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Summary: The usual rule used for typechecking recursive declarations can be called
monomorphic, because in typing the declaration, the recursively bound variable is assumed
to have monomorphic type. This forces all occurrences of the variable to have the same
type and prevents certain recursions from being typed. polyrec_sml is a version of the
SMLofNJ compiler which implements a more powerful, polymorphic recursion typing rule,
first proposed in [Mycroft, 1984]. This essentially allows different occurrences of the re-
cursively bound variable to take on different instances of the type of the definition. The
implementation allows the user to choose between monomorphic and polymorphic recursion,
with an attendant ~ 10 % effect on total compile time. It is hoped the implementation will
enable further experience to be gathered on programming with polymorphic recursion.

Sources, installation notes and examples for polyrec_sml can be obtained from:

ftp.cis.uni-muenchen.de/incoming/emms/polyrec_dist

Remarks concerning polyrec_sml can be assured of an interested reception at:

emms@cis.uni-muenchen.de

leiss@cis.uni-muenchen.de
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!Thanks to Hans Leiff for his helpful comments on this documentation. The fault for remaining errors remains
with the author. The implementation described here was created with the support of DFG project ‘Semiunifikation’
Le 788/1-2.

2 Added October 1996: this report touches only lightly on theoretical aspects and primarily documents the
polyrec_sml implementation. In subsequently trying to prove its correctness, some changes to the basic algorithm
were found to be necessary. Correctness of the variant algorithm is proved in [Emms and Leiss, forthcoming] and
it is hoped a later version of polyrec_sml will incorporate the changes. The changes have an effect only when (i)
two recursions are nested and (ii) the inner recursion is of the kind that gets a more general type under polymorphic
recursion than under monomorphic.
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The code for polyrec_sml is adapted from, or is intended to be used in
combination with, the code which consitututes Standard ML of New Jersey,
Version 0.93. It is therefore issued with the following copyright notice, license
and disclaimer.

Standard ML of New Jersey Copyright Notice, License and Disclaimer.

Copyright 1989, 1990, 1991, 1992, 1993 by AT& T Bell Laboratories

Permission to use, copy, modify, and distribute this software and its docu-
mentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both the copyright
notice and this permission notice and warranty disclaimer appear in sup-
porting documentation, and that the name of AT& T Bell Laboratories or
any AT& T entity not be used in advertising or publicity pertaining to dis-
tribution of the software without specific, written prior permission.

AT& T disclaims all warranties with regard to this software, in-
cluding all implied warranties of merchantability and fitness. In
no event shall AT& T be liable for any special, indirect or conse-
quential damages or any damages whatsoever resulting from loss
of use, data or profits, whether in an action of contract, negligence
or other tortious action, arising out of or in connection with the
use or performance of this software.
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Installation notes for polyrec_sml are in doc/INSTALL_NOTES, and a brief user-manual in
doc/polyrec_man. The current document gives some theoretical background, and documents in
detail the implementation.

Section 1 defines and illustrates what type-checking wrt. polymorphic recursion is, confining atten-
tion to a sublanguage of SML. Section 2 defines a Damas-Milner style type-checker for polymorphic
recursion, incorporating semiunification. This theoretical version of the type-checker is at the same
distance from our implementation as the standard Damas-Milner algorithm is from the standard
SMLofNJ implementation. Sections 3 and 4 are directly concerned with the implementation. In
section 3 we describe a prototype of the type-checker in an endeavour to keep the outline visible
amidst the detail. Section 4 documents the code, both the additional code, and some of the relevant
pre-existing code. Section 5 contains some concluding remarks on the design, and section 6 desribes
the performance.

1 Polymorphic Recursion

In this section we define and give examples of, typing wrt. polymorphic recursion.

1.1 The Typing Calculi ML and ML™

To keep the description of polymorphic recursion manageable, we will confine attention to a sub-
language of SML which exhibits the relevant features. In defining the language we will use meta-
variables as follows:

x @ variables
c : constructors (arity 0 = constants,
binary infix (_,_) and (_;_) presupposed)
e @ expressions
d : declarations
a : type-variables
k@ type-function (arity 0 = type constant,
‘list’ presupposed unary, ‘—’ and ‘*’ presupposed infix bi-
nary)
tn : type-function name
7 : quantifier-free type
7 : quantified type

The types and (untyped) expressions and declarations of M L are:

=a | 7k
=7 | Va.7T
=z lclee | fnx=>e| letdine

& 0o 9N

= valz=e
| val recx =¢
| datatype ditn=cy | ... | ¢ur1 OFf Trng1 | .. Cmgn OF Trngn

A type-assignment calculus operates as a further filter on M L code, defining a set of possible types
for a piece of code, relative to a type-context. The first six typing rules in Figure 1.1 define the
calculus for M L (which we will also refer to as M L).
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Notation conventions. F is a type-context, assigning types to constructors and variables (and type
functions to type names). 7 > 7 (read 7 ‘instantiates’ 7) holds if 7 results from 7 by instantiating

all bound variables of 7 with monomorphic (V-free) types. 7 means quantifying all variables of T

except those occurring free in type assumptions in F. By Y we mean replacing each z : 7 in F
with z:7%". In the let rule, £ 4+ E’ is understood as the destructive overwriting of F by E’. The
context will be assumed to type the pairing and sequencing constructors as VaV§.a—f—(a * )

and VaVi.a—f3—p.

Special attention should be paid to the rule for recursive value declarations, in which the recursively
bound variable is assumed in the premises to have a monomorphic type. Although the declaration
may well assign a polymorphic type to the recursive function, this polymorphic type may not be
assumed during the typing of the declaration. The final rule above is the alternative so-called
‘Polymorphic Recursion’ typing rule, first considered in [Mycroft, 1984], which allows that the
assumed type for the recursively bound variable can be polymorphic.

The typing calculus with this rule we will refer to as M LT, and we illustrate the difference between
ML and MLT by means of some examples in the following section. Before that we define the
notion of principal type and environment.

Definition 1 (Principal Types and Environments) Let K be ML or ML™, e an expression
and d a declaration.

i) 7 is the K-principal type of e wrt to E if K proves E |—e : 7, and for any 7’ such that K
proves E |—e : 7', 7" = T'1, for some substitution T of monomorphic types for type variables.

ii) {x — VYar} is the K-principal environment for d wrt to E if K proves £ |-d : {z — Var},

and for any 7' such that K proves E |-d :{z — 7'}, 7/ = WE, for some substitution T.

For example, with respect to the empty environment {}, the M L-principal environment for the
declaration val £ = fn x => x is {f — Ya.a—a}. Another environment generated by the dec-

{

laration is {f — Va.(int *x a)—(int xa)}, and we have T(a—a)" = Va.(int x a)—(int * a) for

T(a) = (int * a).

1.2 Examples

In this section a series of examples are given where the M L-principal environment and the M L™
principal environment differ. The source code for these and other examples is in doc/examples,
and doc/compiler_examples lists some further examples that arise in the source code for the SML
compiler.

Example 1
val rec £f = fnx =>f 1

Although this is is an artifial example, the defined £ being non-terminating, it makes a good starting
point for illustrating the typing rules. It is clear that (i) in order to type the definition, £ must
contain an assumption for £ which has int— as a possible instantiation, and that (ii) the possible
types of the definition, assuming such an instantiation, are the instances of a— 3. With M L comes
then the additional constraint that the assumed type be IDENTICAL TO THE DEFINITION TYPE
(and therefore monomorphic). Thus the assumption for £ must be an instance of int—f3, and in
the M L-principal environment, £ will be assigned Vj3.int—g.
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Standard ML typing rules

Choose E(z) >t
——— 1z is either a constant or variable
El-az:71
App El-e :7"=1 FE}ley:7 Functions E+{x— 7'} |-er
E|-eje:T El-fnx => e:7'—71
Let El-d:E' E+FE |-e:T

FE|-(let d in e end): T

TE = {tn — I{}

FEy ={cy — Vd.dkr,...,c, — Va.dr}
Datatype Dec Fy = A{cmy1 — Ya. 141 [k/tn]—=akK, ..., Copqn — Y. Tpn[r/tn]—dk}}
FE |- datatypeditn =c¢; | ...cpm | €1 0of T | oo o OF Trnan
:TE + E1 + E2
Value Dec El-e:T

El|l-val z = e:{z — 7"}

Rec Value Dec E+{f—r1}l-e:T
E|-val rec f = e:{f—7F}

Alternative M LT rule

Rec  Value Dec E+{x — 7} |-e:7
(Poly)

E|-val rec x = e:{x — 77}

Figure 1: The typing calculi ML and M LT
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On the other hand, working with M LT, we have the constraint that the assumed type be THE
CLOSURE OF THE DEFINITION TYPE. Clearly YaVf3.a—f fulfils the requirements, and will be the
type assigned to f in the M LT principal environment®. If the example is slightly changed to

val rec f =fnx => (f 1 ; £ "a")

the difference is more stark: the code is M L-untypable, whilst the M L*-principal environment
remains the same.

Essentially this situation can realistically arise in a simultaneous recursive definition, as noted in
[Mycroft, 1984]:

Example 2

fun map £ 1 = if 1 = [] then [] else (£(hd(1))::(map £ (t1 1)))
and incrlist 1 = map (fn x => 1 + x) 1

Inside incrlist’s definition, map requires type (int—int)—int list—int list. This is a special case
of the type (a—f)—a list—( list that is required for map’s occurrence inside its own definition.
Under M L, the more specific type must be assumed for map in any typing derivation, and in the
M L-principal environment, map will therefore be assigned (int—int)—int list—int list. However,
using the usual polymorphic type for map as the assumption, both occurrences of map can be
typed, and the assumption is indeed the closure of the type of its definition. In the M LT-principal
environment, map therefore receives the usual type, VaV3.(a—f3)—a list—f list.

Again, if the example is slightly modified by adding a further clause
and prefix 1 = map (fn x => "a""x) 1

with the aim of defining three functions simultaneously, the difference is starker: map then occurs
with two incompatible types in the definitions of the two other functions, and so the whole decla-
ration is M L-untypable. The M LT-principal environment remains the same, because the type of
the additional occurrence is just another instance of the closure of map’s definition type.

The above case was an example of a non-essentially simultaneous definition, and if the functions are
separately defined, they get the same types under M I, and M L*. In doc/examples, the difference
between ML and M L™ is further illustrated by genuinely mutually recursive definitions, some
of which occurred in programming practice and are only typable with respect to M LT. Also,
compiler_examples contains many examples of M L-typable simultaneous recursions, drawn from
the SML compiler code, which have more general M LT-types.

Another class of examples arises when datatypes a k are used where a subcomponent of a a x value
can be a a k k value. The first example of this below derives from a message [Elliot, 1991] to the
SML email list (see also doc/examples)

Example 3

datatype entry = Const of const | N of (entry * entry)

datatype ’a c_dtree = EC | C of (const * ’a * ’a c_dtree)

datatype ’a e_dtree = ET | D of (’a c_dtree * (’a e_dtree) e_dtree)

®In doc/examples there are cases from the compiler sources of this kind, where an occurrence of the recursively
bound variable in some side-effecting part of the definition restricts the type more than occurrences in the definition
proper.

*one of these was reported to the ML-list as recently as July 1995 [Altenkirch, 1995].
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fun ed_find (D (C(con’,v,rest),_),Const(con)) =
if con = con’ then v
else ed_find (D(rest, ET), Const(con))
| ed_find (D(_,dtree), N(e,erest)) =
ed_find (ed_find (dtree,e),erest)

The purpose of the code is to assign values to tuples (represented using the entry datatype).
When there is overlap amongst the tuples, simply writing a rule with a case for every tuple will be
inefficient, because while stepping through the cases, certain parts of the input may be repeatedly
matched against the recurring parts of the case definitions. An alternative is to uses a discrimination
tree of type a e_diree, having two parts. The first is an a c_tree, which associates values to the
constants which appear in an input tuple. The second part is of type (a e_dtree) e_dtree, and
the significant component will be an (a e_dtree) c_dtree, assigning a a e_dtree to constants.
ed_find traverses a tuple, each time using the first element to select a particular o d_tree as
the discrimination tree for the remainder. In this way a call of ed_find on an argument of type
a e_dtree e_diree supplies an argument of type a e_dtree to a further call of ed_find. This makes
ed_find M L-untypable, whilst it has type Va.a e_dtree x entry—a wrt M LT,

Example 4 Wadsworth more than 10 years ago is reported to have encountered the analo-
gous problem in a ‘real’ program, making use of the datatype ’a T = Empty | Node of ’a *
(’a T) T. Suppose the environment supplies fst:Ya.oT—a and snd:Va.a T—a T T, flatten:
a list list—a list.

collect x = if x = Empty then []
else fst x :: (flatten (map collect (collect (snd x))))

It is a useful exercise to consider in detail the typing of this example. Clearly x must have type a T.
For a M L-typing, we obtain after some calculation that a monomorphic type 7 must be assumed
for collect, satisfying the instantiation claims:

T=aTl T—g3 list
T = B—a list

Since 7 is monomorphic, > can be read as identity, and the righthand sides equated. This requires
the impossible identity o T' T lvst = « list, and so the example is M L-untypable.

For a ML* typing, we must assume a polymorphic 7 satisfying the instantiation claims 7 >
a T T—pg list and T > J—a list. Additionally, 7 must be the closure of some type of the
definition. Assuming the instantiation claims are satisfied, the possible types of the definition are
the instances of @ T—a list. Hence for a typing we require a substitution 5 such that

S(a T—alist) " = S(a T T—8 list)
SlaT—a list)SE = S(f—a list)

The substitution S = [a T'/#3], is a solution, in fact a most general. Therefore in the M L*-principal

. . . —SE - .
environment, collect is assigned the type, S(a T—a list) = aT—a« list” = Ya.a T—a list.

We consider one more example below to illustrate the interaction between A-binding and polymor-
phic recursion.

Example 5
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fn y => let fun collect x = (x = y;fst x :: (flatten (map collect (collect
(snd x))))) in ...

Note that now the argument of collect must have the same type as the wider-scoped, abstracted
variable y. Arguing exactly as above, in order to type the embedded declaration, we will come to
the requirement that there be a S such that:

Sla T—a list)S(E-I_y:a)
S(a T—>alist)S(E+y:a)

= S(a T T—p list)
= S(f—a list)

The presence of « in a type assumption means that the closure here is vacuous, and the problem
is equivalent to the unsolvable:

Sla T—a list) = S(a T T—f list)
Sla T—a list) = S(f—a list)

As already noted, the source code for these and further examples is given in doc/examples, whilst
doc/compiler_examples notes some of the functions from the compiler code that receive more general
types under MLt than M L.

2 Theory of Polymorphic Recursion

For ML and M L* we have the following:

Theorem 1 (Existence of Principal Types and Environments) Where K is ML or M LT
for any context F, and any expression (resp. declaration) t, if t is K-typable wrt F, then t has a
K-principal type (resp. environment).

Theorem 2 (M LT generalises ML) Ift is an M L-typable expression (resp. declaration), then
t is M LY typable, and the M LT -principal type (resp. environment) is more general than the M L-
principal type (resp. environment)

The ML case of Theorem 1 is proved in [Damas and Milner, 1982], by means of a recursive type-
assignment function, W, essentially first defined in [Milner, 1978)], which takes an environment and
code and returns either FAIL or the least environment revision required for M L-typability, and the
corresponding M L-principal type or environment. The FAIL value implies M L-untypability under
any revision of the environment.

The M L% case of of Theorem 1 is proved in [Mycroft, 1984], by means of an adaption of W to
a (semi-) algorithm, in which the unknown polymorphic assumptions in recursive declarations are
obtained by an iterative procedure which in the case of typable functions reaches a fixed-point, but

which diverges on all untypable functions®.

An alternative semi-algorithm for M Lt will be described below, based on the work of [Henglein,
1988] and [Leiss, 1989], which invokes a procedure to solve a so-called semiunification problem.
Recall in the collect example above, the typing problem reduced to the existence of a substi-
tution, S, solving instantiation claims of the form 57°F « So. Such a problem is essentially a
semiunification problem, and the solution a semiunifier. In this section we give a formal definition
of semiunificaton and of a type assignment function for M LT.

“Further conditions were proposed to avoid loopings, but these caused also some typable code to be rejected.
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2.1 The idea

As the examples will perhaps have made clear, there will be essentially two phases in typechecking
a recursive declaration val rec £ = (... f; ... f, ...):

Phase 1: the definition part, (... £y ... £, ...) istyped effectively assuming the recursively
bound variable, £, has type Va.a (this was also the first step in Mycroft’s iterative procedure). Thus
one ignores to begin with the fact that the polymorphic assumption for £ has to be the closure
of some type of the definition. In order to be able to attend to this in Phase 2, a record is made
of the instantiations of Va.a, that are required to type the occurrences of £ (this is not a part of
Myecroft’s procedure). After the defining term has been typed we have 3 outputs:

L=Va.arm,...,Ya.a =7, arecord of instantiation claims generated by typing the oc-
currences £y, ..., £,, of the recursively bound variable,
S, a substitution, of monotypes for variables, by which it may be

necessary to refine the free type variables in the environment
in order to type the definition, and

T, the type of the definition (... £y ... £, ...),under the
assumption, f:Va.a.

Phase 2: 7 and L contain all the information necessary to now determine the typability of the
recursive declaration. Any typing of the defining term, given some polymorphic assumption, clearly
must be by means of some specialisation U of the ;. Furthermore, M L™ requires a specialisation,
U, with a particular property: when the closure of the resulting type for the defining term (i.e.

WUSE) is taken for the polymorphic assumption instead of Ya.a, the (specialised) instantiation
claims should be true. A substitution U is therefore required such that:

—USE —USE
Ut =Ur, ..., Ut = Uty

This problem is essentially a semiunification problem (see following section), and has a most general
solution if it has any solution at all. Phase 2 thus consists of the conversion of the true set
instantiation claims, L, into the specification of a further set of instantiation claims, and then
finding the most general solution for the unknown substitution, U. The final output of the type
checker on a recursive declaration, in terms of this U will be:

—USE —USE
L'=Ur =Ury, ..., UT = Uy,
Us, the net environment-revising substitution, necessary
to type the declaration, and
—USE . .
{f = UT 1, the environment generated by the declaration.

There are certain important further details due to the embedding of declarations in 1et expressions,
and the full specification appears in section 2.3. The following section defines the key notion of
semiunification.
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2.2 Semiunification

Definition 2 (Matching) 7 T o holds between two monomorphic types if there is some substi-
tution T' (called the matching substitution) which is an identity on the variables in C, taking T into
o. C will be referred to as the context variables. Those free variables a of T, for which Ta # «,
will be called the pattern variables.

Definition 3 (Semiunification Problem) is a multi-set of equalities, 7 = o, and inequalities,
T C; o, where 1 <1 < n, where 7 and o are monomorphic. A solution relative to a context set
Cis ann+ 1 tuple (U, Ty,...,T,) of substitutions, such that U specialises the equations to true
wdentities, and each inequation T C; o, to a true match, Ut Cyo Uo, T; being the associated
matching substitution. A solution (U,Ty,...,Ty,) is said to be more general than (U',Ty,...,T)),
if U’ is a specialisation of U.

Where L is a sequence of Co match claims, we define IO = {FE = o0:7Cc o € L}, where
is any environment the free type variables of whose type assumptions = F'V(C'). The reason that
typing with respect to polymorphic recursion can be reduced to semiunification is:

o Co 7 holds iff 7 = 7 where E is any environment the free type variables of whose
type assumptions = FV(C).

The tool used to find a solution to a semiunification problem is a rewrite system [Henglein, 1988],
[Leiss, 1989]%. In this system, equations and inequations are rewritten till either FAIL is generated
or no further rewrites are possible. Whenever no further rewrites are possible, a solving ‘semiunifier’
for the original system can be read off.

Definition 4 (The rewrite system)
UL CoLA (T %ok T )Ry = (01 % ... % 0K
I—>FAIL, Z.flil#lig
— C,LAT =01 AN...ANT, = 0,, otherwise
U2. C,LANTrR=a—C,LANa =7k
U3 C,LANa =7k — FAIL if a € FV(T)
Ujy. CoLANa=a— C, L
Us. C,LANa =1~ Clr/al,Lit/alNa=71,ifag FV(T), a € FV(L)
S1. CLA(T % kTR B4 (01 % ... % 0y )Ro
I—>FAIL, Z.flil#lig
— C,LAT C; o0 N...ANT, C; 0, otherwise
S2, C,LNaC,r—C,LAa=71,ifac FV(C)
S3. C,LANaC;7AhaCio—C, LAT=0Nal;T)
S4. C,LATEC; a
— FAIL if (a; C;; ajp1)i<j<k € L, where oy = «, and ay € FV(T)
— C[;’H/a],L[;’m/a] Ao =T1krAS C, 3", where 7' is copied from 7,

replacing the free-variables 5 with fresh variables ﬁ’ otherwise

U1l — 5 are the well-known algorithm for computing the most general unifier of a set of equations,
including an ‘occurs check’. 51 — 4 concern the inequations, and the side condition in 54 will be
referred to as the ‘extended occurs check’. A system is said to be in solved form when no rewrite
applies to it.

SWe give a version of Henglein’s rewrite procedure, though that due to Leiss is equivalent.
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Lemma 1 (Henglein) . Let (C, L) be in solved form. Define U := {t/a :a =7 € L} and for
1<j<n T;:={r/a:aC; 7€ L} Then (U,T,..

Example Consider the system ({}, L1) below, consisting of the instantiation claims obtained in
phase 1 of typing the collect-function of example 5. It can be rewritten to ({}, L10), which can

then be rewritten no further:

=S1

=S1

=S1

=S1

=S1

=53

U3

=S1

53,14

() L1 =

(1}, 12) =

(1}, 13) =

(1}, 14) =

(1}, L5) =

(1}, 16) =

() L7) =

(1}, 18) =

(1}, 19) =

(1}, L10) =

{}7

{}7

{}7

{}7

{}7

{}7

{}7

{}7

{}7

{}7

aT—alist Ty aT T—p list,

aT—alist Ty f—a list

aTCiaTlTl,
a list ©q 0 list,
aT—alist Ty f—a list

a El a T7
a list ©q 0 list,
aT—alist Ty f—a list

OéglOéT,

« El ﬁv
aT—alist Ty f—a list

OéglOéT,
0(;1 ﬁv

aT Ty f8

o list Ty o list

OéglOéT,
aglﬁv
aTEQﬁ?
als a

f=al,
aglﬁv
aTEQﬁ?
als a

ﬁ:aT7
alial,
aTCyal,
als a

f=aT,
OéglOéT,
O[EQO[,
als a

f=aT,
OéglOéT,
als a

., T) is a most general solution of (C, L)
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From the equation in ({}, L10) we obtain the substitution U = [ T'//3], and from the inequations
we obtain matching substitutions 7y = [a T'/a], T3 = [a/a]. (U,T1,T3) is a most general solution

of ({},L1) and ({}, L10).

Example Recall example 5 was a variation on the collect example, in which the argument of
collect had to have the same type as a wider-scoped A-bound variable. Phase 1 of typing the
collect declaration will give the system ({a}, L1), below. This is rewritten to FF'AIL.

({a},L1) = {a},a T—alist Ty o T T—4 list,
aT—a list Cy f—a list

—s1 ({a},L2)= {a},aTCiaTT,
a list Ty (3 list,
aT—a list Cy f—a list

—s1 ({a},L3)= {a},alial,
a list Ty (3 list,
aT—a list Cy f—a list

—s2  ({a},L3)= {a},a=aT,
a list Ty (3 list,
aT—a list Cy f—a list

Lemma 2 (Henglein) If a problem (C, L) has a solution, then the rewrite system will terminate
when applied to (C, L).

Lemma 1 and 2 entail the following theorem:
Theorem 3 (Henglein) If a problem has a solution, it has a most general solution.

The ML case of the principal types theorem is a consequence of the existence of most general
unifiers, and in a similar way, the principal types theorem for M LT is a consequence of the existence
of most general semiunifiers. The algorithm for calculating semiunifiers differs, however, from that
for calculating unifiers in the respect that when applied to an unsolvable problem, it may not
terminate. This is a consequence of a result due to [Kfoury, Tiuryn, and Urcyczyn, 1989] that
semiunification is undecidable. This said, the proof of Kfoury et al generates in no very direct way
an input to the algorithm on which it will not terminate, and in fact no example has been found
on which the algorithm does not terminate. This was one reason for creating the implementation:
to enable one to investigate whether or not realistic programming can lead to a typing problem on
which the semiunification algorithm will diverge.

2.3 The type-checking algorithm

A Damas-Milner style type-checking algorithm for M L consists of two mutually recursively defined
functions, Wz, an exp-ression type checker, and Wy, a dec-laration type checker:

Weap( L, exp) = (9, 7)
Wiee(E, dec) = (5, 2 —7)
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In addition to the output type 7 (or environment z — 7), a substitution S is also produced,
which defines a minimum refinement of the enviroment which may be necessary to type the code.

Concerning W, one can show:

(a) If Wepp(E, €) = (5, 7), then the following are equivalent for all (57, 7')
(i) ML proves S"E|—e : 7/ for some refinement 5’
(i) (87, 7") = (T'S,TT) for some substitution 7.

b) if Weup(F, €) = fail, then for no (5,7) does M L prove SE|—e: T
P
(c) W terminates on every input.

Hence, We,,,(E, €) fails or computes a most general type of e modulo F, and so does Wy, for
declarations.

In defining W, we have to split £ into a part A containing assumptions arising from a A— (or £n)
binding, and a part I' for the remainder. Asindicated in section 2.1, an additional output parameter,
is required, consisting of semiunification problem, L. This will recording the instantiations that
have been required for the type variables not occurring in A:

W—l—exp(Av Fv exp) = (Lv S? T)
W ee(A, T, dec) = (L, 5,z —T)

W as defined below can be shown to have analogues of the above properties of W:

(a) H Wty (A, Ty e) = (L, 5,7), then 7°* holds and the following are equivalent for all (57, 7'):
(i) ML™T proves S’A,STFS A|—e 7!
11 ,T) = , 1'T), lor some ,suctat_ olds
i) ($,7) = (T8, T7), f T, such that TL % hold

(b) if Wegp(A, T, e) = fail, then for no (5, 7) does ML prove SA,WSA l—e:r
(c) if for some (5, 7) M L proves SA,WSA|—6 : 7, then W¥.,,(A, T, e) terminates.

A similar statement holds of W ...

The algorithm Wtis defined below, in which we use specp(L) (‘the free variables of specialisations
in L with respect to 1), where L is a true set of Cry(a) claims, to refer to the transitive closure
of the set of free variables of I' under the relation aR3, where aRf holds if if for some [ C r of L,
« is a pattern variable of [, and § € Ta, where T is the associated match.

« WHep(AT,2) = (L, 0, 7[#/ 5, a/))
where V31 = (A, T)(z) ,
d = FV (Y1) = FV(A),
o' = new copies of @,
! = new copies of ﬁ,
L=AaC, o :acd de o is the corresponding copy of a}, i is
an integer indexing no other inequations

e WH,(A, T, ey e3) = (5352L1 + S3L2, 535251, S3(a))
if (Ll,sl,T) = W"’exp(A,F,el)
(L275277—/) = W—l—ewp(SlAvSlrveZ)
S5 = mgu(Ser, 7'—a) (« fresh)
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e Wt (AT, fn x => e) = (L1, 5, S1a—7)
if (L1,51,7) = Wtoop(A+ {x — a}, T, e), where a is fresh

e WT_,,(A, T, let dec in e end) = (S3L1 + L2,5251,p)
if (Ll, Sl, {X — F}) = W+dec(A, I, dec)
(L27527p) = W—l—el’p((SlAv Slr ‘I’ {X = F})v e)

e WHi (A, T,val x = e) = (Lq, 5, {x+— var 1)
if (I, 5,7)= W+exp(A, I'e)
3=FV(r)— FV(5A) — specsr(L)

e Wti.(A,T,val rec £ = e) = (5352L1, R, { £ — VﬁSgT 1)
if (L17 51, T) = W—l—el’p(Av I'+ {f = Oé}, e)

So = mgu(a, )
53 = mgsu(FV(SgslA), (Sle))
R = 535,51

3 = FV(837) — FV(RA) — specgpr(S5552L1)

e Wty (A, I',datatype d@tn = ¢1 | ...y | ¢nt1 0F Tog1 | oo g OF Togn) = ([],0, Eo)
where {tn — k} is first extended to Fy by {¢; — Va.dk}, for 1 <i < m,
and then Fj is extended to Fo by {¢; — Va.1;[k/tn]—dk}, for m+1 < i <
m-+n

o W, and W"’exp return fael if in any of the above cases the called functions return fail
The important points to note are:

1. The standard algorithm W can be obtained if all variables in the environment are treated as

A (i.e. A-bound) variables.

2. The base case contrast with W is that type variables not occurring in the A part of the
environment are copied in typing an atomic piece of syntax, the copying being reflected in
an output semiunification problem. Note the issue ‘copy or not copy’ arises not just for
recursively bound variables.

3. With the exception of the case for recursive declarations, the output semiunification problem
for complex code is accumulated in the obvious way from the semiunification problems for
the component parts.

4. Besides the base case, the other main difference to W is in the case of recursive declarations,
where there is a call to mgsu — a most general semiunifier function — on a semiunification prob-
lem defined by typing the definition. The output semiunification problem for the declaration
has had the mgsu applied to it.

5. In both non-recursive and recursive declarations the criterion controlling generalisation of
type variables involves both the environment and semiunification problem.

The following examples illustrate points 2 and 5.

Example: incomplete with copying only of ‘rec-bound’
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In the base case a particular ‘copying’ criterion is used to determine which type variables should
be copied — namely those not occurring in the A part of the environment. The simple examples of
section 1.2 may have suggested an alternative copying criterion — namely copy those occurring in an
assumption concerning a recursively bound term-variable. However, the recursively bound variable
may occur in the definition part of different let-declared variable. Clearly the further occurrences of
this let-declared variable should count somehow as contributing further instantiation constraints
on the polymorphic assumption for the recursively bound variable. Consider for example, the
following notational variant of our earlier example 1.
val rec f = fn x => let val g = f in (g 1; g ‘‘a’’; x)

With just the copying of ‘rec-bound’ variables, the declaration would get rejected. Calling W+
on this in an empty context, will lead to a call on the embedded let expression, in a context
{z 17, f:a}. We show below how this calculation unfolds:

Wt{e v, f:a,9: 01}, g1) = ([], {int—az/a1}, as)
WH({e:v,fra), 1) = (aCar, 0, a1) W+({x:7,f:a,g:inlt—>02},g “a”):2faill ’

WH({e 1S rah val g = £) = (@ Can 0, g:a1)  WH({z:7,f agraihg1; g 'as x) = fai
Wt({e:v,f:a},let val g = £ in ...) = fail

First the declaration part of the let is typed, val g = £, which in turn requires the typing of
the defining expression, £. This occurrence of the recursively bound variable is typed as ap in
the top-left call in the above, associated with the inequality @ T «y. From this type for the
defining expression, a type for the declaration val g = f is obtained by quantifying the 5 which
are F'V(ay) — FV(z : v) — specs.o(a T aq). In this case this rules out the quantification of ay.
Then the in part of the let is typed, in a context with the assumption g:ey. Then ¢f we had
copying only for ‘rec-bound’ variables, the occurrences of g must be typed without copying. Then

“‘a’? would be typed in context with the assumption g:int—asy, and this

after g 1 is typed, g
would lead to fail.

With the copying criterion actually used by W7, the example is typable. However, it would also
be possible to derive this example by changing the gquantification criterion, and persisting with
copying only of ‘rec-bound’ variables. The usual criterion for quantifying a type-variable in ML
is that the type-variables not occur in the environment, and if we had this criterion, then g would
be declared as having type Vayj.ap, and the above example could be typed. The following example
shows, however, that this quantification criterion is too generous.

Example: quantifying variables not in environment is unsound

With a less strict quantification criterion, the following would be typed as {f — int x int—int},
when it is in fact M LT-untypable.

val rec £ = fn x => let val g = f in (g 1; x = (1,2); 1)

As before calling W on this will lead to a call on the embedded let, in a context {x : ~, f : a}.
The computation on the declaration part then is — assuming a quantification criterion that checks
stmply for the presence of a free variable in the environment:

WH{z:v,f:a},£) = (@ C a1, 0, ay)
WH{z:7,f:a},val g = £f) = (aC a1, 0, g: Vaj.a;)
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In the enviroment associated to the declaration, g is typed as Vaq.aq. The calculation on the in
part of the let is then:

WH{z:v,f:a,9:Var.a1},g 1) = (][]
WH{z 7, fra,g9 :Yar.an}, x = (1,2)) = ([], int * int/7,bool)
WH{z sintxint, f :a.g:Vaj.aq}t, 1) = (]
WH{a oy, fra,g:Yar.ar}, (g 1; x = (1,2); 1)) = ([], int x int /v, int)

Thus for the let expression we have:
WH{z:v, f:a},let ...) = ([a C ay,int * int/y,int)
and in typing the recursive function, we will calculate
mgsu([a C aq][int * int—int/a])

= mygsu([int * int—int C aq])
int * int—int /oy

and thereby, the recursive function will be declared with type int * int—int. With the more restric-
tive quantification criterion given in the definition of W™, we will have a different semiunification
problem, namely

mgsu([o C ay, a1 Cint—ag][int * int—int/a)
= mgsu([int * int—int C a1, 01 C int—az])

= fail

3 Prototype of a polyrec checker in SMLofNJ

In the previous section we have formulated the typechecker of MLt as a close variant of the
typechecker for M L as it appears in [Damas and Milner, 1982]. In the polyrec_sml implementation,
for practical reasons, we remain as close as possible to the typechecker part of the SMLofNJ
compiler. Now, as we come to describe the implementation in more detail, some differences between
theory and practice in the SMLofNJ typechecker have to be pointed out.

First, recall that the Damas-Milner algorithm uses an extension of the environment to record the
interim type-assumptions made concerning the bound variables of a term, and then uses this

e to type occurrences of the bound variable (base case), and

e to control generalisation of type variables (declaration cases).

The typechecker in the SMLofNJ compiler DOES NOT not use an environment to make interim
type-assumptions concerning bound variables, and accomplishes the above central tasks differently:

e types are injected into the code to type the occurrences of bound variables (see 3.1)

e quantification of type variables is achieved by depth controlled generalisation (see 3.1)
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Second, instead of storing substitutions to be applied later, the substitution is immediately cashed
out. These differences between theory and practice are inherited by our implementation of M LT
typechecking. In the following section we define what might be called a prototype version of our
implementation, closing principally these gaps between theory and practice. The hope is that
thereby the outline will be clear.

The third difference between the theory described above and the implementation, is that the im-
plementation concerns a larger language (including records, user-defined variables, reference values
etc.) and deals with a particular representation of that larger language. Documentation of the
implementation proper begins in section 4.

3.1 The representation of terms and types in SMLofNJ

Instead of using an environment to give types to occurrence of bound variables, in SMLofNJ, the
occurrences of the variables bear tags which are pointers to a type. That is to say, the tags have
type ty ref, where ty is the datatype for types. One of the values in this type is UNDEFty, and
initially the tags are references to this value. The tagging proceeds roughly as follows:

fnx=> (... x ...) :a A-abstracted variable, and the oc-
~ fn x™ => (... x™ ...) currences in its scope, receive the same
m, a fresh reference to UNDEFty

val recx = (... X ...) :a recursively declared variable, and

~val rec x™ = (... x™ ...) the occurrences in its definition, re-
ceive the same m, a fresh reference to
UNDEFty

val x = (...) : a non-recursively declared variable re-

~val x™ = (...) ceives m, a fresh reference to UNDEFty

let dec[x] in (... x ...) : the occurrences of a let bound variable

~ let dec[x™] in (... x™ ...) receive the same tag as the variable

receives in the declaration part.

Type checking proper ensues as a process of revising the tagged code, so that the type references
are updated to references to appropriate types.

Types are values in the datatype ty. We give an extract of this below, followed by some remarks
concerning this representation of the types.

ty
= VARty of tvinfo ref
| CONty of tycon * ty list
| IBOUND of int
| WILDCARDty
| POLYty of {sign: {weakness:int, eq:booll} list, tyfun: tyfun, abs: int}
| UNDEFty
tvinfo

= INSTANTIATED of ty
| OPEN of {depth, weakness, eq, kind: tvkind}
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tvkind = META |

tyfun
= TYFUN of {arity : int, body : ty}

References in open type variables

Open type-variables are represented by values which have as an essential part a reference value,
that is, an address in memory. Thus variables are indexed not by integers but by memory locations.
Consider the evaluation of the following code:

val v = VARty(ref(OPEN{depth = d, kind = k, eq= e, weakness = w}))
val v’ = VARty(ref (OPEN{depth = d, kind = k, eq= e, weakness = w}))

The value of v, is the encoding of an open type-variable. The value has as a subpart a reference, m,
to a value OPEN {depth = d, kind = k, eq= e, weakness = w }, which records various kinds
of information about the variable, the most important kind being that it is an open variable. The
value of v’ is the encoding of a distinct — though similar — open variable. The value will contain
another reference m/, distinct from m. The contents of the two references, however, are identical.

The instantiation of type-variables is carried out by updating the contents of the reference part.
For example, to instantiate v to say int, one could evaluates:

let val VARty(m1) = v in (ml := INSTANTIATE(int)) end

The contents of the reference part of v are thereby changed to INSTANTIATE(int). This will cause
the appropriate effect also when v is embedded, as in v --> v’, where --> denotes the arrow type
constructor. Thus no substitution operation has to be written, which is the great advantage of
this representation of type-variables. The cost is that the result of ‘instantiating’ the variable v
to ent is not simply ¢nt but VARty(ref (INSTANTIATE(:int))). In fact there are infinitely many
values in the ty datatype which effectively represent int, of the form VARty (ref (INSTANTIATEC(. ..
(VARty (ref (INSTANTIATE(int))))))), and certain parts of the implementation have to take care
of these equivalences.

Quantified types: the representation maintains a distinction between bound and free type vari-
ables. IBOUND(n), for integer n, represents the various bound variables, and these are intended
to occur in the scope of the POLYty operator. Contrary to the usual definiton of M L types, this
representation of types does allow types with embedded quantified types. These, however, never
arise in the course of typechecking.

The weakness and eq fields that appear in open variables do not appear in the occurrences of
bound variables, but this information is still associated with the variables by the sign field of a
quantified type.

Depths and depth-controlled generalisation

Because the compiler does have an environment for interim type assumptions, the quantification
of type-variables cannot be controlled in the way suggested directly by the theory. Instead depth-
controlled generalisation is used.

e A type variable has depth d if the widest scoped abstraction with which it is associated is
embedded at a depth d — 1 under further abstractions. For example, if fn x™ => x™ is well
typed then,
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'm = VARty(ref (OPEN{depth = 1,eq=false,weakness=infinity,kind=META }))

e Depths are adjusted in unification: when a variable of depth d is equated with a type which
features variables of depths dy, ...d,, each of the d; is adjusted to minimum(d, d;).

e The typecheck functions have (essentially) a depth argument, which records the number of
fn x => and val rec bindings that have been descended through.

o In generalisation: type variables with depth attribute > ‘current’ depth may be generalised.

3.2 The prototype checker

The parsing stage gives values of type Ast.dec - for the purposes of this outline, this we can equate
with the M L declarations defined earlier. Note the checker always starts on a declaration. These
are then ‘tagged’ in the way described above. The tagging of the trees (of type Ast.dec) takes
them into the datatype of Absyn.dec trees.

The main auxiliary functions/values used by the prototype typechecker are described below. Those
marked + are additions to what it required for M L:

instantiate

+ rulebound

+ copy

unifyTy

4+ Semiunify.ineq

4+ Semiunify.process

generalize

ity -> ty
takes a quantified type and replaces the bound variables with depth
infinity open variables.

:ty list ref
reference to the list of open type variables occurring in currently in
scope A-bound variables

:ty list ref -> ty -> ty

variables not on the rule-bound list get copied (with depth preser-
vation), and semiprob is updated. Depth infinity variables resulting
from the initial instantiations of a bound variable are not copied

:ty * ty -> unit

This is a side-effecting operation which basically makes its arguments
equal. There is a further important aspect concerning depths: when
a variable of depth d is equated with a type which features variables
of depths dy, ...d,,, each of the d; is adjusted to minimum(d, d;).

ineq
The datatype of integer indexed inequations

:ineq list -> ineq list

This basically applies the earlier defined rewrites S1-S4, taking rule-
bound as the context set. However, when S1-54 specify that an
identity, @ = 7, be added to the list, here « is simply instantiated to
T.

ity ref -> unit
takes a depth d, and a type reference, and updates the reference to
a type in which open type variables of depth > d are quantified.

Below we give a prototype of the polyrec checker. With certain obvious deletions, that the comments

20
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below should make clear, this can also be read as a summary version of the existing SMLofNJ type-
checker.

expType(d,x"m)

let val tyl = instantiate(!m)
val ty = copy(rulebound, tyl) (* not in original *)
in (x"m,ty) (* output is tyl in original *)
end

expType(d,el e2) =
let (el’,fty) = exptype(d,el)
(e_2’ ,aty) = exptype(d,e2)
resty = VARty(ref(OPEN{depth = infinity,...}))
in (unify(aty -> resty,fty);
(e1’e2’ ,resty))
end

expType(d,fn x™m => e) =
m := VARty(ref (OPEN{depth = d+1,...}));

let val currentbound = ('rulebound) (* not in original *)
val _ = rulebound := ('m) :: ('rulebound) (* not in original *)

val (e’,ety) = expType(d+1, e)
in (rulebound := currentbound; (* not in original *)

fn x™m => e’, !m -> ety)
end

expType(d, let dec in e) =
let dec’ = decType(d, dec)
(e’,ety) = expType(d, e)
in (let dec’ in e’, ety)
end

and

decType(d, val x™m = e) =
let val _ = m := VARty(ref (OPEN{depth = infinity,...};

val (e’,ety) = expType(d, e)

val _ = unifyTy(!m,ety)
val _ = generalize(d, m)
in (val x™m = e)
end

decType(d, val rec x’m = e) =
let val _ m := VARty(ref (OPEN{depth = d+1,...}))
val (e,ety) = expType(d+1, e)

val _ = unifyTy(!'m,ety)
val _ = semiprob := Semiunify.process(!semiprob) (* not in original *)
val _ = generalize(d,m)

in (val rec x™m = e)
end
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Salient differences to the typecheck function W+ defined earlier:

e For none of the typecheck functions is there an input environment, nor an output substitution.
Instead there are side-effects to type references embedded in the code.

e There is side-effectable reference to a list of types, rulebound which contains the free variables
of currently in scope A-variables.

e Copying of type variables is controlled by the contents of the rulebound list

e None of the typecheck functions output a semiunification problem. There is instead a side-
effectable reference to a global semiunification problem.

o Generalisation of types is depth-controlled, as it is in SMLofNJ, but not as in W+

The following section gives detailed documentation of the polyrec_sml implementation.

4 The polyrec checker

4.1 Summary of differences

The main changes are the addition of the code defining a structure Semiunify, and the modification
of the code defining the structure Typecheck. Also:

1. polyrec_prev.sml differs from perv.sml by
System. Print:
< val printaftergen = ref false
System. Control. CG:
< val oldchecker = ref false
System. Control. CG:
< val viewsemi = ref false
System.Control:
< val primaryPrompt

ref g o

> val primaryPrompt = ref "- "

System.Control:

< val usemono = fn () => (InlLine.:=(CG.oldchecker,true);

< InLine.:=(primaryPrompt,"- "))
< val usepoly = fn () => (InLine.:=(CG.oldchecker,false);
< InLine. :=(primaryPrompt,"+ "))

2. corresponding differences between polyrec/polyrec_ system.sig and boot/system.sig
signature CGCONTROL
< val oldchecker: bool ref
< val viewsemi: bool ref

signature PRINTCONTROL

< val printaftergen : bool ref
signature CONTROL
< val usemono : unit -> unit

< val usepoly : unit -> unit
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3. polyrec/polyrec_batch.sml: the flags list in Batch functor has extra member
("oldchecker",oldchecker), so that batch compilation can proceed both with and without
polymorphic recursion

4. polyrec/polyrec_pptypelist.sml: defines an additional pretty printer structure PPTypelist,
containing ppineqlist and pptypelist for pretty printing a semiunification problems and
a list of types. polyrec/pptype.sml is exactly the same as the standard print/pptype.sml
code, except the signature includes the function ppTypel.

4.2 Documentation

The first entry indicates whether this code is additional (+), or a modification (~). Documentation
is also included of some the unaltered code. We use the same conventions as the pretty-printing
functions for variables - A’B,’C etc for unbound, ’a,’b,’c for bound.

1. ~ Typecheck :  the Typecheck structure

Original structure contained a definition of the form:

dectype(env,dec,toplev,err,loc) =
let

fun generalizeTy ...

fun generalizePat ...

fun applyType ...

fun patType ...

fun expType(....) and ... and decTypeO(...)
val _ = resetOverloaded()

val dec’ = decTypeO(dec,...)

val _ = resolveOverloaded

in dec’

end

The new version of Typecheck contains a definition of the form:

dectype(dec,....) =

if System.Control.CG.oldchecker = true then
(let

fun generalizeTy

fun generalizePat

fun applyType

fun patType

fun expType(....) and ... and decTypeO(...)
val _ = resetOverloaded()

val dec’ = decTypeO(dec,...)

val _ = resolveOverloaded

in dec’

end) - all as before

else

(let
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fun generalizeTy
fun generalizePat
fun applyType
fun patType

fun expType(....) and ... and decTypeO(...) - modfied a bit
val _ = resetOverloaded()

val dec’ = decTypeO(dec,...)

val _ = resolveOverloaded

in dec’

end)

The ‘newchecker’ branch has additional values and modifications of previous values

2. + typprint : ty -> unit
Prints a type. See [22].

3. + nameprint : symbol -> unit

Prints a variable name. See [22].

4. 4+ inpr : Semiunify.ineq list -> unit

Prints a semiunification problem. See [7].

5. 4+ lpr : ty list -> unit

Prints a list of types. See [7]

6. + rvbpr : Absyn.rvb -> unit

Prints a recursive value binding. See [8]

7. + checkpr : Semiunify.ineq list -> string -> Semiunify.ineq
list
See Semiunify.process[45], Semiunify.show [42]. After a semiunification rewrite step, is
called on the resulting semiunification problem, and a string giving the name of the rewrite.
Always returns the semiunification problem, after possibly printing some output. Used to
allow — according to the value of
System.Control.CG.viewsemi — optional feedback after a semiunification rewrite step. If
System.Control.CG.viewseni is true, user is prompted with print ?, and if the answer
is y, the name of the rewrite rule is printed, the rulebound variables, and the resulting
semiunification problem. Otherwise the semiunification problem is returned.

8. + checkrvbpr : Absyn.rvb -> unit
According to the value of System.Control.CG.viewsemi, gives the user the option to see the
recursive value binding about to be typechecked. See [6]

9. + rulebound : ty list ref

See copyTy [18], copy [19], Semiunify.Process [45], ruleType [30], rbupdate [17]. This is
a reference to the list of types of currently in scope rule-bound variables. Used to control
copying of variables and the rewriting of the semiprob semiunification problem

The reference is actually created in the structure Semiunify, as the value of the variable
Semiunify.nonpat. Within the Typecheck structure, the value of the variable is defined to
be that of Semiunify.nonpat
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10. + topprob : boolref
See VALRECdec case of decTypeO [32]. This is a reference to a boolean used to record whether
a whether a top-level recursive declaration is being checked or an embedded
11. + semiprob : ineq list ref
Reference to a semiunification problem, which a list of terms ineq(int,ty,ty). See copy
[19], VALRECdec case of decTypeO [32]
12. 4+ eqcounter :  int ref
See copy [19]. This is a reference to an integer, which is the inequality counter, used to make
sure that when an inequality is added to the semiprob list, it receives a new indexing integer
13. + member : a => ?a list -> bool

Membership function on any list. Defined in structure Semiunify.

14. 4+ there : ty -> ty list -> bool

Membership function on lists of types, treating prune-equal types as equal. See prune [20]

15. + readrulebound : ty list ref -> unit

A variable in Typecheck structure which is identified with a function of the same name defined
in Semiunify. See copy [19], Semiunify.reducela [47].

Takes a reference to a list of types, and updates the reference to the duplicate free list of the
free variables. For example if rulebound refers to [’A -> ’B,’B -> ’C], after the call of
readrulebound, this will have been compressed to [’A,’B,’C]

16. FLEX of label * ty list : possible value of kind

One of the possible values of the kind field in open variables is FLEX of label * ty list.
This arises in typing an underspecified record. Consider an underspecified record with two
specified fields, {11 = v1, 12 = v2, ... 3}, where the values vl and v2 have types tyl
and ty2. This receives a type of the form:

VARty (ref (OPEN {depth=d, eq=q, weakness=w, kind = FLEX([(11,ty1),(12,ty2)])
)

Note this representation of the type of an underspecified record is not isomorphic to the
representation used for a fully specified record, such as {11 = v1, 12 = v2 }, which is

CONty(RECORDtyc([11,12]1), [tyl,ty2])

See rbupdate [17], copyTy [18]

17. + rbupdate : ty -> unit
See ruletype [30]

Takes the initially assigned type of the argument of a function, prunes it — see [20] — and
updates rulebound with the free variables that occur in that type. In more detail:

(a) in case the type is CONtty(f,args), rbupdate is iterated over args

(b) in case the type is a flexible record type: VARty(ref(OPEN {kind = FLEX([(11,t1)
(In,tn)]),... 1})), rbupdate is iterated over the list [t1,...,tn]
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(c) in case the type is on open variable, it is added to rulebound list.

18. + copyTy : oty => ty * (ty * ty) list
see copy [19].
Takes a type and returns a certain copy of that type, together with ty * ty list which

records which variables were copied to what types. This list is later used by copy to update
the semiprob.

The basic idea is that variables not on the rulebound list get copied, all occurrences of a
particular variable getting the same copy. In addition

(a) user-bound variables not copied.

(b) a flexible record is VARty(m1), where m1 is ref (OPEN {kind=FLEX(fields),... }).
This variable is not copied, but the contents of m1 are updated by recursively applying

copying to the unknowns in fields. Thus supposing an empty rulebound list, the
flexible record {1:?4,2:°B,”...Z } will be copied to {1:°C,2:°D,>...Z }.

(c) depth infinity variables are the initial instantiations -see [25] — of a bound variable, and
are not copied

(d) zero-depth variables arise from over-loaded symbols, and are not copied, for which a
copying would block resolution.

19. + copy oty -> ty
takes a type, uses copyTy to copy it, and with resulting record of the copying that was done,

updates semiprob with appropriate inequations. The inequation counter eqcounter is first
incremented to ensure the new inequations have a new index.

20. prune oty -> ty
Defined in util/Typesutil.sml by:

fun prune(VARty(tv as ref (INSTANTIATED ty))) : ty =
let val pruned = prune ty
in tv := INSTANTIATED pruned; pruned
end
| prune ty = ty

This returns exactly ty when either ty is not a variable type, or if ty is an open variable type,
i.e. VARty(ref(OPEN {... })). In case ty is one the above cases, ty’, embedded under
several layers of VARty(ref (INSTANTIATED ...)), the result is to return ty’, and with the
side effect that ty then has the form VARty(ref (INSTANTIATE ty’))

21. unifyTy(typel,type2) : ty * ty -> unit

Defined in src/basics/unify.sml. unifyTy makes a case distinction on headReduceType (prune
typel) and headReduceType(prune typel). headReduceTypeis defined in src/basics/typesutil.sml,
and is redundant unless type abbreviations are involved, in which case these are cashed out.

For prune see [20]. unifyTy then distinguishes six cases

(a) WILDCARDty,_ - no side effect
(b) WILDCARDty,_ - no side effect
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(¢) (VARty varl,VARty var2), where varl = ref(OPEN {dl,el,wl,kl1 })andm2 = ref (OPEN
{d2,e2,w2,k2 }).
ifmi = m2 then () else (roughly)

INSTANTIATED VARty(m2)
OPEN{depth = min(d1,d2),
eq = el orelse e2,
weakness = min(wl,w2),
kind = unify_tvinfos(k1l,k2)}

mil :
m2 :

So m2 is updated to to refer to variable information whose depth is the minimum of the
depths of the two contributing variables, and m1 is basically instantiated to m2. If both
VARty(m2) and VARty(m1) are distinct user-bound variables a Unify ¢ ‘bound type
var’’ exception is raised (by unify_tvinfos). Because userbound variables cannot
be instantiated, if m1 is user-bound then instead m2 is basically instantiated to the
adjusted version of m1 (there are further conditions concerning the weakness and equality
attributes of user-bound variables and their instantiations)

When either of k1 or k2 is META, the result of unify_tvinfos is the other one, and if
both are FLEX fields then the the fields are merged and the types of shared fields are
unified.

(d) (VARty varl, type2) case. varl is ml = ref(OPEN {kind=META,depth=d,... 1}).
Basically the result is
ml := INSTANTIATED typel

However first adjust_type ml type2 is evaluated. This carries out an occurs check
for occurrences of var 1 in type2 (and which may raise Unify ‘‘circularity’’ and
adjusts variables in type2 with depth d’ to have depth min(d,d’).
There is also a further case when VARty varl is a flexible record type, and type2 is a
record type.

(e) (typel, VARty var2) = unifyTy(VARty var 2,typel)

(f) (tyconl argsl, tycon2 args2) case. The equality of tyconl and tycon2 are checked
(which may raise Unify °‘tycon mismatch’’)then the arguments are pairwise unified.

22. generalizeTy ¢ var * tyvar list * occ * (linenum * linenum) -> unit

This is the function used to generalize the type inferred for a variable bound in a recursive
declaration — see decTypeO [32]. It also adapted in generalizePat — see [23] — to generalize
the type inferred for a pattern in a non-recursive declaration — see decType0 [31]

The function is of the form:

fun generalizeTy(VALvar{typ,...}, userbound: tyvar list, occ:occ, loc) : unit =

let
fun gen(ty) = ...
val ty = gen(!typ)
in (typ := POLYty{sign = ..., abs = ...,
tyfun = TYFUN{arity= ...,body=ty}};
if !System.Print.printaftergen (* this print clause added *)
then typprint (!'typ)

else () )
end
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Basically the type reference typ is updated to the generalized version of the previous reference.
This is accomplished principally by the function gen, which replaces particular free variables
of 'typ with bound variables, IBOUND(n). The weakness and eq attributes of the variables
generalized appear in the sign field of the resulting type.

The final clause is an addition which simply prints the type obtained after a step of general-
ization, making the types assigned in embedded declarations visible.

What determines whether a variable may be generalized is the relationship between its at-
tributes and the occ value that is the third argument of generalizeTy, as defined by gen(ty).

The base case of gen(ty) is when ty is a variable. Otherwise gen(CONty(tycon args)) =
CONty(tycon,map gen args). When tyis a variable VARty(ref (OPEN {depth,weakness,eq,kind
1)), gen(ty) makes a three way distinction according to the kind of the variable. The cases

kind = META, kind = FLEX _ are documented below.

(a) kind = META
If the variable’s depth is greater than lamdepth occ (and weakness > generalize_point
occ) then the variable is replaced by a bound variable. The sign field of the eventual
quantified type will record the weakness and eq attributes the generalized variable.

(b) kind = FLEX _
The SMLofNJ checker has the property that a flexible record type cannot be generalised
- an error message is generated, and a wildcard is given as the answer.

23. generalizePat : pat * tyvar list * occ -> unit

Called by decTypeO VALdec case [31], to generalize particular free variables in the type of a
pattern.

24. applyType oty %ty -> ty

Basically applyType(tyl,ty2) unifies the argument part of tyl with ty2, and defines the
answer as the value part of ty2. See expType APPexp case [29)]

fun applyType(ratorTy,randTy) =
let val resultType = VARty(ref (OPEN { depth = infinity,
weakness = infinity,
equality = false,
kind = META }))
in (unifyTy(ratorTy, (randTy --> resultType));resultType)
end

25. instantiateType(ty,occ) : 1ty * occ -> ty
Defined in basics/typesutil.sml. Called in expType, VARexp case [27]

Roughly, instantiateTypeis an identity on monotypes, and in the case of polytypes, replaces
the bound type-variables with ‘open’ type variables of depth infinity. This infinite depth allows
the possibility that the instantiation may be reversed in a generalisation, when the occurrence
of the polytyped variable does not constrain the relevant argument place.

Over and above this, though, instantiateType also computes new weakness for the argument
slots of the body of the polytype. So instantiateType returns a modified version of the body
of a polytype, replacing the IBOUND n’s in the body with ‘open’ variable types of infinite
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26.

27.

depth, and appropriate weakness as determined by calc_weakness(abs,occ,w) where w
is the appropriate weakness entry in sign, whilst any ‘open’ variable types in the body are
left unchanged, up to change of weakness, again calculated by calc_weakness(abs,occ,w)
where this time w is the weakness of the given open variable type.

instantiateType(ty,occ) is defined as follows:

(a) case ty is not a polytype => ty
(b) case ty = POLYty{sign,body,abs} => subst body.
subst body = case body of
i. VARty(ref (INSTANTIATED(ty))) => subst ty
ii. CONty(tyc,args) => CONty(tyc,subst args)

iii. VARty(r as ref(OPEN{weakness = w,...})) => VARty(r’), wherer’ has adjusted

weakenss
iv. IBOUND n => VARty(ref (OPEN{kind = META,depth = infinity, weakness = w,...})),
where w is an adjusted weakness
calc_weakness is defined basics/typesutil.sml.
mkRefMETAty : int -> ty
defined in basics/typesutil.sml.
mkRefMETAty (d) =
VARty (ref (OPEN{depth = d,weakness=infinity,eq=false,kind=META }))
~ expType(exp,occ,loc) : case exp of VARexp(r as ref(VALvar {typ,access,name
H,o =

let val tyl = instantiateType(!typ,occ)
val ty = (readrulebound rulebound; copy tyl)
in if Prim.special access (¥ =, <>, :=, update special cases *)
then (r := VALvar{typ= ref ty,access=access,name=namer;
(VARexp(r,NONE) ,ty))
else (case ('typ)
of POLYty _ => (VARexp(r,SOME ty),ty)
| _ => (VARexp(r,NONE),ty))
end

Essentially VALvar {typ, access, name }, where typ has type ty ref, is a bound occur-
rence of a variable. The representation, however, embeds such a variable, v, further, as
VARexp(ref(v) ,tyop), where tyop may either be NONE or SOME ty. The main point is that
the output type ty is derived from the contents of the type reference, typ, by first instan-
tiating [25] and then copying [18]. copy will basically copy the type variables not on the
rulebound list. readrulebound rulebound is a compression operation on the rulebound
list — see [9].

Note that in most cases this call to expType is without side-effects. However, in the case of
the ‘special access’ variable, the type obtained by instantiation and copying is used to update
the reference r in VARexp(r,_) to VALvar {typ = ref ty,...}.

The tyop argument in the output is used to record whether or not the type of the variable
was polymorphic before the type-checking.
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28. occ . occ

An abstype defined and documented in src/basics/typesutil.sml. A value of type occ will
consist of the constructor 0CC applied to a record with various fields, one of which is lamd
= lambda depth. Amongst the functions defined in the abstype are Abstr, which (amongst
other things), increments lamd by one, and lamdepth, which returns the lamd value.

29. expType(exp,occ,loc) : case exp of APPexp(rator, rand) =>

let val (rator’,ratorTy) = expType(rator,Rator occ,loc)
val (rand’,randTy) = expType(rand,Rand occ,loc)
val exp’ = APPexp(rator’,rand’)
in (exp’,applyType(ratorTy,randTy)) handle Unify(mode) => let .... in (exp,WILDCARDt
end
end

This is unchanged from the SMLofNJ compiler. Basically the operator and operand are
typed at occ levels Rator occ and Rand occ, where Rator and Rand are operations defined
in the abstype for occ — see [28] . Note these adjust weakness relevant aspects of occ. The
lamdepth attribute is not altered,i.e. lamdepth(occ) = lamdepth (Rator occ) = lamdepth
(Rand occ). The exceptions generated by the unification code are of the form Unify(mode),
where mode is a string — see [21] — and the exception handling involves printing various error
messages and then defining the answer as (exp, WILDCARDty). Defining WILDCARDty as
the answer allows typechecking to continue after some error has been discovered, allowing
potentially further errors to be detected.

30. ~ ruleType(RULE(pat,exp),occ,loc)

let val occ = Abstr occ

val currentbound = (!rulebound) (* added *)
val (pat’,pty) = patType(pat,lamdepth occ,loc)
val _ = rbupdate pty (* added *)
val (exp’,ety) = expType(exp,occ,loc)

in (rulebound := currentbound; (% added *)

(RULE(pat’,exp’),pty,pty --> ety))
end

This is the base case for function expressions. In general a function consists of a list of rules
of the form RULE(pat,exp). Fach is typed in turn by ruleType, and the results unified to
give the type of the function.

In a call of ruleType, the current value of rulebound is recorded as currentbound. The
pattern part of the rule is typed at a depth lamdepth (Abstr(occ)) = 1 + lamdepth(occ),
to give pty. rbupdate then adds the free variables of the pattern type to rulebound - see
[17]. The expression part of the rule is then typed at Abstr(occ), to give ety. The answer is
then pty --> ety, and rulebound is reset to currentbound. Although, rulebound is reset
to currentbound, rulebound can be side-effected by a call of ruleType — because some of
the variables in currentbound may be side-effected.

31. decType0O(decl,occ,loc) : case decl of VALdec vbs =>

let fun vbType(vb as VB{pat, exp, tyvars=(tv as (ref tyvars))}) =
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let val (pat’,pty) = patType(pat,infinity,loc)
and (exp’,ety) = expType(exp,occ,loc)

in (unifyTy(pty,ety)
handle Unify(mode) => ...);
generalizePat(pat,tyvars,occ,loc);
VB{pat=pat’,exp=exp’,tyvars=tv}

end

in VALdec(map vbType vbs)
end

A non-recursive value declaration takes the form VALdec vbs, where vbs is a list of value
bindings, each of the form VB {pat,exp,tyvars }. The vbType function defines the typing of
an individual value binding, and the result for whole is obtained by mapping this function over
the individual bindings. Note the result of typechecking a declaration is simply a refinement
of the declaration.

Basically the pattern typing code assigns fresh type variables to the variable being declared,
this is unified with the type of the definition, and the side-effected pattern type is then
generalised. Note all calls share the same occ value with the outermost call.

The fresh type variables assigned to the pattern have depth infinity. See [21] for inheritance
of depths under unification. Having depth infinity initially for variables in the pattern type
ensures for all practical purposes that after the pattern type has been unified with the defini-
tion type, the generalisation of this pattern type will be exactly the same as the generalisation
of the definition type”

32. ~ decType0O(decl,occ,loc) : case decl of VALRECdec(rvbs) =>

let val thedeftys = ref([]:((ty ref * ty) list))
fun setType(RVB{var=VALvar{typ,...}, resultty=NONE, ...}) =
(typ := mkRefMETAty(1+ lamdepth occ))

fun rvbType(rvb as RVB{var=v as VALvar{typ,...}, exp,resultty,tyvars}) =
let val (exp’,ety) = (expType(exp,Abstr(Rator occ),loc))
in (thedeftys := ((typ,ety)::(!'thedeftys)));
RVB{var=v,exp=exp’,resultty=resultty,tyvars=tyvars}
end

fun genType(RVB{var,tyvars = ref tyvars,...}) =
generalizeTy(var,tyvars,occ,loc)
val doclean = if (!topprob) then (topprob:= false;true)
else false

val _ = (app setType rvbs)
val rvbs’ = map rvbType rvbs
val _ = let fun f (tref,ty) = unifyTy(!tref,ty)
in (app £ (!'thedeftys))
end
val _ = (checkrvbpr (VALRECdec(rvbs)))

"The exception to this is if the declaration occurs embedded under more than 100000000 abstractions. It may
well then arise that variables which should be generalised will acquire depth 10000000 through the unification step.
They will then not be generalised, because the depth is less than the current depth.
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33.

val _ = semiprob := (Semiunify.process(!semiprob)
handle Semiunify.SFAIL(mode,ineq,L) => ...)
val _ = (app genType rvbs)
val _ = if doclean then (semiprob := [];
eqcounter := 1;

topprob := true) else ()
in VALRECdec rvbs’
end

A recursive value declaration takes the form VALRECdec rvbs, where vbs is a list of recursive
value bindings, each of the form RVB{f,fdef,resultty,tyvar list }. There are following
stages towards the final revised form of the declaration.

1. setType initialises the type-assumptions for the £’s. Unlike the non-recursive bindings,
these initialisations are not with depth infinity variables, but with 1 + lamdepth occ, cf.
ruleType

2. rvbType then types the def’s in turn, each time updating the reference thedeftys with
the pairing (ftype,fdeftype). The definitions are typed by calling expType with an occ
value Abstr(Rator Root). This gives an occ value with lamdepth attribute incremented by
1, as well as altering other weakness-related fields.

3. After all the definitions have been typed, the unifyTy function is iterated over the
thedeftys list, unifying each variables initialisation with its inferred type. Note this will au-
tomatically side-effect in the appropriate way the instantiation claims recorded in semiprob.

4. checkrvbpr is then called — see [8]. If System.Control.CG.viewsemi is set to true, the
user will at this point be prompted with a requents whether the recursive value binding should
be printed.

5. There is then a call to Seminify.Process — see [44] — on the current contents of semiprob
- call it L. This will essentially specialise L, in a minimum way, to a true set of claims L’ if
that is possible, and then semiprob will be updated to have L’ as value. Semiunify.process
raises exceptions of the form Semiunify.SFAIL(mode,ineq,L’’), when no specialisation is
possible. These exceptions are handled by printing an error message and then outputting L.”
as the result.

6. genType then generalises the set of inferred types, taking the initial value of occ as the
parameter to the generalizeTy function. Thus generalisation is called at a lower occ value
than that current during the typing of the definitions.

7. Finally a ‘clean-up’ clause is called, whose purpose is to detect whether a top-level dec-
laration has just been typed. and if so to reinitialise certain values. Before a rec-binding is
traversed, topprob is true. Within each call on a rec-binding, there is local variable doclean,
which is set according to the global value of !topprob: if !topprob is true, doclean is
true, if !topprob is false, doclean is false. As a side-effect of the case that !topprob is true,
topprob is assigned to false. So on the embedded calls !topprob will be false, and therefore
doclean will be false. Only if doclean is true (ie. top-level) is there a reinitialisation of the
references semiprob, eqcounter and topprob.

+ The semiunifier code

We implements a version the Henglein /Leiss rewrite system defined in section 2. We alter the
rewrites, so that where Henglein might add an identity s = ¢, instead apply mgu(s,t) to the in-
equation system. The set of context variables is recorded in the reference Semiunify.nonpat,
which is side-effected by the code in the Typechecker structure concerning rulebound.
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34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

See [45], [46], [47], [48], [57]

+ 1ineq : the datatype of inequalities: ineq of intxty*ty

The int part is refered to as the index. Note ineq(i,ty1l,ty2) will be pretty-printed as ty1
<i ty2, by inpr [4]

+ indexmatch . int list -> int -> bool

The empty list, and singleton integer lists are used as patterns for the indexes that inequalities
have. The empty list matches any index. [x] matches x. Other cases raise the exception
Indexpat

+ typematch : ty list -> ty -> bool

The empty list, and singleton type list are used as patterns for types. The empty list matches
any index. [x] matches any prune equal y. Other cases raise the exception Typepat

+ matches : int list * ty list * ty list -> ineq -> bool
Component-wise matching of a pattern (I,X,Y) to an inequality

+ split : int list * ty list * ty list -> ineq list -> ineq
list * ineq * ineq list

Given pattern (I,X,Y) and S, divides S into (L,ineq(i,x,y),R), where ineq(i,x,y) is the
first inequality matching (I,X,Y) in S; else raises the exception SPLIT

4+ subtract : 1neq -> ineq list -> ineq list

subtract(ineq,L) subtracts the first occurrence of ineq from L

+ find : int list * ty list * ty list -> ineq list -> ineq

given pattern (I,X,Y) and S, returns ineq(i,x,y) where ineq(i,x,y) is the first inequality
matching (I,X,Y) in S; else raises the exception FIND
4 openvariable : ty -> bool

checks whether a pruned type is an open variable. If the type is of the form VARty (ref (OPEN
{kind=k,... })), then if k is user-bound, counted as not open, other wise open. If the
type is of any other form, then it is not open.

+ show ¢ (ineq list -> string -> ineq list) ref

This reference is initially assigned a trivial value. In the Typecheck module, then show
is assigned to checkpr, which then optionally prints information given a semiunification
problem. See [7] and [45]

+ thestring : string ref

Reference to a string which is updated after a rewrite step to a string describing the rewrite.

+ Process

Called on a semiunification problem, initially applies !show to the problem and the string
‘“initial problem’’, then applies process to the problem. The effect is that before rewrit-
ing commences, the user has an opportunity to see the initial problem. See [7].
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45. + process

46.

This applies the rewrites reducel, reducela, reduce2 and reduce3 exhaustively, with the
priority reducel > reducela > reduce2 > reduce3. These corresponds to the rewrites

S1-54.

For each rewrite, when it cannot be applied it raises a particular exception, for which process
has handling (roughly) as follows:

fun process ineqlist =
process(reducel(ineqlist,ineqlist)) handle Redl =>
process(reducela(ineqlist)) handle Redla =>
process(reduce2(ineqlist)) handle Red2 =>
process(reduce3(ineqlist,ineqlist)) handle Red3 => ineqlist

note:

Red1 handling only arises once reducel does not apply

Redla handling only arises once (reducel,reducela) do not apply

Red2 handling only arises once (reducel,reducela,reduce2) do not apply

Red3 handling only arises once (reducel,reducela,reduce2,reduce3) do not apply

reducel and reduce3 have cases which raise the exception SFAIL(mode,ineq,L), where m is
a string recording what kind of a failure happened, ineq records the problematic inequation
gave rise to the problem, and L is a certain semiunification system from which the problem
inequation has been deleted. This is used to allow typechecker to continue after an error in
order to detect further errors.

The SFAIL(mode,ineq,L) exceptions are not handled by process, but rather by the call to
process from the typechecker — see [32].

Additionally, the reduce terms called by process are embedded as (!show reduce term
thestring). This evaluates to the reduce term, and according to the setting of
System.Control.CG.viewsemi, allows the user to see the result after reduction. See [42],[7].

+ reducel : ineq list*ineqlist -> ineq list
uses exception SFAIL(mode,ineq,ineqlist) exception Redl

Essentially implements the S1 rewrite which replaces (al1,...,an) £ <i (b1l,...,bn) fin
a semiunification problem with the inequatons al <i bil,...,an <i bn.

Initially reducel is called by process(L), and this sets the two arguments of reducel equal.
The output list is either immediately determined from the first argument, or by a recursive
call reduce1(tail(L),L). The second argument remains a record of the initial problem, and
is used only in generating exceptions.

reducel1(L1,L2):

Takes head ineq(i,x,y) of L1
tests whether pruned versions of x and y are functions
if yes tests whether functions are equal
if yes makes new inequations from the argument lists and appends

. to (t1 L1)
if no raise SFAIL("function clash in semiunify",

ineq(i,x,y), subtract (ineq(i,x,y)) L2), so third ar-
gument of the exception is the initial problem minus the
problematic inequality
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if no, tests whether x is flexible record, and y is a record type.

if yesreturn ineq(i,x’,y):: t1(L1), where x’ is record-type derived from
the flexible record x by adding the extra fields of y, typed with fresh-variables
if no return ineq(i,x,y) :: reducel((tl L1),L2)

If first argument is empty raise Red1. This has the effect that if L contains no possi-
bility to apply the S1 rewrite and process L tries to rewrite L with reduce1(L,L),
the exception Redl will be raised.

47. 4+ reducela : ineq list -> ineq list

uses exception Redla

This basically implements the 52 rewrite, such that if x <i y occurs and x is a type-variable
in the context set, then x should be unified with y. However, also variables arising from
over-loaded symbols are also treated as if they were in the context set.

reducela(l) =

Takes head ineq(i,x,y) of L
tests whether if x is a zero-depth variable (and therefore types an occurrence

of an overloaded symbol)
if yes, evaluates unifyTy(x,y), returns (t1 L)

if no, tests if x is in 'nonpat,
if yes, evaluates unifyTy(x,y), returns (t1 L)
if no returns ineq(i,x,y) :: reducela(tl L)
If L is empty, raises Redla. This has the effect that if L contains no possibility to
apply the S2 rewrite (and no LHS 0-depth variables) and process L tries to rewrite
L with reducela(L), the exception Redla will be raised.

48. 4+ reduce2 : ineq list -> ineq list
uses exception Red2

Basically implements the S3 rewrite, rewriting a pair x <i t and x <i s tox <i t, with the
side-effect that t and s are unified.

reduce2(L) =

takes head (i,s,t) of L
tests whether s is an open variable
if yes;use ([i],[s],[]) as pattern, split the rest of L,
into (Left,(i’,s’,t’),Right) where (i’,s’,t’) s
first matching ineq, evaluate unifyTy(t,t’), return

(i,s,t)::(Left@Right)
if no, return (i,s,t):: reduce2(tl L)

When L is empty, Red2 is raised. This has the effect that if L contains no possibility
to apply the S3 rewrite, and process L tries to rewrite L with reduce2(L), the
exception Red2a will be raised.

49. 4+ makedtrs : ty * ineq list -> ty list
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50.

51.

52.

53.

54.

55.

56.

57.

An auxiliary function of check — see [52]. makedtrs(y,L) makes a list of all x such that
(x <_ y) occurs on L. That is, the immediate daughters, or predecessors of y under < are
collected.

4+ minus : ty * ineq list -> ineq list

An auxiliary function of check — see [52]. minus(y,L) discards inequalities (y <_ _) from L

4+ iterate : (’a -> bool) -> ’a list -> bool

An auxiliary function of check, and reduce3 — see [52], [57]. iterate(f,L) is true if £ x is
true for some x in L

4+ check x y L : ty -> ty -> ineq list -> bool

auxiliary function of reduce3 — see [57] — which implements the ‘extended occurs check’ of
the S4 rewrite: checks whether x can be linked to y by a chain of inequalities in L

check x y S =

check whether x = y
if yes then return true
if no then iterate the function fn dtr => (check x dtr S’) over
makedtrs(y,S) (i.e. the immediate predecessors of y in S),
where S’ is minus(y,S) (i.e. S with inequalities (y <_ _)
discarded)

Note, once we have a predecessor z of y, we wish to check whether x can be linked to z. In
the search for such links we can ignore inequalities (y <_ _), as linking x to z by means of
such in inequality, means x can be linked to y more directly. This is the reason why in the
definition of check, once linking to the predecessors of y is attempted, the pool of inequalities
to be searched is reduced with minus(y,S).

+ vars : ty list ref

A reference counter used in readrulebound [15], freevars [54], and reduce3 [57]

+ freevars : ty -> unit

Auxiliary function of readrulebound [15] reduce3 [57].

Given a type t, updates the type list ref, vars, adding all free variables t which are not
already present in vars

+ newinegs : (ty*ty) list ref

A reference value used in reduce3

4+ Semiunify.copyTy oty -> ty

Auxiliary function reduce3, which copies a type by making fresh-copies of variables, updating
also newineqs with the pairs consisting of the old and the new. User-bound variables are not
copied. Only the typings of the known fields of a flexible record are copied.

4+ reduce3 : 1ineq list * ineq list -> ineqlist

Implements the S4 rewrite, by eliminating args £ < x, unifying f (args’) with x, and adding
inequalities args < args’, provided the ‘extended occurs-check’ succeeds
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Initally reduce3 is called by process (L), and this sets the two arguments of reduce3 equal.
The output list is either immediately determined from the first argument, or by a recursive
call reduce3(tail(L),L). The second argument serves both as a pool of inequalities for the
extended occurs-check, and is also in generating exceptions.

reduce3(L1,L2) =

takes head ineq(i,t,v) of L1
checks whether t = CONty(f,args), and v is an open variable
if yes then checks whether (check v y L2) for free y of t
if yes then raise SFAIL("extended occurs check fail in semiunify",
ineq(i,t,v), subtract (ineq(i,t,v)) L2)
if no then copy t to t’, evaluate unifyTy(v,t’), return L°@ t1(L1), where
L’ are new inequations defined by the copying of t to t’
if no then return ineq(i,t,v)::reduce3(tl L1,L2)

if L1 is empty, raise Red3

5 Remarks on Design

5.1 Environments or variable attributes

As mentioned several times in the above, the SMLofNJ typechecker does without interim environ-
ments in typing bound variables. Instead types are inserted into the code, and the combination of
the depth attribute of type variables and the occ argument of the typecheck functions is used to
control the generalisation of type variables.

In polyrec_sml, we use what is effectively a reduced form of an interim environment - the
rulebound list, indicating the type-variables present in currently in scope A-bound variable. This
is inelegant, as this rulebound list could be used to control type generalisation, and make the depth
attribute of variables redundant.

A more elegant and more efficient design, might employ an alternative to the current datatype for
types, in which type variables would have an additional attribute which would take over the work
done by the rulebound list. Such a design was not implemented because of our overall decision
not to redefine any of the datatypes of the compiler.

Attempts to exploit the existing depth attribute of type variables to implement the necessary
control over type variable copying seemed doomed to failure. Consider

val rec £ = fn x => let val y = f x in ....

The initial type variable assigned to £ will have a depth attribute of 1, and that for x, a depth
attribute of 2. However, after £ x has been typed, the type variable for x will also have a depth
attribute of 1. This means that as we descend further into the term, and perhaps encounter a
variable tagged with a type featuring one of these variables, we cannot choose whether or not to
copy on the basis of the depth attribute.

5.2 Overloading

The code below comes from util/feedback.
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val infinity = 1000000000

fun minl 1 =
let fun f(i,nil) = i | £(i,j::rest) = if i<j then f(i,rest) else f(j,rest)
in f(infinity,1)
end

Without taking special precautions it will cause the poly-rec typechecker an ‘unresolved overload’
problem.

Overloaded constants are treated in SMLofNJ as polymorphic constants. Whenever the constant
occurs, unknowns of depth zero are chosen for the quantified variable, and global note is made of
the unknown. Zero is a depth which can in no other way become associated with a type variable,
and will never be generalised. In an embedded let, the definition type may contain unknowns of
depth 0, and these may well not occur in the type of any wider scope abstracted variables. Such
unknowns clearly should not be quantified, and this is achieved because of their zero depth.

Finally, at the top-level, after type-checking is effectively complete, there is final check whether the
unknowns chosen at instances of overloaded constants have become instantiated. If they have not,
the code is rejected as containing an unresolved overloading.

In the above code, the auxiliary function f will obtain type X % Xlist—X, where X is a zero-
depth unknown. In the abscence of polymorphic recursion, the subsequent use of f will cause the
instantiation of X to int. Consider now the case for polymorphic recursion.

At the point where use of f is to be typed, in the usual way, the question arises as whether the
unknowns in the assumed type for f should be copied or not. The basic criterion is that unknowns
not occuring in the assumptions of currently in scope monomorphic assumptions should be copied.
In the example, the unknown X does not occur in such a monomorphic assumption. However, if
then the occurrence of f is typed via a copying, it is only the copy of X that will be instantiated
to int, and not X itself. The result will be that at the final overload-check stage, X will remain
uninstantiated. Clearly it is necessary to define the copying functions used by the type-checker
(and by the semiunifier) so that the unknowns arising from occurrence of overloaded variables are
treated as monomorphic: when such unknowns occur in a current typing assumption, they should
not be copied in typing an occurrence. Also if such unknowns occur in a semiunification problem,
they should be treated in the same way as the other monomorphic variables of the problem.

5.3 TFlexible Records

Consider,
fun f =fnx => # 1 x

The definition of £ can be assigned any type whose argument is a record with a field 1, of some
type 7, and whose value is 7. However, SML’s type system cannot express the type quantification
implicit in this description, and consequently the above declaration is rejected as not typable: the
compiler’s ‘flexible record’ types, serve only as temporary markers for a record type which must
eventually be fully specified.

In polyrec_sml it remains the case that unresolved flexible records cannot be generalised. However,
under polymorphic recursion, the process of resolution of flexible records can take a different course
than it does under monomorphic recursion. Consider the following examples:
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(# 1 x; £(1,2); %)
(# 1 x; £(1,2); £(a’,’b’); x)

fun f x

fun f x

Clearly, under monomorphic recursion the first receives type int * int -> int * int, whilst the
second is untypable. This arises in the implementation because the type of the definition is unified
with the types of the occurrences. Under polymorphic recursion, in both cases the function receives
type ’a * b => ’a * ’b. For the first example, the input to Semiunify.process is:

{1:°4,...7Z }-> {1:°4,...7Z }<1 {1:int,2:int }-> ’B

Calling Semiunify.process on this, resolves the flexible record to be one with two fields, labelled
1 and 2, but does not force these fields to have integer type. For the second example, the input to
Semiunify.process is:

{1:°4,...7Z }-> {1:°4,...7Z }<1 {1:int,2:int }-> ’B
{1:°4,...°Z }-> {1:°4,...7Z }<2 {1:str,2:8tr }-> ’B

Again the flexible record is resolved to be one with two fields, labelled 1 and 2, but types of these
remain unconstrained.

6 Performance

We have tested polyrec_ sml by compiling all the sources for the compiler, both with and without
polymorphic typechecking activated. The result is that the total compilation time is ~ 10% greater
with polymorphic recursion than without. On the assumption that the source code of the compiler
is representative of typical SML programming, this suggests that the average SML user could use
polyrec_ sml without a punitive slowdown.

The file doc/compiler_examples notes some of the functions from the compiler sources that receive
a different type under polymorphic recursion than they do under monomorphic recursion. There
are ~ 30, the majority of which occur in simultaneous recursive declarations. A thorough analysis
of the frequency of simultaneous recursive declarations would be useful here, but preliminary in-
vestigation of this on the basis of profiling the typechecker on the first ~ 20% of the compiler code,
gives that less than 4 % of all recursively declared functions are part of a simultaneous recursion.
This low frequency of simultaneous recursions may explain the relatively small number of cases
in the compiler code which received a more general type under polymorphic recursion than under
monomorphic.

Some of the examples from the source code resemble the first example in section 1.2. In these case
the ‘real” value of a recursive function is preceded by some side-effecting code which also invokes the
recursive function. The side-effecting part constrains its instance more tightly than the definition
part contrains its instance, giving a more restrictive type under monomorphic recursion than under
polymorphic recursion.

This profiling also reveals that of the additional functions involved under polymorphic recursion,
most time is spent in checking whether a given type variable is present in the rulebound list
of variables. As mentioned in the previous section, altering the datatype for types might allow
this check to be avoided. Also of the various possible rewrites on a semiunification problem,
Semiunify.reducel is called most often, then Semiunify.reducela, then Semiunify.reduce2,
then Semiunify.reduce3.

The summaries after batch compiling with and without polymorphic recursion activated are given
below.
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60135 lines

parse 350.460000s
translate 34.610000s
codeopt 12.180000s
convert 13.650000s
cpsopt 237.870000s
closure 128.9200000s
globalfix 9.300000s
spill 20.920000s
codegen 153.820000s
schedule 160.600000s
freemap 17.960000s
execution 0.0s

GC time 336.320000s
total(usr) 1472.570000s
total(sys) 27.070000s

60135 lines

parse 215.640000s
translate 35.830000s
codeopt 12.440000s
convert 13.980000s
cpsopt 243.890000s
closure 132.490000s
globalfix 9.470000s
spill 20.990000s
codegen 157.430000s
schedule 164.220000s
freemap 18.320000s
execution 0.0s

GC time 308.670000s
total(usr) 1329.530000s
total(sys) 22.270000s
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