures that can be considered
as a reasonable combination of the two components. For a large class of com-
ponent structures so-called SC-structures an explicit construction of the free
amalgamated product of two components was given and it was shown how given
constraint solvers for the component structures can be combined to a constraint
solver for the free amalgam.

In the present paper we introduce a second systematic way to combine
constraint systems over SC-structures, called rational amalgamation. Free and
rational amalgamation both yield a combined structure with “mixed” elements
that interweave a finite number of “pure” elements of the two components in a
particular way. The difference between both constructions becomes transparent
when we ignore the interior structure of these pure subelements and consider
them as construction units with a fixed arity, similar to “complex function
symbols”. Under this perspective, and ignoring details, mixed elements of the
free amalgam can be considered as finite trees, whereas mixed elements of the
rational amalgam are like rational trees.

Mixed element of free amalgam (1) and of rational amalgam (2).

@ @]

@)

Dark (bright) ellipses represent pure
subelements of the first (second)
amal gamation component.

On this background it should not be surprising that in praxis rational amalga-
mation appears to be the preferred combination principle in situations where
the two solution structures to be combined are themselves “rational” or “cy-
clic” domains: for example, it represents the way how rational trees and rational
lists are interwoven in the solution domain of Prolog III ([C090]), and a vari-
ant of rational amalgamation has been used to combine feature structures with

non-wellfounded sets in a system introduced by W. Rounds [Ro88].

We introduce rational amalgamation as a general construction that can be
used to combine so-called non-collapsing SC-structures over disjoint signatures.
It is then shown how constraint solving in the rational amalgam can be reduced
to constraint solving in the components. The decomposition scheme that is used
is closely related to the decomposition algorithm for free amalgamation, but it
avoids one highly non-deterministic step that is needed in the latter scheme.
Hence, when matters of efficiency become important, rational amalgamation
might be the better choice.

In the conclusion we sketch a more general view of the problem of combining
constraint systems. From our present perspective, free and rational amalgama-



tion, and a related construction called “infinite amalgamation” seem to be the
most important combination principles among a whole spectrum of related me-
thods.

2 Preliminaries

A signature ¥ consists of a set Yp of function symbols and a disjoint set Xp
of predicate symbols (not containing “="), each of fixed arity. Expressions
A> denote L-structures over the carrier set A, and f4 (p4) stands for the
interpretation of f € Xp (p € Lp) in A*. Z-terms (t,%1,...) and atomic -
formulas (of the form ¢, = t9, or of the form p(¢y,...,t,)) are built as usual. A
Y-formula ¢ is written in the form (v, ..., v, ) in order to indicate that the

free variables of ¢ are in {vy, ..., vy b We write A* Eoe(vi/ar,...,u/a,) if ¢

. WV . ~ .
becomes true in A~ under all assignments that map v; to a; € A, for 1 <7 < n.

A Y-homomorphism is a mapping h between two structures A> and B>
such that h(fa(ay,..., an)) = fe(h(ay),...,h(ay)) and palay,...,ay,] implies
that pgl[h(ai),..., h(a,)] for all f € Zp. p € Xp, and ay,...,a,, € A.
A Y-isomorphism is a bijective ¥-homomorphism & : A*¥ — B such that
palat,...,a,] if, and ounly if, pg[h(a1),...,h(a,)], for all ai,...,a, € A. A
Y-endomorphism of A is a homomorphism 2> : A¥ — A¥. With Endi we

denote the monoid of all endomorphisms of A*, with composition as operation.

Ifg: A— Band h: B — C are mappings, then go h : A — C denotes
their composition. Expressions like 7, @ are used to denote finite sequences. If

a=ai,...,a, is a sequence of elements of A and if m is a mapping with domain
A, then m(d) denotes the sequence m(ay),...,m(ay). If ¥ = vy,...,v,, then
A® | ¢(#/a@) is shorthand for A~ &= ¢(vi/aq,..., vp/ay). The symbol “W”

denotes disjoint set union.

3 Non-collapsing SC-structures

In this section we shall introduce the class of structures for which we can use
the rational amalgamation construction (Definition 3.11). First we recall the
definition given in [BS95]. In the sequel, we consider a fixed ¥-structure A*.
and M denotes a submonoid of End>.

Definition 3.1 Let Ay, A; be subsets of A¥. Then Ag stabilizes Ay with respect
to M iff all elements m; and mo of M that coincide on A also coincide on A;.
For Ay C A the stable hull of Ay with respect to M is the set

SH,(Ag) := {a € A | Ay stabilizes {a} with respect to M}.

The stable hull of a set Ag has properties that are similar to those of the
subalgebra generated by Ay: SHf\k/l (Ay) is always a L-substructure of A%, and



Ay C SHj{‘/l(Ag). In general, however, the stable hull can be larger than the
generated subalgebra. For example, if A¥ := R(Z, X) denotes the algebra of
rational trees over signature X, if M = Endﬁ, and if Y C X is a subset of the
set of variables, X, then SH4,(Y) contains all rational trees with variables in
Y, while Y generates all finite trees with variables in Y only.

Definition 3.2 The set X C A is an M-atom set for A* if every mapping
X — A can be extended to an endomorphism in M.

Definition 3.3 A countably infinite Z-structure A is an SC-structure (simply
combinable structure) iff there exists a submonoid M of End:j‘( such that A*
has an infinite M-atom set X where every a € A is stabilized by a finite subset
of X with respect to M. We denote this SC-structure by (A*, M, X). If
M = Endi, then (A, Endj:‘l7 X)) is called a strong SC-structure.

Examples 3.4 The class of SC-structures contains, e.g., all free structures
(see, e.g., [MaTl]), rational tree algebras ([Co84, Ma88]), feature structures
(for specificity, we refer to [AP94, BT94]), feature structures with arity ([ST94,
BT94]), domains with nested, finite or rational lists (rational lists are used in
Prolog III, see [C090]), and domains with nested, finite or rational sets (as
introduced in [Ac88] and used in [Ro88]). In each case, we have to take the
non-ground variant since we assume the existence of a countably infinite set of
atoms. With the exception of feature structures, all these structures are strong
SC-structures. For details we refer to [BS95].

In the rest of this section, (A™, M, X) denotes a fixed SC-structure with
carrier A.

Lemma 3.5 Let o(vi,...,v;) be a positive X-formula, let m € M, and let
ai,...,ay be elements of A. Then A® = ¢(vi/a1,...,vp/ar) implies A~ =

Proof. It is simple to see that there exists a surjective endomorphism m’ € M
that coincides with m on {ai,...,ar}. The result follows from the well-known
fact that validity of positive formulae is preserved under surjective homomor-
phisms. O

Lemma 3.6 Let p(vy,...,vg) be a positive L-formula, let m € M, and let
T1,...,xp be distinct atoms in X. Then A | o(vi/x1,...,vp/xy) implies
A¥ =Yy, .. Yoy p.

Proof. Let ay,...,a; be arbitrary elements of A. Since X is an M-atom

set. there exists an m € M such that m(z;) = a;, for 7 = 1,..., k. Hence
A = o(vi /a1, ..., v/x) implies A® = @(v1 /a1, ..., v /ay), by Lemma 3.5.
It follows that A~ = Vo ...V, . O



A fundamental property of SC-structures is the following ([BS95],
Lemma 13).

Lemma 3.7 For each a € A there exists a unique minimal finite subset Y of

X such that {a} € SH{,(Y).

Definition 3.8 The stabilizer of a € A with respect to M2, Stabf\l,t (a) is the
unique minimal finite subset ¥ of X such that a € SHjl/[ (Y'). The stabilizer of
A" C Ais the set Stab(A') := U,cu Stab?y(a).

For the mathematical treatment of SC-structures, the concept of the stabilizer
turns out to be extremely useful. It might give a good intuition to imagine
that the stabilizer of an element a is the set of atoms “occurring” in a. Note,
however, that “the” set of atoms (variables) occurring, e.g., in distinct terms
that represent the same element of a quotient term algebra is not unique in
general. It is trivial to see that SHT{‘,, Y)y={a€c A| Stabﬁ(a) C Y}, for each
Y C X. In the sequel, further properties of stabilizers will be used. The first
lemma is a trivial consequence of the fact that stable hulls are X-substructures.

Lemma 3.9 Let f € ¥ be an n-place operator and ay,...,a, € A. Then
Stab;‘\‘/i (falar,....ay)) C Stabf,l({al, coean}).

The next lemma plays a crucial role in the rational amalgamation construction.
It will be used in many proofs.

Lemma 3.10 Let m € M be an endomorphism of the SC-structure
(A¥, M, X) such that the restriction of m on X is a mapping X — X. If
Stabi(a) = {w1,...,xp}, then Stab(m(a)) C {m(xy),...,m(xp)}. If m is

an automorphism, then Stabjl\i,l (m(a)) = {m(z1),...,m(xy)}.

Proof. Let m; and ms be two endomorphisms in M that coincide on
{m(xy),....,m(zg)} C X. Then m o my and m o my are endomor-
phisms in M that coincide on {zj,...,z;}. By assumption, m o m; and
m o mgy coincide on a. But then m; and ms coincide on m(a). Hence
Stabi(m(a)) C {m(z1)....,m(z)}. Assume that m is an automorphism,
and that Stabﬁ(m(a)) is a proper subset of {m(xy),...,m(xr)}. The first
part of the lemma, applied to m ™!, yields a proper subset of {z1,...,x;} that
stabilizes a, which is impossible, by choice of {z,...,z1}. O

We may now characterize the subclass of SC-structures for which we can
use the rational amalgamation construction.

Definition 3.11 An SC-structure (A%, M, X) is non-collapsing if every endo-
morphism m € M maps non-atoms to non-atoms (i.e., m(a) € A\ X for all

a € A\ X and all m € M).

*Whenever the monoid M is clear from the context, we shall not mention it.



E.g., quotient term algebras for collapse-free equational theories, rational tree
algebras, feature structures, feature structures with arity, and the domains with
nested, finite or rational lists (as mentioned in 3.4) are always non-collapsing.

4 The Domain of the Rational Amalgam

In this section we shall define the underlying domain of the rational amalgam
of two non-collapsing SC-structures over disjoint signatures. This is the most
complicated step of the rational amalgamation construction. The description
would be much simpler if we would restrict the construction to components
where the elements have a particular form (e.g., the form of trees). But such a
restriction would contradict our motivation to describe general constructions.
To define the elements of the rational amalgam, we shall first introduce the
notion of a “braid” and its standard normal form. The set of braids in stan-
dard normal form will represent the carrier of the rational amalgam. We shall
describe the rational amalgamation of two component structures. There are,
however, no difficulties to interweave any finite number of components in the
same way.

Throughout this section (A, M, X) and (B®, N,Y) denote two fixed non-
collapsing SC-structures over disjoint signatures. We assume that the atom
sets X and Y have the form X = ZW 04 and Y = Z W Op, where the sets
Z,04, and Op are all infinite, and where Oy N Op = (. The atoms in Z will
be called bottom atoms, the atoms in O4 (Op) will be called open atoms. In
the braid construction, the bottom atoms will play the role of ordinary atoms,
or leaves. Open atoms, in contrast, can be considered as “named holes” that
are only used to link elements of both structures. With O4(a) and O 4(A’) we
denote the set of open atoms occurring in the stabilizer of a € A (A’ C A) with
respect to M. Similarly expressions Op(b) (Op(B')) are used to denote the set
of open atoms occurring in the stabilizer of b € B (B’ C B) with respect to N

An endomorphism m € M (n € N) is called admissible if m (n) leaves
all bottom atoms z € Z fixed and if m(o) € O4 (n(o) € Op) for all 0 € O 4
(0 € Op).? Automorphisms are called admissible if they define a permutation of
the set of open atoms while leaving bottom atoms fixed. A pair (m,n) € M xN
is called admissible if both m and n are admissible.

Lemma 4.1 Let A’ C A. If the admissible endomorphisms mi,mos € M coin-
cide on OA(A"), then my and mo coincide on A'. Similarly, let B C B. If
the admissible endomorphisms ny,ne € N coincide on Op(B’), then ny and no
coincide on B'.

*Intuitively, admissible endomorphisms cause a “renaming” of open atoms, compare
Lemma 3.10. They may identify distinct open atoms.



4.1 Braids and subbraids

Braids represent finite descriptions of possibly infinite objects that interweave
a finite number of elements of two given SC-structures. Technically, suitable
mappings, defined on atoms and pointing to non-atomic elements, are used to
organize links between elements of distinct components that have to be inter-

Wovell.

Definition 4.2 Let Oy C Oy, O COp. let myq : Oy — B, 7 : O — A, let
m:=7aU7wp. An element a € A is directly linked to b € B via « if there is an
0 € Op(b) such that a = mp(0). Analogously b € B is directly linked to a € A
via 7 if there exists an 0 € O 4(a) such that b = w4(0). An element a € AU B
is a m-descendant of b € AU B if there exists a sequence a = ag,a1,...,a, = b
(n > 0) such that each a; is directly linked to a;y; via m, for 0 <¢ < n — 1.

Definition 4.3 A braid of type A over A¥,B® is a quintuple K =
(a,C,D,m4,7p), where

1. ae A\ Oy,

2. C is a finite subset of A containing a. All elements of C'\ {a} are non-
atomic. D is a finite set of non-atomic elements of B,

3. w4 1 Oa(C) = D and 7 : Opg(D) — C are mappings. For (o,e) €
w4 Umpg, e is always a non-atomic element,

4. each element in C' U D is a w-descendant of a, for m := 74 U np.

The element « is called the root of K. The elements in the sets C' and D are
called the elements of K of type A and B respectively. The functions 74 and
wp are called the linking functions of K of type A and B respectively.

Braids of type B, with root in B \ Op. are defined symmetrically. A braid
KC 1s called trivial if the root of K is a bottom atom z € Z. In this case, z 1s
the only element of the braid. It does not make sense to distinguish between
the trivial braid (z,{z}, 0,0, 0) of type A and the trivial braid (z,0, {z}, 0, 0) of
type B. We identify both braids. Hence, trivial braids have mixed type.

Example 4.4 The following figure represents a braid over two termalgebras,
for signatures ¥ = {f,a} and A = {g} respectively.



We sometimes write O 4(K) and Og(K) for O4(C) and Op (D) respectively, and
O(K) denotes the union O4(K)U Op(K). A quintuple K = {(a,C, D, 74, 7p3)
that satisfies Conditions 1-3 of Definition 4.3 will be called a prebraid.

Definition 4.5 Let K = (a,C,D.m4,75) be a braid. The braid X' :=
(a',C", B' 7'y, 7ly) (of type A or B) is a subbraid of K if o’ € CUD, C' C C,
D' C D, ny Cmy. and 7y C 7.

Sub(pre)braids of prebraids are defined in the same way. We write K’ C K if
K' is a sub(pre)braid of K.

Lemma 4.6 Let K; = (a;, Ci, D;, 7y, i) be a braid, and let ©' = 7', Unly, for
1 =1,2. If a1 = a2, and if 71(0) = 7wa(0) for all 0 € O(K1) N O(K3), then
Ki=Ks.

Proof. A simple induction shows that each mi-descendant of a; is a mo-
descendant of ao, and vice versa. Hence both braids have the same elements.
The second condition given in the lemma implies that both braids have the
same linking functions. Hence K| = Ks. O

Corollary 4.7 Let Ky and Ky be two prebraids and K1 C Ko. Let K} be a
subbraid of K1 and let Ky be a subbraid of Ko such that K| and KY have the

same root. Then K} = IC),.

Proof. Since K} and K are subbraids of K2 it is obvious that K} and K} satisfy
the conditions of Lemma 4.6. Hence K| = Ks. O

Lemma 4.8 For each element ¢ of a prebraid IC there exists a unique subbrasd
of KK with root .



Proof. Let K = {(a,C,D,w4,7p) and e € CUD. Then e cannot be an open
atom. Let C" C C (D" C D) be the set of m-descendants of ¢ in C' (resp. D),
where m = m4 Uy, Note that all elements of (C' U D)\ {e} are non-atomic
since IC is a prebraid. Let 7714 C 74 (resp. 7r53 C 7p) contain all ordered pairs
(0,c) of w4 (resp. ) where o € O4(C") (resp. o € Op(D’)). For each such
pair (o,c¢) the element ¢ is in D' (C") since ¢ is a w-descendant of e. Since
(0,¢) € m, the element ¢ is non-atomic. It follows that (e,C’, D', 7'y, 75) is a
subbraid of K. By Corollary 4.7 it is the unique subbraid of K with root e. O

4.2 Variants

The concrete open atoms that are used to organize links between elements of
distinct type in a given braid should be regarded as irrelevant. This motivates
the following definition.

Definition 4.9 Let K = (a,C, D, w4, 7g) and K' = (d’,C', D', 7'y, 73) be two
prebraids, say, of type A. K’ is called a variant of K if there exists an admissible
pair of automorphisms (m,n) such that

1. a’ =m(a),
2. C"={m(c)|ceC},and D' ={n(d) |d € D},

3.7y = <'r1’L(0),7’L(d)> | {(0,d) € ma}, and
7y == {(n(0).m(c)) | {0.c) € mp}.

Lemma 4.10 If two prebraids are variants, then the two subbraids given by
thetr roots are variants.

Proof. Let K and K’ be variants, of the form as in the previous definition.
Let K1 = {(a,CY, Dy, Wh, 7le3> be the unique subbraid of K with root a, and let
Ko = {a,Ca, Dy, 7%, 7%) be the unique subbraid of K’ with root a’ = m(a). The
elements in C} U Dy are the m-descendants of a, for # = 74 Uwp. The elements
in Cy U Dy are the n’'-descendants of o', for ' = 7Tf,1 U 7er. From the definition
of 7'y and 7y and from Lemma 3.10 (second part) it follows easily that the
7'-descendants of @’ = m(a) are the m resp. n -images of the m-descendants of
a. This shows that Co = {m(c) | ¢ € C1} and Dy = {n(d) | d € D1}. The rest
is obvious. O

The following lemma shows that the notion of a variant gives rise to an
equivalence relation on the set of all (pre)braids. Since the set of admissible
antomorphisms of A¥ (resp. B2) defines (with composition) a group, the proof
is obvious.

Lemma 4.11 Each prebraid Ky is a variant of K. If Ko is a variant of the
prebraid ICy, then K1 is a variant of Ko. If Ko 1s a variant of the prebraid Ky,
and if K3 1s a variant of Ko, then K3 is a variant of 1.



Lemma 4.12 Let (m,n) be an admissible pair of automorphisms. Let K,
o, C', D', «'y, and w'; be defined as in Definition 4.9, 1.-3. Then K' =

(', C", D' 7'y, 7)) is a prebraid and a variant of K.

Proof. Since a € A\ Oy it follows that ' = m(a) € A\ Oy, by choice
of m. Thus K’ satisfies Condition 1 of Definition 4.3. Since m and n are
admissible automorphisms, all elements of C' U D’ that are images of non-
atomic elements of C'U D under m and n respectively are non-atomic. Hence
K' satisfies Condition 2 of Definition 4.3. Since m and n define permutations
of 04 and Op respectively, the first component o of each pair (o, ¢e) in 7’y Uny
is an open atom. Lemma 3.10 shows that o € O4(C") U Op(D’). Obviously, if
0 € 04(C"), then e € D" and if 0o € O4(D"), then e € C'. Moreover, € is always
non-atomic, by admissibility of m and n. Since m and n are automorphisms,
7'y and 7 are functions. By Lemma 3.10, the domains of 7’y and #; are
04(C") and Op(D') respectively, which shows that K’ satisfies Condition 3 of
Definition 4.3. Thus K’ is a prebraid. Clearly it is a variant of K. O

Lemma 4.13 FEach variant of a braid is a braid.

Proof. 1t suffices to verify that each variant of a braid satisfies Condition 4
of Definition 4.3. Let K, K', and (m,n) as in Definition 4.9. Suppose that
d € D is directly linked to ¢ € C via 4. Thus, for some o € O4(c) we have
(0,d) € m4. Lemma 3.10 shows that m(o) € O4(m(c)). Clearly m(c) € C".
Since (m(o0),n(d)) € @'y, the element n(d) € D' is directly linked to m(c) € C".
Now a simple induction shows that all elements of C' U D" are n'-descendants
of the new root a’ = m(a), where 7’ = 7’y U mls. O

4.3 Simplification of braids

Two (pre)braids that are variants of each other are meant to denote the same
object. But then we should not distinguish between two subbraids of one and
the same (pre)braid if they are variants. In order to identify such subbraids,
we shall use admissible pairs of endomorphisms of a particular type.

Definition 4.14 The admissible pair (m,n) is a simplifier for the prebraid
K ={a,C,D,m4,7np) if the following conditions hold:

e Yoi,02 € 04(C): m(o1) = m(oz) implies n(mwa(01)) = n(wa(o2)),

e Yoi,09 € Op(D): n(o1) = n(o2) implies m(wp(o1)) = m(rp(o2)).

Lemma 4.15 Let (m,n) be a simplifier for the prebraid K. Then (m,n) is a
simplifier for each subprebraid of K.

10



Proof. Let K' = (a/.C', D', 7',, 73) be a subprebraid of K = (a,C,D. 74, 7p).
Then ¢’ C C and D' C D. Hence O4(C") C 04(C) and Op(D') C Op(D).
Moreover, the functions 74 and 7Tf4 C 7y (wp and 7r’B C mp) coincide on O 4(C")
(resp. Op(D')). The rest is obvious. O

Definition 4.16 Let (m.n) be a simplifier for the prebraid K =
<(1 , C.D,ma,mp). The image of K with respect to (m,n) is the prebraid
Klmn) = (!, C", D' 7'y, 7)) with the following components:*

1. @ :==m(a),

2. C":={mlc) | c€ C} and
D' :={n(d) | d € D},

3. 7y = {{(m(o),n(d)) | {0,d) € ma,m(0) € O4(C")}, and
7y = {(n(o). m(c)) | {0.¢) € mg,n(o) € Op(D')}.

Now assume that K is a braid. The braid-image of K with respect to (m,n),
K is the unique subbraid of K™ with root a'.

Example 4.17 The following figure represents the braid-image of the braid
from Example 4.4 under the simplification (m,n) where m maps o3 to 02 and

T maps u3 to u:

The next lemma gives a refinement of Lemma 4.15.

Lemma 4.18 Let (m,n) be a simplifier for the prebraid IC, let ICy be the unique
subbraid of IC with root e, where e is an element of K of type A (resp. B). Then

ICYH"”> is the unique subbraid of K"™™) with root m(e) (resp. n(e)).

Proof. Tt follows directly from Definition 4.16 that ICim’n> is a subbraid of the

prebraid I . Obviously m(e) (resp. n(e)) is the root of ICim”w. Now use

Corollary 4.7. O

(”17“)

*Using Lemma 3.10 and the fact that both A* and B* are non-collapsing it is trivial to
verify that K{™™ is a prebraid.

11



There is one technical point behind the definition of a simplifier that will
cause some difficulties in the further development. Assume, in the situation

of Definition 4.16, that O4(C) = {o1,..., o} and Og(D) = {u1,...,w}.

Then there is no guarantee that O4(C’) = {m(o01),...,m(o;)} and Op(D’) =
{m(o1),...,m(op)}.
Definition 4.19 The set

({mfo0) | 0 € O4(C)}\ OA(C")) U ({nlo) | 0 € Op(D)}\ Op(D"))

is called the set of pending atoms of the simplification step leading from X to

IC(m,n) .

As we shall see, pending atoms complicate the treatment of simplification. In
principle we could restrict the amalgamation construction to a class of structu-
res for which we can replace the inclusion from Lemma 3.10 mentioned above
by an equality. In this case pending atoms cannot occur, image and braid image
always coincide, and we could dispense with prebraids at all. However, our mo-
tivation was to give a general construction. For this reason we shall not follow
this line.

Lemma 4.20 Assume, in the situation of Definition 4.16, that o € O 4(C) and
m(o) is not a pending atom of the simplification step leading from K to Jelmn)
Then 7'y (m(0)) = n(ma(0)).

Proof. A trivial consequence of the definition of 7/, as given in 4.16. O

While we are mainly interested in simplification of braids, it turns out to
be simpler to treat simplification of prebraids in advance.

Lemma 4.21 Let (m1,n1) be a simplifier for the prebraid Ko and (ma,no2)
(m1,n1)

be a simplifier for the prebraid Ky Assume that mo and no do
not identify any pending atom of the simplification step leading from Ky to
K1 with another atom. Then (mj o ma,ny o na) is a simplifier for Ky and

K((]T?zlomz,nlonz) _ ICYHZ”Q)

Proof. Let K; = <a1‘,CZ‘.,DZ‘.,7ri‘.,7r£3>. for 1+ = 0,1. We may assume that
both are of type A. Let (m,n) := (mi o ma,n; ong). If m(o) = m(o)
for 0,0 € 04(Cy), then either mi(o) = mi(0'), or my(o) # my(0) and
ma(mi(0)) = ma(my(d)). In the former case we know that ni(7%(0)) =
ny (7% (")) since (mq,n1) is a simplifier for Ky. Hence n(79(0)) = n(7%(0')). In
the latter case, neither m; (o) nor my(0’) can be pending, by assumption. Hence
my (o) and mq (o) are in O4(K1). By Lemma 4.20, ny (74 (0)) = ! (m1(0)) and



ny (7% (o)) = wh(mi(0)). Since ma(my(0)) = ma(my(d')) and (ma,ng) is a
simplifier for Ky, this implies that

na(n1 (1%(0))) = na(h (m1(0))) = na(wh (m1(0))) = na(na (2% (0)))).

Hence in both cases n(7%(0)) = n(7% (o). Symmetumlly it follows that n(o) =
n(o') implies m(n%(0)) = m(z%(0')), for all 0,0’ € O4(Dy). Hence (m,n) is a
simplifier for K.

The prebraids IC(()M] emzmionz) and ICE"”’"“") have the same root ma(mq(ag)).
It is trivial that they have the same elements. But then it follows easily that
they have the same linking functions. O

Corollary 4.22 Let (my,ny) be a simplifier for the prebraid Ko and (mo,ns)

be a simplifier for the prebmid K1 = K(()ml,m)' Then there erists a simplifier

(m,n) for Ky such that ICO'" ) ]Cgmz,nz).

Proof. Tt follows from Lemma 4.1 that there exists a simplifier (mf, nf) of Ky
such that (mb,n5) does not identify any pending atom of the Silnll)lif;ication
step leading from Ky to Ky with another atom, and ICE'"‘""’M) = lCimQ"nz). Let
(myn) _ ]C('7'L'2='L’z) _

=K, =

(m,n) := (mpomb,nyonl). Then, by the previous lemma, K,
ICYHZ”Q). O

Let K be a prebraid. We have seen that a simplifier (rm,n) that yields a
permutation of O4 and Opg leads to the variant Klmm) of K (Lemma 4.12).
The same is true under weaker assumptions. By Lemma 4.1, the image Jelmn)
is completely determined by the images of the elements in O4(K) and Op(K)

under the endomorphisms m and n respectively. Hence we obtain

Lemma 4.23 Let (m,n) be a simplifier for the prebraid K. If the restrictions
of m and n on O4(K) and Op(K) respectively are injective, then K"™™) is a
variant of K.

Call a simplifier (m,n) for K strict if the restriction of m on O4(K) or the
restriction of n on Op(K) is not injective. Lemma 3.10 shows that |O(K™™)| <
|O(K)]| if (m,n) is strict. It follows that

Lemma 4.24 |O(K)| gives an upper bound on the length of every sequence of
strict ssmplifications for the prebraid K.

A prebraid K’ is called irreducible if K' does not have a strict simplifier. We
want to show that all irreducible prebraids that can be reached from a prebraid
K by simplification are variants. For this purpose, the following lemma is needed
that shows that simplification of prebraids is “locally confluent”.
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Lemma 4.25 Let (my,ny) and (ma,n2) be two simplifiers for the prebraid Ky,
let Iy and Ko be the images of Ko under (my,ni) and (ma,na) respectively.
Then there exist a simplifier (mg,n3) for Ki and a simplifier (mg,ng) for Ko
such that ICE"“""S) = lCém“"M).

Proof. Let K; = <(LZ‘,CI',D1',7T§’4,7T%>, for « = 0,1,2. The endomorphisms
m and ny define equivalence relations ~}4 and N%} on 04 (Cy) and Op(Dy) re-
) ,

spectively, where elements are equivalent with respect to ~% (leB) iff they have

the same image under my (n1). The endomorphisms mo and ny define similar
equivalence relations Nﬁ and N% on 04(Cp) and Op(Dy) respectively. Let
NA;:N]A H Na: (NL U Na)x denote smallest equivalence relation on O 4(Kg)
that extends ’\"]A and ~?%. Similarly, let ~p denote the smallest equivalence re-
lation on Op(Ko) that extends ~% and ~%. Choose a system of representants
for ~4 and a similar system for ~5. We shall write rep(o) for the representant

of [o] with respect to ~4 (~p), for 0 € O4(K) (0 € Op(K)).

The elements of O4(Cp) have the form mj(oa4) for og € O4(Cy), by
Lemma 3.10. If, for 04,0’y € O4(Ch), mi(oa) = mi(dy) € Oa(CY)

0A N}l of 4 and rep(oy) = rep(ofd). Thus

then

e the mapping mi(o4) — rep(os) (04 € O4(Cp)) is welldefined. It can
be extended to an admissible endomorphism m3 € M. Similarly the
mapping ni(og) — rep(op) (o € Op(Dy)) is welldefined and can be
extended to an admissible endomorphism nz € N.

Symmetrically we can show

e the mapping ma(oa) — rep(oa) (oa € O4(Cp)) is welldefined and can
be extended to an admissible endomorphism my € M, and the mapping
no(op) — replop) (op € Op(Dy)) is welldefined and can be extended to
an admissible endomorphism n4 € .

We have (x)

mg(mi(oa)) =reploq) = my(ma(oa)) (04 € 04(CY))
ng(ni(op)) =replop) = na(na(op)) (op € Op(Dy))

and, by Lemma 4.1, ()

mg(mi(c)) = ma(ma(c)) (c € Cy)
ng(ni(d)) = na(na(d)) (d € Dy).

Clearly (mg,n3) and (mg4,n4) are admissible. We shall now show that (mg, n3) is
a simplifier for 1. Let (o], b)), (0o, by) € w; and suppose that m3(o}) = m3(0).
We have to verify that n3(b]) = n3(b),). For ¢ = 1,2, there exists 0; € O4(Cp)
and b; = 7791(0,,7) € Dy such that o/ = mi(0;) and b, = ny(b;). Since mg
identifies o) and of, we know that o1 ~4 09. Thus there exists a sequence
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01 = ui,u2...,up = 02 such that each pair (u;,u;y1) belongs either to Nll

or to N;Zl (1 <4< k). Let d; := W?l('ta,,-), for 2 = 1,....k. Thus d; € Dy
(1 <4 < k) and we have by = dj and by = di. Now (mq,n1) and (mo, n9)
are simplifiers. Thus, if (u;,u;11) €~1Y, then n(d;) = ni(d;4+1), which implies
ng(ni(d;)) = nz(ni(dix1)), and if (w;, wiyq) EN% then na(d;) = no(d;y1), which
implies na(na(di)) = na(na(dit1)) and, by (xx), nz(ni(di)) = nz(ni(dit1)).
Therefore we obtain in fact

n3(b}) = n3(ni(b1)) = nz(ni(ba2)) = ng(by).

We have shown that (ms,ng) is a simplifier for . Symmetrically it follows
that (m4,n4) is a simplifier for .

The two prebraids }C%ms’n?’) and ]Cgm'i’"i) have the same root mgz(m;(ag)),
by (xx). It is trivial to see that (xx) also implies that {mg3(mi(c)) | ¢ € Cp} is
the set of elements of type A of both prebraids, and {n3(ni(d)) | d € Dy} is the
set of elements of type B of both prebraids. But then it follows easily that both
prebraids have the same linking functions, which means that they are identical.
([l

Theorem 4.26 Each sequence of iterated strict simplifications that starts from
the prebraid K has length < |O(K)|. If K' is an irreducible prebraid that is
obtained from IC by a sequence of simplifications, then there exists a simplifier
(m,n) for K such that K"") = K'. If two irreducible prebraids Ky and Ko can
be reached from K by sequences of simplifications, then IC1 and Ko are variants.

Proof. The first statement is Lemma 4.24. The second statement follows
from Corollary 4.22 with a trivial induction. If X and K2 are two irreduci-
ble prebraids that are obtained from K by sequences of simplifications, then
both prebraids can be obtained from K by a single simplification step, by Co-
rollary 4.22. Lemma 4.25 shows that there exists a prebraid K3 that can be
reached from K and Ko by simplification. Since K; and Ko are irreducible,
these simplification steps are not strict. Hence K1, Ky and K3 are variants, by
Lemma 4.11 and Lemma 4.23. O

Before we treat simplification of braids, let us mention three properties of
irreducible prebraids.

Lemma 4.27 (a) If the prebraid K = {(a,C, D, 7w, wp) is irreducible, then w4
and wp are injective.

(b) If K' is a subbraid of the irreducible prebraid K, then K' is irreducible.

(c) If K1 and Ko are subbraids of the irreducible prebraid K, and if K1 and Ko
are variants, then K1 = Ks.

Proof. (a) Assume that 74, say, is not injective. Then there exist elements
(01,b1) and (02,b1) in m4 where o] and o0y are distinct. Let m € M be an



admissible endomorphism that maps o1 to 09 and leaves all other atoms fixed,
let n be the identity on B. Now (m,n) is a strict simplifier for K, thus we get
a contradiction.

(b) Assume, to get a contradiction, that (m,n) is a strict simplifier for K'.
Let K = (a,C,D,ma,7p), let K' = (d/,C', D', 7'y, 7l3). Let X4 = O4(C)\
04(C"), let Yp = Op(D) \ Op(D’). By Lemma 4.1 we may assume that m
(n) leaves the elements of X4 (Yp) fixed. If {m(o) | o € O4(C")}N X4 =10 =
{n(o) | o € Op(D")} N Yy, then m (n) only identifies open atoms of O(K')
and it is easy to see that (m,n) is a strict simplifier for K, which yields a
contradiction. In the other case, let m’ be an admissible automorphism such
that {m/(m(o)) |0 € O4(C")} N X4 =0, let n’ be an admissible automorphism
such that {n/(n(0)) | 0 € Op(D")} NYp = 0. Let m* denote the endomorphism
that coincides with mom’ on 0 4(C") and leaves all other open atoms fixed. Let
n* denote the endomorphism that coincides with n on’ on Og(D’) and leaves
all other open atoms fixed. Then (m*,n*) is a strict simplifier for X, which
yields a contradiction. O

(c) Let K = (a,C,D,ma,7g), let K; = (a;,C;, D;, 7y, 7) (1 = 1,2). As-
sume that 1 and K9 are variants, but K1 # Ks. There exists a pair of admis-
sible automorphisms (m,n) such that Ko = K lm’n). Without loss of generality
we have (¢): there exists an 0® € O4(CY) such that 0 # m(0*) € O4(CY).

Consider an element 061 € O4(Cy). If all elements of the “orbit”

061., ot == m(oal), 03 = m(of), of;1 =m(o3). ..

are in O4(CY), then this sequence contains only a finite number of distinct

elements, say, of,...,0;. In the other case, let k be the first index in the

sequence 0,1,... such that o' € O4(Cy). This implies that o7 € 04(Cs). The
set {06‘, . ,0;?} is called the m-trace tr,,,L(oﬁl) of 00‘4. Let ~,, be the smallest
equivalence relation on Q4(C1) U O4(Cs) such that o ~,, o whenever o and
o' both belong to the m-trace tr(o?d) of the same element 04 € O4(Cy). Since
m is an injective function, the equivalence classes of ~,, are just the maximal
m-traces. For each equivalence class [0]~., , choose a representant rep([o].., ).
Let ms € M be the admissible endomorphism that maps each o € O4(C}) U
04(C3) to the representant rep([o?].,, ) and leaves other atoms fixed. Since
= O4(CY) implies that m(oA) € 04(Cy), and since both atoms have the
same representant, we know that mac (m(o)) = mac (o) for all 0 € O4(Cy).

This implies, by Lemma 4.1, that ma (m(a)) = me(a) for all a € C.

Symmetrically, we may define the n-traces tr,(o?) of elements of €
Op(Dy), just by replacing O4(C;) by Op(D;) (1 = 1,2) and m by n. We
obtain the equivalence relation ~,, by “identifying” all elements that belong
to the same n-trace tr,n,(oB), for some of € Op(D1). For each equivalence
class [0®]~,, choose a representant rep([o”].,). Let ny € N be the admissible
endomorphism that maps each o € Op(D1) U Op(Ds) to the representant
rep([0P]~,) and leaves other atoms fixed. We have ng (n(0?)) = ng(0?) for
all o € Op(Dy), and nao(n(b)) = na(b) for all b € Dy.
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We want to show that (mu, oo ) is a simplifier for . Suppose that my (0) =
Moo (0') for open atoms o # o' € 04(K). We may assume that there exists a
sequence o = 06‘, 0‘]’1, e O;fl = 0o of elements of O 4(C1)UOA(CY), where at least
the elements of,...,0: | are in O4(Cy), such that o = m'(of), for 0 <4 < 7.
Let b; := WA(O?) (0 <4 <r). Note that at least the elements by, ..., b._; are
in Dy since K is a subbraid of I and 74 and 7r}4 coincide on O (CY). Since
(0ft, bg) € 7 we know, by choice of (m,n), that {(m(og),n(by)) € 74 C 7a,
which means that by = n(bg). Similarly we see that b; = ni(bg) fori =0,....r.

But then we have

noo(b(l) = noc(n(bl))) = noo(bl) = ... = noc(bk—l) = noo('n(b'r—])) = noo(br)

Thus n. identifies the 7 4-images of 0 = 061 and o = 0. Symmetrically, if
Moo (0) = Moo (0') for atoms 0,0" € Op(K), then my identifies the wp-images of
o and o'. Therefore (1mqg,no0) is in fact a simplifier for K. But (meg, n00) is
strict, by (¢). This is a contradiction. Thus K| = Ks. O

We shall now turn to simplification of braids. First we shall show that
the result of two consecutive simplification steps may be obtained by a single
simplification, similarly as for prebraids. We have to adapt the notion of a
pending atom to the new situation.

Definition 4.28 Let (m,n) be a simplifier for the braid K = {(a,C, D, 74, 7).
Let K™ = (o', C", D', 7', ;). Then the set

({mf0) | 0 € Oa(C)}\ OA(C")) U ({nlo) |0 € Op(D)}\ Op(D"))

is called the set of pending atoms of the simplification step from /C to the braid
image (™™,

Note that this is really a new notion. The set of pending atoms of the simplifi-

(m,n)

cation step from IC to the braid image K is a superset of the set of pending

(m,n

atoms of the simplification step from K to the image X ), but both sets are

not necessarily identical.

Lemma 4.29 Let (my,n1) be a simplifier for the braid Ky, let (m2,n2) be a

semplifier for its braid vmage K1 = ICSml’"l). Assume that mo and ns do not

identify any pending atom of the simplification step leading from Ky to the braid
image ICy with another atom. Then (mjoma,njons) is a simplifier for Ky and
(myomgz,niony) (ma,na)

Proof. Exactly as in the corresponding proof of Lemma 4.21 it follows that
(mpoms, njony) is a simplifier for Ky. Our assumptions guarantee that (mo, no)

K:gm],m)

such that ms and n2 do not identify any pending

atom of the simplification step leading from Ky to the image IC(()””’M) with ano-

}C(()mlﬂ'”’l))(mg,'nz) _ ]C((]'mlomg,nlong)

is also a simplifier for

ther atom. Hence Lemma 4.21 implies that (
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Now K; = ICémhm> is a subbraid of the prebraid IC(()'"‘“"]) and both have

™ma,ng . . . .
the same root. Lemma 4.18 shows that ICi 2m2) s the unique subbraid of

(]C((Jml’nl))(""U:”Z) _ ]C((]rmloml,nlonj) O

. . m10Mms,n10nNs
given by its root, namely ]Cé 1omz,niona),

Corollary 4.30 Let (my,ny) be a simplifier for the braid Kg, let (ms,n2) be
a simplifier for the braid image K1 = ICSm'l’m>. Then there exists a simplifier

(m,n) for Ky such that ICém’n> = K%mwm,

Proof. It follows from Lemma 4.1 that there exists a simplifier (mb,n5) of K;
such that (mb,nb) does not identify any pending atom of the simplification

step leading from Ky to the braid image K| with another atom, and /CY”Z’R2> =
7 7

]Cimz’nﬁ. Let (m,n) := (my1 o mh,ny onb). Then, by the previous lemma,

]Cém,n) _ ’Cimz nl,) _ }C§m2 ﬂ“>. 0

Theorem 4.31 Let K = Ko, Ky,..., K be a sequence of braids such that
each braid Kiy1 s the braid image of K; under a strict simplification, for
i=0,....,k—1. Then k < |O(K)|. If K is an irreducible braid that is re-
ached from K by a sequence of consecutive simplification steps (always taking
braid images), then there exists a simplifier (m,n) for K such that K™ = K.
If two 1rreducible braids K1 and Ko can be reached from K by sequences of con-
secutive stmplification steps (always taking braid images), then K1 and Ko are
variants.

Proof. The first statement is trivial. The second statement follows from Co-
rollary 4.30 by a simple induction. Assume that K and Ko are two irreducible
braids that can be reached from K by sequences of consecutive simplification
steps, always taking braid images. Then there exist simplifiers (m,n;) and
(ma,n2) of K such that K = K™t and Ky = K220 The prebraids
Kmin) and K(m2:72) are not necessarily irreducible. But we may add fur-
ther simplification steps (m/,n}) and (m),n}) such that (Kclmama)y(mynt) and
(]C(y”'”’”z))('7"27”‘,2) are irreducible. By Lemma 4.15, (m/,n)) and (mb, nb) are
obviously non-strict—simplifiers for 1 and Ko respectively. It follows that
K1 and ICim,l’n/1> are variants, and similarly for o and ng“lQ’n,2>. By Theo-

rem 4.26, the two prebraids (Kmt:m))(muni) and (JCm2m2))(mem3) are vari-

ants. By Lemma 4.10, the two subbraids given by their roots which are, by
! ! / !

Lemma 4.18, IC%mlml) and Kéml’n’2>—a1*e variants. Hence Ky and Ky are vari-

ants, by Lemma 4.11. O

On the basis of Theorem 4.31 we may introduce the following equivalence
relation on the set of all braids.

Definition 4.32 Two braids are called equivalent if they can be simplified to

the same irreducible braid image. If K is a braid, [K] denotes the set of all
braids that are equivalent to IC.
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Since two braids that are variants are obviously equivalent it is easy to see that
we get in fact an equivalence relation. Let us also mention the following simple
consequence of Theorem 4.31:

Lemma 4.33 If two wrreducible braids are equivalent, they are variants.

4.4 Standard normalization

In order to define the underlying domain of the rational amalgam we shall
now introduce a standard normal form for each braid. Let O be a subset of
the set @4 of open atoms of A™ that has the same cardinality as the set of all
equivalence classes of non-trivial® braids of type B. Similarly, let O% be a subset
of the set Op of open atoms of B2 that has the same cardinality as the set of
all equivalence classes of non-trivial braids of type A. Let A> := SHjilA (ZU0%),
and let B2 := SHY-(Z U ©0}). Lemma 10 of [BS95] shows

Lemma 4.34 Every bijection between Z U O and Z U Oy extends to a X-
isomorphism between A and A*. Similarly every bijection between Z U Oy
and Z U Op extends to a A-isomorphism between B and B>.

We may now enumerate the elements of O% and of O in the form

04 = {oy | K is a nontrivial braid of type B},
Op = {oy | K is a nontrivial braid of type A}.

This means that [K] — oc] establishes a bijection between the set of all equi-
valence classes of non-trivial braids of type A (B) and O} (O%).

Let K = (a,C,D, 74, 7p) be a prebraid. For each open atom o € O4(C)
(0 € Op(D)) we say that o points in K to K iff K" is the unique subbraid of K
with root 74(0) (73(0))°.

Definition 4.35 A prebraid K is in standard normal form if O4(K)UOg(K) C
O, U0} and if every open atom o € O4(K)UOg(K) points in K to a subbraid
K’ such that o = o).

With A® B we denote the set of all braids over A* and B2 in standard normal
form. Note that trivial braids are always in standard normal form. Note also
that the elements of a prebraid in standard normal form are in A2 U B2 (this
follows from the remarks after Definition 3.8).

Lemma 4.36 FEvery prebraid in standard normal form is irreducible.

5 N
“compare Definition 4.3.
6 compare Lemma 4.8.
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Proof. Let K = {a,C, D, 7, 7p) be a prebraid in standard normal form. As-
sume, to get a contradiction, that (m,n) is a strict simplifier for K. Without
loss of generality we may assume that m(o;) = m(o2) for distinct open atoms
01,02 € O4(C). Let d; := wa(0;), and let K; denote the subbraid of I with root
d;, for i = 1,2. Since (m,n) is a simplifier, n(d;) = n(d2). By Lemma 4.15,
(m,n) is a simplifier for ; and K2. By Lemma 4.18, IC,[<7‘m"n> is the unique
subbraid of K" with root n(d;), for « = 1,2. Since n(d;) = n(ds), also
ICY”’"‘> = ICgm’"> which implies that K; and Ko are equivalent. Since K is in
standard normal form it follows that o1 = o) = ox,] = 02, which contradicts
our assumption. O

Proposition 4.37 Let K be a prebraid. Let (m.,n) denote the admissible pair
of endomorphisms that maps each o € O4(K)U Op(K) to oy where K' is the
unique subbraid of KX such that o points to K'. Then (m,n) is a simplifier for
K and K™ s in standard normal form.

Proof. Let (mp,n1) be a simplifier for K = (a,C, D, w, 7p) such that
Ki:= K(mn1) g frreducible. If mq identifies the open atoms o, 0" € O (C), then
nq identifies d := m4(0) and d’ := 74(0"). Tt follows that o and o’ point in K to
subbraids that receive the same braid image under the simplification (mq,nq).
Hence these subbraids are equivalent, which implies that m(o) = m(o'). It
follows that the mapping mso : mi(o) — m(o) (o € O4(C)) is well-defined.
Symmetrically it follows that the mapping no : nj(o) — n(o) (o € Op(D)) is
well-defined. Both mappings can be extended to admissible endomorphisms for
which we shall use the same symbols.

Obviously mjoms (resp. njonsg) and m (resp. n) coincide on O 4(C') (resp.
Op(D)). Hence mi o my (resp. ny o ng) and m (resp. n) coincide on C (resp.
D), by Lemma 4.1.

We shall now show that (m,n) is a simplifier for K. Assume that m(o) =
m(o'), for 0,0 € O4(C). This means, by the definition of m, that o and
o' point in K to equivalent subbraids K" and K", with roots d := 74(0) and
d' = ma(0). We want to show that o and o' are already identified by m;.
Let K} and K denote the braid images of K and K” under the simplification
(m1,n1) respectively. Then K" and K| are equivalent, and similarly for K" and
K. Since K" and K" are equivalent, this implies that K] and K are equivalent.
But K| and K are subbraids of the irreducible prebraid K, by Lemma 4.18.
Part (b) of Lemma 4.27 shows that K] and K are irreducible. Since they are
equivalent, both are variants, by Lemma 4.33. Part (c¢) of Lemma 4.27 shows
that K7 = KY. The root of K} is ni(d), and the root of K is ni(d’). Hence
n1(d) = n1(d’') and n(d) = na(n1(d)) = na(n1(d")) = n(d).

Symmetrically it follows that n(o) = n(0') always implies that m(wg(0)) =
m(wp(0)), for all 0,0’ € Op(D). This shows that (m.n) is in fact a simplifier
for K. Obviously K™ is in standard normal form. O
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Definition 4.38 The process where we apply to a given (pre)braid K the sim-
plifier (m,n) that maps each open atom o € O(K), pointing in K to the subbraid
K'. to the open atom o € OxUO  will be called standard simplification of K.
The prebraid K" (braid K™ will be called the standard (braid) normal
form of K.

Obviously all subbraids of a prebraid in standard normal form are again in
standard normal form.

Lemma 4.39 For each braid K there ewists exactly one braid K' in standard
normal form such that K and K' are equivalent.

Proof. We have seen that standard normalization yields a braid in standard
normal form that is equivalent to K. If K" and K" are braids in standard normal
form that are equivalent to K, then K’ and K" are irreducible (Lemma 4.36)
and variants, by Lemma 4.33. It follows that there exists an admissible pair
of automorphisms (m,n) such that K" = K Let 0 € ©4(K') point in K'
to 1. Then m(o) points in K” to IC;’"’"> and K; and ICYH"”> are equivalent.

Since K and K" are in standard normal form, o = o, = 0 = m(0).

[K:i'm,,n)}
Hence m coincides on the elements of K’ of type A with identity. A symmetrical
argument shows that n coincides on the elements of K’ of type B with identity.
O

Definition 4.40 Let o € O UO%. We say that o represents the unique braid
K in standard normal form such that o = ofx;.

Lemma 4.41 Given e € (A. U B.) \ (O} U O};) there exists a unique braid
K € A® B such that e is the root of K.

Proof. Let e € (A, U By) \ (O} UO}). We may assume that e € A, \ O%. Let
Oale) = {o01,...,0,}, and let o; represent the braid in standard normal form
Ki = (e Ci, Dj, my, ). Let C:= UL, CiU{e}, D == Ui Di, ma = Uiz w4y U
{{ocpe) | v =1,...,n}, and np := U/ 7. Then K = (¢,C,D,74,7p) €
A ® B has root e.

Conversely, let K = (e,C, D, w4, m5) € A® B. Since each open atom o; in
O 4(e) represents a unique braid I; to which it points in K, the structure of K
is completely determined by e. O

5 The rational amalgamated product

In this section we shall complete the construction of the rational amalgamated
product, and we shall provide some evidence for the naturalness of this con-
struction. In the first subsection we introduce functions and relations on A® B
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that interpret the symbols of the mixed signature Y UA. With this step, the de-
finition of the rational amalgamated product is complete. In the following two
subsections we add some evidence for the naturalness of rational amalgamation.
First we consider the case where the two components are strong non-collapsing
SC-structures over disjoint signatures. This is the situation where we can build
both the free amalgam and the rational amalgam with our actual methods.

Theorem 5.1 The free amalgamated product ©s modulo isomorphism a sub-
structure of the rational amalgamated product.

This shows that there are interesting relationships between distinct amalgama-
tion constructions.

Eventually we consider a particular class of amalgamation components. We
shall show

Theorem 5.2 The rational amalgamated product of two algebras of rational
trees over disjoint signatures is isomorphic to the algebra of rational trees over
the combined signature.

This shows that our general construction, complicated as it might appear, yields
the expected result when we consider more concrete situations.

5.1 Functions and relations

Given the underlying domain of the rational amalgam of A* and B> as con-
structed above, there is now a perfectly natural way to introduce functions and
relations that interpret the symbols of the mixed signature X UA. Consider the
functions rooty : A® B — A, and rootp : A® B — B,:

the root of £ if K is trivial or has type A
roota(K) := B o s ..

ok € O3 if IC is non-trivial and has type B.

the root of £ if K is trivial or has type B
rootp(K) = B o ..

o) € Op if K is non-trivial and has type A.

As a direct consequence of Lemma 4.41 we obtain
Lemma 5.3 The functions roota and rootp are bijections.
Here is now the definition of the rational amalgamated product.

Definition 5.4 The rational amalgamated product A> © B> of A* and B> is
the following (X U A)-structure with carrier A © B:

1. Let f € X be an n-ary function symbol, let Ky,.... K, € A © B. We
define faop(K1,....K,) = 1'00%1(‘]”“4* (rootA (K1), ..., root4(K,))).
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2. Let p € ¥ be an n-ary predicate symbol, let Ky,..., K, € A® B. We
define A¥ © B2 = p(K1,....K,) iff AZ = p(roota (K1), ..., root(K,)).

The interpretation of the function symbols ¢ € A and the predicate symbols
g € Ain AT © B2 is defined syminetrically, using rootg.

Theorem 5.5 As a D-structure, A~ © B>, A” and A2 are isomorphic, and
rooty : A¥ @ B2 — AY is a S-isomorphism. As a A-structure, A¥ © B>, B2,
and B2 are isomorphic, and rooty : AX © B® = B2 is a A-isomorphism.

Proof. Recall that A¥ and AZ are isomorphic, and similarly for B2 and
B2. Lemma 5.3 and Definition 5.4 imply that rooty : A @ B® = AL is a
Y-isomorphism and rooty : A © B® — B2 is a A-isomorphism. O

Theorem 5.5 makes clear that rational amalgamation is not a construction
that can be used, say, to construct a rational tree algebra for a given signature
¥ out of the finite tree algebra for ¥. Even if B consists of atoms only, the
rational amalgam A* ® B®, considered as a Z-structure, is isomorphic to A>.

5.2 Free amalgamation and rational amalgamation

In this subsection we shall sketch a proof for Theorem 5.1. We define the notion
of an acyclic braid and show that the set of all acyclic braids in standard normal
form is a substructure of the rational amalgamated product. It is possible to
prove that the free amalgamated product of the two component structures is
isomorphic to this substructure.”

Definition 5.6 A prebraid K = (a,C, D, 74, 7wp) is called acyclic if there is
no sequence e, ez ...,e, of elements in C'U D, of length n > 2, such that
e1 = e, and every element e; is directly linked® via 7 = m4 U 7 to €it1, for
1 =1,....n—1. If K is acyclic, the depth of K is the largest number n such
that there is a sequence eq,...,e, of elements of I where each element ¢; is
directly linked to e;41 viaw, fore=1,...,n — 1.

Lemma 5.7 Let (m,n) be a simplifier for the acyclic braid K. Then the braid
image K™ s an acyclic braid.

Proof. We may assume that K = (a,C, D, 7y, 7TB> is of type A. Let K1) =
(m(a),C’, D', 'y, 7). We show that the prebraid Kmm) is acyclic. Assume, to
get a contradiction, that there is a sequence e ..., e, of elements in C' U D', of

"With the actual methods, the free amalgamated product can only be built for strong SC-
structures over disjoint signatures. Hence we have to assume that the two components are
strong and non-collapsing.

8 compare Definition 4.2.
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length n > 2, such that e; = e, and every element ¢; is directly linked to e;41
via ' =7/, Unly, for i =1,...,n — 1. An element a of K is called interesting
if its image m(a) resp. n(a) occurs in the sequence ej...,e,. An element o
of K is called a daughter of an element b of K if ¥ is directly linked to b via

Ti=maUTR.

Since K is acyclic, there has to be a interesting element « € C' U D such
that no daughter of a is interesting. Without loss of generality we assume that
a € C. Hence m(a) occurs in ej...,e,, say, as element e; (we may assume
that 7 > 1). Since e;_; is directly linked to m(a) = ¢; in K(m‘m, there exists
a link (o,e;_1) € «'y where 0 € O4(m(a)). Let Os(a) = {o1,....01} and
bi = mwalo;), for i = 1,..., k. Thus {by,... by} is the set of daughters of a
in K. From Lemma 3.10 it follows that o has the form o = m(0;), for some
1 <1 < k. Hence, since 7rf4 is a function, it follows from Definition 4.16 that
(0,€i—1) = (m(0;),n(b;)) and n(b;) = e;—;. But this implies that the daughter
b; of a is interesting, which contradicts our choice of a. O

Theorem 5.8 The set of all acyclic braids of A ©® B forms a substructure of
A¥ o BA.

Proof. Let f € 3 be an n-ary function symbol, let Cq,..., K, be acyclic
elements of AX ® B2. We have to show that the braid

fass(KL.. ... Ka) = root 3} (fa. (roota(K1). ..., ro0tA(K,)))

is acyclic. The elements of O4({roots(Ki),...,roots(K,)} represent—in the
sense of Definition 4.40 acyclic subbraids. By Lemma 3.9,

Oa(fa,(rootsa(Ky),...,roota(K,)) C Oa({roota(Ky),..., rootA(KC,)}

and the open atoms in a* := fy4, (roots(K1),...,root4(K,)) represent acyclic
subbraids. If a* € A, \ O}, then K := 1‘001521((1,*) is the unique braid in
standard normal form with root a®. Since all open atoms of the root of K
represent acyclic subbraids, K itself is acyclic. In the other case, if a* = 0 €
O4({roots(Ky1),...,root4(K,)} is an atom, then it represents an acylic braid in
standard normal form K of type B. But K := r'ootgl (™). We have seen that the
set of all acyclic braids represents a L-substructure of A* ® B2. Symmetrically
it follows that this set represents a A-substructure of A% ® B2, O

The proof that the set of all acyclic braids, considered as a (XUA)-structure,
is isomorphic to the free amalgamated product of A¥ and B® (as introduced
in [BS95]) cannot be given here. For readers that are familiar with the latter
notion we mention that induction on the depth of an acyclic braid may be
used to construct the factorising homomorphisms that characterize the free
amalgamated product up to isomorphism.
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5.3 Proof of Theorem 5.2

In this subsection we shall prove Theorem 5.2. We consider the special situation
where A = R(2,X) (resp. B> = R(A,Y)) is the non-ground algebra of
rational trees for signature ¥ (resp. A) ?. From the introduction of Section 4
recall that the set of bottom atoms Z7 = X NY is infinite and X = ZW0p,Y =
Z ¥ 0p.

The two structures A> and B® are SC-structures of the form (A*, M, X)
and (B2, N,Y) where M := Enda and N := End%. For a rational tree t €
R(Z, X), the set Stab?,(t) is just the set of all atoms that label a leaf of t.
If m is an endomorphism, then m(t) is obtained from ¢ just by replacing each
atomic leaf x in ¢ by the subtree m(x). Consequently, if m € M is an admissible
endomorphism of R(X, X), then Stab’,(m(t)) = {m(z) | z € Stab?((t)}. This
equality, and the corresponding equality for R(A,Y ) show that there are no
pending atoms when we simplify braids over R(3, X) and R(A,Y'). It follows
easily that K™ = K for all braids K over R(X, X) and R(A,Y) and all

admissible pairs of endomorphisms (m, n).

In the first step of the proof of Theorem 5.2 we show how braids in R(X,Y)®
R(A,Z) can be mapped naturally to rational trees in R(X U A, Z). Let K =
(a,C,D,mq,75) € R(X,X)® R(A,Y). Then n := w4 U7p can be considered
as a mapping REZUA, X UY) - R(XUA, X UY) that replaces open atom
leaves by rational trees, similar to a substitution. The process where we apply
7 to the root a of K in an iterative way, obtaining a sequence ag = a,a; =
w(a),...,ant1 = w(ay),... is called unfolding of K. Since, by Definition 4.3,
7 replaces open atoms by non-atomic elements, the above sequence converges
(w.r.t. the usual metrics on infinite trees) to a unique limit tree t. Obviously
tx € R(EUA,Z). We define the mapping

unfold : R(2,X)©® R(A)Y) > R(XUA,Z) : K — tx.

Example 5.9 The following figure gives the rational tree that is obtained by
unfolding the braid from Example 4.17:

/f\
g9
i /f\
=g 7
o
g9
9 .
a .0

In the second step of the proof we shall define a mapping

fold: R(SUA, Z) = R(S,Y) 0O R(A, 7).

9See [Co84] for the definition of the algebra of rational trees over a given signature.



(Later, we shall see that unfold and fold are inverse bijections. Eventually
we shall show that both mappings are (2 U A)-homomorphisms.) We have to
introduce some terminology. A tree t € R(X U A, Z) is called a X-tree (A-tree)
if the topmost function symbol of ¢ belongs to X (resp. A). Suppose that we
follow a path of the rational tree t € R(Z U A, Z), starting from the root. Each
node of the path defines an occurrence of a unique subtree ¢’ of ¢ in the obvious
way. Such an occurrence is called relevant if the topmost function symbol of
the subtree belongs to another signature than the label of the predecessor node
on the path. A subtree #' of ¢ is called relevant if # has at least one relevant
occurrence in t.

The following claim gives a first connection between a braid and the rational
tree that is obtained by unfolding the braid.

Claim 1 For each braid K € R(X, X) ® R(A,Y) the relevant subtrees of
unfold(KC) are exactly the subtrees of the form unfold(K;), where K; is a subbraid
of K.

Proof of Claim 1. If K is a trivial braid, then the root of K is a bottom atom
z. Unfolding K yields the rational tree “z”, which means that the claim holds
trivially. If K is nontrivial, then the claim follows directly from the fact that
all elements of K are non-atomic, by Definition 4.3. O

One preparation is needed before we can give the definition of fold. Let
op™ (resp. op?) be a 1-1 mapping that assigns to each L-tree (resp. A-tree)
t € R(ZUA,Z) an open atom op™(t) € O4 (resp. op?(t) € Op). These
mappings can be used to define “purifying” 1-1 functions

pur : R(ZUA.Z) — R(Z,X)
pur® : R(ZUA,Z) — R(AY)

as follows. Both pur® and pur® fix all atoms z € Z. Moreover, pur-(t) :=
op™ (t) for each A-tree t, and conversely pur®(t) == opP (t) for each L-tree t. If
tis a L-tree, then pur™(t) is obtained from ¢ by replacing all the outermost (=
topmost) A-subtrees t; of t by op?(t1). Symmetrically, if # is a A-tree, then
pur®(t) is obtained from ¢ by replacing all the outermost X-subtrees t; of t by
op”(t1).

We may now obtain a braid representation fold*(t) of a rational tree t €
R(XUA,Z) as follows. If ¢ is an atom z € Z, then fold"(t) is the trivial braid
with root z. In the other case, assume first that ¢ is a X-tree. Then fold™(t) is
the braid (a,C, D, w4, 7p) with the following components:

1. a:= pur=(t)

2. C = {pur*(t),..., pur’(t;) }U{pur®(t)}, where t1,..., t; are the relevant
Y-subtrees of ¢,

3. D= {pur™(t}),... ,I)lllA(t;)}, where t], ..., 1] are the relevant A-subtrees
of t,
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4. mq = {{op(t)), pur® () |i =1,....1},
5. 7 = {{opP(t;), pur’(t;)) |1 =1,....k}.
A

If t is a A-tree, then fold*(t) is defined symmetrically, using op? and pu:
instead of op? and pur”. The mapping

fold: R(SUA, Z) = R(2.X) ® R(A,Y)

assigns to each rational tree ¢ the unique element of R(X, X) ® R(A,Y) that
represents the standard normal form of the braid fold™(t).

Claim 2 fold is injective and unfold is surjective.

Proof of Claim 2. Clearly we obtain ¢ back again by unfolding fold"(t). Moreo-
ver, since no pending atoms can occur when we simplify fold™(t), it is easy to
see that the result of the unfolding process is not influenced by simplification.
Hence t = unfold(fold(t)), for each t € R(X U A, Z), which implies that fold is
injective and unfold is surjective. O

Claim 3 unfold is injective and fold is surjective.

Proof of Clawm 3. Unfortunately, the proof of this claim is not simple. We
shall proceed as follows. Let K € R(X,X) ® R(A,Y) be an arbitrary braid in
standard normal form. We shall show that the step from K to unfoldo fold"(IC)
can be described as a simplification of K. Since unfoldofold(K) is obtained from
unfoldofold*(K) by an additional (standard) simplification step, this shows that
K and unfold o fold(K) are equivalent braids. But both braids are in standard
normal form. By Lemma 4.39, K = unfold o fold(K). Since K was arbitrary,
unfoldo fold is the identity on R(X, X)® R(A,Y), which implies that unfold is

injective and fold is surjective.

In order to show that unfold o fold is a simplification, we define, given a braid
K € RX.X)® R(A,Y), an admissible pair of endomorphisms (m,n1) as
follows. Assume that o/ € O4(K) points in K to the subbraid K’ with root d,
say. Then mq(0') := op™ (unfold(K')). Similarly, let o’ € Op(K) point in K to
the subbraid K" with root ¢, say. Then n1(0”) := op™ (unfold(K")). We may
extend these partial mappings to an admissible pair of endomorphisms (mj,ny).
Now note that

ni(d) = I)IIIA(IIIlﬂ)I('J(K’)),
mi(c) = pur(unfold(K")).

To see the first equality, recall that nj(d) is obtained by replacing each open
atom o, of the root d of K'—pointing in X', say, to the subbraid K,—by the open
atom op”(unfold(K,)). But when we unfold K, then the maximal Y-subtrees
are exactly the trees of the form unfold(K,.). Purification replaces these subtrees
by the open atoms op?(unfold(K,)), which shows that pur®(unfold(K')) =
n1(d). The second equality follows in the same way.
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It is now simple to prove that that (my,n;) is a simplifier for K: assume that
mi(o1) = my(02) for 01,00 € O4(K). Let 0; point in K to the subbraid K; with
root d;, say. Then op?(unfold(K1)) = op?(unfold(Ks)). Since the mapping
op™ is injective, unfold(Ky) = unfold(Ks). The first of the two equalities given
above shows that ni(d;) = pur® (unfold(K1)) = pur® (unfold(Ks)) = ni(da).
With a symmetrical argument, as usual, it follows that (mq,n;) is a simplifier

for K.

In order to show that the step from K to unfold o fold™(K) can be described
as a simplification of K it remains to prove that fold"(unfold(K) = clman)
Without loss of generality, K has type A. Let a be the root of K. The
root of fold* (unfold(K)) is pur™(unfold(KC). The root of K{"1"0 is my(a).
Both roots are identical, by the second of the two equalities given above. As-
sume that o € O (fold*(unfold(K))) N O4(K{mm)) - Since o € (’)A(IC<"’”""1>)
we know that o has the form m;j(0), where o € O4(K). Assume that o
points in K to the subbraid K; with root di. Then o/ = mj(o) points
in Kmum) to the subbraid ICgml’"l) with root ni(dy). On the other hand
mi(0) = op?(unfold(Ky)), and this atom points in fold*(unfold(K)) to the
subbraid with root pur®(unfold(K1)). The first of the two equalities given
above shows that o is linked to the same element n;(d) = pur® (unfold(K1))
in fold* (unfold(K)) and K{"1™1) respectively. The same holds of course for the
open atoms in Og(fold* (unfold(K))) N Og(K{™1™17), Now Lemma 4.6 shows
that fold*(unfold(K)) = K{mm),

Summarizing, we have seen that the step from I to unfold o fold"(K) can be
described as a simplification of K, which proves Claim 3 as we have seen already.
O

Once we know that both fold and unfold are bijections we may assume
without loss of generality that op® and op®? are the mappings that assigns to
each rational tree t € R(X U A, Z) the open atom Otfold(1)]- It is easy to see
that in this case fold" = fold, hence fold™ and unfold are inverse bijections.

Let £ € R(X,X)® R(A,Y) be a trivial braid, or a nontrivial braid of type
A. The element unfold o pur™(K) is the root of unfold o fold(KC), i.e., the root
of K. Hence unfold o pur(K) = root4(K), by the definition of root4. Next
assume that K € R(X,X) ® R(A,Y) is a nontrivial braid of type B. Then
unfold o pur™(K) = op™(unfold(K)) = Orfoldunfoldycy) = K] = root4(K).
We have seen that root4 = unfold o purg . Similarly it follows that rootp =

unfold o pur®. Hence pur™ = fold o root4 and pur® = fold o rooty. Let f € &
be n-ary, let Ki,...,K, € R(X2,X)® R(A,Y). Then

unfold(facs(K, ..., Ky)) =

unfold(loo’c1 (fa,(roota(Kq),. .. ,r00t4(Ky)))) =

unfold(r oo’ul(f(liuf(U11f01d(’Cl)) .., pur™(unfold(IC,))))) =
unfold(root ,* (pur” (f (unfold(Ky), ..., unfold(K,))))) =
unfold(loo’c4 (root 4 (fold( f(unfold(lC]) ..... ,unfold(KC,,)))))) =
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f(unfold(Ky), ..., unfold(K,)).

It follows that unfold is a Y-homomorphism. In the same way it follows that
unfold is a A-homomorphism. It is then trivial to see that fold is (X U A)-
homomorphic, too. With the previous claims it follows that fold and unfold are
(X U A)-isomorphisms. This completes the proof of Theorem 5.2. O

6 Combination of Constraint Solvers

Our last aim is to show how constraint solvers for two component structures
can be combined to a constraint solver for their rational amalgamated product.
Constraint solvers, as considered here, are essentially algorithms that decide
solvability of quantifier-free positive formulae in a given solution domain. We
(mostly) disregard disjunction since its integration is a triviality.

Definition 6.1 Let I be a signature. A I'-constraint is a conjunction of atomic
[-formulae.

In order to decide solvability of a “mixed” (¥ U A)-constraint in a rational
amalgamated product A* ® B we shall decompose it into two pure constraints
over the signatures X and A respectively. These output constraints are equipped
with additional restrictions of a particular type.

Definition 6.2 An A/N (atom/non-atom) declaration for a constraint v is a
pair (U, W) such that UW W C Var(y) is a disjoint union. Both U and W may
be empty. A solution v4 of a constraint v in an SC-structure (A*, M, X) is
called a solution of (y,U, W) if v4 assigns distinct atoms to the variables in U,
and arbitrary non-atomic elements of A to the variables in W.

In order to avoid some ballast in proofs we shall assume that at least one of the
two components is a non-trivial SC-structure, which means that it has at least
one non-atomic element. We may now formulate our main result concerning
combination of constraint solvers in the case of rational amalgamation.

Theorem 6.3 Let A~ and B2 be two non-collapsing SC-structures over dis-
joint signatures, let A © B> denote their rational amalgam. Assume that at
least one of the two components is a non-triwial SC-structure. Then solvability
of (U A)-constraints in A> © B> is decidable if solvability of (- resp. A-)
constraints with A/N declarations is decidable for A¥ and B>.

There seems to be no general way to characterize solvability of ['-constraints
with A/N declarations in purely logical terms. But for a restricted class of
component structures—a class which is of particular interest in the context of
rational amalgamation—a logical characterization of the problems that we have
to solve in the two component structures can be given.
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Definition 6.4 A non-collapsing SC-structure (A™, M, X) is called rational if
for every atom z € X and every element a € A there exists an endomorphism
m € M that leaves all atoms =’ # z fixed such that m(z) = m(a).1?

The algebra of rational trees over a given signature is always a rational SC-
structure. The same holds for feature structures, feature structures with arity,
and domains with nested, rational lists (as described in 3.4). For rational SC-
structures we obtain the following refinement and reformulation of Theorem 6.3.

Theorem 6.5 Let A™ and B> be two non-trivial rational SC-structures over
disjoint signatures, let A¥ © B> denote their rational amalgam. Then solvability
of (2 U A)-constraints in A” © B> is decidable if if the positive universal-
ezistential theory is decidable for both components A and B,

Since existential quantification distributes over disjunction, the theorem may
be slightly strengthened.

Theorem 6.6 Let A and B2 be two non-trivial rational SC-structures over
disjoint signatures, let A~ © B> denote their rational amalgam. Then the posi-
tive existential theory of AZ© B2 is decidable if the positive universal-existential
theory is decidable for both components A* and B>,

It is interesting to contrast this formulation with the corresponding combina-
tion result for free amalgamation (Theorem 22 of [BS95]) which needs stronger
assumptions on the components: Let A¥ and B> be two strong SC-structures
over disjoint signatures, let A¥ @ B2 denote their free amalgam. Then the posi-
tive existential theory of A¥ @ B2 is decidable if the positive theory is decidable
for both components A* and B> .

One application of Theorem 6.6 is the following

Corollary 6.7 Rational amalgamated products A?l ©-- -@AE“” have decidable
positive existential theory of the nontrimal components .A,[\;“"' are rational tree

ll, or feature-structures

algebras, or nested, rational lists, or feature structures
with arity, for1=1,...,k, and if the signatures of the components are pairwise

disjoint.

Proof. For all these structures it has been shown that even the full positive
theory is decidable, see [BS95]. O

In the rest of this section we prove Theorem 6.3 and Theorem 6.5.

"The existence of such an endomorphism is trivial if & Stabf\l,( (a). In this case we may
always take, e.g., the endomorphism m = m,_, of M that maps x to a and leaves all other
atoms fixed. The situation of interest is the case where @ € Staby(a) and z # a.

1 As in Examples 3.4 we refer to [AP94], for specificity.
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Proof of Theorem 6.3

To prove Theorem 6.3 we shall give an algorithm that reduces a mixed constraint
v in the signature (X U A) non-deterministically to a pair of constraints with
A/N declarations over the “pure” signatures ¥ and A respectively. We shall
assume that the input formula v has the form v = 'y(? A *)/OA where 702 is a con-
junction of atomic X-formulae, and ’y()A is a conjunction of atomic A-formulae.
Moreover we assume that v does not contain any equation between variables.
These assumptions do not really restrict the generality of the approach: simple
techniques like “variable abstraction”, now standard in this area, may be used
to transform an arbitrary (X U A)-constraint ¢ into a constraint vy of the form
given above, preserving solvability in both directions.

Algorithm 1

The wnput is mixed a constraint v = 'y(? A ’y()A of the form described above. Let
Vo = Var(vy) N Var(’yf%) denote the set of shared variables of y. The algorithm
has two steps, both are nondeterministic.

Step 1: Variable identification. Consider all possible partitions of the
set of all shared variables, Viy. Each of these partitions yields one of the new
constraints as follows. The variables in each class of the partition are “identi-
fied” with each other by choosing an element of the class as representative, and
replacing wn the input formula all occurrences of variables of the class by this
representative.

Step 2: Choose signature labels. Let v /\fyiA denote one of the formulae
obtained by Step 1, let V1 denote the set of representants of shared variables.
The set Vi is partitioned in two subsets U and W in some arbitrary way.

Let 0 =77, let § = vf*. For each of the choices made in Step 1 and 2, the algo-

rithm yields an output pair ({o, U, W), {5, W,U)), each component representing
a constraint with A/N declaration. O

Correctness of Algorithm 1

We shall prove that Algorithm 1 is correct in the following sense.

Proposition 6.8 The input formula v has a solution in A¥ ® B2 if and only
if there exists an output pair ({o, U, W),{6, W,U)) of Algorithm 1 such that
(0, U, W) has a solution in A~ and (§, W,U) has a solution in B>,

Note that Theorem 6.3 is an immediate consequence. In order to prove Proposi-
tion 6.8 we shall assume that the two components A* and B2 are SC-structures
of the form (A¥, M, X) and (B®, N,Y) respectively. First we show soundness.
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Lemma 6.9 If, for some output pair ({o,U, W), (65, W,U)) of Algorithm 1,
(o, U, W) has a solution in A~ and (5,W,U) has a solution in B2, then the
input constraint v is solvable in A* © B>,

Proof. The output formulae o and § may be written in the form ¢ (i, @/, vs)
and 71& (i, w,UA ), where @ = uq,...,u,, denotes the sequence of all elements
of U, where & = wi,...,w, denotes the sequence of all elements of W, and
where ¥, (resp. ¥a) stands for the non-shared variables occurring in y{* and
v§* respectively. The proof has now three steps. In the first step, the given
solutions of the output constraints are used to construct similar solutions of a
more specific form. In the second step, these latter solutions are used to define
suitable braids. In the third step we apply standard normalization to these
braids. This will yield a solution of the input constraint.

1. By assumption, there exists a solution u4 of i in A™ such that
the elements pa(uy),. .., pa(u,,) are distinct atoms of A% and the elements
pa(wy), ..., pa(w,) are non-atomic elements of A¥. If some of the atoms
pa(ur), ..., pa(uy,) are bottom atoms, then we apply an automorphism m; €
M such that the elements in {mi(pua(w1)),...,mi(pa(un,))} are distinct open
atoms. In the other case, let my := Id. If the stabilizers of the elements
mi(pa(wy)),...,mi(pa(w,)) contain open atoms of,...,o0r that do not be-
long to {m1(pa(u1)),....,mi(pa(uy))}, then we apply an endomorphism ms
that maps the atoms o1,..., 05 to some bottom atom z and leaves the atoms
{ma(pa(ur)), ..., mi(pa(un))} fixed. In the other case, let mo := Id. Since y7°
is a positive formula, v4 := p4 0 my o ma is a solution of 713, by Lemma 3.5.
We have

(1) the elements z1 :=va(u1),..., 2y = va(uy) are distinct open atoms,
(2) the elements a := va(wi),...,a, ;= va(w,) are non-atomic,

(3) the open atoms occurring in the stabilizers of the elements ay,...,a, are
in{zy,...,x,}, and

(4) A™ | Jiy, 7 (1) 7,0/ad).
(2) follows from the fact A¥ is non-collapsing, (3) follows from Lemma 3.10,

and (4) follows from the fact that v4 solves 1. Symmetrically we can show
that there exists a solution vg of ¥ in B2 such that

(5) the elements y; :=vg(wy),...,y, := vp(w,) are distinct open atoms,
(6) the elements by := vp(uy),..., b, = vp(u,,) are non-atomic,

(7) the open atoms occurring in the stabilizers of the elements by, ..., b, are
in {y1,...,yn}, and

(8) B2 |= Joa 2 ()b, /7).



2. Let myq := {{z;,b) | i =1,..., m}, let 7 == {{yi,a;) | 1 = 1,...,n}.
Properties (1)—(3) and (5)—(7) show that for each ¢ € @ (¢ € b), the tuple

Ke = {(e,{ar,....an}t, {b1,..., by}, ma,mp) is a prebraid of type A (B).

3. Fix some e € @Ub. Let (mg,n3) be the standard normalizer for K.. By
Lemma 3.5, (4), and (8),

A 3y a1 (@)ma (@), 0 fms (@),

B2 E  3ia v (d/ns(b), @ /ng (7).
It follows easily from Lemma 4.34 that

AZ SRS ’ylz (1/m3 (%), /m3(a)),
B2 = 3ia v (i ns(b). @ /ns(if)).

Now Theorem 5.5 shows that

AY o BA = duy 'yf ('L_[/rootil(7713(:5"))V,u'}/rootil(‘7713(&')))7
A0 BA = Jia 'yf('ﬁ/rootgl('iz;g(g))7w/l‘oott_;l(n;g('g' ).

Consider an element x; of . Assume that x; points in K. to the subbraid
K’ with root b;. Then mg(z;) = o[- Let IC; be the subbraid of /C((:ﬂm’n:’)
with root ng(b;). By Lemma 4.18, K" and K; are equivalent. It follows that
ms(x;) = ofi,- The braid K; is non-trivial and of type B, and it is the unique
braid in standard normal form with root n3(b;) (Prop. 4.37, Lemma 4.41).
Hence 1“00’521(7713(%)) = K;. The element n3(b;) is a non-atomic element of B.
Hence rootB] (Ibg(g)) = [C; is the unique braid in standard normal form with
root n3(b;). Thus we have seen that root ;! (m3(7)) = rooty! (775(5)) Similarly
it follows that 1‘00’5131(713(1])) = 1‘ootzl(m3(6)). This shows that the formula
¥7 A y{ obtained after Step 1 has a solution in A* ® B®. Obviously this
implies that the input constraint v has a solution in A © B2, O

Next, we show completeness of the Algorithm 1.

Proposition 6.10 If the input constraint v has a solution in A~ ® B>, then
there exists an output pair ({o,U,W), (6, W,U)) of Algorithm 1 such that
(0, U, W) has a solution in A~ and (5§, W, U) has a solution in B>.

Proof. Assume that v has a solution piaop in A* @ B2,

In Step 1 of Algorithm 1 we identify two shared variables v and v' of V; if,
and only if, paeop(v) = pasp(v'). With this choice, uaop is a solution of the
formula yi A *ylA that is reached after Step 1, and pa.p assigns distinct values
in A¥ ® B2 to all variables of V;.

By Theorem 5.5, ji45p 0 roots (resp. jiacporooty) is a solution of o = v{°
in A> (resp. of § = 4 in B2) that does not identify two variables of V3.

By assumption, one of the two component structures, A=, say, is non-trivial.
In Step 2, we choose as U the set of all variables u of V| such that pacp(u)
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is a non-trivial braid of type B. Consequently, W contains all variables w of
V1 such that paep(w) is a trivial braid or a non-trivial braid of type A. The
definition of root, implies that pa.p o roots(u) is an open atom of A;, for all
w € U, and pacp o rooty(w) is a non-atomic element or a bottom atom of AX,
for all w € W. Let my € M be an endomorphism that maps all the bottom
atoms of the set {paqporoota(w) | w € W} to a non-atomic element of A and
leaves all other atoms fixed. Since A% is non-collapsing, all elements of the set
{pacporootyomi(w) | w € W} are non-atomic. Since o is a positive formula,
Lemma 3.5 implies that v4 := pasp o root4 omy is a solution of (o, U, W) in

-
Az

On the other hand the definition of rootp implies that paep o rootp(w) is
an atom of Bf, for all w € W, and pasp o rootg(u) is a non-atomic element of
B2, for all w € U. This shows that (5, W, U) has a solution in B2.

But then, by Lemma 4.34, (o, U, W) has a solution in A> and {5, W, U) has
a solution in B>, O

6.1 Proof of Theorem 6.5

In order to proof Theorem 6.5 we shall use the following variant of Algorithm 1,
which we call

Algorithm 2

The input constraint v, and Steps 1 and 2, remain as above. The output of
Algorithm 2 consists of the two positive universal-existential sentences

e )
o =Yudw3v x, i

and
§ = Vai3ado A v

where @ () represent the variables in U (resp. V), ¥y represents the non-
shared variables in 77, and U1,A represents the non-shared variables in .

Proposition 6.11 The input formula~y has a solution in A¥OB> if and only if
there exists an output pair (0,68) of Algorithm 2 such that A* = o and BA Ed.

Theorem 6.5 is an immediate consequence. In order to prove Proposition 6.11
we shall first show that Algorithm 2 is sound. As above we shall assume that
the two components A¥ and B2 have the form (A%, M, X) and (B2, N Y)
respectively.

Lemma 6.12 If. for some output pair (0.8) of Algorithm 2, A™ = o and
B2 |= 6§, then v is solvable in A” © B2,
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Proof. Assume that A¥ | V@337, v 4 and B2 = Vaidadi a 7. Let
U= UL, ..., Uy, let T = wi,..., w,. For each variable u; we select a distinct
atom z; € X of A (1 <4 <'m), and for each variable w; we select a distinct
atom y; € Y of B (1 < j < n). Then there are elements ai,...,a, € A and
bi,...,by € B such that

AZ iy yr (/340 @)
B | 3 a v (/b0 /).

We distinguish two cases.

First case: x; # a; and b; # y;, for all1 <+ <n and1 < j <m. Since A* is
non-trivial, we may choose an endomorphism m; € M that maps all atoms in
the set {aj,..., ap} to a non-atomic element a € A and fixes all other atoms.
In particular, m leaves the atoms x(,..., x,, fixed, by assumption. Since A*
is non- (‘()Hapsmg all elements in the set {7771((11) ..... .m1(ay)} are non-atomic.
Since 7 is a positive formula we have

A¥ = Fdy s yi ()2, 5 /7 (a)),

by Lemma 3.5. It follows that the X-constraint with A/N declaration,
(v, U, W), has a solution in A>.

Symmetrically we may choose an endomorphism n; € A such that all ele-
ments in {n1(b1),...,n1(by)} are non-atomic and

B2 |= 3514 2 (i /n1(), 5 /y).

It follows that the A-constraint with A/N declaration, (’ylA W.U), has a solu-
tion in B2. Now Lemma 6.9 shows that the input formula v has a solution in

A o BA.

Second case: Without loss of generality, x; = aj, for some 1 < i < m and
1 <7 < n. We consider the new formula 7172 (’Yi,A) that is obtained by
replacing all occurrences of w; in vy (resp. ) by wu;. Consider the pair
with the formulae ¢’ = Vi3w/'3d) y, 7] v and &' = Va'3a35) A 71.A7 where the
sequence W' is obtained from @ by removing w;. Obviously, (¢/,4’) is again an
output pair Algorithm 2. We claim that A* = o’ and B> | §'.

We have
A* =30 s o (i), )d),
where @' denotes the sequence ai,...,a;—1,a;11,..., ,an. Since X is an M-
atom set, for each sequence ¢ = ¢i,....¢y of elements of A there exists an

endomorphism ms € M such that mo(z;) = ¢;, for 1 <i < m. Now Lemma 3.5
shows that A* Eo.

Since (B®,N,Y) is rational, there exists an endomorphism ns € A that
leaves all atoms but y; fixed such that no(y;) = n2(b;). By Lemma 3.5,

B2 b= 301 4 Y1 A (@ n2(B). 0 /)



where the sequence 7 is obtained from % by removing ;. Since the elements in
the sequence i are distinct atoms it follows as above that B> = §'.

In this second case we have seen that we can construct a new output pair
(0/,8") of Algorithm 2 such that A* = o’ and B2 = §'. Moreover, the number
of variables in (o/,4") is strictly smaller than the number of variables in (o, §).
We may now use the same subcase analysis as above, replacing (o, §) by (o, §'),
and iterate this contraction of formulae, if necessary. After a finite number of
steps we reach an output pair that satisfies all the assumptions that we made for
(0,0) in the first subcase. As we have seen, this shows that the input formula
7 has a solution in A* ® B2, O

As the last step, we show completeness of Algorithm 2.

Lemma 6.13 If the input constraint v has a solution in A> © B®, then there
exists an output pair (0,08) of Algorithm 2 such that A~ = o and B> 6.

Proof. Lemma 6.10 shows that Algorithm 1 has an output pair
(v, UW)., (v, W,U)) such that (3. U, W) has a solution in A” and
(vf,W,U) has a solution in B2. In A¥, variables of U are interpreted
as distinct atoms in X under the given solution. Lemma 3.6 shows that
A¥ EVa3w3d s v In B, variables of W are interpreted as distinct atoms in
Y under the given solution. By Lemma 3.6, B> | Vaida3dvy A vf*. This shows
that the sentences ¢ = Vu3w3v; x 77 and § = Vaida3v, a fylA of the corre-
sponding output pair (o, §) of Algorithm 2 are valid in A* and B2 respectively.
O

7 Conclusion

In this paper we have introduced rational amalgamation, a general methodology
for combining constraint systems. The present work, in connection with the
discussion of free amalgamation in [BS95], seems to suggest a new view of the
problem of combining solution domains and constraint solvers. There is now
strong evidence that the situation considered in [BS95] and in this paper—
the construction of “mixed” elements of a combined domain, given the “pure”
elements of two component structures as construction units—is quite similar to
the process of building the elements of a single structure, given the symbols of
a fixed signature as construction units. We are confident that this analogy will
help to isolate the most important methods for combining structures, and to
understand the relationship and the differences between different amalgamation
constructions.

When we compose elements, given the symbols of a fixed signature, three
different structures may be obtained in a direct way, depending on the com-
position principle, namely the free term algebra, the algebra of rational trees,
and the algebra of infinite trees. The privileged role of these three algebras,
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and the rich amount of interesting relationships between them, are now well-
understood (e.g., [Co83, Ma88]). We believe that free amalgamation, rational
amalgamation and a further construction called “infinite amalgamation™ (still
to be investigated) reflect this role on the higher level of amalgamation con-
structions. Many of the results that we have obtained for free and rational
amalgamation can be interpreted in this sense:

e The universality-property of the free amalgamated product (see [BS95])
reflects the status of the free term algebra as the absolutely free 2-algebra.

o We have seen that the free amalgamated product is always a substructure
of the rational amalgamated product. This reflects the fact that the free
term algebra is always a substructure of the algebra of rational trees.

e [t is well-known that the unification algorithm for the algebra of rational
trees can be considered as the variant of the unification algorithm for the
free term algebra where we omit the occur-check. Similarly, the decompo-
sition scheme for rational amalgamation as given here is  essentially the
decomposition scheme for free amalgamation where we omit the “inter-
structural” occur-check that is provided by the choice of a linear ordering
in the latter scheme.

We would not be surprised if much more principles, techniques and theorems,
well-known on the level of tree constructions, could be lifted to the level of
combining structures. Our experience with rational amalgamation seems to
indicate that this is a difficult, but promising line of research if we want to
understand the scale of possibilities, and the limitations for combining solution
domains and constraint solvers.
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