
Combination of Constraint Systems II:Rational Amalgamation�Klaus U. Schulz, Stephan KepserCIS, Universit�at M�unchenWagm�ullerstra�e 23, 80538 M�unchen, Germanye-mail: schulz/kepser@cis.uni-muenchen.deWWW: http://www.cis.uni-muenchen.deAbstractIn a recent paper1, the concept of \free amalgamation" has been intro-duced as a general methodology for interweaving solution structures forsymbolic constraints, and it was shown how constraint solvers for two com-ponents can be lifted to a constraint solver for the free amalgam. Herewe discuss a second general way for combining solution domains, calledrational amalgamation. In praxis, rational amalgamation seems to be thepreferred combination principle if the two solution structures to be combi-ned are \rational" or \non-wellfounded" domains. It represents, e.g., theway how rational trees and rational lists are interwoven in the solutiondomain of Prolog III, and a variant has been used by W. Rounds for com-bining feature structures and hereditarily �nite non-wellfounded sets. Weshow that rational amalgamation is a general combination principle, app-licable to a large class of structures. As in the case of free amalgamation,constraint solvers for two component structures can be combined to a cons-traint solver for their rational amalgam. From this algorithmic point ofview, rational amalgamation seems to be interesting since the combinationtechnique for rational amalgamation avoids one source of non-determinismthat is needed in the corresponding scheme for free amalgamation.1 IntroductionThe present paper, as its predecessor [BS95], marks one step in a programwhere we try to characterize the most important general constructions for com-bining solution domains and constraint solvers for symbolic constraints. In[BS95] the notion of the free amalgamated product of two component structureswas introduced. This product is characterized by a universality-property: it�This work was supported by a DFG grant (SSP \Deduktion") and by the EC WorkingGroup CCL, EP6028.1see [BS95]. 1



represents a most general object among all structures that can be consideredas a reasonable combination of the two components. For a large class of com-ponent structures|so-called SC-structures|an explicit construction of the freeamalgamated product of two components was given and it was shown how givenconstraint solvers for the component structures can be combined to a constraintsolver for the free amalgam.In the present paper we introduce a second systematic way to combineconstraint systems over SC-structures, called rational amalgamation. Free andrational amalgamation both yield a combined structure with \mixed" elementsthat interweave a �nite number of \pure" elements of the two components in aparticular way. The di�erence between both constructions becomes transparentwhen we ignore the interior structure of these pure subelements and considerthem as construction units with a �xed arity, similar to \complex functionsymbols". Under this perspective, and ignoring details, mixed elements of thefree amalgam can be considered as �nite trees, whereas mixed elements of therational amalgam are like rational trees.
Mixed element of free amalgam (1) and of rational amalgam (2).
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...On this background it should not be surprising that in praxis rational amalga-mation appears to be the preferred combination principle in situations wherethe two solution structures to be combined are themselves \rational" or \cy-clic" domains: for example, it represents the way how rational trees and rationallists are interwoven in the solution domain of Prolog III ([Co90]), and a vari-ant of rational amalgamation has been used to combine feature structures withnon-wellfounded sets in a system introduced by W. Rounds [Ro88].We introduce rational amalgamation as a general construction that can beused to combine so-called non-collapsing SC-structures over disjoint signatures.It is then shown how constraint solving in the rational amalgam can be reducedto constraint solving in the components. The decomposition scheme that is usedis closely related to the decomposition algorithm for free amalgamation, but itavoids one highly non-deterministic step that is needed in the latter scheme.Hence, when matters of e�ciency become important, rational amalgamationmight be the better choice.In the conclusion we sketch a more general view of the problem of combiningconstraint systems. From our present perspective, free and rational amalgama-2



tion, and a related construction called \in�nite amalgamation" seem to be themost important combination principles among a whole spectrum of related me-thods.2 PreliminariesA signature � consists of a set �F of function symbols and a disjoint set �Pof predicate symbols (not containing \="), each of �xed arity. ExpressionsA� denote �-structures over the carrier set A, and fA (pA) stands for theinterpretation of f 2 �F (p 2 �P ) in A�. �-terms (t; t1; : : :) and atomic �-formulas (of the form t1 = t2, or of the form p(t1; : : : ; tn)) are built as usual. A�-formula ' is written in the form '(v1; : : : ; vn) in order to indicate that thefree variables of ' are in fv1; : : : ; vng. We write A� j= '(v1=a1; : : : ; vn=an) if 'becomes true in A� under all assignments that map vi to ai 2 A, for 1 � i � n.A �-homomorphism is a mapping h between two structures A� and B�such that h(fA(a1; : : : ; an)) = fB(h(a1); : : : ; h(an)) and pA[a1; : : : ; an] impliesthat pB[h(a1); : : : ; h(an)] for all f 2 �F , p 2 �P , and a1; : : : ; an 2 A.A �-isomorphism is a bijective �-homomorphism h : A� ! B� such thatpA[a1; : : : ; an] if, and only if, pB[h(a1); : : : ; h(an)], for all a1; : : : ; an 2 A. A�-endomorphism of A� is a homomorphism h� : A� ! A�. With End�A wedenote the monoid of all endomorphisms of A�, with composition as operation.If g : A ! B and h : B ! C are mappings, then g � h : A ! C denotestheir composition. Expressions like ~v;~a are used to denote �nite sequences. If~a = a1; : : : ; an is a sequence of elements of A and ifm is a mapping with domainA, then m(~a) denotes the sequence m(a1); : : : ;m(an). If ~v = v1; : : : ; vn, thenA� j= '(~v=~a) is shorthand for A� j= '(v1=a1; : : : ; vn=an). The symbol \]"denotes disjoint set union.3 Non-collapsing SC-structuresIn this section we shall introduce the class of structures for which we can usethe rational amalgamation construction (De�nition 3.11). First we recall thede�nition given in [BS95]. In the sequel, we consider a �xed �-structure A�,and M denotes a submonoid of End�A.De�nition 3.1 LetA0; A1 be subsets ofA�. ThenA0 stabilizes A1 with respectto M i� all elements m1 and m2 ofM that coincide on A0 also coincide on A1.For A0 � A the stable hull of A0 with respect to M is the setSHAM(A0) := fa 2 A j A0 stabilizes fag with respect to Mg:The stable hull of a set A0 has properties that are similar to those of thesubalgebra generated by A0: SHAM(A0) is always a �-substructure of A�, and3



A0 � SHAM(A0). In general, however, the stable hull can be larger than thegenerated subalgebra. For example, if A� := R(�;X) denotes the algebra ofrational trees over signature �, if M = End�A, and if Y � X is a subset of theset of variables, X, then SHAM(Y ) contains all rational trees with variables inY , while Y generates all �nite trees with variables in Y only.De�nition 3.2 The set X � A is an M-atom set for A� if every mappingX ! A can be extended to an endomorphism in M.De�nition 3.3 A countably in�nite �-structureA� is an SC-structure (simplycombinable structure) i� there exists a submonoid M of End�A such that A�has an in�niteM-atom set X where every a 2 A is stabilized by a �nite subsetof X with respect to M. We denote this SC-structure by (A�;M;X). IfM = End�A, then (A�;End�A;X) is called a strong SC-structure.Examples 3.4 The class of SC-structures contains, e.g., all free structures(see, e.g., [Ma71]), rational tree algebras ([Co84, Ma88]), feature structures(for speci�city, we refer to [AP94, BT94]), feature structures with arity ([ST94,BT94]), domains with nested, �nite or rational lists (rational lists are used inProlog III, see [Co90]), and domains with nested, �nite or rational sets (asintroduced in [Ac88] and used in [Ro88]). In each case, we have to take thenon-ground variant since we assume the existence of a countably in�nite set ofatoms. With the exception of feature structures, all these structures are strongSC-structures. For details we refer to [BS95].In the rest of this section, (A�;M;X) denotes a �xed SC-structure withcarrier A.Lemma 3.5 Let '(v1; : : : ; vk) be a positive �-formula, let m 2 M, and leta1; : : : ; ak be elements of A. Then A� j= '(v1=a1; : : : ; vk=ak) implies A� j='(v1=m(a1); : : : ; vk=m(ak)).Proof. It is simple to see that there exists a surjective endomorphism m0 2 Mthat coincides with m on fa1; : : : ; akg. The result follows from the well-knownfact that validity of positive formulae is preserved under surjective homomor-phisms.Lemma 3.6 Let '(v1; : : : ; vk) be a positive �-formula, let m 2 M, and letx1; : : : ; xk be distinct atoms in X. Then A� j= '(v1=x1; : : : ; vk=xk) impliesA� j= 8v1; : : :8xk '.Proof. Let a1; : : : ; ak be arbitrary elements of A. Since X is an M-atomset, there exists an m 2 M such that m(xi) = ai, for i = 1; : : : ; k. HenceA� j= '(v1=x1; : : : ; vk=xk) implies A� j= '(v1=a1; : : : ; vk=ak), by Lemma 3.5.It follows that A� j= 8v1 : : :8xk '. 4



A fundamental property of SC-structures is the following ([BS95],Lemma 13).Lemma 3.7 For each a 2 A there exists a unique minimal �nite subset Y ofX such that fag 2 SHAM(Y ).De�nition 3.8 The stabilizer of a 2 A with respect to M2, StabAM(a) is theunique minimal �nite subset Y of X such that a 2 SHAM(Y ). The stabilizer ofA0 � A is the set StabAM(A0) := Sa2A0 StabAM(a).For the mathematical treatment of SC-structures, the concept of the stabilizerturns out to be extremely useful. It might give a good intuition to imaginethat the stabilizer of an element a is the set of atoms \occurring" in a. Note,however, that \the" set of atoms (variables) occurring, e.g., in distinct termsthat represent the same element of a quotient term algebra is not unique ingeneral. It is trivial to see that SHAM(Y ) = fa 2 A j StabAM (a) � Y g, for eachY � X. In the sequel, further properties of stabilizers will be used. The �rstlemma is a trivial consequence of the fact that stable hulls are �-substructures.Lemma 3.9 Let f 2 � be an n-place operator and a1; : : : ; an 2 A. ThenStabAM(fA(a1; : : : ; an)) � StabAM(fa1; : : : ang).The next lemma plays a crucial role in the rational amalgamation construction.It will be used in many proofs.Lemma 3.10 Let m 2 M be an endomorphism of the SC-structure(A�;M;X) such that the restriction of m on X is a mapping X ! X. IfStabAM(a) = fx1; : : : ; xkg, then StabAM(m(a)) � fm(x1); : : : ;m(xk)g. If m isan automorphism, then StabAM(m(a)) = fm(x1); : : : ;m(xk)g.Proof. Let m1 and m2 be two endomorphisms in M that coincide onfm(x1); : : : ;m(xk)g � X. Then m � m1 and m � m2 are endomor-phisms in M that coincide on fx1; : : : ; xkg. By assumption, m � m1 andm � m2 coincide on a. But then m1 and m2 coincide on m(a). HenceStabAM(m(a)) � fm(x1); : : : ;m(xk)g. Assume that m is an automorphism,and that StabAM(m(a)) is a proper subset of fm(x1); : : : ;m(xk)g. The �rstpart of the lemma, applied to m�1, yields a proper subset of fx1; : : : ; xkg thatstabilizes a, which is impossible, by choice of fx1; : : : ; xkg.We may now characterize the subclass of SC-structures for which we canuse the rational amalgamation construction.De�nition 3.11 An SC-structure (A�;M;X) is non-collapsing if every endo-morphism m 2 M maps non-atoms to non-atoms (i.e., m(a) 2 A n X for alla 2 A nX and all m 2 M).2Whenever the monoidM is clear from the context, we shall not mention it.5



E.g., quotient term algebras for collapse-free equational theories, rational treealgebras, feature structures, feature structures with arity, and the domains withnested, �nite or rational lists (as mentioned in 3.4) are always non-collapsing.4 The Domain of the Rational AmalgamIn this section we shall de�ne the underlying domain of the rational amalgamof two non-collapsing SC-structures over disjoint signatures. This is the mostcomplicated step of the rational amalgamation construction. The descriptionwould be much simpler if we would restrict the construction to componentswhere the elements have a particular form (e.g., the form of trees). But such arestriction would contradict our motivation to describe general constructions.To de�ne the elements of the rational amalgam, we shall �rst introduce thenotion of a \braid" and its standard normal form. The set of braids in stan-dard normal form will represent the carrier of the rational amalgam. We shalldescribe the rational amalgamation of two component structures. There are,however, no di�culties to interweave any �nite number of components in thesame way.Throughout this section (A�;M;X) and (B�;N ; Y ) denote two �xed non-collapsing SC-structures over disjoint signatures. We assume that the atomsets X and Y have the form X = Z ] OA and Y = Z ] OB , where the setsZ;OA, and OB are all in�nite, and where OA \ OB = ;. The atoms in Z willbe called bottom atoms, the atoms in OA (OB) will be called open atoms. Inthe braid construction, the bottom atoms will play the role of ordinary atoms,or leaves. Open atoms, in contrast, can be considered as \named holes" thatare only used to link elements of both structures. With OA(a) and OA(A0) wedenote the set of open atoms occurring in the stabilizer of a 2 A (A0 � A) withrespect toM. Similarly expressions OB(b) (OB(B0)) are used to denote the setof open atoms occurring in the stabilizer of b 2 B (B0 � B) with respect to N .An endomorphism m 2 M (n 2 N ) is called admissible if m (n) leavesall bottom atoms z 2 Z �xed and if m(o) 2 OA (n(o) 2 OB) for all o 2 OA(o 2 OB).3 Automorphisms are called admissible if they de�ne a permutation ofthe set of open atoms while leaving bottom atoms �xed. A pair (m;n) 2 M�Nis called admissible if both m and n are admissible.Lemma 4.1 Let A0 � A. If the admissible endomorphisms m1;m2 2 M coin-cide on OA(A0), then m1 and m2 coincide on A0. Similarly, let B0 � B. Ifthe admissible endomorphisms n1; n2 2 N coincide on OB(B0), then n1 and n2coincide on B0.3Intuitively, admissible endomorphisms cause a \renaming" of open atoms, compareLemma 3.10. They may identify distinct open atoms.6



4.1 Braids and subbraidsBraids represent �nite descriptions of possibly in�nite objects that interweavea �nite number of elements of two given SC-structures. Technically, suitablemappings, de�ned on atoms and pointing to non-atomic elements, are used toorganize links between elements of distinct components that have to be inter-woven.De�nition 4.2 Let O0A � OA, O0B � OB , let �A : O0A ! B, �B : O0B ! A, let� := �A [ �B. An element a 2 A is directly linked to b 2 B via � if there is ano 2 OB(b) such that a = �B(o). Analogously b 2 B is directly linked to a 2 Avia � if there exists an o 2 OA(a) such that b = �A(o). An element a 2 A [ Bis a �-descendant of b 2 A [ B if there exists a sequence a = a0; a1; : : : ; an = b(n � 0) such that each ai is directly linked to ai+1 via �, for 0 � i � n� 1.De�nition 4.3 A braid of type A over A�;B� is a quintuple K =ha;C;D; �A; �Bi, where1. a 2 A n OA,2. C is a �nite subset of A containing a. All elements of C n fag are non-atomic. D is a �nite set of non-atomic elements of B,3. �A : OA(C) ! D and �B : OB(D) ! C are mappings. For ho; ei 2�A [ �B, e is always a non-atomic element,4. each element in C [D is a �-descendant of a, for � := �A [ �B.The element a is called the root of K. The elements in the sets C and D arecalled the elements of K of type A and B respectively. The functions �A and�B are called the linking functions of K of type A and B respectively.Braids of type B, with root in B n OB, are de�ned symmetrically. A braidK is called trivial if the root of K is a bottom atom z 2 Z. In this case, z isthe only element of the braid. It does not make sense to distinguish betweenthe trivial braid hz; fzg; ;; ;; ;i of type A and the trivial braid hz; ;; fzg; ;; ;i oftype B. We identify both braids. Hence, trivial braids have mixed type.Example 4.4 The following �gure represents a braid over two termalgebras,for signatures � = ff; ag and � = fgg respectively.
7
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u3We sometimes writeOA(K) andOB(K) for OA(C) and OB(D) respectively, andO(K) denotes the union OA(K) [ OB(K). A quintuple K = ha;C;D; �A; �Bithat satis�es Conditions 1-3 of De�nition 4.3 will be called a prebraid.De�nition 4.5 Let K = ha;C;D; �A; �Bi be a braid. The braid K0 :=ha0; C 0; B0; �0A; �0Bi (of type A or B) is a subbraid of K if a0 2 C [ D, C 0 � C,D0 � D, �0A � �A, and �0B � �B.Sub(pre)braids of prebraids are de�ned in the same way. We write K0 � K ifK0 is a sub(pre)braid of K.Lemma 4.6 Let Ki = hai; Ci;Di; �iA; �iBi be a braid, and let �i = �iA [ �iB, fori = 1; 2. If a1 = a2, and if �1(o) = �2(o) for all o 2 O(K1) \ O(K2), thenK1 = K2.Proof. A simple induction shows that each �1-descendant of a1 is a �2-descendant of a2, and vice versa. Hence both braids have the same elements.The second condition given in the lemma implies that both braids have thesame linking functions. Hence K1 = K2.Corollary 4.7 Let K1 and K2 be two prebraids and K1 � K2. Let K01 be asubbraid of K1 and let K02 be a subbraid of K2 such that K01 and K02 have thesame root. Then K01 = K02.Proof. Since K01 and K02 are subbraids of K2 it is obvious that K01 and K02 satisfythe conditions of Lemma 4.6. Hence K1 = K2.Lemma 4.8 For each element e of a prebraid K there exists a unique subbraidof K with root e. 8



Proof. Let K = ha;C;D; �A; �Bi and e 2 C [D. Then e cannot be an openatom. Let C 0 � C (D0 � D) be the set of �-descendants of e in C (resp. D),where � = �A [ �B. Note that all elements of (C 0 [ D0) n feg are non-atomicsince K is a prebraid. Let �0A � �A (resp. �0B � �B) contain all ordered pairsho; ci of �A (resp. �B) where o 2 OA(C 0) (resp. o 2 OB(D0)). For each suchpair ho; ci the element c is in D0 (C 0) since c is a �-descendant of e. Sinceho; ci 2 �, the element c is non-atomic. It follows that he; C 0;D0; �0A; �0Bi is asubbraid of K. By Corollary 4.7 it is the unique subbraid of K with root e.4.2 VariantsThe concrete open atoms that are used to organize links between elements ofdistinct type in a given braid should be regarded as irrelevant. This motivatesthe following de�nition.De�nition 4.9 Let K = ha;C;D; �A; �Bi and K0 = ha0; C 0;D0; �0A; �0Bi be twoprebraids, say, of type A. K0 is called a variant of K if there exists an admissiblepair of automorphisms (m;n) such that1. a0 = m(a),2. C 0 = fm(c) j c 2 Cg, and D0 = fn(d) j d 2 Dg,3. �0A := fhm(o); n(d)i j ho; di 2 �Ag, and�0B := fhn(o);m(c)i j ho; ci 2 �Bg.Lemma 4.10 If two prebraids are variants, then the two subbraids given bytheir roots are variants.Proof. Let K and K0 be variants, of the form as in the previous de�nition.Let K1 = ha;C1;D1; �1A; �1Bi be the unique subbraid of K with root a, and letK2 = ha;C2;D2; �2A; �2Bi be the unique subbraid of K0 with root a0 = m(a). Theelements in C1 [D1 are the �-descendants of a, for � = �A [�B. The elementsin C2 [D2 are the �0-descendants of a0, for �0 = �0A [ �0B. From the de�nitionof �0A and �0B and from Lemma 3.10 (second part) it follows easily that the�0-descendants of a0 = m(a) are the m resp. n -images of the �-descendants ofa. This shows that C2 = fm(c) j c 2 C1g and D2 = fn(d) j d 2 D1g. The restis obvious.The following lemma shows that the notion of a variant gives rise to anequivalence relation on the set of all (pre)braids. Since the set of admissibleautomorphisms of A� (resp. B�) de�nes (with composition) a group, the proofis obvious.Lemma 4.11 Each prebraid K1 is a variant of K1. If K2 is a variant of theprebraid K1, then K1 is a variant of K2. If K2 is a variant of the prebraid K1,and if K3 is a variant of K2, then K3 is a variant of K1.9



Lemma 4.12 Let (m;n) be an admissible pair of automorphisms. Let K,a0, C 0, D0, �0A, and �0B be de�ned as in De�nition 4.9, 1.-3. Then K0 :=ha0; C 0;D0; �0A; �0Bi is a prebraid and a variant of K.Proof. Since a 2 A n OA it follows that a0 = m(a) 2 A n OA, by choiceof m. Thus K0 satis�es Condition 1 of De�nition 4.3. Since m and n areadmissible automorphisms, all elements of C 0 [ D0 that are images of non-atomic elements of C [D under m and n respectively are non-atomic. HenceK0 satis�es Condition 2 of De�nition 4.3. Since m and n de�ne permutationsof OA and OB respectively, the �rst component o of each pair ho; ei in �0A [ �0Bis an open atom. Lemma 3.10 shows that o 2 OA(C 0) [ OB(D0). Obviously, ifo 2 OA(C 0), then e 2 D0 and if o 2 OA(D0), then e 2 C 0. Moreover, e is alwaysnon-atomic, by admissibility of m and n. Since m and n are automorphisms,�0A and �0B are functions. By Lemma 3.10, the domains of �0A and �0B areOA(C 0) and OB(D0) respectively, which shows that K0 satis�es Condition 3 ofDe�nition 4.3. Thus K0 is a prebraid. Clearly it is a variant of K.Lemma 4.13 Each variant of a braid is a braid.Proof. It su�ces to verify that each variant of a braid satis�es Condition 4of De�nition 4.3. Let K, K0, and (m;n) as in De�nition 4.9. Suppose thatd 2 D is directly linked to c 2 C via �A. Thus, for some o 2 OA(c) we haveho; di 2 �A. Lemma 3.10 shows that m(o) 2 OA(m(c)). Clearly m(c) 2 C 0.Since hm(o); n(d)i 2 �0A, the element n(d) 2 D0 is directly linked to m(c) 2 C 0.Now a simple induction shows that all elements of C 0 [D0 are �0-descendantsof the new root a0 = m(a), where �0 = �0A [ �0B.4.3 Simpli�cation of braidsTwo (pre)braids that are variants of each other are meant to denote the sameobject. But then we should not distinguish between two subbraids of one andthe same (pre)braid if they are variants. In order to identify such subbraids,we shall use admissible pairs of endomorphisms of a particular type.De�nition 4.14 The admissible pair (m;n) is a simpli�er for the prebraidK = ha;C;D; �A; �Bi if the following conditions hold:� 8o1; o2 2 OA(C): m(o1) = m(o2) implies n(�A(o1)) = n(�A(o2)),� 8o1; o2 2 OB(D): n(o1) = n(o2) implies m(�B(o1)) = m(�B(o2)).Lemma 4.15 Let (m;n) be a simpli�er for the prebraid K. Then (m;n) is asimpli�er for each subprebraid of K. 10



Proof. Let K0 = ha0; C 0;D0; �0A; �0Bi be a subprebraid of K = ha;C;D; �A; �Bi.Then C 0 � C and D0 � D. Hence OA(C 0) � OA(C) and OB(D0) � OB(D).Moreover, the functions �A and �0A � �A (�B and �0B � �B) coincide on OA(C 0)(resp. OB(D0)). The rest is obvious.De�nition 4.16 Let (m;n) be a simpli�er for the prebraid K =ha;C;D; �A; �Bi. The image of K with respect to (m;n) is the prebraidK(m;n) := ha0; C 0;D0; �0A; �0Bi with the following components:41. a0 := m(a),2. C 0 := fm(c) j c 2 Cg andD0 := fn(d) j d 2 Dg,3. �0A := fhm(o); n(d)i j ho; di 2 �A;m(o) 2 OA(C 0)g, and�0B := fhn(o);m(c)i j ho; ci 2 �B; n(o) 2 OB(D0)g.Now assume that K is a braid. The braid-image of K with respect to (m;n),Khm;ni, is the unique subbraid of K(m;n) with root a0.Example 4.17 The following �gure represents the braid-image of the braidfrom Example 4.4 under the simpli�cation (m;n) where m maps o3 to o2 andn maps u3 to u2:
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u2The next lemma gives a re�nement of Lemma 4.15.Lemma 4.18 Let (m;n) be a simpli�er for the prebraid K, let K1 be the uniquesubbraid of K with root e, where e is an element of K of type A (resp. B). ThenKhm;ni1 is the unique subbraid of K(m;n) with root m(e) (resp. n(e)).Proof. It follows directly from De�nition 4.16 that Khm;ni1 is a subbraid of theprebraid K(m;n). Obviously m(e) (resp. n(e)) is the root of Khm;ni1 . Now useCorollary 4.7.4Using Lemma 3.10 and the fact that both A� and B� are non-collapsing it is trivial toverify that K(m;n) is a prebraid. 11



There is one technical point behind the de�nition of a simpli�er that willcause some di�culties in the further development. Assume, in the situationof De�nition 4.16, that OA(C) = fo1; : : : ; okg and OB(D) = fu1; : : : ; ulg.Then there is no guarantee that OA(C 0) = fm(o1); : : : ;m(ok)g and OB(D0) =fn(u1); : : : ; n(ul)g. In fact, Lemma 3.10 only shows the inclusion OA(C 0) �fm(o1); : : : ;m(ok)g.De�nition 4.19 The set(fm(o) j o 2 OA(C)g n OA(C 0)) [ (fn(o) j o 2 OB(D)g n OB(D0))is called the set of pending atoms of the simpli�cation step leading from K toK(m;n).As we shall see, pending atoms complicate the treatment of simpli�cation. Inprinciple we could restrict the amalgamation construction to a class of structu-res for which we can replace the inclusion from Lemma 3.10 mentioned aboveby an equality. In this case pending atoms cannot occur, image and braid imagealways coincide, and we could dispense with prebraids at all. However, our mo-tivation was to give a general construction. For this reason we shall not followthis line.Lemma 4.20 Assume, in the situation of De�nition 4.16, that o 2 OA(C) andm(o) is not a pending atom of the simpli�cation step leading from K to K(m;n).Then �0A(m(o)) = n(�A(o)).Proof. A trivial consequence of the de�nition of �0A as given in 4.16.While we are mainly interested in simpli�cation of braids, it turns out tobe simpler to treat simpli�cation of prebraids in advance.Lemma 4.21 Let (m1; n1) be a simpli�er for the prebraid K0 and (m2; n2)be a simpli�er for the prebraid K1 = K(m1;n1)0 . Assume that m2 and n2 donot identify any pending atom of the simpli�cation step leading from K0 toK1 with another atom. Then (m1 � m2; n1 � n2) is a simpli�er for K0 andK(m1�m2;n1�n2)0 = K(m2;n2)1 .Proof. Let Ki = hai; Ci;Di; �iA; �iBi, for i = 0; 1. We may assume thatboth are of type A. Let (m;n) := (m1 � m2; n1 � n2). If m(o) = m(o0)for o; o0 2 OA(C0), then either m1(o) = m1(o0), or m1(o) 6= m1(o0) andm2(m1(o)) = m2(m1(o0)). In the former case we know that n1(�0A(o)) =n1(�0A(o0)) since (m1; n1) is a simpli�er for K0. Hence n(�0A(o)) = n(�0A(o0)). Inthe latter case, neitherm1(o) nor m1(o0) can be pending, by assumption. Hencem1(o) and m1(o0) are in OA(K1). By Lemma 4.20, n1(�0A(o)) = �1A(m1(o)) and12



n1(�0A(o0)) = �1A(m1(o0)). Since m2(m1(o)) = m2(m1(o0)) and (m2; n2) is asimpli�er for K1, this implies thatn2(n1(�0A(o))) = n2(�1A(m1(o))) = n2(�1A(m1(o0))) = n2(n1(�0A(o0))):Hence in both cases n(�0A(o)) = n(�0A(o0)). Symmetrically it follows that n(o) =n(o0) implies m(�0B(o)) = m(�0B(o0)), for all o; o0 2 OA(D0). Hence (m;n) is asimpli�er for K0.The prebraids K(m1�m2;n1�n2)0 and K(m2;n2)1 have the same root m2(m1(a0)).It is trivial that they have the same elements. But then it follows easily thatthey have the same linking functions.Corollary 4.22 Let (m1; n1) be a simpli�er for the prebraid K0 and (m2; n2)be a simpli�er for the prebraid K1 = K(m1;n1)0 . Then there exists a simpli�er(m;n) for K0 such that K(m;n)0 = K(m2 ;n2)1 .Proof. It follows from Lemma 4.1 that there exists a simpli�er (m02; n02) of K1such that (m02; n02) does not identify any pending atom of the simpli�cationstep leading from K0 to K1 with another atom, and K(m2;n2)1 = K(m02;n02)1 . Let(m;n) := (m1 �m02; n1�n02). Then, by the previous lemma, K(m;n)0 = K(m02;n02)1 =K(m2;n2)1 .Let K be a prebraid. We have seen that a simpli�er (m;n) that yields apermutation of OA and OB leads to the variant K(m;n) of K (Lemma 4.12).The same is true under weaker assumptions. By Lemma 4.1, the image K(m;n)is completely determined by the images of the elements in OA(K) and OB(K)under the endomorphisms m and n respectively. Hence we obtainLemma 4.23 Let (m;n) be a simpli�er for the prebraid K. If the restrictionsof m and n on OA(K) and OB(K) respectively are injective, then K(m;n) is avariant of K.Call a simpli�er (m;n) for K strict if the restriction of m on OA(K) or therestriction of n onOB(K) is not injective. Lemma 3.10 shows that jO(K(m;n))j <jO(K)j if (m;n) is strict. It follows thatLemma 4.24 jO(K)j gives an upper bound on the length of every sequence ofstrict simpli�cations for the prebraid K.A prebraid K0 is called irreducible if K0 does not have a strict simpli�er. Wewant to show that all irreducible prebraids that can be reached from a prebraidK by simpli�cation are variants. For this purpose, the following lemma is neededthat shows that simpli�cation of prebraids is \locally con
uent".13



Lemma 4.25 Let (m1; n1) and (m2; n2) be two simpli�ers for the prebraid K0,let K1 and K2 be the images of K0 under (m1; n1) and (m2; n2) respectively.Then there exist a simpli�er (m3; n3) for K1 and a simpli�er (m4; n4) for K2such that K(m3;n3)1 = K(m4;n4)2 .Proof. Let Ki = hai; Ci;Di; �iA; �iBi, for i = 0; 1; 2. The endomorphismsm1 and n1 de�ne equivalence relations �1A and �1B on OA(C0) and OB(D0) re-spectively, where elements are equivalent with respect to �1A (�1B) i� they havethe same image under m1 (n1). The endomorphisms m2 and n2 de�ne similarequivalence relations �2A and �2B on OA(C0) and OB(D0) respectively. Let�A:=�1A t �2A= (�1A [ �2A)� denote smallest equivalence relation on OA(K0)that extends �1A and �2A. Similarly, let �B denote the smallest equivalence re-lation on OB(K0) that extends �1B and �2B . Choose a system of representantsfor �A and a similar system for �B . We shall write rep(o) for the representantof [o] with respect to �A (�B), for o 2 OA(K) (o 2 OB(K)).The elements of OA(C1) have the form m1(oA) for oA 2 OA(C0), byLemma 3.10. If, for oA; o0A 2 OA(C0), m1(oA) = m1(o0A) 2 OA(C1), thenoA �1A o0A and rep(oA) = rep(o0A). Thus� the mapping m1(oA) 7! rep(oA) (oA 2 OA(C0)) is wellde�ned. It canbe extended to an admissible endomorphism m3 2 M. Similarly themapping n1(oB) 7! rep(oB) (oB 2 OB(D0)) is wellde�ned and can beextended to an admissible endomorphism n3 2 N .Symmetrically we can show� the mapping m2(oA) 7! rep(oA) (oA 2 OA(C0)) is wellde�ned and canbe extended to an admissible endomorphism m4 2 M, and the mappingn2(oB) 7! rep(oB) (oB 2 OB(D0)) is wellde�ned and can be extended toan admissible endomorphism n4 2 N .We have (�)m3(m1(oA)) = rep(oA) = m4(m2(oA)) (oA 2 OA(C0))n3(n1(oB)) = rep(oB) = n4(n2(oB)) (oB 2 OB(D0))and, by Lemma 4.1, (��)m3(m1(c)) = m4(m2(c)) (c 2 C0)n3(n1(d)) = n4(n2(d)) (d 2 D0):Clearly (m3; n3) and (m4; n4) are admissible. We shall now show that (m3; n3) isa simpli�er for K1. Let ho01; b01i; ho02; b02i 2 �1A and suppose thatm3(o01) = m3(o02).We have to verify that n3(b01) = n3(b02). For i = 1; 2, there exists oi 2 OA(C0)and bi := �0A(oi) 2 D0 such that o0i = m1(oi) and b0i = n1(bi). Since m3identi�es o01 and o02 we know that o1 �A o2. Thus there exists a sequence14



o1 = u1; u2 : : : ; uk = o2 such that each pair hui; ui+1i belongs either to �1Aor to �2A (1 � i < k). Let di := �0A(ui), for i = 1; : : : ; k. Thus di 2 D0(1 � i � k) and we have b1 = d1 and b2 = dk. Now (m1; n1) and (m2; n2)are simpli�ers. Thus, if hui; ui+1i 2�1A, then n1(di) = n1(di+1), which impliesn3(n1(di)) = n3(n1(di+1)), and if hui; ui+1i 2�2A, then n2(di) = n2(di+1), whichimplies n4(n2(di)) = n4(n2(di+1)) and, by (��), n3(n1(di)) = n3(n1(di+1)).Therefore we obtain in factn3(b01) = n3(n1(b1)) = n3(n1(b2)) = n3(b02):We have shown that (m3; n3) is a simpli�er for K1. Symmetrically it followsthat (m4; n4) is a simpli�er for K2.The two prebraids K(m3;n3)1 and K(m4;n4)2 have the same root m3(m1(a0)),by (��). It is trivial to see that (��) also implies that fm3(m1(c)) j c 2 C0g isthe set of elements of type A of both prebraids, and fn3(n1(d)) j d 2 D0g is theset of elements of type B of both prebraids. But then it follows easily that bothprebraids have the same linking functions, which means that they are identical.Theorem 4.26 Each sequence of iterated strict simpli�cations that starts fromthe prebraid K has length � jO(K)j. If K0 is an irreducible prebraid that isobtained from K by a sequence of simpli�cations, then there exists a simpli�er(m;n) for K such that K(m;n) = K0. If two irreducible prebraids K1 and K2 canbe reached from K by sequences of simpli�cations, then K1 and K2 are variants.Proof. The �rst statement is Lemma 4.24. The second statement followsfrom Corollary 4.22 with a trivial induction. If K1 and K2 are two irreduci-ble prebraids that are obtained from K by sequences of simpli�cations, thenboth prebraids can be obtained from K by a single simpli�cation step, by Co-rollary 4.22. Lemma 4.25 shows that there exists a prebraid K3 that can bereached from K1 and K2 by simpli�cation. Since K1 and K2 are irreducible,these simpli�cation steps are not strict. Hence K1, K2 and K3 are variants, byLemma 4.11 and Lemma 4.23.Before we treat simpli�cation of braids, let us mention three properties ofirreducible prebraids.Lemma 4.27 (a) If the prebraid K = ha;C;D; �A; �Bi is irreducible, then �Aand �B are injective.(b) If K0 is a subbraid of the irreducible prebraid K, then K0 is irreducible.(c) If K1 and K2 are subbraids of the irreducible prebraid K, and if K1 and K2are variants, then K1 = K2.Proof. (a) Assume that �A, say, is not injective. Then there exist elementsho1; b1i and ho2; b1i in �A where o1 and o2 are distinct. Let m 2 M be an15



admissible endomorphism that maps o1 to o2 and leaves all other atoms �xed,let n be the identity on B. Now (m;n) is a strict simpli�er for K, thus we geta contradiction.(b) Assume, to get a contradiction, that (m;n) is a strict simpli�er for K0.Let K = ha;C;D; �A; �Bi, let K0 = ha0; C 0;D0; �0A; �0Bi. Let XA = OA(C) nOA(C 0), let YB = OB(D) n OB(D0). By Lemma 4.1 we may assume that m(n) leaves the elements of XA (YB) �xed. If fm(o) j o 2 OA(C 0)g \XA = ; =fn(o) j o 2 OB(D0)g \ YB , then m (n) only identi�es open atoms of O(K0)and it is easy to see that (m;n) is a strict simpli�er for K, which yields acontradiction. In the other case, let m0 be an admissible automorphism suchthat fm0(m(o)) j o 2 OA(C 0)g \XA = ;, let n0 be an admissible automorphismsuch that fn0(n(o)) j o 2 OB(D0)g \ YB = ;. Let m� denote the endomorphismthat coincides withm�m0 on OA(C 0) and leaves all other open atoms �xed. Letn� denote the endomorphism that coincides with n � n0 on OB(D0) and leavesall other open atoms �xed. Then (m�; n�) is a strict simpli�er for K, whichyields a contradiction.(c) Let K = ha;C;D; �A; �Bi, let Ki = hai; Ci;Di; �iA; �iBi (i = 1; 2). As-sume that K1 and K2 are variants, but K1 6= K2. There exists a pair of admis-sible automorphisms (m;n) such that K2 = K(m;n)1 . Without loss of generalitywe have (�): there exists an o� 2 OA(C1) such that o� 6= m(o�) 2 OA(C2).Consider an element oA0 2 OA(C1). If all elements of the \orbit"oA0 ; oA1 := m(oA0 ); oA2 := m(oA1 ); oA3 := m(oA2 ) : : :are in OA(C1), then this sequence contains only a �nite number of distinctelements, say, oA0 ; : : : ; oAk . In the other case, let k be the �rst index in thesequence 0; 1; : : : such that oAk 62 OA(C1). This implies that oAk 2 OA(C2). Theset foA0 ; : : : ; oAk g is called the m-trace trm(oA0 ) of oA0 . Let �m be the smallestequivalence relation on OA(C1) [ OA(C2) such that o �m o0 whenever o ando0 both belong to the m-trace tr(oA) of the same element oA 2 OA(C1). Sincem is an injective function, the equivalence classes of �m are just the maximalm-traces. For each equivalence class [oA]�m, choose a representant rep([oA]�m).Let m1 2 M be the admissible endomorphism that maps each oA 2 OA(C1)[OA(C2) to the representant rep([oA]�m) and leaves other atoms �xed. SinceoA 2 OA(C1) implies that m(oA) 2 OA(C2), and since both atoms have thesame representant, we know that m1(m(oA)) = m1(oA) for all oA 2 OA(C1).This implies, by Lemma 4.1, that m1(m(a)) = m1(a) for all a 2 C1.Symmetrically, we may de�ne the n-traces trn(oB) of elements oB 2OB(D1), just by replacing OA(Ci) by OB(Di) (i = 1; 2) and m by n. Weobtain the equivalence relation �n by \identifying" all elements that belongto the same n-trace trn(oB), for some oB 2 OB(D1). For each equivalenceclass [oB ]�n, choose a representant rep([oB]�n). Let n1 2 N be the admissibleendomorphism that maps each oB 2 OB(D1) [ OB(D2) to the representantrep([oB ]�n) and leaves other atoms �xed. We have n1(n(oB)) = n1(oB) forall oB 2 OB(D1), and n1(n(b)) = n1(b) for all b 2 D1.16



We want to show that (m1; n1) is a simpli�er forK. Suppose thatm1(o) =m1(o0) for open atoms o 6= o0 2 OA(K). We may assume that there exists asequence o = oA0 ; oA1 ; : : : ; oAr = o0 of elements of OA(C1)[OA(C2), where at leastthe elements oA0 ; : : : ; oAr�1 are in OA(C1), such that oAi = mi(oA0 ), for 0 � i � r.Let bi := �A(oAi ) (0 � i � r). Note that at least the elements b0; : : : ; br�1 arein D1 since K1 is a subbraid of K and �A and �1A coincide on OA(C1). SincehoA0 ; b0i 2 �1A we know, by choice of (m;n), that hm(oA0 ); n(b0)i 2 �2A � �A,which means that b1 = n(b0). Similarly we see that bi = ni(b0) for i = 0; : : : ; r.But then we haven1(b0) = n1(n(b0)) = n1(b1) = : : : = n1(bk�1) = n1(n(br�1)) = n1(br)Thus n1 identi�es the �A-images of o = oA0 and o0 = oAr . Symmetrically, ifn1(o) = n1(o0) for atoms o; o0 2 OB(K), then m1 identi�es the �B-images ofo and o0. Therefore (m1; n1) is in fact a simpli�er for K. But (m1; n1) isstrict, by (�). This is a contradiction. Thus K1 = K2.We shall now turn to simpli�cation of braids. First we shall show thatthe result of two consecutive simpli�cation steps may be obtained by a singlesimpli�cation, similarly as for prebraids. We have to adapt the notion of apending atom to the new situation.De�nition 4.28 Let (m;n) be a simpli�er for the braid K = ha;C;D; �A; �Bi.Let Khm;ni = ha0; C 0;D0; �0A; �0Bi. Then the set(fm(o) j o 2 OA(C)g n OA(C 0)) [ (fn(o) j o 2 OB(D)g n OB(D0))is called the set of pending atoms of the simpli�cation step from K to the braidimage Khm;ni.Note that this is really a new notion. The set of pending atoms of the simpli�-cation step from K to the braid image Khm;ni is a superset of the set of pendingatoms of the simpli�cation step from K to the image K(m;n), but both sets arenot necessarily identical.Lemma 4.29 Let (m1; n1) be a simpli�er for the braid K0, let (m2; n2) be asimpli�er for its braid image K1 := Khm1;n1i0 . Assume that m2 and n2 do notidentify any pending atom of the simpli�cation step leading from K0 to the braidimage K1 with another atom. Then (m1 �m2; n1 �n2) is a simpli�er for K0 andKhm1�m2;n1�n2i0 = Khm2;n2i1 .Proof. Exactly as in the corresponding proof of Lemma 4.21 it follows that(m1�m2; n1�n2) is a simpli�er for K0. Our assumptions guarantee that (m2; n2)is also a simpli�er for K(m1;n1)0 such that m2 and n2 do not identify any pendingatom of the simpli�cation step leading from K0 to the image K(m1;n1)0 with ano-ther atom. Hence Lemma 4.21 implies that (K(m1;n1)0 )(m2;n2) = K(m1�m2;n1�n2)0 .17



Now K1 = Khm1;n1i0 is a subbraid of the prebraid K(m1;n1)0 and both havethe same root. Lemma 4.18 shows that Khm2;n2i1 is the unique subbraid of(K(m1;n1)0 )(m2;n2) = K(m1�m2;n1�n2)0 given by its root, namely Khm1�m2;n1�n2i0 .Corollary 4.30 Let (m1; n1) be a simpli�er for the braid K0, let (m2; n2) bea simpli�er for the braid image K1 = Khm1;n1i0 . Then there exists a simpli�er(m;n) for K0 such that Khm;ni0 = Khm2 ;n2i1 .Proof. It follows from Lemma 4.1 that there exists a simpli�er (m02; n02) of K1such that (m02; n02) does not identify any pending atom of the simpli�cationstep leading from K0 to the braid image K1 with another atom, and Khm2;n2i1 =Khm02;n02i1 . Let (m;n) := (m1 � m02; n1 � n02). Then, by the previous lemma,Khm;ni0 = Khm02;n02i1 = Khm2;n2i1 .Theorem 4.31 Let K = K0;K1; : : : ;Kk be a sequence of braids such thateach braid Ki+1 is the braid image of Ki under a strict simpli�cation, fori = 0; : : : ; k � 1. Then k � jO(K)j. If K0 is an irreducible braid that is re-ached from K by a sequence of consecutive simpli�cation steps (always takingbraid images), then there exists a simpli�er (m;n) for K such that Khm;ni = K0.If two irreducible braids K1 and K2 can be reached from K by sequences of con-secutive simpli�cation steps (always taking braid images), then K1 and K2 arevariants.Proof. The �rst statement is trivial. The second statement follows from Co-rollary 4.30 by a simple induction. Assume that K1 and K2 are two irreduciblebraids that can be reached from K by sequences of consecutive simpli�cationsteps, always taking braid images. Then there exist simpli�ers (m1; n1) and(m2; n2) of K such that K1 = Khm1;n1i and K2 = Khm2;n2i. The prebraidsK(m1;n1) and K(m2;n2) are not necessarily irreducible. But we may add fur-ther simpli�cation steps (m01; n01) and (m02; n02) such that (K(m1;n1))(m01;n01) and(K(m2;n2))(m02;n02) are irreducible. By Lemma 4.15, (m01; n01) and (m02; n02) are|obviously non-strict|simpli�ers for K1 and K2 respectively. It follows thatK1 and Khm01;n01i1 are variants, and similarly for K2 and Khm02;n02i2 . By Theo-rem 4.26, the two prebraids (K(m1;n1))(m01;n01) and (K(m2;n2))(m02;n02) are vari-ants. By Lemma 4.10, the two subbraids given by their roots|which are, byLemma 4.18, Khm01;n01i1 and Khm02;n02i2 |are variants. Hence K1 and K2 are vari-ants, by Lemma 4.11.On the basis of Theorem 4.31 we may introduce the following equivalencerelation on the set of all braids.De�nition 4.32 Two braids are called equivalent if they can be simpli�ed tothe same irreducible braid image. If K is a braid, [K] denotes the set of allbraids that are equivalent to K. 18



Since two braids that are variants are obviously equivalent it is easy to see thatwe get in fact an equivalence relation. Let us also mention the following simpleconsequence of Theorem 4.31:Lemma 4.33 If two irreducible braids are equivalent, they are variants.4.4 Standard normalizationIn order to de�ne the underlying domain of the rational amalgam we shallnow introduce a standard normal form for each braid. Let O�A be a subset ofthe set OA of open atoms of A� that has the same cardinality as the set of allequivalence classes of non-trivial5 braids of type B. Similarly, letO�B be a subsetof the set OB of open atoms of B� that has the same cardinality as the set ofall equivalence classes of non-trivial braids of type A. Let A�� := SHAM(Z[O�A),and let B�� := SHBN (Z [ O�B). Lemma 10 of [BS95] showsLemma 4.34 Every bijection between Z [ O�A and Z [ OA extends to a �-isomorphism between A�� and A�. Similarly every bijection between Z [ O�Band Z [ OB extends to a �-isomorphism between B�� and B�.We may now enumerate the elements of O�A and of O�B in the formO�A = fo[K] j K is a nontrivial braid of type Bg;O�B = fo[K] j K is a nontrivial braid of type Ag:This means that [K] 7! o[K] establishes a bijection between the set of all equi-valence classes of non-trivial braids of type A (B) and O�B (O�A).Let K = ha;C;D; �A; �Bi be a prebraid. For each open atom o 2 OA(C)(o 2 OB(D)) we say that o points in K to K0 i� K0 is the unique subbraid of Kwith root �A(o) (�B(o))6.De�nition 4.35 A prebraid K is in standard normal form if OA(K)[OB(K) �O�A [O�B and if every open atom o 2 OA(K)[OB(K) points in K to a subbraidK0 such that o = o[K0].With A�B we denote the set of all braids over A� and B� in standard normalform. Note that trivial braids are always in standard normal form. Note alsothat the elements of a prebraid in standard normal form are in A�� [ B�� (thisfollows from the remarks after De�nition 3.8).Lemma 4.36 Every prebraid in standard normal form is irreducible.5compare De�nition 4.3.6compare Lemma 4.8. 19



Proof. Let K = ha;C;D; �A; �Bi be a prebraid in standard normal form. As-sume, to get a contradiction, that (m;n) is a strict simpli�er for K. Withoutloss of generality we may assume that m(o1) = m(o2) for distinct open atomso1; o2 2 OA(C). Let di := �A(oi), and let Ki denote the subbraid of K with rootdi, for i = 1; 2. Since (m;n) is a simpli�er, n(d1) = n(d2). By Lemma 4.15,(m;n) is a simpli�er for K1 and K2. By Lemma 4.18, Khm;nii is the uniquesubbraid of K(m;n) with root n(di), for i = 1; 2. Since n(d1) = n(d2), alsoKhm;ni1 = Khm;ni2 which implies that K1 and K2 are equivalent. Since K is instandard normal form it follows that o1 = o[K1] = o[K2] = o2, which contradictsour assumption.Proposition 4.37 Let K be a prebraid. Let (m;n) denote the admissible pairof endomorphisms that maps each o 2 OA(K) [ OB(K) to o[K0] where K0 is theunique subbraid of K such that o points to K0. Then (m;n) is a simpli�er forK and K(m;n) is in standard normal form.Proof. Let (m1; n1) be a simpli�er for K = ha;C;D; �A; �Bi such thatK1 := K(m1;n1) is irreducible. Ifm1 identi�es the open atoms o; o0 2 OA(C), thenn1 identi�es d := �A(o) and d0 := �A(o0). It follows that o and o0 point in K tosubbraids that receive the same braid image under the simpli�cation (m1; n1).Hence these subbraids are equivalent, which implies that m(o) = m(o0). Itfollows that the mapping m2 : m1(o) 7! m(o) (o 2 OA(C)) is well-de�ned.Symmetrically it follows that the mapping n2 : n1(o) 7! n(o) (o 2 OB(D)) iswell-de�ned. Both mappings can be extended to admissible endomorphisms forwhich we shall use the same symbols.Obviously m1 �m2 (resp. n1 �n2) and m (resp. n) coincide on OA(C) (resp.OB(D)). Hence m1 �m2 (resp. n1 � n2) and m (resp. n) coincide on C (resp.D), by Lemma 4.1.We shall now show that (m;n) is a simpli�er for K. Assume that m(o) =m(o0), for o; o0 2 OA(C). This means, by the de�nition of m, that o ando0 point in K to equivalent subbraids K0 and K00, with roots d := �A(o) andd0 := �A(o0). We want to show that o and o0 are already identi�ed by m1.Let K01 and K001 denote the braid images of K0 and K00 under the simpli�cation(m1; n1) respectively. Then K0 and K01 are equivalent, and similarly for K00 andK001. Since K0 and K00 are equivalent, this implies that K01 and K001 are equivalent.But K01 and K001 are subbraids of the irreducible prebraid K1, by Lemma 4.18.Part (b) of Lemma 4.27 shows that K01 and K001 are irreducible. Since they areequivalent, both are variants, by Lemma 4.33. Part (c) of Lemma 4.27 showsthat K01 = K001 . The root of K01 is n1(d), and the root of K001 is n1(d0). Hencen1(d) = n1(d0) and n(d) = n2(n1(d)) = n2(n1(d0)) = n(d0).Symmetrically it follows that n(o) = n(o0) always implies that m(�B(o)) =m(�B(o0)), for all o; o0 2 OB(D). This shows that (m;n) is in fact a simpli�erfor K. Obviously K(m;n) is in standard normal form.20



De�nition 4.38 The process where we apply to a given (pre)braid K the sim-pli�er (m;n) that maps each open atom o 2 O(K), pointing in K to the subbraidK0, to the open atom o[K0] 2 O�A[O�B will be called standard simpli�cation of K.The prebraid K(m;n) (braid Khm;ni) will be called the standard (braid) normalform of K.Obviously all subbraids of a prebraid in standard normal form are again instandard normal form.Lemma 4.39 For each braid K there exists exactly one braid K0 in standardnormal form such that K and K0 are equivalent.Proof. We have seen that standard normalization yields a braid in standardnormal form that is equivalent to K. If K0 and K00 are braids in standard normalform that are equivalent to K, then K0 and K00 are irreducible (Lemma 4.36)and variants, by Lemma 4.33. It follows that there exists an admissible pairof automorphisms (m;n) such that K00 = K0hm;ni. Let o 2 OA(K0) point in K0to K1. Then m(o) points in K00 to Khm;ni1 and K1 and Khm;ni1 are equivalent.Since K0 and K00 are in standard normal form, o = o[K1] = o[Khm;ni1 ] = m(o).Hence m coincides on the elements of K0 of type A with identity. A symmetricalargument shows that n coincides on the elements of K0 of type B with identity.De�nition 4.40 Let o 2 O�A [O�B . We say that o represents the unique braidK in standard normal form such that o = o[K].Lemma 4.41 Given e 2 (A� [ B�) n (O�A [ O�B) there exists a unique braidK 2 A� B such that e is the root of K.Proof. Let e 2 (A� [B�) n (O�A [O�B). We may assume that e 2 A� n O�A. LetOA(e) = fo1; : : : ; ong, and let oi represent the braid in standard normal formKi = hei; Ci;Di; �iA; �iBi. Let C := Sni=1Ci[feg;D := Sni=1Di; �A := Sni=1 �iA[fho[Ki]; eii j i = 1; : : : ; ng, and �B := Sni=1 �iB. Then K = he; C;D; �A; �Bi 2A� B has root e.Conversely, let K = he; C;D; �A; �Bi 2 A� B. Since each open atom oi inOA(e) represents a unique braid Ki to which it points in K, the structure of Kis completely determined by e.5 The rational amalgamated productIn this section we shall complete the construction of the rational amalgamatedproduct, and we shall provide some evidence for the naturalness of this con-struction. In the �rst subsection we introduce functions and relations on A�B21



that interpret the symbols of the mixed signature �[�. With this step, the de-�nition of the rational amalgamated product is complete. In the following twosubsections we add some evidence for the naturalness of rational amalgamation.First we consider the case where the two components are strong non-collapsingSC-structures over disjoint signatures. This is the situation where we can buildboth the free amalgam and the rational amalgam with our actual methods.Theorem 5.1 The free amalgamated product is{modulo isomorphism|a sub-structure of the rational amalgamated product.This shows that there are interesting relationships between distinct amalgama-tion constructions.Eventually we consider a particular class of amalgamation components. Weshall showTheorem 5.2 The rational amalgamated product of two algebras of rationaltrees over disjoint signatures is isomorphic to the algebra of rational trees overthe combined signature.This shows that our general construction, complicated as it might appear, yieldsthe expected result when we consider more concrete situations.5.1 Functions and relationsGiven the underlying domain of the rational amalgam of A� and B� as con-structed above, there is now a perfectly natural way to introduce functions andrelations that interpret the symbols of the mixed signature �[�. Consider thefunctions rootA : A� B ! A� and rootB : A� B ! B�:rootA(K) := ( the root of K if K is trivial or has type Ao[K] 2 O�A if K is non-trivial and has type B.rootB(K) := ( the root of K if K is trivial or has type Bo[K] 2 O�B if K is non-trivial and has type A.As a direct consequence of Lemma 4.41 we obtainLemma 5.3 The functions rootA and rootB are bijections.Here is now the de�nition of the rational amalgamated product.De�nition 5.4 The rational amalgamated product A� �B� of A� and B� isthe following (� [�)-structure with carrier A�B:1. Let f 2 � be an n-ary function symbol, let K1; : : : ;Kn 2 A � B. Wede�ne fA�B(K1; : : : ;Kn) = root�1A (fA�(rootA(K1); : : : ; rootA(Kn))).22



2. Let p 2 � be an n-ary predicate symbol, let K1; : : : ;Kn 2 A � B. Wede�ne A� � B� j= p(K1; : : : ;Kn) i� A�� j= p(rootA(K1); : : : ; rootA(Kn)).The interpretation of the function symbols g 2 � and the predicate symbolsq 2 � in A� � B� is de�ned symmetrically, using rootB .Theorem 5.5 As a �-structure, A� � B�;A� and A�� are isomorphic, androotA : A� � B� ! A�� is a �-isomorphism. As a �-structure, A� � B�;B�,and B�� are isomorphic, and rootB : A� � B� ! B�� is a �-isomorphism.Proof. Recall that A� and A�� are isomorphic, and similarly for B� andB�� . Lemma 5.3 and De�nition 5.4 imply that rootA : A� � B� ! A�� is a�-isomorphism and rootB : A� � B� ! B�� is a �-isomorphism.Theorem 5.5 makes clear that rational amalgamation is not a constructionthat can be used, say, to construct a rational tree algebra for a given signature� out of the �nite tree algebra for �. Even if B� consists of atoms only, therational amalgam A� �B�, considered as a �-structure, is isomorphic to A�.5.2 Free amalgamation and rational amalgamationIn this subsection we shall sketch a proof for Theorem 5.1. We de�ne the notionof an acyclic braid and show that the set of all acyclic braids in standard normalform is a substructure of the rational amalgamated product. It is possible toprove that the free amalgamated product of the two component structures isisomorphic to this substructure.7De�nition 5.6 A prebraid K = ha;C;D; �A; �Bi is called acyclic if there isno sequence e1; e2 : : : ; en of elements in C [ D, of length n � 2, such thate1 = en and every element ei is directly linked8 via � = �A [ �B to ei+1, fori = 1; : : : ; n � 1. If K is acyclic, the depth of K is the largest number n suchthat there is a sequence e1; : : : ; en of elements of K where each element ei isdirectly linked to ei+1 via �, for i = 1; : : : ; n� 1.Lemma 5.7 Let (m;n) be a simpli�er for the acyclic braid K. Then the braidimage Khm;ni is an acyclic braid.Proof. Wemay assume that K = ha;C;D; �A; �Bi is of typeA. LetK(m;n) =hm(a); C 0;D0; �0A; �0Bi. We show that the prebraid K(m;n) is acyclic. Assume, toget a contradiction, that there is a sequence e1 : : : ; en of elements in C 0 [D0, of7With the actual methods, the free amalgamated product can only be built for strong SC-structures over disjoint signatures. Hence we have to assume that the two components arestrong and non-collapsing.8compare De�nition 4.2. 23



length n � 2, such that e1 = en and every element ei is directly linked to ei+1via �0 := �0A [ �0B, for i = 1; : : : ; n� 1. An element a of K is called interestingif its image m(a) resp. n(a) occurs in the sequence e1 : : : ; en. An element b0of K is called a daughter of an element b of K if b0 is directly linked to b via� := �A [ �B.Since K is acyclic, there has to be a interesting element a 2 C [ D suchthat no daughter of a is interesting. Without loss of generality we assume thata 2 C. Hence m(a) occurs in e1 : : : ; en, say, as element ei (we may assumethat i > 1). Since ei�1 is directly linked to m(a) = ei in K(m;n), there existsa link ho; ei�1i 2 �0A where o 2 OA(m(a)). Let OA(a) = fo1; : : : ; okg andbi := �A(oi), for i = 1; : : : ; k. Thus fb1; : : : ; bkg is the set of daughters of ain K. From Lemma 3.10 it follows that o has the form o = m(oi), for some1 � i � k. Hence, since �0A is a function, it follows from De�nition 4.16 thatho; ei�1i = hm(oi); n(bi)i and n(bi) = ei�1. But this implies that the daughterbi of a is interesting, which contradicts our choice of a.Theorem 5.8 The set of all acyclic braids of A � B forms a substructure ofA� �B�.Proof. Let f 2 � be an n-ary function symbol, let K1; : : : ;Kn be acyclicelements of A� � B�. We have to show that the braidfA�B(K1; : : : ;Kn) = root�1A (fA�(rootA(K1); : : : ; rootA(Kn)))is acyclic. The elements of OA(frootA(K1); : : : ; rootA(Kn)g represent|in thesense of De�nition 4.40|acyclic subbraids. By Lemma 3.9,OA(fA�(rootA(K1); : : : ; rootA(Kn)) � OA(frootA(K1); : : : ; rootA(Kn)gand the open atoms in a� := fA�(rootA(K1); : : : ; rootA(Kn)) represent acyclicsubbraids. If a� 2 A� n O�A, then K := root�1A (a�) is the unique braid instandard normal form with root a�. Since all open atoms of the root of Krepresent acyclic subbraids, K itself is acyclic. In the other case, if a� = o 2OA(frootA(K1); : : : ; rootA(Kn)g is an atom, then it represents an acylic braid instandard normal form K of type B. But K := root�1A (a�). We have seen that theset of all acyclic braids represents a �-substructure of A��B�. Symmetricallyit follows that this set represents a �-substructure of A� � B�.The proof that the set of all acyclic braids, considered as a (�[�)-structure,is isomorphic to the free amalgamated product of A� and B� (as introducedin [BS95]) cannot be given here. For readers that are familiar with the latternotion we mention that induction on the depth of an acyclic braid may beused to construct the factorising homomorphisms that characterize the freeamalgamated product up to isomorphism.24



5.3 Proof of Theorem 5.2In this subsection we shall prove Theorem 5.2. We consider the special situationwhere A� = R(�;X) (resp. B� = R(�; Y )) is the non-ground algebra ofrational trees for signature � (resp. �) 9. From the introduction of Section 4recall that the set of bottom atoms Z = X \Y is in�nite and X = Z]OB ; Y =Z ] OB .The two structures A� and B� are SC-structures of the form (A�;M;X)and (B�;N ; Y ) where M := End�A and N := End�B . For a rational tree t 2R(�;X), the set StabAM(t) is just the set of all atoms that label a leaf of t.If m is an endomorphism, then m(t) is obtained from t just by replacing eachatomic leaf x in t by the subtreem(x). Consequently, ifm 2 M is an admissibleendomorphism of R(�;X), then StabAM(m(t)) = fm(x) j x 2 StabAM(t)g. Thisequality, and the corresponding equality for R(�; Y ) show that there are nopending atoms when we simplify braids over R(�;X) and R(�; Y ). It followseasily that K(m;n) = Khm;ni, for all braids K over R(�;X) and R(�; Y ) and alladmissible pairs of endomorphisms (m;n).In the �rst step of the proof of Theorem 5.2 we show how braids in R(�; Y )�R(�; Z) can be mapped naturally to rational trees in R(� [ �; Z). Let K =ha;C;D; �A; �Bi 2 R(�;X)� R(�; Y ). Then � := �A [ �B can be consideredas a mapping R(� [ �;X [ Y ) ! R(� [ �;X [ Y ) that replaces open atomleaves by rational trees, similar to a substitution. The process where we apply� to the root a of K in an iterative way, obtaining a sequence a0 = a; a1 =�(a); : : : ; an+1 = �(an); : : : is called unfolding of K. Since, by De�nition 4.3,� replaces open atoms by non-atomic elements, the above sequence converges(w.r.t. the usual metrics on in�nite trees) to a unique limit tree tK. ObviouslytK 2 R(� [�; Z). We de�ne the mappingunfold : R(�;X)� R(�; Y )! R(� [�; Z) : K 7! tK:Example 5.9 The following �gure gives the rational tree that is obtained byunfolding the braid from Example 4.17:
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•In the second step of the proof we shall de�ne a mappingfold : R(� [�; Z)! R(�; Y )� R(�; Z):9See [Co84] for the de�nition of the algebra of rational trees over a given signature.25



(Later, we shall see that unfold and fold are inverse bijections. Eventuallywe shall show that both mappings are (� [ �)-homomorphisms.) We have tointroduce some terminology. A tree t 2 R(�[�; Z) is called a �-tree (�-tree)if the topmost function symbol of t belongs to � (resp. �). Suppose that wefollow a path of the rational tree t 2 R(�[�; Z), starting from the root. Eachnode of the path de�nes an occurrence of a unique subtree t0 of t in the obviousway. Such an occurrence is called relevant if the topmost function symbol ofthe subtree belongs to another signature than the label of the predecessor nodeon the path. A subtree t0 of t is called relevant if t0 has at least one relevantoccurrence in t.The following claim gives a �rst connection between a braid and the rationaltree that is obtained by unfolding the braid.Claim 1 For each braid K 2 R(�;X)� R(�; Y ) the relevant subtrees ofunfold(K) are exactly the subtrees of the form unfold(Ki), where Ki is a subbraidof K.Proof of Claim 1. If K is a trivial braid, then the root of K is a bottom atomz. Unfolding K yields the rational tree \z", which means that the claim holdstrivially. If K is nontrivial, then the claim follows directly from the fact thatall elements of K are non-atomic, by De�nition 4.3.One preparation is needed before we can give the de�nition of fold. LetopA (resp. opB) be a 1-1 mapping that assigns to each �-tree (resp. �-tree)t 2 R(� [ �; Z) an open atom opA(t) 2 OA (resp. opB(t) 2 OB). Thesemappings can be used to de�ne \purifying" 1-1 functionspur� : R(� [�; Z) ! R(�;X)pur� : R(� [�; Z) ! R(�; Y )as follows. Both pur� and pur� �x all atoms z 2 Z. Moreover, pur�(t) :=opA(t) for each �-tree t, and conversely pur�(t) := opB(t) for each �-tree t. Ift is a �-tree, then pur�(t) is obtained from t by replacing all the outermost (=topmost) �-subtrees t1 of t by opA(t1). Symmetrically, if t is a �-tree, thenpur�(t) is obtained from t by replacing all the outermost �-subtrees t1 of t byopB(t1).We may now obtain a braid representation fold�(t) of a rational tree t 2R(� [�; Z) as follows. If t is an atom z 2 Z, then fold�(t) is the trivial braidwith root z. In the other case, assume �rst that t is a �-tree. Then fold�(t) isthe braid ha;C;D; �A; �Bi with the following components:1. a := pur�(t),2. C = fpur�(t1); : : : ;pur�(tk)g[fpur�(t)g, where t1; : : : ; tk are the relevant�-subtrees of t,3. D = fpur�(t01); : : : ;pur�(t0l)g, where t01; : : : ; t0l are the relevant �-subtreesof t, 26



4. �A := fhopA(t0i);pur�(t0i)i j i = 1; : : : ; lg,5. �B := fhopB(ti);pur�(ti)i j i = 1; : : : ; kg.If t is a �-tree, then fold�(t) is de�ned symmetrically, using opB and pur�instead of opA and pur�. The mappingfold : R(� [�; Z)! R(�;X)� R(�; Y )assigns to each rational tree t the unique element of R(�;X) � R(�; Y ) thatrepresents the standard normal form of the braid fold�(t).Claim 2 fold is injective and unfold is surjective.Proof of Claim 2. Clearly we obtain t back again by unfolding fold�(t). Moreo-ver, since no pending atoms can occur when we simplify fold�(t), it is easy tosee that the result of the unfolding process is not in
uenced by simpli�cation.Hence t = unfold(fold(t)), for each t 2 R(� [�; Z), which implies that fold isinjective and unfold is surjective.Claim 3 unfold is injective and fold is surjective.Proof of Claim 3. Unfortunately, the proof of this claim is not simple. Weshall proceed as follows. Let K 2 R(�;X)� R(�; Y ) be an arbitrary braid instandard normal form. We shall show that the step from K to unfold� fold�(K)can be described as a simpli�cation of K. Since unfold�fold(K) is obtained fromunfold�fold�(K) by an additional (standard) simpli�cation step, this shows thatK and unfold � fold(K) are equivalent braids. But both braids are in standardnormal form. By Lemma 4.39, K = unfold � fold(K). Since K was arbitrary,unfold � fold is the identity on R(�;X)�R(�; Y ), which implies that unfold isinjective and fold is surjective.In order to show that unfold � fold is a simpli�cation, we de�ne, given a braidK 2 R(�;X) � R(�; Y ), an admissible pair of endomorphisms (m1; n1) asfollows. Assume that o0 2 OA(K) points in K to the subbraid K0 with root d,say. Then m1(o0) := opA(unfold(K0)). Similarly, let o00 2 OB(K) point in K tothe subbraid K00 with root c, say. Then n1(o00) := opA(unfold(K00)). We mayextend these partial mappings to an admissible pair of endomorphisms (m1; n1).Now note that n1(d) = pur�(unfold(K0));m1(c) = pur�(unfold(K00)):To see the �rst equality, recall that n1(d) is obtained by replacing each openatom or of the root d of K0|pointing inK0, say, to the subbraidKr|by the openatom opB(unfold(Kr)). But when we unfold K0, then the maximal �-subtreesare exactly the trees of the form unfold(Kr). Puri�cation replaces these subtreesby the open atoms opB(unfold(Kr)), which shows that pur�(unfold(K0)) =n1(d). The second equality follows in the same way.27



It is now simple to prove that that (m1; n1) is a simpli�er for K: assume thatm1(o1) = m1(o2) for o1; o2 2 OA(K). Let oi point in K to the subbraid Ki withroot di, say. Then opA(unfold(K1)) = opA(unfold(K2)). Since the mappingopA is injective, unfold(K1) = unfold(K2). The �rst of the two equalities givenabove shows that n1(d1) = pur�(unfold(K1)) = pur�(unfold(K2)) = n1(d2).With a symmetrical argument, as usual, it follows that (m1; n1) is a simpli�erfor K.In order to show that the step from K to unfold � fold�(K) can be describedas a simpli�cation of K it remains to prove that fold�(unfold(K) = Khm1;n1i.Without loss of generality, K has type A. Let a be the root of K. Theroot of fold�(unfold(K)) is pur�(unfold(K). The root of Khm1 ;n1i is m1(a).Both roots are identical, by the second of the two equalities given above. As-sume that o0 2 OA(fold�(unfold(K))) \ OA(Khm1;n1i). Since o 2 OA(Khm1;n1i)we know that o has the form m1(o), where o 2 OA(K). Assume that opoints in K to the subbraid K1 with root d1. Then o0 = m1(o) pointsin Khm1;n1i to the subbraid Khm1;n1i1 with root n1(d1). On the other handm1(o) = opA(unfold(K1)), and this atom points in fold�(unfold(K)) to thesubbraid with root pur�(unfold(K1)). The �rst of the two equalities givenabove shows that o is linked to the same element n1(d1) = pur�(unfold(K1))in fold�(unfold(K)) and Khm1;n1i respectively. The same holds of course for theopen atoms in OB(fold�(unfold(K))) \ OB(Khm1;n1i). Now Lemma 4.6 showsthat fold�(unfold(K)) = Khm1;n1i.Summarizing, we have seen that the step from K to unfold � fold�(K) can bedescribed as a simpli�cation of K, which proves Claim 3 as we have seen already.Once we know that both fold and unfold are bijections we may assumewithout loss of generality that opA and opB are the mappings that assigns toeach rational tree t 2 R(� [ �; Z) the open atom o[fold(t)]. It is easy to seethat in this case fold� = fold, hence fold� and unfold are inverse bijections.Let K 2 R(�;X)�R(�; Y ) be a trivial braid, or a nontrivial braid of typeA. The element unfold � pur�(K) is the root of unfold � fold(K), i.e., the rootof K. Hence unfold � pur�(K) = rootA(K), by the de�nition of rootA. Nextassume that K 2 R(�;X) � R(�; Y ) is a nontrivial braid of type B. Thenunfold � pur�(K) = opA(unfold(K)) = o[fold(unfold(K))] = o[K] = rootA(K).We have seen that rootA = unfold � pur�. Similarly it follows that rootB =unfold � pur�. Hence pur� = fold � rootA and pur� = fold � rootB. Let f 2 �be n-ary, let K1; : : : ;Kn 2 R(�;X)� R(�; Y ). Thenunfold(fA�B(K1; : : : ;Kn)) =unfold(root�1A (fA�(rootA(K1); : : : ; rootA(Kn)))) =unfold(root�1A (f(pur�(unfold(K1)); : : : ;pur�(unfold(Kn))))) =unfold(root�1A (pur�(f(unfold(K1); : : : ;unfold(Kn))))) =unfold(root�1A (rootA(fold(f(unfold(K1); : : : ;unfold(Kn)))))) =28



f(unfold(K1); : : : ;unfold(Kn)):It follows that unfold is a �-homomorphism. In the same way it follows thatunfold is a �-homomorphism. It is then trivial to see that fold is (� [ �)-homomorphic, too. With the previous claims it follows that fold and unfold are(� [�)-isomorphisms. This completes the proof of Theorem 5.2.6 Combination of Constraint SolversOur last aim is to show how constraint solvers for two component structurescan be combined to a constraint solver for their rational amalgamated product.Constraint solvers, as considered here, are essentially algorithms that decidesolvability of quanti�er-free positive formulae in a given solution domain. We(mostly) disregard disjunction since its integration is a triviality.De�nition 6.1 Let � be a signature. A �-constraint is a conjunction of atomic�-formulae.In order to decide solvability of a \mixed" (� [ �)-constraint in a rationalamalgamated product A��B� we shall decompose it into two pure constraintsover the signatures � and � respectively. These output constraints are equippedwith additional restrictions of a particular type.De�nition 6.2 An A/N (atom/non-atom) declaration for a constraint 
 is apair (U;W ) such that U ]W � Var(
) is a disjoint union. Both U and W maybe empty. A solution �A of a constraint 
 in an SC-structure (A�;M;X) iscalled a solution of h
; U;W i if �A assigns distinct atoms to the variables in U ,and arbitrary non-atomic elements of A to the variables in W .In order to avoid some ballast in proofs we shall assume that at least one of thetwo components is a non-trivial SC-structure, which means that it has at leastone non-atomic element. We may now formulate our main result concerningcombination of constraint solvers in the case of rational amalgamation.Theorem 6.3 Let A� and B� be two non-collapsing SC-structures over dis-joint signatures, let A� � B� denote their rational amalgam. Assume that atleast one of the two components is a non-trivial SC-structure. Then solvabilityof (� [ �)-constraints in A� � B� is decidable if solvability of (�- resp. �-)constraints with A/N declarations is decidable for A� and B�.There seems to be no general way to characterize solvability of �-constraintswith A/N declarations in purely logical terms. But for a restricted class ofcomponent structures|a class which is of particular interest in the context ofrational amalgamation|a logical characterization of the problems that we haveto solve in the two component structures can be given.29



De�nition 6.4 A non-collapsing SC-structure (A�;M;X) is called rational iffor every atom x 2 X and every element a 2 A there exists an endomorphismm 2 M that leaves all atoms x0 6= x �xed such that m(x) = m(a).10The algebra of rational trees over a given signature is always a rational SC-structure. The same holds for feature structures, feature structures with arity,and domains with nested, rational lists (as described in 3.4). For rational SC-structures we obtain the following re�nement and reformulation of Theorem 6.3.Theorem 6.5 Let A� and B� be two non-trivial rational SC-structures overdisjoint signatures, let A��B� denote their rational amalgam. Then solvabilityof (� [ �)-constraints in A� � B� is decidable if if the positive universal-existential theory is decidable for both components A� and B�.Since existential quanti�cation distributes over disjunction, the theorem maybe slightly strengthened.Theorem 6.6 Let A� and B� be two non-trivial rational SC-structures overdisjoint signatures, let A��B� denote their rational amalgam. Then the posi-tive existential theory of A��B� is decidable if the positive universal-existentialtheory is decidable for both components A� and B�.It is interesting to contrast this formulation with the corresponding combina-tion result for free amalgamation (Theorem 22 of [BS95]) which needs strongerassumptions on the components: Let A� and B� be two strong SC-structuresover disjoint signatures, let A�
B� denote their free amalgam. Then the posi-tive existential theory of A�
B� is decidable if the positive theory is decidablefor both components A� and B�.One application of Theorem 6.6 is the followingCorollary 6.7 Rational amalgamated products A�11 �� � ��A�kk have decidablepositive existential theory if the nontrivial components A�ii are rational treealgebras, or nested, rational lists, or feature structures11, or feature-structureswith arity, for i = 1; : : : ; k, and if the signatures of the components are pairwisedisjoint.Proof. For all these structures it has been shown that even the full positivetheory is decidable, see [BS95].In the rest of this section we prove Theorem 6.3 and Theorem 6.5.10The existence of such an endomorphism is trivial if x 62 StabAM(a). In this case we mayalways take, e.g., the endomorphism m = mx�a of M that maps x to a and leaves all otheratoms �xed. The situation of interest is the case where x 2 StabAM(a) and x 6= a.11As in Examples 3.4 we refer to [AP94], for speci�city.30



Proof of Theorem 6.3To prove Theorem 6.3 we shall give an algorithm that reduces a mixed constraint
 in the signature (� [ �) non-deterministically to a pair of constraints withA/N declarations over the \pure" signatures � and � respectively. We shallassume that the input formula 
 has the form 
 = 
�0 ^ 
�0 where 
�0 is a con-junction of atomic �-formulae, and 
�0 is a conjunction of atomic �-formulae.Moreover we assume that 
 does not contain any equation between variables.These assumptions do not really restrict the generality of the approach: simpletechniques like \variable abstraction", now standard in this area, may be usedto transform an arbitrary (� [�)-constraint ' into a constraint 
 of the formgiven above, preserving solvability in both directions.Algorithm 1The input is mixed a constraint 
 = 
�0 ^ 
�0 of the form described above. LetV0 = Var(
�0 )\Var(
�0 ) denote the set of shared variables of 
. The algorithmhas two steps, both are nondeterministic.Step 1: Variable identi�cation. Consider all possible partitions of theset of all shared variables, V0. Each of these partitions yields one of the newconstraints as follows. The variables in each class of the partition are \identi-�ed" with each other by choosing an element of the class as representative, andreplacing in the input formula all occurrences of variables of the class by thisrepresentative.Step 2: Choose signature labels. Let 
�1 ^
�1 denote one of the formulaeobtained by Step 1, let V1 denote the set of representants of shared variables.The set V1 is partitioned in two subsets U and W in some arbitrary way.Let � = 
�1 , let � = 
�1 . For each of the choices made in Step 1 and 2, the algo-rithm yields an output pair (h�;U;W i; h�;W;Ui), each component representinga constraint with A/N declaration.Correctness of Algorithm 1We shall prove that Algorithm 1 is correct in the following sense.Proposition 6.8 The input formula 
 has a solution in A� � B� if and onlyif there exists an output pair (h�;U;W i; h�;W;Ui) of Algorithm 1 such thath�;U;W i has a solution in A� and h�;W;Ui has a solution in B�.Note that Theorem 6.3 is an immediate consequence. In order to prove Proposi-tion 6.8 we shall assume that the two components A� and B� are SC-structuresof the form (A�;M;X) and (B�;N ; Y ) respectively. First we show soundness.31



Lemma 6.9 If, for some output pair (h�;U;W i; h�;W;Ui) of Algorithm 1,h�;U;W i has a solution in A� and h�;W;Ui has a solution in B�, then theinput constraint 
 is solvable in A� � B�.Proof. The output formulae � and � may be written in the form 
�1 (~u; ~w;~v�)and 
�1 (~u; ~w;~v�), where ~u = u1; : : : ; um denotes the sequence of all elementsof U , where ~w = w1; : : : ; wn denotes the sequence of all elements of W , andwhere ~v� (resp. ~v�) stands for the non-shared variables occurring in 
�1 and
�1 respectively. The proof has now three steps. In the �rst step, the givensolutions of the output constraints are used to construct similar solutions of amore speci�c form. In the second step, these latter solutions are used to de�nesuitable braids. In the third step we apply standard normalization to thesebraids. This will yield a solution of the input constraint.1. By assumption, there exists a solution �A of 
�1 in A� such thatthe elements �A(u1); : : : ; �A(um) are distinct atoms of A�, and the elements�A(w1); : : : ; �A(wn) are non-atomic elements of A�. If some of the atoms�A(u1); : : : ; �A(um) are bottom atoms, then we apply an automorphism m1 2M such that the elements in fm1(�A(u1)); : : : ;m1(�A(um))g are distinct openatoms. In the other case, let m1 := Id. If the stabilizers of the elementsm1(�A(w1)); : : : ;m1(�A(wn)) contain open atoms o1; : : : ; ok that do not be-long to fm1(�A(u1)); : : : ;m1(�A(um))g, then we apply an endomorphism m2that maps the atoms o1; : : : ; ok to some bottom atom z and leaves the atomsfm1(�A(u1)); : : : ;m1(�A(um))g �xed. In the other case, let m2 := Id. Since 
�1is a positive formula, �A := �A � m1 � m2 is a solution of 
�1 , by Lemma 3.5.We have(1) the elements x1 := �A(u1); : : : ; xm := �A(um) are distinct open atoms,(2) the elements a1 := �A(w1); : : : ; an := �A(wn) are non-atomic,(3) the open atoms occurring in the stabilizers of the elements a1; : : : ; an arein fx1; : : : ; xmg, and(4) A� j= 9~v� 
�1 (~u=~x; ~w=~a).(2) follows from the fact A� is non-collapsing, (3) follows from Lemma 3.10,and (4) follows from the fact that �A solves 
�1 . Symmetrically we can showthat there exists a solution �B of 
�1 in B� such that(5) the elements y1 := �B(w1); : : : ; yn := �B(wn) are distinct open atoms,(6) the elements b1 := �B(u1); : : : ; bm := �B(um) are non-atomic,(7) the open atoms occurring in the stabilizers of the elements b1; : : : ; bm arein fy1; : : : ; yng, and(8) B� j= 9~v� 
�1 (~u=~b; ~w=~y). 32



2. Let �A := fhxi; bii j i = 1; : : : ;mg, let �B := fhyi; aii j i = 1; : : : ; ng.Properties (1){(3) and (5){(7) show that for each e 2 ~a (e 2 ~b), the tupleKe := he; fa1; : : : ; ang; fb1; : : : ; bmg; �A; �Bi is a prebraid of type A (B).3. Fix some e 2 ~a [~b. Let (m3; n3) be the standard normalizer for Ke. ByLemma 3.5, (4), and (8),A� j= 9~v� 
�1 (~u=m3(~x); ~w=m3(~a));B� j= 9~v� 
�1 (~u=n3(~b); ~w=n3(~y)):It follows easily from Lemma 4.34 thatA�� j= 9~v� 
�1 (~u=m3(~x); ~w=m3(~a));B�� j= 9~v� 
�1 (~u=n3(~b); ~w=n3(~y)):Now Theorem 5.5 shows thatA� � B� j= 9~v� 
�1 (~u=root�1A (m3(~x)); ~w=root�1A (m3(~a)));A� � B� j= 9~v� 
�1 (~u=root�1B (n3(~b)); ~w=root�1B (n3(~y))):Consider an element xi of ~x. Assume that xi points in Ke to the subbraidK0 with root bi. Then m3(xi) = o[K0 ]. Let Ki be the subbraid of K(m3;n3)ewith root n3(bi). By Lemma 4.18, K0 and Ki are equivalent. It follows thatm3(xi) = o[Ki]. The braid Ki is non-trivial and of type B, and it is the uniquebraid in standard normal form with root n3(bi) (Prop. 4.37, Lemma 4.41).Hence root�1A (m3(xi)) = Ki. The element n3(bi) is a non-atomic element of B.Hence root�1B (n3(~b)) = Ki is the unique braid in standard normal form withroot n3(bi). Thus we have seen that root�1A (m3(~x)) = root�1B (n3(~b)). Similarlyit follows that root�1B (n3(~y)) = root�1A (m3(~a)). This shows that the formula
�1 ^ 
�1 obtained after Step 1 has a solution in A� � B�. Obviously thisimplies that the input constraint 
 has a solution in A� � B�.Next, we show completeness of the Algorithm 1.Proposition 6.10 If the input constraint 
 has a solution in A� � B�, thenthere exists an output pair (h�;U;W i; h�;W;Ui) of Algorithm 1 such thath�;U;W i has a solution in A� and h�;W;Ui has a solution in B�.Proof. Assume that 
 has a solution �A�B in A� � B�.In Step 1 of Algorithm 1 we identify two shared variables v and v0 of V1 if,and only if, �A�B(v) = �A�B(v0). With this choice, �A�B is a solution of theformula 
�1 ^ 
�1 that is reached after Step 1, and �A�B assigns distinct valuesin A� � B� to all variables of V1.By Theorem 5.5, �A�B � rootA (resp. �A�B � rootB) is a solution of � = 
�1in A�� (resp. of � = 
�1 in B�� ) that does not identify two variables of V1.By assumption, one of the two component structures,A�, say, is non-trivial.In Step 2, we choose as U the set of all variables u of V1 such that �A�B(u)33



is a non-trivial braid of type B. Consequently, W contains all variables w ofV1 such that �A�B(w) is a trivial braid or a non-trivial braid of type A. Thede�nition of rootA implies that �A�B � rootA(u) is an open atom of A�� , for allu 2 U , and �A�B � rootA(w) is a non-atomic element or a bottom atom of A�� ,for all w 2 W . Let m1 2 M be an endomorphism that maps all the bottomatoms of the set f�A�B � rootA(w) j w 2 Wg to a non-atomic element of A andleaves all other atoms �xed. Since A� is non-collapsing, all elements of the setf�A�B � rootA �m1(w) j w 2Wg are non-atomic. Since � is a positive formula,Lemma 3.5 implies that �A := �A�B � rootA �m1 is a solution of h�;U;W i inA�� .On the other hand the de�nition of rootB implies that �A�B � rootB(w) isan atom of B�� , for all w 2W , and �A�B � rootB(u) is a non-atomic element ofB�� , for all u 2 U . This shows that h�;W;Ui has a solution in B�� .But then, by Lemma 4.34, h�;U;W i has a solution in A� and h�;W;Ui hasa solution in B�.6.1 Proof of Theorem 6.5In order to proof Theorem 6.5 we shall use the following variant of Algorithm 1,which we callAlgorithm 2The input constraint 
, and Steps 1 and 2, remain as above. The output ofAlgorithm 2 consists of the two positive universal-existential sentences� = 8~u9~w9~v1;� 
�1and � = 8~w9~u9~v1;� 
�1where ~u (~w) represent the variables in U (resp. V ), ~v1;� represents the non-shared variables in 
�1 , and ~v1;� represents the non-shared variables in 
�1 .Proposition 6.11 The input formula 
 has a solution in A��B� if and only ifthere exists an output pair (�; �) of Algorithm 2 such that A� j= � and B� j= �.Theorem 6.5 is an immediate consequence. In order to prove Proposition 6.11we shall �rst show that Algorithm 2 is sound. As above we shall assume thatthe two components A� and B� have the form (A�;M;X) and (B�;N ; Y )respectively.Lemma 6.12 If, for some output pair (�; �) of Algorithm 2, A� j= � andB� j= �, then 
 is solvable in A� �B�.34



Proof. Assume that A� j= 8~u9~w9~v1;� 
�1 and B� j= 8~w9~u9~v1;� 
�1 . Let~u = u1; : : : ; um, let ~w = w1; : : : ; wn. For each variable ui we select a distinctatom xi 2 X of A (1 � i � m), and for each variable wj we select a distinctatom yj 2 Y of B (1 � j � n). Then there are elements a1; : : : ; an 2 A andb1; : : : ; bm 2 B such thatA� j= 9~v1;� 
�1 (~u=~x; ~w=~a)B� j= 9~v1;� 
�1 (~u=~b; ~w=~y):We distinguish two cases.First case: xi 6= aj and bi 6= yj, for all 1 � i � n and 1 � j � m. Since A� isnon-trivial, we may choose an endomorphism m1 2 M that maps all atoms inthe set fa1; : : : ; ang to a non-atomic element a 2 A and �xes all other atoms.In particular, m1 leaves the atoms x1; : : : ; xm �xed, by assumption. Since A�is non-collapsing, all elements in the set fm1(a1); : : : ;m1(an)g are non-atomic.Since 
�1 is a positive formula we haveA� j= 9~v1;� 
�1 (~u=~x; ~w=~m1(a));by Lemma 3.5. It follows that the �-constraint with A/N declaration,(
�1 ; U;W ), has a solution in A�.Symmetrically we may choose an endomorphism n1 2 N such that all ele-ments in fn1(b1); : : : ; n1(bm)g are non-atomic andB� j= 9~v1;� 
�1 (~u=n1(~b); ~w=y):It follows that the �-constraint with A/N declaration, (
�1 ;W;U), has a solu-tion in B�. Now Lemma 6.9 shows that the input formula 
 has a solution inA� �B�.Second case: Without loss of generality, xi = aj, for some 1 � i � m and1 � j � n. We consider the new formula 
01;� (
01;�) that is obtained byreplacing all occurrences of wi in 
�1 (resp. 
�1 ) by uj. Consider the pairwith the formulae �0 = 8~u9~w09~v1;� 
01;� and �0 = 8~w09~u9~v1;� 
01;�, where thesequence ~w0 is obtained from ~w by removing wi. Obviously, (�0; �0) is again anoutput pair Algorithm 2. We claim that A� j= �0 and B� j= �0.We have A� j= 9~v1;� 
01;�(~u=~x; ~w0=~a0);where ~a0 denotes the sequence a1; : : : ; ai�1; ai+1; : : : ; an. Since X is an M-atom set, for each sequence ~c = c1; : : : ; cm of elements of A there exists anendomorphism m2 2M such that m2(xi) = ci, for 1 � i � m. Now Lemma 3.5shows that A� j= �0.Since (B�;N ; Y ) is rational, there exists an endomorphism n2 2 N thatleaves all atoms but yi �xed such that n2(yi) = n2(bj). By Lemma 3.5,B� j= 9~v1;� 
01;�(~u=n2(~b); ~w0=~y0);35



where the sequence ~y0 is obtained from ~y by removing yi. Since the elements inthe sequence ~y0 are distinct atoms it follows as above that B� j= �0.In this second case we have seen that we can construct a new output pair(�0; �0) of Algorithm 2 such that A� j= �0 and B� j= �0. Moreover, the numberof variables in (�0; �0) is strictly smaller than the number of variables in (�; �).We may now use the same subcase analysis as above, replacing (�; �) by (�0; �0),and iterate this contraction of formulae, if necessary. After a �nite number ofsteps we reach an output pair that satis�es all the assumptions that we made for(�; �) in the �rst subcase. As we have seen, this shows that the input formula
 has a solution in A� � B�.As the last step, we show completeness of Algorithm 2.Lemma 6.13 If the input constraint 
 has a solution in A� � B�, then thereexists an output pair (�; �) of Algorithm 2 such that A� j= � and B� j= �.Proof. Lemma 6.10 shows that Algorithm 1 has an output pair(h
�1 ; U;W i; h
�1 ;W;Ui) such that h
�1 ; U;W i has a solution in A� andh
�1 ;W;Ui has a solution in B�. In A�, variables of U are interpretedas distinct atoms in X under the given solution. Lemma 3.6 shows thatA� j= 8~u9~w9~v1;� 
�1 . In B�, variables ofW are interpreted as distinct atoms inY under the given solution. By Lemma 3.6, B� j= 8~w9~u9~v1;� 
�1 . This showsthat the sentences � := 8~u9~w9~v1;� 
�1 and � := 8~w9~u9~v1;� 
�1 of the corre-sponding output pair (�; �) of Algorithm 2 are valid in A� and B� respectively.7 ConclusionIn this paper we have introduced rational amalgamation, a general methodologyfor combining constraint systems. The present work, in connection with thediscussion of free amalgamation in [BS95], seems to suggest a new view of theproblem of combining solution domains and constraint solvers. There is nowstrong evidence that the situation considered in [BS95] and in this paper|the construction of \mixed" elements of a combined domain, given the \pure"elements of two component structures as construction units|is quite similar tothe process of building the elements of a single structure, given the symbols ofa �xed signature as construction units. We are con�dent that this analogy willhelp to isolate the most important methods for combining structures, and tounderstand the relationship and the di�erences between di�erent amalgamationconstructions.When we compose elements, given the symbols of a �xed signature, threedi�erent structures may be obtained in a direct way, depending on the com-position principle, namely the free term algebra, the algebra of rational trees,and the algebra of in�nite trees. The privileged role of these three algebras,36



and the rich amount of interesting relationships between them, are now well-understood (e.g., [Co83, Ma88]). We believe that free amalgamation, rationalamalgamation and a further construction called \in�nite amalgamation" (stillto be investigated) re
ect this role on the higher level of amalgamation con-structions. Many of the results that we have obtained for free and rationalamalgamation can be interpreted in this sense:� The universality-property of the free amalgamated product (see [BS95])re
ects the status of the free term algebra as the absolutely free �-algebra.� We have seen that the free amalgamated product is always a substructureof the rational amalgamated product. This re
ects the fact that the freeterm algebra is always a substructure of the algebra of rational trees.� It is well-known that the uni�cation algorithm for the algebra of rationaltrees can be considered as the variant of the uni�cation algorithm for thefree term algebra where we omit the occur-check. Similarly, the decompo-sition scheme for rational amalgamation as given here is|essentially|thedecomposition scheme for free amalgamation where we omit the \inter-structural" occur-check that is provided by the choice of a linear orderingin the latter scheme.We would not be surprised if much more principles, techniques and theorems,well-known on the level of tree constructions, could be lifted to the level ofcombining structures. Our experience with rational amalgamation seems toindicate that this is a di�cult, but promising line of research if we want tounderstand the scale of possibilities, and the limitations for combining solutiondomains and constraint solvers.References[Ac88] P. Aczel, \Non-well-founded Sets," CSLI Lecture Notes 14, StanfordUniversity, 1988.[AP94] H. Ait-Kaci, A. Podelski, and G. Smolka, \A feature-based constraintsystem for logic programming with entailment," Theoretical Comp.Science 122, 1994, pp.263{283.[BS95] F. Baader and K.U. Schulz, \On the Combination of Symbolic Cons-traints, Solution Domains, and Constraint Solvers," in: ProceedingsCP'95, U.Montanari, F.Rossi (Eds.), Springer LNCS 976, pp. 380-397.[BT94] R. Backofen and G. Smolka, \A Complete and Recursive FeatureTheory," Theoretical Comp. Science 146, 1995, pp. 243{268.37
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