
1Documentation for polyrec_sml: anextension SML with typechecking forpolymorphic recursionMartin EmmsCentrum f�ur Informations- und SprachverarbeitungUniversit�at M�unchen, Wagm�ullerstr 23, D-80538 M�unchenemail: emms@cis.uni-muenchen.deJuly, 1995Summary: The usual rule used for typechecking recursive declarations can be calledmonomorphic, because in typing the declaration, the recursively bound variable is assumedto have monomorphic type. This forces all occurrences of the variable to have the sametype and prevents certain recursions from being typed. polyrec_sml is a version of theSMLofNJ compiler which implements a more powerful, polymorphic recursion typing rule,�rst proposed in [Mycroft, 1984]. This essentially allows di�erent occurrences of the re-cursively bound variable to take on di�erent instances of the type of the de�nition. Theimplementation allows the user to choose between monomorphic and polymorphic recursion,with an attendant � 10 % e�ect on total compile time. It is hoped the implementation willenable further experience to be gathered on programming with polymorphic recursion.Sources, installation notes and examples for polyrec_sml can be obtained from:ftp.cis.uni-muenchen.de/incoming/emms/polyrec_distRemarks concerning polyrec_sml can be assured of an interested reception at:emms@cis.uni-muenchen.deleiss@cis.uni-muenchen.de1 21Thanks to Hans Lei� for his helpful comments on this documentation. The fault for remaining errors remainswith the author. The implementation described here was created with the support of DFG project `Semiuni�kation'Le 788/1-2.2Added October 1996: this report touches only lightly on theoretical aspects and primarily documents thepolyrec_sml implementation. In subsequently trying to prove its correctness, some changes to the basic algorithmwere found to be necessary. Correctness of the variant algorithm is proved in [Emms and Leiss, forthcoming] andit is hoped a later version of polyrec_sml will incorporate the changes. The changes have an e�ect only when (i)two recursions are nested and (ii) the inner recursion is of the kind that gets a more general type under polymorphicrecursion than under monomorphic.

CONTENTS 2Contents1 Polymorphic Recursion 41.1 The Typing Calculi ML and ML+ : 41.2 Examples : 52 Theory of Polymorphic Recursion 92.1 The idea : 102.2 Semiuni�cation : 112.3 The type-checking algorithm : 133 Prototype of a polyrec checker in SMLofNJ 173.1 The representation of terms and types in SMLofNJ : : : : : : : : : : : : : : : : : : : 183.2 The prototype checker : 204 The polyrec checker 224.1 Summary of di�erences : 224.2 Documentation : 235 Remarks on Design 375.1 Environments or variable attributes : 375.2 Overloading : 375.3 Flexible Records : 386 Performance 39

CONTENTS 3The code for polyrec_sml is adapted from, or is intended to be used incombination with, the code which consitututes Standard ML of New Jersey,Version 0.93. It is therefore issued with the following copyright notice, licenseand disclaimer.Standard ML of New Jersey Copyright Notice, License and Disclaimer.Copyright 1989, 1990, 1991, 1992, 1993 by AT& T Bell LaboratoriesPermission to use, copy, modify, and distribute this software and its docu-mentation for any purpose and without fee is hereby granted, provided thatthe above copyright notice appear in all copies and that both the copyrightnotice and this permission notice and warranty disclaimer appear in sup-porting documentation, and that the name of AT& T Bell Laboratories orany AT& T entity not be used in advertising or publicity pertaining to dis-tribution of the software without speci�c, written prior permission.AT& T disclaims all warranties with regard to this software, in-cluding all implied warranties of merchantability and �tness. Inno event shall AT& T be liable for any special, indirect or conse-quential damages or any damages whatsoever resulting from lossof use, data or pro�ts, whether in an action of contract, negligenceor other tortious action, arising out of or in connection with theuse or performance of this software.

1 POLYMORPHIC RECURSION 4Installation notes for polyrec_sml are in doc/INSTALL_NOTES, and a brief user-manual indoc/polyrec_man. The current document gives some theoretical background, and documents indetail the implementation.Section 1 de�nes and illustrates what type-checking wrt. polymorphic recursion is, con�ning atten-tion to a sublanguage of SML. Section 2 de�nes a Damas-Milner style type-checker for polymorphicrecursion, incorporating semiuni�cation. This theoretical version of the type-checker is at the samedistance from our implementation as the standard Damas-Milner algorithm is from the standardSMLofNJ implementation. Sections 3 and 4 are directly concerned with the implementation. Insection 3 we describe a prototype of the type-checker in an endeavour to keep the outline visibleamidst the detail. Section 4 documents the code, both the additional code, and some of the relevantpre-existing code. Section 5 contains some concluding remarks on the design, and section 6 desribesthe performance.1 Polymorphic RecursionIn this section we de�ne and give examples of, typing wrt. polymorphic recursion.1.1 The Typing Calculi ML and ML+To keep the description of polymorphic recursion manageable, we will con�ne attention to a sub-language of SML which exhibits the relevant features. In de�ning the language we will use meta-variables as follows:x : variablesc : constructors (arity 0 � constants,binary in�x (_,_) and (_;_) presupposed)e : expressionsd : declarations� : type-variables� : type-function (arity 0 � type constant,`list' presupposed unary, `!' and `*' presupposed in�x bi-nary)tn : type-function name� : quanti�er-free type� : quanti�ed typeThe types and (untyped) expressions and declarations of ML are:� := � | ~��� := � | 8�:�e := x | c | ee0 | fn x => e | let d in ed := val x = e| val rec x = e| datatype ~� tn = c1 | : : : cm | cm+1 of �m+1 | : : : cm+n of �m+nA type-assignment calculus operates as a further �lter on ML code, de�ning a set of possible typesfor a piece of code, relative to a type-context. The �rst six typing rules in Figure 1.1 de�ne thecalculus for ML (which we will also refer to as ML).

1 POLYMORPHIC RECURSION 5Notation conventions. E is a type-context, assigning types to constructors and variables (and typefunctions to type names). � � � (read � `instantiates' �) holds if � results from � by instantiatingall bound variables of � with monomorphic (8-free) types. �E means quantifying all variables of �except those occurring free in type assumptions in E. By EE0 we mean replacing each x : � in Ewith x:�E0 . In the let rule, E + E0 is understood as the destructive overwriting of E by E0. Thecontext will be assumed to type the pairing and sequencing constructors as 8�8�:�!�!(� � �)and 8�8�:�!�!�.Special attention should be paid to the rule for recursive value declarations, in which the recursivelybound variable is assumed in the premises to have a monomorphic type. Although the declarationmay well assign a polymorphic type to the recursive function, this polymorphic type may not beassumed during the typing of the declaration. The �nal rule above is the alternative so-called`Polymorphic Recursion' typing rule, �rst considered in [Mycroft, 1984], which allows that theassumed type for the recursively bound variable can be polymorphic.The typing calculus with this rule we will refer to as ML+, and we illustrate the di�erence betweenML and ML+ by means of some examples in the following section. Before that we de�ne thenotion of principal type and environment.De�nition 1 (Principal Types and Environments) Let K be ML or ML+, e an expressionand d a declaration.i) � is the K-principal type of e wrt to E if K proves E j�e : � , and for any � 0 such that Kproves E j�e : � 0, � 0 = T� , for some substitution T of monomorphic types for type variables.ii) fx 7! 8~��g is the K-principal environment for d wrt to E if K proves E j�d : fx 7! 8~��g,and for any � 0 such that K proves E j�d : fx 7! � 0g, � 0 = T�E, for some substitution T .For example, with respect to the empty environment fg, the ML-principal environment for thedeclaration val f = fn x => x is ff 7! 8�:�!�g. Another environment generated by the dec-laration is ff 7! 8�:(int � �)!(int � �)g, and we have T (�!�)fg = 8�:(int � �)!(int � �) forT (�) = (int � �).1.2 ExamplesIn this section a series of examples are given where the ML-principal environment and the ML+principal environment di�er. The source code for these and other examples is in doc/examples,and doc/compiler_examples lists some further examples that arise in the source code for the SMLcompiler.Example 1val rec f = fn x => f 1Although this is is an arti�al example, the de�ned f being non-terminating, it makes a good startingpoint for illustrating the typing rules. It is clear that (i) in order to type the de�nition, E mustcontain an assumption for f which has int!� as a possible instantiation, and that (ii) the possibletypes of the de�nition, assuming such an instantiation, are the instances of �!�. With ML comesthen the additional constraint that the assumed type be identical to the definition type(and therefore monomorphic). Thus the assumption for f must be an instance of int!�, and inthe ML-principal environment, f will be assigned 8�:int!�.

1 POLYMORPHIC RECURSION 6Standard ML typing rulesChoose E(x) � � , x is either a constant or variableE j� x : �App E j� e1 : � 0!� E j� e2 : � 0E j� e1e2 : � Functions E + fx 7! � 0g j�e:�E j� fn x => e : � 0!�Let E j� d : E 0 E +E0 j� e : �E j� (let d in e end) : �Datatype Dec TE = ftn 7! �gE1 = fc1 7! 8~�:~��; : : : ; cn 7! 8~�:~��gE2 = fcm+1 7! 8~�:�m+1[�=tn]!~��; : : : ; cm+n 7! 8~�:�m+n[�=tn]!~��ggE j� datatype ~� tn = c1 | : : : cm | cm+1 of �m+1 | : : : cm+n of �m+n: TE + E1 + E2Value Dec E j� e : �E j� val x = e : fx 7! �EgRec Value Dec E + ff 7! �g j� e : �E j� val rec f = e : ff 7! �EgAlternative ML+ ruleRec Value Dec(Poly) E + fx 7! �Eg j� e : �E j� val rec x = e : fx 7! �EgFigure 1: The typing calculi ML and ML+

1 POLYMORPHIC RECURSION 7On the other hand, working with ML+, we have the constraint that the assumed type be theclosure of the definition type. Clearly 8�8�:�!� ful�ls the requirements, and will be thetype assigned to f in the ML+ principal environment3. If the example is slightly changed toval rec f = fn x => (f 1 ; f "a")the di�erence is more stark: the code is ML-untypable, whilst the ML+-principal environmentremains the same.Essentially this situation can realistically arise in a simultaneous recursive de�nition, as noted in[Mycroft, 1984]:Example 2fun map f l = if l = [] then [] else (f(hd(l))::(map f (tl l)))and incrlist l = map (fn x => 1 + x) lInside incrlist's de�nition, map requires type (int!int)!int list!int list. This is a special caseof the type (�!�)!� list!� list that is required for map's occurrence inside its own de�nition.Under ML, the more speci�c type must be assumed for map in any typing derivation, and in theML-principal environment, map will therefore be assigned (int!int)!int list!int list. However,using the usual polymorphic type for map as the assumption, both occurrences of map can betyped, and the assumption is indeed the closure of the type of its de�nition. In the ML+-principalenvironment, map therefore receives the usual type, 8�8�:(�!�)!� list!� list.Again, if the example is slightly modi�ed by adding a further clauseand prefix l = map (fn x => "a"^x) lwith the aim of de�ning three functions simultaneously, the di�erence is starker: map then occurswith two incompatible types in the de�nitions of the two other functions, and so the whole decla-ration is ML-untypable. The ML+-principal environment remains the same, because the type ofthe additional occurrence is just another instance of the closure of map's de�nition type.The above case was an example of a non-essentially simultaneous de�nition, and if the functions areseparately de�ned, they get the same types under ML and ML+. In doc/examples, the di�erencebetween ML and ML+ is further illustrated by genuinely mutually recursive de�nitions, someof which occurred in programming practice4 and are only typable with respect to ML+. Also,compiler_examples contains many examples of ML-typable simultaneous recursions, drawn fromthe SML compiler code, which have more general ML+-types.Another class of examples arises when datatypes � � are used where a subcomponent of a � � valuecan be a � � � value. The �rst example of this below derives from a message [Elliot, 1991] to theSML email list (see also doc/examples)Example 3datatype entry = Const of const | N of (entry * entry)datatype 'a c_dtree = EC | C of (const * 'a * 'a c_dtree)datatype 'a e_dtree = ET | D of ('a c_dtree * ('a e_dtree) e_dtree)3In doc/examples there are cases from the compiler sources of this kind, where an occurrence of the recursivelybound variable in some side-e�ecting part of the de�nition restricts the type more than occurrences in the de�nitionproper.4one of these was reported to the ML-list as recently as July 1995 [Altenkirch, 1995].

1 POLYMORPHIC RECURSION 8fun ed_find (D (C(con',v,rest),_),Const(con)) =if con = con' then velse ed_find (D(rest, ET), Const(con))| ed_find (D(_,dtree), N(e,erest)) =ed_find (ed_find (dtree,e),erest)The purpose of the code is to assign values to tuples (represented using the entry datatype).When there is overlap amongst the tuples, simply writing a rule with a case for every tuple will beine�cient, because while stepping through the cases, certain parts of the input may be repeatedlymatched against the recurring parts of the case de�nitions. An alternative is to uses a discriminationtree of type � e_dtree, having two parts. The �rst is an � c_tree, which associates values to theconstants which appear in an input tuple. The second part is of type (� e_dtree) e_dtree, andthe signi�cant component will be an (� e_dtree) c_dtree, assigning a � e_dtree to constants.ed_find traverses a tuple, each time using the �rst element to select a particular � d_tree asthe discrimination tree for the remainder. In this way a call of ed_find on an argument of type� e_dtree e_dtree supplies an argument of type � e_dtree to a further call of ed_find. This makesed_find ML-untypable, whilst it has type 8�:� e_dtree � entry!� wrt ML+.Example 4 Wadsworth more than 10 years ago is reported to have encountered the analo-gous problem in a `real' program, making use of the datatype 'a T = Empty | Node of 'a *('a T) T. Suppose the environment supplies fst:8�:�T!� and snd:8�:� T!� T T , flatten:� list list!� list.collect x = if x = Empty then []else fst x :: (flatten (map collect (collect (snd x))))It is a useful exercise to consider in detail the typing of this example. Clearly x must have type � T .For a ML-typing, we obtain after some calculation that a monomorphic type � must be assumedfor collect, satisfying the instantiation claims:� � � T T!� list� � �!� listSince � is monomorphic, � can be read as identity, and the righthand sides equated. This requiresthe impossible identity � T T list = � list, and so the example is ML-untypable.For a ML+ typing, we must assume a polymorphic � satisfying the instantiation claims � �� T T!� list and � � �!� list. Additionally, � must be the closure of some type of thede�nition. Assuming the instantiation claims are satis�ed, the possible types of the de�nition arethe instances of � T!� list. Hence for a typing we require a substitution S such thatS(� T!� list)SE � S(� T T!� list)S(� T!� list)SE � S(�!� list)The substitution S = [� T=�], is a solution, in fact a most general. Therefore in the ML+-principalenvironment, collect is assigned the type, S(� T!� list)SE = � T!� listE = 8�:� T!� list.We consider one more example below to illustrate the interaction between �-binding and polymor-phic recursion.Example 5

2 THEORY OF POLYMORPHIC RECURSION 9fn y => let fun collect x = (x = y;fst x :: (flatten (map collect (collect(snd x))))) in ...Note that now the argument of collect must have the same type as the wider-scoped, abstractedvariable y. Arguing exactly as above, in order to type the embedded declaration, we will come tothe requirement that there be a S such that:S(� T!� list)S(E+y:�) � S(� T T!� list)S(� T!�list)S(E+y:�) � S(�!� list)The presence of � in a type assumption means that the closure here is vacuous, and the problemis equivalent to the unsolvable:S(� T!� list) � S(� T T!� list)S(� T!� list) � S(�!� list)As already noted, the source code for these and further examples is given in doc/examples, whilstdoc/compiler_examples notes some of the functions from the compiler code that receive more generaltypes under ML+ than ML.2 Theory of Polymorphic RecursionFor ML and ML+ we have the following:Theorem 1 (Existence of Principal Types and Environments) Where K is ML or ML+for any context E, and any expression (resp. declaration) t, if t is K-typable wrt E, then t has aK-principal type (resp. environment).Theorem 2 (ML+ generalises ML) If t is an ML-typable expression (resp. declaration), thent is ML+ typable, and the ML+-principal type (resp. environment) is more general than the ML-principal type (resp. environment)The ML case of Theorem 1 is proved in [Damas and Milner, 1982], by means of a recursive type-assignment function, W , essentially �rst de�ned in [Milner, 1978], which takes an environment andcode and returns either FAIL or the least environment revision required forML-typability, and thecorresponding ML-principal type or environment. The FAIL value implies ML-untypability underany revision of the environment.The ML+ case of of Theorem 1 is proved in [Mycroft, 1984], by means of an adaption of W toa (semi-) algorithm, in which the unknown polymorphic assumptions in recursive declarations areobtained by an iterative procedure which in the case of typable functions reaches a �xed-point, butwhich diverges on all untypable functions5.An alternative semi-algorithm for ML+ will be described below, based on the work of [Henglein,1988] and [Leiss, 1989], which invokes a procedure to solve a so-called semiuni�cation problem.Recall in the collect example above, the typing problem reduced to the existence of a substi-tution, S, solving instantiation claims of the form S�SE � S�. Such a problem is essentially asemiuni�cation problem, and the solution a semiuni�er. In this section we give a formal de�nitionof semiuni�caton and of a type assignment function for ML+.5Further conditions were proposed to avoid loopings, but these caused also some typable code to be rejected.

2 THEORY OF POLYMORPHIC RECURSION 102.1 The ideaAs the examples will perhaps have made clear, there will be essentially two phases in typecheckinga recursive declaration val rec f = (... f1 ... fn ...):Phase 1: the de�nition part, (... f1 ... fn ...) is typed e�ectively assuming the recursivelybound variable, f, has type 8�:� (this was also the �rst step in Mycroft's iterative procedure). Thusone ignores to begin with the fact that the polymorphic assumption for f has to be the closureof some type of the de�nition. In order to be able to attend to this in Phase 2, a record is madeof the instantiations of 8�:�, that are required to type the occurrences of f (this is not a part ofMycroft's procedure). After the de�ning term has been typed we have 3 outputs:L = 8�:� � �1, : : : , 8�:� � �n, a record of instantiation claims generated by typing the oc-currences f1, : : : , fn, of the recursively bound variable,S; a substitution, of monotypes for variables, by which it may benecessary to re�ne the free type variables in the environmentin order to type the de�nition, and� , the type of the de�nition (... f1 ... fn ...), under theassumption, f:8�:�.Phase 2: � and L contain all the information necessary to now determine the typability of therecursive declaration. Any typing of the de�ning term, given some polymorphic assumption, clearlymust be by means of some specialisation U of the �i. Furthermore, ML+ requires a specialisation,U , with a particular property: when the closure of the resulting type for the de�ning term (i.e.U�USE) is taken for the polymorphic assumption instead of 8�:�, the (specialised) instantiationclaims should be true. A substitution U is therefore required such that:U�USE � U�1, : : : , U�USE � U�nThis problem is essentially a semiuni�cation problem (see following section), and has a most generalsolution if it has any solution at all. Phase 2 thus consists of the conversion of the true setinstantiation claims, L, into the speci�cation of a further set of instantiation claims, and then�nding the most general solution for the unknown substitution, U . The �nal output of the typechecker on a recursive declaration, in terms of this U will be:L0 = U�USE � U�1, : : : , U�USE � U�n,US, the net environment-revising substitution, necessaryto type the declaration, andff 7! U�USEg, the environment generated by the declaration.There are certain important further details due to the embedding of declarations in let expressions,and the full speci�cation appears in section 2.3. The following section de�nes the key notion ofsemiuni�cation.

2 THEORY OF POLYMORPHIC RECURSION 112.2 Semiuni�cationDe�nition 2 (Matching) � vC � holds between two monomorphic types if there is some substi-tution T (called the matching substitution) which is an identity on the variables in C, taking � into�. C will be referred to as the context variables. Those free variables � of � , for which T� 6= �,will be called the pattern variables.De�nition 3 (Semiuni�cation Problem) is a multi-set of equalities, � = �, and inequalities,� vi �, where 1 � i � n, where � and � are monomorphic. A solution relative to a context setC is an n + 1 tuple (U; T1; : : : ; Tn) of substitutions, such that U specialises the equations to trueidentities, and each inequation � vi �, to a true match, U� vUC U�, Ti being the associatedmatching substitution. A solution (U; T1; : : : ; Tn) is said to be more general than (U 0; T 01; : : : ; T 0n),if U 0 is a specialisation of U .Where L is a sequence of vC match claims, we de�ne LC = f�E � � : � vC � 2 Lg, where Eis any environment the free type variables of whose type assumptions = FV (C). The reason thattyping with respect to polymorphic recursion can be reduced to semiuni�cation is:� vC � holds i� �E � � where E is any environment the free type variables of whosetype assumptions = FV (C).The tool used to �nd a solution to a semiuni�cation problem is a rewrite system [Henglein, 1988],[Leiss, 1989]6. In this system, equations and inequations are rewritten till either FAIL is generatedor no further rewrites are possible. Whenever no further rewrites are possible, a solving `semiuni�er'for the original system can be read o�.De�nition 4 (The rewrite system)U1. C;L^ (�1 � : : : � �m)�1 = (�1 � : : : � �n)�17! FAIL, if �1 6= �27! C;L^ �1 = �1 ^ : : :^ �n = �n, otherwiseU2. C;L^ ~�� = � 7! C;L^ � = ~��U3. C;L^ � = ~�� 7! FAIL if � 2 FV (~�)U4. C;L^ � = � 7! C;LU5. C;L^ � = � 7! C[�=�]; L[�=�]^ � = � , if � 62 FV (�), � 2 FV (L)S1. C;L^ (�1 � : : : � �m)�1 vi (�1 � : : : � �n)�27! FAIL, if �1 6= �27! C;L^ �1 vi �1 ^ : : :^ �n vi �n otherwiseS2, C;L^ � vi � 7! C;L^ � = � , if � 2 FV (C)S3. C;L^ � vj � ^ � vj � 7! C;L^ � = � ^ � vj �)S4. C;L^ ~�� vj �7! FAIL if (�j vij �j+1)1�j�k 2 L, where �1 = �, and �k 2 FV (~�)7! C[~� 0�=�]; L[~� 0�=�] ^ � = ~� 0� ^ ~� vj ~�0, where ~� 0 is copied from ~� ,replacing the free-variables ~� with fresh variables ~�0 otherwiseU1� 5 are the well-known algorithm for computing the most general uni�er of a set of equations,including an `occurs check'. S1� 4 concern the inequations, and the side condition in S4 will bereferred to as the `extended occurs check'. A system is said to be in solved form when no rewriteapplies to it.6We give a version of Henglein's rewrite procedure, though that due to Leiss is equivalent.

2 THEORY OF POLYMORPHIC RECURSION 12Lemma 1 (Henglein) . Let (C;L) be in solved form. De�ne U := f�=� : � = � 2 Lg and for1 � j � n, Tj := f�=� : � vj � 2 Lg. Then (U; T1; : : : ; Tn) is a most general solution of (C;L)Example Consider the system (fg; L1) below, consisting of the instantiation claims obtained inphase 1 of typing the collect-function of example 5. It can be rewritten to (fg; L10), which canthen be rewritten no further:(fg; L1) = fg, � T!� list v1 � T T!� list,� T!� list v2 �!� list7!S1 (fg; L2) = fg, � T v1 � T T;� list v1 � list,� T!� list v2 �!� list7!S1 (fg; L3) = fg, � v1 � T;� list v1 � list,� T!� list v2 �!� list7!S1 (fg; L4) = fg, � v1 � T;� v1 �,� T!� list v2 �!� list7!S1 (fg; L5) = fg, � v1 � T;� v1 �,� T v2 �� list v2 � list7!S1 (fg; L6) = fg, � v1 � T;� v1 �,� T v2 �,� v2 �7!S3 (fg; L7) = fg, � = � T ,� v1 �,� T v2 �,� v2 �7!U3 (fg; L8) = fg, � = � T ,� v1 � T ,� T v2 � T ,� v2 �7!S1 (fg; L9) = fg, � = � T ,� v1 � T ,� v2 �,� v2 �7!S3; U4 (fg; L10) = fg, � = � T ,� v1 � T ,� v2 �

2 THEORY OF POLYMORPHIC RECURSION 13From the equation in (fg; L10) we obtain the substitution U = [� T=�], and from the inequationswe obtain matching substitutions T1 = [� T=�], T2 = [�=�]. (U; T1; T2) is a most general solutionof (fg; L1) and (fg; L10).Example Recall example 5 was a variation on the collect example, in which the argument ofcollect had to have the same type as a wider-scoped �-bound variable. Phase 1 of typing thecollect declaration will give the system (f�g; L1), below. This is rewritten to FAIL.(f�g; L1) = f�g, � T!� list v1 � T T!� list,� T!� list v2 �!� list7!S1 (f�g; L2) = f�g, � T v1 � T T;� list v1 � list,� T!� list v2 �!� list7!S1 (f�g; L3) = f�g, � v1 � T;� list v1 � list,� T!� list v2 �!� list7!S2 (f�g; L3) = f�g, � = � T;� list v1 � list,� T!� list v2 �!� list7!U3 FAILLemma 2 (Henglein) If a problem (C;L) has a solution, then the rewrite system will terminatewhen applied to (C;L).Lemma 1 and 2 entail the following theorem:Theorem 3 (Henglein) If a problem has a solution, it has a most general solution.The ML case of the principal types theorem is a consequence of the existence of most generaluni�ers, and in a similar way, the principal types theorem forML+ is a consequence of the existenceof most general semiuni�ers. The algorithm for calculating semiuni�ers di�ers, however, from thatfor calculating uni�ers in the respect that when applied to an unsolvable problem, it may notterminate. This is a consequence of a result due to [Kfoury, Tiuryn, and Urcyczyn, 1989] thatsemiuni�cation is undecidable. This said, the proof of Kfoury et al generates in no very direct wayan input to the algorithm on which it will not terminate, and in fact no example has been foundon which the algorithm does not terminate. This was one reason for creating the implementation:to enable one to investigate whether or not realistic programming can lead to a typing problem onwhich the semiuni�cation algorithm will diverge.2.3 The type-checking algorithmA Damas-Milner style type-checking algorithm for ML consists of two mutually recursively de�nedfunctions, Wexp, an exp-ression type checker, and Wdec, a dec-laration type checker:Wexp(E, exp) = (S, �)Wdec(E, dec) = (S, x 7! �)

2 THEORY OF POLYMORPHIC RECURSION 14In addition to the output type � (or environment x 7! �), a substitution S is also produced,which de�nes a minimum re�nement of the enviroment which may be necessary to type the code.Concerning Wexp one can show:(a) If Wexp(E, e) = (S, �), then the following are equivalent for all (S 0; � 0)(i) ML proves S0Ej�e : � 0 for some re�nement S0(ii) (S0; � 0) = (TS; T�) for some substitution T .(b) if Wexp(E, e) = fail, then for no (S; �) does ML prove SEj�e : �(c) W terminates on every input.Hence, Wexp(E; e) fails or computes a most general type of e modulo E, and so does Wdec fordeclarations.In de�ning W+, we have to split E into a part � containing assumptions arising from a �{ (or fn)binding, and a part � for the remainder. As indicated in section 2.1, an additional output parameter,is required, consisting of semiuni�cation problem, L. This will recording the instantiations thathave been required for the type variables not occurring in �:W+exp(�, �, exp) = (L, S, �)W+dec(�, �, dec) = (L, S, x 7! �)W+ as de�ned below can be shown to have analogues of the above properties of W:(a) If W+exp(�;�; e) = (L; S; �), then LS� holds and the following are equivalent for all (S0; � 0):(i) ML+ proves S 0�; S 0�S0�j�e : � 0(ii) (S0; � 0) = (TS; T�), for some T , such that TLTS� holds(b) if Wexp(�;�, e) = fail, then for no (S; �) does ML prove S�; S�S�j�e : �(c) if for some (S; �) ML proves S�; S�S�j�e : � , then W+exp(�;�; e) terminates.A similar statement holds of W+dec.The algorithm W+is de�ned below, in which we use spec�(L) (`the free variables of specialisationsin L with respect to �'), where L is a true set of vFV (�) claims, to refer to the transitive closureof the set of free variables of � under the relation �R�, where �R� holds if if for some l v r of L,� is a pattern variable of l, and � 2 T�, where T is the associated match.� W+exp(�;�; x) = (L, ;, � [~�0=~�; ~�0=~�])where 8~�� = (�;�)(x) ,~� = FV (8~��)� FV (�),~�0 = new copies of ~�,~�0 = new copies of ~�,L = f� vi �0 : � 2 ~�, �0 2 ~�0 is the corresponding copy of �g, i isan integer indexing no other inequations� W+exp(�;�, e1 e2) = (S3S2L1 + S3L2, S3S2S1, S3(�))if (L1,S1,�) = W+exp(�;�,e1)(L2,S2,� 0) = W+exp(S1�; S1�,e2)S3 = mgu(S2�; � 0!�) (� fresh)

2 THEORY OF POLYMORPHIC RECURSION 15� W+exp(�;�, fn x => e) = (L1; S1; S1�!�)if (L1; S1; �) = W+exp(�+ fx 7! �g, �, e), where � is fresh� W+exp(�, �, let dec in e end) = (S2L1 + L2,S2S1,�)if (L1, S1, fx 7! �g) = W+dec(�, �, dec)(L2,S2,�) = W+exp((S1�; S1� + fx 7! �g), e)� W+dec(�, �, val x = e) = (L1, S, fx 7! 8~�� g)if (L1, S, �) = W+exp(�, �, e)~� = FV (�)� FV (S�)� specS�(L)� W+dec(�, �, val rec f = e) = (S3S2L1, R, f f 7! 8~�S3� g)if (L1, S1, �) = W+exp(�, � + ff 7! �g, e)S2 = mgu(�; �)S3 = mgsu(FV (S2S1�); (S2L1))R = S3S2S1~� = FV (S3�)� FV (R�)� specR�(S3S2L1)� W+dec (�;�,datatype ~�tn = c1 | : : : cm | cm+1 of �m+1 | : : : cm+n of �m+n) = ([]; ;; E2)where ftn 7! �g is �rst extended to E1 by fci 7! 8~�:~��g, for 1 � i � m,and then E1 is extended to E2 by fci 7! 8~�:�i[�=tn]!~��g, for m+ 1 � i �m+ n� W+dec and W+exp return fail if in any of the above cases the called functions return failThe important points to note are:1. The standard algorithm W can be obtained if all variables in the environment are treated as� (i.e. �-bound) variables.2. The base case contrast with W is that type variables not occurring in the � part of theenvironment are copied in typing an atomic piece of syntax, the copying being re
ected inan output semiuni�cation problem. Note the issue `copy or not copy' arises not just forrecursively bound variables.3. With the exception of the case for recursive declarations, the output semiuni�cation problemfor complex code is accumulated in the obvious way from the semiuni�cation problems forthe component parts.4. Besides the base case, the other main di�erence toW is in the case of recursive declarations,where there is a call tomgsu { a most general semiuni�er function { on a semiuni�cation prob-lem de�ned by typing the de�nition. The output semiuni�cation problem for the declarationhas had the mgsu applied to it.5. In both non-recursive and recursive declarations the criterion controlling generalisation oftype variables involves both the environment and semiuni�cation problem.The following examples illustrate points 2 and 5.Example: incomplete with copying only of `rec-bound'

2 THEORY OF POLYMORPHIC RECURSION 16In the base case a particular `copying' criterion is used to determine which type variables shouldbe copied { namely those not occurring in the � part of the environment. The simple examples ofsection 1.2 may have suggested an alternative copying criterion { namely copy those occurring in anassumption concerning a recursively bound term-variable. However, the recursively bound variablemay occur in the de�nition part of di�erent let-declared variable. Clearly the further occurrences ofthis let-declared variable should count somehow as contributing further instantiation constraintson the polymorphic assumption for the recursively bound variable. Consider for example, thefollowing notational variant of our earlier example 1.val rec f = fn x => let val g = f in (g 1; g ``a''; x)With just the copying of `rec-bound' variables, the declaration would get rejected. Calling W+on this in an empty context, will lead to a call on the embedded let expression, in a contextfx :
; f : �g. We show below how this calculation unfolds:W+(fx :
; f : �g, f) = (� v �1, ;, �1)W+(fx :
; f : �g, val g = f) = (� v �1, ;, g : �1) W+(fx :
; f : �;g : �1g, g1) = ([];fint!�2=�1g; �2)W+(fx :
; f : �;g : int!�2g, g ``a'') = failW+(fx :
; f : �;g : �1g, g 1; g``a''; x) = failW+(fx :
; f : �g, let val g = f in : : :) = failFirst the declaration part of the let is typed, val g = f, which in turn requires the typing ofthe de�ning expression, f. This occurrence of the recursively bound variable is typed as �1 inthe top-left call in the above, associated with the inequality � v �1. From this type for thede�ning expression, a type for the declaration val g = f is obtained by quantifying the ~� whichare FV (�1) � FV (x :
) � specf :�(� v �1). In this case this rules out the quanti�cation of �1.Then the in part of the let is typed, in a context with the assumption g:�1. Then if we hadcopying only for `rec-bound' variables, the occurrences of g must be typed without copying. Thenafter g 1 is typed, g ``a'' would be typed in context with the assumption g:int!�2, and thiswould lead to fail.With the copying criterion actually used by W+, the example is typable. However, it would alsobe possible to derive this example by changing the quanti�cation criterion, and persisting withcopying only of `rec-bound' variables. The usual criterion for quantifying a type-variable in MLis that the type-variables not occur in the environment, and if we had this criterion, then g wouldbe declared as having type 8�1:�1, and the above example could be typed. The following exampleshows, however, that this quanti�cation criterion is too generous.Example: quantifying variables not in environment is unsoundWith a less strict quanti�cation criterion, the following would be typed as ff 7! int � int!intg,when it is in fact ML+-untypable.val rec f = fn x => let val g = f in (g 1; x = (1,2); 1)As before calling W+ on this will lead to a call on the embedded let, in a context fx :
; f : �g.The computation on the declaration part then is { assuming a quanti�cation criterion that checkssimply for the presence of a free variable in the environment:W+(fx :
; f : �g, f) = (� v �1, ;, �1)W+(fx :
; f : �g, val g = f) = (� v �1, ;, g : 8�1:�1)

3 PROTOTYPE OF A POLYREC CHECKER IN SMLOFNJ 17In the enviroment associated to the declaration, g is typed as 8�1:�1. The calculation on the inpart of the let is then:W+(fx :
; f : �; g : 8�1:�1g, g 1) = ([]; ;; �2)W+(fx :
; f : �; g : 8�1:�1g, x = (1,2)) = ([], int � int=
,bool)W+(fx : int � int; f : �; g : 8�1:�1g, 1) = ([]; ;; int)W+(fx :
; f : �; g : 8�1:�1g, (g 1; x = (1,2); 1)) = ([]; int � int=
; int)Thus for the let expression we have:W+(fx :
; f : �g, let : : :) = ([� v �1; int � int=
; int)and in typing the recursive function, we will calculatemgsu([� v �1][int � int!int=�])= mgsu([int � int!int v �1])= int � int!int=�1and thereby, the recursive function will be declared with type int� int!int. With the more restric-tive quanti�cation criterion given in the de�nition of W+, we will have a di�erent semiuni�cationproblem, namelymgsu([� v �1; �1 v int!�2][int � int!int=�])= mgsu([int � int!int v �1; �1 v int!�2])= fail3 Prototype of a polyrec checker in SMLofNJIn the previous section we have formulated the typechecker of ML+ as a close variant of thetypechecker forML as it appears in [Damas and Milner, 1982]. In the polyrec_sml implementation,for practical reasons, we remain as close as possible to the typechecker part of the SMLofNJcompiler. Now, as we come to describe the implementation in more detail, some di�erences betweentheory and practice in the SMLofNJ typechecker have to be pointed out.First, recall that the Damas-Milner algorithm uses an extension of the environment to record theinterim type-assumptions made concerning the bound variables of a term, and then uses this� to type occurrences of the bound variable (base case), and� to control generalisation of type variables (declaration cases).The typechecker in the SMLofNJ compiler does not not use an environment to make interimtype-assumptions concerning bound variables, and accomplishes the above central tasks di�erently:� types are injected into the code to type the occurrences of bound variables (see 3.1)� quanti�cation of type variables is achieved by depth controlled generalisation (see 3.1)

3 PROTOTYPE OF A POLYREC CHECKER IN SMLOFNJ 18Second, instead of storing substitutions to be applied later, the substitution is immediately cashedout. These di�erences between theory and practice are inherited by our implementation of ML+typechecking. In the following section we de�ne what might be called a prototype version of ourimplementation, closing principally these gaps between theory and practice. The hope is thatthereby the outline will be clear.The third di�erence between the theory described above and the implementation, is that the im-plementation concerns a larger language (including records, user-de�ned variables, reference valuesetc.) and deals with a particular representation of that larger language. Documentation of theimplementation proper begins in section 4.3.1 The representation of terms and types in SMLofNJInstead of using an environment to give types to occurrence of bound variables, in SMLofNJ, theoccurrences of the variables bear tags which are pointers to a type. That is to say, the tags havetype ty ref, where ty is the datatype for types. One of the values in this type is UNDEFty, andinitially the tags are references to this value. The tagging proceeds roughly as follows:fn x => (... x ...); fn xm => (... xm ...) :a �-abstracted variable, and the oc-currences in its scope, receive the samem, a fresh reference to UNDEFtyval rec x = (... x ...); val rec xm = (... xm ...) :a recursively declared variable, andthe occurrences in its de�nition, re-ceive the same m, a fresh reference toUNDEFtyval x = (...); val xm = (...) : a non-recursively declared variable re-ceives m, a fresh reference to UNDEFtylet dec[x] in (... x ...); let dec[xm] in (... xm ...) : the occurrences of a let bound variablereceive the same tag as the variablereceives in the declaration part.Type checking proper ensues as a process of revising the tagged code, so that the type referencesare updated to references to appropriate types.Types are values in the datatype ty. We give an extract of this below, followed by some remarksconcerning this representation of the types.ty= VARty of tvinfo ref| CONty of tycon * ty list| IBOUND of int| WILDCARDty| POLYty of {sign: {weakness:int, eq:bool} list, tyfun: tyfun, abs: int}| UNDEFtytvinfo= INSTANTIATED of ty| OPEN of {depth, weakness, eq, kind: tvkind}

3 PROTOTYPE OF A POLYREC CHECKER IN SMLOFNJ 19tvkind = META | ...tyfun= TYFUN of {arity : int, body : ty}References in open type variablesOpen type-variables are represented by values which have as an essential part a reference value,that is, an address in memory. Thus variables are indexed not by integers but by memory locations.Consider the evaluation of the following code:val v = VARty(ref(OPEN{depth = d, kind = k, eq= e, weakness = w}))val v' = VARty(ref(OPEN{depth = d, kind = k, eq= e, weakness = w})).The value of v, is the encoding of an open type-variable. The value has as a subpart a reference,m,to a value OPEN {depth = d, kind = k, eq= e, weakness = w }, which records various kindsof information about the variable, the most important kind being that it is an open variable. Thevalue of v' is the encoding of a distinct { though similar { open variable. The value will containanother reference m0, distinct from m. The contents of the two references, however, are identical.The instantiation of type-variables is carried out by updating the contents of the reference part.For example, to instantiate v to say int, one could evaluates:let val VARty(m1) = v in (m1 := INSTANTIATE(int)) endThe contents of the reference part of v are thereby changed to INSTANTIATE(int). This will causethe appropriate e�ect also when v is embedded, as in v --> v', where --> denotes the arrow typeconstructor. Thus no substitution operation has to be written, which is the great advantage ofthis representation of type-variables. The cost is that the result of `instantiating' the variable vto int is not simply int but VARty(ref(INSTANTIATE(int))). In fact there are in�nitely manyvalues in the ty datatype which e�ectively represent int, of the form VARty(ref(INSTANTIATE(...(VARty(ref(INSTANTIATE(int))))))), and certain parts of the implementation have to take careof these equivalences.Quanti�ed types: the representation maintains a distinction between bound and free type vari-ables. IBOUND(n), for integer n, represents the various bound variables, and these are intendedto occur in the scope of the POLYty operator. Contrary to the usual de�niton of ML types, thisrepresentation of types does allow types with embedded quanti�ed types. These, however, neverarise in the course of typechecking.The weakness and eq �elds that appear in open variables do not appear in the occurrences ofbound variables, but this information is still associated with the variables by the sign �eld of aquanti�ed type.Depths and depth-controlled generalisationBecause the compiler does have an environment for interim type assumptions, the quanti�cationof type-variables cannot be controlled in the way suggested directly by the theory. Instead depth-controlled generalisation is used.� A type variable has depth d if the widest scoped abstraction with which it is associated isembedded at a depth d� 1 under further abstractions. For example, if fn xm => xm is welltyped then,

3 PROTOTYPE OF A POLYREC CHECKER IN SMLOFNJ 20!m = VARty(ref(OPEN{depth = 1,eq=false,weakness=infinity,kind=META }))� Depths are adjusted in uni�cation: when a variable of depth d is equated with a type whichfeatures variables of depths d1; :::dn, each of the di is adjusted to minimum(d; di).� The typecheck functions have (essentially) a depth argument, which records the number offn x => and val rec bindings that have been descended through.� In generalisation: type variables with depth attribute > `current' depth may be generalised.3.2 The prototype checkerThe parsing stage gives values of type Ast.dec - for the purposes of this outline, this we can equatewith the ML declarations de�ned earlier. Note the checker always starts on a declaration. Theseare then `tagged' in the way described above. The tagging of the trees (of type Ast.dec) takesthem into the datatype of Absyn.dec trees.The main auxiliary functions/values used by the prototype typechecker are described below. Thosemarked + are additions to what it required for ML:instantiate :ty -> tytakes a quanti�ed type and replaces the bound variables with depthin�nity open variables.+ rulebound :ty list refreference to the list of open type variables occurring in currently inscope �-bound variables+ copy :ty list ref -> ty -> tyvariables not on the rule-bound list get copied (with depth preser-vation), and semiprob is updated. Depth in�nity variables resultingfrom the initial instantiations of a bound variable are not copiedunifyTy :ty * ty -> unitThis is a side-e�ecting operation which basically makes its argumentsequal. There is a further important aspect concerning depths: whena variable of depth d is equated with a type which features variablesof depths d1; :::dn, each of the di is adjusted to minimum(d; di).+ Semiunify.ineq : ineqThe datatype of integer indexed inequations+ Semiunify.process :ineq list -> ineq listThis basically applies the earlier de�ned rewrites S1-S4, taking rule-bound as the context set. However, when S1-S4 specify that anidentity, � = � , be added to the list, here � is simply instantiated to� .generalize :ty ref -> unittakes a depth d, and a type reference, and updates the reference toa type in which open type variables of depth > d are quanti�ed.Below we give a prototype of the polyrec checker. With certain obvious deletions, that the comments

3 PROTOTYPE OF A POLYREC CHECKER IN SMLOFNJ 21below should make clear, this can also be read as a summary version of the existing SMLofNJ type-checker.expType(d,x^m) =let val ty1 = instantiate(!m)val ty = copy(rulebound, ty1) (* not in original *)in (x^m,ty) (* output is ty1 in original *)endexpType(d,e1 e2) =let (e1',fty) = exptype(d,e1)(e_2',aty) = exptype(d,e2)resty = VARty(ref(OPEN{depth = infinity,...}))in (unify(aty -> resty,fty);(e1'e2',resty))endexpType(d,fn x^m => e) =m := VARty(ref(OPEN{depth = d+1,...}));let val currentbound = (!rulebound) (* not in original *)val _ = rulebound := (!m) :: (!rulebound) (* not in original *)val (e',ety) = expType(d+1, e)in (rulebound := currentbound; (* not in original *)fn x^m => e', !m -> ety)endexpType(d, let dec in e) =let dec' = decType(d, dec)(e',ety) = expType(d, e)in (let dec' in e', ety)endanddecType(d, val x^m = e) =let val _ = m := VARty(ref(OPEN{depth = infinity,...};val (e',ety) = expType(d, e)val _ = unifyTy(!m,ety)val _ = generalize(d, m)in (val x^m = e)enddecType(d, val rec x^m = e) =let val _ m := VARty(ref(OPEN{depth = d+1,...}))val (e,ety) = expType(d+1, e)val _ = unifyTy(!m,ety)val _ = semiprob := Semiunify.process(!semiprob) (* not in original *)val _ = generalize(d,m)in (val rec x^m = e)end

4 THE POLYREC CHECKER 22Salient di�erences to the typecheck function W+ de�ned earlier:� For none of the typecheck functions is there an input environment, nor an output substitution.Instead there are side-e�ects to type references embedded in the code.� There is side-e�ectable reference to a list of types, rulebound which contains the free variablesof currently in scope �-variables.� Copying of type variables is controlled by the contents of the rulebound list� None of the typecheck functions output a semiuni�cation problem. There is instead a side-e�ectable reference to a global semiuni�cation problem.� Generalisation of types is depth-controlled, as it is in SMLofNJ, but not as in W+The following section gives detailed documentation of the polyrec_sml implementation.4 The polyrec checker4.1 Summary of di�erencesThe main changes are the addition of the code de�ning a structure Semiunify, and the modi�cationof the code de�ning the structure Typecheck. Also:1. polyrec_prev.sml di�ers from perv.sml bySystem.Print:< val printaftergen = ref falseSystem.Control.CG:< val oldchecker = ref falseSystem.Control.CG:< val viewsemi = ref falseSystem.Control:< val primaryPrompt = ref "+ "---> val primaryPrompt = ref "- "System.Control:< val usemono = fn () => (InLine.:=(CG.oldchecker,true);< InLine.:=(primaryPrompt,"- "))< val usepoly = fn () => (InLine.:=(CG.oldchecker,false);< InLine.:=(primaryPrompt,"+ "))2. corresponding di�erences between polyrec/polyrec system.sig and boot/system.sigsignature CGCONTROL< val oldchecker: bool ref< val viewsemi: bool refsignature PRINTCONTROL< val printaftergen : bool refsignature CONTROL< val usemono : unit -> unit< val usepoly : unit -> unit

4 THE POLYREC CHECKER 233. polyrec/polyrec_batch.sml: the flags list in Batch functor has extra member("oldchecker",oldchecker), so that batch compilation can proceed both with and withoutpolymorphic recursion4. polyrec/polyrec_pptypelist.sml: de�nes an additional pretty printer structure PPTypelist,containing ppineqlist and pptypelist for pretty printing a semiuni�cation problems anda list of types. polyrec/pptype.sml is exactly the same as the standard print/pptype.smlcode, except the signature includes the function ppType1.4.2 DocumentationThe �rst entry indicates whether this code is additional (+), or a modi�cation (�). Documentationis also included of some the unaltered code. We use the same conventions as the pretty-printingfunctions for variables - 'A,'B,'C etc for unbound, 'a,'b,'c for bound.1. � Typecheck : the Typecheck structureOriginal structure contained a de�nition of the form:dectype(env,dec,toplev,err,loc) =letfun generalizeTy ...fun generalizePat ...fun applyType ...fun patType ...fun expType(....) and ... and decType0(...)val _ = resetOverloaded()val dec' = decType0(dec,...)val _ = resolveOverloadedin dec'endThe new version of Typecheck contains a de�nition of the form:dectype(dec,....) =if System.Control.CG.oldchecker = true then(letfun generalizeTyfun generalizePatfun applyTypefun patTypefun expType(....) and ... and decType0(...)val _ = resetOverloaded()val dec' = decType0(dec,...)val _ = resolveOverloadedin dec'end) - all as beforeelse(let

4 THE POLYREC CHECKER 24fun generalizeTyfun generalizePatfun applyTypefun patTypefun expType(....) and ... and decType0(...) - modfied a bitval _ = resetOverloaded()val dec' = decType0(dec,...)val _ = resolveOverloadedin dec'end)The `newchecker' branch has additional values and modi�cations of previous values2. + typprint : ty -> unitPrints a type. See [22].3. + nameprint : symbol -> unitPrints a variable name. See [22].4. + inpr : Semiunify.ineq list -> unitPrints a semiuni�cation problem. See [7].5. + lpr : ty list -> unitPrints a list of types. See [7]6. + rvbpr : Absyn.rvb -> unitPrints a recursive value binding. See [8]7. + checkpr : Semiunify.ineq list -> string -> Semiunify.ineqlistSee Semiunify.process[45], Semiunify.show [42]. After a semiuni�cation rewrite step, iscalled on the resulting semiuni�cation problem, and a string giving the name of the rewrite.Always returns the semiuni�cation problem, after possibly printing some output. Used toallow { according to the value ofSystem.Control.CG.viewsemi { optional feedback after a semiuni�cation rewrite step. IfSystem.Control.CG.viewsemi is true, user is prompted with print ?, and if the answeris y, the name of the rewrite rule is printed, the rulebound variables, and the resultingsemiuni�cation problem. Otherwise the semiuni�cation problem is returned.8. + checkrvbpr : Absyn.rvb -> unitAccording to the value of System.Control.CG.viewsemi, gives the user the option to see therecursive value binding about to be typechecked. See [6]9. + rulebound : ty list refSee copyTy [18], copy [19], Semiunify.Process [45], ruleType [30], rbupdate [17]. This isa reference to the list of types of currently in scope rule-bound variables. Used to controlcopying of variables and the rewriting of the semiprob semiuni�cation problemThe reference is actually created in the structure Semiunify, as the value of the variableSemiunify.nonpat. Within the Typecheck structure, the value of the variable is de�ned tobe that of Semiunify.nonpat

4 THE POLYREC CHECKER 2510. + topprob : boolrefSee VALRECdec case of decType0 [32]. This is a reference to a boolean used to record whethera whether a top-level recursive declaration is being checked or an embedded11. + semiprob : ineq list refReference to a semiuni�cation problem, which a list of terms ineq(int,ty,ty). See copy[19], VALRECdec case of decType0 [32]12. + eqcounter : int refSee copy [19]. This is a reference to an integer, which is the inequality counter, used to makesure that when an inequality is added to the semiprob list, it receives a new indexing integer13. + member : 'a -> 'a list -> boolMembership function on any list. De�ned in structure Semiunify.14. + there : ty -> ty list -> boolMembership function on lists of types, treating prune-equal types as equal. See prune [20]15. + readrulebound : ty list ref -> unitA variable in Typecheck structure which is identi�ed with a function of the same name de�nedin Semiunify. See copy [19], Semiunify.reduce1a [47].Takes a reference to a list of types, and updates the reference to the duplicate free list of thefree variables. For example if rulebound refers to ['A -> 'B,'B -> 'C], after the call ofreadrulebound, this will have been compressed to ['A,'B,'C]16. FLEX of label * ty list : possible value of kindOne of the possible values of the kind �eld in open variables is FLEX of label * ty list.This arises in typing an underspeci�ed record. Consider an underspeci�ed record with twospeci�ed �elds, {l1 = v1, l2 = v2, ... }, where the values v1 and v2 have types ty1and ty2. This receives a type of the form:VARty(ref(OPEN {depth=d, eq=q, weakness=w, kind = FLEX([(l1,ty1),(l2,ty2)])}))Note this representation of the type of an underspeci�ed record is not isomorphic to therepresentation used for a fully speci�ed record, such as {l1 = v1, l2 = v2 }, which isCONty(RECORDtyc([l1,l2]),[ty1,ty2])See rbupdate [17], copyTy [18]17. + rbupdate : ty -> unitSee ruletype [30]Takes the initially assigned type of the argument of a function, prunes it { see [20] { andupdates rulebound with the free variables that occur in that type. In more detail:(a) in case the type is CONtty(f,args), rbupdate is iterated over args(b) in case the type is a
exible record type: VARty(ref(OPEN {kind = FLEX([(l1,t1)... (ln,tn)]),... })), rbupdate is iterated over the list [t1,...,tn]

4 THE POLYREC CHECKER 26(c) in case the type is on open variable, it is added to rulebound list.18. + copyTy : ty -> ty * (ty * ty) listsee copy [19].Takes a type and returns a certain copy of that type, together with ty * ty list whichrecords which variables were copied to what types. This list is later used by copy to updatethe semiprob.The basic idea is that variables not on the rulebound list get copied, all occurrences of aparticular variable getting the same copy. In addition(a) user-bound variables not copied.(b) a
exible record is VARty(m1), where m1 is ref(OPEN {kind=FLEX(fields),... }).This variable is not copied, but the contents of m1 are updated by recursively applyingcopying to the unknowns in fields. Thus supposing an empty rulebound list, the
exible record {1:'A,2:'B,'...Z } will be copied to {1:'C,2:'D,'...Z }.(c) depth in�nity variables are the initial instantiations -see [25] { of a bound variable, andare not copied(d) zero-depth variables arise from over-loaded symbols, and are not copied, for which acopying would block resolution.19. + copy : ty -> tytakes a type, uses copyTy to copy it, and with resulting record of the copying that was done,updates semiprob with appropriate inequations. The inequation counter eqcounter is �rstincremented to ensure the new inequations have a new index.20. prune : ty -> tyDe�ned in util/Typesutil.sml by:fun prune(VARty(tv as ref(INSTANTIATED ty))) : ty =let val pruned = prune tyin tv := INSTANTIATED pruned; prunedend| prune ty = tyThis returns exactly ty when either ty is not a variable type, or if ty is an open variable type,i.e. VARty(ref(OPEN {... })). In case ty is one the above cases, ty0, embedded underseveral layers of VARty(ref(INSTANTIATED ...)), the result is to return ty0, and with theside e�ect that ty then has the form VARty(ref(INSTANTIATE ty'))21. unifyTy(type1,type2) : ty * ty -> unitDe�ned in src/basics/unify.sml. unifyTymakes a case distinction on headReduceType(prunetype1) and headReduceType(prune type1). headReduceType is de�ned in src/basics/typesutil.sml,and is redundant unless type abbreviations are involved, in which case these are cashed out.For prune see [20]. unifyTy then distinguishes six cases(a) WILDCARDty,_ - no side e�ect(b) WILDCARDty,_ - no side e�ect

4 THE POLYREC CHECKER 27(c) (VARty var1,VARty var2), where var1 = ref(OPEN {d1,e1,w1,k1 }) and m2 = ref(OPEN{d2,e2,w2,k2 }).if m1 = m2 then () else (roughly)m1 := INSTANTIATED VARty(m2)m2 := OPEN{depth = min(d1,d2),eq = e1 orelse e2,weakness = min(w1,w2),kind = unify_tvinfos(k1,k2)}So m2 is updated to to refer to variable information whose depth is the minimum of thedepths of the two contributing variables, and m1 is basically instantiated to m2. If bothVARty(m2) and VARty(m1) are distinct user-bound variables a Unify ``bound typevar'' exception is raised (by unify_tvinfos). Because userbound variables cannotbe instantiated, if m1 is user-bound then instead m2 is basically instantiated to theadjusted version of m1 (there are further conditions concerning the weakness and equalityattributes of user-bound variables and their instantiations)When either of k1 or k2 is META, the result of unify_tvinfos is the other one, and ifboth are FLEX fields then the the �elds are merged and the types of shared �elds areuni�ed.(d) (VARty var1, type2) case. var1 is m1 = ref(OPEN {kind=META,depth=d,... }).Basically the result ism1 := INSTANTIATED type1However �rst adjust_type m1 type2 is evaluated. This carries out an occurs checkfor occurrences of var 1 in type2 (and which may raise Unify ``circularity'' andadjusts variables in type2 with depth d' to have depth min(d,d').There is also a further case when VARty var1 is a
exible record type, and type2 is arecord type.(e) (type1, VARty var2) = unifyTy(VARty var 2,type1)(f) (tycon1 args1, tycon2 args2) case. The equality of tycon1 and tycon2 are checked(which may raise Unify ``tycon mismatch'') then the arguments are pairwise uni�ed.22. generalizeTy : var * tyvar list * occ * (linenum * linenum) -> unitThis is the function used to generalize the type inferred for a variable bound in a recursivedeclaration { see decType0 [32]. It also adapted in generalizePat { see [23] { to generalizethe type inferred for a pattern in a non-recursive declaration { see decType0 [31]The function is of the form:fun generalizeTy(VALvar{typ,...}, userbound: tyvar list, occ:occ, loc) : unit =let ...fun gen(ty) = ...val ty = gen(!typ)in (typ := POLYty{sign = ..., abs = ...,tyfun = TYFUN{arity= ...,body=ty}};if !System.Print.printaftergen (* this print clause added *)then typprint (!typ)else ())end

4 THE POLYREC CHECKER 28Basically the type reference typ is updated to the generalized version of the previous reference.This is accomplished principally by the function gen, which replaces particular free variablesof !typ with bound variables, IBOUND(n). The weakness and eq attributes of the variablesgeneralized appear in the sign �eld of the resulting type.The �nal clause is an addition which simply prints the type obtained after a step of general-ization, making the types assigned in embedded declarations visible.What determines whether a variable may be generalized is the relationship between its at-tributes and the occ value that is the third argument of generalizeTy, as de�ned by gen(ty).The base case of gen(ty) is when ty is a variable. Otherwise gen(CONty(tycon args)) =CONty(tycon,map gen args). When ty is a variable VARty(ref(OPEN {depth,weakness,eq,kind})), gen(ty) makes a three way distinction according to the kind of the variable. The caseskind = META, kind = FLEX _ are documented below.(a) kind = METAIf the variable's depth is greater than lamdepth occ (and weakness > generalize_pointocc) then the variable is replaced by a bound variable. The sign �eld of the eventualquanti�ed type will record the weakness and eq attributes the generalized variable.(b) kind = FLEX _The SMLofNJ checker has the property that a
exible record type cannot be generalised- an error message is generated, and a wildcard is given as the answer.23. generalizePat : pat * tyvar list * occ -> unitCalled by decType0 VALdec case [31], to generalize particular free variables in the type of apattern.24. applyType : ty * ty -> tyBasically applyType(ty1,ty2) uni�es the argument part of ty1 with ty2, and de�nes theanswer as the value part of ty2. See expType APPexp case [29]fun applyType(ratorTy,randTy) =let val resultType = VARty(ref(OPEN { depth = infinity,weakness = infinity,equality = false,kind = META }))in (unifyTy(ratorTy, (randTy --> resultType));resultType)end25. instantiateType(ty,occ) : ty * occ -> tyDe�ned in basics/typesutil.sml. Called in expType, VARexp case [27]Roughly, instantiateType is an identity on monotypes, and in the case of polytypes, replacesthe bound type-variables with `open' type variables of depth in�nity. This in�nite depth allowsthe possibility that the instantiation may be reversed in a generalisation, when the occurrenceof the polytyped variable does not constrain the relevant argument place.Over and above this, though, instantiateType also computes new weakness for the argumentslots of the body of the polytype. So instantiateType returns a modi�ed version of the bodyof a polytype, replacing the IBOUND n's in the body with `open' variable types of in�nite

4 THE POLYREC CHECKER 29depth, and appropriate weakness as determined by calc_weakness(abs,occ,w) where wis the appropriate weakness entry in sign, whilst any `open' variable types in the body areleft unchanged, up to change of weakness, again calculated by calc_weakness(abs,occ,w)where this time w is the weakness of the given open variable type.instantiateType(ty,occ) is de�ned as follows:(a) case ty is not a polytype => ty(b) case ty = POLYtyfsign,body,absg => subst body.subst body = case body ofi. VARty(ref(INSTANTIATED(ty))) => subst tyii. CONty(tyc,args) => CONty(tyc,subst args)iii. VARty(r as ref(OPENfweakness = w,...g)) => VARty(r'), where r' has adjustedweakenssiv. IBOUND n => VARty(ref(OPENfkind = META,depth = infinity, weakness = w,...g)),where w is an adjusted weaknesscalc_weakness is de�ned basics/typesutil.sml.26. mkRefMETAty : int -> tyde�ned in basics/typesutil.sml.mkRefMETAty(d) =VARty(ref(OPEN{depth = d,weakness=infinity,eq=false,kind=META }))27. � expType(exp,occ,loc) : case exp of VARexp(r as ref(VALvar {typ,access,name}),) =>let val ty1 = instantiateType(!typ,occ)val ty = (readrulebound rulebound; copy ty1)in if Prim.special access (* =, <>, :=, update special cases *)then (r := VALvar{typ= ref ty,access=access,name=name};(VARexp(r,NONE),ty))else (case (!typ)of POLYty _ => (VARexp(r,SOME ty),ty)| _ => (VARexp(r,NONE),ty))endEssentially VALvar {typ, access, name }, where typ has type ty ref, is a bound occur-rence of a variable. The representation, however, embeds such a variable, v, further, asVARexp(ref(v),tyop), where tyop may either be NONE or SOME ty. The main point is thatthe output type ty is derived from the contents of the type reference, typ, by �rst instan-tiating [25] and then copying [18]. copy will basically copy the type variables not on therulebound list. readrulebound rulebound is a compression operation on the ruleboundlist { see [9].Note that in most cases this call to expType is without side-e�ects. However, in the case ofthe `special access' variable, the type obtained by instantiation and copying is used to updatethe reference r in VARexp(r,) to VALvar {typ = ref ty,...}.The tyop argument in the output is used to record whether or not the type of the variablewas polymorphic before the type-checking.

4 THE POLYREC CHECKER 3028. occ : occAn abstype de�ned and documented in src/basics/typesutil.sml. A value of type occ willconsist of the constructor OCC applied to a record with various �elds, one of which is lamd= lambda depth. Amongst the functions de�ned in the abstype are Abstr, which (amongstother things), increments lamd by one, and lamdepth, which returns the lamd value.29. expType(exp,occ,loc) : case exp of APPexp(rator, rand) =>let val (rator',ratorTy) = expType(rator,Rator occ,loc)val (rand',randTy) = expType(rand,Rand occ,loc)val exp' = APPexp(rator',rand')in (exp',applyType(ratorTy,randTy)) handle Unify(mode) => let in (exp,WILDCARDty)endendThis is unchanged from the SMLofNJ compiler. Basically the operator and operand aretyped at occ levels Rator occ and Rand occ, where Rator and Rand are operations de�nedin the abstype for occ { see [28] . Note these adjust weakness relevant aspects of occ. Thelamdepth attribute is not altered, i.e. lamdepth(occ)= lamdepth (Rator occ)= lamdepth(Rand occ). The exceptions generated by the uni�cation code are of the form Unify(mode),where mode is a string { see [21] { and the exception handling involves printing various errormessages and then de�ning the answer as (exp, WILDCARDty). De�ning WILDCARDty asthe answer allows typechecking to continue after some error has been discovered, allowingpotentially further errors to be detected.30. � ruleType(RULE(pat,exp),occ,loc)= :let val occ = Abstr occval currentbound = (!rulebound) (* added *)val (pat',pty) = patType(pat,lamdepth occ,loc)val _ = rbupdate pty (* added *)val (exp',ety) = expType(exp,occ,loc)in (rulebound := currentbound; (* added *)(RULE(pat',exp'),pty,pty --> ety))endThis is the base case for function expressions. In general a function consists of a list of rulesof the form RULE(pat,exp). Each is typed in turn by ruleType, and the results uni�ed togive the type of the function.In a call of ruleType, the current value of rulebound is recorded as currentbound. Thepattern part of the rule is typed at a depth lamdepth (Abstr(occ)) = 1 + lamdepth(occ),to give pty. rbupdate then adds the free variables of the pattern type to rulebound - see[17]. The expression part of the rule is then typed at Abstr(occ), to give ety. The answer isthen pty --> ety, and rulebound is reset to currentbound. Although, rulebound is resetto currentbound, rulebound can be side-e�ected by a call of ruleType { because some ofthe variables in currentbound may be side-e�ected.31. decType0(decl,occ,loc) : case decl of VALdec vbs =>let fun vbType(vb as VB{pat, exp, tyvars=(tv as (ref tyvars))}) =

4 THE POLYREC CHECKER 31let val (pat',pty) = patType(pat,infinity,loc)and (exp',ety) = expType(exp,occ,loc)in (unifyTy(pty,ety)handle Unify(mode) => ...);generalizePat(pat,tyvars,occ,loc);VB{pat=pat',exp=exp',tyvars=tv}endin VALdec(map vbType vbs)endA non-recursive value declaration takes the form VALdec vbs, where vbs is a list of valuebindings, each of the form VB {pat,exp,tyvars }. The vbType function de�nes the typing ofan individual value binding, and the result for whole is obtained by mapping this function overthe individual bindings. Note the result of typechecking a declaration is simply a re�nementof the declaration.Basically the pattern typing code assigns fresh type variables to the variable being declared,this is uni�ed with the type of the de�nition, and the side-e�ected pattern type is thengeneralised. Note all calls share the same occ value with the outermost call.The fresh type variables assigned to the pattern have depth in�nity. See [21] for inheritanceof depths under uni�cation. Having depth in�nity initially for variables in the pattern typeensures for all practical purposes that after the pattern type has been uni�ed with the de�ni-tion type, the generalisation of this pattern type will be exactly the same as the generalisationof the de�nition type732. � decType0(decl,occ,loc) : case decl of VALRECdec(rvbs) =>let val thedeftys = ref([]:((ty ref * ty) list))fun setType(RVB{var=VALvar{typ,...}, resultty=NONE, ...}) =(typ := mkRefMETAty(1+ lamdepth occ))...fun rvbType(rvb as RVB{var=v as VALvar{typ,...}, exp,resultty,tyvars}) =let val (exp',ety) = (expType(exp,Abstr(Rator occ),loc))in (thedeftys := ((typ,ety)::(!thedeftys)));RVB{var=v,exp=exp',resultty=resultty,tyvars=tyvars}end...fun genType(RVB{var,tyvars = ref tyvars,...}) =generalizeTy(var,tyvars,occ,loc)val doclean = if (!topprob) then (topprob:= false;true)else falseval _ = (app setType rvbs)val rvbs' = map rvbType rvbsval _ = let fun f (tref,ty) = unifyTy(!tref,ty)in (app f (!thedeftys))endval _ = (checkrvbpr (VALRECdec(rvbs)))7The exception to this is if the declaration occurs embedded under more than 100000000 abstractions. It maywell then arise that variables which should be generalised will acquire depth 10000000 through the uni�cation step.They will then not be generalised, because the depth is less than the current depth.

4 THE POLYREC CHECKER 32val _ = semiprob := (Semiunify.process(!semiprob)handle Semiunify.SFAIL(mode,ineq,L) => ...)val _ = (app genType rvbs)val _ = if doclean then (semiprob := [];eqcounter := 1;topprob := true) else ()in VALRECdec rvbs'endA recursive value declaration takes the form VALRECdec rvbs, where vbs is a list of recursivevalue bindings, each of the form RVB{f,fdef,resultty,tyvar list }. There are followingstages towards the �nal revised form of the declaration.1. setType initialises the type-assumptions for the f's. Unlike the non-recursive bindings,these initialisations are not with depth in�nity variables, but with 1 + lamdepth occ, cf.ruleType2. rvbType then types the def's in turn, each time updating the reference thedeftys withthe pairing (ftype,fdeftype). The de�nitions are typed by calling expType with an occvalue Abstr(Rator Root). This gives an occ value with lamdepth attribute incremented by1, as well as altering other weakness-related �elds.3. After all the de�nitions have been typed, the unifyTy function is iterated over thethedeftys list, unifying each variables initialisation with its inferred type. Note this will au-tomatically side-e�ect in the appropriate way the instantiation claims recorded in semiprob.4. checkrvbpr is then called { see [8]. If System.Control.CG.viewsemi is set to true, theuser will at this point be prompted with a requents whether the recursive value binding shouldbe printed.5. There is then a call to Seminify.Process { see [44] { on the current contents of semiprob- call it L. This will essentially specialise L, in a minimum way, to a true set of claims L' ifthat is possible, and then semiprob will be updated to have L' as value. Semiunify.processraises exceptions of the form Semiunify.SFAIL(mode,ineq,L''), when no specialisation ispossible. These exceptions are handled by printing an error message and then outputting L"as the result.6. genType then generalises the set of inferred types, taking the initial value of occ as theparameter to the generalizeTy function. Thus generalisation is called at a lower occ valuethan that current during the typing of the de�nitions.7. Finally a `clean-up' clause is called, whose purpose is to detect whether a top-level dec-laration has just been typed. and if so to reinitialise certain values. Before a rec-binding istraversed, topprob is true. Within each call on a rec-binding, there is local variable doclean,which is set according to the global value of !topprob: if !topprob is true, doclean istrue, if !topprob is false, doclean is false. As a side-e�ect of the case that !topprob is true,topprob is assigned to false. So on the embedded calls !topprob will be false, and thereforedoclean will be false. Only if doclean is true (ie. top-level) is there a reinitialisation of thereferences semiprob, eqcounter and topprob.33. + The semiunifier code :We implements a version the Henglein/Leiss rewrite system de�ned in section 2. We alter therewrites, so that where Henglein might add an identity s = t, instead applymgu(s; t) to the in-equation system. The set of context variables is recorded in the reference Semiunify.nonpat,which is side-e�ected by the code in the Typechecker structure concerning rulebound.

4 THE POLYREC CHECKER 33See [45], [46], [47], [48], [57]34. + ineq : the datatype of inequalities: ineq of int*ty*tyThe int part is refered to as the index. Note ineq(i,ty1,ty2) will be pretty-printed as ty1<i ty2, by inpr [4]35. + indexmatch : int list -> int -> boolThe empty list, and singleton integer lists are used as patterns for the indexes that inequalitieshave. The empty list matches any index. [x] matches x. Other cases raise the exceptionIndexpat36. + typematch : ty list -> ty -> boolThe empty list, and singleton type list are used as patterns for types. The empty list matchesany index. [x] matches any prune equal y. Other cases raise the exception Typepat37. + matches : int list * ty list * ty list -> ineq -> boolComponent-wise matching of a pattern (I,X,Y) to an inequality38. + split : int list * ty list * ty list -> ineq list -> ineqlist * ineq * ineq listGiven pattern (I,X,Y) and S, divides S into (L,ineq(i,x,y),R), where ineq(i,x,y) is the�rst inequality matching (I,X,Y) in S; else raises the exception SPLIT39. + subtract : ineq -> ineq list -> ineq listsubtract(ineq,L) subtracts the �rst occurrence of ineq from L40. + find : int list * ty list * ty list -> ineq list -> ineqgiven pattern (I,X,Y) and S, returns ineq(i,x,y) where ineq(i,x,y) is the �rst inequalitymatching (I,X,Y) in S; else raises the exception FIND41. + openvariable : ty -> boolchecks whether a pruned type is an open variable. If the type is of the form VARty(ref(OPEN{kind=k,... })), then if k is user-bound, counted as not open, other wise open. If thetype is of any other form, then it is not open.42. + show : (ineq list -> string -> ineq list) refThis reference is initially assigned a trivial value. In the Typecheck module, then showis assigned to checkpr, which then optionally prints information given a semiuni�cationproblem. See [7] and [45]43. + thestring : string refReference to a string which is updated after a rewrite step to a string describing the rewrite.44. + Process :Called on a semiuni�cation problem, initially applies !show to the problem and the string``initial problem'', then applies process to the problem. The e�ect is that before rewrit-ing commences, the user has an opportunity to see the initial problem. See [7].

4 THE POLYREC CHECKER 3445. + process :This applies the rewrites reduce1, reduce1a, reduce2 and reduce3 exhaustively, with thepriority reduce1 > reduce1a > reduce2 > reduce3. These corresponds to the rewritesS1-S4.For each rewrite, when it cannot be applied it raises a particular exception, for which processhas handling (roughly) as follows:fun process ineqlist =process(reduce1(ineqlist,ineqlist)) handle Red1 =>process(reduce1a(ineqlist)) handle Red1a =>process(reduce2(ineqlist)) handle Red2 =>process(reduce3(ineqlist,ineqlist)) handle Red3 => ineqlistnote:Red1 handling only arises once reduce1 does not applyRed1a handling only arises once (reduce1,reduce1a) do not applyRed2 handling only arises once (reduce1,reduce1a,reduce2) do not applyRed3 handling only arises once (reduce1,reduce1a,reduce2,reduce3) do not applyreduce1 and reduce3 have cases which raise the exception SFAIL(mode,ineq,L), where m isa string recording what kind of a failure happened, ineq records the problematic inequationgave rise to the problem, and L is a certain semiuni�cation system from which the probleminequation has been deleted. This is used to allow typechecker to continue after an error inorder to detect further errors.The SFAIL(mode,ineq,L) exceptions are not handled by process, but rather by the call toprocess from the typechecker { see [32].Additionally, the reduce terms called by process are embedded as (!show reduce term!thestring). This evaluates to the reduce term, and according to the setting ofSystem.Control.CG.viewsemi, allows the user to see the result after reduction. See [42],[7].46. + reduce1 : ineq list*ineqlist -> ineq listuses exception SFAIL(mode,ineq,ineqlist) exception Red1Essentially implements the S1 rewrite which replaces (a1,...,an) f <i (b1,...,bn) f ina semiuni�cation problem with the inequatons a1 <i b1,...,an <i bn.Initially reduce1 is called by process(L), and this sets the two arguments of reduce1 equal.The output list is either immediately determined from the �rst argument, or by a recursivecall reduce1(tail(L),L). The second argument remains a record of the initial problem, andis used only in generating exceptions.reduce1(L1,L2):Takes head ineq(i,x,y) of L1tests whether pruned versions of x and y are functionsif yes tests whether functions are equalif yes makes new inequations from the argument lists and appendsto (tl L1)if no raise SFAIL("function clash in semiunify",ineq(i,x,y), subtract (ineq(i,x,y)) L2), so third ar-gument of the exception is the initial problem minus theproblematic inequality

4 THE POLYREC CHECKER 35if no, tests whether x is
exible record, and y is a record type.if yes return ineq(i,x',y):: tl(L1), where x' is record-type derived fromthe
exible record x by adding the extra �elds of y, typed with fresh-variablesif no return ineq(i,x,y) :: reduce1((tl L1),L2)If �rst argument is empty raise Red1. This has the e�ect that if L contains no possi-bility to apply the S1 rewrite and process L tries to rewrite L with reduce1(L,L),the exception Red1 will be raised.47. + reduce1a : ineq list -> ineq listuses exception Red1aThis basically implements the S2 rewrite, such that if x <i y occurs and x is a type-variablein the context set, then x should be uni�ed with y. However, also variables arising fromover-loaded symbols are also treated as if they were in the context set.reduce1a(L) =Takes head ineq(i,x,y) of Ltests whether if x is a zero-depth variable (and therefore types an occurrenceof an overloaded symbol)if yes, evaluates unifyTy(x,y), returns (tl L)if no, tests if x is in !nonpat,if yes, evaluates unifyTy(x,y), returns (tl L)if no returns ineq(i,x,y) :: reduce1a(tl L)If L is empty, raises Red1a. This has the e�ect that if L contains no possibility toapply the S2 rewrite (and no LHS 0-depth variables) and process L tries to rewriteL with reduce1a(L), the exception Red1a will be raised.48. + reduce2 : ineq list -> ineq listuses exception Red2Basically implements the S3 rewrite, rewriting a pair x <i t and x <i s to x <i t, with theside-e�ect that t and s are uni�ed.reduce2(L) =takes head (i,s,t) of Ltests whether s is an open variableif yes,use ([i],[s],[]) as pattern, split the rest of L,into (Left,(i',s',t'),Right) where (i',s',t') is�rst matching ineq, evaluate unifyTy(t,t'), return(i,s,t)::(Left@Right)if no, return (i,s,t):: reduce2(tl L)When L is empty, Red2 is raised. This has the e�ect that if L contains no possibilityto apply the S3 rewrite, and process L tries to rewrite L with reduce2(L), theexception Red2a will be raised.49. + makedtrs : ty * ineq list -> ty list

4 THE POLYREC CHECKER 36An auxiliary function of check { see [52]. makedtrs(y,L) makes a list of all x such that(x <_ y) occurs on L. That is, the immediate daughters, or predecessors of y under < arecollected.50. + minus : ty * ineq list -> ineq listAn auxiliary function of check { see [52]. minus(y,L) discards inequalities (y <_ _) from L51. + iterate : ('a -> bool) -> 'a list -> boolAn auxiliary function of check, and reduce3 { see [52], [57]. iterate(f,L) is true if f x istrue for some x in L52. + check x y L : ty -> ty -> ineq list -> boolauxiliary function of reduce3 { see [57] { which implements the `extended occurs check' ofthe S4 rewrite: checks whether x can be linked to y by a chain of inequalities in Lcheck x y S =check whether x = yif yes then return trueif no then iterate the function fn dtr => (check x dtr S') overmakedtrs(y,S) (i.e. the immediate predecessors of y in S),where S' is minus(y,S) (i.e. S with inequalities (y <_ _)discarded)Note, once we have a predecessor z of y, we wish to check whether x can be linked to z. Inthe search for such links we can ignore inequalities (y <_ _), as linking x to z by means ofsuch in inequality, means x can be linked to y more directly. This is the reason why in thede�nition of check, once linking to the predecessors of y is attempted, the pool of inequalitiesto be searched is reduced with minus(y,S).53. + vars : ty list refA reference counter used in readrulebound [15], freevars [54], and reduce3 [57]54. + freevars : ty -> unitAuxiliary function of readrulebound [15] reduce3 [57].Given a type t, updates the type list ref, vars, adding all free variables t which are notalready present in vars55. + newineqs : (ty*ty) list refA reference value used in reduce356. + Semiunify.copyTy : ty -> tyAuxiliary function reduce3, which copies a type by making fresh-copies of variables, updatingalso newineqs with the pairs consisting of the old and the new. User-bound variables are notcopied. Only the typings of the known �elds of a
exible record are copied.57. + reduce3 : ineq list * ineq list -> ineqlistImplements the S4 rewrite, by eliminating args f < x, unifying f(args') with x, and addinginequalities args < args', provided the `extended occurs-check' succeeds

5 REMARKS ON DESIGN 37Initally reduce3 is called by process(L), and this sets the two arguments of reduce3 equal.The output list is either immediately determined from the �rst argument, or by a recursivecall reduce3(tail(L),L). The second argument serves both as a pool of inequalities for theextended occurs-check, and is also in generating exceptions.reduce3(L1,L2) =takes head ineq(i,t,v) of L1checks whether t = CONty(f,args), and v is an open variableif yes then checks whether (check v y L2) for free y of tif yes then raise SFAIL("extended occurs check fail in semiunify",ineq(i,t,v), subtract (ineq(i,t,v)) L2)if no then copy t to t', evaluate unifyTy(v,t'), return L'@ tl(L1), whereL' are new inequations de�ned by the copying of t to t'if no then return ineq(i,t,v)::reduce3(tl L1,L2)if L1 is empty, raise Red35 Remarks on Design5.1 Environments or variable attributesAs mentioned several times in the above, the SMLofNJ typechecker does without interim environ-ments in typing bound variables. Instead types are inserted into the code, and the combination ofthe depth attribute of type variables and the occ argument of the typecheck functions is used tocontrol the generalisation of type variables.In polyrec_sml, we use what is e�ectively a reduced form of an interim environment - therulebound list, indicating the type-variables present in currently in scope �-bound variable. Thisis inelegant, as this rulebound list could be used to control type generalisation, and make the depthattribute of variables redundant.A more elegant and more e�cient design, might employ an alternative to the current datatype fortypes, in which type variables would have an additional attribute which would take over the workdone by the rulebound list. Such a design was not implemented because of our overall decisionnot to rede�ne any of the datatypes of the compiler.Attempts to exploit the existing depth attribute of type variables to implement the necessarycontrol over type variable copying seemed doomed to failure. Considerval rec f = fn x => let val y = f x inThe initial type variable assigned to f will have a depth attribute of 1, and that for x, a depthattribute of 2. However, after f x has been typed, the type variable for x will also have a depthattribute of 1. This means that as we descend further into the term, and perhaps encounter avariable tagged with a type featuring one of these variables, we cannot choose whether or not tocopy on the basis of the depth attribute.5.2 OverloadingThe code below comes from util/feedback.

5 REMARKS ON DESIGN 38val infinity = 1000000000fun minl l =let fun f(i,nil) = i | f(i,j::rest) = if i<j then f(i,rest) else f(j,rest)in f(infinity,l)endWithout taking special precautions it will cause the poly-rec typechecker an `unresolved overload'problem.Overloaded constants are treated in SMLofNJ as polymorphic constants. Whenever the constantoccurs, unknowns of depth zero are chosen for the quanti�ed variable, and global note is made ofthe unknown. Zero is a depth which can in no other way become associated with a type variable,and will never be generalised. In an embedded let, the de�nition type may contain unknowns ofdepth 0, and these may well not occur in the type of any wider scope abstracted variables. Suchunknowns clearly should not be quanti�ed, and this is achieved because of their zero depth.Finally, at the top-level, after type-checking is e�ectively complete, there is �nal check whether theunknowns chosen at instances of overloaded constants have become instantiated. If they have not,the code is rejected as containing an unresolved overloading.In the above code, the auxiliary function f will obtain type X � Xlist!X , where X is a zero-depth unknown. In the abscence of polymorphic recursion, the subsequent use of f will cause theinstantiation of X to int. Consider now the case for polymorphic recursion.At the point where use of f is to be typed, in the usual way, the question arises as whether theunknowns in the assumed type for f should be copied or not. The basic criterion is that unknownsnot occuring in the assumptions of currently in scope monomorphic assumptions should be copied.In the example, the unknown X does not occur in such a monomorphic assumption. However, ifthen the occurrence of f is typed via a copying, it is only the copy of X that will be instantiatedto int, and not X itself. The result will be that at the �nal overload-check stage, X will remainuninstantiated. Clearly it is necessary to de�ne the copying functions used by the type-checker(and by the semiuni�er) so that the unknowns arising from occurrence of overloaded variables aretreated as monomorphic: when such unknowns occur in a current typing assumption, they shouldnot be copied in typing an occurrence. Also if such unknowns occur in a semiuni�cation problem,they should be treated in the same way as the other monomorphic variables of the problem.5.3 Flexible RecordsConsider,fun f = fn x => # 1 xThe de�nition of f can be assigned any type whose argument is a record with a �eld 1, of sometype � , and whose value is � . However, SML's type system cannot express the type quanti�cationimplicit in this description, and consequently the above declaration is rejected as not typable: thecompiler's `
exible record' types, serve only as temporary markers for a record type which musteventually be fully speci�ed.In polyrec_sml it remains the case that unresolved
exible records cannot be generalised. However,under polymorphic recursion, the process of resolution of
exible records can take a di�erent coursethan it does under monomorphic recursion. Consider the following examples:

6 PERFORMANCE 39fun f x = (# 1 x; f(1,2); x)fun f x = (# 1 x; f(1,2); f(`a','b'); x)Clearly, under monomorphic recursion the �rst receives type int * int -> int * int, whilst thesecond is untypable. This arises in the implementation because the type of the de�nition is uni�edwith the types of the occurrences. Under polymorphic recursion, in both cases the function receivestype 'a * b -> 'a * 'b. For the �rst example, the input to Semiunify.process is:{1:'A,...'Z }-> {1:'A,...'Z }<1 {1:int,2:int }-> 'BCalling Semiunify.process on this, resolves the
exible record to be one with two �elds, labelled1 and 2, but does not force these �elds to have integer type. For the second example, the input toSemiunify.process is:{1:'A,...'Z }-> {1:'A,...'Z }<1 {1:int,2:int }-> 'B{1:'A,...'Z }-> {1:'A,...'Z }<2 {1:str,2:str }-> 'BAgain the
exible record is resolved to be one with two �elds, labelled 1 and 2, but types of theseremain unconstrained.6 PerformanceWe have tested polyrec sml by compiling all the sources for the compiler, both with and withoutpolymorphic typechecking activated. The result is that the total compilation time is � 10% greaterwith polymorphic recursion than without. On the assumption that the source code of the compileris representative of typical SML programming, this suggests that the average SML user could usepolyrec sml without a punitive slowdown.The �le doc/compiler_examples notes some of the functions from the compiler sources that receivea di�erent type under polymorphic recursion than they do under monomorphic recursion. Thereare � 30, the majority of which occur in simultaneous recursive declarations. A thorough analysisof the frequency of simultaneous recursive declarations would be useful here, but preliminary in-vestigation of this on the basis of pro�ling the typechecker on the �rst � 20% of the compiler code,gives that less than 4 % of all recursively declared functions are part of a simultaneous recursion.This low frequency of simultaneous recursions may explain the relatively small number of casesin the compiler code which received a more general type under polymorphic recursion than undermonomorphic.Some of the examples from the source code resemble the �rst example in section 1.2. In these casethe `real' value of a recursive function is preceded by some side-e�ecting code which also invokes therecursive function. The side-e�ecting part constrains its instance more tightly than the de�nitionpart contrains its instance, giving a more restrictive type under monomorphic recursion than underpolymorphic recursion.This pro�ling also reveals that of the additional functions involved under polymorphic recursion,most time is spent in checking whether a given type variable is present in the rulebound listof variables. As mentioned in the previous section, altering the datatype for types might allowthis check to be avoided. Also of the various possible rewrites on a semiuni�cation problem,Semiunify.reduce1 is called most often, then Semiunify.reduce1a, then Semiunify.reduce2,then Semiunify.reduce3.The summaries after batch compiling with and without polymorphic recursion activated are givenbelow.

REFERENCES 4060135 linesparse 350.460000stranslate 34.610000scodeopt 12.180000sconvert 13.650000scpsopt 237.870000sclosure 128.900000sglobalfix 9.300000sspill 20.920000scodegen 153.820000sschedule 160.600000sfreemap 17.960000sexecution 0.0sGC time 336.320000stotal(usr) 1472.570000stotal(sys) 27.070000s60135 linesparse 215.640000stranslate 35.830000scodeopt 12.440000sconvert 13.980000scpsopt 243.890000sclosure 132.490000sglobalfix 9.470000sspill 20.990000scodegen 157.430000sschedule 164.220000sfreemap 18.320000sexecution 0.0sGC time 308.670000stotal(usr) 1329.530000stotal(sys) 22.270000sReferences[Altenkirch, 1995] Thorsten Altenkirch message to the ML-list, noting an example typable onlywith polymorphic recursion[Damas and Milner, 1982] L.Damas and R.Milner. Principal type-schemes for functional programs.in Proceedings of the 9th ACM Symposium on Principles of Programming Languages, pp. 207{212[Elliot, 1991] Conal Elliot message to the ML-list, noting the collect example[Emms and Leiss, forthcoming] M.Emms and H.Lei� Extending the SML Typechecker with Poly-morphic Recursion: a correctness proof. CIS Technical Report[Henglein, 1988] Fritz Henglein. Type inference and semiuni�cation. in Proceedings of the 1988ACM Conf. on LISP and Functional Programming, Snowbird, Utah, pp 184{197

REFERENCES 41[Kfoury, Tiuryn, and Urcyczyn, 1989] A.Kfoury, J.Tiuryn, P.Urcyczyn. The Undecidability of theSemi-Uni�cation Problem. Boston University, Tech. Report BUCS-89-010[Leiss, 1989] Hans Lei� Polymorphic Recursion and Semiuni�cation. in Proceedings of the 3rdWorkshop on Computer Science Logic, CSL'89, Kaiserslautern FRG, Springer LNCS 440, pp211{224[Milner, 1978] R.Milner. A Theory of type polymorphism in programming. Journal of Computerand System Sciences, 17:348{378.[Milner et al, 1990] R.Milner, M.Tofte and R.Harper The De�nition of Standard ML MIT Press,Cambridge, Massachusetts[Milner and Tofte, 1991] R.Milner and M.Tofte Commentary on Standard ML MIT Press, Cam-bridge, Massachusetts[Mycroft, 1984] Alan Mycroft. Polymorphic Type Schemes and Recursive De�nitions. in Proceed-ings 6th International Conference on Programming, LNCS 167

