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Towards Fuzzy Uni�cation �Francesca Arcelli, Ferrante FormatoDIIIE{ Universit�a di Salerno84084 Fisciano (Salerno), Italy.Fax:+39-89-964284, Ph.: +39-89-964254e-mail: arcelli,formato@ponza.dia.unisa.it1 IntroductionVarious approaches to fuzzy Prolog has been proposed in the literature since Zadeh ([8])hasproposed fuzzy set theory (see for example [4],[1] and [5]). Fuzziness has been introducedat several levels and from di�erent points of views. A fuzzy degree associated to the factsin a program and to the rules has been introduced, notions of fuzzy inferences have beende�ned, based on di�erent notions of logical consequence. Resolution techniques basedon fuzzy logic have been used, employing fuzzy uni�cation methods carried out in severalways. In particular this last aspect is not a completly accepted and syntactically andsemantically de�ned concept.For example Baldwin introduced inference methods for processing a knowledge baseto answer queries based on semantic uni�cation; this notion with probability theory andprobabilistic fuzzy rules are discussed in [1], while Mukaidono in [6]de�nes a fuzzy matchingbetween fuzzy predicates by using linguistic hedges.In this work we describe our ongoing research towards the de�nition of a fuzzy uni�-cation. We start by giving a degree of uni�cation based on "a soft" version of the usualde�nition of terms uni�er. Then we show some important properties of such a degree, seenas a fuzzy subset and �nally we propose a degree of uni�cation associated to a completeset of transformation rules for a set of term equations.2 A degree of uni�cationLet F be a signature, let X be a �nite set of variables, and let M(F;X) the free algebragenerated by F and X . Let � : X ! M(F;X) be a �rst-order substitution. Let eq1 :M(F )�M(F )! L be a fuzzy relation over M(F ) with the following properties:� i) eq1(t; t) = 1 for any closed term t 2M(F )�This work has been partially supported by MURST 60%.1



� ii) eq1(t; t0) = eq1(t0; t) for any pair of closed terms t; t0 2M(F )� iii) eq1(t; t0) � eq1(t; t00) ^ eq1(t00; t0) for any t; t0; t00 2M(F )we call this relation a fuzzy similitude relation.Alternatively, the similitude relation could be built by starting from a similitude rela-tion eq0 de�ned on the set of constants C and then extended to the set M(F ) by setting:eq1(f(t1; : : : ; tn); f(t01; : : : ; t0n)) = infi=1::n eq0(ti; t0i)eq1(a; b) = eq0(a; b) 8a; b 2 C0 elsewhere:Given the set of �rst-order substitutions �, we can de�ne a "degree of uni�cation"between two terms as a fuzzy relation that "softens" the classical relation of uni�cation.Recall that the classical uni�cation relation between two terms t and t0 could be stated asfollows:a pair of terms (t; t0) is uni�able if there exists a �rst-order substitution � suchthat �(t) = �(t0)Along this lines, we can soften the meta-syntactical connectives, and de�ne a "degree ofuni�cation" in the following manner:U(t; t0) = sup�2�feq1(�(t); �(t0)g for any t; t0 2M(F;X) (1)Formula (1) is the natural softening of the classical uni�cation relation. The followingproperties follow:Proposition 1 For any variable x 2 X, for any term t 2M(F;X), U(x; t) = 1Proof: It su�ces to consider a substitution � such that �(x) = t. Then by property (i) ofrelation eq1 the thesis follows. Q.e.DProposition 2 Let t be a term in M(F;X). Then U(t; t) = 1Proof: If t 2 M(F ) then eq1(t; t) = 1. If t 2 M(F;X), for any substitution �,eq1(�(t); �(t)) = 1. Q.e.DProposition 3 For any term t; t0 2M(F;X) U(t; t0) = U(t0; t)proof: Since, for any � 2 � it is eq1(�(t); �(t0)) = eq1(�(t0); �(t)). The thesis follows imme-diately, passing to the supremum over �. Q.e.DThe degree of uni�cation given in 1 is not transitive; indeed such property would entailthat the following disequality: U(t; t0) � U(t; t00) ^ U(t00; t0)2



holds for any t; t0; t00 2M(F;X). If we consider two terms a and b in M(F ) and a variablex 2 X , and take a similitude relation eq1 such that eq1(a; b) < 1, since by Proposition 2it is U(x; a) = U(x; b) = 1, then U(x; a) ^ U(x; b) = 1 > U(a; b).The de�nition of degree of uni�cation given in (1) is quite natural. Many features ofthe classical uni�cation relation could be found in this fuzzy counterpart; as an example,consider the aspects of uni�cation connnected to computability theory. Assume that Land M(F;X) are a computable lattice and a computable algebra, respectively. Then wecan apply the concepts of L-computability theory (see [3]) and state whether or not thefuzzy relation U , seen as a fuzzy subset of M(F;X)�M(F;X), is decidable or less. Wehave the following remarkable result:Theorem 1 Consider the fuzzy uni�cation degree U as an L-subset ofM(F;X)�M(F;X).Then, if eq0 is an L-computable subset of C, U is L-computable.proof: To show this it is su�cient to prove that U is a computable function fromM(F;X)�M(F;X) to L, provided that eq0 is a computable function from C�C to L. It is immediatethat eq1 is a computable function from M(F ) �M(F ) to L, since it is de�ned from eq0using structural induction. We now prove that U is a computable function using thestructural induction over the terms of M(F;X). We say that a eq(t; t0) is computable if itcan be calculated in a �nite number of steps.� (i) Suppose t and t0 are constants: let t = a and t0 = b. Then U(a; b) = eq1(a; b)which is a computable expression.� (ii) We have to prove that U(f(t01; : : : ; t0n); g(t1; : : : ; tn)) is a computable expression,provided that U(ti; t0i) is computable.If f 6= g or n = m then, by de�nition of U , U(f(t01; : : : ; t0n); g(t1; : : : ; tn)) = 0 Otherwise,we have thatU(f(t01; : : : ; t0n); f(t1; : : : ; t0n)) = sup�2�(eq1(�(f(t01; : : : ; t0n)); �(g(t1; : : : ; tn)))By construction of �, it isU(f(t01; : : : ; t0n); f(t1; : : : ; tn)) = sup�2�(eq1(f(�(t01); : : : ; �(t0n)); g(�(t1); : : : ; �(tn)))i.e. , by de�nition of eq1:U(f(t01; : : : ; t0n); f(t1; : : : ; tn)) = sup�2�( n̂i=1 eq1(�(ti); �(t0i)))�nally, by distributivityU(f(t01; : : : ; t0n); f(t1; : : : ; tn)) = n̂i=1(sup�2� eq1(�(ti); �(t0i)))3



By induction hypotheses sup�2� eq1(�(ti); �(t0i))is a computable expression, so, U(f(t01; : : : ; t0n); g(t1; : : : ; t0n)) is a computable expressionsince it is the in�mum over a �nite number of computable expressions.Since we proved that U is a computable function from M(F;X)�M(F;X) it followsthat U is an L-subset which is L-computable.Q.e.DWe now extend the de�nition of uni�cation degree to a �nite set of �rst-order terms.Just like the �rst-order case, given a set X = ft1; : : : ; tng of terms in M(F;X), we call de-gree of uni�cation of X the following fuzzy L-subset U of P (M(F;X)), where P (M(F;X))is the powerset of M(F;X) : U(X) = inft;t02X(U(t; t0)) (2)where U is the degree of uni�cation of a pair of terms. A simpli�ed de�nition of degree ofuni�cation for a set of �rst-order terms is given by the following formula. Let D(X; 2) bethe set of binary dispositions of elements of X without redundancies. Then we set U1(X)as follows: U1(X) = inft;t02D(X;2)(U(t; t0)) (3)The following propositions hold:Proposition 4 Let X be a set of �rst-order terms. Then U(X) = U1(X)Proof: Since D(X; 2) �M(F;X)2 it is U1(X) � U(X). Besides, since U(t; t0) = U(t0; t)for any t; t0 2M(F;X), then U(X) � U1(X)Q.e.DProposition 5 U is an L-computable subset of P (M(F;X)).Proof: Immediate from the �niteness of X .3 Fuzzy Equational Uni�cationGiven a free algebra of terms M(F;X), where F is a �nite signature and X is a �nite setof variables, we can set a fuzzy derivational system based on the classic derivation rulesfor a set of equations (see [7]). A fuzzy derivation system is a �nite set of ordered pairshR;�i = fhri; �ihg where ri is a rule of the kind X ) X 0, where X and X 0 are sets ofterm equations and �i is an element of the lattice L expressing the degree of derivabilityof X 0 from X . We just give some sketchy ideas on how to de�ne the pair hR;�i. Givena complete set of transformation rules as described in [7], we assign a derivability degreeequal to 1 to all transformation rules, except for the following one:X [ fu �= u0g �) X4



where u 2 M(F;X) and � is eq(u; u0) if u; u0 2 M(F ) and is 0 otherwise. We writeD(X ` Y ) = � if X and Y are sets of term equations and X �) Y for some fuzzy rulehr; �. Let X and X 0 be a set of �rst-order term equations. We call derivation of X 0 from Xthe sequence X1; : : : ; Xn such that X1 = X and Xn = Y and, for any i = 2::n there existsa rule Rk in R such that Xi ) Xi+1. We say that a set of �rst-order term equations issolved if it is in "diagonal form", i.e. its equations are in the form x �= t where x 2 X andt 2M(F;X), x does not occurr elsewhere into the equations of X and x does not occurrin t. Finally, a set of �rst-order equations X is called solvable if there exists a solved setof term equations �X that is derivable from X . We can set a degree of uni�cation for a setof term equations in the following way:D(X) = supX1;:::;Xnn infi=1::n�1(D(Xi; Xi+1))X1 ` : : : ` Xn where Xn is solved oIn this way we have obtained a degree of uni�cation associated to a complete set oftransformation rules. Such degree could be used in a computable model of fuzzy uni�cationfor a low-level implementation of a fuzzy resolution-based logic programming language.References[1] J.F.Baldwin, T.P.Martin and B.W. Pilsworth. "The implementation of FPROLOG -A Fuzzy Prolog Interpreter", Fuzzy Sets and Systems, 23:119-129, 1987.[2] M.K.Chakraborty, "Graded Consequence: Further Studies", Journal Studies of Ap-plied non-Classical Logics, 21, 1995.[3] L.Biacino and G.Gerla , "Decidability and recursive enumerability for fuzzy subsets",in: B. Bouchon, L. Saitta, R.R. Yager (eds), Uncertainty and Intelligent Systems,LNCS Berlin, 55-62, 1988.[4] R.C.T.Lee, " Fuzzy Logic and the resolution principle", Journal of the ACM, 19:109-119, 1972.[5] M.Mukaidono, Z.Shen and L.Ding, " Fundamentals of Fuzzy Prolog", Int.Jornal ofApproximated Reasoning, 3,2, 1989.[6] H.Yasui, Y.Hamada and M.Mukaidono, "Fuzzy Prolog based on Lukasievitcz impli-cation and bounded product, Proc.IEEE Intern.Conf. on Fuzzy Sets,2:949-954, 1995.[7] W.Snyder, A Proof Theory for General Uni�cation, Birkhauser ed.,1995.[8] L.Zadeh. "Fuzzy Sets", Information and Control, 8, 1965.5



Uni�cation and Matching modulo NilpotenceQing Guo, Paliath Narendran� and D.A. Wolfram yAbstractWe consider nilpotence: the simple theory f(x; x) = 0 where 0 is aconstant. We show that elementary uni�cation and matching modulo thistheory are NP -complete. We also consider the case where the function fadditionally satis�es associativity and commutativity. We found that theproblems are still NP -complete. However, when 0 is also the unity of f , i.e.,f(x; 0) = x, uni�cation and matching problems can be solved in polynomialtime. Furthermore, we show that uni�cation and matching problems remainin polynomial time when a homomorphism is added to the theory. Thispolynomial time algorithm can be used to solve a subclass of set constraints.Second-order matching modulo nilpotence is shown to be undecidable.
�Institute of Programming and Logics, Department of Computer Science, State Uni-versity of New York at Albany, Albany, NY 12222, U.S.A.yDepartment of Computer Science The Australian National University Canberra, ACT0200 Australia 6



Uniform Representation of Recursively EnumerableSets with Simultaneous Rigid E-Uni�cation(Extended Abstract)Margus VeanesComputing Science Department, Uppsala UniversityBox 311, S-751 05 Uppsala, Swedenemail: margus@csd.uu.se1 IntroductionRecently it was proved that the problem of simultaneous rigid E-uni�cation (SREU) isundecidable [8]. Here we perform an in-depth investigation of this matter and obtainthat one can use SREU to uniformly represent any recursively enumerable set. Fromthis representation follows that SREU is undecidable already for 6 rigid equationswith ground left hand sides and 2 variables.There is a close correspondence between solvability of SREU problems and pro-vability of the corresponding formulas in intuitionistic �rst order logic with equality.Due to this correspondence we obtain representation of the recursively enumerablesets in intuitionistic �rst order logic with equality with one binary functionsymboland a countable set of constants. From this result follows the undecidability of the99-fragment of intuitionistic logic with equality. This is an improvement of the recentresult regarding the undecidability of the 9�-fragment in general [10].1.1 Background of SREUSimultaneous rigid E-uni�cation was proposed by Gallier, Raatz and Snyder [15] as amethod for automated theoremproving in classical logics with equality. It can be usedin automatic proof methods, like semantic tableaux [12], the connection method [3]or the mating method [1],model elimination [22], and others that are based on theHerbrand theorem, and use the property that a formula is valid (i.e., its negationis unsatis�able) i� all paths through its matrix are inconsistent. This property was�rst recognized by Prawitz [27] (for �rst order logic without equality) and later byKanger [19] (for �rst order logic with equality).In �rst order logic with equality, theproblem of checking the inconsistency of the paths results in SREU. Before SREUwas proved to be undecidable, there were several faulty proofs of its decidability,e.g. [13, 17].1.2 Outline of this PaperThis paper constitutes a summary of the main results presented in Veanes [30], whereone can �nd detailed proofs to all the statements that are made here. In Section 2we explain the main notations.In Section 3 we introduce words (as representations of strings) and sentences (asrepresentations of sequences of strings), as the basic components needed to formally7



represent Turing machine computations. The main result of this section is called theSentence Lemma.In Section 4 we describe a technique that can be used toexpress (roughly) that onesequence of strings is an encoding of pairwise adjacent strings of another sequence.This technique is formally stated as the Shifted Pairing Lemma.The Sentence Lemma and the Shifted Pairing Lemma are then used in Section 5to show that one can use SREU to represent(uniformly) any r.e. set, here we identifyr.e. sets with languages accepted by Turing machines. We call this result the SREUNormal Form Theorem for RE. The undecidability of SREU follows immediately fromthis theorem (2 variables and six rigid equations is enough).From the SREU Normal Form Theorem for RE we obtain a uniform characteriza-tion of all r.e. sets with certain simple formulas in intuitionistic �rst order logic withequality, using just one function symbol (of arity 2) and some number of constants.In particular, the undecidability of the 99-fragment of intuitionistic logic follows fromthis result.We conclude the paper in Section 7 by summarizing the current status and statingsome open problems regarding decidability of fragments of SREU.2 PreliminariesThroughout the paper, the �rst order language that we are working with is designatedby L. L has one binary function symbol . and a countable set of constants L0. Wewill use in�x notation for . and assume that it associates to the right, so t1.t2.t3stands for the term .(t1;.(t2; t3)). In general we will use the letters t and s to standfor terms in L. We write X � Y to say that X is a nonempty �nite subset of Y . A. rigid equation is an expression of the form E 8̀ s = t where E is a �nite setof equations and s and t are arbitrary terms. A system of rigid equations is a�nite set of rigid equations.A substitution � (� is assumed to map variables to ground terms) is a. solution of or solves a rigid equation E 8̀ s = t if` (ê2E e�)) s� = t�;� solves a system of rigid equations if it solves each member of the system.Here ` is either classical or intuitionistic provability (for this class of formulas theycoincide). The problem of solvability of systems of rigid equations is called simulta-neous rigid E-uni�cation or SREU for short. Solvability of a single rigid equation iscalled rigid E-uni�cation.3 Words and SentencesWords are certain terms of L that represent strings, and sentencesare certain termsthat represent sequences of strings. We will use the letters v and w to stand for stringsof constants. Formally, we say that a gound term t of L is a. q-word or simply a word when it has the form a1.a2. � � �.an.q for some n � 0where all the ai and q are constants. If n = 0 then t is said to be empty.If t is a word a1.a2. � � �.an.q we mostly use the shorthand v.q for t where v is thestring a1a2 � � � an. We also say that t 8



. represents the string v, in symbols bt = v.Note that any constant q is an empty q-word and represents �. We want to be morespeci�c and talk about strings in certain regular sets. Let R be a regular set oversome set of constants in L. We say a ground term t of L is a. word in R if t is a word and it represents a string in R.Sentences are just representations of sequences of strings. Let us �rst choose a �xedconstant [] (\nil") of L. Formally, a ground term t of L is called a. sentence if it has the form t1.t2. � � �.tn.[] for some n � 0 where each ti is aword. If n = 0 then t is said to be empty .We use [t1; t2; : : : ; tn] as a shorthand for the corresponding sentence. We say that asentence t = [t1; t2; : : : ; tn]. represents the sequence of strings bt = (bt1; bt2; : : : ; btn).Our aim is to represent sequences of strings, where each string belongs to some mem-ber of a given family of regular sets, such that the sequence has some given regularpattern. For that purpose we introduce the following notion.Let �;� � L0 and let fRqgq2� be a family of regular sets over � and let R be aregular set over �. We say that a sentence t = [t1; t2; : : : ; tn] is a. sentence in fRqgR if each ti is a qi-word in Rqi for some qi 2 �, q1q2 � � � qn 2 R.In other words, t is a sentence in fRqgR i� any q-word of t is a word in Rq , and ifwe replace all the words of t with the corresponding empty words then the resultingterm is a []-word in R. When all the members of the family are the same regular setthen we drop the index in our notation.For example, t is a sentence in fRa; Rb; Rcgab�c means that the �rst word of t isan a-word in Ra, the last word of t is a c-word in Rc and the middle ones (if any) areb-words in Rb.Theorem 3.1 Let �;� � L0nf[]g be disjoint. Let fRcgc2� be a family of reqular setsover �. Let R be a regular set over �. There exists a system S(x) ofrigid equationssuch that � solves S(x) i� x� is a sentence in fRcgR.We will refer to this theorem as the Sentence Lemma. More precisely,the system S(x)consists of two rigid equations, both of which haveground left hand sides and onevariable x. Furthermore, the system is obtained e�ectively from the regular sets.4 Shifted PairingThe purpose of this section is to describe a technique, called shifted pairing, that canbe used to construct a system of rigid equations, the solutions of which aresentenceswith certain interesting properties. This technique was �rst used by Plaisted [26].4.1 Encoding Pairs of StringsGiven a set of constants � � L0, we want to encode pairs of strings over � in a simplemanner.Let �b be a �xed constant in L0 called a blank. We can assume without loss ofgenerality that �b 2 �, � n f�bg is nonempty and that we only wish to encode pairs ofstrings in �� that don't end with a blank (otherwise just expand � with �b). We saythat a function hi : �� �! L0 is a 9



. pairing function for � if hi is injective and h�i = f ha; bi j a; b 2 � g is disjointfrom �, and we associate the following sets of equations with hi:�hi1 = f ha; bi = a j a; b 2 � g;�hi2 = f ha; bi = b j a; b 2 � g:We will abbreviate �hi1 and �hi2 by �1 and �2, respectively.Let hi be a pairing function for �. Considerv = ha1; b1iha2; b2i � � � hak; bki 2 h�i�for some k � 0 and let n;m � 0 be least such that an+1; : : : ; ak and bm+1; : : : ; bk areblanks. We say that. v encodes the pair (a1a2 � � � an; b1b2 � � � bm) of strings.We will write hv;wi for any string that encodes the pair (v;w) of strings in �� n���b.4.2 Shifted PairingWe want to encode adjacent pairs of strings in a given sequence of strings. Let� � L0. Assume �b 2 �, � n f�bg is nonempty and let hi be a pairing function for �.Let ~w = (w1; w2; : : : ; wn) be a nonempty sequence of strings in �� n���b. We say thata sequence ~v = (v1; v2; : : : ; vn) of strings in h�i� is a. shifted pairing of ~w if vi encodes the pair (wi; wi+1) for 1 � i < n and vn encodesthe pair (wn; �), i.e., ~v = (hw1; w2i; hw2; w3i; : : : ; hwn�1; wni; hwn; �i).We refer to the following theorem as the Shifted Pairing Lemma. It constitutes thekernel of the proof the SREU Normal Form Theorem.Theorem 4.1 Let � � L0 be such that �b 2 �, � n f�bg is nonempty, and let hi bea pairing function for �. Let also � � L0. Assume that �, h�i, � and f[]g are allpairwise disjoint.Let q 2 � n f�bg. There is a system SPq(z; x; y) of rigid equations such that� � solves SPq(z; x; y) i�� cy� is a shifted pairing of cx� and the �rst string of cx� is qcz�,for any substitution � such that z� is a c-word in (� n f�bg)� for some c 2 �, x� is asentence in f�+ n���bg�+ and y� is a sentence in fh�i+g�+ .Let " be �xed element of �. The system SPq(z; x; y) is de�ned as follows:SPq(z; x; y) = ( �1 [ f " = c j c 2 � g [ f�b." = "g 8̀ x = y;�2 [ f " = c j c 2 � g [ f�b." = "; ".[] = []g 8̀ x = (q.z).yAssuming that x� represents the sequence ~w as above thenthe �rst rigid equation hasthe e�ect that y� must have the form(hw1; i; hw2; i; : : : ; hwn�1; i; hwn; i);and from the second rigid equation follows that y� must have the form(h ; w2i; h ; w3i; : : : ; h ; wni; h ; �i):Together they give the desired e�ect. 10



5 Uniform Characterization of RE with SREUHere we show that any r.e. set can be represented by a system of simultaneous rigidequations which is obtained uniformly in the r.e. index of that set. In particular, thistheorem and the way the system in the theorem is constructed imply that given anyr.e. set W over some alphabet � and a string w over �, one can e�ectively constructa system of rigid equations, having ground left hand sides and only two variables,which has a solution i� w 2 W . So SREU is undecidable already with ground lefthand sides (which was also shown by Plaisted [26]) and only two variables (that is anew result).5.1 The Turing Machine ModelWe follow Hopcroft and Ullmann [18]. Formally, a Turing machine M is a 7-tuple(Q;�0;�1; �; q0;�b; F ), where Q is the set of all states of M , �0 is the input alphabetnot including �b, �1 = �0[f�bg, � : Q��1 ! Q��1�fl;rg is the transition function,q0 2 Q is the initial state, and F � Q is the set of �nal states. We also assume thatQ and �1 are disjoint subsets of L0. An. instantaneous description (ID) ofM is any string �q� where q 2 Q and � 2 ��1and � is a string in ��1 not ending with a blank.Let ~�b stand for a string of 0 or more blanks. A. move is a pair (v;w) of ID's such that if v~�b = �qa� and �(q; a) = (p; b;r) thenw~�b = �bp�, � � �� � � � a � � � � � � �"q `M � � � � � � � b � � � � � � �"pand if v~�b = �cqa� and �(q; a) = (p; b; l) then w~�b = �pcb�,� � � � � � � c a � � � � � � �"q `M � � � � � � � c b � � � � � � �"pi.e., w is obtained from v according to the next move function.The binary relation of all moves of M is denoted by `M , as shown in the �guresabove, and its transitive and reexive closure by `�M . The. language accepted by M , L(M), is the following setL(M) = fw 2 ��0 j q0w `�M �p� where p 2 F and �p� is an ID g:. A valid computation of M is a nonempty sequence (w1; w2; : : : ; wn) such that{ each wi is an ID of M , i.e., wi 2 ��1Q(��1 n��1�b) for 1 � i � n,{ w1 is the initial ID, one of the form q0v where v 2 ��0,{ wn is a �nal ID, wn 2 ��1F (��1 n��1�b),{ wi `M wi+1 for 1 � i < n, i.e., each pair (wi; wi+1) is a move of M .We will use the following relationship between valid computations and the languageofM without further notice: there is a valid computation ofM with initial ID q0v i�v 2 L(M). 11



5.2 The SREU Normal Form Theorem for RETheorem 5.1 Let M = (Q;�0;�1; �; q0;�b; F ) be a TM and let " be constant not in Qor �1. There is a system SM (z; x; y) of rigid equations such that for any substitution� that solves SM (z; x; y), z� is an "-word and L(M) = fcz� j � solves SM (z; x; y) g:The auxiliary variables x and y are such that, for any � that solves SM (z; x; y), cx� isa valid computation of M with initial ID q0cz� and cy� is a shifted pairing of cx�.The main steps in the proof of the theorem are as follows. First the regular setsRid, R�n and Rmv are de�ned so that Rid, R�n and Rmv are all the IDs, the �nal IDsand the encodings of moves of M , respectively. Based on these, the Sentence Lemmagives us the systems Sid(x) and Smv(y) and Sin(z), such that1. � solves Sid(x) i� x� is a sentence in f" 7! Rid; "1 7! R�ng"�"1 ,2. � solves Smv(y) i� y� is a sentence in f" 7! Rmv; "1 7! h�i+g"�"1 , and3. � solves Sin(z) i� z� is an "-word in ��0.The Shifted Pairing Lemma gives us the system SPq0(z; x; y). Finally SM is given bythe union of all those systems,SM (z; x; y) = Sid(x)[ Smv(y)[ Sin(z)[ SPq0(z; x; y):Given a word t and a TMM , the construction of SM (t; x; y) is e�ective. Also, all theleft hand sides are ground. We get the following corollary.Corollary 5.2 SREU is undecidable even when restricted to ground equations on theleft hand side and allowing only two variables, in any �rst order language with at leastone binary function symbol and one constant.The �rst proof of the udecidability of SREU [8] was by reduction of the mona-dic semi-uni�cation [2] to SREU.This proof was followed by two alternative (moretransparent) proofsby the same authors, �rst by reducing second order uni�cation toSREU [7, 10], and then by reducing Hilberts 10'th to SREU [9]. The undecidabilityof second order uni�cation was proved by Goldfarb [16]. Reduction of second orderuni�cation to SREU is very simple, showing how close these problem are to eachother.Plaisted took the Post's Correspondence Problem and reduced it to SREU [26].From his proof follows that SREU is undecidable already with ground left hand sidesand three variables. He uses several function symbols of arity 1 and 2. The basictechnique used by Plaisted is the same as the one used here.A technique similar to the one used in the reduction of Hilberts 10'th to SREU,is used by Voda and Komara [31] to argue for (we did not check the details) theundecidability of the problem of Herbrand skeletons, i.e., given n and a formula = 9~x'(~x) where ' is quanti�er free, if the Herbrand skeleton of size n of  issolvable. (The Herbrand skeleton of size n of  is the disjunction of n variants of '.)For n = 1 this problem comprises also SREU.6 Uniform Representation of RE in IntuitionisticLogic with EqualityFrom the SREU Normal Form Theorem for RE we get the corresponding result forintuitionistic logic with equality. 12



Theorem 6.1 Let M be a Turing machine. There is a formula 'M (z; x; y) and aconstant " in L such that, for all ground terms t in L: t is an "-word in L(M) i�`i 9x9y'(t; x; y).Since the construction of the formula 'M is e�ective, we obtain that the 99-fragment of intuitionistic logic isundecidable. This is an improvement of the un-decidability result of the 9�-fragment in general shown recently by Degtyarev andVoronkov [9, Theorem 10] (or [10, Theorem 3]).A closely related problem is the skeleton instantiation problem, i.e., the problemof existence of a derivation with a given skeleton. Voronkov shows that SREU is poly-nomially reducible to this problem [32, Theorem 3.12]. Moreover, the basic structureof the skeleton is determined by the number of variables in the SREU problem and thenumber of rigid equations in it. Our result implies that this problem is undecidablealready for a very restricted class of skeletons.Decidabilty problems for some other fragments of intuitionistic logicwith and wit-hout equality were studied by Orevkov [24, 25], Mints [23] and Lifschitz [21]. More re-cently some new results have been obtained by Degtyarev and Voronkov [33, 32, 11, 6],and Tammet [29].7 Current Status and Open ProblemsDecidability of rigid E-uni�cation has been known for some time now, for a clearproof see De Kogel [4]. The current status about what is known about SREU andrigid E-uni�cation is summarized below.1. Rigid E-uni�cation with ground lefthand side is NP-complete [20]. Rigid E-uni�cation in general is NP-complete and there exist �nite complete sets ofun�ers [14, 13].2. If all function symbols have arity � 1 then SREU is PSPACE-hard [17]. If onlyone unary function symbol is allowed then the problem is decidable [6, 5]. Ifonly constants are allowed then the problem is NP-complete [6] if there are atleast two constants. If there are more than one unary function symbol then thedecidabilityis still an open question.3. In general SREU is undecidable [8], already with ground left hand sides [26] andtwo variables [30].Some other decidable cases of SREU are also described by Plaisted [26]. It shouldalso be noted that the decidability of SREU with just one variable is an open questionand thus also the decidability of the 9-fragment of intuitionistic logic with equality.Note that SREU is decidable when there are no variables, then each rigid equationcan be decided for example by using the Shostak congruence closure algorithm [28, 4].References[1] P.B. Andrews. Theorem proving via general matings. Journal of the Associationfor Computing Machinery, 28(2):193{214, 1981.[2] M. Baaz. Note on the existence of most general semi-uni�ers. In Arithmetic,Proof Theory and Computation Complexity, volume 23 of Oxford Logic Guides,pages 20{29. Oxford University Press, 1993.[3] W. Bibel. Deduction. Automated Logic. Academic Press, 1993.13
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Uni�cation in Sort Theories(Extended Abstract)Christoph WeidenbachMax-Planck-Institut f�ur InformatikIm Stadtwald66123 Saarbr�ucken, Germanyemail: weidenb@mpi-sb.mpg.dephone: +49-681-9325221fax: +49-681-9325299May 23, 19961 IntroductionIn this paper we investigate uni�cation in di�erent sort theories. The starting point is theapproach of Schmidt-Schau� [6] to order-sorted uni�cation. He considered sort theoriesthat consist of subsort declarations and arbitrary term declarations. A sort correspondsto a monadic predicate that is a priori assumed to be non-empty. An example for such asort theory would be: � = fQ v T; f :T ! T; a:T; f :S ! S; a:Sgwhere Q is declared to be a subsort of T , f a one-place function that maps terms of sort Tand sort S to terms of sort T and sort S, respectively and a is constant contained in bothsorts T and S. The sort theory � is called elementary: All declarations are either subsortor function declarations, i.e., there is no real term declaration. Now given the uni�cationproblem � = (xS � yT )the uni�cation algorithm presented by Schmidt-Schau� yields in�nitely many well-sorted(ground) mgus with respect to �:�1 = fxS=a; yT =ag�2 = fxS=f(a); yT=f(a)g�3 = fxS=f(f(a)); yT=f(f(a))g...16



In general, Schmidt-Schau� showed that uni�cation in elementary sort theories is deci-dable, NP-complete and of uni�cation type [7] in�nitary. If arbitrary term declarationsare allowed, e.g., declarations of the form f(g(xT ; f(xT ))):S, sorted uni�cation becomesundecidable, but is still of uni�cation type in�nitary [6]. Until now, Uribe [8] has shownthat uni�cation in semi-linear sort theories is decidable and NP-complete. A sort theoryis called semi-linear if, roughly speaking, non-linear occurrences of variables in term de-clarations occur in identical subterms.In this paper we will generalize the approach of Schmidt-Schau�:(i) Sorts are extended to be sets of monadic predicates, denoting their respective inter-section.(ii) Sorts may denote the empty set.Considering sorts to be sets of monadic predicates (also called base sorts), meaning theirintersection has many advantages: It naturally introduces a top-sort, the empty set deno-ted by >, and therefore avoids such concepts like subterm-closedness. In addition, we cannow always derive a unique uni�er for two variables that is a new variable with the unionof the sorts of the variables to be uni�ed. For the above example we obtain the single mgu� = fxS=zfS;Tg; yT =zfS;Tggwhere we write S for the singleton set fSg as a shorthand. We also use a di�erent notationfor sort theories that is closer to �rst-order logic. We writeL = fT (uQ); T (f(xT )); T (a); S(f(yS)); S(a)gfor the above sort theory �, where all variables in L are universally quanti�ed. Thereason for the di�erent notation is closely related to our motivation for extension (ii): Wewant to increase the applicability of sorted uni�cation to automated theorem proving. Inautomated theorem proving, a problem is usually given by a set of clauses, without anyexplicitly given sort information. The contained monadic predicates that are the naturalcandidates for sorts, may denote the empty set and these predicates may occur in anarbitrary way in clauses.Nevertheless, it is possible to a posteriori extract sort information. For example, usingthe relativization [6, 11] rules for sorted formulae we know that the standard1 clause:T (x) _ :S(x) _ :R(x; y) _ S(f(x))is logically equivalent to the clause:R(xfS;Tg; y) _ S(f(xfS;Tg))where sorts are attached to variables. Negative monadic literals with a variable as theirargument code sort restrictions on the variable. The variable y has top-sort, i.e., y is1With the term \standard" we refer to notions without sorts.17



interpreted like a standard variable, ranging over the whole domain. The problem remainshow the sort theory is extracted from the clause set. We have shown that for the tableaucalculus, it is su�cient to consider the sort theory built from the monadic atoms on thebranch of the tableau we want to close [11]. For the resolution calculus [10], it is su�cientto dynamically choose from each clause consisting of positive monadic literals only, onepositive literal for the sort theory. Hence, it is su�cient to consider sort theories of theform of L where sorts may denote the empty set. The application of sorted uni�cationis not a topic of this paper, however, it is the motivation for our approach to sorteduni�cation.In the following we will present the rules of sorted uni�cation together with somecomplexity results:1. Sorted uni�cation for weak-elementary (see Section 2) sort theories is decidable,NP-complete and of uni�cation type �nitary.2. Sorted uni�cation in linear and semi-linear sort theories is decidable, NP-completeand of uni�cation type �nitary.3. Sorted uni�cation is pseudo-linear sort theories is decidable and of uni�cation typein�nitary.4. Sorted uni�cation in non-linear sort theories where the depth di�erence of non-linearvariable occurrences is at most one, is undecidable.5. Rigidly sorted uni�cation is decidable and of uni�cation type �nitary.In particular, the results 3 and 4 identify a new border between decidable and undecidableproblems: If all non-linear occurrences of variables in the sort theory occur at the samedepth sorted uni�cation is decidable, if there is a di�erence in the depths of these variablesof at most one, sorted uni�cation is undecidable. A rigid sort theory is a sort theory whereall variables are considered to be free variables, not universally quanti�ed variables. Suchsort theories play an important role when sorted uni�cation is applied to free variabletableau [11].2 Sorted Uni�cationWe use the usual notation for terms, substitutions, etc. The set of all terms is denotedby T (F ;V) or T as a shorthand and the set of all ground terms is denoted by T (F). LetS be a �nite set of monadic predicate symbols, also called base sorts. Then a sort T isa �nite subset of S, T 2 2S , denoting the intersection of the contained base sorts. Forvariables we assume a function sort:V ! 2S that attaches sorts to variables such that foreach sort T 2 2S there are countably many variables x with sort(x) = T . For ; 2 2S , wewrite >, the top sort. We write S for fSg if the context causes no confusion. Usually,variables are annotated with their sort. We write xS if sort(x) = S.18



Syntactic properties of terms will play an important role for the complexity of sorteduni�cation: A term t is called elementary if t is either a variable or a constant or of theform f(x1; : : : ; xn) where all xi are di�erent. A term t is called weak-elementary if t iseither a variable or a constant or of the form f(t1; : : : ; tn) where each ti is either a variable2or a ground term. The term t is called linear if any variable occurs at most once in t. It iscalled semi-linear if for any variable x occurring more than once in t, there is a subtermf(s1; : : : ; sn) of t such that all occurrences of x are in f(s1; : : : ; sn), each si has at mostone occurrence of x and whenever x occurs in si and sj we have si = sj. A term t is calledpseudo-linear if all non-linear variable occurrences in t occur at the same depth.A uni�cation problem � is either>, ? or a conjunction of pairs � = (t1 � s1^: : :^tn �sn). A substitution � solves a uni�cation problem � = (t1 � s1 ^ : : : ^ tn � sn), i�t1� = s1� ^ : : : ^ tn� = sn�. A uni�cation problem � = (s1 � t1 ^ : : : ^ sn � tn) is calleddag solved, i� all si are variables, si 6= sj for every i and j with i 6= j and si =2 vars(tj)for all i, j � i. If � = (x1 � t1 ^ : : : ^ xn � tn) is a dag solved uni�cation problem, then�� = �1�2 : : : �n with �i = fxi=tig is the uni�er induced by �.We start with a standard dag oriented uni�cation algorithm, similar to the rule-basedstandard uni�cation algorithms presented by Dershowitz and Jouannaud [4] or Jouannaudand Kirchner [5]. The rules are shown in Figure 1.These rules are exhaustively applied (with respect to the commutativity and associa-tivity of ^) to a uni�cation problem � until � is dag solved or >, ? is derived. The ruleOrientation is not contained in other rule sets for standard uni�cation [4, 5]. Therefore,the rules of these sets are also apply with respect to the commutativity of �. However, wewill extend our standard uni�cation to cope with the sort information of variables. Thenit is necessary to distinguish between the pair x � y and y � x, because these variablesmay have di�erent sorts.An atom S(t) is called a declaration if S 2 S. It is called a subsort declaration ift is a variable and a term declaration otherwise. It is called a function declaration ift is elementary. A sort theory L is a �nite set of declarations where all variables areimplicitly assumed to be universally quanti�ed. All following notions and de�nitions referto a �xed, �nite sort theory L. The size of a sort theory L is size(L) =PS(t)2L(size(t) +Px2vars(t) jsort(x)j).Depending on the declarations occurring in L, the following sort theories are distin-guished: L is called elementary (weak-elementary) if every term in a term declaration inL is elementary (weak-elementary). L is called linear (semi-linear, pseudo-linear) if everyterm occurring in a term declaration is linear (semi-linear, pseudo-linear).De�nition 2.1 The set of well-sorted terms TS of sort S is recursively de�ned by:1. x 2 TS if S � sort(x).2. t 2 TS if S is a base sort and S(t) 2 L.3. t� 2 TS if t 2 TS and x� 2 Tsort(x) for all x 2 dom(�).4. t 2 TS1[:::[Sn if t 2 TSi for all i.2Multiple occurrences of the same variable are allowed.19



Tautologyt � t ^ �! �Orientationt � x ^ �! x � t ^ �if t =2 VDecompositionf(t1; : : : ; tn) � f(s1; : : : ; sn) ^ �! t1 � s1 ^ : : : ^ tn � sn ^ �Applicationx � y ^ �! x � y ^ �fx=ygif x 2 vars(�)Clashf(t1; : : : ; tn) � g(s1; : : : ; sm) ^ �! ?if f 6= gCycle x1 � t1[x2]p1 ^ : : : ^ xn � tn[x1]pn ^ �! ?if there exists some i, 1 � i � n, with pi 6= �Mergex � t ^ x � s ^ �! x � t ^ t � s ^ �if t; s =2 V and depth(t) � depth(s)Figure 1: The Rules of Dag Standard Uni�cation
20



Sorted Failx � f(t1; : : : ; tn) ^ �!?if > 6v sort(x) and there is no sort fT1; : : : ; Tmg v sort(x) with decla-rations Tj(f(sj;1; : : : ; sj;n)) 2 LSubsortx � y ^ �! x � z ^ y � z ^ �if sort(x) 6� sort(y), z new to �, and sort(z) = sort(x) [ sort(y)Weakeningx � t ^ �! x � s1 ^ t � s1 ^ : : : ^ t � sm ^ �if x � t ^ � is dag solved, t =2 V , t�� =2 Tsort(x), fT1; : : : ; Tmg v sort(x)and for each Tj there is a declaration Tj(sj) 2 L such that t and the sjshare the same top symbolFigure 2: The Rules of Dag Sorted Uni�cationNote that there are only declarations for base sorts in L. Case 4 also includes thecase where S = >, i.e., n = 0; then we have T> = T . T (F)S is the restriction of TS toground terms. A sort S is called empty if there is no well-sorted ground term t 2 TS,or equivalently if T (F)S = ;. We always have T (F)S � TS. The binary relation vdenotes the subsort relationship. If S and T are sorts, then we de�ne S v T i� thereexists a variable xS with xS 2 TT . Note that if there exists one variable xS 2 TT , thereare in�nitely many variables of sort S in TT . The relation S v T implies TS � TT , butthe relation T (F)S � T (F)T neither implies S v T nor TS � TT . A substitution � iswell-sorted if for every x 2 dom(�), x� 2 Tsort(x). It can be polynomially decided (insize(L) + size(�)) whether a substitution � is well-sorted.Now we extend standard uni�cation (Figure 1) to sorted uni�cation. A sorted uni-�cation problem � = (x1 � t1 ^ : : : ^ xn � tn) is called dag sorted solved , i� � is dagsolved and ti�� 2 Tsort(xi) for all i. Since dom(��) = fx1; : : : ; xng the induced substitu-tion �� is well-sorted. The sorted uni�cation algorithms consist both of the three don'tcare non-deterministic sorted rules Sorted Fail, Subsort and Weakening (see Figure 2) andthe rules of standard uni�cation (see Figure 1). These combined rule sets are applied toa uni�cation problem � until it is solved or >, ? is derived.In rule Subsort the condition sort(x) 6� sort(y) does not imply sort(y) 6v sort(x).However, if sort(y) v sort(x) then Tsort(x) = Tsort(x)[sort (y). Note that declarations mustbe well-sorted renamed, before they are used by the Weakening rule. The conditiont�� =2 Tsort(x) can be checked in polynomial time although �� may increase exponentiallyin size of �. The idea is �rst to compute the sorts of all terms in � bottom up accordingto the variable dependencies in �.Due to the rule Weakening, sorted uni�cation does not terminate, in general. The21



Weakening rule introduces terms from L with fresh variables. Therefore, the number ofvariables and the multiset of all term depths in the uni�cation problem may increase. Inaddition, the number of sorted unsolved equations may increase, too. In general, sorteduni�cation, as well as the problem whether a sort is empty, is undecidable. The Weakeningrule, together with the other rules can simulate arbitrary computational processes.It can be shown that for every uni�cation problem � and �nite sort theory L, thereexists a minimal, complete set of uni�ers �UL(�) and that sorted uni�cation (Figure 1and Figure 2) is correct and complete with respect to the usual semantics [9].Concerning the complexity issues we start with weak-elementary sort theories. Theseproperly include elementary sort theories where sorted uni�cation is known to be decidable,NP-complete and of uni�cation type �nitary [6].Theorem 2.2 Uni�cation in weak-elementary sort theories is decidable, NP-complete andof uni�cation type �nitary. The problem whether a sort is empty, is decidable and NP-complete, too.Proof: Let �(�) be the multiset of all term depths of pairs x � t, such that t is notground and t�� =2 Tsort(x). For any pair x � t where t is ground, either t 2 Tsort(x) or � isnot solvable. Therefore these pairs can be disregarded. Now �(�) always decreases afterthe sequence of a Weakening step followed by the exhaustive application of all other rules.The number of possible Weakening steps is bound by the number of function symbols inthe initial uni�cation problem. utTheorem 2.3 Uni�cation in linear (semi-linear) theories is decidable, NP-complete andof uni�cation type �nitary. The problem whether a sort is empty, is decidable and NP-complete, too.Proof: Linear and semi-linear sort theories can be transformed in linear time into weak-elementary sort theories. utThe following example shows a pseudo-linear sort theory with a uni�cation problemleading to in�nitely many mgus. Consider the pseudo-linear sort theoryL = fS(g(xS)); S(h(xS)); T (g(xS)); S(f(g(xS); h(xS))); S(f(g(yS); f(yS; xS)))gand the uni�cation problem � = (zS � f(vT ; wS))� is solved but not sorted solved because f(vT ; wS) =2 TS. The rule Weakening is applicableusing the two declarations S(f(g(xS); h(xS))) and S(f(g(yS); f(yS; xS))), respectively:�1 = (zS � f(g(xS); h(xS)) ^ f(vT ; wS) � f(g(xS); h(xS)))�1 = (zS � f(g(yS); f(yS; xS)) ^ f(vT ; wS)) � f(g(yS); f(yS; xS)))22



The two problems can be transformed into standard solved form:�2 = (zS � f(g(xS); h(xS)) ^ vT � g(xS) ^ wS � h(xS))�2 = (zS � f(g(yS); f(yS; xS)) ^ vT � g(yS) ^ wS � f(yS; xS))The problem �2 is already sorted solved. The problem �2 contains the unsolved pair wS �f(yS; xS) to which we apply Weakening using the declarations S(f(g(x0S); h(x0S))) andS(f(g(y0S), f(y0S; x0S))), respectively. We only show the pairs resulting from the Weakeningstep. �31 = (wS � f(g(x0S); h(x0S)) ^ f(yS; xS) � f(g(x0S); h(x0S)))�41 = (wS � f(g(y0S); f(y0S; x0S)) ^ f(yS; xS) � f(g(y0S); f(y0S; x0S)))After standard uni�cation we get�32 = (wS � f(g(x0S); h(x0S)) ^ yS � g(x0S) ^ xS � h(x0S))�42 = (wS � f(g(y0S); f(y0S; x0S)) ^ yS � g(y0S) ^ xS � f(y0S; x0S))Now �32 is sorted solved and �42 contains the sorted unsolved pair xS � f(y0S; x0S), avariant of the pair wS � f(yS; xS) in �2. Hence, sorted uni�cation runs through a \cycle"producing in�nitely many mgus for the initial problem �:�1 = fzS=f(g(xS); h(xS)); vT =g(xS); wS=h(xS)g�2 = fzS=f(g(g(x0S)); f(g(x0S); h(x0S))); vT =g(g(x0S)); wS=f(g(x0S); h(x0S))g�3 = fzS=f(g(g(g(x00S))); f(g(g(x00S)); f(g(x00S); h(x00S)))); vT=g(g(g(x00S)));wS=f(g(g(x00S)); f(g(x00S); h(x00S)))g...However, it can be shown that such \cycles" are not necessary to test uni�ability, i.e.,whenever a uni�cation problem is solvable, there exists a solution without a \cycle".Theorem 2.4 Uni�cation in pseudo-linear sort theories is decidable and of uni�cationtype in�nitary.Theorem 2.5 Uni�cation in sort theories with non-linear term declarations, where thedepth di�erence between di�erent occurrences of the same variable is at most one, is un-decidable.Proof: Reduction to the Halting problem. utSo far, we assumed the variables in the sort theory L to be universally closed. Thispoint of view is appropriate to extend resolution with sorts. For free variable tableau,however, this is not the case. Then the variables in L are free variables, i.e., they can onlybe instantiated once. These requirements lead to the following de�nitions and results.23



De�nition 2.6 A substitution � is called rigidly well-sorted with respect to L if � is well-sorted and if there exists a substitution � with � � � , dom(�) � (dom(�) [ vars(L)) andfor all x 2 dom(�), sort(x) 6= >:1. If x� 2 V, then either sort(x) � sort(x�) or for all S 2 (sort(x)n sort(x�)) we haveS(x�) 2 L�2. If x� 62 V, then S(x�) 2 L� for all S 2 sort(x)Consider the sort theoryL = fS(a), S(f(xS))g. The substitution � = fuS=f(f(vS))g iswell-sorted but not rigidly well-sorted. It is not rigidly well-sorted because the declarationS(f(xS)) is needed twice with di�erent instantiations to establish the well-sortedness of�. With respect to the sort theory L0 = fS(a), S(f(xS)), S(f(yS))g the substitution � isrigidly well-sorted where � = fxS=f(vS), yS=vSg is the substitution which instantiates L0in the appropriate way.The usual notions of a uni�er and a most general uni�er transfer from sorted uni�ca-tion to the case of rigidly well-sorted substitutions. Note that � is a rigidly well-sorteduni�er with respect to L i� � is a rigidly well-sorted uni�er with respect to L�. The sor-ted uni�cation algorithm (Figure 2) can be modi�ed for rigidly well-sorted substitutions.Instead of renaming declarations from L before they are used in the rule Weakening or inthe computation of well-sortedness, only the declarations in L are used and instantiatedaccordingly. In addition, the rule Application is also applied to L.Theorem 2.7 Rigidly sorted uni�cation is decidable and of uni�cation type �nitary. Theempty sort problem is decidable.3 Related WorkThere is a close relationship between sorted uni�cation and regular tree languages [3]. Theground terms induced by elementary sort theories are regular tree languages. The groundterms of weak-elementary sort theories can be described by tree automata with equalityconstraints on direct subterms, as shown by Bogaert and Tison [1]. Recently, from resultson tree automata presented by Caron et al. [2], it can be shown that sorted uni�cation isdecidable for arbitrary term declarations if all declarations satisfy an ordering restriction.We assume a partial ordering on the sort symbols and require that whenever a declarationcontains non-linear occurrences of variables, the sorts attached to the variables in thedeclaration are strictly below the sort symbol of the declaration itself. For example, forthe declaration S(f(xT ; g(xT ))) we would require that T is strictly below S in the ordering.However, there are operational di�erences between algorithms on tree automata and sorteduni�cation. For tree automata two things usually exists: Algorithms computing booleancombinations and a non-emptiness test deciding whether the language of an automatonis empty. In general, the non-emptiness test of the automaton corresponds to the non-emptiness test for a sort. Boolean combinations of sorts cannot be expressed inside theframework of sorted uni�cation, in general. On the other hand, sorted uni�cation computes24



a complete set of uni�ers for a speci�c uni�cation problem of arbitrary terms that do notnecessarily satisfy the syntactic restrictions on the sort theory.References[1] Bruno Bogaert and Sophie Tison. Equality and disequality constraints on directsubterms in tree automata. In A. Finkel and M. Jantzen, editors, Proc. of 9th AnnualSymposium on Theoretical Aspects of Computer Science, STACS92, volume 577 ofLNCS, pages 161{171. Springer, 1992.[2] Anne-C�ecile Caron, Hubert Comon, Jean-Luc Coquid�e, Max Dauchet, and FlorentJacquemard. Pumping, cleaning and symbolic constraints solving. In Serge Abitebouland Eli Shamir, editors, Automata Languages and Programming. 21st InternationalColloquium, ICALP'94, volume 820 of LNCS, pages 436{447. Springer, 1994.[3] Hubert Comon. Inductive proofs by speci�cation transformations. In Rewriting Tech-niques and Applications, RTA-89, volume 355 of LNCS, pages 76{91. Springer, 1989.[4] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van Leeuwen,editor, Handbook of Theoretical Computer Science, volume B, chapter 6, pages 243{320. Elsevier Science Publishers, 1990.[5] Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras:A rule-based survey of uni�cation. In J.L. Lassez and G. Plotkin, editors, Compu-tational Logic, Essays in Honor of Alan Robinson, chapter 8, pages 257{321. MITPress, 1991.[6] Manfred Schmidt-Schau�. Computational aspects of an order sorted logic with termdeclarations, volume 395 of LNAI. Springer, 1989.[7] J�org Siekmann. Uni�cation theory. Journal of Symbolic Computation, Special Issueon Uni�cation, 7:207{274, 1989.[8] Tom�as E. Uribe. Sorted uni�cation using set constraints. In 11th InternationalConference on Automated Deduction, CADE-11, volume 607 of LNCS, pages 163{177. Springer, 1992.[9] Christoph Weidenbach. Uni�cation in sort theories and its applications. Annals ofMathematics and Arti�cial Intelligence. To appear.[10] Christoph Weidenbach. Extending the resolution method with sorts. In Proc. of13th International Joint Conference on Arti�cial Intelligence, IJCAI-93, pages 60{65. Morgan Kaufmann, 1993.[11] ChristophWeidenbach. First-order tableaux with sorts. Journal of the Interest Groupin Pure and Applied Logics, IGPL, 3(6):887{906, 1995.25



Some Related Cases of In�nite Uni�cation andMatchingMarisa Venturini ZilliWe show how in�nite uni�cation, in�nite matching and uni�cation of in�nitesets of terms can be related.
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Complexity of Term SchematizationsGernot SalzerWe investigate the structural complexity of unifying term schematizations.Using the 1-in-3-SAT problem we show that uni�cation is NP-hard even whenno Diophantine equations have to be solved. To obtain an upper bound we givean algorithm for solving the word problem for term schematizations. Our aimis to prove uni�cation to be in NP (assigning unit cost to the solution of linearDiophantine equations). Currently this claim has the status of a conjecturesince parts of the proof are still missing.
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Polynomial Non-AC-Uni�ability and Matching FiltersRobert Nieuwenhuis and Jose Miguel RiveroTechnical University of CataloniaPau Gargallo 5, 08028 Barcelona, SpainE-mail: froberto,riverog@lsi.upc.esAs a consequence of previous work by Nieuwenhuis and Rubio, it seems thate�cient automated deduction strategies with built-in associativity and commu-tativity properties (AC) for some operators could be obtained by dealing withAC-uni�ability constrained formulae. Here we address ongoing work on someof the practical aspects appearing in actual implementations of such strategies:e�cient sound tests for detecting cases of non-AC-uni�ability (the full decisionproblem is well-known to be NP-hard) as well as some ideas for practical me-thods for AC-matching. In particular, we provide benchmarks for several cases.
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Matching and Uni�cation with Compiled SubstitutionTreesRobert Nieuwenhuis, Jose Miguel Rivero, and Miguel Angel VallejoTechnical University of CataloniaPau Gargallo 5, 08028 Barcelona, SpainE-mail: froberto,rivero,vallejog@lsi.upc.esWe provide a standard abstract architecture around which high-performancetheorem provers for full clausal logic with equality can be built. A WAM-likeheap structure for storing terms (as DAG's, with structure sharing) and severalsubstitution trees [Graf RTA95] are central in the architecture. These two datastructures turn out to be surprisingly well combinable due to conceptual simi-larities. Indexing techniques based on substitution trees outperform previousmethods, and are integrated in such a way that e.g. no writing on the heap isneeded during (many-to-one) term uni�cation. Static clause (sub)sets can becompiled in this framework into e�cient abstract machine code for inferencecomputation and redundancy proving. We provide benchmarks for several ty-pical operations.
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Results about RUE ResolutionUlf Dunker and Annette M�ullerUniversity of Paderborn33095 Paderborn (Germany)dunker@uni-paderborn.de and nette@uni-paderborn.de1 IntroductionBased on an implementation of the �rst-order resolution calculus, which wasrealized within Paderborn's C library LogicAL [DFKBLL94], we were intere-sted in extending the algorithm for processing equality. In [BlB92] we found theapproach of Digricoli: RUE [Di79], which stands for Resolution by Uni�cationand Equality. With general E-resolution a resolution step is possible only if thedi�erences of terms in corresponding literals can be fully resolved. PrincipallyRUE allows resolution steps at any time. The di�erence between unresolvedterms, which de�nes a distance between them, is represented within the new de-rived clause by disagreement sets, a series of unequalities. So, unresolved termscan be handled later in order to reduce their distance. For unifying two termsin a literal s 6= t, instead of applying paramodulation Digricoli also suggests theidea of reducing their distance in a similar way. The non-deterministic RUEprocedure is correct and complete.2 RUE is IncompleteWhen applying RUE, in each step a disagreement set and a substitution haveto be chosen. In order to obtain a deterministic procedure which can be imple-mented, Digricoli de�nes some strategies for this.At �rst he de�nes the viability of a disagreement set. The viability is anecessary condition that there is a sequence of equalities, so that the unequa-lities of the disagreement set can be resolved. Two terms may lead to morethan one viable disagreement set. That one which terms have the lowest termdepth is called the topmost viable disagreement set. For deriving new clauses,all disagreement sets, all viable disagreement sets, or just the topmost one arepossible choices. The viability test is described in [DLS89].Secondly, instead of trying each of the possibly in�nite number of applica-ble substitutions, three special substitutions are suggested. The most generalpartial uni�er (mgpu), the RUE uni�er which applies the viability test, and the2-scan uni�er which is another special partial uni�er.In [BoHa92] it is shown that deterministic RUE resolution using thesestrategies is not complete without applying the functional reexivity axiomf(X) = f(X). So RUE doesn't seem to be a reasonable theorem proving pro-cedure for problems with equality. 30



3 HeuristicsAdditionally to the strategies of chosing disagreement sets and substitutions,reducing the number of possible resolution steps can be made by restrictingwhich parent clauses can be selected for resolution (N-, P, Set of Support re-solution, ...) or by restricting the maximal clause length or the maximal termdepth. We want to introduce another heuristic.If two literals t1 = t2 und t3 6= t4 should be resolved, the pairs t1; t3 andt2; t4 have to be tested whether they are uni�able. If this test fails, the pairst1; t4 and t2; t3 also have to be tested because of the symmetry. The idea is tosort all equality arguments according to a given term order and to process onlythe �rst test without loosing too much information.We chose a term oder known from term rewriting systems: t1 < t2 ,!(t1) < !(t2) where !(t) = !1 if t is a constant, !(t) = !2 if t is a variable,and if t = f(t1; : : : ; tn), !(t) = !3 +Pni=1 !(ti).The intention is that if the distance j!(t1)� !(t2)j is large, the probabilityto unify t1 and t2 is small. It can be shown, that the order !1 < !2 < !3theoretically is the best choice, e.g. !1 = 1, !2 = 3, and !3 = 5.The viability test can also be equiped with several heuristics.4 ResultsFor the implementation, the resolution algorithm of LogicAL was extended byparamodulation and RUE with the described strategies and heuristics. In orderto evaluate the large number of possible settings for the resulting algorithm, weused the TPTP formula library [SS94] for runtime tests. The TPTP contains1831 unsatis�able CNF formulas with equality mainly contained in ten problemclasses of the TPTP. We used N-resolution and a maximal runtime per formulaof ten minutes, i.e. maximal twelve days per test.4.1 Best StrategyAt �rst we wanted to �nd the best RUE strategy (the values are numbers ofsolved formulas or numbers of formulas decided as satis�able (errors) absoluteand in percent)� Testing the choice of disagreement sets with RUE using mgpu:{ Topmost viable disagreement sets: 79 (4%) solved, 89 (5%) wrong{ All viable disagreement sets: 685 (37%) solved, 84 (5%) wrong{ All disagreement sets: 763 (42%) solved, 3 (0.1%) wrongSo Digricoli's viability test leads to a large amount of wrong decisionswithout improving the procedure. Trying all disagreement sets is thebest strategy and though it's incomplete, 0.1% is a low error rate.� Testing the choice of substitution with RUE trying all disagreement sets:31



{ All three substitutions (mgpu, RUE uni�er, and 2-scan uni�er) leadto 3 (0.1%) wrong decisions.{ Also the number of solved formulas is nearly the same: 763 (42%)mgpu, 742 (41%) RUE uni�er, 765 (42%) 2-scan uni�er{ The best runtime was obtained with the 2-scan uni�erTherefore the strategy of trying all disagreement sets with the 2-scanuni�er leads to the best results.Remark: Our paramodulation version solves 508 (28%) of the formulas, ofcourse without errors because resolution with paramodulation is complete. Butwith only three wrong decisions RUE solves 50% more problems.4.2 Best HeuristicSecondly we tryed to �nd the best RUE heuristic. We found that all heuristicsshows advantages in some problem classes and disadvantages in others. Withrestricting the clause length to �ve, the term depth to eight, and using theterm order mentioned before, the number of solved formulas can be raised to778 (42%) where 4 (0.2%) wrong decisions were made. The term oder whichwas theoretically shown to be the best also delivers the best runtime results.4.3 OtterIn order to get a more global result about the e�ciency of RUE, we comparedthe results with those obtained by OTTER, a famous resolution based theoremprover developed in C by W. McCune [McC94]. We tested three OTTERcon�gurations: Standard (positive hyper resolution, paramodulation), Knuth-Bendix (positive hyper resolution, Knuth-Bendix completion), and Autonomous(the prover chooses the strategy for each formula).The Autonomous con�guration delivers the best runtime results. OTTERsolved 618 formulas (34%). So RUE solved 24% more formulas than OTTER.When looking at the runtime, on the average, RUE solved the problems faster.5 ConclusionRUE was shown to be an e�cient theorem proving procedure. The best stra-tegy is to try all disagreement sets with the 2-scan uni�er. The rate of wrongdecisions is low (0.1%). Additional heuristics, especially the term order ap-proach, can help to solve more formulas without producing much more wrongdecisions. In relation to OTTER, with RUE better results with a better run-time behaviour can be obtained for the TPTP formulas. But remember thatwhen RUE decided satis�able, you cannot be sure that the decision is correct.References[BlB92] K.H. Bl�asius, H.-J. B�urckert: Deduktionssysteme, R. Oldenbourg, 2.Edition, (1992) 32
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Goal{Directed Completion using SOUR Graphs�Christopher Lynch yMay 29, 1996AbstractWe give the �rst Goal-Directed version of the Knuth Bendix Completion Procedure. Our pro-cedure is based on Basic Completion and SOUR Graphs. There are two phases to the procedure.The �rst phase, which runs in polynomial time, compiles the equations and the goal into a cons-trained tree automata representing the completed system, and a set of constraints representing goalsolutions. The second phase starts with the goal solutions and works its way back to the originalequations, solving constraints along the way.1 IntroductionThe Knuth Bendix Completion Procedure [7] is the best known procedure for solving word problemsand equational uni�cation problems. One reason that it works as well as it does is that it is basedon a well-founded ordering. In many cases, this allows it to convert a set of equations into a decisionprocedure to solve the word problem for its equational theory. This cannot always work, because theword problem is undecidable. The Completion Procedure works by starting with the initial set ofequations, continually generating new equations, at each point checking to see if it has discovered asolution to the goal. No matter what the goal is, it always generates the same equations. There hasbeen much research to improve the e�ciency of the Completion Procedure, but up until now, nobodyhas found a way to use the goal to direct the search for solutions of the goal. In this paper, we givethe �rst method for doing that.The fact that Knuth-Bendix completion is not goal directed means that if a goal is false, and theset of equations has an in�nite canonical system, then Knuth-Bendix completion will run forever. Agoal directed system could detect that certain critical pairs are not necessary to solve a given goal,and halt and say the goal is not true. It is possible to give heuristics for constructing critical pairs sothat equations that are related to the goal are created �rst. But in order to have a complete system,all critical pairs much be eventually created. So this changes the order in which critical pairs arecreated, but all of them must be created eventually. It could be argued that the completion procedurecan be combined with a narrowing (or rewriting) procedure so that new equations are immediatelyinvolved in inferences with the goal. In this sense the completion procedure is more goal sensitive.But it is not goal directed, because it is still the case that all critical pairs must be constructed fora false goal. Also, it is possible to encode the goal as an equation itself, and prove the goal in thecompletion procedure. However, this process is equivalent to the process of interleaving completionwith narrowing, and therefore must construct all critical pairs. In fact, it is worse, because it does notgive any priority to the goal. Until now, there have been no modi�cations to Knuth Bendix completionto allow the process to stop when a goal is false and the canonical set of equations is in�nite.Consider the equational theory E = ff(f(x)) = g(f(x))g. Suppose we want to know if a and bare equivalent modulo E. The Completion Procedure will generate in�nitely many equations from E,�This document was created using Xy-pic[13]. Thanks to Kristo�er Rose for his help with Xy-picyINRIA Lorraine et CRIN, Campus Scienti�que, BP 101, 54602 Villers-l�es-Nancy cedex, France, Phone: (33) 83 5930 88, Fax : (33) 83 27 83 19, email: lynch@loria.fr 34



but never halt and say the goal is not true, although it is trivial to see that the goal does not follow.The General E-Uni�cation Procedure [14] is an alternative to Completion. It starts from the goal,and creates new subgoals by using the equations. But it has a drawback that it cannot incorporateorderings and make things smaller at each point. Given the theory E = ff(a) = ag, and the goalg(a) = h(a), it will replace g(a) by g(f(a)) by g(f(f(a))) etc. It never halts and says \no". Orderingsare crucial for converting theories into decision procedures.For logic programming, there is a procedure which solves goals by building up from the facts untila goal is reached. If those bottom-up proofs are reversed, we have SLD Resolution, a goal-directedprocedure. This is possible because an initial rule is involved in every inference. But in the completionprocedure, we cannot turn the proof around and work backwards, because inferences may not involveinitial equations, and we have no idea what equations will be derived. In our approach, we handlethis by schematizing the equations that will be derived, using constrained tree automata. Recently,there have been some papers showing how to schematize terms (see [6] for references). However theseapproaches do not show how the schematizations can be created.Our approach is based on Basic Completion [1, 11], which works by saving uni�cation problemsin equational constraints instead of applying most general uni�ers. It is even possible to save theordering problems in constraints [12]. In [9], we de�ned a graphical theorem proving approach, basedon Basic Paramodulation. This procedure was re�ned to be implemented as a Completion Procedurein [10]. The initial problem is stored in a graph with terms represented as dags. The edges formingthe dag are called subterm edges, and the edges for the equations are called rewrite edges. Inferencesare transformations on the graph, which create new subterm and rewrite edges, labelled with theconstraint and renaming used in the inference. Inference do not increase the number of nodes inthe graph. The graphs are called SOUR graphs, because the edges in the graph represent Subterm,Ordering, Uni�cation, and Rewrite relations.SOUR Graphs can be adapted to a goal directed completion procedure. When we add a new edgeto the graph, instead of inheriting the actual constraints and renamings, we just give a reference to theconstraints and renamings it is built up of. So there are only �nitely many edges added to the graph,in fact only polynomially many, and completion halts in polynomial time (we call this a compilation).It creates a schematization of the completed set of equations and a set of constraints representinggoal solutions. After the compilation halts, the procedure starts with the goal solutions and wordsbackwards from the goal to the initial equations, solving constraints along the way. If our techniqueis restricted to narrowing, we could consider the work of [5, 2] to be special cases. We consider ourwork to be an extension of [8], where it was �rst shown how to decide the word problem for groundterms in polynomial time, with a congruence closure algorithm. We show that it is possible to performcongruence closure in polynomial time, even for non-ground terms. The di�erence is that the resultof the congruence closure is a constraint which now must be solved.The paper is as follows. After some brief de�nitions we de�ne how to compile a set of equationsinto a SOUR graph, in polynomial time. Next we give the semantics of SOUR graphs, to show thatit truly represents the completion of a set of equations. Then we give inference rules to solve theconstraints of the SOUR graph. In the last section, we discuss ways to use the procedure as a decisionprocedure. The proofs are missing in this abstract, but they are straightforward.2 PreliminariesWe present necessary de�nitions briey. We refer the reader to [4] for a more detailed exposition.Terms are de�ned inductively from a set of functions symbols. If f is a function symbol of arity p, andt1; � � � ; tp are terms then t = f(t1; :::tp) is a term, and we say top(t) = f . We consider variables andconstants as arity 0 function symbols. Uni�ers and substitutions are de�ned as usual. A renaming isan injective substitution � such that every variable is mapped to a variable. The renaming id is theidentity substitution. A fresh renaming is a renaming which maps all variables to new variables. In35



SOUR graphs, renamings will be written in the form �i, where i is a positive integer. They can beunderstood to mean that x�i1 � � � �im is the same as x�j1 � � � �jm if and only if m = n and ik = jk forall k, 1 � k � n. For this, we use the concept of a fresh number , which means an index number thathas not previously appeared.The symbol � (resp. 6�) is a binary symbol, written in in�x notation, representing semanticequality (resp. disequality). The 0-ary symbol 2 will represent solutions to equations. An object isground if it contains no variables. We say s� � t� is an instance of s � t. if s� and t� are ground.Let EQ be a set containing equations. We de�ne EQ� to be the reexive, symmetric, transitive andcongruence closure of all the instances of equations s � t in EQ.Let EQ be a set of equalities and disequalities. We de�ne a function Sub so that Sub(EQ) is theset of subterms in EQ. If t = f(t1; � � � ; tn) with n � 0, then Sub(t) = ftg [S1�i�nSub(ti). We de�neSub(s � t) = Sub(s) [ Sub(t). A disequation s 6� t is viewed as a term with s the �rst argument of 6�and t the second, so Sub(s 6� t) = fs 6� tg [ Sub(s) [ Sub(t). We de�ne Sub(EQ) = Seq2EQ Sub(eq).We assume that < is a reduction ordering, total on ground terms. The symbol := is a binary symbolthat represents syntactic equality, and � is a symbol representing the ordering <. A constraint is aconjunction of := and � expressions. A constraint s := t is true if s = t, s � t is true if s < t, E1 ^ E2is true if E1 and E2 are true, and > is always true. We say that a substitution � is a solution ofa constraint ' if '� is true. If there is a substitution � such that '� is true, then ' is satis�able.Otherwise it is unsatis�able. We say � = mgs(') (� is a most general solution of ') if � is a solutionof ', and � � � for all solutions � of '. See [3, 12] for algorithms to �nd the mgs of a constraint,where � represents a lexicographic path ordering.Let EQ be a set of equations and disequations, where no two disequations in EQ have any variablesin common. A set of constraints C is a complete set of solutions for EQ if (i) for every solution �of some ' 2 C, there is a disequation s 6� t in EQ such that s� � t� 2 EQ�, and (ii) for everydisequation s 6� t in EQ and substitution � such that s� � t� 2 EQ�, there is a constraint ' 2 Csuch that � is a solution of '.A constrained term, (or equation or disequation) t [[' ]] is a pair of a term (or equation or dise-quation) t and a constraint '. An equation or disequation eq is viewed as the constrained equationor disequation eq [[> ]]. The meaning of t1 [['1 ]] := t2 [['2 ]], is t1 := t2 ^ '1 ^ '2. The meaning off(t [[' ]]) [[ 	 ]] is f(t) [['^	 ]] The Basic Completion inference rules are the following.Critical Pair s � t [['1 ]] u[s0] � v [['2 ]]u[t�] � v [[ s� := s0 ^ s � t ^ u[s0] � v ^ '1� ^ '2 ]]where � is a renaming substitution and s0 62 V ar.Narrowing s � t [['1 ]] u[s0] 6� v [['2 ]]u[t�] 6� v [[ s� := s0 ^ s � t ^ '1� ^ '2 ]]where � is a renaming substitution and s0 62 V ar.Equation Resolution u 6� v [[' ]]2 [[u := v ^ ' ]]If EQ is a set of equations1 and disequations, let Clos(EQ) represent the closure of EQ under theBasic Completion inference rules. We have the following soundness and completeness result from [12].1Throughout the paper, we assume we are given a set of equations closed under symmetricity.36



Theorem 1 Let EQ be a set of equations and disequations. Let C = f' j 2 [[' ]] 2 Clos(EQ)g. ThenC is a complete set of solutions for EQ.3 SOUR GraphsIn this section we show how to create a SOUR graph. An initial SOUR graph is created as the dagrepresentation of a set of equations. From the initial representation a compilation process is performedthat creates a schematization of the completed system. The schematization adds new edges to theSOUR graph, but does not add nodes.A SOUR graph contains nodes which are labelled uniquely by the subterms in the initial set ofequations. Each node represents a set of constrained terms. There are two types of edges in a SOURgraph, subterm edges and rewrite edges. Subterm edges are directed edges labelled by an index number.Some subterm edges are also labelled with a set of pairs, each pair consisting of a subterm edge and arewrite edge. Rewrite edges are directed edges, some of which are labelled by a set of pairs, each pairconsisting of two rewrite edges. Edges that are not labelled with a set of pairs are called initial edges.Initially a graph only contains initial edges. As the compilation process is performed, new edges arecreated due to pairs of existing edges. The sets of pairs for an edge represents the di�erent ways theedge could be created. Therefore, a compiled graph contains a history of its origins. Let u and v betwo nodes in the graph. Then there is at most one rewrite edge from u to v. If a rewrite edge existsfrom u and v, we will call it (R; u; v). If u is labelled by a term with an n-ary top symbol, then forall i such that 1 � i � n there is at most one subterm edge from u to v labelled with index i. If i < 1or i > n then there are no subterm edges from u to v labelled with i. If a subterm edge exists fromu to v labelled with index i, we will call it (S; i; u; v). Also, every graph has an additional set of pairscalled Goal associated with it, each pair consisting of two subterm edges.Given a set EQ of equations and disequations, we create an initial SOUR graph in the followingway from the subterms of EQ. For every element t of Sub(EQ), there is a node in the graph labelledwith t. We create a set of subterm edges S(EQ) such that if f(t1; � � � ; tn) 2 Sub(EQ), then, for eachti, there is an initial subterm edge e 2 S(EQ) from the node labelled with f(t1; � � � ; tn) to the nodelabelled with ti. This edge is labelled with index i. We also create a set R(EQ) of rewrite edgessuch that if s � t 2 EQ, then there is an initial rewrite edge from the node labelled with s to thenode labelled with t. There is also an initial rewrite edge from the node labelled with t to the nodelabelled with s. We add both edges, but in inferences, we will use ordering constraints, which will beunsatis�able for edges ordered the wrong way. In �gures, we will sometimes draw unoriented rewriteedges, since they always appear in both directions. We say that the SOUR graph composed of edgesof S(EQ) and R(EQ) is the initial SOUR graph of EQ. In Figure 1, we give the initial SOUR graphof ffx � gfx. This gives us the usual dag representation of a set of equations. One point that isimportant to understand is that when we de�ne the semantics, only the top symbol of a term labellinga node will be used. The rest of the term was only used to aide us in de�ning the graph, so in future�gures, only the top symbol will be written.After the initial SOUR graph, is created, we must compile it into a schematization of the completedsystem by adding edges corresponding to inferences. Before we de�ne how to perform the compilation,we de�ne what it means for two nodes to top unify. Two nodes top unify if they represent the sameterm, ignoring constraints and renamings (which we describe below). Formally, if u and v are nodes,then u and v top unify if (i) u or v is labelled by a variable symbol, or (ii) u and v are labelled bythe same n-ary function symbol and for all i, 1 � i � n, there is an edge ei from u to some ui and anedge ei0 from v to some vi such that both ei and ei0 are labelled with index i, and ui and vi top unify.In order for terms represented by nodes to unify, the nodes must top unify.We will de�ne an inference procedure that detects certain patterns in the graph and adds a new edgebased on each pattern. We �rst de�ne a function RUR so that if e1 = (R; v1; v2) and e2 = (R; v3; v4)are edges such that (i) v1 and v3 top unify, (ii) v1 is not labelled by a variable, and (iii) e3 = (R; v2; v4)37



ffx��S R gfxxx Sppppppppppppfx��SxFigure 1: Initial SOUR graph a //R��R byy RcFigure 2: RUR edgeis not an initial edge, then e3 = RUR(e1; e2). We say that e3 is created by an RUR transformation.Creating edge e3 corresponds to performing a critical pair between the equation represented by e1 andthe equation represented by e2, at the root of the left hand sides. See Figure 2 to see a critical pairbetween a � b and a � c. The new edge is represented by a dotted line. After adding the new edge,the graph represents the original equations plus the equation added by performing the critical pair.Let SUR be a function so that if e1 = (S; i; v1; v2) and e2 = (R; v3; v4) are edges such that (i) v2and v3 top unify, (ii) v2 is not labelled by a variable, and (iii) e3 = (S; i; v1; v4) is not an initial edge,then e3 = SUR(e1; e2). Then e3 is created by an SUR transformation. Creating edge e3 correspondsto performing a inference from the equation represented by e2 into the term represented by e1, belowthe root. Figure 4 shows a critical pair from a � c into fa � b. Figure 3 is a more complicatedexample. In Figure 3, the curved edge going from left to right represents the following inference:ffx � gfx ffx � gfxfgfx�1 � gfx [[ ffx�1 := fx ^ ffx � gfx ]]More precisely, what we have shown in the �gure represents the skeleton part of the conclusion ofthis inference, i.e., everything except for the renaming and the constraint. Later, we will see how therenaming and constraint will be represented, by virtue of the label on the new edge. The conclusioncan be simpli�ed to fgfx�1 � gfx [[ fx�1 := x ]]The line that goes from the edge labelled by g to itself represents the following inference:ffx � gfx fgfx�1 � gfx [[ fx�1 := x ]]fggfx�2 � gfx [[ ffx�2 := fx�1 ^ ffx� gfx ^ fx�1 := x ]]With the addition of these two edges, we have completely schematized the completion of ffx �gfx, which is an in�nite set of equations.We also de�ne a function Goal so that if e1 = (S; 1; v; v1) and e2 = (S; 2; v; v2) are edges such that(i) v1 and v2 top unify, and (ii) v is labelled by a disequation s 6� t, then Goal(e1; e2) is called a goaltransformation. This corresponds to a possible solution of a goal. When we de�ne the semantics, wewill see that this represents a constraint that must be solved to solve the goal.Now we are ready to show how to compile the graph. If EQ is a set of equations, we de�neCOMP (EQ) to be the graph G = (V;E;Goal) where V is the set of nodes labelled by Sub(EQ), andE and Goal are the smallest set of edges and goal transformations such that (i) S(EQ)[R(EQ) � E,(ii) if there is an SUR transformation e3 = SUR(e1; e2) for edges e1; e2 2 E, then e3 2 E and(e1; e2) is in the set of pairs of e3, (ii) if there is an RUR transformation e3 = RUR(e1; e2) for edgese1; e2 2 E, then e3 2 E and (e1; e2) is in the set of pairs of e3, (ii) if there is a Goal transformation38



fGF EDS ����S //R gzz Stttttttttttt GFEDSBCoof��SxFigure 3: SUR edges f��S //R %%S ba //R cFigure 4: SUR edgee3 = Goal(e1; e2) for edges e1; e2 2 E, then e3 2 E and (e1; e2) is in the set of pairs of e3.This completely de�nes the SOUR graph. What is left to do is to de�ne how to interpret theSOUR graph to represent the schematization of a completed set of equations and the solutions to thegoal. We also need to say how to use this interpretation to solve the goal constraints in a goal directedfashion. But �rst we must point out that COMP (EQ) can be computed in polynomial time in thesize of the initial set of equations. Clearly the initial graph can be created in polynomial time. Thereis a simple algorithm to compute COMP (EQ) from the initial SOUR graph. The algorithm is thefollowing. At any point, if there is an SUR transformation e3 = SUR(e1; e2) that has not performed,then we perform it. We perform it by checking if e3 exists. If it does not exist, we add it with set ofterm pairs f(e1; e2)g. If it does exist, we add (e1; e2) to the set of term pairs. We do the same thingfor RUR and Goal transformations. We keep performing these transformations until we have donethem all. This algorithm will halt in polynomial time. First, notice that it is possible to calculate if atransition exists and �nd it in polynomial time. We only need to check all the pairs of subterm edges,pairs of subterm and rewrite edges, and pairs of rewrite edges. The number of such pairs is quadraticin the size of the graph. For each pair, we check the top uni�cation problem. But top uni�cation can,in fact be performed on the whole graph in time quadratic in the size of the graph, if answers are savedas they are calculated, and no calculation is performed twice. This is true, because we only have to topunify all pairs of edges. Therefore, each step of the algorithm is quadratic. Now we must argue thatthe algorithm halts and only takes polynomially many steps. Note that each step in the algorithmeither adds a new edge to the graph or increases the number of edges associated with a pair. Sincethe number of nodes of the graph does not grow, we cannot add more than quadratically many edgesin the initial size of the graph, which is no bigger than the initial size of the problem. Furthermore,each edge can have at most one pair in its set for each pair of edges in the graph. Therefore thesize of each set is O(n4) in the size of the original problem. That shows that the algorithm has onlypolynomially many steps, therefore it is polynomial. This is a big polynomial, but in practice it willbe much smaller.4 SOUR Graph SemanticsWe need a semantics which shows that the initial SOUR graph of a set of equations and disequationsrepresents the initial set of equations. We also need to show that a compiled SOUR graph of a set ofequations represents a schematization of the completed set of equations, and a compiled SOUR graphof a set of equations and disequations represents the schematization of the completed set plus a set ofrecursive syntactic uni�cation and ordering constraints representing possible solutions of the goal.We de�ne the semantics of nodes, and subterm and rewrite edges, inductively, in terms of eachother. Each node and edge has a set of functions associated with it, which can be applied to certain39



types of arguments. Let e be an edge (or node). Then Fe will be the set of functions associated withe. Each function in Fe will have the same type of inputs and output. If the functions in Fe take inputsof type T1; � � � ; Tn, then we de�ne Ne = fF (n1; � � � ; np) jni 2 Ti for all i, 1 � i � pg. Functions will bewritten in typed lambda calculus notation. Therefore, each n 2 Ne is a typed lambda calculus term,and Nf(n) is the normal form reached by reducing all the radices in n. Also, let Tr be the set of allfresh renamings.If v is a node, then each member of Nv will be a constrained term. If e is a subterm edge, then eachmember of Ne will be a triple ('; �; t), where ' is a constraint, � is a renaming, and t is a constrainedterm. We consider Con, Ren and Term to be functions applied to members of Ne which select thecorresponding �eld. If e is a rewrite edge, then each member of Ne will be of the form ('; �1; �2; t1; t2),where ' is a constraint, �1 and �2 are renamings, and t1 and t2 are constrained terms. We considerCon, Ren1, Ren2, Term1 and Term2 to be functions applied to members of Ne which select thecorresponding �elds.To understand the complicated functions we are about to describe, we note that for each node v,the normal forms of all members of Nv represent terms whose dag representations are rooted at thenode. For an edge e, the normal forms of the members of Ne represent the the constraints, renamingsand terms that are built up by inferences. For the case of subterm edges, these apply to the �nal nodeof the edge. For rewrite edges, terms and renamings apply to both nodes. There is one constraint toapply to both nodes.Let v be a node labelled by a p-ary function symbol f and i1; � � � ; ip be integers.2 Then Fv = f�n1 :Ne1; � � � ; np : Nep :Term(v; i1; � � � ; ip) j for all j, ej is an edge leading from v to some vj with index jg,where Term(v; i1; � � � ; ip) = f(Term(ni1)Ren(ni1); � � � ; Term(nip)Ren(nip)) [[S1�j�pCon(nij ) ]].For the rest of the de�nitions, let i; j; k be integers. Let e = (S; l; u; v) be an initial subterm edge.Then Fe = f�n : Nv:List(e; i; j; k)g, where List(e; i; j; k) = (>; id; n). Let e = (R; u; v) be an initialrewrite edge. Then Fe = f�n1 : Nu; n2 : Nv:List(e; i; j; k)g, where List(e; i; j; k) = (>; id; id; n1; n3).Let e = (S; l; u; v) be a non-initial subterm edge. Then Fe = f�n1 : Ne1 ; n2 : Ne2; �k : Tr:List(e; i; j; k)j (e1; e2) is a pair in the pair set of eg, whereList(e; i; j; k) = (Con(e; i; j; k); Ren(e; i; j; k); Term(e; i; j; k)),such that Con(e; i; j; k) = Con(ni) ^ Con(nj)�k ^ Term1(nj)Ren1(nj)�k := Term(ni)Ren(ni) ^Term1(nj)Ren1(nj) � Term2(nj)Ren2(nj), and Ren(e; i; j; k) = Ren2(nj)�k, and Term(e; i; j; k) =Term2(nj).3Let e = (R; u; v) be a non-initial rewrite edge. Then Fe = f�n1 : Ne1; n2 : Ne2 ; �k : Tr:List(e) j (e1; e2)is a pair in the pair set of eg, where List(e; i; j; k) = (Con(e; i; j; k); Ren1(e; i; j; k); Ren2(e; i; j; k);Term1(e; i; j; k); Term2(e; i; j; k)), such that Con(e; i; j; k) = Con(ni) ^ Con(nj)�k ^Term1(nj)Ren1(nj)�k := Term1(ni)Ren1(ni) ^ Term1(ni)Ren1(ni) � Term1(nj)Ren1(nj) ^Term1(nj)Ren1(nj) � Termj(nj)Ren2(nj), and Ren1(e; i; j; k) = Ren2(ni), and Ren2(e; i; j; k) =Ren2(nj)�k, and Term1(e; i; j; k) = Term2(ni), and Term2(e; i; j; k) = Term2(nj).If e = Goal, then Fe = f�n1 : Ne1; n2 : Ne2:List(e; i; j; k) j (e1; e2) is a pair in the pair set of eg,where List(e; i; j; k) = Con(e; i; j; k), such thatCon(e; i; j; k) = Con(ni)^Con(nj)^Term(ni)Ren(ni):= Term(nj)Ren(ej).For a graph G = (V;E;Goal), let Er be the set of all rewrite edges in R. We de�ne Eqs(G),Deqs(G) and Sols(G) to represent all equations, disequations and goal solutions given by G, accordingto the semantics. Formally, Eqs(G) = fNf(s) � Nf(t) j ('; �1; �2; s; t) 2 Ne for some e 2 Erg. Also,Deqs(G) = fNf(n) jn 2 Nv for some v 2 V where top(v) is 6�g. Additionally, Sols(G) = fNf(n) jn 2Ne and e = Goalg. The following are straightforward consequences of the de�nitions.Theorem 2 Let EQ be a set of equations and disequations. Let G be the initial graph of EQ. ThenEqs(G) [Deqs(G) = EQ.2It does not not matter which integers we pick for these de�nitions. They are only necessary so we can performrenamings in the inference rules in the next section.3For this de�nition and the following two de�nitions, please refer to the inference rules at the end of section 2. Weare only reproducing those constraints. 40



The next theorem shows that the compilation process schematizes the completed system and �ndsall the solutions to the goals. It is proved by the relationship between SOUR derivations and BasicParamodulation derivations (also see [10]).Theorem 3 Let EQ be a set of equations and disequations. Let G = COMP (EQ). Then Sols(G) isa complete set of solutions for EQ.5 Goal Directed CompletionNow we describe how to solve the Goal constraint in COMP (EQ). For this procedure, we save aconstraint denoted by ', a set of variable{type pairs denoted by V T , and a set of term equalitiesdenoted by TE. The constraint is built up by the algorithm. Each member of V T is of the formn : T where n is a variable and T is the type of n. Elements of TE are of the form Term1(n) = t orTerm2(n) = t, where t is a constrained term we are building.Initially, ' = Con(n), V T = fn : NGoalg, and TE = ;. The algorithm expands '. At each point ofthe algorithm, we can perform an inference rule called De�nition Expansion or an inference rule calledTerm Expansion, which modify ', V T and TE. First we don't-care nondeterministically select aninference rule to perform and a variable from V T to expand. Then we don't-know nondeterministicallyselect an expansion to perform. After the inference we deterministically perform some simpli�cationsteps. This is analogous to the SLD-Resolution rule in Logic Programming, where we don't-carenondeterministically select a subgoal to solve and then don't-know nondeterministically select a ruleto resolve against the subgoal. As in SLD Resolution, Goal-Directed Completion may be implementedwith a breadth-�rst search or with iterative deepening. A depth �rst search is not complete, becausewe could follow a single path and ignore the one that solves the goal.The De�nition Expansion rule replaces a variable by its de�nition:De�nition Expansion '[n] V T [ fn : Neg TE[n]'[List(e; i; j; k)] V T [ fn : Ne; ni : Ne1 ; nj : Ne2g TE[List(e; i; j; k)]where (e1; e2) is in the pair set of e, and i, j, and k are fresh numbers.This mean that we select a variable n appearing in V T and replace n everywhere it appears in theconstraint we are solving with renamed versions of the edges that create n. For example, this impliesthat we replace a �eld of the form Con(n) by a renamed copy of its meaning. In the term equations,we do the same, e�ectively replacing Term(e) by a renamed copy of its meaning.The Term Expansion rule expands a term:Term Expansion '[Termm(n)] V T [ fn : Neg TE[Termm(n)]'[Term(vm; i1; � � � ; ip)] V T [ fn : Ne; ni1 : Ne1 ; � � � ; nip : Nepg TE[Term(vm; i1; � � � ; ip)]where (i), m 2 f1; 2g, (ii) e goes from v1 to v2, (iii) for all j, ej is an edge from vm to some vj withindex j, and (iv) i1; � � � ; ip are fresh numbers.This says that if there is a term Termm(n) that appears in the constraint, we can �nd this nodein the graph and expand the term, replacing the new constraints and renamings by renamed copies.After each inference rule, we also need to perform simpli�cation steps to solve the equational andordering constraints which appear. For lack of space, we do not present the simpli�cations here (seeFigure 3 in [3]). These transformations convert constraints to a normal form. We can then perform41



the algorithms given in [3, 12] to solve the constraints.4 If the constraints are unsatis�able we fail. Ifthe constraints are satis�able, we leave them in normal form and continue the goal solving procedure.Each branch of this procedure halts when no more inferences can be performed.We want to show that these inference rules give us all the solutions to our goal. Let �EQ bethe set of all constraints ' such that ('; V T; TE) is in the closure of the above inference rules overCOMP (EQ), and no inferences can be applied to ('; V T; TE). We have the completeness theorem:Theorem 4 Let EQ be a set of equations and disequations. Then �EQ is a complete set of solutionsfor EQ.The theorem is proved by showing that for each ('; V T; TE), the set of all De�nition Expansioninferences on a given variable, preserves the set of solutions. This is also true for Term Expansion.We have de�ned an algorithm which starts with the potential goal solutions and works its waybackwards to the original equations. But the inference rules can be modi�ed so that we can start atany point and build from there in �nding goal solutions. For instance, we could simulate the Knuth-Bendix algorithm by starting with the original equations and working toward the goal. Perhaps themost interesting algorithm is one that starts with the initial goal equation, instead of the solutions tothe goal. This algorithm performs inferences to build up the goal solution, and it also works its wayback to the original equations. It is also truly goal directed in that it starts from the goal and worksits way backwards toward the original equations.6 Decidability Results and Future WorkA natural question to show the usefulness of these ideas is to show how SOUR graphs are used to givea decision procedure in cases where Knuth-Bendix completion does not because the completed systemis in�nite. For instance, consider the equation ffx � gfx and goal a 6� b given in the introduction.Knuth-Bendix runs forever on this example. Our algorithm compiles the system in polynomial time.After the compilation is �nished, there are no goal constraints. Therefore, the De�nition Expansionand Term Expansion rules cannot be performed. And the system stops immediately and says that thegoal is not true. So this is an example where our algorithm is superior to the Knuth-Bendix algorithm.It would be even more interesting if we could show that there are some equational theories suchthat the Knuth-Bendix algorithm never halts for any false goals, but our system halts for all goals.For instance, consider the equational system ffx � gfx. First note that ffgnfx � ggnfx j n � 0g isan in�nite reduced system representing the same equational theory as ffx � gfx. Therefore Knuth-Bendix will not halt with the equation ffx � gfx and a false goal. We would like to show that itdoes halt in our systemWe believe we have given convincing evidence to show that SOUR graphs and the algorithms inthis paper are a powerful technique for proving theories decidable. We are currently examining this,and we will give some results at the Uni�cation Workshop. The constraints in COMP (EQ) providesolutions to the goal that can be represented as recurrence equations on terms. We need to developtechniques to solve such recurrence equations. Other ways of developing this is to use recently deve-loped constraint automata techniques, or possibly to use techniques developed in logic programming,since the constraints we give are similar to constraints that would be created by compiling a set ofHorn clauses in a similar way.References[1] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation. Informationand Computation Vol. 121, No. 2 (1995) pp. 172{192.4We are assuming the ordering is the lexicographic path ordering42
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Termination Proofs withE�cient gpo Ordering Constraint SolvingThomas Genet and Isabelle GnaedigINRIA Lorraine & CRIN CNRS - BP 10154602 Villers-l�es-Nancy CEDEX FRANCEPhone: (+33) 83-59-30-18 - Fax: (+33) 83-27-83-19E-mail: fThomas.Genet, Isabelle.Gnaedigg@loria.frTo prove termination of a Term Rewrite System (TRS for short), the mostcommonly used method is to de�ne a well-founded ordering between terms andshow that each rewrite step is a strictly decreasing step. In general, the proof ismade \a posteriori": orderings are tested at random or using human expertise,until an appropriate one is found.Our goal here, is to reduce human expertise by working \a priori": startingfrom constraints on a generic ordering, we will help the user to build an ap-propriate speci�c instance of this ordering by using semi-automatic constraintsolving methods.The generic ordering, we start from, is the general path ordering (gpo),designed for expressing, in a single notion, a large set of well known orderings:syntactic orderings such as RPO or LPO, as well as semantic orderings likeSPO or polynomial orderings. It is based on a lexicographic combination oftermination functions. Particular orderings, such as those cited above, areobtained by instantiating termination functions with particular values.Starting from inequalities on a general path ordering, we will reduce the setof possibilities for instantiation of termination functions by constraint solving,until we get a particular ordering, when it is possible.The gpo ordering constraint algorithm is presented through a sound, com-plete and terminating set of deduction rules, limiting the explosion of compu-tations thanks to a shared term data structure.
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Conditional Rewrite Systems under SignatureExtensions: Some CounterexamplesBernhard GramlichINRIA Lorraine, 615, rue du Jardin Botanique, BP 10154602 Villers-l�es-Nancy, Francegramlich@loria.frExtended Abstract1 IntroductionHere we are interested in the question whether certain weak and strong termina-tion and conuence properties of conditional term rewriting systems (CTRSs)are preserved under signature extensions. We shall focus on the most intere-sting type of CTRSs, namely join systems, where equality in the conditions ofa rule l! r(= s1 = t1; : : : ; sn = tnis (recursively) interpreted as joinability, i.e., as #. In the presentation whichis based on some results of [5] we assume familiarity with the basic no(ta)tionsand terminology of (conditional) term rewriting (cf. e.g. [1], [6]).The termination and conuence properties considered include the following:� (strong) termination� weak termination� weak innermost termination, i.e., weak termination of the innermost re-duction relation� (strong) innermost termination, i.e., termination of the innermost reduc-tion relation� conuence� local conuence� joinability of all (conditional) critical pairsFrom a systematic point of view signature extensions constitute a very specialtype of combining (disjoint) systems. Starting with the pioneering work ofToyama ([10]), the general question which properties P of rewrite systems arepreserved under (disjoint or less restrictive) combinations (and vice versa) has45



received a lot of attention. For surveys of achieved results in this �eld werefer to [7], [8], [5]. For instance, for unconditional term rewriting systems(TRSs) it is well-known that conuence ismodular , i.e., preserved under disjointunions (and vice versa), but termination is not modular ([9]). However, variousrestricted termination properties have turned out to be modular for TRSs: weaktermination and weak innermost termination (cf. e.g. [2]) as well as (strong)innermost termination ([4]). This implies in particular that these propertiesof TRSs are also preserved under signature extensions. That termination ofTRSs which is not modular in general is at least preserved under signatureextensions is almost trivial ([3]). All conuence properties mentioned aboveare modular for TRSs (for local conuence which is equivalent to joinabilityof all critical pairs this is again almost trivial), hence also preserved undersignature extensions. However, for CTRSs the analysis is considerably morecomplicated. Middeldorp ([7]) has shown that the modularity of conuencecarries over to CTRSs. However, he also showed that local conuence (andjoinability of critical pairs) is not modular:Example 1.1 ([7]) Consider the disjoint CTRSs RF11 , RF22 given byR1 = ( f(x; y)! x (= x # z; z # yf(x; y)! y (= x # z; z # y )and R2 = 8>>><>>>: b! ab! cc! bc! d 9>>>=>>>;over the signatures F1 = ffg and F2 = fa; b; c; dg, respectively. It is easy to seethat both RF11 and RF22 have joinable (conditional) critical pairs and are locallyconuent. However, their disjoint union RF = RF11 � RF22 = (R1 ] R2)F1]F2is not locally conuent: The (new) instancea R1�R2 f(a; d)!R1�R2 dof the critical peak between the �rst two rules of R1 is not joinable, since botha and d are irreducible.Similarly, the properties of weak termination, weak and strong innermosttermination are not modular for CTRSs in general.1Example 1.2 Consider the CTRSs RF11 , RF22n a! a (= x # b ^ x # c oand ( G(x; y)! xG(x; y)! y )1For the �rst two properties this was shown in [7].46



over F1 = fa; b; cg and F2 = fG;Ag, respectively. Here, we have a !R1�R2 aby applying the R1-rule (x is substituted by G(b; c)), but neither a !R1 a nora !R2 a. Hence, a is an Ri-normal form (for i = 1; 2) but not a normalform w.r.t. R1 � R2. Obviously, both R1 and R2 are strongly (hence alsoweakly and innermost) terminating but their disjoint union is not. For instance,a!R1�R2 a!R1�R2 a!R1�R2 : : : is an in�nite innermost derivation, and adoes not have a normal form w.r.t. R1 �R2.Below we give examples showing that the above non-modularity results forweak termination and conuence properties of CTRSs also hold for the veryspecial case of signature extensions.At �rst glance, these counterexamples may seem to be very surprising. Infact, they indicate once more the inherent complexity and intricacy of condi-tional rewriting.2 Counterexamples for Signature ExtensionsExample 2.1 (weak, weak innermost and strong innermost termina-tion are not preserved under signature extensions)Consider the CTRSs RF11 , RF22 given by
R1 = 8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

f(g(x; y))! f(g(x; y)) (= x # z ^ z # yg(x; x)! xg(x; a)! cg(x; b)! cg(x; f(y))! cg(x; g(y; z))! cg(a; x)! cg(b; x)! cg(f(y); x)! cg(g(y; z); x)! cc! ac! b
9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;over F1 = ff; g; a; b; cg and R2 = ; over F2 = fGg (with G unary). It isstraightforward to verify that RF11 is (strongly) innermost terminating (hencealso weakly innermost terminating and weakly terminating). The crucial pointis that an arbitrary in�nite RF11 - derivation must contain rewrite steps usingthe �rst rule. But whenever this rule is applicable, the contracted redex can-not be innermost, since some proper subterm must then be reducible by theremaining rules which constitute a terminating CTRS. Nevertheless, in the ex-tended system RF = R1F1]fGg we get the cyclic (hence in�nite) innermostRF -derivationf(g(G(a); G(b)))!RF f(g(G(a); G(b)))!RF f(g(G(a); G(b)))!RF : : :by applying the �rst rule (instantiating the extra variable z by G(c)). Notemoreover that there is no other way of reducing f(g(G(a); G(b))) (all its proper47



subterms are in normal form w.r.t. RF , and the second rule is clearly notapplicable). Hence, RF = R1F1]fGg is not innermost terminating (and alsoneither weakly innermost terminating nor weakly terminating).Example 2.2 (local conuence and joinability of critical pairs are notpreserved under signature extensions)Consider the join CTRS RF withR = 8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
f(x; y; z)! g(x) (= x # y; y # zf(x; y; z)! g(z) (= x # y; y # zb! ab! cc! bc! dg(a)! g(d)f(a; x; y)! f(d; x; y)f(x; a; y)! f(x; d; y)f(x; y; a)! f(x; y; d)

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;and F = fa; b; c; d; f; gg. It is not very di�cult to show that RF has joinablecritical pairs and is even locally conuent (but not conuent).Now we add a fresh unary function symbol G, i.e. we consider RF 0 withF 0 = F ] fGg. Then joinability of critical pairs and hence local conuence islost. To wit, consider for instance the term f(G(a); G(b); G(d)) which reducesto two distinct normal forms by one RF 0-step, respectively :g(G(a)) f(G(a); G(b); G(d))! g(G(d))Clearly both g(G(a)) and g(G(d)) are irreducible. This divergence correspondsto an instance of the critical pair between the �rst two rules, namelyhg(x) = g(z)i (= x # y; y # z :Over the old signature F every substitution � which is feasible for this criticalpair satis�es �(g(x)) # �(g(z)) whereas this is not the case for the mixed sub-stitution � = fx 7! G(a); y 7! G(b); z 7! G(d)g. Hence the critical pair above isnot joinable any more over the extended signature F 0.Note that in the above example RF is obviously non-terminating. This isnot essential in the following sense. We may replace the `non-terminating part'of RF 8>>><>>>: b! ab! cc! bc! d 9>>>=>>>;which has joinable critical pairs, hence is locally conuent (it is an uncondi-tional TRS!), by a terminating CTRS with joinable critical pairs which is notconuent, hence necessarily not locally conuent. To this end, we can take forinstance the system 48



8><>: h(x)! k(b) (= k(x) # h(b)k(a)! h(a)a! b 9>=>;which has the desired properties (in particular, it is not locally conuent:h(b)  h(a) ! k(b) but h(b) and k(b) are irreducible). Then the remainingconstruction of RF is adapted accordingly.Example 2.3 (joinability of critical pairs is not even preserved forterminating CTRSs under signature extensions)Consider the CTRS RF withR = 8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
f(x; y; z)! g(x) (= x # y; y # zf(x; y; z)! g(z) (= x # y; y # zh(x)! k(b) (= k(x) # h(b)k(a)! h(a)a! bg(h(b))! g(k(b))h(h(b))! h(k(b))k(h(b))! k(k(b))f(h(b); x; y)! f(k(b); x; y)f(x; h(b); y)! f(x; k(b); y)f(x; y; h(b))! f(x; y; k(b))

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;and F = fa; b; f; g; h; kg. It is easy to verify that RF is terminating. Withsome e�ort one can show that RF has joinable critical pairs. But RF is not(locally) conuent since we have h(b)  h(a) ! k(b) with both h(b) and k(b)irreducible.Now we add a fresh unary function symbol G, i.e. we consider RF 0 withF 0 = F ] fGg. The new system RF 0 is still terminating. But joinability ofcritical pairs is lost. Consider the critical pair between the �rst two rules ofRF 0 , hg(x) = g(z)i (= x # y; y # z ;and the F 0-substitution � = fx 7! G(h(b)); y 7! G(h(a)); z 7! G(k(b))g. Thecorresponding instance of the critical peak isg(G(h(b))) f(G(h(b)); G(h(a));G(k(b)))! g(G(k(b))) ;due to G(h(b)) # G(h(a)) # G(k(b)), but g(G(h(b))) and g(G(k(b))) are notjoinable since they are both irreducible (in RF 0).In the talk, these counterexamples and some related positive results will bepresented and discussed in more detail.49
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The First-Order Theory of One-Step Rewriting by aLinear Term Rewriting System is Undecidable(Extended Abstract)Ralf Treinen�Laboratoire de Recherche en Informatique (LRI), Bât. 490Universit�e de Paris-Sud, F-91405 Orsay cedex, Franceemail: treinen@lri.fr, web: http://www.lri.fr/�treinenMay 24, 1996AbstractThe theory of one-step rewriting for a given rewrite system R and si-gnature � is the �rst-order theory of the following structure: Its universeconsists of all �-ground terms, and its only predicate is the relation \xrewrites to y in one step by R". The structure contains no function sym-bols and no equality. We show that there is no algorithm deciding the9�8�-fragment of this theory for an arbitrary linear and non-erasing termrewriting system.1 IntroductionThe problem of decidability of the �rst-order theory of one-step rewriting wasposed in [CCD93]. It has been mentioned in the list of open problems in rewri-ting in 1993 [DJK93] and in 1995 [DJK95].In [Tre96] we have proven the undecidability of the theory of one-step rewri-ting, leaving open the special case of linear rewriting systems. Here we proveundecidability even for the class of linear (no multiple variable occurrences inthe left-hand, resp. right-hand side of a rule) and non-erasing (for every rule, theleft- and right-hand side have the same set of variables) term rewriting systems.The proof presented here is in fact simpler than the one of [Tre96]. There, weused a more complicated de�nition of P -terms (see De�nition 2) which allowedus to separate the non-shallow rules from the non-linear ones.An alternative proof of undecidability of one-step rewriting has been givenby Sergei Vorobyov [Vor95]. He de�nes one particular (non-linear) rewritesystem R and shows the undecidability of the full �rst-order theory of one-steprewriting by R. He considers, however, the structure where all the functionsymbols of the signature are available in the language (this is not the case with�Supported by the Human Capital and Mobility Programme of the European Union, underthe contracts SOL (CHRX-CT92-0053) and CONSOLE (CHRX-CT94-0495).51



our result), and he does not attempt to characterize a \simple" undecidablefragment of the theory. The rewrite system of [Vor95] uses in fact a \swappingof variables" to test certain equalities, similar to the system presented here, butit still contains one non-linear rule.The reader is referred to [Tre96] for the motivation and history of thisproblem.2 PreliminariesWe write a signature as a set of function symbols, where we specify (followingthe Prolog tradition) the arity of the function symbols after a \="-sign. Theset of terms build over a signature � and set X of variables is denoted asT (�;X), we write T (�) = T (�; ;) for the set of �-ground terms.We consider �rst-order predicate logic without equality. The 9�8�-fragmentof a theory T is the subset of T of all sentences having a prenex normal formof the form 9x1; : : : ; xn 8y1; : : : ; ym Qwhere Q contains no quanti�er.We denote concatenation of words by juxtaposition. An instance of thePost Correspondence Problem (PCP) is a �nite set of pairs of non-empty binarywords f(pi; qi) j 1 � i � n; pi; qi 2 fa; bg+g. A solution of P is a �nite non-empty sequence (i1; : : : ; im) 2 f1; : : : ; ng+ such thatpi1 � � � pim = qi1 � � � qimIt is undecidable whether an instance of the PCP has a solution [Pos46].3 One-Step RewritingDe�nition 1 Let � be a signature and R be a �-rewrite system. The structureA�;R is de�ned as follows: The language of A�;R contains no constants orfunction symbols, and its only predicate symbol is the binary predicate symbol!. The universe of A�;R is the set T (�), and t! s holds in A�;R i� t rewritesto s in one rewriting step of R.Theorem 1 There is no algorithm which decides for any signature � and anynon-erasing and linear �-rewrite system R the 9�8�-fragment of the theory ofA�;R.We show how to reduce the solvability of an instance of the Post-Correspond-ence Problem (PCP) to the validity of some 9�8�-sentence in A�;R for somesignature � and non-erasing and linear rewrite system R. All constructionsand proofs are parameterized by the given instance of the PCP. For the sake ofconvenience, we now �x this instance for the rest of the paper to beP = f(pi; qi) j 1 � i � ng52



De�nition 2 The signature �P isf�=0; a=1; b=1; g=3; k=5; eq=3gA �P -ground term t is called a P -term if it does not contain an occurrence ofk or eq.Words from fa; bg� can easily be encoded in T (�). First we de�ne an applicationof a word from fa; bg to an arbitrary term t 2 T (�) inductively by�(t) = twa(t) = a(w(t))wb(t) = b(w(t))Note that, for the case of a(t) and b(t), this coincides with the de�nition of theoperations in A�;R. A word w 2 fa; bg� is now represented by the term w(�).Note that� the empty word is represented by the term �,� the encoding is injective, that is equality of words translates to equalityof their respective representations,� and w(t) represents the word vw i� t represents the word v.De�nition 3 The rewrite system RP consists of the following rules:k(x1; x2; x3; x4; x5) ! k(x1; x2; x3; x4; x5) (1)eq(x1; x2; x3) ! eq(x1; x2; x3) (2)g(�; �; g(x; y; z)) ! g(x; y; z) (3)g(x1; y1; g(x2; y2; z)) ! k(x1; y1; x2; y2; z) (4)fk(x1; y1; pi(x2); qi(y2); z) ! g(x2; y2; g(pi(x1); qi(y1); z)) j 1 � i � ng (5)fg(x; y; h(�z)) ! eq(x; y; h(�z)) j h 2 f�; a; bgg (6)eq(x; y; h(�z)) ! g(y; x; h(�z)) (7)We use the following formulae�(x) := :x! x	(x) := �(x) ^ 9x0 (x! x0 ^ �(x0))Proposition 1 A�P ;RP ; � j= �(x) i� �(x) is a P -term.A�P ;RP ; � j= 	(x) i� �(x) is a P -term containing a subterm of the formg(�; �; g(x; y; z)).Proof: The �rst claim holds since (1) and (2) are the only rules that canrewrite a term to itself. The second claim holds since (3) is the only rule thatcan rewrite a P -term to a P -term. 253



Lemma 1 P is solvable i�A�P ;RP j= 9x �	(x) ^ 8y ((x! y ^ :�(y))) y ! x)| {z }(8) �Proof: Let (i1; : : : ; im) be a solution of P . Consider the termt = g(�; �; g(r1; s1; : : : ; g(rm; sm; �) : : :))where rk = pik(pik�1(� � � (pi1(�)) � � �))sk = qik(qik�1(� � � (qi1(�)) � � �))for 1 � k � m. It is easy to see that the formula 8 is satis�ed when taking tfor the value of x. Note that (4) and (6) are the only rules that can rewrite aP -term to a non-P -term.On the other hand, let the formula (8) be satis�ed by the the term t. Wecan show by induction on s that every subterm s of t which starts with g is ofthe form t = g(r1; s1; : : : ; g(rm; sm; u) : : :))where u is either � or starts with a or b, and where there is a sequence (i1; : : : ; im) 2f1; : : : ; ng� such that for all 1 < j � mrj = pij(rj�1)sj = qij (sj�1))rm = smNote that, since t is a P -term, any subterm s of tmust contain only the symbolsg; �; a; b. Hence, if s is a subterm of t starting with g, then either rule (4) or (6)rewrite s at the root to some non-P -term s0, which can only be rewritten backto s by the rules (5), resp. (7).The claim follows since t contains, by Proposition 1, a subterm of the formg(�; �; g(�; �; �)). 24 ConclusionsThere are two important special classes of rewrite systems where decidabilityof the �rst-order theory of one-step rewriting is not yet known:1. orthogonal rewrite systems.2. (left)-shallow rewrite systems.Furthermore, decidability of the 9�-fragment as well as of the positive theoryof one-step rewriting are still open. 54
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Syntactic Uni�cation Problems under ConstrainedSubstitutionsYuichi Kaji Kazuhiro Takada Tadao Kasami11 IntroductionWe sometimes want to accomplish our purpose by using limited operations andlimited materials only. To describe such cases in a natural way, a uni�cationproblem under constrained substitutions has been proposed[3]. Indeed, by usingthe uni�cation problem under constrained substitutions, we can describe a veri-�cation problem of cryptographic protocols (in which users' operations are veryrestricted) as a natural extension of a uni�cation problem (see Example 2.3).In the uni�cation problem under constrained substitutions, a �nite set A ofterms is given in addition to goal terms. The essential point of the problem isthat only those terms that belong to A can replace for variables. For exam-ple, if A = ff(f(x))g, then solved forms of the problem must be of the formfxi = f2n(yi)g. From the technical view point, there is strong relationship bet-ween the uni�cation problem under constrained substitutions and order-sorteduni�cation problems[2, 5, 6]. Indeed, some results for the latter problem can beeasily translated into the former, and vice versa.In this paper, the decidability and computational complexity of syntacticuni�cation problems under constrained substitutions are discussed. It is shownthat the problem is undecidable in general, and decidable if all terms in Aare linear or ground. Furthermore, under the assumption that all terms in Aare linear or ground, it is shown that the problem is solvable in deterministicpolynomial time if goal terms are linear and there is no variable that occurs inboth goal terms, and is NP-hard, otherwise. These are theoretically interestingresults, and give foundations of E-uni�cation under constrained substitutions.2 PreliminaryThroughout this paper, F denotes the set of function symbols and X denotesthe set of variables. For a �nite set A of terms, let TA[X] be the minimal set ofterms satisfying the following conditions.� X � TA[X].1Graduate School of InformationScience, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-01,Japan, E-mail: fkaji,kazuh-t,kasamig@is.aist-nara.ac.jp56



� for a term t 2 A such that Var(t) = fx1; : : : ; xng and terms t1; : : : ; tn 2TA[X], t� 2 TA[X] where � = fxi 7! ti j 1 � i � ng.TA denotes the set of ground terms in TA[X]. A substitution is said to be anA-constrained substitution if its co-domain is a subset of TA[X]. Terms s andt are uni�able under A-constrained substitutions if there is an A-constrainedsubstitution � such that s� = t�. For given a �nite set A of terms and two goalterms g1 and g2, a syntactic uni�cation problem under constrained substitutions(SUPCS for short) is a problem to decide whether g1 and g2 are uni�able underA-constrained substitutions.Example 2.1: Let g1 = f(h(h(x1)); x2), g2 = f(x3; x3) and A = fh(h(x))g.In this case, the set TA[X] is de�ned to be TA[X] = fh2n(x) j n � 0; x 2 Xg.An A-constrained substitution � = fx2 7! h(h(x1)); x3 7! h(h(x1))g uni�es g1and g2. 2Example 2.2: Let g1 = f(h(x1); x2), g2 = f(x3; x3) and A = fh(h(x))g. Re-mark that the goal term g1 is slightly di�erent from the previous example.Though terms g1 and g2 are uni�able in the usual uni�cation problem, they arenot uni�able under A-constrained substitutions. 2Example 2.3: This is an example of a uni�cation problem under constrainedsubstitutions modulo a rewriting rule. Uni�cation modulo rewriting rules isout of topic of this paper, though, this example �gures out the motivation ofconstrained substitutions.Consider the following cryptographic protocol of which purpose is to trans-mit messages secretly. In the protocol, there is a supervisor called a server whoknows secret keys of all users. Assume that a user A wants to send a messagem to B secretly, but the key of B is not known to A. To transmit the messagem, the communication is carried out as follows.1. A �rst chooses a random number r, and sends the server A, B andE(K(A); r) where K(x) and E(x; y) denote the key of the user x andthe ciphertext of y encrypted with x as a key, respectively.2. The supervised server decrypts E(K(A); r) with K(A), and encrypts theresult with K(B) as a key. The resulting ciphertext E(K(B); r) is sentback to A.3. A sends B two ciphertexts E(K(B); r) and E(r;m).4. B retrieves r by decrypting the �rst ciphertext, and retrieves m by usingr as a key.We want to verify whether an intruder, say C, can reveal m or not. The in-truder C knows that if a message encrypted with a key is decrypted with thesame key, then the original message yields, that is, D(x;E(x; y)) ! y. Calso knows public information and information which was sent through inse-cure communication channel, that is, information represented by a set of termsInf = fA;B;C;K(C); E(K(A); r); E(K(B); r); E(r;m)g (the last three terms57



correspond to the information that C can �nd by wiretapping). Furthermore, Ccan execute some operations which are represented by Opr = fE(x; y);D(x; y),E(K(x);D(K(y); z))g (the last term corresponds to what the server does). Re-mark that C cannot obtain other users' key and hence K(x) 62 Opr.Let A = Opr [ Inf, then terms in TA correspond to the information whichC can obtain. Observe thatD(D(K(C); E(K(C);D(K(A); E(K(A); r)))); E(r;m)) 2 TAand this term is rewritable to m. This means that C can reveal the secretmessage m by using limited operations and limited materials (information)only. In other words, x and m are uni�able with respect to the rewriting ruleD(x;E(x; y)) ! y under A-constrained substitutions if and only if the givencryptographic protocol is insecure. 23 Order-Sorted Uni�cation and the Decidability ofSUPCSFrom the viewpoint of technical aspect, there is strong relationship betweenSUPCS and order-sorted uni�cation problem with term declarations [5] (TD-uni�cation problem or Schemidt-Schau� style order-sorted uni�cation problem).By associating each term in A of SUPCS with a term declaration in an order-sorted signature, SUPCS can be regarded as a special case of TD-uni�cationproblems with at most two sorts (the arrows(*) in Figure 1 denote this rela-tion). It is known that TD-uni�cation problems are undecidable in general (seeTheorem 6.1 of [5]). At a glance, this result does not contribute to SUPCSsince TD-uni�cation is more general framework than SUPCS. However, carefulobservation of the proof of Theorem 6.1 of [5] tells us that the proof is applicableto SUPCS. Thus we have the following theorem.Theorem 3.1: SUPCS is undecidable in general.Proof. See the proof of Theorem 6.1 of [5]. 2If all terms in A of SUPCS are linear, then SUPCS is regarded as an order-sorted uni�cation problem with linear term declarations [5] (LTD-uni�cation pro-blem for short). To the authors' knowledge, the decidability of LTD-uni�cation'
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problems is not known yet. As a subclass of LTD-uni�cation problems, order-sorted uni�cation problems with function declarations (FD-uni�cation problem)are considered in [5]. FD-uni�cation problem coincides with Smolka style order-sorted uni�cation problem[6], and known to be decidable. In the following, weillustrate that SUPCS is polynomial-time reducible to an FD-uni�cation pro-blem (the arrow(**) in Figure 1 corresponds to this reduction).Example 3.1: Let A = fg(g(a)); f(g(x); y)g. We de�ne an order-sorted si-gnature (S; F;�S) as follows. First, the set of sorts are de�ned to be S =fg(g(a)); g(a); a; f(g(
);
); g(
);
, otherg. Remark that a sort is introdu-ced for each subterm of a term in A. Function symbols are de�ned to beF = ff; g; ag whereg : 
! g(
)a! g(a)g(a)! g(g(a))other! other f : g(
)�
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)other� other! othera : ! a! other;and sort ordering is de�ned to be g(g(a)) <S 
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);
)<S 
 (remark thatboth of g(g(a)) and f(g(
);
) correspond to terms in A) and s <S otherfor every s 2 S. Observe that if a term t is of sort 
, then t is either of sortg(g(a)) or f(g(
);
). In the former case, t must be g(g(a)), and in the lattercase, t = f(g(x); y)� where � is an A-constrained substitution. Hence the setof terms of sort 
 equals to the set TA[X].Let g1 and g2 be given goal terms of SUPCS. It is easily understood that g1and g2 are uni�able under A-constrained substitutions if and only if g1 and g2are uni�able with respect to this order-sorted signature where each variable ing1 and g2 is considered to be of sort 
. 2It is not di�cult to verify that this is a (polynomial-time) reduction fromSUPCS to FD-uni�cation problems (Smolka style order-sorted uni�cation pro-blems). Thus the following theorem holds.Theorem 3.2: If all terms in A are linear, then SUPCS is decidable. 24 The Computational Complexity of SUPCS4.1 Classi�cation of Instances of SUPCSIn the following, the computational complexity of SUPCS under some restrictedsituations is discussed. Consider the following three kinds of conditions oninstances of SUPCS.� a condition on terms in A;(1) terms in A are ground.(2) terms in A are ground or linear.59



3Ba3Aa 3Bb3Ab 2Ba2Aa 2Bb2Ab 1Ba1Aa 1Bb1Ab���* ���* ���*���� ���� �������� ���� ����? ? ?? ? ?- -- -- -- -�� ��Sect.3 �� ��Sect.4.3 �� ��Sect.4.2�� ��Sect.3�undecidable - decidable - NP 6NP-hard?PFigure 2: Relation of 12 classes of instances of SUPCS.(3) there is no restriction on terms in A.� a condition on linearity of g1 and g2;(A) both of g1 and g2 are linear.(B) there is no restriction on linearity of goal terms.� a condition on variables occurring in g1 and g2;(a) Var(g1) \ Var(g2) = ;.(b) there is no restriction on variables occurring in goal terms.According to these conditions, we can de�ne 12 classes of instances of SUPCS.Figure 2 illustrates relations of these classes of instances of SUPCS with respectto reducibility of the problem. In the �gure, \1Aa" stands for the class ofinstances of SUPCS that satisfy the conditions (1), (A) and (a) above. An arcC1 �! C2 in the �gure means that SUPCS for the class C1 trivially includesSUPCS for the class C2, or that SUPCS for the class C2 is polynomial-timereducible to SUPCS for the class C1.Lemma 4.1: SUPCS for the class 3Bb (resp. 2Bb, 1Bb) is polynomial-timereducible to SUPCS for the class 3Ba (resp. 2Ba, 1Ba).Sketch of Proof. For goal terms g1 and g2 such that Var(g1) \ Var(g2) 6= ;,let g01 and g02 be terms that are obtained from g1 and g2 by renaming va-riables so that (Var(g1) [ Var(g2)) \ (Var(g01) [ Var(g02)) = ;. Introduce anew symbol dummy with arity three, and de�ne g001 = dummy(g1; g1; g2) andg002 = dummy(g01; g02; g02). It is easily veri�ed that g1 and g2 are uni�able underconstrained substitutions if and only if g001 and g002 are uni�able under constrainedsubstitutions. 2In the previous section 3, we used Theorem 6.1 of [5] to show that SUPCS isundecidable in general. Indeed, the goal terms used in the proof of Theorem 6.1of [5] satisfy the conditions (A) and (a) above. Therefore, we can conclude thatSUPCS for the class 3Aa is undecidable, and so is SUPCS for the classes 3Ab,3Ba and 3Bb. On the other hand, the decidability result introduced in theprevious section do not depend on goal terms. Thus SUPCS is decidable forthe class 2Bb, and for the classes which are not more di�cult than 2Bb.60



4.2 Complex Goal Terms Make the Problem IntractableIt is shown that 3SAT problem is polynomial-time reducible to SUPCS for theclass 1Ab. By tracing the arrows in the Figure 2 from 1Ab in a reverse way, wecan conclude that SUPCS for the classes f1,2gAb (i.e. classes 1Ab and 2Ab)and f1,2gBfa,bg are NP-hard. Furthermore, SUPCS for the classes 1Ab and1Bfa,bg are NP-complete since SUPCS obviously belongs to NP if A containsground terms only.Since the reduction from 3SAT to SUPCS is easy, we present a simple ex-ample of polynomial-time reduction from 3SAT to SUPCS for the class 1Ab,instead of general reduction algorithm and a proof of its correctness. See [7] fordetails.Example 4.1: Let E = (v1 _ v2 _ :v3) ^ (:v1 _ v2 _ :v2) be a given Booleanexpression. The set A of terms and goal terms g1 and g2 are constructed asfollows.g1 = ROOT(OR(x11; x12; N(x13));OR(N(x21); x22; N(x23)); z1; z2; z3)g2 = ROOT(y1; y2; V1(x11; x21); V2(x12; x22; x23); V3(x13))A = fT;N(T )g[ fV1(T; T ); V1(N(T ); N(T ))g[ fV2(T; T; T ); V2(N(T ); N(T ); N(T ))g[ fV3(T ); V3(N(T ))g[ fOR(t1; t2; t3) j t1; t2; t3 2 fT;N(T ); N(N(T ))gnfOR(N(T ); N(T ); N(T ))gIt is easily understood that E is satis�able if and only if g1 and g2 are uni�ableunder A-constrained substitutions. 2As we have seen in Section 3, SUPCS can be polynomial-time reducible to FD-uni�cation problems (Smolka style order-sorted uni�cation problem) when allterms in A are linear or ground. Therefore we have the following corollary.Corollary 4.2: FD-uni�cation problem (Smolka style order-sorted uni�cationproblem) is NP-hard in general. 24.3 Simple Goal Terms Make the Problem TractableSUPCS for the class 2Aa is solvable in deterministic polynomial time (i.e. be-longs to P). The overview of the procedure is as follows: First, �nd the most ge-neral uni�er � = fx1 7! t1; : : : ; xn 7! tng of g1 and g2, ignoring the set A. Thenconstruct tree automata[4] Mi that accepts fti� j � is a ground A-constrainedsubstitutiong for 1 � i � n and a tree automatonM0 that accepts TA. If the in-tersection of terms accepted by M0 and Mi is not empty for all 1 � i � n, theng1 and g2 are uni�able under A-constrained substitutions. It is easily veri�edthat the construction of tree automata is possible in deterministic polynomialtime and thus the size of each tree automaton is bounded by a polynomial tothe size of an input. On the other hand, it is known that both of calculating theintersection of regular tree languages and checking the emptiness of a regular61



tree language are possible in deterministic polynomial-time to the size of corre-sponding tree automata[4]. Therefore, the above procedure ends in polynomialtime.If goal terms violate the conditions (A) or (a), then we cannot use thisprocedure since it can happen that ti in the mgu is not linear, and we cannotconstruct the tree automaton Mi.5 ConclusionDecidability and computational complexity of SUPCS are discussed. We notethat the decidability result for the class 2Bb and the deterministic polynomial-time procedure for the class 2Aa greatly owe to favorable properties of treeautomata (for technical discussions, see [2] and [7]). By replacing tree automatawith \enhanced" tree automata such as in [1], we may relax conditions onlinearity of terms.References[1] Bogaert, B. and Tison, S.: \Equality and Disequality Constraints on DirectSubterms in Tree Automata", STACS'92, LNCS 577, pp.161{171 (1992).[2] Comon, H.: \Equational Formulaes in Order-Sorted Algebras", ICALP'90,LNCS 443, pp.674{688 (1990).[3] Kaji, Y., Fujiwara, T. and Kasami, T: \Solving a Uni�cation Problem underConstrained Substitutions Using Tree Automata", FST & TCS'94, LNCS880, pp.276{287 (1994).[4] G�ecseq, F. and Steinby, M.: Tree Automata, Akad�emiai Kiad�o, Budapest(1984).[5] Schmidt-Schau�, M.: Computational Aspects of an Order-Sorted Logic withTerm Declarations, LNCS 395 (1987).[6] Smolka, G., Nutt, W., Goguen, J.A. and Meseguer, J.: \Order-Sorted Equa-tional Computation", In Resolution of Equations in Algebraic Structures,Vol. 2, Rewriting Techniques, pp.297{367, Academic Press (1989).[7] Takada, K., Kaji, Y. and Kasami, T: \Syntactic Uni�cation Problem underConstrained Substitutions", Technical Report of Nara Institute of Scienceand Technology, No. 96012 (1996).
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Image sequence evaluation with timed transitiondiagramsChristoph BrzoskaNearly all of the symbolic formalism proposed for image sequence evaluationpurposes are based explicitly or implicitly on some kind of grammar formalisms.Such formalisms allow to describe sequences of words, which can be identi�edwith sequences of primitive conceptual descriptions of images and thereby toreduce recognition of image sequences to recognition of words generated by non-terminal symbols of the corresponding grammar. As a consequence, algorithmsfor accepting the languages (respectively, their extensions) associated tothe cor-responding grammar formalisms are generally utilized to recognize and evaluateimage sequences on the conceptual level.In this talk, we will adopt a more general view of image recognition and see itas evaluation of events annotated with their occurrence time which a priori arenot restricted by additional assumptions, for example, that the occurrence timeof consecutive events increase monotonicly. We propose so called timed transi-tion diagrams for description of such sequences of events, de�ne its semantics,and sketch recognition and evaluation algorithms for the sequences speci�ed.This formalism allows a natural hierarchical composition and is thereby wellsuited to be taken as basis for more advanced representation formalisms. Theformalism itself is an extension of that of constraint automata proposed recentlyby K. Schulz and D. Gabbay.This is a join work with K. Sch�afer.
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Term Graph NarrowingAnnegret HabelUniversit�at Hildesheim� Detlef PlumpUniversit�at Bremeny1 IntroductionNarrowing was devised in the �eld of theorem proving as an equation solvingmethod for the case that an equational theory is represented by a convergentterm rewriting system. Fay [Fay79] was the �rst who showed the completenessof narrowing. In order to reduce the search space of the narrowing procedure,Hullot [Hul80] considered a strategy called basic narrowing and showed thatit is still complete. Later, narrowing became popular as the computationalparadigm for the combination of functional and logic programming. Since thenthere has been much research activity on improving the e�ciency of narrowingand on relaxing the requirements for completeness (see the recent survey ofHanus [Han94]).In order to implement narrowing e�ciently, it is advisable to represent termsby graph-like data structures. This is because the simple tree representation ofterms enforces copying of subterms in rewrite steps and hence leads to multipli-cation of evaluation work. In this paper we introduce term graph narrowing asan approach for solving equations by transformations on term graphs. Our mainresult is that term graph narrowing is complete for all term rewriting systemsover which term graph rewriting is normalizing and conuent. This includes,in particular, all convergent term rewriting systems. Completeness means thatif an equation is represented by a term graph, then for every solution of thisequation, term graph narrowing can �nd a more general solution (that is, everysolution is equivalent to an instance of a computed solution).Term graph narrowing combines term graph rewriting with �rst-order termuni�cation (see [SPE93] for a recent collection of papers on term graph re-writing). We use the term graph rewriting model studied in [HP91, Plu93a,Plu93b]. It allows, besides applications of rewrite rules, collapsing steps onterm graphs to increase the degree of sharing. This model is complete withrespect to equational deduction in the same sense as term rewriting is. Ourcompleteness proof for term graph narrowing exploits existing results on termgraph rewriting concerning the relationship to term rewriting with respect totermination, conuence and related properties.This paper is an extended abstract of [HP96].�Institut f�ur Informatik, Marienburger Platz 22, 31141 Hildesheim, Germany.E-mail: habel@informatik.uni-hildesheim.deyFachbereich Mathematik und Informatik, Postfach 33 04 40, 28334 Bremen, Germany.E-mail: det@informatik.uni-bremen.de 64



2 Term graphs and substitutionsLet � be a set of function symbols. Each function symbol f comes with a naturalnumber arity(f) � 0. Function symbols of arity 0 are called constants. Wefurther assume that there is an in�nite set Var of variables such that Var \� =;. For each variable x, we set arity(x) = 0.A hypergraph over � [ Var is a system G = hVG; EG; labG; attGi consi-sting of two �nite sets VG and EG of nodes and hyperedges, a labelling functionlabG:EG ! � [ Var , and an attachment function attG:EG ! V �G which as-signs a string of nodes to a hyperedge e such that the length of attG(e) is1+ arity(labG(e)). In the following we call hypergraphs and hyperedges simplygraphs and edges. The set of variables occurring in G is denoted by Var(G),that is, Var(G) = labG(EG) \ Var .Given a graph G and an edge e with attG(e) = v v1 : : : vn, node v is theresult node of e while v1; : : : ; vn are the argument nodes. Given two nodes vand v0 in G, we write v >1G v0 if there is an edge e with result node v such thatv0 is an argument node of e. The transitive (reexive-transitive) closure of >1Gis denoted by >G (�G). G is acyclic if >G is irreexive. We write G[v] for thegraph consisting of all nodes v0 with v �G v0 and all edges having these nodesas result nodes.De�nition 2.1 (term graph) A graph G is a term graph if(1) there is a node rootG such that rootG �G v for each node v,(2) G is acyclic, and(3) each node is the result node of a unique edge.Figure 1 shows three term graphs with function symbols f, g, a, and va-riables x; y. The symbol f is binary, g is unary, and a is a constant. Edgesare depicted as boxes with inscribed labels, and bullets represent nodes. A lineconnects each edge with its result node, while arrows point to the argumentnodes. The order in the argument string is given by the left-to-right order ofthe arrows leaving the box.De�nition 2.2 (term representation) A node v in a term graph G repres-ents the term termG(v) = labG(e)(termG(v1); : : : ; termG(vn)), where e is theunique edge with result node v, and where attG(e) = v v1 : : : vn. We writelabG(e) instead of labG(e)() if v1 : : : vn is the empty string.Note that termG(v) is well-de�ned by properties (2) and (3) of De�nition 2.1.In the following we abbreviate termG(rootG) by term(G).A graph morphism f :G! H between two graphs G and H consists of twofunctions fV :VG ! VH and fE:EG ! EH that preserve labels and attachmentto nodes, that is, labH�fE = labG and attH�fE = f�V �attG (where f�V :V �G ! V �Hmaps a string v1 : : : vn to fV (v1) : : : fV (vn)). We omit the subscripts V and Eif no confusion is possible. The morphism f is injective (surjective, bijective)if fV and fE are so. If f is bijective, then it is an isomorphism. In this case Gand H are isomorphic, which is denoted by G �= H.65



De�nition 2.3 (collapsing) Given two term graphs G and H, G collapses toH if there is a graph morphism c:G ! H mapping rootG to rootH . This isdenoted by G �c H or simply by G � H. We write G �c H or G � H if c isnon-injective. The latter kind of collapsing is said to be proper. A term graphG is fully collapsed if there is no H with G � H.It is easy to see that the collapse morphisms are the surjective morphismsbetween term graphs and thatG � H implies term(G) = term(H). An exampleof collapsing is given in Figure 1.fx gy 7!� fa ga � f gaFigure 1: A substitution application and a collapsingThe term graph substitutions de�ned next correspond to �rst-order termsubstitutions. They are a special case of the general graph substitutions intro-duced in [PH96] which operate on variable edges with an arbitrary number ofattachment nodes.A substitution pair x=G consists of a variable x and a term graph G. Givena term graph H and an edge e in H labelled with x, the application of x=Gto e proceeds in two steps: (1) Remove e from H, yielding the graph H � feg,and (2) construct the disjoint union (H � feg) +G and fuse the result node ofe with rootG. It is easy to see that the resulting graph is a term graph.De�nition 2.4 (term graph substitution) A term graph substitution is a�nite set � = fx1=G1; : : : ; xn=Gng of substitution pairs such that x1; : : : ; xn arepairwise distinct and xi 6= term(Gi) for i = 1; : : : ; n. The domain of � is theset Dom(�) = fx1; : : : ; xng. The application of � to a term graph H yieldsthe term graph H� which is obtained by applying all substitution pairs in �simultaneously to all edges with label in Dom(�).Example 2.5 Let x; y be variables and A be a term graph with term(A) = a.An application of the substitution � = fx=A; y=Ag is shown in Figure 1.Given a term graph G, we write G for the graph that results from removingall edges labelled with variables. If � is a term graph substitution, we assumefor technical convenience that the unique graph morphism in:G ! G� within(rootG) = rootG� sati�es in(a) = a for all nodes and edges a.De�nition 2.6 (induced term substitution) For every term graph substi-tution �, the induced term substitution �term is de�ned by�term = fx=term(G) j x=G 2 �g:66



3 Term graph rewritingIn this section we review the term graph rewriting model investigated in [HP91,Plu93a, Plu93b]. In particular, we state results concerning the soundness andcompleteness of term graph rewriting and the relation to term rewriting withrespect to normalization and conuence.We assume that the reader is familiar with basic concepts of term rewritingsystems and abstract reduction systems (see, for example, [DJ90, Klo92]). Inthe following R denotes a term rewriting system and !R the rewrite relationassociated with R.Let v be a node in a term graph G. De�ne indegreeG(v) = Pe2EG #v(e),where for each edge e with attG(e) = v0v1 : : : vn, #v(e) is the number of occur-rences of v in v1 : : : vn.De�nition 3.1 For every term t, let �t be a term graph representing t suchthat only variable nodes are shared, that is, (1) indegreeG(v) � 1 for each nodev with term�t(v) 62 Var, and (2) v1 = v2 for all nodes v1,v2 with term�t(v1) =term�t(v2) 2 Var.De�nition 3.2 (redex and preredex) Let G be a term graph, v be a nodein G, and l! r be a rule in R. The pair hv; l! ri is a redex if there is a graphmorphism red:�l ! G, called the redex morphism, such that red(root�l) = v.The pair hv; l ! ri is a preredex if there is a term substitution � such thattermG(v) = l�.One can show that every redex is a preredex. The converse also holds if therule l! r is left-linear, since then �l is a tree1. However, if l contains repeatedvariables, then there need not exist a graph morphism sending root�l to v. Inthis case a suitable collapsing of G turns the preredex hv; l! ri into a redex.De�nition 3.3 (term graph rewriting) Let G;H be term graphs and hv; l!ri be a redex in G with redex morphism red :�l ! G. Then there is a properrewrite step G)v; l!r H if H is isomorphic to the term graph G3 constructedas follows:(1) G1 = G� feg is the graph obtained from G by removing the unique edgee having result node v.(2) G2 is the graph obtained from the disjoint union G1 + �r by� identifying v with root�r,� identifying red(v1) with v2, for each pair hv1; v2i 2 V�l � V�r withterm�l(v1) = term�r(v2) 2 Var.(3) G3 = G2[rootG] is the term graph obtained from G2 by removing all nodesand edges not reachable from rootG (\garbage collection").1A term graph is a tree if all nodes but the root have indegree one.67



We de�ne the term graph rewrite relation )R by adding proper collapse steps:G)R H if G � H or G)v; l!r H for some redex hv; l! ri.A term graph rewrite derivation is either an isomorphism G! H, which isa derivation of length 0, or a non-empty sequenceG = G0 )R G1 )R : : :)R Gn = H:We denote such a derivation by G)�R H.Example 3.4 A term graph rewrite step with rule f(x; g(x)) ! h(x; x; a) isgiven in Figure 2. Note that the left term graph is obtained from the middleterm graph of Figure 1 by collapsing. However, the rule is not applicable tothe middle term graph of Figure 1 because there is no graph morphism from�f(x; g(x)) into that graph. f ga ) ha aFigure 2: A term graph rewrite stepThe term graph rewrite relation)R is sound with respect to term rewritingin the sense that every proper step G )v; l!r H corresponds to a parallelapplication of l! r to several occurrences of the subterm termG(v) in term(G).This parallelism is the reason for the possible speed-up of term graph rewritingwith respect to term rewriting. Note that if G )R H is a collapse step, thenterm(G) = term(H) and hence term(G)!�R term(H).Theorem 3.5 (soundness of rewriting [HP91]) For all term graphsG andH, G)R H implies term(G) �!R term(H).The converse of the implication (with )R replaced by )�R) does not holdsince certain term rewrite derivations do not correspond to term graph rewritederivations.Although not all term derivations possess corresponding graph derivations,the conversion of term graphs is complete with respect to conversion of terms.Theorem 3.6 (completeness of rewriting [Plu93a]) For all term graphsG and H, term(G) �$R term(H) if and only if G �,R H.The next two theorems explain the relationship between term graph rewri-ting and term rewriting with respect to normalization, conuence, and con-vergence. These results are used in proving the completeness of term graphnarrowing. 68



Theorem 3.7 (normalization [HP91])1. A term graph G is a normal form with respect to )R if and only if G isfully collapsed and term(G) is a normal form with respect to !R.2. If )R is normalizing, then so is !R.The converse of the second statement does not hold (see [Plu93b] for acounterexample).Theorem 3.8 (conuence and convergence [Plu93a])1. If )R is conuent, then so is !R.2. If !R is convergent, then so is )R.For both statements, the converse does not hold (see [Plu93a]).4 Term graph narrowingOur goal is to solve term equations by transformations on term graphs. To thisend we de�ne term graph narrowing and establish a completeness result whichcorresponds to Hullot's result for term narrowing [Hul80, MH94].An equation s = t is a pair of terms s and t. We are interested in solutionsto such equations modulo the equational theory induced by a term rewritingsystem R. That is, a solution of s = t is a term substitution � such thats� $�R t�. If such a solution exists, we say that s and t are R-uni�able.De�nition 4.1 (term graph narrowing) Let G and H be term graphs, v bea non-variable node in G, l ! r be a rule2 in R, and � be a term graphsubstitution. Then there is a narrowing step G  v; l!r; � H if �term is a mostgeneral uni�er of l and termG(v), andG��c G0 =)c(v); l!rHfor some collapsing G� �c G0. We denote such a step also by G  � H.The collapsing after application of � is necessary to make narrowing com-plete. For, if l! r is not left-linear, then there need not exist a step G�)v; l!rH even if l is uni�able with termG(v) andG is fully collapsed (see Example 4.2).A term graph narrowing derivation G  �� H is either an isomorphism G!H together with the empty substitution or a non-empty sequenceG = G0  �1 G1  �2 : : :  �n Gn = Hsuch that � = �1�2 : : : �n. 69



hf hy z 7!� hf hz z � hf hz ) hk hzFigure 3: The components of a term graph narrowing stepExample 4.2 Figure 3 shows a term graph narrowing step in its three compo-nent steps. The applied term rewrite rule is f(x; x) ! k(x) and the computedterm graph substitution is � = fx=Z; y=Zg, where term(Z) = z. Note that�term is a most general uni�er of f(x; x) and f(y; z). Since f(x; x) ! k(x)is non-left-linear, there is no graph morphism from �f(x; x) to the term graphresulting from the application of �. That is, the rule cannot be applied to thisgraph. We �rst have to identify the two z-labelled edges by a collapsing.From now on we assume that R contains the rule x =? x! true, where thebinary function symbol =? and the constant true do not occur in any otherrule. A goal is a term of the form s =? t such that s and t do not contain =?and true. We denote by Mtrue a term graph representing true.Example 4.3 Let R consist of the following rules:0+ x ! x 0� x ! 0S(x) + y ! S(x+ y) S(x)� y ! (x� y) + yx =? x ! trueSuppose that we want to solve the goal (z� z) + (z� z) =? S(z). Figure 4 showsa term graph narrowing derivation starting from a fully collapsed representationof this goal. For each narrowing step, the applied rewrite rule and the involvedterm substitution are given. Note that steps c,d and e are proper rewrite stepsand that step f consists of a collapse step and a proper rewrite step. The deriva-tion computes the term substitution fx=0; x0=S(0); y=S(0); z=S(0)g in six steps.Restricting this substitution to the variables of the initial term graph yields thesolution fz=S(0)g. Solving the same goal by term narrowing requires nine steps,demonstrating that term graph narrowing speeds up the computation.Theorem 4.4 (soundness of narrowing) Let G be a term graph such thatterm(G) is a goal s =? t. If G  �� Mtrue, then �term is an R-uni�er of s andt. 2We assume that this rule has no common variables with G. If this is not the case, thenthe variables in l ! r are renamed into variables from Var � Var(G).70



=?+ Sv1� z ;a =?+ S+v2� Sx
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step node rewrite rule substitutiona v1 S(x)� y! (x� y) + y fy=S(x); z=S(x)gb v2 0� x0 ! 0 fx=0; x0=S(0)gc v3 0+ x! x fx=S(0)gd v4 S(x) + y! S(x+ y) fx=0; y=S(0)ge v5 0+ x! x fx=S(0)gf v6 x =? x! true fx=S(S(0))gFigure 4: A term graph narrowing derivation with its rewrite rules and substi-tutions 71



In order to prove the completeness of term graph narrowing, we use thefollowing lifting lemma. It allows to transform term graph rewrite derivationsinto term graph narrowing derivations.Lemma 4.5 (Lifting Lemma) Let G )�R H be a rewrite derivation and G0be a term graph such that G0� = G for some normalized substitution �. Mo-reover, let V be a �nite subset of Var such that Var(G0) [Dom(�) � V . Thenthere is a narrowing derivation G0  �� H 0 and a normalized substitution  suchthat H 0 � H and (�)jV = �.The proof of this lemma consists of two steps: at �rst the given rewritederivation is transformed into a \minimally collapsing" rewrite derivation witha subsequent collapsing (see Theorem 4.8), and then this derivation is directlylifted to a narrowing derivation. In a minimally collapsing derivation, collapsesteps are only used to turn preredexes of non-left-linear rewrite rules into rede-xes.De�nition 4.6 (minimal collapsing) A collapsing G � M is minimal withrespect to a redex hv; l! ri in M if for each term graph M 0 with G �M 0 �Mand each preimage v0 of v in M 0, the preredex hv0; l! ri is not a redex.In particular, if G and M are isomorphic, then G �M is minimal since noM 0 with G � M 0 � M exists. A proper collapsing G � M is minimal only ifl! r is non-left-linear and cannot be applied at any preimage of v in G.De�nition 4.7 (minimally collapsing rewrite derivation) A rewrite de-rivation P )�R Q is minimally collapsing if each collapse step G � M in thederivation is followed by a proper rewrite step M )v; l!r N such that G � Mis minimal with respect to hv; l! ri.By the following result, derivability with respect to the rewrite relation)R is not a�ected if one restricts to minimally collapsing derivations with asubsequent collapsing.Theorem 4.8 (transformation of derivations) For every derivationG)�RH there is a minimally collapsing derivation G)�R H 0 such that H 0 � H.Given two term substitutions � and � , and a subset V of Var , we write� =R � [V ] if x� $�R x� for each x 2 V . We write � �R � [V ] if there is asubstitution � such that �� =R � [V ]. The restriction �jV of a term substitution� to a subset V of Var is the substitution fx=t 2 � j x 2 V g. The restrictionof a term graph substitution is de�ned analogously. A term graph substitution� = fx1=G1; : : : ; xn=Gng is normalized if G1; : : : ; Gn are normal forms withrespect to )R.Theorem 4.9 (completeness of narrowing) Let )R be convergent and Gbe a term graph such that term(G) is a goal s =? t. Then for every R-uni�er� of s and t, there is a narrowing derivation G  �� Mtrue such that �term �R� [Var(G)]. 72



By Theorem 3.8.2, )R is convergent whenever !R is. Hence we have thefollowing corollary.Corollary 4.10 Term graph narrowing is complete for every convergent termrewriting system.Inspecting the proof of Theorem 4.9 in [HP96] shows that termination of)R can be relaxed to normalization. Hence we can strengthen the completenessresult as follows.Theorem 4.11 Term graph narrowing is complete whenever term graph rewri-ting is normalizing and conuent.5 ConclusionWe have introduced term graph narrowing as a mechanism for solving equationsby transformations on term graphs. The advantage of term graph narrowingover conventional narrowing is that common subterms can be shared. Sharingsaves not only space but also time since repeated computations can be avoided.We have shown that term graph narrowing is a complete equation solvingmethod for all term rewriting systems over which term graph rewriting is nor-malizing and conuent. This includes all convergent term rewriting systems.To achieve completeness, narrowing steps have to allow a collapsing betweenthe substitution application and the rewrite step.Our completeness proof is based on two results. On the one hand, we haveshown that minimally collapsing rewrite derivations can be lifted to narrowingderivations, where minimally collapsing derivations contain only collapse stepsthat are necessary to enable applications of non-left-linear rewrite rules. On theother hand, we have established a normal form result for term graph rewritederivations, showing that every derivation can be transformed into a minimallycollapsing derivation together with a subsequent collapsing.Our results suggest to consider minimally collapsing term graph narrowingas a restricted form of term graph narrowing in which narrowing steps containonly collapse steps that are minimal with respect to the rewrite steps. Fromour proofs it is easy to see that minimally collapsing narrowing is in the samesense complete as general term graph narrowing.References[Apt90] K.R. Apt. Logic programming. In Jan van Leeuwen, editor, Handbookof Theoretical Computer Science, volume B, chapter 10. Elsevier (1990)[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Jan van Lee-uwen, editor, Handbook of Theoretical Computer Science, volume B, chap-ter 6. Elsevier (1990) 73
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A rule based �rst order uni�cation for higher ordertypesEmmanuel EngelOur goal is to de�ne a clean rule based �rst order uni�cation for higherorder types. We do not wants to take bounds and free variable from di�erentsets and then, the main di�culty is to manage properly the bound variables.To solve this problem we use a rule based algorithm. We prove termination,correctness and completeness.
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ISHTAR: A Functional Logic Languagewith Polymorphic Order-Sorted Types �J.M. Almendros-Jim�enez and A. Gil-LuezasyDpto. Inform�atica y Autom�atica. Facultad de CC. Matem�aticas.Universidad Complutense. Madrid. 28040.E-mail:fjesusmal,anagilg@eucmos.sim.ucm.es.1 IntroductionType systems have been traditionally considered in functional languages andincorporated as an extension to logic programming. The usefulness of typesystems has been widely accepted to detect programming errors and to obtainmore readable programs and run-time optimizations.Polymorphic order-sorted type systems include both parametric and inclu-sion polymorphism providing more powerful expressivity. Parametric polymor-phism parametrizes types by means of type variables which represent any typewhereas inclusion polymorphism allows subtype relations between types.Parametric polymorphismwas introduced in functional languages within thelanguage ML and incorporated as an extension to logic programming. Thesetype systems were proved to be in general static type systems, that is, type in-formation is not required at run-time. Inclusion polymorphism was studied forlanguages base d on order-sorted equational logic and incorporated to the lan-guage OBJ-3. By contrast, type systems with inclusion polymorphism are dy-namic type systems, that is type information must be checked at run-time. Thecombination of both kind of polymorphism has been studied for logic program-ming (cfr. [Smo89], [Han91], [HiTo92], [Bei95]) and for functional programming(cfr. [FuMi90], [Smi94]). These approaches investigate the problem of type infe-rence (cfr. [Smo89], [FuMi90], [Smi94], [Bei95]) or operational semantics basedon typed uni�cation for logic programming (cfr. [Smo89], [Han91], [HiTo92]).TEL is a language which combines both kinds of polymorphism in a logic lan-guage.The integration of logic and functional programming has been studied inthe last years (see [Han94a] for a survey). Operational semantics based on lazynarrowing has been presented in[GHLR96]. This combination is adequated toinclude lazy evaluation allowing partial non-strict functions and in�nite values.Parametric type systems for functional-logic programming have been studiedin [Han90].�An extended version can be found in [AlGi96].yThis research has been partially supported by the Spanish CICYT (project TIC 95-0433-C03-01 "CPD"). 76



This work investigates the integration of a polymorphic order-sorted typesystem into functional logic programming including lazy functions. Operationalsemantics for logic languages with polymorphic order-sorted types only requi-res type checking for data terms during the uni�cation process. However, inlazy narrowing, type checking of expressions not being data terms could requireevaluation. For this reason, a lazy type checking must be introduced and com-bined with lazy narrowing. We will de�ne a lazy notion of type checking basedon the type declarations, in such a way that the expressions involving functionsymbols will not be evaluated if the type declaration is enough to deduce thetype.The type system we present is based on that presented in [HiTo92]. Henceit allows subtype relations between type constructors with the same arity, de-�ning a quasi-lattice and satisfying the monotonicity property. Our languageISHTAR follows the line of BABEL [MoRo92] and BABLOG [AGL94]. Theprograms consist of a speci�cation of types, type declarations for data con-structors and functions and a set of constructor-based well-typed conditionalrewriting rules. The rule conditions include data and type conditions and workas constraints for the rule applicability. The user can make a case distinctionbased on subtypes of the type declaration or can restrict the applicability of therule for some cases. In any case, type conditions must assure the well-typednessof the expressions involved in the rule. This well-typedness property is crucialfor a sound operational semantics. We present an operational semantics basedon transformation rules of data and type constraint systems, and combininglazy narrowing and type solving. We extend the operational semantics of lazynarrowing presented in [GHLR96] by considering type constraints.2 Some ExamplesOur typed programs consist of a speci�cation of types, a set of type declarationsfor data constructors and functions and a set of program rules for every functionas the following example shows.
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TYPESopnat; nat � intnegint; zero � opnatposint; zero � nattechnician; artist � persondoctor; comp scientist;architect � techniciansculptor; painter;musician � artistelist(�); nelist(�) � list(�)earbin(�); nearbin(�) � arbin(�)bool
DATA CONSTRUCTORS0 : zerosuc : nat! posintpred : opnat! negintnil : elist(�)[ j ] : � � list(�)! nelist(�)empty : earbin(�)tree : arbin(�)� � � arbin(�)! nearbin(�)john : doctorfrank; david : comp scientistthomas;margaret : architectrichard;marie : sculptorrobert; nathalie : paintermichael : musiciantrue; false : boolFUNCTIONShead : nelist(�)! �head([XjXs]) := X ( X : �;Xs : list(�)tail : nelist(�)! list(�)tail([XjXs]) := Xs ( X : �;Xs : list(�)second : nelist(�)! �second(X) := head(tail(X))( X : nelist(�); tail(X) : nelist(�)append : list(�)� list(�)! list(�)append(nil; L) := L( L : list(�)append([XjL1]; L2) := [Xjappend(L1; L2)]( X : �;L1 : list(�); L2 : list(�)preord : arbin(�)! list(�)preord(empty) := nilpreord(tree(LT;X;RT )) :=[Xjappend(preord(LT ); preord(RT ))]( X : �;LT : arbin(�); RT : arbin(�)n th : nat � list(�)! �n th(0; [XjL]) := X ( X : �;L : �n th(s(N); [XjL]) := n th(N;L)( N : nat;X : �;L : list(�)

father : person! personfather(david) := michaelfather(thomas) := richardfather(richard) := david:::mother : person! personmother(richard) := mariemother(marie) := nathalie:::fam tree : person! nearbin(person)fam tree(X) := tree(fam tree(father(X));X; fam tree(mother(X)))( X : personany anc artist? : person! boolany anc artist?(X) := true( X : person; sel artist(preord(fam tree(X))) : nelist(person)any anc artist?(X) := false( X : person; sel artist(preord(fam tree(X))) : elist(person)sel artist : list(person)! list(artist)sel artist(nil) := nilsel artist([XjL]) := [Xjsel artist(L)]( X : artist; L : list(person)sel artist([XjL]) := sel artist(L)( X : technician;L : list(person)The program rules are conditional rewriting rules including data and type con-ditions whose intended meaning is to constraint the applicability of a rule. Inthis example, we show the expressivity of our language. We can classify peopleinto artists: painters, sculptors and musicians, and technicians: doctors, com-puter scientists and architects.We can de�ne polymorphic constructors for listsand trees. We can use them to manage data bases, for example, the familytree of a person (describing the profession of every ancestor). Furthermore, we78



can de�ne polymorphic functions as head, tail, second, append, preord or n th.The language also allows to formulate several queries in a simple way.GoalsGoals of programs are as conditions rules, for example, for the program on theexample we can write:?-P==father(X);M==mother(X)2n th(N; preord(fam tree(X)))):musician;N :posint;X:person;X=richard; P=david;M=marie;N=suc(suc(0))2X:sculptor; P :comp scientist;M :sculptor;N :posintThe lazy notion of type checking is shown in the following example.Lazy Type CheckingThe type constraint sel artist(preord (fam tree(X))) : list(artist) does notrequire evaluation due to sel artist : list(person) ! list(artist). By contrast,sel artist(preord (fam tree(X))) : nelist(artist) requires evaluation, however,the lazyness of the language does not force to compute the complete list ofartists. It is only required to �nd one.The operational semantics that we present is based on transformation rulesof constraints combining lazy narrowing and type solving. It works with strictequalities (l == r) that represent that l and r must be evaluated into a �nitetotally de�ned value; non strict equalities (e := t) that represent the lazy uni�-cation of e and t (where e is any expression and t is a pattern of a function),type conditions (e : �) that will be solved by narrowing e into an expression oftype �, subtype conditions (� v � 0) and solved typed ( = �). Goals and rulesonly contain strict equalities and type conditions. The rest will appear duringthe transformation process. As result of this process we obtain a solved systemincluding an environment (type assumptions for data variables), a substitutionfor data variables, a substitution for type variables and subtype conditions ofthe form � v �. During the process; for every data variable X we use a typevariable �X in order to compute the type. The following example shows theprocess.Constraint TransformationsGiven the goal Y == second([0; suc(0)])2Y : �Y the operational calculus pro-ceeds as follows: Y == second([0; suc(0)])2Y : �Y ,!�OSY == head(tail([0; suc(0)]))2Y : �Y ; [0; suc(0)] : nelist(�); tail([0; suc(0)]) :nelist(�) ,!�OSY == head(tail([0; suc(0)]))2Y : �Y ; [0; suc(0)] : nelist(�); [suc(0)] :nelist(�) ,!�OSY == head(tail([0; suc(0)]))2Y : �Y ; � = int ,!�OSY == suc(0)2Y : �Y ; � = int; suc(0) : �Y ,!�OSY == suc(0)2Y : posint; � = int79



The operational semantics is lazy in the sense of the evaluation of dataexpressions is performed only if is necessary to obtain values for data variablesor to check types. For it, we prove results of soundness and completeness w.r.t.a lazy semantic calculus.We are also interested in an e�cient implementation of the operationalsemantics that takes advantages from the typedness of the language.References[AlGi96] J.M.Almendros-Jim�enez, A. Gil-Luezas. Lazy Narrowing withPolymorphic Order-Sorted Types (Extended Version), Technical ReportDIA 30/96. Universidad Complutense. 1996.[AGL94] P. Arenas-S�anchez, A.Gil-Luezas, F.L�opez-Fraguas. Com-bining Lazy Narrowing with Disequality Constraints, Procs. PLILP'94,Springer LNCS 844, pp. 385-399, 1994.[Bei95] Ch. Beierle. Type Inferencing for Polymorphic Order-Sorted LogicPrograms, Procs. of the 12th International Conference on Logic Pro-gramming, The MIT Press, pp. 765-779, 1995.[FuMi90] Y. Fuh, P. Mishra. Type Inference with Subtypes, TheoreticalComputer Science, 73, pp. 155-175, 1990.[GHLR96] J.C. Gonz�alez-Moreno, T. Hortal�a-Gonz�alez, F. L�opezFraguas, M. Rodr��guez-Artalejo. A Rewriting Logic for Declara-tive Programming, Procs. ESOP'96, Springer LNCS 1058, pp. 156-172,1996.[Han90] M. Hanus. A Functional and Logic Language with Polymorphic Types,Procs. Int. Symp. on Design and Implementation of Symbolic Compu-tation Systems, Springer LNCS 429, pp. 215-224, 1990.[Han91] M. Hanus. Parametric Order-Sorted Types in Logic Programming,Procs. TAPSOFT'91, Springer LNCS 494, pp. 181-200, 1991.[Han94a] M. Hanus. The Integration of Functions into Logic Programming:A Survey, Journal of Logic Programming (19,20), Special issue "TenYears of Logic Programming", pp. 583-628, 1994.[HiTo92] P.M. Hill, R.W. Topor. A Semantics for Typed Logic Program-ming, Chapter 1, Types in Logic Programming, Logic ProgrammingSeries, Frank Pfenning Editor, The MIT Press, pp. 1-58, 1992.[MoRo92] J.J. Moreno-Navarro, M. Rodr��guez-Artalejo. Logic Pro-gramming with Functions and Predicates: The Language BABEL, Jour-nal of Logic Programming, 12, pp. 191-223, 1992.[Smi94] G.S. Smith. Principal Type Schemes for Functional Programs withOverloading and Subtyping, Science of Computer Programming, 23, pp.197-226, 1994. 80



[Smo89] G. Smolka. Logic Programming over Polymorphically Order-SortedTypes, PhD thesis, Universitat Kaiserslautern, Germany, 1989.
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Equational Uni�cation and Type Inference:A Case StudyAndrew J. KennedyLIX, �Ecole Polytechnique91128 Palaiseau cedex, Francekennedy@lix.polytechnique.frThe application of free uni�cation to type inference for programminglangua-ges is well-known [6, 1]. In this talk a type system is presented whose inferencealgorithm is based on equational uni�cation for Abelian groups.Programs written in languages like ML must be well-typed before a compilerwill accept them. In the same way, physical equations in science must bedimensionally consistent. The ML type system can be extended to supportthe notion of physical dimension. It is then possible to be sure that dimensionerrors (such as adding a length to a time) will not occur at run-time.This aim is achieved by adding a parameter to numeric types which repres-ents units of measure such as kilograms or metres per second. Unit expressionsare formed from base units (such as the SI units kilograms, metres and seconds)combined using product (for example, to obtain metres squared) and inverse(to express velocities in metres per second, for instance). Also a symbol re-presenting `no units' is required for dimensionless quantities such as refractiveindex and angle. We therefore use the following syntax for units of measure:� ::= u j b j 1 j �1�2 j ��1Here b ranges over some set of base units B, dimensionless quantities havethe units 1, product is represented by juxtaposition and inverse by its usualnotation. For large programs it is essential that functions can be written whichare polymorphic in their units of measure { even something as simple as asquaring function requires this. Hence the syntax of unitsallows unit variables,ranged over by u.Types in the language have the syntax� ::= t j �1 ! �2 j �1 � �2 j num �where t ranges over type variables (to allow ordinary type polymorphism), func-tion types and cartesian product types are represented by the usual �1 ! �2and �1 � �2, and numeric types have the form num � for a units of measureexpression �. Then the standard arithmetic operations are given the followingpolymorphic types:+;� : num u� num u! num u82



� : num u1 � num u2 ! num u1u2= : num u1 � num u2 ! num u1u�12Notice how addition and subtraction insist that their arguments have the sameunits of measure, whereas multiplication and division operations produce resultswhose units of measure are respectively the product and quotient of the unitsof their arguments.So far, the type system resembles many an extension to ML, except that weallow quanti�cation over two di�erent syntactic classes. What distinguishes itis that units of measure satisfy certain equations, namely those of an Abeliangroup. Hence we incorporate into the type system an equational theory =Egenerated by the following set E of equations:u1u2 = u2u1 commutativity(u1u2)u3 = u1(u2u3) associativity1u = u identityuu�1 = 1 inversesThe typing rules are then extended with the following rule:� ` e : �1� ` e : �2 �1 =E �2Here � is a type environment which maps program identi�ers to polymorphictypes, and e is an expression in the programming language.The ML type inference algorithm makes use of free uni�cation whenever itprocesses a function application e1 e2. The type �1 deduced for e1 is uni�edwith the type �2 ! t, where �2 is the type deduced for e2 and t is a freshly-generated type variable. The fact that free uni�cation is unitary (for any twouni�able types there is a single most general uni�er) leads to the principal typesproperty of ML (for any typable expression there is a single most general type).A quick scan of any survey on uni�cation [2, 8] will reveal that few algebraictheories are unitary unifying. Fortunately, Abelian group uni�cation with freeconstants is such a theory. Hence the use of free uni�cation in the ML typeinference algorithm can be replaced by AG-uni�cation to obtainprincipal typesfor units of measure [3, 4].To illustrate the power of the system, here is a function written in ML whichdi�erentiates another function numerically.fun diff h f = fn x => (f (x+h) - f (x-h)) / (2.0 * h)It is assigned the polymorphic type shown below.num u1 ! (num u1 ! num u2)! (num u1 ! num u2u�11 )An interesting extension to the system is the provision of di�erent systemsof units and the automatic insertion of conversions between them. These areformalised as additional equations in E which represent equivalences betweenbase units in di�erent systems (for example, one kilogram is equivalent to 2:283



pounds). The type inference algorithm and uni�cation procedure must then bemodi�ed so that suitable coercions are inserted into the program.A number of other type systems incorporate equational theories and possessinference algorithms based on equational uni�cation: examples include recordtypes [7] and isomorphisms between data representations [9]. The (unitary)theory of Boolean rings holds great potential too [5].References[1] L. Damas and R. Milner. Principal type schemes for functional programs. In 9thACM Symposium on Principles of Programming Languages, pages 207{212, 1982.[2] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based survey of uni�cation. Technical Report 561, Universit�e de Paris-Sud, 1990.[3] A. J. Kennedy. Dimension types. In Proceedings of the 5th European Symposium onProgramming, volume 788 of Lecture Notes in Computer Science, pages 348{362.Springer-Verlag, 1994.[4] A. J. Kennedy. Programming Languages and Dimensions. PhD thesis, ComputerLaboratory, University of Cambridge, 1995. Available as Technical Report No. 391.[5] A. J. Kennedy. Type inference and equational theories. Submitted for publication,1996.[6] R. Milner. A theory of type polymorphism in programming languages. Journal ofComputer and System Sciences, 17:348{375, 1978.[7] D. R�emy. Type inference for records in a natural extension of ML. Technical Report1431, INRIA Rocquencourt, May 1991.[8] J. H. Siekmann. Uni�cation theory. Journal of Symbolic Computation, 7(3/4):207{274, 1989.[9] S. R. Thatte. Coercive type isomorphism. In Functional Programming Languagesand Computer Architecture, volume 523 of Lecture Notes in Computer Science,pages 29{49. Springer-Verlag, 1991.
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Higher-Order Matching and Tree automataAn abstract of preliminary workHubert ComonLRI, Bât 490Univ. Paris-Sud91405 Orsay cedexFranceHubert.Comon@lri.frMay 24, 1996This small note reports on a very preliminary work on higher-order matching.There might be typos and unprecise points. We will start by a description ofthe problem, followed by a sketch of our solution.TypesThe language L of simple types is the smallest set containing a type constant oand such that for any �; � 2 L, � ! � 2 L. As usual, a type � ! (�0 ! �00) isalso written �; �0 ! �00; from now on, we assume this conversion from the formerto the latter. (Then any type distinct from o can be written �1; : : : ; �n ! o)The order of a type � 2 L is de�ned by: O(o) = 1 and O(�1; : : : ; �n ! o) =1 +max(O(�1); : : : ; O(�n))TermsWe consider the simply typed lambda-calculus: the set of terms T is the smallestset containing variables (of a type � 2 L) and a set of typed constants (theremaybe an arbitrary set of constants for each type) and closed under abstractionand application: if t is a term of type � and x is a variable of type �, then �x:tis a term of type � ! � . If s is a term of type �1; : : : ; �n ! � and t1; : : : ; tn areterms of types �1; : : : ; �n respectively, then s(t1; : : : ; tn) is a term of type � .The order of a term t is the maximum order of the types of all its subterms.�-reduction is terminating on T . We write s # the unique normal form of sw.r.t. �-reduction. s =� t when s #= t #Higher-order matching problemsA higher-order matching problem is an equation s = t between two termss; t 2 T such that t does not contain any free variable. s; t may be assumed�-irreducible without loss of generality.85



The order of a (higher-order) matching problem is the maximum order of sand t.A solution of a matching problem s = t is a term assignment � to the freevariables of s such that s� =� t. We may also restrict ourselves to irreducibleassignments � without loss of generality.First order matching problems have either no solution or a unique solu-tion. Second-order matching problems have always �nitely many solutions upto �-conversion (an algorithm can be derived from Huet's thesis). Third-ordermatching problems may have in�nitely many solutions, but they are still deci-dable (As shown by G. Dowek in 93). For example the problemx(�y:y) = awhere a is a constant of order 1, has the following solutions:x = �z:zn(a)where n is any non-negative integer.Fourth order matching is also decidable, as shown by V. Padovani in 1994.However, the problem of deciding whether an order n matching problem has asolution or not is open for n > 4.Dual Interpolation problemsDual interpolation problems are Boolean combinations of the following particu-lar higher-order matching problems:x(s1; : : : ; sn) = twhere s1; : : : ; sn; t are ground terms (they do not contain free variables).V. Padovani has shown in 1994 that the general nth order matching pro-blems reduce to nth order dual interpolation problems.In what follows, we concentrate on a single matching problem of the aboveform and consider the question of recognizability (by a �nite tree automaton)of the set of u such that fx 7! ug is a solution. If such a set of solutions ise�ectively recognizable, then we solve the higher-order matching problem sincea Boolean combination of recognizable tree languages is again an (e�ectivelycomputable) recognizable tree language.Recognizability of the set of solutionsThe following result does not solve the general problem but sheds new light onthe decidability at order 4:proposition 1 The set of solutions of a problem x(s1; : : : ; sn) = t where x, theonly free variable has only one occurrence, is recognizable for matching problemsof order n � 4.Sketch of the proof:We build an automaton A as follows:86



the set of states Q is the smallest set closed under subterm and containing:� t� The solutions of y(r1; : : : ; rk) = u (up to �-conversion) where r1; : : : ;rk; u are �rst-order subterms of t (free variables of these terms beingconsidered as constants) or the special constant 2o.All these solutions are assumed to contain distinct bound variables.� the type of xFor convenience, we will write qt (or q� ) instead of t (or �) when they areconsidered as states.Final states : There is only one �nal state qtThe set of rules (which maybe in�nite because the alphabet is in�nite) con-sists of� The rules c(qt1 ; : : : ; qtn)! qc(t1 ;:::;tn) for each c(t1; : : : ; tn) 2 Q and cis either a constant or a variable or a binder.� The rules xi(qt1 ; : : : ; qtn)! qu if si(t1; : : : ; tm) #= u 2 Q, x1; : : : ; xnare variables which occur nowhere else. (If ti is a type � , then ti isreplaced with the special constant 2� in the reduction).� Rules such that in state q� where � is a type, we accept all terms oftype � (up to �-conversion)We show that A accepts the set of terms u with free variables x1; : : : ; xn suchthat �x1: : : : �xn:u is a solution of x(s1; : : : ; sn) = t.It is not di�cult to see that each term which is accepted by the automatonis also a solution.Conversely, we show by induction on the pair (number of reduction steps,size of u) that, for all qu 2 Q such that u 2 T ,v� #= u ) v is accepted in quwhere ( � = fx1 7! s1; : : : ;xn 7! sngV ar(v) � fx1; : : : ; xngThere are two cases: if v = c(v1; : : : ; vm) where c 6= xi, then we use theinduction hypothesis, the closure of Q by subterm and the de�nition of theset of transition rules. If v = xi(v1; : : : ; vm), we consider an index j such thatreplacing the jth argument of si(v1�; : : : ; vm�) with a dummy constant doesnot yield u as a normal form. We show that vj is accepted in a state quj suchthat vj� #= uj. For, we consider a particular reduction sequence from whichwe derive (vj�) # (r1; : : : ; rk) = u0 where u0 is a subterm of u.Now, we can use the order hypothesis: we can see that, in case x is of orderat most 4, r1; : : : ; rk are of order 1. Then for each i, either ri is a subterm of t,or is irrelevant in the reduction sequence. Hence (vj�) # is accepted either inqu0 or in some quj where uj is a solution of y(r1; : : : ; rk) = u0.87



Finally, we use the induction hypothesis: vj is accepted in quj . We canrepeat the argument for all indices j on which the reduction depends and, byconstruction of the automaton, xi(v1; : : : ; vm) is accepted in qu.ExtensionsWe are currently extending this technique to arbitrary higher-order matchingproblems. We believe again that the set of solutions of dual interpolation pro-blems is still recognizable. This would also imply that the set of solutions ofgeneral higher-order matching problems.
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Higher-Order Equational Uni�cationvia Explicit SubstitutionsClaude Kirchner, Christophe RingeissenINRIA-Lorraine & CRIN-CNRSTechnopule de Nancy-Brabois | Campus Scienti�que615, rue du Jardin BotaniqueBP 101, 54602 Villers-l�es-Nancy Cedex Francee-mail: fClaude.Kirchner, Christophe.Ringeisseng@loria.frHigher-order E-uni�cation is equational uni�cation with respect to the equi-valence relation =��[E generated by ��-conversion and an arbitrary �rst-orderequational theory E. We present how to perform higher-order E-uni�cationthanks to the use of explicit substitutions and the related �rst-order rewritesystem ��. The theory ��E of interest is de�ned as the combined equationaltheory =��(E)[E where ��(E) is a ��-calculus integrating the �rst-order equa-tional theory E and its function symbols. It is a non-disjoint combination of�rst-order equational theories and so we cannot reuse the well-known techniquesdeveloped for combining uni�cation algorithm when signatures of the relatedtheories are built over disjoint sets of function symbols.We design a complete ��E-uni�cation procedure. The chosen approachis to slightly modify the simple algorithm due to G. Dowek, T. Hardin andC. Kirchner for ��. This leads to few additional transformation rules for dealingwith E and with the interaction between E and ��. For sake of simplicity, weassume that E is regular (left and right hand sides of axioms have the samevariables) and collapse-free (there is no variable as left or right hand sides ofaxioms). But this could be generalized to arbitrary theories E at the cost ofmore complicated rules and more sophisticated E-uni�cation algorithms.The uni�cation procedure may be viewed as a set of transformation rulestogether with a given strategy. The application of rules mainly depends on thetop-symbols of s and t in an equation s =?��E t:1. If these top-symbols are constructors in �� (roughly speaking, like � andde Bruijn indices), then we apply the decomposition rules developed for�� and which are still correct in this context.2. If these top-symbols are function symbols in E, then we use the well-known notion of variable-abstraction to purify the equation. The pureequation will be solved thanks to the E-uni�cation algorithm.3. If these top-symbols are respectively a constructor in �� and a function89



symbol in E, there is a \theory clash" and the process fails since E isassumed to be collapse-free.4. Otherwise, members of equations are normalized thanks to the weaklynormalizing rewrite system ��(E) in order to reach one of the di�erentforms considered in the rules. There exist also explosion rules which areaimed to perform a step towards a solution.The interest of this uni�cation procedure lies in the result that a higher-orderE-uni�cation problem can be translated into a �rst-order ��E-uni�cation pro-blem and solutions of the latter remain in the image of the translation. Hence,we show how to reduce higher-order E-uni�cation into �rst-order uni�cation.
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Uni�cation via Explicit Substitutions:The Case of Higher-Order PatternsGilles Dowek Th�er�ese Hardin Claude KirchnerFrank PfenningFollowing the general method and related completeness results on usingexplicit substitutions to perform higher-order uni�cation proposed in [Dowek,Hardin, Kirchner; LICS 1995], we investigate the case of higher-order patternsas introduced by Miller. We show that our general algorithm specializes in avery convenient way to patterns. We also sketch an e�cient implementation ofthe abstract algorithm and its generalization to constraint simpli�cation, whichhas yielded good experimental results at the core of a higher-order constraintlogic programming language.
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Undecidability of the word problem in the union oftheories sharing constructorsExtended AbstractE. DomenjoudCrin/Cnrs & Inria-LorraineBP 239 F-54506 Vand�uvre-l�es-Nancy CedexFranceEric.Domenjoud@loria.frIn [1], E. Domenjoud, F. Klay and Ch. Ringeissen established modularityresults for uni�cation, matching, and the word problem in the union of equatio-nal theories sharing constructors (with a suitable de�nition of the constructors).For uni�cation, counter-example were given which show that no general combi-nation algorithm exists if any condition of the modularity theorem is removed.We present here a similar counter-example for the word problem. It shows thatweakening the conditions of the modularity theorem may lead to an undecidableword problem in the union. The counter-example is very general in the sensethat the theories we consider are simple and linear.This modularity theorem is as follows:Theorem 1 (Domenjoud, Klay and Ringeissen 1994 [1]) Let E1 and E2be two equational theories sharing only constructors. If for each i = 1; 2:1. the word problem is decidable modulo Ei;2. for each shared constructor h and any term t, 9t1; : : : ; tn; t =Ei h(t1; : : : ; tn)is decidable.then the word problem modulo E1[E2 is decidable and for each shared constructorh and any term t, 9t1; : : : ; tn; t =E1[E2 h(t1; : : : ; tn) is decidable.The counter example we present shows that we may not simply remove thesecond condition of this theorem. This means that the word problem alone isnot modular for theories sharing constructors.The idea to prove this result is to build an equational theory E encodinga procedure which searches for the smallest solution of some semi-decidableproblem P . A term of the form search(P ) will be E-equal to sat(P; x0) ifand only if x0 is the smallest solution of P in some ordering. Searching forthe smallest solution of P will ensure that sat is a constructor. Provided that92



P and its solutions may be encoded using only constructors, considering thetheory E 0 obtained by renaming search to search0, search(P ) and search0(P )will be equal modulo E [ E 0 if and only if P has a solution. The trick is thatit will be possible to decide search(P ) =E sat(P; x0) since both P and x0 aregiven. But to decide search(P ) =E[E 0 search0(P ), we have to decide whetherx0 exists, which is impossible.The semi-decidable problem we consider is the Post Correspondence Problem(PCP) [2].De�nition 1.1 (Post Correspondence Problem (PCP)) Let A and C be�xed �nite alphabets. The Post Correspondence Problem consists in decidingfor each pair of morphisms ' and '0 from A� to C� whether there exists anon-empty � 2 A+ such that '(�) = '0(�).Theorem 2 (Post 1946 [2]) The Post Correspondence Problem is undecida-ble in general.PCP is obviously decidable if jCj = 1 and for jCj � 2 the following results areknown.Theorem 3� if jAj � 2 then PCP is decidable.� if jAj � 9 then PCP is undecidable.For 3 � jAj � 8 the problem is still open.In the sequel, A = fa1; : : : ; ang and C = fc1; : : : ; cmg are �xed disjointsets of unary function symbols. We take A and C large enough to get theundecidability of PCP. From what precedes, it su�ces to take n � 9 and m � 2.', as an argument of a function symbol, always stands for a sequence of n terms'1; : : : ; 'n, and '[t]i stands for a sequence of n terms the ith of which is t.We consider the theory E de�ned by the set of axioms given in the tablebelow and the (non-terminating) rewriting system R obtained by orienting all
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axioms of E from left to right.0 Post('; '0) = apply('; '0;?;?; a1?;?;?;?)1 8i; j apply('[cjw]i; '0; z; z0; aix; y; u; u0) = apply('[w]i; '0; cjz; z0; aix; y; cju; u0)2 8i apply('[?]i; '0[ckw0]i; z; z0; aix; y; u; u0) = apply('[?]i; '0[w0]i; z; ckz0; aix; y; u; cku0)3 8i apply('[?]i; '0[?]i; z; z0; aix; y; u; u0) = restore('[?]i; '0[?]i; z; z0; aix; y; u; u0)4 8i; j restore('[w]i; '0; cjz; z0; aix; y; u; u0) = restore('[cjw]i; '0; z; z0; aix; y; u; u0)5 8i; j restore('; '0[w0]i;?; ckz0; aix; y; u; u0) = restore('; '0[ckw0]i;?; z0; aix; y; u; u0)6 8i; j restore('; '0;?;?; aix; y; u; u0) = apply('; '0;?;?; x; aiy; u; u0)7 8j apply('; '0;?;?;?; y; cju; cju0) = apply('; '0;?;?;?; y; u; u0)8 apply('; '0;?;?;?; y;?;?) = sat('; '0; y)9 8j 6= k apply(';'0;?;?;?; y; cju; cku0) = fail('; '0; y; u; u0)10 8j apply('; '0;?;?;?; y; cju;?) = fail('; '0; y; u;?)11 8k apply('; '0;?;?;?; y;?; cku0) = fail('; '0; y;?; u0)12 8j fail('; '0; y; cju; u0) = fail('; '0; y; u; u0)13 8k fail('; '0; y;?; cku0) = fail('; '0; y;?; u0)14 fail('; '0; y;?;?) = next('; '0;?; y)15 next('; '0; x; any) = next('; '0; a1x; y)16 8i 6= n next('; '0; x; aiy) = shift('; '0; ai+1x; y)17 next('; '0; x;?) = shift('; '0; a1x;?)18 8i shift('; '0; x; aiy) = shift('; '0; aix; y)19 shift('; '0; x;?) = apply('; '0;?;?; x;?;?;?)The idea behind this set of axioms is the following. Consider a morphism' fromA� to C�. We can encode ' as the sequence !1?; : : : ; !n? where !i = '(ai).Now consider the term Post(';'0) where ' and '0 are two morphisms encodedin this way. The rewriting system R, when applied to this term, will apply 'and '0 to each non-empty word � 2 A+ in some increasing order, until a solu-tion of '(�) = '0(�) is found, provided one exists. Otherwise, it will never stop.Axiom 0 converts Post(';'0) into apply(';'0;?;?; a1?;?;?;?) which startsthe search for a solution of PCP and for each term apply(';'0;?;?; �?;?;?;?)with � 2 A�, R acts as follows.� Axioms 1 through 6 apply ' and '0 to �. Axioms 1 and 2 performthe application to the �rst ai in �, destructing the morphisms which arerestored by axioms 4 and 5. Axiom 3 prepares for this restoration andaxiom 6 prepares for the application to the next ai in �. Eventually,we get apply(';'0;?;?;?; �?; '(�)?; '0(�)?) where �, '(�) and '0(�)denote the words obtained by reversing �, '(�) and '0(�). Note that theapplication of the morphisms is destructive to avoid a copy which wouldmake the theory non-linear.� Axioms 7 destructs '(�) and '0(�) one symbol at once until either eve-rything has been removed or a di�erence is found. If no di�erence isfound then � is a solution of PCP. Axiom 8 stops the process and returnssat(';'0; �?) where � is the word obtained by reversing �.94



� Axioms 9, 10 and 11 detect all possible di�erences between '(�) and'0(�).� Axioms 12 and 13 destruct what remains from '(�) and '0(�) after adi�erence has been detected. This destruction is done one symbol at onceto keep the theory regular. Eventually, we get fail(';'0; �?;?;?)� Once '(�) and '0(�) have been completely destructed, axiom 14 prepa-res for the computation of the next � which is performed by axioms 15through 18.� At last, axiom 19 prepares for the application of ' and '0 to this next �and the whole process starts again with axiom 1.This process may be depicted as followsPost(';'0)
sat(';'0; �?)apply(';'0;?;?;?; �?; '(�)?; '0(�)?)apply(';'0;?;?; �?;?;?;?)apply(';'0;?;?; a1?;?;?;?)

??
--'(�)='0(�)� next(�)�� '(�)6='0(�)We establish the following results for E.Proposition 3.1 E is simpleTheorem 4 The word problem is decidable modulo E.Idea of the proof. The proof works in three steps. We �rst consider the regularset of termsT 0 = apply((C�?)n; (C�?)n;?;?;A�?;?;?;?) [ sat((C�?)n; (C�?)n;A�?)and show that E-equality is decidable in T 0.In a second time, we show that any outermostR-derivation eventually yieldsa term of the form C[t1; : : : ; tp] where each ti belongs to T 0 and C[] is an R-irreducible context of which no other subterm belongs to T 0.Finally we show that if t = C[t1; : : : ; tp] and t0 = C 0[t01; : : : ; t0q] have thisform then t =E t0 if and only if C[] � C 0[] and for each i, ti =E t0i. From whatprecedes, these last equalities are decidable. 2Proposition 4.1 Each symbol in A [ C [ fsatg is a constructor of E.95



Idea of the proof. We consider a RPO with a total precedence which makes anysymbol in A[C [ fsatg smaller then any symbol in fPost; apply; restore; fail;next; shiftg. We show that the completion of E with this ordering will neverfail to orient an equation. Finally, we show that the symbols in A [ C [ fsatgmay not occur at the top of a left-hand side of a rule in the (in�nite) completedsystem. 2We de�ne now E 0 as the theory obtained by adding a prime to Post, apply,restore, fail, next and shift in E. From the proposition 4.1, E and E 0 shareonly constructors. Finally, we get the theorem:Theorem 5 The word problem is undecidable modulo E [ E 0Idea of the proof. We show that if ' and '0 are the encoding of two morphismsfrom A� to C� then Post(';'0) =E[E 0 Post0(';'0) if and only if there exists anon-empty � 2 A+ such that '(�) = '0(�). Hence the theorem. 2References[1] E. Domenjoud, F. Klay, and Ch. Ringeissen. Combination techniques fornon-disjoint equational theories. In Alan Bundy, editor, Proceedings 12thInternational Conference on Automated Deduction, Nancy (France), volume814 of Lecture Notes in Arti�cial Intelligence, pages 267{281. Springer-Verlag, June/July 1994.[2] Emil L. Post. A Variant of Recursively Unsolvable Problem. Bull. Am.Math. Soc., 52:264{268, 1946.
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Combination of Compatible Reduction Orderings thatare Total on Ground Terms{ Extended Abstract {Franz BaaderLuFg Theoretical Computer Science, RWTH AachenAhornstra�e 55, 52074 Aachen, Germanye-mail: baader@informatik.rwth-aachen.de1 IntroductionReduction orderings that are total on ground terms play an important rôle inmany areas of automated deduction. For example, unfailing completion [4]|avariant of Knuth-Bendix completion that avoids failure due to incomparablecritical pairs|presupposes such an ordering. In addition, using a reductionordering that is total on ground terms, one can show that any �nite set ofground equations has a decidable word problem [13, 20]. It is very easy toobtain such orderings. Indeed, many of the standard methods for constructingreduction orderings yield orderings that are total on ground terms: both Knuth-Bendix orderings [12] and lexicographic path orderings [10] are total on groundterms if they are based on a total precedence ordering on the set of functionsymbols.Things become more complex if one is interested in reduction orderings thatare compatible with a given equational theory E. Such orderings, which are, forexample, used in rewriting modulo equational theories [8, 9, 2], can be seen asorderings on E-equivalence classes. E-compatible reduction orderings that aretotal on (E-equivalence classes of) ground terms can be employed for similarpurposes as the usual reduction orderings that are total on ground terms. Forexample, let AC denote a theory that axiomatizes associativity and commutati-vity of several binary function symbols, where the signature may contain addi-tional free function symbols. An AC-compatible reduction ordering that is totalon ground terms can be used to show that for any �nite set G of ground equati-ons, the word problem is decidable for AC[G [14, 15]. The �rst AC-compatiblereduction ordering total on ground terms was described in [15]. It is based ona relatively complex polynomial interpretation in which the coe�cients of thepolynomials are again integer polynomials. Surprisingly, it turned out to berather hard to construct AC-compatible reduction orderings by appropriatelymodifying standard orderings such as recursive path orderings [7]. The mainidea underlying most proposals in this direction (e.g., [5, 3, 11, 6]) is to apply97



certain transformations such as attening to the terms before comparing themwith one of the standard path orderings. A major drawback of these approa-ches is that they impose rather strong restrictions on the precedence orderingson function symbols that may be used. One consequence of these restrictionsis that the obtained AC-compatible orderings are not total on ground terms ifmore than one AC-symbol is present. This problem has �nally been overcomein [18, 19], where an AC-compatible reduction ordering total on ground termsis de�ned that is based on a recursive path ordering (with status). In [17] itwas shown that this approach can even be used to construct reduction orderingstotal on ground terms that are compatible with theories that axiomatize severalassociative, commutative, associative-commutative, and free symbols.The present paper proposes a di�erent way of attacking the problem of howto construct E-compatible orderings that are total on ground terms. It wasmotivated by the observation that it is very easy to de�ne an AC-compatiblereduction ordering total on ground terms if there is only one AC-symbol inthe signature. Instead of directly de�ning an AC-compatible ordering total onground terms for the case of more than one AC-symbol, we try to obtain such anordering by combining the orderings that exist for the case of one AC-symbol.1To be more precise, assume that AC1 axiomatizes associativity-commutativityof the symbol + 2 �1 and that AC2 axiomatizes associativity-commutativity ofthe symbol � 2 �2, where �1 and �2 are disjoint signatures that may containadditional free function symbols. For i = 1; 2, let �i be an AC i-compatible re-duction ordering that is total on the AC i-equivalence classes of ground terms,i.e., �i can be seen as a total ordering on T (�i; ;)==ACi . In order to de�nea reduction ordering that is total on T (�1 [ �2; ;)==AC1[AC2 from the givenorderings �1 and �2, we utilize the fact that this combined algebra can berepresented as the amalgamated product of the single algebras T (�i; ;)==ACi .This product was introduced in [1] in the context of combining uni�cation algo-rithms. The construction of the amalgamated product represents the universeof T (�1 [ �2; ;)==AC1[AC2 as a (possibly in�nite) tower of layers. In principle,the combined ordering compares elements of the combined algebra �rst withrespect to the layers they are in: elements in higher layers are larger than ele-ments in lower ones. If two elements are in the same layer, then one of theoriginal orderings (�1 or �2) is used to compare them.This combination approach is, of course, not restricted to AC-theories. Itcan be used to combine arbitrary compatible reduction orderings that are totalon ground terms, provided that the single theories are over disjoint signatu-res and satisfy some additional properties that will be introduced below. Forexample, theories that axiomatize associativity, commutativity, or associativity-commutativity of a binary function symbol satisfy these properties.1This should not be confused with Rubio's approach for combining orderings on disjointsignatures [17]. To obtain his combined ordering, which extends given orderings on terms overthe single signatures to an ordering on terms over the union of the signatures, he presupposesthe existence of a compatible reduction ordering total on ground terms for the combinedsignature. In the present paper, the main goal is to show that such an ordering exists.98



2 Compatible reduction orderingsLet � be a signature, and let T (�;X) denote the terms over � with variablesin X. A reduction ordering on T (�;X) is a strict partial ordering � thatis Noetherian, stable under �-operations (i.e., s � t implies f(: : : ; s; : : :) �f(: : : ; t; : : :) for all f 2 �), and stable under substitutions (i.e., s � t implies�(s) � �(t) for all �-substitutions �). In the following, we will restrict ourattention to reduction orderings on ground terms, which means that stabilityunder substitutions can be dispensed with. However, the ground terms thatwill be considered may contain additional free constants from a set of constantsC with C \ � = ;. By a slight abuse of notation, the set of these groundterms will be written as T (�; C). The only di�erence between variables andfree constants is the fact that constants cannot be replaced by substitutions,and thus it is possible to order them with a reduction ordering.Let E be a set of identities over �, and let =E denote the equational theoryinduced by E. A reduction ordering � is E-compatible i� s � t, s =E s0, andt =E t0 imply s0 � t0. Thus, an E-compatible reduction ordering induces a well-de�ned ordering on the set of =E-equivalence classes. For a set of free constantsC, the E-free algebra with generators C, i.e., T (�; C)==E , will be denoted byhCi�;E . The set of free constants occurring in a term t is denoted by C(t). Wecall a reduction ordering total on hCi�;E (or simply \total on ground terms," ifthe set of ground terms is clear from the context) i� it induces a total orderingon hCi�;E , i.e., i� for all s; t 2 T (�; C) we have s � t, or s =E t, or s � t.If E is a consistent equational theory (i.e., admits models of cardinalitygreater than 1), then we have c 6=E c0 for every pair of distinct free constantsc; c0 2 C. Thus, an E-compatible reduction ordering total on hCi�;E yields a to-tal Noetherian ordering on C. We say that an E-compatible reduction orderingextends a total Noetherian ordering > on C i� its restriction to C coincides with>. In the following, we consider only consistent equational theories (withoutmentioning it explicitly as a condition).We close this second by stating some properties of equational theories andreduction orderings compatible with equational theories that will be importantfor the proof of our combination result:Lemma 2.1 1. If there exists a non-empty E-compatible reduction ordering,then E is a regular equational theory. In particular, we have for all termss; t 2 T (�; C) that s =E t implies C(s) = C(t).2. If there exists a non-empty E-compatible reduction ordering, then for anyfree constant c 2 C and term t 2 T (�; C) we can have c =E t only if coccurs exactly once in t.3. If � is an E-compatible reduction ordering total on hCi�;E, then c 2 C(t)for a free constant c 2 C and a term t 6=E c implies t � c.99



4. Let � be an E-compatible reduction ordering total on hCi�;E , and assumethat 0 2 � is a signature constant and c 2 C is a free constant. If thereexists a term s containing 0 such that s =E c, then 0 is the smallestelement of hCi�;E with respect to �.3 Combination of orderingsIn principle, we want to solve the following combination problem: Let �1;�2be disjoint signatures and E1; E2 be equational theories over the respectivesignature. Assume that, for i = 1; 2 and any set C of free constants, thereexists an Ei-compatible reduction ordering �i that is total on hCi�i;Ei . Canthe orderings �1;�2 be used to construct an (E1 [ E2)-compatible reductionordering that is total on hCi�1[�2 ;E1[E2?The next example demonstrates that this is not always possible.Example 3.1 Let �1 := f+; 0g, �2 := f�; 1g, E1 := fx + 0 = xg, and E2 :=fx�1 = xg. It is easy to see that there exist Ei-compatible reduction orderings�i that are total on hCi�i;Ei . In fact, since any term in T (�1; C) is =E1 -equivalent to a term in T (f+g; C), and since =E1 is the syntactic equality onT (f+g; C), one can simply take a lexicographic path ordering that is inducedby a well-ordering of C. The same argument applies to E2.However, assume that � is an (E1[E2)-compatible reduction ordering totalon hCi�1[�2;E1[E2 . Obviously, we have c + 0 =E1[E2 c and c � 1 =E1[E2 c.By Property 4 of Lemma 2.1, both 0 and 1 must be the smallest element inhCi�1[�2;E1[E2 , which is a contradiction since 0 6=E1[E2 1.In our general combination result, this kind of problem is avoided by restrictingthe attention to theories whose signatures do not contain function symbols, i.e.,the only constants that may occur are free constants.2There is a second restriction that must hold for our method to apply. Theorderings �1;�2 must satisfy the following constant dominance condition:De�nition 3.2 Let � be an E-compatible reduction ordering total on hCi�;E.Then � satis�es the constant dominance condition (CDC) i� for all t 2 T (�; C)and c 2 C such that c � c0 for all c0 2 C(t), we have c � t.Intuitively, this means that large constants dominate terms containing onlysmall constants. An arbitrary E-compatible reduction ordering total on groundterms need not satisfy this property. For certain equational theories, however,the existence of an arbitrary E-reduction ordering total on ground terms im-plies the existence of such an ordering that also satis�es the CDC. Let C bea countably in�nite set of free constants. For a term t 2 T (�; C) and a free2Actually, it would be su�cient to apply this restriction to one of the two theories to becombined. 100



constant c 2 C, let jtjc denote the number of occurrences of c in t. We say thatthe equational theory E is strongly regular i� s =E t implies jsjc = jtjc for allterms s; t 2 T (�; C) and free constants c.Lemma 3.3 Let E be strongly regular. If there exists an E-compatible re-duction ordering total on hCi�;E, then there also exists such an ordering thatadditionally satis�es the CDC.For example, theories axiomatizing commutativity, associativity, or associativity-commutativity of a binary function symbol are obviously strongly regular.Our method for combining compatible reduction orderings depends on therepresentation of hCi�1[�2 ;E1[E2 as the free amalgamated product of hCi�1;E1and hCi�2;E2 , as introduced in [1].3The free amalgamated productThe free amalgamated product of hCi�1;E1 and hCi�2;E2 is de�ned using twoascending towers of the following form: We consider disjoint sets of free con-stants C1 = S1i=0Ci and D1 = S1i=0Di such that C0 = C. In addition, forn � 0, let An be the carrier set of hSni=0Cii�1;E1 , and let Bn+1 be the carrierset of hSni=0Dii�2;E2 . The partitioning of C1 and D1 into the sets Ci and Diis such that sets on corresponding oors of the double tower shown in Figure 1have the same cardinality.Thus, there are bijections h0 : A0 ! D0, g1 : B1nD0 ! C1, and for all n � 1,bijections hn : An n (An�1 [ Cn)! Dn and gn+1 : Bn+1 n (Bn [Dn)! Cn+1.Let A1 be the carrier set of hC1i�1;E1 , i.e., the union of all set in the lefttower, and let B1 be the carrier set of hD1i�2;E2 , i.e., the union of all set inthe right tower. The above bijections can be used in the obvious way to de�nebijectionsh1 := 1[i=0hi [ g�1i+1 : A1 ! B1 and g1 := 1[i=0h�1i [ gi+1 : B1 ! A1:By de�nition, A1 is equipped with a �1-structure, and the bijections h1 andg1 can be used to carry the �2-structure on B1 to A1 (see [1] for details). Asshown in [1], the (�1 [ �2)-algebra A1 with carrier set A1 that is obtainedthis way is isomorphic to hCi�1[�2;E1[E2 .An ordering on the free amalgamated productAs mentioned above, we assume that the signatures �1 and �2 do not containconstant symbols, i.e., the only constants are free constants. In addition, assume3It should be noted, however, that we use a slightly modi�ed construction, which is not assymmetric as the original one, but more easy to adapt to our purposes.101



: : : : : :An+1 n (An [ Cn+1) Dn+1Cn+1 Bn+1 n (Bn [Dn)An n (An�1 [ Cn) DnCn Bn n (Bn�1 [Dn�1): : : : : :C2 B2 n (B1 [D1)A1 n (A0 [ C1) D1C1 B1 nD0A0 D0Figure 1: The double tower of the amalgamation construction.that, for i = 1; 2, there is a mechanism for constructingEi-compatible reductionorderings that satis�es the following properties:1. For any �nite or countably in�nite set of free constants C and any totalNoetherian ordering > on C, the mechanism yields an Ei-compatible re-duction ordering �(i)C;> that extends >, is total on hCi�i;Ei , and satis�esthe CDC.2. The mechanism is monotone in the following sense: Let C1 � C2, let >1be a total Noetherian ordering on C1, and let >2 be a total Noetherianordering on C2 such that >1 � >2. Then �(i)C1;>1 � �(i)C2;>2 .3. The mechanism is invariant under monotone renaming of free constants.To be more precise, let >1 be a total Noetherian ordering on C1, >2 bea total Noetherian ordering on C2, and let � : C1 ! C2 be an orderisomorphism. Then s �(i)C1;>1 t implies �(s) �(i)C2;>2 �(t), where the terms�(s); �(t) are obtained from s; t by replacing the free constants in theseterms by their �-images.Theorem 3.4 Assume that �1 and �2 are disjoint signatures that do not con-tain constant symbols, and that, for i = 1; 2, there exist mechanisms for con-structing Ei-compatible reduction orderings total on ground terms satisfying thethree conditions from above.1. Then there exists an (E1[E2)-compatible reduction ordering that is totalon hCi�1[�2;E1[E2 . 102



2. If the word problem for Ei and the orderings �(i)C;> are decidable for i =1; 2, then the combined ordering is also decidable.Instead of giving a formal proof of the �rst part of the theorem (which wouldviolate the page limit), we give an intuitive description of how this orderinglooks like. Its de�nition depends on the representation of hCi�1[�2;E1[E2 as thefree amalgamated product A1 of hCi�1;E1 and hCi�2;E2 . Going from bottomto top, one simultaneously de�nes an ordering on A1 and B1 by induction.Elements that belong to di�erent levels of one of the towers are comparedaccording to their height in the tower. Elements in a level An n (An�1 [ Cn)are compared with respect to the E1-compatible ordering on An obtained bythe mechanism (assuming that the precedence ordering on Sni=0Ci is alreadyde�ned). Elements in a level Cn are ordered using the bijection gn : Bnn(Bn�1[Dn�1) ! Dn (assuming that the ordering on Bn n (Bn�1 [ Dn�1) is alreadyde�ned). The right tower is treated analogously.In this construction, the induction base is given by an arbitrary total Noethe-rian ordering on C. The combined ordering obtained this way depends on theset C and on the ordering on C used for starting the inductive construction.Thus, we again obtain a construction mechanism that transforms a given totalNoetherian ordering on a set of free constants C into an (E1 [ E2)-compatiblereduction ordering that is total on hCi�1[�2 ;E1[E2 . The combined orderingdoes not satisfy the CDC. However, if E1 and E2 are strongly regular, then sois E1 [ E2. Thus, Lemma 3.3 can be used to modify the combined orderinginto one satisfying the CDC. It can be shown that the mechanism satis�es theother properties required in Theorem 3.4. Consequently, the construction canbe applied iteratedly, provided that the involved theories are strongly regular.The decision procedure for the combined ordering depends on a methodthat is similar to the approach used to show that the word problem for E1[E2is decidable, provided that the word problems for the single theories E1; E2 aredecidable (see, e.g., [16]).4 ConclusionThe aim of this work was to develop a general approach for combining compati-ble orderings that are total on ground terms. The main motivation was that itis often relatively easy to design such orderings for \small" signatures and theo-ries, whereas it is rather involved to give a direct de�nition of an appropriateordering in the case of signatures that contain several symbols axiomatized byequational theories over disjoint subsets of the signature. As an example, wehave mentioned the case of signatures containing free symbols and more thanone AC-symbol.The main restrictions that must hold for this combination approach to applyare 103



1. The signatures of the single theories must not contain constant symbols,i.e., the only available constants are free constants.2. Both theories must admit compatible orderings total on ground termsthat satisfy the constant dominance condition (CDC).These restrictions seem to be not overly severe. In fact, we have shown by anexample that a violation of the �rst condition may lead to cases where a com-patible ordering total on ground terms does not exist for the combined theory.In addition, for strongly regular theories (such as associativity, commutativity,or associativity-commutativity of a binary function symbol), the existence ofa compatible orderings total on ground terms implies the existence such anordering that also satis�es the CDC.A major drawback of the presented combination approach is that until nowit does not yield a non-trivial ordering for terms with variables. Indeed, we havede�ned an ordering on hCi�1[�2;E1[E2 , where the elements of C are treated asfree constants. For an ordering on terms with variables, one must also havestability under substitution. For some application (e.g., the decision problem forground equations modulo AC), having an ordering on ground terms is su�cient.For other applications where one works with terms containing variables (such asunfailing completion), this is not quite satisfactory. For example, for unfailingcompletion, using an ordering where all terms with variables are incomparablewould mean that none of the identities can be oriented into a rule, and thusall of them must be used in both directions to compute critical pairs. Thus, animportant open problem is to extend the combined ordering in a non-trivial wayto an ordering on terms with variables. It might be that this makes additionalrestrictions on the theories necessary (such as requiring them to be collapse-free).References[1] F. Baader and K.U. Schulz. Combination of constraint solving techniques:An algebraic point of view. In Proceedings of the 6th International Con-ference on Rewriting Techniques and Applications, Kaiserslautern (Ger-many), volume 914 of Springer LNCS, pages 352{366, Berlin, 1995.[2] L. Bachmair. Canonical Equational Proofs. Birkh�auser, Boston, Basel,Berlin, 1991.[3] L. Bachmair. Associative-commutative reduction orderings. InformationProcessing Letters, 43:21{27, 1992.[4] L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion without fai-lure. In H. A��t-Kaci and M. Nivat, editors, Resolution of Equations inAlgebraic Structures, volume 2: Rewriting Techniques, chapter 1, pages1{30. Academic Press, New York, 1989.104



[5] L. Bachmair and D.A. Plaisted. Associative path orderings. In J. P.Jouannaud, editor, Proceedings of the International Conference on Rewri-ting Techniques and Applications, volume 202 of Springer LNCS, pages241{254, Berlin-Heidelberg-New York, 1986.[6] C. Delor and L. Puel. Extension of the associative path ordering to a chainof associative commutative symbols. In C. Kirchner, editor, Proceedings ofthe Fifth International Conference on Rewriting Techniques and Applica-tions (Montreal, Canada), volume 690 of Springer LNCS, pages 389{404,Berlin, 1993.[7] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Compu-ter Science, 17(3):279{301, 1982.[8] G. Peterson and M.E. Stickel. Complete sets of reductions for some equa-tional theories. Journal of the ACM, 28:223{264, 1981.[9] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo aset of equations. SIAM Journal on Computing, 15:1155{1196, 1984.[10] S. Kamin and J.-J. Levy. Two generalizations of the recursive path or-dering. Univ. of Illinois at Urbana-Champaign. Unpublished manuscript,1980.[11] D. Kapur, G. Sivakumar, and H. Zhang. A new method for proving ter-mination of AC-rewrite systems. In Proceedings of the Tenth InternationalConference of Foundations of Software Technology and Theoretical Com-puter Science, volume 472 of Springer LNCS, pages 133{148, Berlin, 1990.[12] D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras.In J. Leech, editor, Computational Problems in Abstract Algebra, pages263{267. Pergamon Press, Oxford, 1970.[13] D. S. Lankford. Canonical inference. Memo ATP-32, Automatic TheoremProving Project, University of Texas, Austin, TX, December 1975.[14] C. Marche. On ground AC-completion. In R. Book, editor, Proceedingsof the Fourth International Conference on Rewriting Techniques and Ap-plications (Como, Italy), volume 488 of Springer LNCS, pages 411{422,Berlin, 1991.[15] P. Narendran and M. Rusinowitch. Any ground associative-commutativetheory has a �nite canonical system. In R. Book, editor, Proceedings of theFourth International Conference on Rewriting Techniques and Applications(Como, Italy), volume 488 of Springer LNCS, pages 423{433, Berlin, 1991.[16] T. Nipkow. Combining matching algorithms: The regular case. InN. Dershowitz, editor, Proceedings of the Third International Conferenceon Rewriting Techniques and Applications (Chapel Hill, NC), volume 355of Springer LNCS, pages 343{358, Berlin, 1989.105



[17] A. Rubio. Automated Deduction with Constrained Clauses. PhD Thesis,Universita Polit�ecnica de Catalunya, Barcelona, Spain, 1994.[18] A. Rubio and R. Nieuwenhuis. A precedence-based total AC-compatibleordering. In C. Kirchner, editor, Proceedings of the Fifth InternationalConference on Rewriting Techniques and Applications (Montreal, Canada),volume 690 of Springer LNCS, pages 374{388, Berlin, 1993.[19] A. Rubio and R. Nieuwenhuis. A total AC-compatible ordering based onRPO. Theoretical Computer Science, 142, 1995.[20] W. Snyder. E�cient ground completion: An O(nlogn) algorithm for ge-nerating reduced sets of ground rewrite rules equivalent to a set of groundequations E. In N. Dershowitz, editor, Proceedings of the Third Interna-tional Conference on Rewriting Techniques and Applications (Chapel Hill,NC), volume 355 of Springer LNCS, pages 419{433, Berlin, 1989.

106



Combining Uni�cation and Built-In Constraints(Abstract)Farid Ajili Claude KirchnerINRIA Lorraine & CRIN615 rue du jardin botanique BP 10154602 Villers-l�es-Nancy Cedex, Franceemail: fFarid.Ajili,Claude.Kirchnerg@loria.frIn less than a decade, Deduction with Constraints (DwC) has opened anew universe in computer science. DwC can be viewed from two perspectives:one related to the automated deduction framework [17, 19], the other to thedevelopment and usage of programming languages based on logic [7, 14].Within the automated deduction framework, constraints on the generic datastructure \terms" have become a popular tool because they allow to expressand encode strategies and to modularise deduction processes [19]. We callsymbolic, constraints over terms [11]. There are plenty of symbolic constraintsystems, some examples are uni�cation (see [16] for a survey), disuni�cation[10], ordering [5], membership [9, 13] and feature constraints [1]. The mostwell-known example is equational uni�cation. Equational uni�cation is nothingbut solving equations between terms when the function symbols of the termssatisfy a certain equational theory.Within programming languages based on logic, the purpose is to develop aclass of programming languages, which incorporates the computational proper-ties of a logical theory with the e�ciency of constraint solving. In this setting,Constraint Logic Programming (CLP) [7, 8, 15], instance of the Constraint Pro-gramming paradigm, is an elegant generalisation of logic programming, aimedat replacing uni�cation by the concept of constraint solving over a computationdomain. Thus, CLP is a class of languages, which merges the computationalproperties of Horn-clause logic and e�cient constraint solving over a given do-main. J. Ja�ar & J.-L. Lassez proposed in [14] a theoretical semantic, CLP (D),explaining the meaning of a CLP program, which is parametrised by the com-putation domain D in which variables can have values. Thus, a taxonomy ofCLP languages is to classify them according to their domains: one can haveCLP (R), CLP (Q), CLP (FD) and so forth. We call built-in, constraints oversuch mathematical domains [2].The need for more complex combined constraints involving several primitiveconstraint languages is of prime interest in many application areas. A simpleexample of such a situation exists in using a combined theory of naturals andstrings to express the simple property that a natural is divisible by 9 i� the sumof its digits is divisible by 9. This could be expressed in the theory of naturals107



alone but in a less natural way.Combination techniques have been thoroughly investigated in the last decadefor symbolic constraints [3, 6, 18, 20]. In the case of equational uni�cation, theproblem is stated as follows: given two uni�cation algorithms in two (consi-stent) equational theories E1 and E2, how to �nd a uni�cation algorithm forE1 [ E2. M. Schmidt-Schau� solved the general problem for disjoint functionsymbols sets [20]. Some extensions of this result were considered: in [18] and[12], sharing of constants and constructors are respectively allowed.In [4], F. Baader & K. Schulz have showed how to combine constraint solversfor two arbitrary \Simply Combinable" structures over disjoint signatures into asolver for their combined structure. In addition, many CLP dialects allow thatdi�erent kinds of built-in constraints coexist and must be solved in appropriatedomains. For example, the structure underlying Prolog III [8] allows \mixed"constraints on lists of rational trees, where some nodes can be lists or booleansand so forth.This paper relies on the fact that a combination of symbolic and built-inconstraint languages often makes it possible to express and tackle problemsthat none of these languages can overcome alone in a natural way. For exam-ple, J. Avenhaus & K. Becker [2] have provided an approach of how to enrichan equational speci�cation with a built-in algebra and asserted that such anapproach makes the programming language more powerful. So, we are consi-dering a problem, which has many important practical applications, but whichis in full generality, undecidable. This is why in this paper we are presentinga general framework that provides some tools to solve this problem in speci�ccases.We consider the problem of combining uni�cation constraints interpretedin a term quotient �-structure A = T (F ;X )==E , on one side, with built-inconstraints interpreted in a term generated �-structure B on the other side.Here, we assume that we are in presence of a set of functions ~� from A and B.One can notice that, because of variables of X , a non-trivial function ~� in ~�has to be de�ned only over the variable-free (i.e, ground) sub-structure of A.The main di�culty comes from the fact that if a variable of X appears bothin a uni�cation constraint and in a built-in constraint then it has not the samebehaviour. To illustrate the point, assume thatA = T (F ;X )==E is the quotientterm algebra of terms, where F = fa; fg and E = ff(x1; x2) = f(x2; x1)g, letB be the usual structure of naturals. Suppose that ~� is containing a functioncomputing the size (number of nodes) of a ground term and let � be a functionsymbol used to refer ~� in the syntax. In the combined formula:� := f(x; a) =E f(a; x)^ �(x) + y1 � 2y2 + s(0)x is intended to represent any element of T (F ;X ) in the uni�cation sub-formulaand only ground terms in the built-in sub-formula because one needs a naturalvalue for �(x) to decide whether the inequality holds in B. Thus the valuationsof x are not the same in the two situations.This point motivates themodular approach that we adopt in this paper. Thebasic idea is to break a formula � in the combined theory into three formulae:108



a �-formula ��, a �-formula �� and a \heterogeneous" formula �H containingat least a symbol �, which refers to some shared function ~� in ~�. On one side,the semantic interest of such an approach allows to de�ne an own interpretationfor �H, while those of \pure" formulae �� and �� are preserved. On the otherside, it allows to \use the right tool for the job" and gives a mean to �lterinformation throughout the three levels in a cooperative way.We propose a canonical form, called quasi-solved form, for the mixed cons-traints in the case where only homomorphisms are allowed in ~�. Such a quasi-solved form is incremental and provides a relatively weak satis�ability test.References[1] H. Ait-Kaci, A. Podelski, and G. Smolka. A feature constraint system forlogic programming with entailment. Theoretical Computer Science, 122(1-2):263{283, 1994.[2] J. Avenhaus and K. Becker. Operational speci�cations with built-in's.In P. Enjalbert, E. W. Mayr, and K. W. Wagner, editors, Proceedings11th Annual Symposium on Theoretical Aspects of Computer Science, Caen(France), volume 775 of Lecture Notes in Computer Science, pages 187{198. Springer-Verlag, February 1994.[3] Franz Baader and Klaus Schulz. Uni�cation in the union of disjoint equa-tional theories: Combining decision procedures. In Proceedings 11th In-ternational Conference on Automated Deduction, Saratoga Springs (N.Y.,USA), pages 50{65, 1992.[4] Franz Baader and Klaus U. Schulz. On the combination of symbolicconstraints, solution domains, and constraint solvers. In Ugo Montanariand Francesca Rossi, editors, Proceedings 1st International Conference onPrinciples and Practice of Constraint Programming, Cassis (France), vo-lume 976 of Lecture Notes in Computer Science, pages 380{397. Springer-Verlag, September 1995.[5] L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equationalproofs. In Proceedings 1st IEEE Symposium on Logic in Computer Sci-ence, Cambridge (Mass., USA), pages 346{357, June 1986.[6] A. Boudet. Uni�cation in a combination of equational theories: An e�-cient algorithm. In M. E. Stickel, editor, Proceedings 10th InternationalConference on Automated Deduction, Kaiserslautern (Germany), volume449 of Lecture Notes in Computer Science. Springer-Verlag, July 1990.[7] J. Cohen. Constraint logic programming languages. Communications ofthe ACM, 33(7):52{68, 1990.[8] A. Colmerauer. An introduction to Prolog III. Communications of theACM, 33(7):69{90, 1990. 109
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Optimizations for CombiningUni�cation AlgorithmsExtended AbstractJ�orn RichtsTheoretische Informatik, RWTH AachenD-52056 Aachen, Germanyrichts@informatik.rwth-aachen.deUni�cation in equational theories is a widely studied area. There has beenmuch progress in algorithms for speci�c equational theories as well as in thecombination of disjoint theories. The �rst general combination method waspresented by M. Schmidt-Schau� [SS89] and a more e�cient version of this al-gorithm was described by A. Boudet [Bou90]. Like them, most authors dealwith algorithms for computing complete sets of uni�ers but decision proceduresgain more and more importance. An algorithm for combining decision proce-dures of disjoint equational theories was presented by Baader and Schulz in[BS92]. This algorithm leads to many interesting theoretical results but due tothe large search space its direct implementation is useless for practical purposes.When investigating possibilities of optimizations for this algorithm, one isconfronted with several problems. In contrast to the case where complete setsof uni�ers are computed, in the case of decision procedures there is little infor-mation the optimizations can be based on. In order to get over this drawback,we present an extended combination algorithm which tries to choose a decisiondeterministically by calling pre-tests speci�c for the theories used in the uni�-cation problem.While running the algorithm for combining decision procedures several non-deterministic choices have to be made (see �gure 1). Some variables have tobe identi�ed, each variable has to be indexed with one of the theories occuringin the uni�cation problem, and the variables have to be ordered with a linearordering. The theory indices determine which variables have to be treated asconstants in �E or �F , respectively, i.e. in which part of the uni�cation problemthey must not be instantiated. The ordering induces linear constant restrictions(LCR) restricting the set of uni�ers. For each constant these restrictions specifya set of variables which must not be mapped to a term containing this constant.The uni�cation problem �0 is solvable if and only if there is a pair (�0E ;�0F )where �0E and �0F are solvable with their LCR.Depending on the theories involved, some of these choices can be madedeterministically; e.g. for a collapse-free theory Ei the equation x := t witht =2 V imposes that x has to be instantiated by Ei, i.e. ind(x) = Ei; for a111
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Figure 1: The basic combination algorithmregular theory Ej the equation y := tjx with ind(x) 6= Ej imposes that y hasto be mapped to a term containing the constant x, i.e. x < y. For speci�ctheories more rules of this kind can be set up. As the example for regulartheories shows, some choices (that have been made earlier in one theory) canimply new choices in another theory. This interplay between di�erent theoriesproposes to use an algorithm where the choices made so far are propagated backand forth between the component algorithms of the theories involved. Startingwith some initial information (like that in the example for collapse-free theories)each theory alternately computes new information. If this process comes to anend because no new information can be computed, a nondeterministic choicehas to be made. After this choice the propagation process can be started againwith the new information.For most examples this combination algorithm has a search space which issigni�cantly smaller than that of the original algorithm. But as a drawbacknew component algorithms for the theories occuring in the problem are neededwhich are capable of computing the desired information. Moreover, these al-gorithms should consider the special way in which they are called. Standarduni�cation algorithms are \one shot" algorithms, they are started only oncewith all information they need given and compute �nal results. Componentalgorithms for our combination method must be able to cope with partial in-formation and deliver something which is not necessarily the �nal result yetmeaningful. More importantly, when receiving new information the algorithmsshould not restart computation from scratch but rather continue on the base112



of their prior internal states. Otherwise, the search space would be partiallyshifted from the combination algorithm to the component algorithms.For the free theory, A, AC, and ACI such algorithms can be built by exten-ding some well known methods. For example, the AC-algorithm is based on theminimal solutions of the homogeneous diophantine equations corresponding tothe AC-uni�cation problem. Information relevant for the combination methodcan be derived from these solutions.The combination method and component algorithms for the free theory andAC have been implemented inCommon-Lisp using theKeim toolkit [HKK+94];component algorithms for A and ACI are currently implemented and tested. Inthe following we show some results of our optimizations. Table 1 gives an over-view of the running time for some collections of AC-uni�cation problems whichcome from the reveal theorem prover. Each collection contains all uni�cationproblems that have to be solved during the proof search or completion of therespective example. The �rst three examples are simple completions or proofsand the other three examples are from the reveal distribution. All examplesexcept the �rst one contain two AC-symbols and several free symbols.Name Num. A B CAbelian group 29 3.6 5.0 54Boolean ring 51 3.2 4.0 9.3Boolean algebra 122 12 24.2exboolston 87 12 990exgrobner 1002 138 1800exuqsl2 404 112 >12hTable 1: Running time in secondsThe second column shows the number of uni�cation problems in each ex-ample. Column A contains the running time of the algorithm with all optimi-zations, including the special algorithms for AC and the free theory. Column Bshows the running time of the algorithm if the special AC-algorithm is substi-tuted by a procedure which uses only the fact that AC is regular and collapse-free; in column C the running time of the algorithm without any optimizationscan be seen. A missing value means that the calculation has been aborted aftertwo hours. This table shows that our optimizations enable the combinationmethod to be usable in practice.References[Bou90] Alexandre Boudet. Uni�cation in a combination of equational theo-ries: an e�cient algorithm. In Mark E. Stickel, editor, 10th Con-ference on Automated Deduction, Proceedings, pages 292{307, Kai-serslautern, Germany, 1990. Springer LNAI 449.113
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Linear Completion for Equational Logic ProgramsGilles Richard and Fr�ed�eric SaubionLIFO, D�ept. d'Informatique, Universit�e d'Orl�eans, 45067 Orl�eans Cedex 02 (France),e-mail: frichard, saubiong@lifo.univ-orleans.frAbstractIntroducing equality into standard Horn clauses leads to a program-ming paradigm known as Equational Logic Programming. On anotherhand, Linear Completion is a powerful mechanism for evaluation of logicprograms. We propose here a scheme to extend this technique to the equa-tional framework. Thus we provide a goal-oriented solving procedure, kee-ping the well-known advantages of Linear Completion : a reduced searchspace with a loop avoiding e�ect and the possibility to �nitely synthesizean in�nite set of answers.1 IntroductionThe combination of logic and functional programming arouse much interestsince the beginning of the last decade and di�erent techniques have been pro-posed to merge these two features (see [7] for a survey). Equations allow torepresent functional programs while Horn clauses are suited for logic programs.The mix of these two formalisms leads to the notion of equational clause ; thiscombined language is known as Equational Logic Programming. Two main ap-proaches can be distinguished to execute such languages. The �rst one ([9], [8])consists in considering that equational logic programs are logic programs witha subjacent equality theory E distinct from the standard syntactic Clark equa-lity. It is implicitly assumed that the set of clauses decomposes into disjointsets of equations (de�ning E) and predicate headed clauses : thus, the solutionsof equations are computed by a speci�c E-uni�cation algorithm, which is thencalled by the Prolog procedure instead of a usual syntactic uni�cation. Unfor-tunately, E-uni�cation is a very hard problem ([15]) but there are restrictionsensuring a usable algorithm.The second approach, such as [6], [12] and [2], considers clauses as conditio-nal rewrite rules and applies evaluation mechanisms issued from term rewritingtechniques. To deal with formulas involving only equality predicate, generalpredicates p(x) are turned into equations p(x) = true where true is a new con-stant symbol (in that way, a pure logic program is viewed as an equational one).Then, execution relies on performing superposition between heads of programsclauses or between the head of a program clause and a goal. These techniquesmix bottom-up and top-down strategies and the e�ciency of a concrete imple-mentation is strongly related to the strategy for the choice the inference rule toapply. 115



In fact, there is an other way to adapt rewrite technique for evaluatingpure logic programs. The idea is to transform a logic program into a set ofrewrite rules and to execute them using a restricted version of KB completioncalled Linear Completion (LC). Linear Completion acts also as a completionmechanism but this completion is focused on a particular goal. For a given goal,LC computes a set of terminal rewrite rules. This set of answer rules can beconsidered as the specialization of the initial program for this particular goal :it de�nes the full set of solutions for a given query, even if this set is in�nite.The contribution of this paper is to propose an extension of LC including theequational framework. Equational Linear Completion (ELC) keeps the opera-tional advantages of LC and provides a mechanism to execute equational logicprograms focused on goal solving. The usual systems combine resolution (top-down) and completion (bottom-up) of the initial program. The completion partis required in order to compute new clauses that are equational consequencesof the program and thus to insure completeness of the mechanism. The pro-blem is that unnecessary clauses can be computed which are not involved inthe resolution of the goal. For instance, if we consider the following programcontaining only two facts a ' b and a ' c, given the goal  b ' c, which isan equational consequence of the program, the initial set of clauses has to becompleted by superposing a ' b onto a ' c in order to get the new fact b ' c:But if we add the fact p(a) and if we want to prove p(b), the mechanism willalso complete the program, will generate the two atoms p(b) and p(c) while itsu�ces to prove p(a)^a ' b (which is logically equivalent). In fact, no comple-tion is required in that case. Completion of the initial program can drasticallydegrade operational e�ciency. ELC will be able to solve such a goal withoutrequiring these bottom-up inferences. As in LC, for a given goal, ELC compu-tes a set of terminal rewrite rules. This set of answer rules can be consideredas the specialization of the initial program for this particular goal : it de�nesthe full set of solutions for a given query, even if this set is in�nite.The following example, despite its simplicity, shows the di�erent problemswe want to tackle. Considering the following program :1: p(f(x)) p(x):2: p(g(x)) g(x) ' x:3: g(a) ' a:4: h(g(x)) ' a h(x) ' a:we want to compute the answers to the goal  p(x). The correct answers area, the fn(a) and the gn(a), but they are obtained di�erently. The �rst clausede�nes recursively p and will cause an in�nite computation. Since we do nota�rm that f(x) ' x, the only way to give all the answers with a classicalmechanism is to enumerate all the fn(a). The second clause de�ne also anin�nite set of answer but since we have g(a) ' a, it su�ces to provide a (as usualwe are only interested by the smallest answer w.r.t. the equational theory). Atlast, the classical mechanism performs completion over 3: and 4: and generateh(a) ' a  h(a) ' a which also causes termination problems. This is thebehaviour of the usual methods designed for equational logic programs, basedon completion techniques [6, 12, 2]. ELC leads to the following derivation tree :116



(((((((((eeeeeAns(g(x))! truefg(x) ' xgAns(f(x)); p(x)! p(x)p(x)! Ans(x)Ans(g(a))! true Ans(f(x)); Ans(x)! Ans(x)Ans(a)! trueThe philosophy of ELC is to generate from a given goal, a set of rules containingonly the predicate Ans which de�nes the whole set of answers. Here we get twoterminal rules : Ans(a)! true which de�nes a ground answer a and a formulaAns(x); Ans(f(x)) ! Ans(x) whose meaning is \if x is an answer then f(x)is still an answer". No bottom-up inference is needed in this derivation. ELCallows to validate the de�nition of predicate p by a �nite calculus that de�nesas well the smallest ground answer and the representation of all the answersthat are not reducible to this ground answer. ELC invokes completion onlyfor the equational part of the program and only if nothing else can be doneto compute the solutions. If we add the clause p(x) p(k(x)) to the previousprogram, this leads to a looping goal derivation p(x), p(k(x)), p(k(k(x)))... with the usual mechanisms. Using ELC this calculus is stopped thanks toa simpli�cation by ancestor goal.In section 2, some technical preliminaries are given and the transformationof equational logic programs into equational rewrite programs is de�ned. Insection 3, we describe our mechanism by a transition system and we show someapplications, pointing out its properties. In section 4, we show that the logicalmeanings of equational logic programs and equational rewrite programs arethe same. We also prove that our mechanism is sound and complete w.r.t.this declarative meaning. In section 5, we explore some future works and weconclude.2 PreliminariesWe assume the reader familiar with basic rewrite [5] and logic programmingnotions [11].2.1 Equational Logic ProgramsGiven a set of variables V and a set of function symbols F , We denote byT (V;F) the set of �rst order terms build over the two previous sets. x (resp. s ort) will denote a list of variables (resp. terms). A substitution � is a �nite domainmapping from X to T (V;F). Substitutions are extended by homomorphismover T (V;F). We denote by tj! the subterm of t at occurrence ! (occurrencesare classically de�ned by induction) and by t[!  t0], the term equal to t exceptfor the subterm at occurrence ! which has been replaced by t0. Given a set Pof predicate symbols, atoms are predicates applied to terms. A special symbol' belonging to P will be used in in�x notation : an atom s ' t where s and t117



are in T (V;F) will be called an equation. s ' t is an abbreviation for the set ofequations s1 ' t1; � � � sn ' tn if s = (s1; � � � ; sn) and t = (t1; � � � ; tn). We consi-der de�nite equational logic clauses : A  E1; :::; En; B1; :::; Bm (or A E; Bto abbreviate) where A is an atom, E1; :::; En are equations and B1; :::; Bm arenon-equality atoms. A is called the head of the clause and E1; :::; En; B1; :::; Bmthe body. As usual, the intended meaning of such a clause is the universallyquanti�ed logical formula B1 ^ � � � ^ Bn ^ E1 ^ � � � ^ Em ) A. A clause withan empty body is called a fact. An equational logic program is a �nite set ofclauses. An equational logic goal is a formula  E;B where E is a multiset ofequations and B a multiset of atoms.2.2 Equational Rewrite ProgramsWe want to translate equational logic programs into set of rewrite rules. Thus asimpli�cation ordering � is assumed on terms, allowing to orient the equalitiesl ' r. In the following, we suppose that each equation l ' r is such that l 6� r.Since we handle non-equality atoms, we need an extension of this ordering toatoms. Thus we assume a precedence over predicate symbols such that ' willbe the biggest predicate symbol and true the least one. Doing that, we get afull ordering over the atoms and we shall consider its multiset extension.Our transformation of an equational clause is based on the fact thatB^E )A has the same informative content than A ^B ^E , B ^E (i.e. the formula(A( B^E), (A^B^E , B^E) is a theorem in �rst order logic). Such anequivalence is denoted A;B ! BfEg to separate the purely equational atomsfrom the logical ones and is considered, from now on, as a rewrite rule. If E isempty, we merely write A;B ! B.An equational rewrite program is just a set of such rewrite rules and wegive a transformation function which generates such a program from a givenequational logic program.De�nition 1 The transformation function  is a function whose input is anequational logic program P and output is an equational rewrite program  (P ).The rules of  (P ) are obtained in the following way :1. A fact A is transformed into the rewrite rule A! true. Such a rule is afact rule.2. A clause A E;B is transformed into A;B ! BfEg. Such a rule is anif rule.where A denotes an atom or an equation, B a conjunction of atoms, E a con-junction of equations.We can remark that two levels of rewrite equations are interwoven here : theequational theory over T (X ;F) de�ned by ' and the theory de�ned by therewrite rules of the program over the atoms.118



3 Operational MechanismThe operational semantics de�ned in [2] and [12] are based on completion me-chanisms. Proving a goal  E;B w.r.t. an equational program P consists ingenerating the empty clause from P [f E;Bg (i.e. proving the inconsistencyof this set of clauses). Linear completion is a restricted completion mechanismfocused on goal solving. We adapt here this technique to the equational frame-work. During the execution of our mechanism, substitutions will appear. Finalsubstitutions constitute the answers to the initial query. Considering a substi-tution as a set of syntactic equalities allows us to deal with them as constraints(symbolic constraints at this step). Thus we extract the current substitutionfrom the goal and we record it outside the goal as a constraint. This way willrender easier the extension of our inference system to a non symbolic constraintcontext. Now, a rewrite rule has the following form :L! RfEg[[�]]Such a rule stands for �(L)! �(R)f�(E)g. In the context of rewrite programs,we need to translate a logic goal into a rewrite rule. We add a special predicatesymbolAns not de�ned in the program and such that : 8p 2 P; true � Ans � p.A query rule is a rule of the form B ! Ans(x)fEg where x are the free variablesoccurring in B and E (Ans predicate has an arity equal to the number of freevariables occurring in the initial goal).3.1 The Inference SystemAs mentioned in the introduction, completion is needed to insure completenessof our mechanism. But we restrict these bottom-up computation steps to theequation headed clauses. If the theory de�ned by ' is not conuent (for in-stance, b ' c is an equational consequence of a ' b and a ' c but can not betreated by narrowing), we have to complete the program. Since this completionprocess can lead to in�nite computations, the completed program is generatedapart from the top-down goal solving process and anyway, these completion ru-les will be applied only when nothing else can be done. We de�ne a special setof rules  (P )� which contains equational rewrite rules that are deduced fromthe initial program rules by the following standard inference rules :Program Completion Rules PCR
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Deduce  (P )� (P )� [ ft1[!  s2] ' s1; B1; B2 ! B1; B2fE1; E2g[[�1 ^ �2 ^ �]]gif t1 ' s1; B1 ! B1fE1g[[�1]]; t2 ' s2; B2 ! B2fE2g[[�2]] 2  (P )�and ��1t1j! = ��2t2Tautology deletion (P )� [ fs ' t; B ! BfEg[[�]]g (P )� if �s = �tClearly, we start with  (P )� =  (P ).Now, we de�ne the goal oriented part of our mechanism (top-down evaluation).Equational Linear Completion (ELC) is described as a pair (I;�) where I isa set of inference rules and � is a strategy de�ning a precedence over theseinference rules. An inference rule i 2 I is presented as :(g ;M)(g0 ;M 0)where g and g0 are goal rules and M and M 0 are set of goal rules. SinceM 0 = M [ fgg for some inference rules, M represents the memory of thederivation in the sense that the mechanism stores in this set some of the previousgoal rules which could be used to simplify the current goal.De�nition 2 A derivation is a chain :(g0 ;M0);I :::;I (gn ;Mn)where each inference;I is performed using a rule i 2 I according to the strategy�. A derivation stops if no more inference rule can be applied to the currentcomputation state. We also use the notation (g ;M)`I(gn ;Mn) when there isa derivation from (g ;M) to (gn ;Mn) (we generally omit the subscript I).Our set I of inference rules is divided into two parts POR and EOR, eachoperating for a speci�c task. From an implementation point of view, each me-chanism can work separately in a concurrent computation. The �rst inferencerules compute over the logic part of the goal.Predicate Oriented Rules POR
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Delete(L$ RfEg[[�]]; M)(;; M)if �L = �ROrient(L$ RfEg[[�]]; M)(L! RfEg[[�]]; M)if �L � �RPredicate Resolution(p(t); L! RfE2g[[�1]]; M)(B;L$ B;RfE1; E2; s ' tg[[�1 ^ �2]]; M 0)if p(s); B ! BfE1g[[�2]] 2  (P ) and M 0 =M [ fp(t); L! RfE2g[[�2]]gSimplify(G1; L! RfE1g[[�1]]; M)(D;L$ RfE1g[[�1 ^ �]]; M)if G2 ! DfE2g[[�2]] 2  (P ) [M and 9�; ��2G2 = �1G1 and ��2E2 � �1E1Answer Reduction(Ans(t); L! RfEg[[�1]]; M)(Ans(t[!  r]); B; L$ B;RfE;E0g[[�1 ^ �2 ^ �]]; M)if l ' r;B ! BfE0g]]�2]] 2  (P )� and ��1tj! = ��2l and �1tj! is not a variableDelete allows to stop useless computation. Orient insures that the goal rule isoriented according to the simpli�cation ordering. Predicate Resolution di�ersfrom the usual inference systems designed for equational logic programs sincepredicates are resolved as in constraint logic programming : the equality bet-ween the arguments of the goal predicate and the program rule predicate willbe treated apart by the equational inference system described below. Substi-tutions are recorded as constraints and no equational uni�cation is required.Simplify is a key feature of this mechanism : simpli�cation of a current ruleby one of its ancestors allows to avoid some loops. Since Ans predicate is notde�ned by the program rules, a rewrite rule containing only this predicate isa terminal rule as soon as the arguments are reduced : such a rule synthesi-121



zes a set of answers. Answer Reduction is invoked in order to reduce answersw.r.t. the subjacent equational theory. This inference corresponds in fact toa bottom-up computation step usually performed between a predicate headedclause and equation. In our context, since we transform the initial programinto a set of specialized rewrite rules that synthesizes the program for the givengoal, this kind of operation can be simulated by this top-down inference.Thenext inference rules use narrowing to solve the equational part E of the goal(i.e. to solve equations such as s ' t).Equational Oriented Rules EOREquational Deduction(L! Rfs ' t; E1g[[�1]]; M)(L! Rfs[!  r] ' t; E1; E2g[[�1 ^ �2 ^ �]]; M)if ��1sj! = ��2l and l ' r;B ! BfE2g[[�2]] 2  (P )� and �1s 6� �1tand �1sj! is not a variableUni�cation(L! Rfs ' t; Eg[[�]]; M)(L! RfEg[[� ^ �]]; M)if ��s = ��tEquational Deduction corresponds to a narrowing operation. Uni�cation allowsto transform equations into substitutions. We propose to invoke completionrules only when needed i.e. when no equational resolution step can be per-formed to solve an equation. The set  (P )� previously de�ned can be viewedas a blackboard since completion can be involved in di�erent branches of thederivation. The equation to solve is delayed until a usable equational rewriterule is generated in  (P )� while another branch can be explored.We implicitly assume that, before going on into a derivation, each side ofthe current goal rule is fully simpli�ed by the two meta-reduction rules :X;X !X; X; true ! X: The strategy � is expressed as the following precedence �over the set I and over the rules of PCR :Simplify � Delete � Orient � Predicate Resolution � Answer reduction �Uni�cation � Equational deduction � Deduce � Tautology deletion.We see that we delay as much as possible equational resolution to focus on thelogical part. A selection rule is a function that select an atom to be treatedin the current goal rule. Here we choose the maximum atom of the right handside of the goal. The philosophy of ELC is to transform the initial rewriteprogram and the associated query rule into a new set of rules containing onlyAns predicate and substitutions as constraints, capturing the intended answers.So, the de�nition of a success goal rule follows :De�nition 3 A rule g is a success goal rule if it is of one of the forms :122



� Ans(t)! true[[�]]� Ans(t1); :::; Ans(tn)$ Ans(tn+1); :::; Ans(tp)[[�]]3.2 Pointing out AdvantagesEquational Linear Completion mechanism bene�ts from the loop avoiding pro-perties of Linear Completion. In [12], deletion rules are introduced that avoidsome redundant completion steps. The problem is due to the fact that thecompletion mechanism generates tautologies of two types : t ' t  B andA A;B. This is highlighted by the following example (extracted from [12]) :p(c; b; b):b ' c p(c; c; b); p(c; b; c):p(x; y; x) p(x; y; y):p(x; x; y) p(x; y; y):The goal is  p(c; c; c). With the usual mechanisms, every inference over thisset of clauses leads to a tautology or an existing clause. But these tautologiesare necessary to prove the goal and may not be removed. With ELC, we donot even need to complete the initial set of clauses since there is only one clausewith an equational head. Starting from the query p(c; c; c)! Ans, we generateAns ! true. No completion inference is needed to prove that goal and theunproductive inference are stopped using simpli�cation and deletion.Consider now the equational logic program :1. p(a):2. p(f(x)) p(x):3. f(x) ' a p(x):For the query  p(x), the set of answer is only fag since each answer is ofthe form fn(a) and can be reduced to a with the clause 3. Usual evaluationmechanisms provide an in�nite computation. In the introduction, the examplehas shown the ability to synthesize by a �nite representation an in�nite setof answers. Here the problem is quite di�erent since there is an in�nity ofanswers but which are all equationally equivalent. Considering our transformedprogram : 1. p(a)! true:2. p(f(x)); p(x)! p(x)3. f(x) ' a; p(x)! p(x)we get the following derivation tree :
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!!!!!!PPPPPPPp(x)! trueAns(a)! true p(y); Ans(x)! p(y)ff(y) = xgAns(y); Ans(x); p(a)! Ans(y); p(a)fx = agAns(y); Ans(x)! Ans(y)ff(y) = xgAns(y); Ans(x)! Ans(y)[[x = a]]
Predicate Resolutionwith 1 Predicate Resolution with 2Simplify with GEquational Deduction with 3Uni�cation and Simplify with 1These examples highlight the loop avoiding and synthesis aspects of our me-chanism.4 Declarative SemanticsLogic programming with equality has a clearly de�ned semantics ([8], [6], [2]) webriey recall here. The reader is supposed to be familiar with the interpretation,model and logical consequence notions. In [8, 9], it is assumed that the set ofclauses in an equational program P decomposes into disjoint sets of conditionalequations and of predicate-headed clauses. But, as in [12], there is no essentialdi�culties to omit this hypothesis.4.1 Model-theoretic and Fixpoint Semantics of Equational Lo-gic ProgramsGiven an equational logic program P , the Herbrand universe U(P ) associatedto P is the set of ground terms built over the set Func(P ) of function symbolsappearing in P . The Herbrand base B(P ) is the set of ground atoms built overthe set Pred(P ) of predicate symbols appearing in P : thus B(P ) includes theset of ground equations s ' t where s and t belong to U(P ). We denote byGr(P ) the set of ground instances of clauses of P . In standard logic program-ming, a Herbrand interpretation I is any subset of B(P ), but in the case ofequational programs, a more speci�c notion is necessary. As usual, we shallidentify a congruence � with the set of equations s ' t such that s � t. If Iis a subset of B(P ), we denote I� the smallest congruence on U(P ) such thats � t whenever s ' t 2 I.De�nition 4 A (Herbrand) E-interpretation I is a subset of B(P ) with the ad-ditional properties :� I� � I,� if p(t1; � � � ; tn) 2 I (p distinct from ') and t1 ' s1 2 I; � � � ; tn ' sn 2 Ithen p(s1; � � � ; sn) 2 I. 124



In the following, interpretation will mean Herbrand E-interpretation. Thus wehave a simple notion of truth.De�nition 5 Given an interpretation I, we say a ground atom is E-true in I ifit is in I, E-false otherwise. Similarly, a conjunction of ground atoms is E-truein I i� all of the atoms are E-true in I, E-false otherwise.De�nition 6 Given an interpretation I, a ground clause C is E-true in I i� thehead of C is E-true in I or its body is E-false in I. A clause C is E-true in I i�all its ground instances are E-true in I. In that case, I is a Herbrand E-modelof C.In the following E-model will mean Herbrand E-model.De�nition 7 An interpretation I is an E-model of an equational program P i�I is an E-model of each clause of P .There is a natural relationship between this notion of (Herbrand) E-model andthe usual notion of Herbrand model. Let us consider the following set Eq(P )of universally quanti�ed �rst order axioms :x ' x x ' y  y ' xx ' z  x ' y; y ' zf(x1; � � � ; xn) ' f(y1; � � � ; yn) x1 ' y1; � � � ; xn ' yn for each f 2 Func(P )p(y1; � � � ; yn) p(x1; � � � ; xn); x1 ' y1; � � � ; xn ' yn for each p 2 Pred(P ) n f'gWe have the following property relating E-models and standard Herbrandmodels :Proposition 1 Let P an equational logic program. I is an E-model of P i� I isa Herbrand model of P [ Eq(P ).Since the previous notion meets the model-intersection property and that B(P )is an E-model of P , there is a least E-model : ME(P ). This is the meaning ofP . We have the following characterization of ME(P ) :Proposition 2 Given a ground atom A, A 2ME(P ) i� P [Eq(P ) j= A (i.e. Ais a logical consequence of P [Eq(P )).We recall now the de�nition of the immediate consequence operator. Sincewe have equations, the process is divided up into two steps. Let I be an E-interpretation of P .De�nition 8 TP (I) = TEP (I) [ TLP (I) withTEP (I) = fs ' t 2 B(P ) j s ' t B 2 Gr(P ); B is E-true in I g�andTLP (I) = fp(s1; :::; sn) 2 B(P ) j p(t1; :::; tn) B 2 Gr(P );Vi si ' ti ^ B is E-true in I [ TEP (I)gInformally, TEP (I) corresponds to the equational consequences of the programwhile TLP (I) concerns the logic part. The set of E-interpretations with subsetinclusion forms a complete lattice : bottom element is fs ' s j s 2 U(P )g andtop element is B(P ). TP maps E-interpretations into E-interpretations and wehave the following properties : 125



Proposition 3- TP is a continuous operator,- I is an E-model of P i� TP (I) � I,- ME(P ) = lfp(TP ) = TP " !:As in the standard case, the model-theoretic and the �xpoint semantics coincide.4.2 A Fixpoint Semantics for Equational Rewrite ProgramsWe de�ne now a �xpoint semantics for an equational rewrite program,  (P ).We must add to B(P ) the symbol true. As in the logic programming case, it iseasy to de�ne an operator similar to TP . Each E-interpretation is augmentedwith the element true : the set of augmented E-interpretations is yet a completelattice for subset inclusion with bottom element fs ' s j s 2 U(P )g [ ftruegand top element B(P ) [ ftrueg.De�nition 9 T (P )(I) = TE (P )(I) [ TL (P )(I) withTE (P )(I) = fs ' t 2 B(P ) j s ' t; B ! BfEg 2 Gr(P ); B ^ E E-true in Ig�andTL (P )(I) = fp(s1; :::; sn) 2 B(P ) j p(t1; :::; tn); B ! BfEg 2 Gr(P );B ^ EVi si ' ti E-true in I [ TE (P )(I)gThere is no di�culty to prove :Proposition 4 T (P ) is a continuous operator.We have thus an equivalence between semantics of a logic program P andits associated rewrite program  (P ) : this result claims the soundness of ourtransformation function  .Proposition 5 Given an equational logic program P , lfp(TP )[ftrueg = lfp(T (P )):4.3 Equivalence with Operational SemanticsThe (ground) operational semantics of our mechanism is naturally de�ned asfollows :De�nition 10 Let be  (P ) an equational rewrite program :O( (P )) = fp(s) 2 B(P ) j p(s)! Ans ` Ans! trueg[ fs ' t 2 B(P ) j Ans! truefs ' tg ` Ans! truegIn this section, we show that our mechanism is sound and complete with regardto the declarative semantics (the complete proofs can be found in [14]). Inthe equational case, a completeness result di�ers from the usual completenessresult of Logic Programming, since we are only interested in �nding the smallestsolution w.r.t. the ordering. For instance, if we consider the two rules program :f(x) ' x  p(a) and p(a)  , although p(fn(x)) is valid for all n, we onlygenerate the solution p(a).Proposition 6 Given an equational program P , we have :O( (P )) =ME(P )126



5 Future Works and ConclusionIn this paper, we propose a scheme for the execution of equational logic pro-grams based on an extension of Linear Completion. We transform the initialequational program into a set of rewrite rules and we de�ne a �xpoint seman-tics for this equational rewrite program. The transformation is thus provedsemantics preserving since the semantics of the logic program coincides withthe �xpoint semantics of the corresponding rewrite program. The evaluationmechanism is described by an inference system which is shown sound and com-plete. The strategy is focused on a goal-oriented computation and restrictscompletion as far as possible. Thanks to Linear Completion, we gain w.r.t. theothers mechanisms ([3, 6, 12]) synthesis ability and loop avoidance.The method proposed here to compute in equational logic can be improvedin several ways taking advantages of previous researches. Some works proposesan approach to include negation in equational logic programming [3] and [10].Linear completion has already been extended to logic programs with negation[1] and this extension could be applied to the mechanism presented here. Workis in progress to include such a negation : this would o�er a kind of constructivenegation for equational logic programming.On another hand, the constraint used here are only symbolic constraints.[13] shows that general constraint domains can be combined with linear com-pletion methods. In an equational framework, it is tempting to deal with equa-tions as constraints. But, in a standard constraint framework, the constraintsare built-in predicates resolved apart by a speci�c solver, independent of theuser-de�ned predicated or rules. In the case of equational programming, theequations (and thus the subjacent theory) could be user de�ned and could notbe solved apart from the user program. A kind of dynamic solver is necessaryhere. This solver should probably cooperate with built-in solver that allows touse non symbolic constraints.References[1] S. Anantharaman and G. Richard. A Rewrite Mechanism for Logic Pro-grams with Negation. In Proceedings of RTA'95, number 914 in LNCS,pages 163{178, KaisersLautern (Germany), 1995. Springer-Verlag.[2] L. Bachmair and H. Ganzinger. Completion of �rst-order clauses withequality by strict superposition. In S. Kaplan and M. Okada, editors, Con-ditional and Typed Rewriting Systems, number 516 in LNCS, pages 162{193. Springer-Verlag, 1990. 2nd International CTRS Workshop, Montreal,Canada, June 1990.[3] L. Bachmair and H. Ganzinger. Perfect Model Semantics for Logic Pro-grams with Equality. In Koichi Furukawa, editor, Proceedings of the EigthInternational Conference, Paris, France, June 24-28, 1991, pages 645{659.MIT Press, 1991. 127



[4] M.P. Bonacina and J. Hsiang. On Rewrite Programs : Semantics and Re-lationship with Prolog. Journal of Logic Programming, 14:155{180, 1992.[5] N. Dershowitz and J.P. Jouannaud. Handbook of Theoretical ComputerScience, volume B, chapter Rewrite Systems, pages 243{309. J. Van Lee-uwen, 1990.[6] L. Fribourg. Oriented Equational Clauses as a Programming Language.Journal of Logic Programming, 1(2):165{177, August 1984.[7] M. Hanus. The Integration of Functions into Logic Programming: fromTheory to Practice. Journal of Logic Programming, 19,20:583{628,May/July 1994.[8] S. Holldobler. Foundations of Equational Logic Programming, volume 353of Lecture Notes in Arti�cial Intelligence. J. Siekman, springer-verlag edi-tion, 1989.[9] J. Ja�ar, J.L. Lassez, and M. Maher. A Theory of Complete Logic Pro-grams with Equality. Journal of Logic Programming, 3:211{223, 1984.[10] S. Kaplan. Positive/Negative Conditional Rewriting. In S. Kaplan and J.P.Jouannaud, editors, Conditional and Typed Rewriting Systems, 1srt Int.Workshop, Orsay (France), number 308 in LNCS, pages 129{141. Springer-Verlag, 1987.[11] J.W. Lloyd. Foundations of Logic Programming. Symbolic Computationseries. Springer Verlag, 1987 (revised version).[12] C. Lynch. Oriented Equational Logic Programming is Complete. 1995.submitted.[13] G. Richard and F. Saubion. A Rewrite Approach to TransformConstraint Logic Programs. Journal of Computing and Informa-tion, Proceedings of ICCI'95, IEEE International Conference on Com-puting and Information, Trent University, Canada:184{200, 1995.http://www.phoenix.trentu.ca/jci.[14] G. Richard and F. Saubion. Linear Completion for Equational Logic Pro-grams. Technical report, University of Orleans (France), 1996. (to appear).[15] J. Siekmann. An Introduction to Uni�cation Theory. In R.B. Banerji,editor, Formal Techniques in Arti�cial Intelligence. Elsevier Scinces Pu-blishers, 1990.
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Program inversion in functional languagesMarko Sch�utz, Manfred Schmidt-Schau�Fachbereich InformatikJohann Wolfgang Goethe-Universit�atPostfach 11 19 32D-60054 FrankfurtGermanye-mail: fmarko,schaussg@cs.uni-frankfurt.deMay 24, 1996Combinator reduction systems with algebraic data types are the foundationsfor non-strict functional programming languages. Proving properties of func-tional programs is essential for veri�cation, compilation and e�cient executionof functional programs.In contrast to strict functional programming languages that have a �xed (sta-tic) strategy to evaluate expressions, non-strict functional languages do not havesuch a prescribed simple evaluation strategy. They typically use so-called lazyevaluation, which combines call-by-need with sharing. A compiler for non-strictfunctional languages requires information about the cases in which a static eva-luation strategy can be used in order to compile e�cient code. This informationis also helpful for implicit parallelisation.It is usually called \strictness" infor-mation. A function f is strict in its kth argument, i� non-termination of akimplies that evaluation of (fa1 : : : an) does not terminate. This is more or lessequivalent to: The evaluation of a (fa1 : : : an) requires the evaluation of ak.A generalisation is context analysis, which also extracts information on deeperevaluation. For example, the function length will always evaluate the spine ofthe list, whereas the function sum will always evaluate the list to normal form.Strictness analysis is usually done using abstract interpretation based on deno-tational semantics. We shall use abstract reduction, a kind of abstract inter-pretation using the operational instead of the denotational semantics. It is alsorelated to top-down narrowing. However, we have the more general situationthat at the function position, an expression is permitted.The calculus is non-deterministic and constructs a tableau using expansion rulesand rules testing for loops. The �nal labels at the leaves are used to representthe set of all solutions.The presented calculus for strictness context analysis is able to solve constraintsof the form.t 2 Cwhere t is an expression including free variables, and C is a context describinga set. 129



If we have de�ned lists using the constructors Nil and Cons, written using in�xcolons(:), and using a combinator listcase with the following de�nition:listcase Nil f g = flistcase (a:as) f g = g a asthen we de�ne length as follows:length xs = listcase xs 0 lengthcons ,lengthcons y ys = 1 + (length ys)Now consider the problem length xs 2 Bot, where Bot is a representation ofunde�ned expressions and Top is a representation of all expressions.The calculus will return the solution xs = INF, where the context INF is recur-sively de�ned as INF := fBotg [ Top : INF.The interpretation is that (length xs) is unde�ned if xs is an in�nite list or alist with unde�ned tail. From the view of a compiler, this can be interpreted asfollows: if (length xs) is to be evaluated, then it is safe to evaluate the spineof the list xs before applying length to xs.As a further example considerappend xs ys = listcase xs ys (appendcons ys)appendcons ys z zs = z : (append zs ys)for which our calculus will produce the following result if asked how the argu-ments of append xs ys can be evaluated if the application is evaluated.The calculus starts with append xs ys 2 Bot and results in the following repre-sentation of all solutions:(xs; ys) = (Bot; Top) [ (Top: xs; Top) [ (Nil; Bot)Essentially, it says that the �rst argument needs to be evaluated, but the secondargument does not need to be evaluated as long as we do not reach the end ofthe spine of the �rst list.
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Higher Order Uni�cation as a Typed NarrowingDaniel BriaudCentre de Recherche en Informatique de Nancy (CNRS)and INRIA-LorraineCampus Scienti�que, BP 239,F54506 Vand�uvre-l�es-Nancy, France Fax: (33) 83 41 30 79email: briaud@loria.frAbstractWe show how higher order uni�cation (HOU) can be considered as atyped narrowing in a suitable �rst order equational theory. The theory inquestion is presented by a simple calculus of explicit substitutions, ��, dueto Lescanne. The main task consists in embedding HOU in ��-uni�cationand decoding ��-uni�ers as �-uni�ers. Since �� is ground conuent andstrongly normalizing on the set of simply typed terms, a typed narrowing,called ��-narrowing is readily proved to be ground complete. This workmay be seen as a combination of two previous ones. Dougherty used suchan embedding in combinatory logic. A drawback is that the structure ofthe �-terms is lost. More recently, Dowek, Hardin and Kirchner trans-lated Huet's preuni�cation algorithm in ��, another calculus of explicitsubstitutions. Beside the di�erences between HOU and preuni�cation,��-narrowing analyzes in �ner detail the process of building solutions.A detailed version with proofs can be found athttp://www.loria.fr/~briaudIntroductionHigher-order uni�cation (HOU) solves equations where the unknowns may befunctions, or, formally, equations between simply typed �-terms. For instance,x(f) == fwhose solutions are x 7! �u:u and x 7! �u:f . As the simply typed �-calculus isconuent and strongly normalizing, a simple and natural idea comes to mind,namely to unify via narrowing. The fact that � reduction is not a �rst-orderrewrite relation constitutes the main di�culty.A second di�culty is that HOU is impractical. Speci�cally, expressed as trans-formation rules [SG89], the search tree leading to a set of uni�ers is in�nitelybranching. To overcome this problem, [Hue76] introduced the notion of pre-uni�er. A given HOU problem has a preuni�er if and only if it admits an131



HO-uni�er. As a consequence, preuni�cation, like HOU, is undecidable. Ne-vertheless, this is a practical and basic procedure of higher-order theorem pro-vers, such as Isabelle [Pau90], or higher-order logic programming languages,such as �Prolog [MN86]. Still, due to �-reduction and the way substitutionsare usually handled, preuni�cation is thought to be di�cult to implement.Dougherty [Dou93] avoids the �rst mentioned problem by means of a trans-lation to simply typed combinatory logic (CL), which he called C-uni�cation.This requires a trick since CL involves only weak �-reduction. Dougherty pro-ves that a variant of typed narrowing is complete with respect to C-uni�cation,but in his approach, he looses the structure of the �-terms.Most of �-calculi with explicit substitutions, such as ��*and ��, aim at expres-sing �-reduction by means of a �rst order term rewriting system. Thus, theygive another way of translating HOU into a �rst order setting and of unifyingvia narrowing. These calculi are quite di�erent. For instance, �� tries to intro-duce as few operators as possible, whereas ��* introduces derived operationssuch as the composition of explicit substitutions; ��* is conuent on open termswhereas �� is only ground conuent and PSN.The work described in [DHK95] reduces HOU to a �rst-order equational uni-�cation in a theory presented by ��*. Then, although uni�cation in such acalculus can be performed by narrowing, they present a specialized algorithmthat computes ��-preuni�ers for greater e�ciency. Their approach could beimproved in three respects: ��* is rather complex, the ��*-uni�cation rules canbe made more elementary, and their rules for �-uni�cation are incomplete.Departing from [DHK95], our approach consists of two parts. First, the studyin a simple setting of what we think is the heart of problem: how to decomposein small steps HOU by means of explicit substitutions. In other words, compute�-uni�ers by means of ��-narrowing. Second, the use of this study to design apreuni�cation algorithm that makes small steps, easy to implement. In otherwords, compute ��-preuni�ers in the spirit of ��-narrowing. The work descri-bed here concerns the �rst part. Its �rst aim is to show that a system simplerthan �`s is su�cient to do the whole job. In particular, since �� does not in-clude the composition of substitutions, we show that such a compositionis notmandatory to express HOU in an explicit substitutions framework. The secondaim is to prove that ��-narrowing is complete with respect to HOU and, as itis very simple to understand, to show that it provides an interesting alternativeto build, at least manually, HO-uni�ers.1 Higher Order Uni�cationIf M and N are two �-terms of the same type then a �-uni�er of M and Nis a substitution � such that �(M) =� �(N). A substitution is presented as a132



�nite set of pairs (xi;Mi). Applying such a substitution to a term N consistsin replacing the free variables xi of N by the terms Mi avoiding free variableof any Mi to be bound in the resulting term. Renaming bound variables inN prevents that capture. Such a renaming is part of the substitution process.Applying � to M is also:�(N) � (�x1 : : : xn:N)M1 : : :MnFor example, substituting x by y in �y:x yields �z:y. On the contrary, �rst-ordersubstitution, called grafting in this paper, does not take into account boundvariables, hence, does not prevent the capture of free variables. For instance,grafting y for x in �y:x gives �y:y. To sum up, substitution is grafting withrenaming.Let us illustrate HOU with an example. We consider a basic type i, �(M)denotes the type of M and the following � function,�(g) = G = Y = i! i! i�(a) = A = Z = i �(x) = G! Z ! Y ! i�(y) = Y�(z) = ZThe two �-terms xgzy and gaz admit as a �-uni�er the substitutionf(x; �u1u2u3:u3(u2; u2)); (y; g); (z; a)gGenerally, given a �-uni�cation problem M == N , one is interested in a com-plete set of �-uni�ers of M == N . Such a set, denoted CSU�(M == N), is aset of �-uni�ers of M and N such that for any �-uni�er � of M == N , there isa substitution in CSU�(M == N) which subsumes �.We show now how to embed HOU into the �� framework. To ease the corre-spondence between �-uni�cation and ��-uni�cation, it is convenient to abstractthe free variables of the �-terms to be uni�ed as follows: let ~x be a orderingof FV (MN), � is a �-uni�er of M and N i� � is a �-uni�er of (�~x:M)~x and(�~x:N)~x. The interest of taking an ordering of FV (MN) comes from the equi-valences: �(M) =� �(N)�((�~x:M)~x) =� �((�~x:N)~x)(�~x:M)�(~x) =� (�~x:N)�(~x)�~x:M and �~x:N which contain no free variables are easily translated into termswith de Bruijn indices according to the following syntax where A is a type, fis a constant and cx 2 CV .Nat n ::= 0 j n+ 1Pure Term a ::= f j cx j n j aa j �A:aThe set CV is a mirror of the set of variables V . We do not detail here itsmotivation, which is quite technical. 133



The function DB~x, where ~x is a sequence of variables, translates a �-term to apure term:DB~x(x) = j if j is the index of the �rst occurrence of x in ~xDB~x(y) = cy if y 62 ~xDB~x(f) = fDB~x(MN) = DB~x(M) DB~x(N)DB~x(�y:M) = �A: DBy�~x(M) if y is of type AIf ~x is void, then we shall write DB instead of DB~x. For example,DB(�x:�y:�z:xgzy) = �X:�Y:�Z: 2 g 0 1DB(�x:�y:�z:gaz) = �X:�Y:�Z: g a 0The functionBD~x, extracting a �-term from a pure term can be de�ned likewiseand will be used to decode ��-uni�ers. DB~x and BD~x are converse.2 ��-uni�cationBefore introducing ��-uni�cation, we simply type �� and include variables of V .Nat n ::= 0 j n+ 1Term a ::= x j f j cx j n j aa j �A:a j a[s]Subst s ::= a= j " j *(s)where x 2 V , f is a constant, cx 2 CV ,Moreover we type B and Lambda and we add two rules to �� as follows:Beta (�A:x)b ! x[b=]App (xy)[s] ! x[s]y[s]Lambda (�A:x)[s] ! �A:x[*(s)]FV ar 0[b=] ! bRV ar n+ 1[b=] nFV arLift 0[*(s)] ! 0RV arLift n+ 1[*(s)] n[s]["]V arShift n["] ! n+ 1Const f [s] ! fConstV ar cx[s] ! cxLike higher-order uni�cation, ��-uni�cation is de�ned on the set �� of simplytyped ��-terms. �� is conuent on ground ��-terms of �� and �� is stronglynormalizing on �� [LRD94, BBLRD96].To illustrate how variables are mixed with ground terms, consider for instance(�x:�y:�z:xgzy)x �!� �y:�z:xgzyWith ��, the combinator �X:�Y:�Z:2 g 0 1 applied to the variable x can berewritten: 134



(�X:�Y:�Z:2 g 0 1)x �!Beta (�Y:�Z:2 g 0 1) [x=]��!�� �Y:�Z:((2 g 01) [*2(x=)])��!�� �Y:�Z:2 [*2(x=)] g [*2(x=)] 0 [*2(x=)] 1 [*2(x=)]��!�� �Y:�Z:0 [x=]["]["] g 0 1�!�� �Y:�Z:x ["]["]g 0 1In the last ��-term, a grafting replaces x by a ��-term. Unlike in the ��-term�A:x, no capture may happen in �Y:�Z:x ["]["] g 0 1, as the two " act asrenaming operators.Precisely, a grafting is a function � : V ! Term, identi�ed with its uniquehomomorphic extension, such that x� 6= x for only �nitely many x 2 V .Graftings play for ��-uni�cation the same role as substitutions for HOU. Spe-ci�cally, if a and b are two ��-terms of the same type then a ��-uni�er ofa and b is a grafting � such that a� =�� b�. Such an equation is denoteda == b. For example, one may check that xgzy == gaz admits the graftingfx 7! �GZY:0 1 1; y 7! g; z 7! ag as a ��-uni�er.3 Embedding HOU into ��-uni�cationH embeds HOU into ��-uni�cation. It associates a ��-uni�cation problem toa �-uni�cation problem.Let M;N be two �-terms of the same type, and ~x an ordering of FV (MN).The ��-uni�cation problem associated with M == N isH(M) == H(N)where H(M) = DB(�~x:M)~x;H(N) = DB(�~x:N)~xAt �rst sight, the associated problem depends on ~x, but in fact, this is not thecase.If M = �u:z and N = �u:a are of type i! i, thenH(M) = (�Z�i:1)z =�� �i:z["]H(N) = (�Z�i:a)z =�� �i:a" in H(M) prevents z from being captured by a grafting like [1=z].Theorem 1 LetM == N be a �-uni�cation problem. The �-uni�ers ofM ==N are exactly the ground ��-uni�ers of H(M) == H(N).135



4 ��-narrowingConsider the equation xa == ay with the following types:�(a) = Y ! B = A�(x) = (Y ! B)! B�(y) = YExpressed in the ��-uni�cation framework, the equation xa == ay is unchan-ged. Here is a branch of the search space explored by ��-narrowing on thatequation: xa == ay��Beta x 7!�A:x1 �(x1)=Bx1[a=] == ay��App x1 7!x2x3 �(x2)=Y!B; �(x3)=Yx2[a=]x3[a=] == ay��FV ar x2 7!0a(x3[a=]) == ay��Typed Unify == x3[a=]The ��-narrowing steps of this branch build the non-ground ��-uni�er� = fx! �A:(1 x3); y ! x3[a=]g:More generally,Theorem 2 ��-narrowing is a ground complete method of ��-uni�cation.5 Translation of non-ground ��-uni�ersThe issue is now to translate the graftings produced by ��-narrowing into �-uni�ers. Ground graftings are translated by BD. What about non-groundgraftings? In the last example, we get the non-ground ��-uni�er� = fx 7! �A:(1 x3); y 7! x3[a=]gWe would like to get the �-uni�erf(x; �u:u(x3(u))); (y; x3a)gTo translate �, we just need to compose it with a ground grafting, called �B.The subscriptB in �B means "back translation". The rôle of �B is the following:136



given a �-term �A:0 x3, the fact that x3 depends on 0, i.e. may be replaced bya term containing 0, is implicit. �B makes this dependency explicit:�B = fx3 7! cz 0gIndeed, the new constant cz 2 CV is a function of 0, or, put it di�erently,depends explicitly on 0. Furthening the previous example, we get:��B =�� fx 7! �A:0(cz0); y 7! cza; x3 7! cz 0g��B is ground ��-uni�er of xa == ay. Hence by theorem 1, it can be translatedinto a �-uni�er of xa == ay:f(x; �u:u(zu)); (y; za)gTheorem 3 LetM == N be a �-uni�cation problem. Let S the set of graftingsproduced by ��-narrowing and solving H(M) == H(N). One can extract aCSU�(M == N) out of S.6 ConclusionThe main interest of this work is that it provides an elementary procedure, ��-narrowing, for a quite complex problem, higher order uni�cation. However, asalready said, HOU, and ��-narrowing alike, are impractical due to the presenceof in�nitely branching nodes in the search space. Our current work consists indesigning transformation rules that makes as small steps as ��-narrowing andproduce ��-preuni�ers, still in the framework described here. Such an approachis interesting in the sense that it would give a simple preuni�cation algorithmvery near to its implementation.References[ACCL91] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit substi-tutions. Journal of Functional Programming, 1(4):375{416, 1991.[BBLRD96] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. ��, acalculus of explicit substitutions which preserves strong normali-sation. Journal of Functional Programming, 1996. �a parâ�tre.[dB72] N. G. de Bruijn. Lambda calculus with nameless dummies, atool for automatic formula manipulation, with application to theChurch-Rosser theorem. Proc. Koninkl. Nederl. Akademie van We-tenschappen, 75(5):381{392, 1972.[DHK94] Gilles Dowek, Th�er�ese Hardin, and Claude Kirchner. Higher-orderuni�cation via explicit substitutions. Technical Report 94-R-243,CRIN, December 1994. 137



[DHK95] Gilles Dowek, Th�er�ese Hardin, and Claude Kirchner. Higher-orderuni�cation via explicit substitutions, extended abstract. In DexterKozen, editor, Proceedings of LICS'95, pages 366{374, San Diego,June 1995.[Dou93] D. J. Dougherty. Higher-order uni�cation via combinators. Theo-retical Computer Science, 114:273{298, 1993.[Hue76] G. Huet. R�esolution d'equations dans les langages d'ordre 1,2,...,!. Th�ese de Doctorat d'Etat, Universit�e de Paris 7 (France),1976.[Les94] P. Lescanne. From �� to ��, a journey through calculi of explicitsubstitutions. In Hans Boehm, editor, Proceedings of the 21st An-nual ACM Symposium on Principles Of Programming Languages,Portland (Or., USA), pages 60{69. ACM, 1994.[LRD94] P. Lescanne and J. Rouyer-Degli. The calculus of explicit substi-tutions ��. Technical Report RR-2222, INRIA-Lorraine, January1994.[MN86] D. A. Miller and G. Nadathur. Higher-order logic programming.In E. Shapiro, editor, Proceedings of the Third International LogicProgramming Conference, volume 225 of Lecture Notes in Compu-ter Science, pages 448{462. Springer-Verlag, 1986.[Pau90] L. C. Paulson. Isabelle: the next 700 theorem provers. In P. Odi-freddi, editor, Logic in Computer Science. Academic Press, 1990.[R��o93] A. R��os. Contributions �a l'�etude des �-calculs avec des substitutionsexplicites. Th�ese de Doctorat d'Universit�e, U. Paris VII, 1993.[SG89] W. Snyder and J. Gallier. Higher order uni�cation revisited: Com-plete sets of tranformations. Journal of Symbolic Computation, 8(1& 2):101{140, 1989. Special issue on uni�cation. Part two.

138



Decidable Linear Second-Order Uni�cation ProblemsJordi LevyTechnical University of CataloniaPau Gargallo 5, 08028 Barcelona, SpainE-mail: levy@lsi.upc.esLinear Second-Order Uni�cation deals with completely general second-ordertyped uni�cation problems, where the set of uni�ers under consideration is re-stricted: they instantiate free variables by linear terms, i.e. terms where any�-abstraction binds one and only one occurrence of a bound variable. Thisproperly extends context uni�cation, studied by Comon and Schmidt-Schau�,considering non-unary variables and �-bindings. This also makes some (tri-vial) uni�cation problems �nitary, which would be in�nitary considered as con-text uni�cation problems. In this talk we present some classes of decidablelinear second-order uni�cation problems, trying to enlarge the class de�ned bySchmidt-Schau� for context uni�cation.
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AC-complete Uni�cation and its Application toTheorem Proving�Alexandre Boudet, Evelyne Contejean and Claude March�eLRI, CNRS URA 410Bat. 490, Universit�e Paris-Sud, Centre d'Orsay91405 Orsay Cedex, FrancePhone:+33 1 69 41 69 05, Fax: +33 1 69 41 65 86Email: fboudet,contejea,marcheg@lri.frThe ine�ciency of AC-completion is mainly due to the doubly exponentialnumber of AC-uni�ers and thereby of critical pairs generated. We present AC-complete E-uni�cation, a new technique whose goal is to reduce the numberof AC-critical pairs inferred by performing uni�cation in a extension E of AC(e.g. ACU, Abelian groups, Boolean rings, : : : ) in the process of normalizedcompletion [1, 2]. The idea is to represent complete sets of AC-uni�ers by(smaller) sets of E-uni�ers. Not only do the theories E used for uni�cationhave exponentially fewer most general uni�ers than AC, but one can removefrom a complete set of E-uni�ers those solutions which have no E-instancewhich is an AC-uni�er.First, we de�ne AC-complete E-uni�cation and describe its fundamentalproperties. We show how AC-complete E-uni�cation can be done in the ele-mentary case, and how the known combination techniques for uni�cation algo-rithms can be reused for our purposes. Finally, we give some evidence of thekind of speedup that can be obtained by presenting some experiments with theCiME theorem prover.References[1] C. March�e. Normalised rewriting and normalised completion. In Proceedingsof the Ninth Annual IEEE Symposium on Logic in Computer Science, pages394{403, Paris, France, July 1994. IEEE Comp. Soc. Press.[2] C. March�e. Normalized rewriting: an alternative to rewriting modulo a setof equations. Journal of Symbolic Computation, 1996. to appear.�This research was supported in part by the EWG CCL, the HCM Network CONSOLE,and the \GDR de programmation du CNRS".140


