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Towards Fuzzy Unification *

Francesca Arcelli, Ferrante Formato
DIITE- Universitd di Salerno
84084 Fisciano (Salerno), Italy.
Faz:+39-89-964284, Ph.: +39-89-964254

e-mail: arcelli,formato@ponza.dia.unisa.it

1 Introduction

Various approaches to fuzzy Prolog has been proposed in the literature since Zadeh ([8])has
proposed fuzzy set theory (see for example [4],[1] and [5]). Fuzziness has been introduced
at several levels and from different points of views. A fuzzy degree associated to the facts
in a program and to the rules has been introduced, notions of fuzzy inferences have been
defined, based on different notions of logical consequence. Resolution techniques based
on fuzzy logic have been used, employing fuzzy unification methods carried out in several
ways. In particular this last aspect is not a completly accepted and syntactically and
semantically defined concept.

For example Baldwin introduced inference methods for processing a knowledge base
to answer queries based on semantic unification; this notion with probability theory and
probabilistic fuzzy rules are discussed in [1], while Mukaidono in [6]defines a fuzzy matching
between fuzzy predicates by using linguistic hedges.

In this work we describe our ongoing research towards the definition of a fuzzy unifi-
cation. We start by giving a degree of unification based on ”a soft” version of the usual
definition of terms unifier. Then we show some important properties of such a degree, seen
as a fuzzy subset and finally we propose a degree of unification associated to a complete
set of transformation rules for a set of term equations.

2 A degree of unification

Let I be a signature, let X be a finite set of variables, and let M (F, X') the free algebra
generated by F and X. Let 8 : X — M(F, X) be a first-order substitution. Let eql :
M(F) x M(F) — L be a fuzzy relation over M (F') with the following properties:

e i) eql(t,t) =1 for any closed term t € M (F)

*This work has been partially supported by MURST 60%.



o ii) eql(t,t') = eql(t',t) for any pair of closed terms ¢,t' € M(F)
o iii) eql(t,t') > eql(t,t") Aeql(t",t') for any t,t',t" € M(F)
we call this relation a fuzzy similitude relation.

Alternatively, the similitude relation could be built by starting from a similitude rela-
tion eqo defined on the set of constants C' and then extended to the set M (F') by setting:

LI (e oest) W) = 0 eqo(ts )
eql(a,b) = eqla,b)Va,beC

0 elsewhere.

Given the set of first-order substitutions ©, we can define a ”degree of unification”
between two terms as a fuzzy relation that ”softens” the classical relation of unification.
Recall that the classical unification relation between two terms ¢ and ' could be stated as
follows:

a pair of terms (¢,¢') is unifiable if there exists a first-order substitution # such

that 6(t) = 6(t')

Along this lines, we can soften the meta-syntactical connectives, and define a ”degree of
unification” in the following manner:

U(t,t")y = sup{eql(6(t),8(t')} for any t,t" € M(F, X) (1)
6co
Formula (1) is the natural softening of the classical unification relation. The following
properties follow:
Proposition 1 For any variable x € X, for any term t € M(F, X), U(z,t) =1

Proof: 1t suffices to consider a substitution # such that 8(z) = ¢. Then by property (¢) of
relation eql the thesis follows. Q.e.D

Proposition 2 Let t be a term in M(F,X). Then U(t,t) =1

Proof: 1f t € M(F) then eql(t,t) = 1. If t € M(F,X), for any substitution 6,
eql(0(t),6(t)) = 1. Q.e.D

Proposition 3 For any term t,t' € M(F,X) U(t,t") =U(t,t)

proof: Since, for any 6 € O it is eq1(6(t),0(t')) = eql(6(t'), 0(t)). The thesis follows imme-
diately, passing to the supremum over O. Q.e.D

The degree of unification given in 1 is not transitive; indeed such property would entail
that the following disequality:

U, ty > U, "y AU, )



holds for any ¢,¢',t" € M(F, X). If we consider two terms @ and b in M (F') and a variable
z € X, and take a similitude relation eql such that eql(a,b) < 1, since by Proposition 2
itis U(z,a) = U(z,b) =1, then U(z,a) AU(z,b) = 1> Ul(a,b).

The definition of degree of unification given in (1) is quite natural. Many features of
the classical unification relation could be found in this fuzzy counterpart; as an example,
consider the aspects of unification connnected to computability theory. Assume that L
and M (F, X) are a computable lattice and a computable algebra, respectively. Then we
can apply the concepts of L-computability theory (see [3]) and state whether or not the
fuzzy relation U, seen as a fuzzy subset of M (F, X) x M(F, X), is decidable or less. We
have the following remarkable result:

Theorem 1 Consider the fuzzy unification degree U as an L-subset of M (F, X )x M (F, X).
Then, if eqy is an L-computable subset of C', U is L-computable.

proof: To show this it is sufficient to prove that U is a computable function from M (F, X') X
M(F, X) to L, provided that eqg is a computable function from C'xC to L. It is immediate
that eg; is a computable function from M (F) X M(F) to L, since it is defined from egqq
using structural induction. We now prove that U is a computable function using the
structural induction over the terms of M (F, X). We say that a eq(t,t’) is computable if it
can be calculated in a finite number of steps.

e (i) Suppose t and ¢’ are constants: let ¢ = a and ' = b. Then U(a,b) = eql(a,b)
which is a computable expression.

e (ii) We have to prove that U(f(t|,...,t.),¢(t1,...,t,)) is a computable expression,
provided that U(t;,t}) is computable.

If f# g or n = m then, by definition of U, U(f(t},...,t),g(t1,...,t,)) = 0 Otherwise,
we have that

U(f(ty, .., th), flt,...,t0)) = sup{eql(@(f(t’l, cen ), 0(g(t, . .,tn))}

6co

By construction of 8, it is

U(f(ty, .. th), ftr, .. tn)) = sup{eql(f(@(t’l), e 0(8)),g(8(t), - - .,O(tn))}

€0
i.e. , by definition of eq:
U(f(E1, o tn), [t oo tn)) = Sup{ N ea(8(t:), 9(t§))}

finally, by distributivity

U(f(t, ..t fltr, .o otn)) = ’n {supeql(e(ti)ﬂ(t;))}



By induction hypotheses

sup eqy (0(t:), 0(17))
6co

is a computable expression, so, U(f(t|,...,t),¢(t1,...,t)) is a computable expression
since it is the infimum over a finite number of computable expressions.

Since we proved that U is a computable function from M (F, X)) x M (F, X) it follows
that U is an L-subset which is L-computable.

Q.e.D

We now extend the definition of unification degree to a finite set of first-order terms.
Just like the first-order case, given aset X = {t1,...,t,} of terms in M (F, X), we call de-
gree of unification of X the following fuzzy L-subset i of P(M (F, X)), where P(M (F, X))
is the powerset of M (F, X)

. — 3 !

HUX) = inf (U1) (2)
where U is the degree of unification of a pair of terms. A simplified definition of degree of
unification for a set of first-order terms is given by the following formula. Let D(X,2) be
the set of binary dispositions of elements of X without redundancies. Then we set i, (X)
as follows:

U (X) = tvt,eig(fm)(U(tv ) (3)

The following propositions hold:
Proposition 4 Let X be a set of first-order terms. Then U(X) = U (X)

Proof: Since D(X,2) C M(F, X)?itis U (X) <U(X). Besides, since U(t,t') = U(t',t)
for any ¢,t' € M(F, X), then U (X) < U (X)
Q.e.D

Proposition 5 U is an L-computable subset of P(M(F, X)).

Proof: Immediate from the finiteness of X.

3 Fuzzy Equational Unification

Given a free algebra of terms M (F, X), where F' is a finite signature and X is a finite set
of variables, we can set a fuzzy derivational system based on the classic derivation rules
for a set of equations (see [7]). A fuzzy derivation system is a finite set of ordered pairs
(R,A) = {{ri, \i(} where r; is a rule of the kind X = X', where X and X' are sets of
term equations and A; is an element of the lattice I expressing the degree of derivability
of X’ from X. We just give some sketchy ideas on how to define the pair (R, A). Given
a complete set of transformation rules as described in [7], we assign a derivability degree
equal to 1 to all transformation rules, except for the following one:

XU{uiu’}:A>X



where v € M(F,X) and X is eq(u, ') if u,v’ € M(F) and is 0 otherwise. We write
DX FY)=Xif X and Y are sets of term equations and X 2 Y for some fuzzy rule
(r, A. Let X and X' be a set of first-order term equations. We call derivation of X' from X
the sequence X4,..., X, such that Xy = X and X,, =Y and, for any ¢+ = 2..n there exists
a rule Ry in R such that X; = X;;;. We say that a set of first-order term equations is
solved if it is in ”diagonal form”, i.e. its equations are in the form = ¢t where z € X and
t € M(F,X),  does not occurr elsewhere into the equations of X and 2z does not occurr
in t. Finally, a set of first-order equations X is called solvable if there exists a solved set
of term equations X that is derivable from X. We can set a degree of unification for a set
of term equations in the following way:

D(X)= XsupX {i_}ng_l(D(XivXH—l))Xl F...F X, where X, is solved }
1yeeyAn T

In this way we have obtained a degree of unification associated to a complete set of
transformation rules. Such degree could be used in a computable model of fuzzy unification
for a low-level implementation of a fuzzy resolution-based logic programming language.
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Unification and Matching modulo Nilpotence

Qing Guo, Paliath Narendran™ and D.A. Wolfram '

Abstract

We consider nilpotence: the simple theory f(z,2) = 0 where 0 is a
constant. We show that elementary unification and matching modulo this
theory are NP-complete. We also consider the case where the function f
additionally satisfies associativity and commutativity. We found that the
problems are still NP-complete. However, when 0 is also the unity of f, i.e.,
f(x,0) = z, unification and matching problems can be solved in polynomial
time. Furthermore, we show that unification and matching problems remain
in polynomial time when a homomorphism is added to the theory. This
polynomial time algorithm can be used to solve a subclass of set constraints.
Second-order matching modulo nilpotence is shown to be undecidable.

*Institute of Programming and Logics, Department of Computer Science, State Uni-
versity of New York at Albany, Albany, NY 12222 U.S.A.

"Department of Computer Science The Australian National University Canberra, ACT
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Uniform Representation of Recursively Enumerable
Sets with Simultaneous Rigid E-Unification
(Extended Abstract)

Margus Veanes

Computing Science Department, Uppsala University
Box 311, S-751 05 Uppsala, Sweden
email: margus@csd.uu.se

1 Introduction

Recently it was proved that the problem of simultaneous rigid E-unification (SREU) is
undecidable [8]. Here we perform an in-depth investigation of this matter and obtain
that one can use SREU to uniformly represent any recursively enumerable set. From
this representation follows that SREU is undecidable already for 6 rigid equations
with ground left hand sides and 2 variables.

There is a close correspondence between solvability of SREU problems and pro-
vability of the corresponding formulas in intuitionistic first order logic with equality.
Due to this correspondence we obtain representation of the recursively enumerable
sets in intuitionistic first order logic with equality with one binary functionsymbol
and a countable set of constants. From this result follows the undecidability of the
F3-fragment of intuitionistic logic with equality. This is an improvement of the recent
result regarding the undecidability of the 3*-fragment in general [10].

1.1 Background of SREU

Simultaneous rigid E-unification was proposed by Gallier, Raatz and Snyder [15] as a
method for automated theorem proving in classical logics with equality. It can be used
in automatic proof methods, like semantic tableaux [12], the connection method [3]
or the mating method [1],model elimination [22], and others that are based on the
Herbrand theorem, and use the property that a formula is valid (i.e., its negation
is unsatisfiable) iff all paths through its matrix are inconsistent. This property was
first recognized by Prawitz [27] (for first order logic without equality) and later by
Kanger [19] (for first order logic with equality).In first order logic with equality, the
problem of checking the inconsistency of the paths results in SREU. Before SREU
was proved to be undecidable, there were several faulty proofs of its decidability,
e.g. [13, 17].

1.2 Owutline of this Paper

This paper constitutes a summary of the main results presented in Veanes [30], where
one can find detailed proofs to all the statements that are made here. In Section 2
we explain the main notations.

In Section 3 we introduce words (as representations of strings) and sentences (as
representations of sequences of strings), as the basic components needed to formally

=~



represent Turing machine computations. The main result of this section is called the
Sentence Lemina.

In Section 4 we describe a technique that can be used toexpress (roughly) that one
sequence of strings is an encoding of pairwise adjacent strings of another sequence.
This technique is formally stated as the Shifted Pairing Lemma.

The Sentence Lemma and the Shifted Pairing Lemma are then used in Section 5
to show that one can use SREU to represent(uniformly) any r.e. set, here we identify
r.e. sets with languages accepted by Turing machines. We call this result the SREU
Normal Form Theorem for RE. The undecidability of SREU follows immediately from
this theorem (2 variables and six rigid equations is enough).

From the SREU Normal Form Theorem for RE we obtain a uniform characteriza-
tion of all r.e. sets with certain simple formulas in intuitionistic first order logic with
equality, using just one function symbol (of arity 2) and some number of constants.
In particular, the undecidability of the 33-fragment of intuitionistic logic follows from
this result.

We conclude the paper in Section 7 by summarizing the current status and stating
some open problems regarding decidability of fragments of SREU.

2 Preliminaries

Throughout the paper, the first order language that we are working with is designated
by L. L has one binary function symbol « and a countable set of constants Ly. We
will use infix notation for « and assume that it associates to the right, so t; ety et3
stands for the term o (¢, o (2,%3)). In general we will use the letters ¢ and s to stand
for terms in L. We write X C Y to say that X is a nonempty finite subset of Y. A

> rigid equation is an expression of the form F K s = ¢t where F is a finite set
of equations and s and t are arbitrary terms. A system of rigid equations is a
finite set of rigid equations.

A substitution 6 (6 is assumed to map variables to ground terms) is a

> solution of or solves a rigid equation K i s = ¢ if

(N ef) = s =19,
e€ElE

8 solves a system of rigid equations if it solves each member of the system.

Here | is either classical or intuitionistic provability (for this class of formulas they
coincide). The problem of solvability of systems of rigid equations is called simulta-
neous rigid E-unification or SREU for short. Solvability of a single rigid equation is
called rigid E-unification.

3 Words and Sentences

Words are certain terms of L that represent strings, and sentencesare certain terms
that represent sequences of strings. We will use the letters v and w to stand for strings
of constants. Formally, we say that a gound term ¢ of L is a

> g-word or simply a word when it has the form a; edge - -+ ey, o g for somen > 0
where all the a; and ¢ are constants. If n = 0 then t is said to be empty.

If tisa word a;edaze - -+ ea, « g we mostly use the shorthand v e ¢ for ¢ where v is the
string aqay - - - a,,. We also say that ¢



> represents the string v, in symbols ¢ = v.

Note that any constant ¢ is an empty ¢-word and represents e. We want to be more
specific and talk about strings in certain regular sets. Let R be a regular set over
some set of constants in L. We say a ground term ¢ of L is a

> word in R if t is a word and it represents a string in R.

Sentences are just representations of sequences of strings. Let us first choose a fixed
coustant [| (“nil”) of L. Formally, a ground term ¢ of L is called a

> sentence if it has the form tjetye -++ oty ¢[] for some n > 0 where each ¢; is a
word. If n = 0 then t is said to be empty.

We use [t1,t2,...,t,] as a shorthand for the corresponding sentence. We say that a
sentence t = [ty,ta,...,1y]

> represents the sequence of strings t= (ﬂ, fa.... ,7‘/\,,)

Our aim is to represent sequences of strings, where each string belongs to some mem-
ber of a given family of regular sets, such that the sequence has some given regular
pattern. For that purpose we introduce the following notion.

Let ©.T' C Lo and let {R,},cr be a family of regular sets over ¥ and let R be a
regular set over I'. We say that a sentence t = [t1,t2,...,t,] is a

> sentence in {Rq}R if each ¢; is a g;-word in Ry, for some ¢; €', qiqz --- qn € .

In other words, ¢ is a sentence in {Rq}R iff any g-word of t is a word in R4, and if
we replace all the words of ¢ with the corresponding empty words then the resulting
term is a [-word in R. When all the members of the family are the same regular set
then we drop the index in our notation.

For example, t is a sentence in {R,, Ry, R.}
an a-word in Ry, the last word of ¢ is a c-word in R, and the middle ones (if any) are
b-words in Ry.

ab™¢ means that the first word of ¢ is

Theorem 3.1 Let ©.T' C Lo \{[]} be disjoint. Let {R.}ccr be a family of reqular sets
over ¥. Let R be a reqular set over T'. There exists a system S(x) ofrigid equations
such that 6 solves S(x) iff 20 is a sentence in {R.} .

We will refer to this theorem as the Sentence Lemma. More precisely,the system S(x)
consists of two rigid equations, both of which haveground left hand sides and one
variable z. Furthermore, the system is obtained effectively from the regular sets.

4 Shifted Pairing

The purpose of this section is to describe a technique, called shifted pairing, that can
be used to construct a system of rigid equations, the solutions of which aresentences
with certain interesting properties. This technique was first used by Plaisted [26].

4.1 Encoding Pairs of Strings

Given a set of constants ¥ C Ly, we want to encode pairs of strings over ¥ in a simple
manner.Let b be a fixed constant in Lg called a blank. We can assume without loss of
generality that b € ¥, ¥\ {6} is nonempty and that we only wish to encode pairs of
strings in ¥* that don’t end with a blank (otherwise just expand ¥ with b). We say
that a function () : ¥ x ¥ — Ly is a



> pairing function for ¥ if () is injective and (XY = {{a,b) | a,b € ¥ } is disjoint
from ¥, and we associate the following sets of equations with ():
H? = {{(a,b)=a|a,be X},
Y = {(ab)=blabeT}

We will abbreviate H? and H.§> by II; and Ils, respectively.
Let () be a pairing function for . Consider
v = {ay,by){ag,ba) -+ {ar,by) € (X)*
for some k > 0 and let n,m > 0 be least such that a,41,...,ar and by,41,..., b are
blanks. We say that
> v encodes the pair (ajas - - - ay, biby -+ - by,) of strings.

We will write (v, w) for any string that encodes the pair (v, w) of strings in ¥*\ £*B.

4.2 Shifted Pairing

We want to encode adjacent pairs of strings in a given sequence of strings. Let
Y C Ly. Assume b € X, ¥\ {b} is nonempty and let () be a pairing function for X.
Let o = (w1, wy,...,w,) be a nonempty sequence of strings in ¥*\ £*b. We say that
a sequence U = (v1,vs,...,0,) of strings in (X)* is a

> shifted pairing of @ if v; encodes the pair (w;, w;41) for 1 <i < n and v,, encodes
the pair (wy,€), L.e., T= (w1, we), {wa, ws), ..., (Wn_1,wn), (Wn,€)).

We refer to the following theorem as the Shifted Pairing Lemma. It constitutes the
kernel of the proof the SREU Normal Form Theorem.

Theorem 4.1 Let ¥ C Ly be such that b € , X\ {b} is nonempty, and let {) be
a pairing function for . Let also T' C Lg. Assume that ¥, (X), T and {[]} are all
pairwise disjoint.

Let g € T\ {b}. There is a system SPy(z,x,y) of rigid equations such that

o 0 solves SPy(z,x,y) iff

° 1//5 18 a shifted pairing of 20 and the first string of 20 is qgé
for any substitution 0 such that z6 is a c-word in (X \ {b})* for some c €T, 26 is a
sentence in {31\ E*B}r+ and yb 1s a sentence in {<E>+}1‘+.

Let ¢ be fixed element of I'. The system SP,(z,x,y) is defined as follows:

MLu{ce=clcel}U{bec=c} E z=uy,
ILu{s=clceT}U{bec=c,ce[|=]} FE x=(qez)ey

SPy(z,z,y) = {

Assuming that a0 represents the sequence @ as above thenthe first rigid equation has
the effect that yf must have the form

(w1, ), {way 2, ooy (Wam1, o)y (W, 2))s

and from the second rigid equation follows that yf must have the form

({Lwa), (L ws), ..oy (o wn), (o €)).

Together they give the desired effect.

10



5 Uniform Characterization of RE with SREU

Here we show that any r.e. set can be represented by a system of simultaneous rigid
equations which is obtained uniformly in the r.e. index of that set. In particular, this
theorem and the way the system in the theorem is constructed imply that given any
r.e. set W over some alphabet ¥ and a string w over X, one can effectively construct
a system of rigid equations, having ground left hand sides and only two variables,
which has a solution iff w € W. So SREU is undecidable already with ground left
hand sides (which was also shown by Plaisted [26]) and only two variables (that is a
new result).

5.1 The Turing Machine Model

We follow Hopcroft and Ullmann [18]. Formally, a Turing machine M is a 7-tuple
(Q,%0,%1,8,q0,b, F), where () is the set of all states of M, Z¢ is the input alphabet
not including 5, 1 = SyU{b}, § : Q@ x 1 = Q@ x Iy x {1, R} is the transition function,
qo € Q is the initial state, and F C @ is the set of final states. We also assume that
(@ and X, are disjoint subsets of Ly. An

> instantaneous description (ID) of M is any string a3 where ¢ € Q and a € X3
and 3 is a string in X7 not ending with a blank.

Let 5 stand for a string of 0 or more blanks. A

> move is a pair (v, w) of ID’s such that if vb = agaB and d(q,a) = (p,b,R) then

wh = abpg,
|a|a|3 |a|b|8

T Far T
q p

and if vb = acqaB and §(g,a) = (p,b,1) then wh = apebp,

|(1 cla | B |(1 | c | b | B

T Far T
q P

i.e., w is obtained from v according to the next move function.

The binary relation of all moves of M is denoted by F;7, as shown in the figures
above, and its transitive and reflexive closure by F3,. The

> language accepted by M, L(M), is the following set

L(M)={weXj|quwti apd where p € F and apf is an ID }.

> A walid computation of M is a nonempty sequence (wy,ws, ..., w,) such that

— each w; is an ID of M, ie., w; € Z5Q(X7\ 15) for 1 <i < n,

wq is the smitial ID, one of the form gyv where v € X,

wy, is a final ID, wy, € B1F(X]\ ©1D),

— w; by wigq for 1 <4 < n, Le., each pair (w;, wit1) is a move of M.

We will use the following relationship between valid computations and the language
of M without further notice: there is a valid computation of M with initial ID ggv iff
v € L(M).

11



5.2 The SREU Normal Form Theorem for RE

Theorem 5.1 Let M = (Q,Xq,31,8,q0,0,F) be a TM and let ¢ be constant not in Q)
or ¥1. There is a system Sy (z,x,y) of rigid equations such that for any substitution
9 that solves Syi(z,7,y), 20 is an s-word and L(M) = {20 | 0 solves Sy (z,z,y) }.

The auxiliary variables x and y are such that, for any 8 that solves Sis(z, z, y), 20 is
a valid computation of M with initial ID qogé and ;5 is a shifted pairing of 0.

The main steps in the proof of the theorem are as follows. First the regular sets
Riq, Rg, and Ry, are defined so that R;q, Rg, and Ry, are all the IDs, the final IDs
and the encodings of moves of M, respectively. Based on these, the Sentence Lemma
gives us the systems Siq(2) and S, (y) and Si,(2), such that

1. 6 solves Siq(«) iff 26 is a sentence in {e —~ Riq,21 — Rﬁn}"f*gl,
2. 6 solves Sy (y) iff yf is a sentence in {¢ — Ry, g1 — (E)*}E*E', and
3. 6 solves Si,(z) iff 26 is an =-word in 3.

The Shifted Pairing Lemma gives us the system SPy, (2, «,y). Finally Sy is given by
the union of all those systems,

Su(zw.y) = Sia(2) U Smv(y) U Sin(2) U SPy, (2, 2, y).

Given a word t and a TM M, the construction of Sy (¢, z,y) is effective. Also, all the
left hand sides are ground. We get the following corollary.

Corollary 5.2 SREU is undecidable even when restricted to ground equations on the
left hand side and allowing only two variables, in any first order language with at least
one binary function symbol and one constant.

The first proof of the udecidability of SREU [8] was by reduction of the mona-
dic semi-unification [2] to SREU.This proof was followed by two alternative (more
transparent) proofsby the same authors, first by reducing second order unification to
SREU [7, 10], and then by reducing Hilberts 10’th to SREU [9]. The undecidability
of second order unification was proved by Goldfarb [16]. Reduction of second order
unification to SREU is very simple, showing how close these problem are to each
other.

Plaisted took the Post’s Correspondence Problem and reduced it to SREU [26].
From his proof follows that SREU is undecidable already with ground left hand sides
and three variables. He uses several function symbols of arity 1 and 2. The basic
technique used by Plaisted is the same as the one used here.

A technique similar to the one used in the reduction of Hilberts 10’th to SREU,
is used by Voda and Komara [31] to argue for (we did not check the details) the
undecidability of the problem of Herbrand skeletons, i.e., given n and a formula
¢ = AZp(&) where ¢ is quantifier free, if the Herbrand skeleton of size n of ¢ is
solvable. (The Herbrand skeleton of size n of ¢ is the disjunction of n variants of ¢.)
For n =1 this problem comprises also SREU.

6 Uniform Representation of RE in Intuitionistic
Logic with Equality

From the SREU Normal Form Theorem for RE we get the corresponding result for
intuitionistic logic with equality.

12



Theorem 6.1 Let M be a Turing machine. There is a formula pa(z,2,y) and a
constant £ in L such that, for all ground terms t in L: t is an e-word in L(M) iff
b JeTye(t, x,y).

Since the construction of the formula py; is effective, we obtain that the 33-
fragment of intuitionistic logic isundecidable. This is an improvement of the un-
decidability result of the 3*-fragment in general shown recently by Degtyarev and
Voronkov [9, Theorem 10] (or [10, Theorem 3]).

A closely related problem is the skeleton instantiation problem, i.e., the problem
of existence of a derivation with a given skeleton. Voronkov shows that SREU is poly-
nomially reducible to this problem [32, Theorem 3.12]. Moreover, the basic structure
of the skeleton is determined by the number of variables in the SREU problem and the
number of rigid equations in it. Our result implies that this problem is undecidable
already for a very restricted class of skeletons.

Decidabilty problemns for some other fragments of intuitionistic logicwith and wit-
hout equality were studied by Orevkov [24, 25], Mints [23] and Lifschitz [21]. More re-
cently some new results have been obtained by Degtyarev and Voronkov [33, 32, 11, 6],
and Tammet [29].

7 Current Status and Open Problems

Decidability of rigid E-unification has been known for some time now, for a clear
proof see De Kogel [4]. The current status about what is known about SREU and
rigid E-unification is sumimarized below.

1. Rigid E-unification with ground lefthand side is NP-complete [20]. Rigid E-
unification in general is NP-complete and there exist finite complete sets of
unfiers [14, 13].

o

If all function symbols have arity < 1 then SREU is PSPACE-hard [17]. If only
one unary function symbol is allowed then the problem is decidable [6, 5]. If
only constants are allowed then the problem is NP-complete [6] if there are at
least two constants. If there are more than one unary function symbol then the
decidabilityis still an open question.

3. In general SREU is undecidable [8], already with ground left hand sides [26] and

two variables [30].

Some other decidable cases of SREU are also described by Plaisted [26]. It should
also be noted that the decidability of SREU with just one variable is an open question
and thus also the decidability of the 3-fragment of intuitionistic logic with equality.
Note that SREU is decidable when there are no variables, then each rigid equation
can be decided for example by using the Shostak congruence closure algorithm [28, 4].

References

[1] P.B. Andrews. Theorem proving via general matings. Journal of the Association
for Computing Machinery, 28(2):193-214, 1981.

[2] M. Baaz. Note on the existence of most general semi-unifiers. In Arithmetic,
Proof Theory and Computation Complezity, volume 23 of Oxford Logic Guides,
pages 20-29. Oxford University Press, 1993.

[3] W. Bibel. Deduction. Automated Logic. Academic Press, 1993.

13



[4]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

[19]

E. De Kogel. Rigid E-unification simplified. In P. Baumgartner, R. Hahnle,
and J. Posegga, editors, Theorem Proving with Analytic Tableauz and Related
Methods, number 918 in Lecture Notes in Artificial Intelligence, pages 17-30,
Schlofl Rheinfels, St. Goar, Germany, May 1995.

A. Degtyarev, Yu. Mativasevich, and A. Voronkov. Simultaneous rigid E-
unification is not so simple. UPMAIL Technical Report 104, Uppsala University,
Computing Science Department, April 1995.

A. Degtyarev, Yu. Mativasevich, and A. Voronkov. Simultaneous rigid E-
unification and related algorithmic problems. In LICS’96, pages 1-11, 1996.

A. Degtyarev and A. Voronkov. Reduction of second-order unification to simul-
taneous rigid F-unification. UPMAIL Technical Report 109, Uppsala University,
Computing Science Department, June 1995.

A. Degtyarev and A. Voronkov. Simultaneous rigid E-unification is undecida-
ble. UPMAIL Technical Report 105, Uppsala University, Computing Science
Department, May 1995.

A. Degtyarev and A. Voronkov. Simultaneous rigid E-unification is undecidable.
In Computer Science Logic Workshop, pages 1-12, 1995.

A. Degtyarev and A. Voronkov. The undecidability of simultaneous rigid e-
unification (note). Theoretical Computer Science, pages 1-10, 1995.

A. Degtyarev and A. Voronkov. Skolemization and decidability problems for
fragments of intuitionistic logic. In LICS 96, pages 1 10, 1996.

M. Fitting. First-order modal tableaux. Journal of Automated Reasoning, 4:191—
213, 1988.

J. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid E-unification: NP-
completeness and applications to equational matings. Information and Compu-
tation, 87(1/2):129-195, 1990.

J.H. Gallier, P. Narendran, D. Plaisted, and W. Snyder. Rigid E-unification is
NP-complete. In Proc. IEEE Conference on Logic in Computer Science (LICS),
pages 338-346. IEEE Computer Society Press, July 1988.

J.H. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid F-
unification: Equational matings. In Proc. IEEE Conference on Logic in Compu-

ter Science (LICS), pages 338 346. IEEE Computer Society Press, 1987.

Warren D. Goldfarb. The undecidability of the second-order unification problem.
Theoretical Computer Science, 13:225-230, 1981.

J. Goubault. Rigid E-uniﬁability is DEXPTIME-complete. In Proc. IEEE Con-
ference on Logic in Computer Science (LICS). IEEE Computer Society Press,
1994.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley Publishing Co., 1979.

S. Kanger. A simplified proof method for elementary logic. In J. Siekmann and
G. Wrightson, editors, Automation of Reasoning. Classical Papers on Computa-
tional Logic, volume 1, pages 364-371. Springer Verlag, 1983. Originally appeared
in 1963.

14



[20]

[21]

[22]

[23]

[26]

27

[28]

[29]

[30]

[31]

[32]

[33]

D. Kozen. Positive first-order logic is NP-complete. IBM J. of Research and
Development, 25(4):327-332, 1981.

V. Lifschitz. The decidability problem for some constructive theories of equality
(in Russian). Zapiski Nauchnyh Seminarov LOMI, 4:78-85, 1967. English trans-
lation in: Seminars in Mathematics: Steklov Math.Inst.4, Consultants Bureau,
NY-London, 1969, pp.29-31.

D.W. Loveland. Mechanical theorem proving by model elimination. Journal of
the Association for Computing Machinery, 15:236 251, 1968.

G.E. Mints. Collecting terms in the quantifier rules of the constructive predicate
calculus (in Russian). Zapiski Nauchnyh Seminarov LOMI, 4:78-85, 1967. Eng-
lish Translation in: Seminars in Mathematics: Steklov Math.Inst.4, Consultants
Bureau, NY-London, 1969, pp.43-46.

V.P. Orevkov. The undecidability in the constructive predicate calculus of the
class of formulas of the form ——V3 (in Russian). Soviet Mathematical Doklady,
163(3):581-583, 1965. The journal is cover-to-cover translated to English.

V.P. Orevkov. Solvable classes of pseudo-prenex formulas (in Russian). Zapiski
Nauchnyh Seminarov LOMI, 60:109-170, 1976. English translation in: Journal
of Soviet Mathematics.

D.A. Plaisted. Special cases and substitutes for rigid E-unification. Technical
Report MPI-1-95-2-010, Max-Planck-Institut fiir Informatik, November 1995.

D. Prawitz. An improved proof procedure. In J. Siekmann and G. Wrightson,
editors, Automation of Reasoning. Classical Papers on Computational Logic, vo-
lume 1, pages 162—-201. Springer Verlag, 1983. Originally appeared in 1960.

R. Shostak. An algorithm for reasoning about equality. Communications of the
ACM, 21:583-585, July 1978.

T. Tammet. A resolution theorem prover for intuitionistic logic. Unpublished
manuscript, 1996.

M. Veanes. Uniform representation of recursively enumerable sets with simulta-
neous rigid F-unification. UPMAIL Technical Report 126, Uppsala University,
Computing Science Department, May 1996.

P.J. Voda and J. Komara. On Herbrand skeletons. Technical report, Institute of
Informatics, Comenius University Bratislava, July 1995.

A. Voronkov. On proof-search in intuitionistic logic with equality, or back to
simultaneous rigid E-Unification. UPMAIL Technical Report 121, Uppsala Uni-
versity, Computing Science Department, January 1996.

A. Voronkov. Proof-search in intuitionistic logic based on the constraint satis-
faction. UPMAIL Technical Report 120, Uppsala University, Computing Science
Department, January 1996.



Unification in Sort Theories
(Extended Abstract)

Christoph Weidenbach
Max-Planck-Institut fir Informatik
Im Stadtwald
66123 Saarbricken, Germany
email: weidenb@mpi-sh.mpg.de
phone: +49-681-9325221
fax: +49-681-9325299

May 23, 1996

1 Introduction

In this paper we investigate unification in different sort theories. The starting point is the
approach of Schmidt-Schauf} [6] to order-sorted unification. He considered sort theories
that consist of subsort declarations and arbitrary term declarations. A sort corresponds
to a monadic predicate that is a priori assumed to be non-empty. An example for such a
sort theory would be:

Y={QCT,f:T—>TaT, f:S— SaS}

where @) is declared to be a subsort of T', f a one-place function that maps terms of sort T'
and sort S to terms of sort 1" and sort S, respectively and a is constant contained in both
sorts T' and S. The sort theory X is called elementary: All declarations are either subsort
or function declarations, i.e., there is no real term declaration. Now given the unification
problem

I'=(zs = yr)

the unification algorithm presented by Schmidt-Schaufl yields infinitely many well-sorted
(ground) mgus with respect to 2:

gy = {xAg/aayT/a}
oy = {xg/f(a),yr/fla)}
o3 {ws/f(f(a)),yr/f(f(a))}
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In general, Schmidt-Schaufl showed that unification in elementary sort theories is deci-
dable, NP-complete and of unification type [7] infinitary. If arbitrary term declarations
are allowed, e.g., declarations of the form f(g(xp, f(x7))): S, sorted unification becomes
undecidable, but is still of unification type infinitary [6]. Until now, Uribe [8] has shown
that unification in semi-linear sort theories is decidable and NP-complete. A sort theory
is called semi-linear if, roughly speaking, non-linear occurrences of variables in term de-
clarations occur in identical subterms.

In this paper we will generalize the approach of Schmidt-Schauf:

(i) Sorts are extended to be sets of monadic predicates, denoting their respective inter-
section.

(ii) Sorts may denote the empty set.

Considering sorts to be sets of monadic predicates (also called base sorts), meaning their
intersection has many advantages: It naturally introduces a top-sort, the empty set deno-
ted by T, and therefore avoids such concepts like subterm-closedness. In addition, we can
now always derive a unique unifier for two variables that is a new variable with the union
of the sorts of the variables to be unified. For the above example we obtain the single mgu

o ={zs/2051, Y7/ 2057} }

where we write S for the singleton set {S} as a shorthand. We also use a different notation
for sort theories that is closer to first-order logic. We write

L=A{T(u@),T(f(x7)),T(a).S(f(ys)), S(a)}

for the above sort theory X, where all variables in £ are universally quantified. The
reason for the different notation is closely related to our motivation for extension (ii): We
want to increase the applicability of sorted unification to automated theorem proving. In
automated theorem proving, a problem is usually given by a set of clauses, without any
explicitly given sort information. The contained monadic predicates that are the natural
candidates for sorts, may denote the empty set and these predicates may occur in an
arbitrary way in clauses.

Nevertheless, it is possible to a posteriori extract sort information. For example, using
the relativization [6, 11] rules for sorted formulae we know that the standard' clause

=T'(z)V=S(z)VaR(x,y) VvV S(f(z))
is logically equivalent to the clause
—R(xgsm,y) VS(f(agsry))

where sorts are attached to variables. Negative monadic literals with a variable as their
argument code sort restrictions on the variable. The variable y has top-sort, i.e., y is

"With the term “standard” we refer to notions without sorts.
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interpreted like a standard variable, ranging over the whole domain. The problem remains
how the sort theory is extracted from the clause set. We have shown that for the tableau
calculus, it is sufficient to consider the sort theory built from the monadic atoms on the
branch of the tableau we want to close [11]. For the resolution calculus [10], it is sufficient
to dynamically choose from each clause consisting of positive monadic literals only, one
positive literal for the sort theory. Hence, it is sufficient to consider sort theories of the
form of £ where sorts may denote the empty set. The application of sorted unification
is not a topic of this paper, however, it is the motivation for our approach to sorted
unification.

In the following we will present the rules of sorted unification together with some
complexity results:

1. Sorted unification for weak-elementary (see Section 2) sort theories is decidable,
NP-complete and of unification type finitary.

2. Sorted unification in linear and semi-linear sort theories is decidable, NP-complete
and of unification type finitary.

3. Sorted unification is pseudo-linear sort theories is decidable and of unification type
infinitary.

4. Sorted unification in non-linear sort theories where the depth difference of non-linear
variable occurrences is at most one, is undecidable.

. Rigidly sorted unification is decidable and of unification type finitary.

ot

In particular, the results 3 and 4 identify a new border between decidable and undecidable
problems: If all non-linear occurrences of variables in the sort theory occur at the same
depth sorted unification is decidable, if there is a difference in the depths of these variables
of at most one, sorted unification is undecidable. A rigid sort theory is a sort theory where
all variables are considered to be free variables, not universally quantified variables. Such
sort theories play an important role when sorted unification is applied to free variable
tableau [11].

2 Sorted Unification

We use the usual notation for terms, substitutions, etc. The set of all terms is denoted
by T(F,V) or T as a shorthand and the set of all ground terms is denoted by 7 (F). Let
S be a finite set of monadic predicate symbols, also called base sorts. Then a sort T is
a finite subset of S, T € 2°, denoting the intersection of the contained base sorts. For
variables we assume a function sort: V — 29 that attaches sorts to variables such that for
each sort T € 2% there are countably many variables z with sort(z) = T. For § € 25, we
write T, the top sort. We write S for {S} if the context causes no confusion. Usually,
variables are annotated with their sort. We write zg if sort(z) = S.
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Syntactic properties of terms will play an important role for the complexity of sorted
unification: A term ¢ is called elementary if ¢ is either a variable or a constant or of the
form f(xy,...,x,) where all x; are different. A term t is called weak-elementary if t is
either a variable or a constant or of the form f(¢y,....t,) where each t; is either a variable?
or a ground term. The term ¢ is called linear if any variable occurs at most once in ¢. It is
called semi-linear if for any variable z occurring more than once in ¢, there is a subterm
f(s1,...,8,) of t such that all occurrences of x are in f(sy,...,s,), each s; has at most
one occurrence of z and whenever x occurs in s; and s; we have s; = s;. A term ¢ is called
pseudo-linear if all non-linear variable occurrences in t occur at the same depth.

A wunification problem T is either T, L or a conjunction of pairs I' = (t; = s{A...At, =
iff
tio =s10 A ... ANt,o0 = s,0. A unification problem I' = (s1 & t] A ... A s, & t,) is called
dag solved, ift all s; are variables, s; # s; for every ¢ and j with ¢ # j and s; ¢ vars(t;)
foralli, >4 IfI'=(z1 = 14 A ... ANz, = t,) is a dag solved unification problem, then
™ =o0109...0, with 0; = {z;/t;} is the unifier induced by I'.

sp). A substitution o solves a unification problem I' = (] &= s; A ... At, & s,)

We start with a standard dag oriented unification algorithm, similar to the rule-based
standard unification algorithms presented by Dershowitz and Jouannaud [4] or Jouannaud
and Kirchner [5]. The rules are shown in Figure 1.

These rules are exhaustively applied (with respect to the commutativity and associa-
tivity of A) to a unification problem I' until I' is dag solved or T, L is derived. The rule
Orientation is not contained in other rule sets for standard unification [4, 5]. Therefore,
the rules of these sets are also apply with respect to the commutativity of ~. However, we
will extend our standard unification to cope with the sort information of variables. Then
it is necessary to distinguish between the pair ¢ = y and y ~ x, because these variables
may have different sorts.

An atom S(t) is called a declaration if S € S. Tt is called a subsort declaration if
t is a variable and a term declaration otherwise. It is called a function declaration if
t is elementary. A sort theory L is a finite set of declarations where all variables are
implicitly assumed to be universally quantified. All following notions and definitions refer
to a fixed, finite sort theory £. The size of a sort theory L is size(L) = ZS(,)Eﬁ(size(t) +
Z(vevars(t) |807”t($)|).

Depending on the declarations occurring in £, the following sort theories are distin-
guished: L is called elementary (weak-elementary) if every term in a term declaration in
L is elementary (weak-elementary). L is called linear (semi-linear, pseudo-linear) if every
term occurring in a term declaration is linear (semi-linear, pseudo-linear).

Definition 2.1 The set of well-sorted terms Tg of sort S is recursively defined by:

1. x €Ty if S C sort(x).
2.t€Tg if S is a base sort and S(t) € L.
3. to €Tgs ift € Ts and xo € Tyopy(e) for all z € dom(o).

4.t € Tsu.us, ifteTs, forall.

?Multiple occurrences of the same variable are allowed.
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Tautology
t=tANl' —»T
Orientation
txaz Al 2 zx=tATl
iftegy
Decomposition
fltr,. oo ty) = f(s1y..., sp) AT =t = s1 A
Application
e yAl 2=y AD{z/y}
if © € vars(T")
Clash
flty, .. ty) =g(st, o ysm) A= L
if f#g
Cycle
z1 R t[wo)p, A Az, &[]y, AT = L
if there exists some 7, 1 <12 < n, with p; # €
Merge
rtAzrsA sz tAtxsAT
ift,s ¢V and depth(t) < depth(s)

ANt s, AT

Figure 1: The Rules of Dag Standard Unification




Sorted Fail
ra f(ty, ..., ty) AT = L
if T [Z sort(x) and there is no sort {11,...,T,} C sort(xz) with decla-
rations Tj(f(sj1,...,8jn)) € L
Subsort
rxyANl wz=zAy=zAT
if sort(z) € sort(y), z new to I', and sort(z) = sort(z) U sort(y)

Weakening
rx=tAl s ax~siAtxs1A...ANt=s, AT
if =~ tAl is dag solved, t ¢ V, tI'" & Teop(a), 111, T} E sort(x)

and for each T} there is a declaration T(s;) € £ such that ¢ and the s;
share the same top symbol

Figure 2: The Rules of Dag Sorted Unification

Note that there are only declarations for base sorts in £. Case 4 also includes the
case where S = T, i.e., n = 0; then we have 71 = 7. T(F)g is the restriction of Tg to
ground terms. A sort S is called empty if there is no well-sorted ground term ¢ € Tg,
or equivalently if 7(F)g = . We always have T(F)s C Tg. The binary relation C
denotes the subsort relationship. If S and T are sorts, then we define S C T iff there
exists a variable xg with xg € Tp. Note that if there exists one variable g € Tp, there
are infinitely many variables of sort S in 7p. The relation S C T implies Tg C Ty, but
the relation T(F)s C T (F)yp neither implies S © T nor Tg¢ C Tp. A substitution o is
well-sorted if for every x € dom(o), 20 € Ty (). It can be polynomially decided (in
size(L) + size(o)) whether a substitution o is well-sorted.

Now we extend standard unification (Figure 1) to sorted unification. A sorted uni-
fication problem I' = (z; = t; A ... ANz, = t,) is called dag sorted solved, iff T' is dag
solved and ;T € T, o (y,) for all . Since dom(T) = {x1,...,x,} the induced substitu-
tion ['* is well-sorted. The sorted unification algorithms consist both of the three don’t
care non-deterministic sorted rules Sorted Fail, Subsort and Weakening (see Figure 2) and
the rules of standard unification (see Figure 1). These combined rule sets are applied to
a unification problem I' until it is solved or T, L is derived.

In rule Subsort the condition sort(xz) € sort(y) does not imply sort(y) Z sort(z).
However, if sort(y) E sort(z) then Tym(2) = Teort(a)usort(y). Note that declarations must
be well-sorted renamed, before they are used by the Weakening rule. The condition
tI™ € Teort(z) can be checked in polynomial time although I'* may increase exponentially
in size of . The idea is first to compute the sorts of all terms in " bottom up according
to the variable dependencies in I'.

Due to the rule Weakening, sorted unification does not terminate, in general. The
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Weakening rule introduces terms from £ with fresh variables. Therefore, the number of
variables and the multiset of all term depths in the unification problem may increase. In
addition, the number of sorted unsolved equations may increase, too. In general, sorted
unification, as well as the problem whether a sort is empty, is undecidable. The Weakening
rule, together with the other rules can simulate arbitrary computational processes.

It can be shown that for every unification problem I' and finite sort theory £, there
exists a minimal, complete set of unifiers pU,(I") and that sorted unification (Figure 1
and Figure 2) is correct and complete with respect to the usual semantics [9].

Concerning the complexity issues we start with weak-elementary sort theories. These
properly include elementary sort theories where sorted unification is known to be decidable,
NP-complete and of unification type finitary [6].

Theorem 2.2 Unification in weak-elementary sort theories is decidable, NP-complete and
of unification type finitary. The problem whether a sort is empty, s decidable and NP -
complete, too.

PROOF: Let u(I') be the multiset of all term depths of pairs = = t, such that ¢ is not
ground and tI'* ¢ T,op (). For any pair = ~ ¢t where t is ground, either t € Tyop(p) or ' is
not solvable. Therefore these pairs can be disregarded. Now u(T') always decreases after
the sequence of a Weakening step followed by the exhaustive application of all other rules.
The number of possible Weakening steps is bound by the number of function symbols in
the initial unification problem. O

Theorem 2.3 Unification in linear (semi-linear) theories is decidable, NP-complete and
of unification type finitary. The problem whether a sort is empty, s decidable and NP-
complete, too.

PrOOF: Linear and semi-linear sort theories can be transformed in linear time into weak-
elementary sort theories. O

The following example shows a pseudo-linear sort theory with a unification problem
leading to infinitely many mgus. Consider the pseudo-linear sort theory

L ={S(g(zs)),S(h(zs)),T(g(xs)),S(f(g(xs), h(zs))), S(f(g(ys), fys.zs)))}

and the unification problem
I'= (29 & f(vr,ws))

[ is solved but not sorted solved because f(vr,wg) ¢ Ts. The rule Weakening is applicable
using the two declarations S(f(g(zg),h(zg))) and S(f(g(ys), f(ys,xg))), respectively:

L't = (zs= flg(zs), hzs)) A flor,ws) = f(g(zs), h(zs)))
Ay = (zs = flg(ys), flys,xs)) A flor,ws)) = fg(ys), flys,xs)))
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The two problems can be transformed into standard solved form:

Iy = (z¢= flg(zg),h(zg)) ANvp = g(zg) Nwg = h(zg))
Ay = (25 = flg(ys). f(ys, z5)) Avr = glys) ANws = f(ys, zs))

The problem I'y is already sorted solved. The problem As contains the unsolved pair wg ~
f(ys,z5) to which we apply Weakening using the declarations S(f(g(z's).h(z's))) and
S(f(9(vs), f(ys,2))), respectively. We only show the pairs resulting from the Weakening
step.

Az = (ws = fg(al) h(z) A flys,zs) = flg(als), h(zs)))
Ap = (ws = flgWs), fys.x's) A flys,zs) = flg(ys), f¥s, )

After standard unification we get

Agp = (wg = f(g(zly). h(zy)) Nys = g(ay) A xg = h(zly))
A = (ws= flg(ys) f(ys. ) Nys = g(ys) Nws = f(ys, 7))

Now Ags is sorted solved and Ays contains the sorted unsolved pair zg ~ f(yg.lg) a
variant, of the pair wg = f(ys,zg) in As. Hence, sorted unification runs through a “cycle”
producing infinitely many mgus for the initial problem I':

o = A{zs5/f(g(xs),h(xs)),vr/g(xs), ws/h{zg)}
oy = {zs/f(glg(zs)). f(g(zs), h())), vr/g(g(as)), ws/ f(g(xs), h(zs))}
o3 = {z5/f(glg(g(x$))). fg(g(x')), f(g(2). h('6)))), vr/g(g(g(2%))),

ws/f(g(g(#8)), f(g(z%), h(z4)))}

However, it can be shown that such “cycles” are not necessary to test unifiability, i.e.,
whenever a unification problem is solvable, there exists a solution without a “cycle”.

Theorem 2.4 Unification in pseudo-linear sort theories is decidable and of unification
type infinitary.

Theorem 2.5 Unification in sort theories with non-linear term declarations, where the
depth difference between different occurrences of the same variable is at most one, s un-
decidable.

PrROOF: Reduction to the Halting problem. O

So far, we assumed the variables in the sort theory £ to be universally closed. This
point of view is appropriate to extend resolution with sorts. For free variable tableau,
however, this is not the case. Then the variables in £ are free variables, i.e., they can only
be instantiated once. These requirements lead to the following definitions and results.
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Definition 2.6 A substitution o is called rigidly well-sorted with respect to L if o is well-
sorted and if there exists a substitution T with o C 7, dom(7) C (dom (o) U vars(L)) and
for all x € dom(t), sort(x) # T:

1. Ifxm € V, then either sort(x) C sort(xzT) or for all S € (sort(x)\ sort(xT)) we have
S(xt) € L7

2. If x7 €V, then S(x7) € LT for all S € sort(x)

Consider the sort theory £ = {S(a), S(f(zg))}. The substitution o = {us/f(f(vg))}is
well-sorted but not rigidly well-sorted. It is not rigidly well-sorted because the declaration
S(f(xg)) is needed twice with different instantiations to establish the well-sortedness of
o. With respect to the sort theory £ = {S(a), S(f(zs)), S(f(ys))} the substitution o is
rigidly well-sorted where 7 = {zg/f(vs), ys/vs} is the substitution which instantiates £’
in the appropriate way.

The usual notions of a unifier and a most general unifier transfer from sorted unifica-
tion to the case of rigidly well-sorted substitutions. Note that o is a rigidly well-sorted
unifier with respect to £ iff o is a rigidly well-sorted unifier with respect to Lo. The sor-
ted unification algorithm (Figure 2) can be modified for rigidly well-sorted substitutions.
Instead of renaming declarations from £ before they are used in the rule Weakening or in
the computation of well-sortedness, only the declarations in £ are used and instantiated
accordingly. In addition, the rule Application is also applied to L.

Theorem 2.7 Rigidly sorted unification is decidable and of unification type finitary. The
empty sort problem 1s decidable.

3 Related Work

There is a close relationship between sorted unification and regular tree languages [3]. The
ground terms induced by elementary sort theories are regular tree languages. The ground
terms of weak-elementary sort theories can be described by tree automata with equality
constraints on direct subterms, as shown by Bogaert and Tison [1]. Recently, from results
on tree automata presented by Caron et al. [2], it can be shown that sorted unification is
decidable for arbitrary term declarations if all declarations satisfy an ordering restriction.
We assume a partial ordering on the sort symbols and require that whenever a declaration
contains non-linear occurrences of variables, the sorts attached to the variables in the
declaration are strictly below the sort symbol of the declaration itself. For example, for
the declaration S(f(z7, g(z7))) we would require that T is strictly below .S in the ordering.
However, there are operational differences between algorithms on tree automata and sorted
unification. For tree automata two things usually exists: Algorithms computing boolean
combinations and a non-emptiness test deciding whether the language of an automaton
is empty. In general, the non-emptiness test of the automaton corresponds to the non-
emptiness test for a sort. Boolean combinations of sorts cannot be expressed inside the
framework of sorted unification, in general. On the other hand, sorted unification computes
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a complete set of unifiers for a specific unification problem of arbitrary terms that do not
necessarily satisty the syntactic restrictions on the sort theory.
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Some Related Cases of Infinite Unification and
Matching

Marisa Venturini Zilli

We show how infinite unification, infinite matching and unification of infinite
sets of terms can be related.
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Complexity of Term Schematizations

Gernot Salzer

We investigate the structural complexity of unifying term schematizations.
Using the 1-in-3-SAT problem we show that unification is NP-hard even when
no Diophantine equations have to be solved. To obtain an upper bound we give
an algorithm for solving the word problem for term schematizations. Our aim
is to prove unification to be in NP (assigning unit cost to the solution of linear
Diophantine equations). Currently this claim has the status of a conjecture
since parts of the proof are still missing.
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Polynomial Non-AC-Unifiability and Matching Filters

Robert Nieuwenhuis and Jose Miguel Rivero
Technical University of Catalonia
Pau Gargallo 5, 08028 Barcelona, Spain
E-mail: {roberto,rivero}@lsi.upc.es

As a consequence of previous work by Nieuwenhuis and Rubio, it seems that
efficient automated deduction strategies with built-in associativity and commu-
tativity properties (AC) for some operators could be obtained by dealing with
AC-unifiability constrained formulae. Here we address ongoing work on some
of the practical aspects appearing in actual implementations of such strategies:
efficient sound tests for detecting cases of non- AC-unifiability (the full decision
problem is well-known to be NP-hard) as well as some ideas for practical me-
thods for AC-matching. In particular, we provide benchmarks for several cases.
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Matching and Unification with Compiled Substitution
Trees

Robert Nieuwenhuis, Jose Miguel Rivero, and Miguel Angel Vallejo
Technical University of Catalonia
Pau Gargallo 5, 08028 Barcelona, Spain
E-mail: {roberto,rivero,vallejo}@lsi.upc.es

We provide a standard abstract architecture around which high-performance
theorem provers for full clausal logic with equality can be built. A WAM-like
heap structure for storing terms (as DAG’s, with structure sharing) and several
substitution trees [Graf RTA95] are central in the architecture. These two data
structures turn out to be surprisingly well combinable due to conceptual simi-
larities. Indexing techniques based on substitution trees outperform previous
methods, and are integrated in such a way that e.g. no writing on the heap is
needed during (many-to-one) term unification. Static clause (sub)sets can be
compiled in this framework into efficient abstract machine code for inference
computation and redundancy proving. We provide benchmarks for several ty-
pical operations.
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Results about RUE Resolution
Ulf Dunker and Annette Muller

University of Paderborn
33095 Paderborn (Germany)
dunker@uni-paderborn.de and nette@uni-paderborn.de

1 Introduction

Based on an implementation of the first-order resolution calculus, which was
realized within Paderborn’s C library LogicAL [DFKBLL94], we were intere-
sted in extending the algorithm for processing equality. In [BIB92] we found the
approach of Digricoli: RUE [Di79], which stands for Resolution by Unification
and Equality. With general E-resolution a resolution step is possible only if the
differences of terms in corresponding literals can be fully resolved. Principally
RUE allows resolution steps at any time. The difference between unresolved
terms, which defines a distance between them, is represented within the new de-
rived clause by disagreement sets, a series of unequalities. So, unresolved terms
can be handled later in order to reduce their distance. For unifying two terms
in a literal s # ¢, instead of applying paramodulation Digricoli also suggests the
idea of reducing their distance in a similar way. The non-deterministic RUE
procedure is correct and complete.

2 RVUE is Incomplete

When applying RUE, in each step a disagreement set and a substitution have
to be chosen. In order to obtain a deterministic procedure which can be imple-
mented, Digricoli defines some strategies for this.

At first he defines the wviability of a disagreement set. The viability is a
necessary condition that there is a sequence of equalities, so that the unequa-
lities of the disagreement set can be resolved. Two terms may lead to more
than one viable disagreement set. That one which terms have the lowest term
depth is called the topmost viable disagreement set. For deriving new clauses,
all disagreement sets, all viable disagreement sets, or just the topmost one are
possible choices. The viability test is described in [DLS89].

Secondly, instead of trying each of the possibly infinite number of applica-
ble substitutions, three special substitutions are suggested. The most general
partial unifier (mgpu), the RUE unifier which applies the viability test, and the
2-scan unifier which is another special partial unifier.

In [BoHa92] it is shown that deterministic RUE resolution using these
strategies is not complete without applying the functional reflexivity axiom
f(X) = f(X). So RUE doesn’t seem to be a reasonable theorem proving pro-
cedure for problems with equality.
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3 Heuristics

Additionally to the strategies of chosing disagreement sets and substitutions,
reducing the number of possible resolution steps can be made by restricting
which parent clauses can be selected for resolution (N-; P, Set of Support re-
solution, ...) or by restricting the maximal clause length or the maximal term
depth. We want to introduce another heuristic.

If two literals t; = to und t3 # t4 should be resolved, the pairs ¢, t3 and
to, t4 have to be tested whether they are unifiable. If this test fails, the pairs
t1,t4 and to, t3 also have to be tested because of the symmetry. The idea is to
sort all equality arguments according to a given term order and to process only
the first test without loosing too much information.

We chose a term oder known from term rewriting systems: t; < to <
w(t]) < w(te) where w(t) = wy if t is a constant, w(t) = ws if t is a variable,
and if t = f(ty,...,t,), w(t) =wz + 210 w(ti).

The intention is that if the distance |w(#;) — w(t2)| is large, the probability
to unify ¢; and t is small. It can be shown, that the order w; < wy < w3
theoretically is the best choice, e.g. w; =1, wy = 3, and w3 = 5.

The viability test can also be equiped with several heuristics.

4 Results

For the implementation, the resolution algorithm of LogicAL was extended by
paramodulation and RUE with the described strategies and heuristics. In order
to evaluate the large number of possible settings for the resulting algorithm, we
used the TPTP formula library [SS94] for runtime tests. The TPTP contains
1831 unsatisfiable CNF formulas with equality mainly contained in ten problem
classes of the TPTP. We used N-resolution and a maximal runtime per formula
of ten minutes, i.e. maximal twelve days per test.

4.1 Best Strategy

At first we wanted to find the best RUE strategy (the values are numbers of
solved formulas or numbers of formulas decided as satisfiable (errors) absolute
and in percent)

e Testing the choice of disagreement sets with RUE using mgpu:

— Topmost viable disagreement sets: 79 (4%) solved, 89 (5%) wrong
— All viable disagreement sets: 685 (37%) solved, 84 (5%) wrong
— All disagreement sets: 763 (42%) solved, 3 (0.1%) wrong

So Digricoli’s viability test leads to a large amount of wrong decisions
without improving the procedure. Trying all disagreement sets is the
best strategy and though it’s incomplete, 0.1% is a low error rate.

e Testing the choice of substitution with RUE trying all disagreement sets:
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— All three substitutions (mgpu, RUE unifier, and 2-scan unifier) lead
to 3 (0.1%) wrong decisions.

— Also the number of solved formulas is nearly the same: 763 (42%)
mgpu, 742 (41%) RUE unifier, 765 (42%) 2-scan unifier

— The best runtime was obtained with the 2-scan unifier

Therefore the strategy of trying all disagreement sets with the 2-scan
unifier leads to the best results.

Remark: Our paramodulation version solves 508 (28%) of the formulas, of
course without errors because resolution with paramodulation is complete. But
with only three wrong decisions RUE solves 50% more problems.

4.2 Best Heuristic

Secondly we tryed to find the best RUE heuristic. We found that all heuristics
shows advantages in some problem classes and disadvantages in others. With
restricting the clause length to five, the term depth to eight, and using the
term order mentioned before, the number of solved formulas can be raised to
778 (42%) where 4 (0.2%) wrong decisions were made. The term oder which
was theoretically shown to be the best also delivers the best runtime results.

4.3 Otter

In order to get a more global result about the efficiency of RUE, we compared
the results with those obtained by OTTER, a famous resolution based theorem
prover developed in C by W. McCune [McC94]. We tested three OTTER
configurations: Standard (positive hyper resolution, paramodulation), Knuth-
Bendix (positive hyper resolution, Knuth-Bendix completion), and Autonomous
(the prover chooses the strategy for each formula).

The Autonomous configuration delivers the best runtime results. OTTER
solved 618 formulas (34%). So RUE solved 24% more formulas than OTTER.
When looking at the runtime, on the average, RUE solved the problems faster.

5 Conclusion

RUE was shown to be an efficient theorem proving procedure. The best stra-
tegy is to try all disagreement sets with the 2-scan unifier. The rate of wrong
decisions is low (0.1%). Additional heuristics, especially the term order ap-
proach, can help to solve more formulas without producing much more wrong
decisions. In relation to OTTER, with RUE better results with a better run-
time behaviour can be obtained for the TPTP formulas. But remember that
when RUE decided satisfiable, you cannot be sure that the decision is correct.
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Goal-Directed Completion using SOUR Graphs*

Christopher Lynch T

May 29, 1996

Abstract

We give the first Goal-Directed version of the Knuth Bendix Completion Procedure. Our pro-
cedure is based on Basic Completion and SOUR Graphs. There are two phases to the procedure.
The first phase, which runs in polynomial time, compiles the equations and the goal into a cons-
trained tree automata representing the completed system, and a set of constraints representing goal
solutions. The second phase starts with the goal solutions and works its way back to the original
equations, solving constraints along the way.

1 Introduction

The Knuth Bendix Completion Procedure [7] is the best known procedure for solving word problems
and equational unification problems. One reason that it works as well as it does is that it is based
on a well-founded ordering. In many cases, this allows it to convert a set of equations into a decision
procedure to solve the word problem for its equational theory. This cannot always work, because the
word problem is undecidable. The Completion Procedure works by starting with the initial set of
equations, continually generating new equations, at each point checking to see if it has discovered a
solution to the goal. No matter what the goal is, it always generates the same equations. There has
been much research to improve the efficiency of the Completion Procedure, but up until now, nobody
has found a way to use the goal to direct the search for solutions of the goal. In this paper, we give
the first method for doing that.

The fact that Knuth-Bendix completion is not goal directed means that if a goal is false, and the
set of equations has an infinite canonical system, then Knuth-Bendix completion will run forever. A
goal directed system could detect that certain critical pairs are not necessary to solve a given goal,
and halt and say the goal is not true. It is possible to give heuristics for constructing critical pairs so
that equations that are related to the goal are created first. But in order to have a complete system,
all critical pairs much be eventually created. So this changes the order in which critical pairs are
created, but all of them must be created eventually. It could be argued that the completion procedure
can be combined with a narrowing (or rewriting) procedure so that new equations are immediately
involved in inferences with the goal. In this sense the completion procedure is more goal sensitive.
But it is not goal directed, because it is still the case that all critical pairs must be constructed for
a false goal. Also, it is possible to encode the goal as an equation itself, and prove the goal in the
completion procedure. However, this process is equivalent to the process of interleaving completion
with narrowing, and therefore must construct all critical pairs. In fact, it is worse, because it does not
give any priority to the goal. Until now, there have been no modifications to Knuth Bendix completion
to allow the process to stop when a goal is false and the canonical set of equations is infinite.

Consider the equational theory E = {f(f(z)) = g(f(x))}. Suppose we want to know if @ and b
are equivalent modulo E. The Completion Procedure will generate infinitely many equations from FE|

*This document was created using Xy-pic[13]. Thanks to Kristoffer Rose for his help with Xy-pic
fINRIA Lorraine et CRIN, Campus Scientifique, BP 101, 54602 Villers-1és-Nancy cedex, France, Phone: (33) 83 59
30 88, Fax : (33) 83 27 83 19, email: lynch@loria.fr
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but never halt and say the goal is not true, although it is trivial to see that the goal does not follow.
The General E-Unification Procedure [14] is an alternative to Completion. It starts from the goal,
and creates new subgoals by using the equations. But it has a drawback that it cannot incorporate
orderings and make things smaller at each point. Given the theory E = {f(a) = a}, and the goal
g(a) = h(a), it will replace g(a) by g(f(a)) by g(f(f(a))) etc. It never halts and says “no”. Orderings
are crucial for converting theories into decision procedures.

For logic programming, there is a procedure which solves goals by building up from the facts until
a goal is reached. If those bottom-up proofs are reversed, we have SLD Resolution, a goal-directed
procedure. This is possible because an initial rule is involved in every inference. But in the completion
procedure, we cannot turn the proof around and work backwards, because inferences may not involve
initial equations, and we have no idea what equations will be derived. In our approach, we handle
this by schematizing the equations that will be derived, using constrained tree automata. Recently,
there have been some papers showing how to schematize terms (see [6] for references). However these
approaches do not show how the schematizations can be created.

Our approach is based on Basic Completion [1, 11], which works by saving unification problems
in equational constraints instead of applying most general unifiers. It is even possible to save the
ordering problems in constraints [12]. In [9], we defined a graphical theorem proving approach, based
on Basic Paramodulation. This procedure was refined to be implemented as a Completion Procedure
in [10]. The initial problem is stored in a graph with terms represented as dags. The edges forming
the dag are called subterm edges, and the edges for the equations are called rewrite edges. Inferences
are transformations on the graph, which create new subterm and rewrite edges, labelled with the
constraint and renaming used in the inference. Inference do not increase the number of nodes in
the graph. The graphs are called SOUR graphs, because the edges in the graph represent Subterm,
Ordering, Unification, and Rewrite relations.

SOUR Graphs can be adapted to a goal directed completion procedure. When we add a new edge
to the graph, instead of inheriting the actual constraints and renamings, we just give a reference to the
constraints and renamings it is built up of. So there are only finitely many edges added to the graph,
in fact only polynomially many, and completion halts in polynomial time (we call this a compilation).
It creates a schematization of the completed set of equations and a set of constraints representing
goal solutions. After the compilation halts, the procedure starts with the goal solutions and words
backwards from the goal to the initial equations, solving constraints along the way. If our technique
is restricted to narrowing, we could consider the work of [5, 2] to be special cases. We consider our
work to be an extension of [8], where it was first shown how to decide the word problem for ground
terms in polynomial time, with a congruence closure algorithm. We show that it is possible to perform
congruence closure in polynomial time, even for non-ground terms. The difference is that the result
of the congruence closure is a constraint which now must be solved.

The paper is as follows. After some brief definitions we define how to compile a set of equations
into a SOUR graph, in polynomial time. Next we give the semantics of SOUR graphs, to show that
it truly represents the completion of a set of equations. Then we give inference rules to solve the
constraints of the SOUR graph. In the last section, we discuss ways to use the procedure as a decision
procedure. The proofs are missing in this abstract, but they are straightforward.

2 Preliminaries

We present necessary definitions briefly. We refer the reader to [4] for a more detailed exposition.
Terms are defined inductively from a set of functions symbols. If f is a function symbol of arity p, and
t1,-- -, t, are terms then t = f(t1,...t,) is a term, and we say top(t) = f. We consider variables and
constants as arity 0 function symbols. Unifiers and substitutions are defined as usual. A renaming is
an injective substitution p such that every variable is mapped to a variable. The renaming ¢d is the
identity substitution. A fresh renaming is a renaming which maps all variables to new variables. In



SOUR graphs, renamings will be written in the form p;, where  is a positive integer. They can be
understood to mean that zp; ---p; . is the same as zp;, - pj,, if and only if m = n and 7, = 7, for
all k, 1 <k < n. For this, we use the concept of a fresh number, which means an index number that
has not previously appeared.

The symbol &~ (resp. %) is a binary symbol, written in infix notation, representing semantic
equality (resp. disequality). The 0-ary symbol O will represent solutions to equations. An object is
ground if it contains no variables. We say so = to is an instance of s = t. if so and to are ground.
Let EQ be a set containing equations. We define EQ™* to be the reflexive, symmetric, transitive and
congruence closure of all the instances of equations s =~ ¢ in E(Q).

Let EQ be a set of equalities and disequalities. We define a function Sub so that Sub(EQ) is the
set of subterms in EQ. If ¢t = f(t1,---,t,) with n > 0, then Sub(t) = {t} U <;<, Sub(t;). We define
Sub(s ~ t) = Sub(s) U Sub(t). A disequation s # t is viewed as a term with s the first argument of %
and t the second, so Sub(s # t) = {s % t} U Sub(s) U Sub(t). We define Sub(EQ) = U,qepg Subleq).

We assume that < is a reduction ordering, total on ground terms. The symbol = is a binary symbol
that represents syntactic equality, and < is a symbol representing the ordering <. A constraint is a
conjunction of = and < expressions. A constraint s =t is trueif s =¢ s <tistrueif s <t, By A E>
is true if £ and F»y are true, and T is always true. We say that a substitution o is a solution of
a constraint ¢ if o is true. If there is a substitution o such that go is true, then @ is satisfiable.
Otherwise it is unsatisfiable. We say o = mgs(p) (o is a most general solution of ¢) if o is a solution
of ¢, and o < 6 for all solutions 6 of ¢. See [3, 12] for algorithms to find the mgs of a constraint,
where < represents a lexicographic path ordering.

Let EQ be a set of equations and disequations, where no two disequations in £() have any variables
in common. A set of constraints C' is a complete set of solutions for EQ if (i) for every solution o
of some ¢ € C, there is a disequation s % t in EQ such that so ~ to € EQ*, and (ii) for every
disequation s % t in E() and substitution o such that so =~ to € EQ”, there is a constraint ¢ € C
such that o is a solution of .

A constrained term, (or equation or disequation) t[¢ ] is a pair of a term (or equation or dise-
quation) ¢ and a constraint ¢. An equation or disequation eq is viewed as the constrained equation
or disequation eq[ T ]. The meaning of t; [¢1] = t2[ 2], is t1 = t2 A ¢1 A 2. The meaning of
f@leDIY]is f(t) [¢ A ¥] The Basic Completion inference rules are the following.

Critical Pair

sctlei]  usT=vle]
uftpl mvlsp=s Ns=tANuls]>=v A pip A p2]

where p is a renaming substitution and s’ € Var.

Narrowing

setle]  uls'T#v[e:]
ultpl] g vlsp=s Ns>=t A pip A 2]

where p is a renaming substitution and s’ € Var.

Equation Resolution
uEve]
Ofu=v A ¢]

If EQ is a set of equations' and disequations, let Clos(EQ) represent the closure of EQ under the
Basic Completion inference rules. We have the following soundness and completeness result from [12].

1 . . . .
Throughout the paper, we assumne we are given a set of equations closed under symmetricity.
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Theorem 1 Let EQ be a set of equations and disequations. Let C = {p | O[] € Clos(EQ)}. Then
C' 15 a complete set of solutions for EQ).

3 SOUR Graphs

In this section we show how to create a SOUR graph. An initial SOUR graph is created as the dag
representation of a set of equations. From the initial representation a compilation process is performed
that creates a schematization of the completed system. The schematization adds new edges to the
SOUR, graph, but does not add nodes.

A SOUR graph contains nodes which are labelled uniquely by the subterms in the initial set of
equations. Each node represents a set of constrained terms. There are two types of edges in a SOUR
graph, subterm edges and rewrite edges. Subterm edges are directed edges labelled by an index number.
Some subterm edges are also labelled with a set of pairs, each pair consisting of a subterm edge and a
rewrite edge. Rewrite edges are directed edges, some of which are labelled by a set of pairs, each pair
consisting of two rewrite edges. Edges that are not labelled with a set of pairs are called nitial edges.
Initially a graph only contains initial edges. As the compilation process is performed, new edges are
created due to pairs of existing edges. The sets of pairs for an edge represents the different ways the
edge could be created. Therefore, a compiled graph contains a history of its origins. Let u and v be
two nodes in the graph. Then there is at most one rewrite edge from u to v. If a rewrite edge exists
from w and v, we will call it (R,u,v). If u is labelled by a term with an n-ary top symbol, then for
all 7 such that 1 < ¢ < n there is at most one subterm edge from wu to v labelled with index 2. If 7 < 1
or ¢ > n then there are no subterm edges from u to v labelled with 7. If a subterm edge exists from
u to v labelled with index ¢, we will call it (S, ¢, u,v). Also, every graph has an additional set of pairs
called Goal associated with it, each pair consisting of two subterm edges.

Given a set EQ of equations and disequations, we create an initial SOUR graph in the following
way from the subterms of EQ. For every element ¢ of Sub(EQ), there is a node in the graph labelled
with . We create a set of subterm edges S(EQ) such that if f(¢y,---,t,) € Sub(EQ), then, for each
ti, there is an initial subterm edge e € S(FEQ) from the node labelled with f(¢1,---,t,) to the node
labelled with #;. This edge is labelled with index 7. We also create a set R(EQ) of rewrite edges
such that if s = t € EQ, then there is an initial rewrite edge from the node labelled with s to the
node labelled with ¢. There is also an initial rewrite edge from the node labelled with ¢ to the node
labelled with s. We add both edges, but in inferences, we will use ordering constraints, which will be
unsatisfiable for edges ordered the wrong way. In figures, we will sometimes draw unoriented rewrite
edges, since they always appear in both directions. We say that the SOUR, graph composed of edges
of S(EQ) and R(EQ) is the initial SOUR graph of EQ. In Figure 1, we give the initial SOUR graph
of ffx = gfx. This gives us the usual dag representation of a set of equations. One point that is
important to understand is that when we define the semantics, only the top symbol of a term labelling
a node will be used. The rest of the term was only used to aide us in defining the graph, so in future
figures, only the top symbol will be written.

After the initial SOUR graph, is created, we must compile it into a schematization of the completed
system by adding edges corresponding to inferences. Before we define how to perform the compilation,
we define what it means for two nodes to top unify. Two nodes top unify if they represent the same
term, ignoring constraints and renamings (which we describe below). Formally, if u and v are nodes,
then v and v top unify if (i) v or v is labelled by a variable symbol, or (ii) w and v are labelled by
the same n-ary function symbol and for all 7, 1 <1 < n, there is an edge ¢; from v to some u; and an
edge e;/ from v to some v; such that both e; and e;/ are labelled with index 7, and u; and v; top unify.
In order for terms represented by nodes to unify, the nodes must top unify.

We will define an inference procedure that detects certain patterns in the graph and adds a new edge
based on each pattern. We first define a function RUR so that if e; = (R, v, v2) and ea = (R, v3,vy4)
are edges such that (i) v; and v3 top unify, (ii) v; is not labelled by a variable, and (iii) e3 = (R, v2,v4)
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Figure 1: Initial SOUR graph Figure 2: RUR edge

is not an initial edge, then e3 = RUR(e1,e2). We say that eg is created by an RUR transformation.
Creating edge e3 corresponds to performing a critical pair between the equation represented by e; and
the equation represented by e2, at the root of the left hand sides. See Figure 2 to see a critical pair
between a = b and a = ¢. The new edge is represented by a dotted line. After adding the new edge,
the graph represents the original equations plus the equation added by performing the critical pair.
Let SUR be a function so that if e; = (S,4,v1,v2) and es = (R, v3,v4) are edges such that (i) v
and vy top unify, (ii) v2 is not labelled by a variable, and (iii) e3 = (5,4, v1,v4) is not an initial edge,
then e3 = SUR(eq,e2). Then ej is created by an SUR transformation. Creating edge e3 corresponds
to performing a inference from the equation represented by es into the term represented by ey, below
the root. Figure 4 shows a critical pair from a = ¢ into fa ~ b. Figure 3 is a more complicated
example. In Figure 3, the curved edge going from left to right represents the following inference:

ffe=gfx ffe=gfx
fofepr=gfe[ffepr = fe A ffz>gfz]

More precisely, what we have shown in the figure represents the skeleton part of the conclusion of

this inference, i.e., everything except for the renaming and the constraint. Later, we will see how the
renaming and constraint will be represented, by virtue of the label on the new edge. The conclusion
can be simplified to fgfzpr = gfx [ fzp1 =]

The line that goes from the edge labelled by g to itself represents the following inference:

ffe=gfr  fofrpr=gfr[fep =]
fogfepr=gfx[ffepe= frpt N ffz=gfe A frpr =z]

With the addition of these two edges, we have completely schematized the completion of ffz =~

gfx, which is an infinite set of equations.

We also define a function Goal so that if e = (S, 1,v,v1) and es = (5,2, v,v2) are edges such that
(i) v1 and v top unify, and (ii) v is labelled by a disequation s % t, then Goal(ey,e2) is called a goal
transformation. This corresponds to a possible solution of a goal. When we define the semantics, we
will see that this represents a constraint that must be solved to solve the goal.

Now we are ready to show how to compile the graph. If EQ is a set of equations, we define
COMP(EQ) to be the graph G = (V, E, Goal) where V is the set of nodes labelled by Sub(EQ), and
E and Goal are the smallest set of edges and goal transformations such that (i) S(EQ)UR(EQ) C E,
(ii) if there is an SUR transformation e3 = SUR(ey,e2) for edges ej,eo € E, then e3 € E and
(e1,e2) is in the set of pairs of eg, (ii) if there is an RUR transformation e3 = RU R(ey, e2) for edges
e1,e9 € E, then e3 € E and (ej,e2) is in the set of pairs of e, (ii) if there is a Goal transformation

38



Figure 3: SUR edges Figure 4: SUR edge

es = Goal(ey,e2) for edges e1,es € E, then eg € E and (e1,e2) is in the set of pairs of e3.

This completely defines the SOUR, graph. What is left to do is to define how to interpret the
SOUR graph to represent the schematization of a completed set of equations and the solutions to the
goal. We also need to say how to use this interpretation to solve the goal constraints in a goal directed
fashion. But first we must point out that COM P(EQ) can be computed in polynomial time in the
size of the initial set of equations. Clearly the initial graph can be created in polynomial time. There
is a simple algorithm to compute COM P(EQ) from the initial SOUR graph. The algorithm is the
following. At any point, if there is an SUR transformation e3 = SUR(e1, e2) that has not performed,
then we perform it. We perform it by checking if e3 exists. If it does not exist, we add it with set of
term pairs {(ep,e2)}. If it does exist, we add (e, e2) to the set of term pairs. We do the same thing
for RUR and Goal transformations. We keep performing these transformations until we have done
them all. This algorithm will halt in polynomial time. First, notice that it is possible to calculate if a
transition exists and find it in polynomial time. We only need to check all the pairs of subterm edges,
pairs of subterm and rewrite edges, and pairs of rewrite edges. The number of such pairs is quadratic
in the size of the graph. For each pair, we check the top unification problem. But top unification can,
in fact be performed on the whole graph in time quadratic in the size of the graph, if answers are saved
as they are calculated, and no calculation is performed twice. This is true, because we only have to top
unify all pairs of edges. Therefore, each step of the algorithm is quadratic. Now we must argue that
the algorithm halts and only takes polynomially many steps. Note that each step in the algorithm
either adds a new edge to the graph or increases the number of edges associated with a pair. Since
the number of nodes of the graph does not grow, we cannot add more than quadratically many edges
in the initial size of the graph, which is no bigger than the initial size of the problem. Furthermore,
each edge can have at most one pair in its set for each pair of edges in the graph. Therefore the
size of each set is O(n?) in the size of the original problem. That shows that the algorithm has only
polynomially many steps, therefore it is polynomial. This is a big polynomial, but in practice it will
be much smaller.

4 SOUR Graph Semantics

We need a semantics which shows that the initial SOUR graph of a set of equations and disequations
represents the initial set of equations. We also need to show that a compiled SOUR graph of a set of
equations represents a schematization of the completed set of equations, and a compiled SOUR, graph
of a set of equations and disequations represents the schematization of the completed set plus a set of
recursive syntactic unification and ordering constraints representing possible solutions of the goal.

We define the semantics of nodes, and subterm and rewrite edges, inductively, in terms of each
other. Each node and edge has a set of functions associated with it, which can be applied to certain
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types of arguments. Let e be an edge (or node). Then F, will be the set of functions associated with
e. Each function in F; will have the same type of inputs and output. If the functions in F, take inputs
of type 11, ---, T, then we define N = {F(ny,---,n,)|n; € T; for all 4, 1 <7 < p}. Functions will be
written in typed lambda calculus notation. Therefore, each n € N, is a typed lambda calculus term,
and N f(n) is the normal form reached by reducing all the radices in n. Also, let T, be the set of all
fresh renamings.

If v is a node, then each member of N, will be a constrained term. If e is a subterm edge, then each
member of N, will be a triple (¢, p, t), where ¢ is a constraint, p is a renaming, and ¢ is a constrained
term. We consider C'on, Ren and Term to be functions applied to members of N. which select the
corresponding field. If e is a rewrite edge, then each member of N, will be of the form (¢, p1, po2. t1,t2),
where ¢ is a constraint, p; and po are renamings, and ¢; and t5 are constrained terms. We consider
Con, Reny, Reny, Term; and Terms to be functions applied to members of N, which select the
corresponding fields.

To understand the complicated functions we are about to describe, we note that for each node v,
the normal forms of all members of N, represent terms whose dag representations are rooted at the
node. For an edge e, the normal forms of the members of N, represent the the constraints, renamings
and terms that are built up by inferences. For the case of subterm edges, these apply to the final node
of the edge. For rewrite edges, terms and renamings apply to both nodes. There is one constraint to
apply to both nodes.

Let v be a node labelled by a p-ary function symbol f and 41,---,4, be integers.? Then F, = {\ny :
Neyoo-oony 2 N, Term(v,ig,---,4p) | forall j, ¢ is an edge leading from v to some v; with index j},
where Term(v,iy,- -+, i) = f(Term(n;, )Ren(ng ), -+, Term(n;,)Ren(n;,)) [Ui<;<, Con(ng;) ]

For the rest of the definitions, let 7, 7, k be integers. Let e = (5,1, u,v) be an initial subterm edge.
Then F. = {Mn : N,.List(e,1,j,k)}, where List(e,i,7,k) = (T,id.n). Let e = (R,u,v) be an initial
rewrite edge. Then F, = {Any : Ny, no : N,.List(e, 4,7, k)}, where List(e,i,7. k) = (T,id,id,ny, n3).

Let e = (5,1, u,v) be anon-initial subterm edge. Then F, = {Any : N¢,,na : N, pr. : T,..List(e, 1, j, k)
| (e1,€2)is a pair in the pair set of e}, where List(e, 4,7, k) = (Con(e, i, j, k), Ren(e, 1,5, k), Term(e,i,7,k)),
such that Con(e,,j,k) = Con(n;) N Con(nj)pry N Termy(n;)Reni(n;)p, = Term(n;)Ren(n;) A
Termi(nj)Reni(nj) > Terms(n;)Rena(n;), and Ren(e,1,J, k) = Rena(n;)pr, and Term(e,i,7,k) =
Terma(nj).?

Let e = (R, u,v) be anon-initial rewrite edge. Then F, = {An) : N¢,,no : Ne,, pg : T,-.List(e) | (e1,€2)
is a pair in the pair set of e}, where List(e,,7, k) = (Con(e, 1,7, k), Reni(e,i,7, k), Rena(e, i, 7, k),
Termy(e, 1,7, k), Terms(e,,7,k)), such that Con(e, 1, j,k) = Con(n;) A Con(nj)p, A
Termy(nj)Reni (nj)pr = Termy (n;)Reni(n;) A Termq(n;)Reni(n;) > Termq(n;)Reni(nj) A
Termi(nj)Reny(nj) > Termj(nj)Rena(n;), and Reny(e,t,j,k) = Rena(n;), and Reng(e,v,7,k) =
Rens(nj)pr, and Termy (e, 1, j, k) = Terma(n;), and Terma(e, 1, . k) = Terma(n;).

If e = Goal, then F, = {An : N¢,,na : Ng,.List(e,i,7,k) | (e1,e2) is a pair in the pair set of e},
where List(e,1, 7, k) = Con(e, 1, 7, k), such that Con(e, 7, j, k) = Con(n;) ACon(n;) A Term(n;)Ren(n;)
= Term(n;)Ren(e;).

For a graph G = (V, E,Goal), let E, be the set of all rewrite edges in R. We define Eqs(G),
Deqs(G) and Sols(G) to represent all equations, disequations and goal solutions given by G, according
to the semantics. Formally, Fqs(G) = {N f(s) = Nf(t)| (¢, p1, p2,5,t) € N, for some e € E,}. Also,
Deqs(G) = {N f(n)|n € N, for some v € V where top(v) is %}. Additionally, Sols(G) ={Nf(n)|n €
N and e = Goal}. The following are straightforward consequences of the definitions.

Theorem 2 Let EQ be a set of equations and disequations. Let G be the initial graph of EQ. Then
Eqs(G) U Deqs(G) = EQ.

2Tt does not not matter which integers we pick for these definitions. They are only necessary so we can perform
renamings in the inference rules in the next section.

3For this definition and the following two definitions, please refer to the inference rules at the end of section 2. We
are only reproducing those constraints.

40



The next theorem shows that the compilation process schematizes the completed system and finds
all the solutions to the goals. It is proved by the relationship between SOUR, derivations and Basic
Paramodulation derivations (also see [10]).

Theorem 3 Let EQ be a set of equations and disequations. Let G = COMP(EQ). Then Sols(G) is
a complete set of solutions for EQ).

5 Goal Directed Completion

Now we describe how to solve the Goal constraint in COM P(E(Q). For this procedure, we save a
constraint denoted by ¢, a set of variable—type pairs denoted by VT, and a set of term equalities
denoted by TE. The constraint is built up by the algorithm. Each member of VT is of the form
n : T where n is a variable and T is the type of n. Elements of TE are of the form Term;(n) =t or
Termso(n) = t, where t is a constrained term we are building.

Initially, ¢ = Con(n), VT = {n: Ngou}, and TE = ). The algorithm expands ¢. At each point of
the algorithm, we can perform an inference rule called Definition Expansion or an inference rule called
Term FErpansion, which modify ¢, VT and TE. First we don’t-care nondeterministically select an
inference rule to perform and a variable from VT to expand. Then we don’t-know nondeterministically
select an expansion to perform. After the inference we deterministically perform some simplification
steps. This is analogous to the SLD-Resolution rule in Logic Programming, where we don’t-care
nondeterministically select a subgoal to solve and then don’t-know nondeterministically select a rule
to resolve against the subgoal. As in SLD Resolution, Goal-Directed Completion may be implemented
with a breadth-first search or with iterative deepening. A depth first search is not complete, because
we could follow a single path and ignore the one that solves the goal.

The Definition Expansion rule replaces a variable by its definition:

Definition Expansion

o[n] VIT'U{n:N.} TEn]
p[List(e, 1,7, k)] VT U{n:Ne,ni:Ne,nj: N} TE[List(e,i,7, k)]

where (e1,e2) is in the pair set of e, and 4, 7, and k are fresh numbers.

This mean that we select a variable n appearing in VT and replace n everywhere it appears in the
constraint we are solving with renamed versions of the edges that create n. For example, this implies
that we replace a field of the form Con(n) by a renamed copy of its meaning. In the term equations,
we do the same, effectively replacing T'erm(e) by a renamed copy of its meaning.

The Term Ezxpansion rule expands a term:

Term Expansion

e[Termy,(n)] VT U{n:N.} TE[Term,,(n)]
o[Term(vy, 1.+, 1p)] VT'U{n:Ne,niy : Ney,-oo,ni, : Ne,} TE[Term(vm, i1, - ,1p)]

where (i), m € {1,2}, (ii) e goes from vy to vy, (iii) for all 7, e; is an edge from v,, to some v; with
index 7, and (iv) 21,---,1, are fresh numbers.
This says that if there is a term Term,,(n) that appears in the constraint, we can find this node

in the graph and expand the term, replacing the new constraints and renamings by renamed copies.

After each inference rule, we also need to perform simplification steps to solve the equational and
ordering constraints which appear. For lack of space, we do not present the simplifications here (see
Figure 3 in [3]). These transformations convert constraints to a normal form. We can then perform
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the algorithims given in [3, 12] to solve the constraints.* If the constraints are unsatisfiable we fail. If
the constraints are satisfiable, we leave them in normal form and continue the goal solving procedure.
Each branch of this procedure halts when no more inferences can be performed.

We want to show that these inference rules give us all the solutions to our goal. Let ®pg be
the set of all constraints ¢ such that (¢, VT, TE) is in the closure of the above inference rules over
COMP(EQ), and no inferences can be applied to (¢, VT, TE). We have the completeness theorem:

Theorem 4 Let EQ be a set of equations and disequations. Then ®pg is a complete set of solutions

for EQ.

The theorem is proved by showing that for each (¢, VT.TFE), the set of all Definition Expansion
inferences on a given variable, preserves the set of solutions. This is also true for Term Expansion.

We have defined an algorithm which starts with the potential goal solutions and works its way
backwards to the original equations. But the inference rules can be modified so that we can start at
any point and build from there in finding goal solutions. For instance, we could simulate the Knuth-
Bendix algorithm by starting with the original equations and working toward the goal. Perhaps the
most interesting algorithm is one that starts with the initial goal equation, instead of the solutions to
the goal. This algorithm performs inferences to build up the goal solution, and it also works its way
back to the original equations. It is also truly goal directed in that it starts from the goal and works
its way backwards toward the original equations.

6 Decidability Results and Future Work

A natural question to show the usefulness of these ideas is to show how SOUR graphs are used to give
a decision procedure in cases where Knuth-Bendix completion does not because the completed system
is infinite. For instance, consider the equation ffz = gfx and goal a % b given in the introduction.
Knuth-Bendix runs forever on this example. Our algorithm compiles the system in polynomial time.
After the compilation is finished, there are no goal constraints. Therefore, the Definition Expansion
and Term Expansion rules cannot be performed. And the system stops immediately and says that the
goal is not true. So this is an example where our algorithm is superior to the Knuth-Bendix algorithm.

It would be even more interesting if we could show that there are some equational theories such
that the Knuth-Bendix algorithm never halts for any false goals, but our system halts for all goals.
For instance, consider the equational system f fx = gfx. First note that {f¢" fx = g¢"fz | n > 0} is
an infinite reduced system representing the same equational theory as f fao = gfx. Therefore Knuth-
Bendix will not halt with the equation ffz = gfz and a false goal. We would like to show that it
does halt in our system

We believe we have given convincing evidence to show that SOUR graphs and the algorithms in
this paper are a powerful technique for proving theories decidable. We are currently examining this,
and we will give some results at the Unification Workshop. The constraints in COM P(EQ) provide
solutions to the goal that can be represented as recurrence equations on terms. We need to develop
techniques to solve such recurrence equations. Other ways of developing this is to use recently deve-
loped constraint automata techniques, or possibly to use techniques developed in logic programming,
since the constraints we give are similar to constraints that would be created by compiling a set of
Horn clauses in a similar way.
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To prove termination of a Term Rewrite System (TRS for short), the most
commonly used method is to define a well-founded ordering between terms and
show that each rewrite step is a strictly decreasing step. In general, the proof is
made “a posteriori”: orderings are tested at random or using human expertise,
until an appropriate one is found.

Our goal here, is to reduce human expertise by working “a priori”: starting
from constraints on a generic ordering, we will help the user to build an ap-
propriate specific instance of this ordering by using semi-automatic constraint
solving methods.

The generic ordering, we start from, is the general path ordering (gpo),
designed for expressing, in a single notion, a large set of well known orderings:
syntactic orderings such as RPO or LPO, as well as semantic orderings like
SPO or polynomial orderings. It is based on a lexicographic combination of
termanation functions. Particular orderings, such as those cited above, are
obtained by instantiating termination functions with particular values.

Starting from inequalities on a general path ordering, we will reduce the set
of possibilities for instantiation of termination functions by constraint solving,
until we get a particular ordering, when it is possible.

The gpo ordering constraint algorithm is presented through a sound, com-
plete and terminating set of deduction rules, limiting the explosion of compu-
tations thanks to a shared term data structure.
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Extended Abstract

1 Introduction

Here we are interested in the question whether certain weak and strong termina-
tion and confluence properties of conditional term rewriting systems (CTRSs)
are preserved under signature extensions. We shall focus on the most intere-
sting type of CTRSs, namely join systems, where equality in the conditions of
a rule

= r<s1=1t,....8p =1y

is (recursively) interpreted as joinability, i.e., as |. In the presentation which
is based on some results of [5] we assume familiarity with the basic no(ta)tions
and terminology of (conditional) term rewriting (cf. e.g. [1], [6]).

The termination and confluence properties considered include the following:

e (strong) termination
e weak termination

e weak innermost termination, i.e., weak termination of the innermost re-
duction relation

e (strong) innermost termination, i.e., termination of the innermost reduc-
tion relation

e confluence
e local confluence
e joinability of all (conditional) critical pairs

From a systematic point of view signature extensions constitute a very special
type of combining (disjoint) systems. Starting with the pioneering work of
Toyama ([10]), the general question which properties P of rewrite systems are
preserved under (disjoint or less restrictive) combinations (and vice versa) has



received a lot of attention. For surveys of achieved results in this field we
refer to [7], [8], [5]. For instance, for unconditional term rewriting systems
(TRSs) it is well-known that confluence is modular, i.e., preserved under disjoint
unions (and vice versa), but termination is not modular ([9]). However, various
restricted termination properties have turned out to be modular for TRSs: weak
termination and weak innermost termination (cf. e.g. [2]) as well as (strong)
innermost termination ([4]). This implies in particular that these properties
of TRSs are also preserved under signature extensions. That termination of
TRSs which is not modular in general is at least preserved under signature
extensions is almost trivial ([3]). All confluence properties mentioned above
are modular for TRSs (for local confluence which is equivalent to joinability
of all critical pairs this is again almost trivial), hence also preserved under
signature extensions. However, for CTRSs the analysis is considerably more
complicated. Middeldorp ([7]) has shown that the modularity of confluence
carries over to CTRSs. However, he also showed that local confluence (and
joinability of critical pairs) is not modular:

Example 1.1 ([7]) Consider the disjoint CTRSs Rfl, Rgz given by
e[Sy e = wlzzly
T fley) oy = wlzzly

and
b—a

b—c
c—b
c—d

over the signatures F1 = {f} and Fo = {a, b, c,d}, respectively. It is easy to see
that both R]fl and R? have joinable (conditional) critical pairs and are locally
confluent. However, their disjoint union R* = R @ R3? = (Ry W Rg)7 1972
is not locally confluent: The (new) instance

a 7?,1@)722<_f(a‘, d) _>'R1®'R3 d

of the critical peak between the first two rules of Ry s not joinable, since both
a and d are irreducible.

Similarly, the properties of weak termination, weak and strong innermost
termination are not modular for CTRSs in general.!

Example 1.2 Consider the CTRSs R{] , Rf‘

a—a <<= xzlbAzxzlc
{ )

G(z,y) = x
Glz,y) =y

'For the first two properties this was shown in [7].

and
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over F1 = {a,b,c} and Fo = {G, A}, respectively. Here, we have a -, ¢Rr, @
by applying the Ri-rule (x is substituted by G(b,c)), but neither a =g, a nor
a —g, a. Hence, a is an Ri-normal form (for i = 1,2) but not a normal
form wort. Ry @& Ra. Obuviously, both Ry and Ry are strongly (hence also
weakly and innermost) terminating but their disjoint union is not. For instance,
4 =Ry DRs @ —R1DR, & =R DR, - - 18 an infinite innermost derivation, and a
does not have a normal form w.r.t. R1 & Ro.

Below we give examples showing that the above non-modularity results for
weak termination and confluence properties of CTRSs also hold for the very
special case of signature extensions.

At first glance, these counterexamples may seem to be very surprising. In
fact, they indicate once more the inherent complexity and intricacy of condi-
tional rewriting.

2 Counterexamples for Signature Extensions

Example 2.1 (weak, weak innermost and strong innermost termina-
tion are not preserved under signature extensions)
Consider the CTRSs 'R{‘, Rf" given by

gz, y) = flgle,y) <= axlzAzly)
gz, z) >
g(z,a) = ¢
g(z,b) = ¢
gz, f(y)) = ¢
o(.9(.2)) - ¢

R
gla,z) — ¢
g(b,z) = ¢
g(fly).x) = c
glg(y, z),z) = c
c—a
c—b

over Fi = {f,g,a,b,c} and Ro = § over Fo = {G} (with G unary). It is
straightforward to verify that Rifl is (strongly) innermost terminating (hence
also weakly innermost terminating and weakly terminating). The crucial point
s that an arbitrary infinite R{'—l— derwation must contain rewrite steps using
the first rule. But whenever this rule is applicable, the contracted redex can-
not be innermost, since some proper subterm must then be reducible by the
remaining rules which constitute a terminating CTRS. Nevertheless, in the ez-
tended system RT = R171EY we get the cyclic (hence infinite) innermost
R” -derivation

fg(G(a),G(b))) =g [(9(Gla), G(b)) =7 f(9(G(a),G(b)) =r7 ...

by applying the first rule (instantiating the extra variable z by G(c)). Note
moreover that there is no other way of reducing f(g(G(a), G(b))) (all its proper
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subterms are in normal form w.r.t. R”, and the second rule is clearly not
applicable). Hence, R = R17HEY s not inmermost terminating (and also
neither weakly innermost terminating nor weakly terminating).

Example 2.2 (local confluence and joinability of critical pairs are not
preserved under signature extensions)
Consider the join CTRS R” with

fz,y,2) = g(x) = =zlyylz
f(:v,,y,Z)%g(Z) — l\Lyvy\LZ
b—a
b—c
c—b
c—d
gla) = g(d)
Fara.y) = f(d.a,y)
flz,a,y) = f(2,d,y)
flz,y,a) = f(x,y,d)

and F = {a,b,c,d, f,g}. It is not very difficult to show that R” has joinable
critical pairs and is even locally confluent (but not confluent).

Now we add a fresh unary function symbol G, i.e. we consider R”" with
F' = FW{G}. Then joinability of critical pairs and hence local confluence is
lost. To wit, consider for instance the term f(G(a),G(b), G(d)) which reduces
to two distinct normal forms by one R7 ,-step; respectively :

9(G(a)) < f(G(a),G(b), G(d)) = g(G(d))

Clearly both g(G(a)) and g(G(d)) are irreducible. This divergence corresponds
to an instance of the critical pair between the first two rules, namely

(9(z) =g(2)) &= zly,ylz.

Over the old signature F every substitution o which is feasible for this critical
pair satisfies o(g(x)) | 0(g(z)) whereas this is not the case for the mized sub-
stitution T = {x — G(a),y — G(b),z — G(d)}. Hence the critical pair above is
not joinable any more over the extended signature F'.

Note that in the above example R? is obviously non-terminating. This is
not essential in the following sense. We may replace the ‘non-terminating part’

of R”
b—a

b—c
c—b
c—d

which has joinable critical pairs, hence is locally confluent (it is an uncondi-
tional TRS!), by a terminating CTRS with joinable critical pairs which is not
confluent, hence necessarily not locally confluent. To this end, we can take for
instance the system
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h(z) — k(b)) <<= FE(z)] h(b)
k(a) — h(a)
a—b

which has the desired properties (in particular, it is not locally confluent:
h(b) < h(a) — k(b) but h(b) and k(b) are irreducible). Then the remaining
construction of R” is adapted accordingly.

Example 2.3 (joinability of critical pairs is not even preserved for
terminating CTRSs under signature extensions)

Consider the CTRS R” with

flz,y,2) = g(x) = zlyylz
f(TyZ)—>9(Z) — zazlyyl=z
hiz) = k(D) — k) L)
k(a) — h(a)
a—b
R = g(h(b)) = g(k(b))
h(h(b)) = h(k(b))
k(h(b)) — k(K (D))
f(h(b), 2. y) = f(k(b),z,y)
7o h(0), ) = £, B(D),y)
flz,y. h(b) = f(z,y, k(b))

and F = {a,b, f,g,h,k}. It is easy to verify that R” is terminating. With
some effort one can show that R” has joinable critical pairs. But R” is not
(locally) confluent since we have h(b) < h(a) — k(b) with both h(b) and k(b)
wrreducible.

Now we add a fresh unary function symbol G, i.e. we consider R” " with
F'= FW{G}. The new system R is still terminating. But joinability of
critical pairs is lost. Consider the critical pair between the first two rules of
R7,

(9(x) =g(z)) <= zly.ylz,
and the F'-substitution 7 = {x — G(h(b)),y — G(h(a)),z — G(k(b))}. The
corresponding instance of the critical peak is

g(G(h(b))) = f(G(R(b)),G(h(a)). G(k(b))) = g(G(k(D))),

due to G(h(b)) | G(h(a)) | G(E(b)), but g(G(h(b))) and g(G(k(b))) are not
joinable since they are both irreducible (in R”).

In the talk, these counterexamples and some related positive results will be
presented and discussed in more detail.
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Abstract

The theory of one-step rewriting for a given rewrite system R and si-
gnature ¥ is the first-order theory of the following structure: Its universe
consists of all Y-ground terms, and its only predicate is the relation “a
rewrites to y in one step by R”. The structure contains no function sym-
bols and no equality. We show that there is no algorithm deciding the
FV*-fragment of this theory for an arbitrary linear and non-erasing term
rewriting system.

1 Introduction

The problem of decidability of the first-order theory of one-step rewriting was
posed in [CCD93]. It has been mentioned in the list of open problems in rewri-
ting in 1993 [DJK93] and in 1995 [DJK95].

In [Tre96] we have proven the undecidability of the theory of one-step rewri-
ting, leaving open the special case of linear rewriting systems. Here we prove
undecidability even for the class of linear (no multiple variable occurrences in
the left-hand, resp. right-hand side of a rule) and non-erasing (for every rule, the
left- and right-hand side have the same set of variables) term rewriting systems.
The proof presented here is in fact simpler than the one of [Tre96]. There, we
used a more complicated definition of P-terms (see Definition 2) which allowed
us to separate the non-shallow rules from the non-linear ones.

An alternative proof of undecidability of one-step rewriting has been given
by Sergei Vorobyov [Vor95]. He defines one particular (non-linear) rewrite
system R and shows the undecidability of the full first-order theory of one-step
rewriting by R. He considers, however, the structure where all the function
symbols of the signature are available in the language (this is not the case with

*Supported by the Human Capital and Mobility Programme of the European Union, under
the contracts SOL (CHRX-CT92-0053) and CONSOLE (CHRX-CT94-0495).



our result), and he does not attempt to characterize a “simple” undecidable
fragment of the theory. The rewrite system of [Vor95] uses in fact a “swapping
of variables” to test certain equalities, similar to the system presented here, but
it still contains one non-linear rule.

The reader is referred to [Tre96] for the motivation and history of this
problem.

2 Preliminaries

We write a signature as a set of function symbols, where we specify (following
the PROLOG tradition) the arity of the function symbols after a “/"-sign. The
set of terms build over a signature X and set X of variables is denoted as
T(Z, X), we write T(X) = T(X, () for the set of X-ground terms.

We consider first-order predicate logic without equality. The F*V*-fragment
of a theory T is the subset of T of all sentences having a prenex normal form
of the form

where () contains no quantifier.

We denote concatenation of words by juxtaposition. An instance of the
Post Correspondence Problem (PCP) is a finite set of pairs of non-empty binary
words {(pi,q;) | 1 <1 < n,pi,q € {a,b}}. A solution of P is a finite non-
empty sequence (i1,...,4m) € {1,...,n}T such that

Piy Pigy = Qi " Qi

It is undecidable whether an instance of the PCP has a solution [Pos46].

3 One-Step Rewriting

Definition 1 Let ¥ be a signature and R be a Y-rewrite system. The structure
Asx. g is defined as follows: The language of Asx, r contains no constants or
function symbols, and its only predicate symbol s the binary predicate symbol
—. The universe of Ay g 15 the set T(X), and t — s holds in Ay, g iff t rewrites
to s in one rewriting step of R.

Theorem 1 There s no algorithm which decides for any signature 3 and any
non-erasing and linear S-rewrite system R the 3*V*-fragment of the theory of

As k.

We show how to reduce the solvability of an instance of the Post-Correspond-
ence Problem (PCP) to the validity of some 3*V*-sentence in Ay, g for some
signature ¥ and non-erasing and linear rewrite system R. All constructions
and proofs are parameterized by the given instance of the PCP. For the sake of
convenience, we now fix this instance for the rest of the paper to be

P={(pi,q) |1 <t <n}

ot
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Definition 2 The signature Xp is

{e/0,a/1,b/1,4/3.k/5,cq/3}
A Yp-ground term t is called a P-term if it does not contain an occurrence of
k oreq.
Words from {a, b}* can easily be encoded in T'(X). First we define an application
of a word from {a,b} to an arbitrary term t € T(X) inductively by
ety = t
wa(t) = al(w(t))
wb(t) = blw(t))

Note that, for the case of a(t) and b(t), this coincides with the definition of the
operations in Ay g. A word w € {a,b}” is now represented by the term w(e).
Note that

e the empty word is represented by the term e,

e the encoding is injective, that is equality of words translates to equality
of their respective representations,

o and w(t) represents the word vw iff ¢ represents the word v.

Definition 3 The rewrite system Rp consists of the following rules:

k(x1, w9, 3, w4, x5) —  k(x1, 19,23, 24, 75) (1)
eq(x1,20,23) — eq(xy,x9,23) (2)
gle,e,9(z,y,2)) — g(z,y,2) (3)
g(z1, 91, 9(w2.y2,2)) = k(zi,y1, 22,92, 2) (4)
{k(zr, 1, pia2),qi(y2), 2) = gla, 2, 9(pi21), qi(y1). 2)) [ 1 < i <n} (5)
{9(z,y,h(Z)) — eqlz,y,h(Z))|h € {e,a,b}} (6)
eq(z,y,h(2)) —= gy, = h(2)) (7)
We use the following formulae
O(r) = -z —zx
U(z) = ®(z)AI (2 — 2’ A D))

Proposition 1 Ay, r,. o = ®(2) iff a(z) is a P-term.
Asp rp, o = ¥(z) iff a(x) is a P-term containing a subterm of the form
gle. e, 9(z,y. 2)).

Proof: The first claim holds since (1) and (2) are the only rules that can
rewrite a term to itself. The second claim holds since (3) is the only rule that
can rewrite a P-term to a P-term. O



Lemma 1 P is solvable iff

Asp rp =32 (\Il(zl:) AVy (= yA=D(y) =y — 1))
(8)

Proof: Let (i1,...,7,) be a solution of P. Consider the term

t= g(e, €, g("’l, Sly--- :.(](Tma Sm s E) - ))
where
Tk = Pi (p’ik—l(' o ([)ﬁ (6)) - ))
S — qik(qu_l('“((Ih (6))))

for 1 <k < m. It is easy to see that the formula 8 is satisfied when taking ¢
for the value of . Note that (4) and (6) are the only rules that can rewrite a
P-term to a non-P-term.

On the other hand, let the formula (8) be satisfied by the the term t. We
can show by induction on s that every subterm s of ¢t which starts with g is of
the form

i = g(Tlﬁ Sy :.(](Tma Sm ?,l,) .- ))

where u is either € or starts with a or b, and where there is a sequence (i1, ...,%,,) €
{1,....n}" such that for all 1 < j <m

rj = pi;(rj-1)

sji = qi;(sj-1))

™'m = Sm

Note that, since t is a P-term, any subterm s of ¢ must contain only the symbols
g,€,a,b. Hence, if s is a subterm of ¢ starting with g, then either rule (4) or (6)
rewrite s at the root to some non-P-term s’, which can only be rewritten back
to s by the rules (5), resp. (7).

The claim follows since ¢ contains, by Proposition 1, a subterm of the form
gle,e,g(- ). O

4 Conclusions

There are two important special classes of rewrite systems where decidability
of the first-order theory of one-step rewriting is not yet known:

1. orthogonal rewrite systems.
2. (left)-shallow rewrite systems.

Furthermore, decidability of the JF*-fragment as well as of the positive theory
of one-step rewriting are still open.
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Syntactic Unification Problems under Constrained
Substitutions

Yuichi Kaji  Kazuhiro Takada Tadao Kasami'

1 Introduction

We sometimes want to accomplish our purpose by using limited operations and
limited materials only. To describe such cases in a natural way, a unification
problem under constrained substitutions has been proposed!l. Indeed, by using
the unification problem under constrained substitutions, we can describe a veri-
fication problem of cryptographic protocols (in which users’ operations are very
restricted) as a natural extension of a unification problem (see Example 2.3).

In the unification problem under constrained substitutions, a finite set A of
terms is given in addition to goal terms. The essential point of the problem is
that only those terms that belong to A can replace for variables. For exam-
ple, if A = {f(f(xz))}, then solved forms of the problem must be of the form
{z; = f2”(.7/zi)}. From the technical view point, there is strong relationship bet-
ween the unification problem under constrained substitutions and order-sorted
unification problems® % 9. Indeed, some results for the latter problem can be
easily translated into the former, and vice versa.

In this paper, the decidability and computational complexity of syntactic
unification problems under constrained substitutions are discussed. It is shown
that the problem is undecidable in general, and decidable if all terms in A
are linear or ground. Furthermore, under the assumption that all terms in A
are linear or ground, it is shown that the problem is solvable in deterministic
polynomial time if goal terms are linear and there is no variable that occurs in
both goal terms, and is NP-hard, otherwise. These are theoretically interesting
results, and give foundations of E-unification under constrained substitutions.

2 Preliminary

Throughout this paper, F' denotes the set of function symbols and X denotes
the set of variables. For a finite set A of terms, let 74[X] be the minimal set of
terms satisfying the following conditions.

e X C T4[X].

! Graduate School of Information
Science, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-01,
Japan, E-mail: {kaji,kazuh-t,kasami}@is.aist-nara.ac.jp



e for a term t € A such that Var(t) = {z1,...,2,} and terms ¢,....t, €
Ta[X], to € Ta[X] where 0 = {x; = t; | 1 <i < n}.

T4 denotes the set of ground terms in T4[X]. A substitution is said to be an
A-constrained substitution if its co-domain is a subset of T4[X]. Terms s and
t are wunifiable under A-constrained substitutions if there is an A-constrained
substitution o such that so = to. For given a finite set A of terms and two goal
terms g1 and go, a syntactic unification problem under constrained substitutions
(SUPCS for short) is a problem to decide whether g1 and g are unifiable under
A-constrained substitutions.

Example 2.1: Let g1 = f(h(h(z1)),22), g2 = f(x3,23) and A = {h(h(z))}.
In this case, the set T4[X] is defined to be Ta[X] = {h*"(z) | n > 0,z € X }.
An A-constrained substitution o = {z2 +— h(h(z1)),x3 — h(h(z1))} unifies g;
and gs. O

Example 2.2: Let g1 = f(h(z1),22), g2 = f(x3,23) and A = {h(h(z))}. Re-
mark that the goal term gy is slightly different from the previous example.
Though terms g; and g» are unifiable in the usual unification problem, they are
not unifiable under A-constrained substitutions. O

Example 2.3: This is an example of a unification problem under constrained
substitutions modulo a rewriting rule. Unification modulo rewriting rules is
out of topic of this paper, though, this example figures out the motivation of
constrained substitutions.

Counsider the following cryptographic protocol of which purpose is to trans-
mit messages secretly. In the protocol, there is a supervisor called a server who
knows secret keys of all users. Assume that a user A wants to send a message
m to B secretly, but the key of B is not known to A. To transmit the message
m, the communication is carried out as follows.

1. A first chooses a random number r, and sends the server A, B and
E(K(A),r) where K(x) and E(x,y) denote the key of the user x and
the ciphertext of y encrypted with = as a key, respectively.

2. The supervised server decrypts E(K(A),r) with K(A), and encrypts the
result with K(B) as a key. The resulting ciphertext E(K(B),r) is sent
back to A.

3. A sends B two ciphertexts E(K(B),r) and E(r,m).

4. B retrieves r by decrypting the first ciphertext, and retrieves m by using
r as a key.

We want to verify whether an intruder, say C', can reveal m or not. The in-
truder C' knows that if a message encrypted with a key is decrypted with the
same key, then the original message yields, that is, D(z, E(x,y)) — y. C
also knows public information and information which was sent through inse-
cure communication channel, that is, information represented by a set of terms

Inf ={A,B,C,K(C),E(K(A),r), E(K(B),r),E(r,m)} (the last three terms



correspond to the information that C' can find by wiretapping). Furthermore, C'
can execute some operations which are represented by Opr = {E(x,y), D(x,vy),
E(K(z),D(K(y),z))} (the last term corresponds to what the server does). Re-
mark that C' cannot obtain other users’ key and hence K(x) € Opr.

Let A = OprU Inf, then terms in 74 correspond to the information which
C' can obtain. Observe that

and this term is rewritable to m. This means that C' can reveal the secret
message m by using limited operations and limited materials (information)
only. In other words, z and m are unifiable with respect to the rewriting rule
D(x,E(z,y)) — y under A-constrained substitutions if and only if the given
cryptographic protocol is insecure. O

3 Order-Sorted Unification and the Decidability of
SUPCS

From the viewpoint of technical aspect, there is strong relationship between
SUPCS and order-sorted unification problem with term declarations!® (TD-
unification problem or Schemidt-Schauf} style order-sorted unification problem).
By associating each term in A of SUPCS with a term declaration in an order-
sorted signature, SUPCS can be regarded as a special case of TD-unification
problems with at most two sorts (the arrows(*) in Figure 1 denote this rela-
tion). It is known that TD-unification problems are undecidable in general (see
Theorem 6.1 of [5]). At a glance, this result does not contribute to SUPCS
since TD-unification is more general framework than SUPCS. However, careful
observation of the proof of Theorem 6.1 of [5] tells us that the proof is applicable
to SUPCS. Thus we have the following theorem.

Theorem 3.1: SUPCS is undecidable in general.
Proof. See the proof of Theorem 6.1 of [5]. a

If all terms in A of SUPCS are linear, then SUPCS is regarded as an order-
sorted unification problem with linear term declarations® (LTD-unification pro-
blem for short). To the authors’ knowledge, the decidability of LTD-unification

/ SUPCS \

/TD—uniﬁcation

(undecidable)

LTD-unification
(?7)

FD-unification
(decidable)

(terms in
A are
linear)

\—"/

Figure 1: Order-sorted unification problems and SUPCS.
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problems is not known yet. As a subclass of LTD-unification problems, order-
sorted unification problems with function declarations (FD-unification problem,)
are considered in [5]. FD-unification problem coincides with Smolka style order-
sorted unification problem!?, and known to be decidable. In the following, we
illustrate that SUPCS is polynomial-time reducible to an FD-unification pro-
blem (the arrow(**) in Figure 1 corresponds to this reduction).

Example 3.1: Let A = {g(g(a)). f(g(z),y)}. We define an order-sorted si-
gnature (S, F,>g) as follows. First, the set of sorts are defined to be S =
{9(g(a)),g(a),a, f(g(2),),g(2),, OTHER}. Remark that a sort is introdu-
ced for each subterm of a term in A. Function symbols are defined to be
F ={f.g,a} where

qg: Q= g(Q) f: g(2) x Q@ = f(g(©2),Q)
a— g(a) OTHER X OTHER — OTHER
g(a) = g(g(a)) a: —a
OTHER — OTHER — OTHER,

and sort ordering is defined to be g(g(a)) <g Q, f(g(Q),2) <g Q2 (remark that

both of g(g(a)) and f(g(£2),€2) correspond to terms in A) and s <g OTHER

for every s € 5. Observe that if a term t is of sort €2, then ¢ is either of sort
g(g(a)) or f(g(€2),Q2). In the former case, t must be g(g(a)), and in the latter
case, t = f(g(x),y)o where o is an A-constrained substitution. Hence the set

of terms of sort €2 equals to the set T4[X].
Let g1 and g2 be given goal terms of SUPCS. It is easily understood that ¢;

and g2 are unifiable under A-constrained substitutions if and only if g; and ¢
are unifiable with respect to this order-sorted signature where each variable in
g1 and g9 is considered to be of sort €. O

It is not difficult to verify that this is a (polynomial-time) reduction from
SUPCS to FD-unification problems (Smolka style order-sorted unification pro-
blems). Thus the following theorem holds.

Theorem 3.2: If all terms in A are linear, then SUPCS is decidable. O

4 The Computational Complexity of SUPCS

4.1 Classification of Instances of SUPCS

In the following, the computational complexity of SUPCS under some restricted
situations is discussed. Consider the following three kinds of conditions on
instances of SUPCS.

e a condition on terms in A;

(1) terms in A are ground.

(2) terms in A are ground or linear.
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Figure 2: Relation of 12 classes of instances of SUPCS.

(3) there is no restriction on terms in A.
e a condition on linearity of g1 and go;

(A) both of g1 and g9 are linear.

(B) there is no restriction on linearity of goal terms.
e a condition on variables occurring in g1 and go;

(a) Var(g1) N Var(go) = 0.

(b) there is no restriction on variables occurring in goal terms.

According to these conditions, we can define 12 classes of instances of SUPCS.
Figure 2 illustrates relations of these classes of instances of SUPCS with respect
to reducibility of the problem. In the figure, “1Aa” stands for the class of
instances of SUPCS that satisfy the conditions (1), (A) and (a) above. An arc
C1 — Cy in the figure means that SUPCS for the class C; trivially includes
SUPCS for the class Co, or that SUPCS for the class Cy is polynomial-time
reducible to SUPCS for the class Cj.

Lemma 4.1: SUPCS for the class 3Bb (resp. 2Bb, 1Bb) is polynomial-time
reducible to SUPCS for the class 3Ba (resp. 2Ba, 1Ba).

Sketch of Proof. For goal terms g and go such that Var(gy) N Var(g2) # 0,
let g and g5 be terms that are obtained from g; and go by renaming va-
riables so that (Var(g1) U Var(g2)) N (Var(gy) U Var(gh)) = §. Introduce a
new symbol dummy with arity three, and define g = dummy(g1,g1,92) and
gy = dummy(g}, g, gb). It is easily verified that g; and gs are unifiable under

constrained substitutions if and only if g{ and ¢4 are unifiable under constrained
substitutions. O

In the previous section 3, we used Theorem 6.1 of [5] to show that SUPCS is
undecidable in general. Indeed, the goal terms used in the proof of Theorem 6.1
of [5] satisfy the conditions (A) and (a) above. Therefore, we can conclude that
SUPCS for the class 3Aa is undecidable, and so is SUPCS for the classes 3Ab,
3Ba and 3Bb. On the other hand, the decidability result introduced in the
previous section do not depend on goal terms. Thus SUPCS is decidable for
the class 2Bb, and for the classes which are not more difficult than 2Bb.
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4.2 Complex Goal Terms Make the Problem Intractable

It is shown that 3SAT problem is polynomial-time reducible to SUPCS for the
class 1Ab. By tracing the arrows in the Figure 2 from 1Ab in a reverse way, we
can conclude that SUPCS for the classes {1,2}Ab (i.e. classes 1Ab and 2Ab)
and {1,2}B{a,b} are N'P-hard. Furthermore, SUPCS for the classes 1Ab and
1B{a,b} are N'P-complete since SUPCS obviously belongs to NP if A contains
ground terms only.

Since the reduction from 3SAT to SUPCS is easy, we present a simple ex-
ample of polynomial-time reduction from 3SAT to SUPCS for the class 1Ab,
instead of general reduction algorithm and a proof of its correctness. See [7] for
details.

Example 4.1: Let E = (v] Vva V —w3) A (-wy V v V —w3) be a given Boolean
expression. The set A of terms and goal terms g; and go are constructed as
follows.

g1 = ROOT(OR(z11, 212, N(213)), OR(N (221), 222, N(x23)), 21, 22, 23)
g2 = ROOT(y1,y2, Vi(z11,m21), Va(m12, 22, T23), V3(T13))
A = {T.N()}
U {Vi(T.T), Vi(N(T).N(T))}
{Va(T,T.T), Va(N(T).N(T),N(T))}
{V3(1), V3(N(T))}
{OR(t1,t2,t3) | t1,t2, t3 € {T, N(T), N(N(T))}\
{OR(N(T),N(T), N(T))}

C CC

It is easily understood that E is satisfiable if and only if g; and g2 are unifiable
under A-constrained substitutions. O

As we have seen in Section 3, SUPCS can be polynomial-time reducible to FD-
unification problems (Smolka style order-sorted unification problem) when all
terms in A are linear or ground. Therefore we have the following corollary.

Corollary 4.2: FD-unification problem (Smolka style order-sorted unification
problem) is AP-hard in general. O

4.3 Simple Goal Terms Make the Problem Tractable

SUPCS for the class 2Aa is solvable in deterministic polynomial time (i.e. be-
longs to P). The overview of the procedure is as follows: First, find the most ge-
neral unifier 0 = {x] > t1,..., 2, — t,} of g1 and g, ignoring the set A. Then
construct tree antomatal®l M; that accepts {t;o | o is a ground A-constrained
substitution} for 1 <4 < n and a tree automaton My that accepts T4. If the in-
tersection of terms accepted by My and M; is not empty for all 1 <z < n, then
g1 and g2 are unifiable under A-constrained substitutions. It is easily verified
that the construction of tree automata is possible in deterministic polynomial
time and thus the size of each tree automaton is bounded by a polynomial to
the size of an input. On the other hand, it is known that both of calculating the
intersection of regular tree languages and checking the emptiness of a regular
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tree language are possible in deterministic polynomial-time to the size of corre-
sponding tree automatalll. Therefore, the above procedure ends in polynomial
time.

If goal terms violate the conditions (A) or (a), then we cannot use this
procedure since it can happen that ¢; in the mgu is not linear, and we cannot
construct the tree automaton M;.

5 Conclusion

Decidability and computational complexity of SUPCS are discussed. We note
that the decidability result for the class 2Bb and the deterministic polynomial-
time procedure for the class 2Aa greatly owe to favorable properties of tree
automata (for technical discussions, see [2] and [7]). By replacing tree automata
with “enhanced” tree automata such as in [1], we may relax conditions on
linearity of terms.
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Image sequence evaluation with timed transition
diagrams

Christoph Brzoska

Nearly all of the symbolic formalism proposed for image sequence evaluation
purposes are based explicitly or implicitly on some kind of grammar formalisms.
Such formalisms allow to describe sequences of words, which can be identified
with sequences of primitive conceptual descriptions of images and thereby to
reduce recognition of image sequences to recognition of words generated by non-
terminal symbols of the corresponding grammar. As a consequence, algorithms
for accepting the languages (respectively, their extensions) associated tothe cor-
responding grammar formalisms are generally utilized to recognize and evaluate
image sequences on the conceptual level.

In this talk, we will adopt a more general view of image recognition and see it
as evaluation of events annotated with their occurrence time which a priori are
not restricted by additional assumptions, for example, that the occurrence time
of consecutive events increase monotonicly. We propose so called timed transi-
tion diagrams for description of such sequences of events, define its semantics,
and sketch recognition and evaluation algorithms for the sequences specified.
This formalism allows a natural hierarchical composition and is thereby well
suited to be taken as basis for more advanced representation formalisms. The
formalism itself is an extension of that of constraint automata proposed recently
by K. Schulz and D. Gabbay.

This is a join work with K. Schéfer.
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Term Graph Narrowing

Annegret Habel Detlef Plump
Universitat Hildesheim™ Universitiat Bremen'

1 Introduction

Narrowing was devised in the field of theorem proving as an equation solving
method for the case that an equational theory is represented by a convergent
term rewriting system. Fay [Fay79] was the first who showed the completeness
of narrowing. In order to reduce the search space of the narrowing procedure,
Hullot [Hul80] considered a strategy called basic narrowing and showed that
it is still complete. Later, narrowing became popular as the computational
paradigm for the combination of functional and logic programming. Since then
there has been much research activity on improving the efficiency of narrowing
and on relaxing the requirements for completeness (see the recent survey of
Hanus [Han94)).

In order to implement narrowing efficiently, it is advisable to represent terms
by graph-like data structures. This is because the simple tree representation of
terms enforces copying of subterms in rewrite steps and hence leads to multipli-
cation of evaluation work. In this paper we introduce term graph narrowing as
an approach for solving equations by transformations on term graphs. Our main
result is that term graph narrowing is complete for all term rewriting systems
over which term graph rewriting is normalizing and confluent. This includes,
in particular, all convergent term rewriting systems. Completeness means that
if an equation is represented by a term graph, then for every solution of this
equation, term graph narrowing can find a more general solution (that is, every
solution is equivalent to an instance of a computed solution).

Term graph narrowing combines term graph rewriting with first-order term
unification (see [SPE93] for a recent collection of papers on term graph re-
writing). We use the term graph rewriting model studied in [HP91, Plu93a,
Plu93b]. It allows, besides applications of rewrite rules, collapsing steps on
term graphs to increase the degree of sharing. This model is complete with
respect to equational deduction in the same sense as term rewriting is. Our
completeness proof for term graph narrowing exploits existing results on term
graph rewriting concerning the relationship to term rewriting with respect to
termination, confluence and related properties.

This paper is an extended abstract of [HP96].

*Institut fir Informatik, Marienburger Platz 22, 31141 Hildesheim, Germany.
E-mail: habel@informatik.uni-hildesheim.de

tFachbereich Mathematik und Informatik, Postfach 33 04 40, 28334 Bremen, Germany.
E-mail: det@informatik.uni-bremen.de
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2 Term graphs and substitutions

Let X be a set of function symbols. Each function symbol f comes with a natural
number arity(f) > 0. Function symbols of arity 0 are called constants. We
further assume that there is an infinite set Var of variables such that VarN: =
(). For each variable x, we set arity(z) = 0.

A hypergraph over ¥ U Var is a system G = (Vig, Eq, labg, atts) consi-
sting of two finite sets Vi; and Eg of nodes and hyperedges, a labelling function
labg: Eq — X% U Var, and an attachment function attq: B — V/, which as-
signs a string of nodes to a hyperedge e such that the length of attg(e) is
1+ arity(labc(e)). In the following we call hypergraphs and hyperedges simply
graphs and edges. The set of variables occurring in G is denoted by Var(G),
that is, Var(G) = labs(Eq) N Var.

Given a graph G and an edge e with atti(e) = vy ...v,, node v is the
result node of e while vy,... v, are the argument nodes. Given two nodes v
and v' in G, we write v >é v" if there is an edge e with result node v such that
v’ is an argument node of e. The transitive (reflexive-transitive) closure of >/,
is denoted by >¢ (>¢). G is acyclic if > is irreflexive. We write G[v] for the
graph consisting of all nodes v with v >¢ v" and all edges having these nodes

as result nodes.

Definition 2.1 (term graph) A graph G is a term graph if
(1) there is a node roots such that roote > v for each node v,
(2) G s acyclic, and
(3) each node is the result node of a unique edge.

Figure 1 shows three term graphs with function symbols £, g, a, and va-
riables x,y. The symbol £ is binary, g is unary, and a is a constant. Edges
are depicted as boxes with inscribed labels, and bullets represent nodes. A line
connects each edge with its result node, while arrows point to the argument
nodes. The order in the argument string is given by the left-to-right order of
the arrows leaving the box.

Definition 2.2 (term representation) A node v in a term graph G repres-
ents the term terme(v) = labg(e)(terme(vy),. .., termeg(vy,)), where e is the
unique edge with result node v, and where attg(e) = vvy...v,. We write
labc(e) instead of labe(e)() if vi ... vy, is the empty string.

Note that termg(v) is well-defined by properties (2) and (3) of Definition 2.1.
In the following we abbreviate termg(rooty) by term(G).

A graph morphism f: G — H between two graphs G and H consists of two
functions fy: Vg — Vg and fg: Eg — Ey that preserve labels and attachment
to nodes, that is, labgo fr = labg and attyo fr = fioatte (where fir: V5 — Vi
maps a string vy ... v, to fy(vy)...fr(v,)). We omit the subscripts V and E
if no confusion is possible. The morphism f is injective (surjective, bijective)
if fyy and fr are so. If f is bijective, then it is an isomorphism. In this case G
and H are isomorphic, which is denoted by G = H.



Definition 2.3 (collapsing) Given two term graphs G and H, G collapses to
H f there s a graph morphism ¢:G — H mapping rootg to rootg. This us
denoted by G >, H or ssmply by G = H. We write G >=. H or G > H if ¢ 1s
non-injective. The latter kind of collapsing is said to be proper. A term graph
G s fully collapsed if there is no H with G > H.

It is easy to see that the collapse morphisms are the surjective morphisms
between term graphs and that G > H implies term(G) = term(H). An example
of collapsing is given in Figure 1.

':>>

Figure 1: A substitution application and a collapsing

The term graph substitutions defined next correspond to first-order term
substitutions. They are a special case of the general graph substitutions intro-
duced in [PH96] which operate on variable edges with an arbitrary number of
attachment nodes.

A substitution pair ©/G consists of a variable z and a term graph G. Given
a term graph H and an edge e in H labelled with x, the application of z/G
to e proceeds in two steps: (1) Remove e from H, yielding the graph H — {e},
and (2) construct the disjoint union (H — {e}) + G and fuse the result node of
e with rootg. Tt is easy to see that the resulting graph is a term graph.

Definition 2.4 (term graph substitution) A term graph substitution is a
finite set « = {x1/G1,...,x,/Gy} of substitution pairs such that x1,...,xz, are
pairwise distinct and x; # term/(G;) fori=1,..., n. The domain of « is the
set Dom(«) = {x1,...,x,}. The application of o to a term graph H yields
the term graph Ha which s obtained by applying all substitution pairs in o
stmultaneously to all edges with label in Dom ().

Example 2.5 Let x,y be variables and A be a term graph with term(A) = a.
An application of the substitution o = {x/A, y/A} is shown in Figure 1.

Given a term graph G, we write G for the graph that results from removing
all edges labelled with variables. If « is a term graph substitution, we assume
for technical convenience that the unique graph morphism in: G — Ga with
in(roote) = rootge satifies in(a) = a for all nodes and edges a.

Definition 2.6 (induced term substitution) For every term graph substi-
tution «, the induced term substitution '™ is defined by

o' = L [term(G) | /G € a}.
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3 Term graph rewriting

In this section we review the term graph rewriting model investigated in [HP91,
Plu93a, Plu93b]. In particular, we state results concerning the soundness and
completeness of term graph rewriting and the relation to term rewriting with
respect to normalization and confluence.

We assume that the reader is familiar with basic concepts of term rewriting
systems and abstract reduction systems (see, for example, [DJ90, Kl092]). In
the following R denotes a term rewriting system and —x the rewrite relation
associated with R.

Let v be a node in a term graph G. Define indegree;(v) = 3 cp,, #o(e),
where for each edge e with attg(e) = vovy ... vy, #4(e) is the number of occur-
rences of v in vy ... vy,.

Definition 3.1 For every term t, let Ot be a term graph representing t such
that only variable nodes are shared, that is, (1) indegreeq,(v) < 1 for each node
v with terme(v) € Var, and (2) vi = va for all nodes vy ,v9 with termey(vy) =
terme(ve) € Var.

Definition 3.2 (redex and preredex) Let G be a term graph, v be a node
in G, andl — r be a rule in R. The pair (v, | — r) is a redex if there is a graph
morphism red: Ol — G, called the redex morphism, such that red(rooty) = v.
The pair (v, — r) is a preredex if there is a term substitution o such that
termeg(v) =lo.

One can show that every redex is a preredex. The converse also holds if the
rule [ — 7 is left-linear, since then ¢/ is a treel. However, if [ contains repeated
variables, then there need not exist a graph morphism sending rooty to v. In
this case a suitable collapsing of G turns the preredex (v, [ — r) into a redex.

Definition 3.3 (term graph rewriting) Let G, H be term graphs and (v, | —
r)y be a redex in G with redex morphism red: Ol — G. Then there is a proper
rewrite step G =, 1 H if H is isomorphic to the term graph G3 constructed
as follows:

(1) Gi = G — {e} is the graph obtained from G by removing the unique edge
e having result node v.

(2) Gy is the graph obtained from the disjoint union G+ Qr by

e identifying v with rooty,,
o identifying red(vy) with v, for each pair (vi,v2) € Vi X Vi, with
termei(vy) = terme,(v2) € Var.

(3) Gz = Ga[rootg] is the term graph obtained from Ga by removing all nodes
and edges not reachable from roote (“garbage collection”).

LA term graph is a tree if all nodes but the root have indegree one.
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We define the term graph rewrite relation =g by adding proper collapse steps:
G=r H if G H or G= ., H for some redex (v, — r).

A term graph rewrite derivation is either an isomorphism G — H, which is
a derivation of length 0, or a non-empty sequence

G=G)y=rGi =>r...=>r G, =H.
We denote such a derivation by G =7, H.

Example 3.4 A term graph rewrite step with rule £(x,g(x)) — h(x,x,a) is
given in Figure 2. Note that the left term graph is obtained from the middle
term graph of Figure 1 by collapsing. However, the rule is not applicable to
the maiddle term graph of Figure 1 because there is no graph morphism from

.

Figure 2: A term graph rewrite step

Of(x,g(x)) into that graph.

The term graph rewrite relation = is sound with respect to term rewriting
in the sense that every proper step G =, ., H corresponds to a parallel
application of | — r to several occurrences of the subterm termeg(v) in term(G).
This parallelism is the reason for the possible speed-up of term graph rewriting
with respect to term rewriting. Note that if G = H is a collapse step, then
term(G) = term(H) and hence term(G) —% term(H).

Theorem 3.5 (soundness of rewriting [HP91]) For all term graphs G and
H, G 72} H implies term(G) %) term(H).

The converse of the implication (with =% replaced by =7%) does not hold
since certain term rewrite derivations do not correspond to term graph rewrite
derivations.

Although not all term derivations possess corresponding graph derivations,
the conversion of term graphs is complete with respect to conversion of terms.

Theorem 3.6 (completeness of rewriting [Plu93a]) For all term graphs
G and H, term(G) %) term(H) if and only if G %} H.

The next two theorems explain the relationship between term graph rewri-
ting and term rewriting with respect to normalization, confluence, and con-
vergence. These results are used in proving the completeness of term graph
narrowing.
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Theorem 3.7 (normalization [HP91])

1. A term graph G is a normal form with respect to = if and only if G 1s
fully collapsed and term(G) is a normal form with respect to —x.

2. If = is normalizing, then so is —R.

The converse of the second statement does not hold (see [Plu93b] for a
counterexample).

Theorem 3.8 (confluence and convergence [Plu93a))
1. If =5 1s confluent, then so is —.

2. If - 1s convergent, then so is =x.

For both statements, the converse does not hold (see [Plu93al).

4 Term graph narrowing

Our goal is to solve term equations by transformations on term graphs. To this
end we define term graph narrowing and establish a completeness result which
corresponds to Hullot’s result for term narrowing [Hul80, MH94].

An equation s =t is a pair of terms s and t. We are interested in solutions
to such equations modulo the equational theory induced by a term rewriting
system R. That is, a solution of s = t is a term substitution o such that
50 435, to. If such a solution exists, we say that s and t are R-unifiable.

Definition 4.1 (term graph narrowing) Let G and H be term graphs, v be
a non-variable node in G, 1 — r be a rule®> in R, and « be a term graph
substitution. Then there is a narrowing step G ~, |, o H if '™ is a most
general unifier of I and termeg(v), and

Gar-G@ =— H
c c(v),l—=r

for some collapsing Ga =, G'. We denote such a step also by G ~, H.

The collapsing after application of « is necessary to make narrowing com-
plete. For, if [ — 7 is not left-linear, then there need not exist a step Ga =, ;.
H even if [ is unifiable with term¢(v) and G is fully collapsed (see Example 4.2).

A term graph narrowing derivation G ~7, H is either an isomorphism G —
H together with the empty substitution or a non-empty sequence

G=Gg~a Gl ~ay -, Gn=H

n

such that « = aja9 ... ay,.
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Figure 3: The components of a term graph narrowing step

Example 4.2 Figure 3 shows a term graph narrowing step wn its three compo-
nent steps. The applied term rewrite rule is £(x,x) — k(x) and the computed
term graph substitution is o = {x/Z,y/Z}, where term(Z) = z. Note that
al®™ s a most general unifier of £(x,x) and £(y,z). Since f(x,x) — k(x)
is non-left-linear, there is no graph morphism from Of(x,x) to the term graph
resulting from the application of o. That 1s, the rule cannot be applied to this
graph. We first have to identify the two z-labelled edges by a collapsing.

From now on we assume that R contains the rule x =’ x — true, where the
binary function symbol =’ and the constant true do not occur in any other
rule. A goal is a term of the form s =" ¢ such that s and ¢ do not contain ="
and true. We denote by Atrue a term graph representing true.

Example 4.3 Let R consist of the following rules:

0+ x — X 0 xx — 0
S(x)+y — S(x+vy) S(x)xy — (xXy)+y
x:?x — true

Suppose that we want to solve the goal (z X z) + (z X z) = 8(z). Figure 4 shows
a term graph narrowing deriwation starting from a fully collapsed representation
of this goal. For each narrowing step, the applied rewrite rule and the involved
term substitution are gwen. Note that steps c,d and e are proper rewrite steps
and that step f consists of a collapse step and a proper rewrite step. The deriwa-
tion computes the term substitution {x/0,x'/S(0),y/S(0),z/S(0)} in siz steps.
Restricting this substitution to the variables of the wnitial term graph yields the
solution {z/S(0)}. Solving the same goal by term narrowing requires nine steps,
demonstrating that term graph narrowing speeds up the computation.

Theorem 4.4 (soundness of narrowing) Let G be a term graph such that
term(G) is a goal s =" t. If G ~, Atrue, then o™ is an R-unifier of s and
t.

*We assume that this rule has no common variables with G. his is not the case, then
W that tl le 1 bl th G. If tl t tl , tl
the variables in [ — 7 are renamed into variables from Var — Var(G).
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rewrite rule

substitution

step | node
a vy
b V9
¢ v3
d Uy
e U5
f U6

S(x)xy— (xxXy)+y
oxx' —0

O+x—x

S(x)+y— S(x+7y)
O+x—x
x:?x—>true

{y/s(x),2/8(x)}
{x/0,x'/3(0)}
{x/s(0)}
{x/0,y/3(0)}
{x/s(0)}
{x/s(s(0))}

Figure 4: A term graph narrowing derivation with its rewrite rules and substi-

tutions
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In order to prove the completeness of term graph narrowing, we use the
following lifting lemma. It allows to transform term graph rewrite derivations
into term graph narrowing derivations.

Lemma 4.5 (Lifting Lemma) Let G =} H be a rewrite deriwation and G’
be a term graph such that G'a = G for some normalized substitution o. Mo-
reover, let V' be a finite subset of Var such that Var(G')U Dom(«) C V. Then
there is a narrowing derivation G' ~%5 H' and a normalized substitution vy such
that H'y = H and (57)|y = a. ’

The proof of this lemma consists of two steps: at first the given rewrite
derivation is transformed into a “minimally collapsing” rewrite derivation with
a subsequent collapsing (see Theorem 4.8), and then this derivation is directly
lifted to a narrowing derivation. In a minimally collapsing derivation, collapse
steps are only used to turn preredexes of non-left-linear rewrite rules into rede-
Xes.

Definition 4.6 (minimal collapsing) A collapsing G > M s minimal with
respect to a redex (v, | — 1) in M if for each term graph M' with G = M' = M
and each preimage v' of v in M', the preredex (v', | — r) is not a redexz.

In particular, if G and M are isomorphic, then G > M is minimal since no
M' with G = M’ = M exists. A proper collapsing G = M is minimal only if
I — r is non-left-linear and cannot be applied at any preimage of v in G.

Definition 4.7 (minimally collapsing rewrite derivation) A rewrite de-
rwation P =% @ s minimally collapsing if each collapse step G >~ M 1n the
derivation is followed by a proper rewrite step M =, 1, N such that G = M
is minimal with respect to (v, | — r).

By the following result, derivability with respect to the rewrite relation
= is not affected if one restricts to minimally collapsing derivations with a
subsequent collapsing.

Theorem 4.8 (transformation of derivations) For every derivation G =3
H there is a minimally collapsing derivation G =5, H' such that H' > H.

Given two term substitutions ¢ and 7. and a subset V' of Var, we write
o= 7 [V]if zo <% a1 for each z € V. We write 0 <g 7 [V] if there is a
substitution p such that op =g 7 [V]. The restriction o|y of a term substitution
o to a subset V of Var is the substitution {z/t € 0 | # € V'}. The restriction
of a term graph substitution is defined analogously. A term graph substitution
a = {x1 /Gy, ..., 2, /G, } is normalized if Gy,...,G, are normal forms with
respect to = .

Theorem 4.9 (completeness of narrowing) Let =g be convergent and G
be a term graph such that term(G) is a goal s =" t. Then for every R-unifier
o of s and t, there is a narrowing deriwation G ~5 Atrue such that pterm <p

o [Var(G)].



By Theorem 3.8.2, = is convergent whenever —5 is. Hence we have the
following corollary.

Corollary 4.10 Term graph narrowing is complete for every convergent term
rewriting system.

Inspecting the proof of Theorem 4.9 in [HP96] shows that termination of
= can be relaxed to normalization. Hence we can strengthen the completeness
result as follows.

Theorem 4.11 Term graph narrowing is complete whenever term graph rewri-
ting 1s normalizing and confluent.

5 Conclusion

We have introduced term graph narrowing as a mechanism for solving equations
by transformations on term graphs. The advantage of term graph narrowing
over conventional narrowing is that common subterms can be shared. Sharing
saves not only space but also time since repeated computations can be avoided.

We have shown that term graph narrowing is a complete equation solving
method for all term rewriting systems over which term graph rewriting is nor-
malizing and confluent. This includes all convergent term rewriting systems.
To achieve completeness, narrowing steps have to allow a collapsing between
the substitution application and the rewrite step.

Our completeness proof is based on two results. On the one hand, we have
shown that minimally collapsing rewrite derivations can be lifted to narrowing
derivations, where minimally collapsing derivations contain only collapse steps
that are necessary to enable applications of non-left-linear rewrite rules. On the
other hand, we have established a normal form result for term graph rewrite
derivations, showing that every derivation can be transformed into a minimally
collapsing derivation together with a subsequent collapsing.

Our results suggest to consider mintmally collapsing term graph narrowing
as a restricted form of term graph narrowing in which narrowing steps contain
only collapse steps that are minimal with respect to the rewrite steps. From
our proofs it is easy to see that minimally collapsing narrowing is in the same
sense complete as general term graph narrowing.
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A rule based first order unification for higher order
types

Emmanuel Engel

Our goal is to define a clean rule based first order unification for higher
order types. We do not wants to take bounds and free variable from different
sets and then, the main difficulty is to manage properly the bound variables.
To solve this problem we use a rule based algorithm. We prove termination,
correctness and completeness.



ISHTAR: A Functional Logic Language
with Polymorphic Order-Sorted Types *
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1 Introduction

Type systems have been traditionally considered in functional languages and
incorporated as an extension to logic programming. The usefulness of type
systems has been widely accepted to detect programming errors and to obtain
more readable programs and run-time optimizations.

Polymorphic order-sorted type systems include both parametric and inclu-
sion polymorphism providing more powerful expressivity. Parametric polymor-
phism parametrizes types by means of type variables which represent any type
whereas inclusion polymorphism allows subtype relations between types.

Parametric polymorphism was introduced in functional languages within the
language ML and incorporated as an extension to logic programming. These
type systems were proved to be in general static type systems, that is, type in-
formation is not required at run-time. Inclusion polymorphism was studied for
languages base d on order-sorted equational logic and incorporated to the lan-
guage OBJ-3. By contrast, type systems with inclusion polymorphism are dy-
namic type systems, that is type information must be checked at run-time. The
combination of both kind of polymorphism has been studied for logic program-
ming (cfr. [Smo89], [Han91], [HiTo92], [Bei95]) and for functional programming
(cfr. [FuMi90], [Smi94]). These approaches investigate the problem of type infe-
rence (cfr. [Smo89], [FuMi90], [Smif4], [Beid5]) or operational semantics based
on typed unification for logic programming (cfr. [Smo89], [Han91], [HiT092]).
TEL is a language which combines both kinds of polymorphism in a logic lan-
guage.

The integration of logic and functional programming has been studied in
the last years (see [Han94a] for a survey). Operational semantics based on lazy
narrowing has been presented in[GHLR96]. This combination is adequated to
include lazy evaluation allowing partial non-strict functions and infinite values.
Parametric type systems for functional-logic programming have been studied

in [Han90].

*An extended version can be found in [AlGi96].
*This rescarch has been partially supported by the Spanish CICYT (project TIC 95-0433-
C03-01 "CPD").
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This work investigates the integration of a polymorphic order-sorted type
system into functional logic programming including lazy functions. Operational
semantics for logic languages with polymorphic order-sorted types only requi-
res type checking for data terms during the unification process. However, in
lazy narrowing, type checking of expressions not being data terms could require
evaluation. For this reason, a lazy type checking must be introduced and com-
bined with lazy narrowing. We will define a lazy notion of type checking based
on the type declarations, in such a way that the expressions involving function
symbols will not be evaluated if the type declaration is enough to deduce the
type.

The type system we present is based on that presented in [HiTo92]. Hence
it allows subtype relations between type constructors with the same arity, de-
fining a quasi-lattice and satisfying the monotonicity property. Our language
ISHTAR follows the line of BABEL [MoR092] and BABLOG [AGL94]. The
programs consist of a specification of types, type declarations for data con-
structors and functions and a set of constructor-based well-typed conditional
rewriting rules. The rule conditions include data and type conditions and work
as constraints for the rule applicability. The user can make a case distinction
based on subtypes of the type declaration or can restrict the applicability of the
rule for some cases. In any case, type conditions must assure the well-typedness
of the expressions involved in the rule. This well-typedness property is crucial
for a sound operational semantics. We present an operational semantics based
on transformation rules of data and type constraint systems, and combining
lazy narrowing and type solving. We extend the operational semantics of lazy
narrowing presented in [GHLRI6] by considering type constraints.

2 Some Examples

Our typed programs consist of a specification of types, a set of type declarations
for data constructors and functions and a set of program rules for every function
as the following example shows.
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TYPES

opnat,nat < int
negint, zero < opnat
posint, zero < nat

technician, artist < person

doctor, comp_scientist,

architect < technician

sculptor, painter, musician < artist
elist(a), nelist(a) < list(a)
earbin(a), nearbin(a) < arbin(a)
bool

FUNCTIONS
head : nelist(a) = o
head([X|Xs]) = X <« X

tail : nelist(a) — list(a)
tail ([ X]Xs]) = Xs < X 1 o, X,

Do, X o list(a)

: list(a)

second : nelist(a) = «
second(X ) := head(tail (X))
< X : nelist(a), tail(X) : nelist(a)

append : list(a) x list(a) — list()

append(nil,L) := L < L : list(a)

append([X|L1], L2) := [X|append(L1,
< X :a,L1: list(a), L2 : list(a)

L2)]

preord : arbin(a) — list(a)
preord(empty) = nil
preord(tree(LT, X, RT)) :=
nd(preord(LT), preord(RT))]
< X : o, LT : arbin(«), RT : arbin(«)

n_th: nat x list(a) = «

nth(0,[ X|L)) =X < X:a,L:«

n_th(s(N),[X|L]) := n_th(N, L)
< N:nat,X :a, L : list(a)

DATA CONSTRUCTORS
0: zero

suc : nat = posint

pred : opnat — negint

nil : elist{c)
[-]d] s a x list(a) — nelist(a)

empty : earbin(o)
tree : arbin(a) x a x arbin(a) = nearbin(a)

john : doctor

frank, david : comp_scientist
thomas, margaret : architect
richard, marie : sculptor
robert, nathalie : painter
michael : musician

true, false : bool
father : person — person
father(david) := michael
father(thomas) := richard
Father(richard) := david...

mother : person — person
mother (richard) ;= marie

mother(marie) := nathalie...

fam_tree : person — nearbin(person)
Fam_tree(X) := tree( famtree( father(X)),
X, fam_tree(mother(X))) < X : person

any-anc-artist? : person — bool
any_anc_artist?(X) := true
< X : person, sel artist(preord
(fam_ree(X))) : nelist(person)
any-anc_artist?(X) 1= false
< X : person, sel artist(preord
(fam_tree(X))) : elist(person)

sel_artist : list(person) — list(artist)
sel_artist(nil) := nil
sel_artist([X|L]) := [X|sel_artist(L)]
< X :artist, L : list(person)
sel_artist([X|L]) 1= sel_artist(L)
< X : technician, L : list(person)

The program rules are conditional rewriting rules including data and type con-

ditions whose intended meaning is to constraint the applicability of a rule. In

this example, we show the expressivity of our language. We can classify people

into artists: painters, sculptors and musicians, and technicians: doctors, com-

puter scientists and architects.We can define polymorphic constructors for lists

and trees.

We can use them to manage data bases, for example, the family

tree of a person (describing the profession of every ancestor). Furthermore, we
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can define polymorphic functions as head, tail, second, append, preord or n_th.
The language also allows to formulate several queries in a simple way.

Goals

Goals of programs are as conditions rules, for example, for the program on the
example we can write:

?-P==father(X), M==mother(X)On_th(N, preord(fam_tree(X)))):musician,

N:posint, X :person, X=richard, P=david, M=marie,
N=suc(suc(0))OX:sculptor, P:comp_scientist, M :sculptor, N :posint

The lazy notion of type checking is shown in the following example.

Lazy Type Checking

The type constraint sel_artist(preord (fam_tree(X))) : list(artist) does not
require evaluation due to sel_artist : list(person) — list(artist). By contrast,
sel_artist(preord (fam_tree(X))) : nelist(artist) requires evaluation, however,
the lazyness of the language does not force to compute the complete list of
artists. It is only required to find one.

The operational semantics that we present is based on transformation rules
of constraints combining lazy narrowing and type solving. It works with strict
equalities (I == r) that represent that [ and » must be evaluated into a finite
totally defined value; non strict equalities (e = t) that represent the lazy unifi-
cation of e and t (where e is any expression and ¢ is a pattern of a function),
type conditions (e : o) that will be solved by narrowing e into an expression of
type o, subtype conditions (7 C 7’) and solved typed (v = o). Goals and rules
only contain strict equalities and type conditions. The rest will appear during
the transformation process. As result of this process we obtain a solved system
including an environment (type assumptions for data variables). a substitution
for data variables, a substitution for type variables and subtype conditions of
the form « C (B. During the process; for every data variable X we use a type
variable aex in order to compute the type. The following example shows the
process.

Constraint Transformations

Given the goal Y == second([0, suc(0)])OY : ay the operational calculus pro-
ceeds as follows:

Y == second([0, suc(0)])QY : ay =g

Y == head(tail(]0, suc(0)]))AY : ay, [0, suc(0)] : nelist(), tail ([0, suc(0)]) :
nelist(a) —5Hg

Y == head(tail([0, suc(0)]))AY : ay, [0, suc(0)] : nelist(x), [suc(0)] :
nelist(o) =5 g

Y == head(tail([0, suc(0)]))OY : ay,a = int =5
Y == suc(0)0Y : ay, o =int, suc(0) : ay =54

Y == suc(0)3Y : posint, o = int
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The operational semantics is lazy in the sense of the evaluation of data
expressions is performed only if is necessary to obtain values for data variables
or to check types. For it, we prove results of soundness and completeness w.r.t.
a lazy semantic calculus.

We are also interested in an efficient implementation of the operational
semantics that takes advantages from the typedness of the language.
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Equational Unification and Type Inference:

A Case Study
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The application of free unification to type inference for programminglangua-
ges is well-known [6, 1]. In this talk a type system is presented whose inference
algorithm is based on equational unification for Abelian groups.

Programs written in languages like ML must be well-typed before a compiler
will accept them. In the same way, physical equations in science must be
dimensionally consistent. The ML type system can be extended to support
the notion of physical dimension. It is then possible to be sure that dimension
errors (such as adding a length to a time) will not occur at run-time.

This aim is achieved by adding a parameter to numeric types which repres-
ents units of measure such as kilograms or metres per second. Unit expressions
are formed from base units (such as the SI units kilograms, metres and seconds)
combined using product (for example, to obtain metres squared) and inverse
(to express velocities in metres per second, for instance). Also a symbol re-
presenting ‘no units’ is required for dimensionless quantities such as refractive
index and angle. We therefore use the following syntax for units of measure:

pou=w | b | 1| pyps | g

Here b ranges over some set of base units B, dimensionless quantities have
the units 1, product is represented by juxtaposition and inverse by its usual
notation. For large programs it is essential that functions can be written which
are polymorphic in their units of measure — even something as simple as a
squaring function requires this. Hence the syntax of unitsallows unit variables,
ranged over by u.

Types in the language have the syntax

Tu=1t]| 17| 71 XT2 | numyp

where ¢ ranges over type variables (to allow ordinary type polymorphism), func-
tion types and cartesian product types are represented by the usual 71 — 7
and 7 X 7, and numeric types have the form num p for a units of measure
expression p. Then the standard arithmetic operations are given the following
polymorphic types:

+,— : numu X numu — num 4
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X 1o numMup X num U2 — num uUju2

/ : numup X numuz — num u1u2_]

Notice how addition and subtraction insist that their arguments have the same
units of measure, whereas multiplication and division operations produce results
whose units of measure are respectively the product and quotient of the units
of their arguments.

So far, the type system resembles many an extension to ML, except that we
allow quantification over two different syntactic classes. What distinguishes it
is that units of measure satisfy certain equations, namely those of an Abelian
group. Hence we incorporate into the type system an equational theory =g
generated by the following set E of equations:

LU = UU] commutativity
(ujug)uz = ui(uoug) associativity
lu = u tdentity
wu !l = 1 inverses

The typing rules are then extended with the following rule:

I'kFe:n
I'kFe:m

TN =E T2

Here I is a type enwironment which maps program identifiers to polymorphic
types, and e is an expression in the programming language.

The ML type inference algorithm makes use of free unification whenever it
processes a function application e; es. The type 7 deduced for e; is unified
with the type 7 — ¢, where 7o is the type deduced for es and t is a freshly-
generated type variable. The fact that free unification is unitary (for any two
unifiable types there is a single most general unifier) leads to the principal types
property of ML (for any typable expression there is a single most general type).
A quick scan of any survey on unification [2, 8] will reveal that few algebraic
theories are unitary unifying. Fortunately, Abelian group unification with free
constants +s such a theory. Hence the use of free unification in the ML type
inference algorithm can be replaced by AG-unification to obtainprincipal types
for units of measure [3, 4].

To illustrate the power of the system, here is a function written in ML which
differentiates another function numerically.

fun diff h £ = fn x => (£ (x+h) - £ (x-h)) / (2.0 * h)
It is assigned the polymorphic type shown below.
num u; — (num w; — num we) — (num w; — num ug'u,fl)

An interesting extension to the system is the provision of different systems
of units and the automatic insertion of conversions between them. These are
formalised as additional equations in £ which represent equivalences between
base units in different systems (for example, one kilogram is equivalent to 2.2
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pounds). The type inference algorithm and unification procedure must then be

modified so that suitable coercions are inserted into the program.

A number of other type systems incorporate equational theories and possess

inference algorithms based on equational unification: examples include record
types [7] and isomorphisms between data representations [9]. The (unitary)
theory of Boolean rings holds great potential too [5].
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This small note reports on a very preliminary work on higher-order matching.
There might be typos and unprecise points. We will start by a description of
the problem, followed by a sketch of our solution.

Types

The language L of semple types is the smallest set containing a type constant o
and such that for any 0,7 € L, 0 — 7 € L. As usual, a type o0 — (¢/ — ") is
also written o, 0’ — ¢'; from now on, we assume this conversion from the former
to the latter. (Then any type distinct from o can be written o1,...,0, — 0)

The order of a type o € L is defined by: O(o) =1 and O(o,..., Op —0) =
1+ max(O(o1),...,0(0,))

Terms

We consider the simply typed lambda-calculus: the set of terms 7 is the smallest
set containing variables (of a type 7 € £) and a set of typed constants (there
maybe an arbitrary set of constants for each type) and closed under abstraction
and application: if ¢ is a term of type 7 and = is a variable of type o, then Az.t
is a term of type 0 — 7. If s is a term of type o1,...,0, = 7 and t1,...,t, are
terms of types o1, ..., 0, respectively, then s(t1,..., tn) is a term of type 7.

The order of a term t is the maximum order of the types of all its subterms.

fB-reduction is terminating on 7. We write s | the unique normal form of s
w.r.t. f-reduction. s =5t when s =1

Higher-order matching problems

A higher-order matching problem is an equation s = t between two terms
s,t € T such that ¢t does not contain any free variable. s,¢ may be assumed
[B-irreducible without loss of generality.



The order of a (higher-order) matching problem is the maximum order of s
and .

A solution of a matching problem s = t is a term assignment o to the free
variables of s such that so =3 t. We may also restrict ourselves to irreducible
assignments o without loss of generality.

First order matching problems have either no solution or a unique solu-
tion. Second-order matching problems have always finitely many solutions up
to a-conversion (an algorithm can be derived from Huet’s thesis). Third-order
matching problems may have infinitely many solutions, but they are still deci-
dable (As shown by G. Dowek in 93). For example the problem

r(Ayy) =a
where a is a constant of order 1, has the following solutions:
x = Az.z2"(a)

where n is any non-negative integer.

Fourth order matching is also decidable, as shown by V. Padovani in 1994.
However, the problem of deciding whether an order n matching problem has a
solution or not is open for n > 4.

Dual Interpolation problems

Dual interpolation problems are Boolean combinations of the following particu-
lar higher-order matching problems:

where s1,...,8,,t are ground terms (they do not contain free variables).

V. Padovani has shown in 1994 that the general nth order matching pro-
blems reduce to nth order dual interpolation problems.

In what follows, we concentrate on a single matching problem of the above
form and consider the question of recognizability (by a finite tree automaton)
of the set of u such that {z — wu} is a solution. If such a set of solutions is
effectively recognizable, then we solve the higher-order matching problem since
a Boolean combination of recognizable tree languages is again an (effectively
computable) recognizable tree language.

Recognizability of the set of solutions

The following result does not solve the general problem but sheds new light on
the decidability at order 4:

proposition 1 The set of solutions of a problem x(s1,...,s,) =t where x, the
only free variable has only one occurrence, is recognizable for matching problems
of order n < 4.

Sketch of the proof:
We build an automaton A as follows:
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the set of states () is the smallest set closed under subterm and containing:

o i

e The solutions of y(ry,...,7) = u (up to a-conversion) where 7, .. .,
7%, u are first-order subterms of ¢ (free variables of these terms being
considered as constants) or the special constant O,.

All these solutions are assumed to contain distinct bound variables.

e the type of

For convenience, we will write g; (or ¢,) instead of ¢ (or 7) when they are
considered as states.

Final states : There is only one final state ¢;

The set of rules (which maybe infinite because the alphabet is infinite) con-
sists of

e The rules ¢(gt,, -, qt,) = Qe(t,,...1,) Tor each e(ty, ... . ¢,) € Q and ¢
is either a constant or a variable or a binder.

e The rules (g, ... qr,) = qu if si(t1,...,tn) = v € Q, z1,.... 2,4
are variables which occur nowhere else. (If ¢; is a type 7, then t; is
replaced with the special constant O, in the reduction).

e Rules such that in state g, where 7 is a type, we accept all terms of
type 7 (up to a-conversion)

We show that A accepts the set of terms u with free variables z1,...,z, such
that Azy....Az,.u is a solution of z(sy,...,s,) =t.

It is not difficult to see that each term which is accepted by the automaton
is also a solution.

Conversely, we show by induction on the pair (number of reduction steps,

size of u) that, for all ¢, € @ such that u € T,
vo l=u = wvis accepted in g,

where
o={x = S1;...;T, Sy}
Var(v) C{zy,...,z,

There are two cases: if v = ¢(v1,...,v,) where ¢ # x;, then we use the
induction hypothesis, the closure of ) by subterm and the definition of the
set of transition rules. If v = z;(vy,...,vn), we consider an index j such that
replacing the jth argument of s;(vio,...,v,0) with a dummy constant does
not yield « as a normal form. We show that v; is accepted in a state q,, such
that vjo |= u;. For, we consider a particular reduction sequence from which
we derive (vjo) | (r1,...,7;) =« where v’ is a subterm of w.

Now, we can use the order hypothesis: we can see that, in case z is of order
at most 4, r(,...,r. are of order 1. Then for each 1, either r; is a subterm of ¢,
or is irrelevant in the reduction sequence. Hence (vjo) | is accepted either in
qu or in some q,; where u; is a solution of y(ry,...,7) = v'.
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Finally, we use the induction hypothesis: v; is accepted in q,,. We can
repeat the argument for all indices 7 on which the reduction depends and, by
construction of the automaton, x;(vy,...,vy) is accepted in g,.

Extensions

We are currently extending this technique to arbitrary higher-order matching
problems. We believe again that the set of solutions of dual interpolation pro-
blems is still recognizable. This would also imply that the set of solutions of
general higher-order matching problems.
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Higher-Order Equational Unification
via Explicit Substitutions

Claude Kirchner, Christophe Ringeissen

INRIA-Lorraine & CRIN-CNRS
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615, rue du Jardin Botanique
BP 101, 54602 Villers-les-Nancy Cedex France
e-mail: {Claude.Kirchner, Christophe.Ringeissen }@loria.fr

Higher-order E-unification is equational unification with respect to the equi-
valence relation =g, generated by Bn-conversion and an arbitrary first-order
equational theory E. We present how to perform higher-order E-unification
thanks to the use of explicit substitutions and the related first-order rewrite
system Ao. The theory A\dE of interest is defined as the combined equational
theory =\, (p)up Where Ao (E) is a Ao-calculus integrating the first-order equa-
tional theory E and its function symbols. It is a non-disjoint combination of
first-order equational theories and so we cannot reuse the well-known techniques
developed for combining unification algorithm when signatures of the related
theories are built over disjoint sets of function symbols.

We design a complete Ao E-unification procedure. The chosen approach
is to slightly modify the simple algorithm due to G. Dowek, T. Hardin and
C. Kirchner for Ao. This leads to few additional transformation rules for dealing
with F and with the interaction between F and Ao. For sake of simplicity, we
assume that E is regular (left and right hand sides of axioms have the same
variables) and collapse-free (there is no variable as left or right hand sides of
axioms). But this could be generalized to arbitrary theories E at the cost of
more complicated rules and more sophisticated F-unification algorithms.

The unification procedure may be viewed as a set of transformation rules
together with a given strategy. The application of rules mainly depends on the
top-symbols of s and ¢ in an equation s =%, t:

1. If these top-symbols are constructors in Ao (roughly speaking, like A and
de Bruijn indices), then we apply the decomposition rules developed for
Ao and which are still correct in this context.

2. If these top-symbols are function symbols in F, then we use the well-
known notion of variable-abstraction to purify the equation. The pure
equation will be solved thanks to the E-unification algorithm.

3. If these top-symbols are respectively a constructor in Ao and a function
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symbol in E, there is a “theory clash” and the process fails since E is
assumed to be collapse-free.

4. Otherwise, members of equations are normalized thanks to the weakly
normalizing rewrite system Ao(E) in order to reach one of the different
forms considered in the rules. There exist also explosion rules which are
aimed to perform a step towards a solution.

The interest of this unification procedure lies in the result that a higher-order
FE-unification problem can be translated into a first-order Ao E-unification pro-
blem and solutions of the latter remain in the image of the translation. Hence,
we show how to reduce higher-order E-unification into first-order unification.

90



Unification via Explicit Substitutions:

The Case of Higher-Order Patterns

Gilles Dowek Thérese Hardin Claude Kirchner
Frank Pfenning

Following the general method and related completeness results on using
explicit substitutions to perform higher-order unification proposed in [Dowek,
Hardin, Kirchner; LICS 1995], we investigate the case of higher-order patterns
as introduced by Miller. We show that our general algorithm specializes in a
very convenient way to patterns. We also sketch an efficient implementation of
the abstract algorithm and its generalization to constraint simplification, which
has yielded good experimental results at the core of a higher-order constraint
logic programming language.
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Undecidability of the word problem in the union of
theories sharing constructors

Fxtended Abstract

E. Domenjoud
Crin/CNRS & Inria-Lorraine
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France
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In [1], E. Domenjoud, F. Klay and Ch. Ringeissen established modularity
results for unification, matching, and the word problem in the union of equatio-
nal theories sharing constructors (with a suitable definition of the constructors).
For unification, counter-example were given which show that no general combi-
nation algorithm exists if any condition of the modularity theorem is removed.
We present here a similar counter-example for the word problem. It shows that
weakening the conditions of the modularity theorem may lead to an undecidable
word problem in the union. The counter-example is very general in the sense
that the theories we consider are simple and linear.

This modularity theorem is as follows:

Theorem 1 (Domenjoud, Klay and Ringeissen 1994 [1]) Let & and &
be two equational theories sharing only constructors. If for each 1 =1,2:

1. the word problem is decidable modulo &;;

2. for each shared constructor h and any term t, Iy, ... t,, t =¢, h(ty, ..., t,)
18 decidable.

then the word problem modulo £{UEs is decidable and for each shared constructor
h and any term t, 3ty ... t,, t =g 0, h(t1, ... 1,) is decidable.

The counter example we present shows that we may not simply remove the
second condition of this theorem. This means that the word problem alone is
not modular for theories sharing constructors.

The idea to prove this result is to build an equational theory £ encoding
a procedure which searches for the smallest solution of some semi-decidable
problem P. A term of the form search(P) will be E-equal to sat(P,xq) if
and only if xg is the smallest solution of P in some ordering. Searching for
the smallest solution of P will ensure that sat is a constructor. Provided that
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P and its solutions may be encoded using only constructors, considering the
theory & obtained by renaming search to search’, search(P) and search’(P)
will be equal modulo £ U &' if and only if P has a solution. The trick is that
it will be possible to decide search(P) =¢ sat(P,xzq) since both P and xg are
given. But to decide search(P) =¢_ ¢ search’(P), we have to decide whether

xq exists, which is impossible.

The semi-decidable problem we consider is the Post Correspondence Problem

(PCP) [2].

Definition 1.1 (Post Correspondence Problem (PCP)) Let A and C be
fized finite alphabets. The Post Correspondence Problem consists in deciding
for each pair of morphisms ¢ and @' from A* to C* whether there ewists a
non-empty o € AT such that p(a) = ¢’ ().

Theorem 2 (Post 1946 [2]) The Post Correspondence Problem is undecida-
ble in general.

PCP is obviously decidable if |C| = 1 and for |C| > 2 the following results are
known.

Theorem 3
o if |A| <2 then PCP is decidable.
o if |A] > 9 then PCP is undecidable.

For 3 < |A| < 8 the problem is still open.

In the sequel, A = {ay,...,a,} and C = {c1,..., ¢, } are fixed disjoint
sets of unary function symbols. We take A and C large enough to get the
undecidability of PCP. From what precedes, it suffices to take n > 9 and m > 2.
©, as an argument of a function symbol, always stands for a sequence of n terms

Ol P, and @[t]; stands for a sequence of n terms the it" of which is t.

We consider the theory £ defined by the set of axioms given in the table
below and the (non-terminating) rewriting system R obtained by orienting all
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axioms of £ from left to right.

D U WD~

|

10
11

12
13
14

POSt(H&’,H&”) = (lpply(p 99,7 J—v J_WC“J_, J—w J—v J—)
Vi, g apply(p[c;w];i, ', 2 a,v:l:,J,U, u') = apply(p[w]i, ¢, ¢ 7~,z,(11 y,cju,u')
Vi apply(o[L], ¢'[cxw']i, 2, 2/, aix, y,u, w') = apply(p[L]i, o' [w']i, 2, cr 2, @i, y, u, cpu’)
Vi apply(p[L]i, ' [L]i, 2, 2", aix, y,u, u') = restore(p[L]i, ¢'[L]i, 2,2, aiz, y, u, u')
Vi, g restore(p[u] ¢z, z',aix,y, u, u') = restore y[cjw],,y z ’,ai;v,y,u,u')
Vi,j  restore(yp, o' [w']i, L, ek’ aiv, gy, u, u') = restore(yp, ¥ Neww'ls, L, 2" azw, y, u, u')
Vi, g restore(p, o', L, L a;x, y,u,u') = apply(p, o', L, L a, a;y,u, u’)
Yy apply(p, @', L, L, 1y cju, cju’) = apply(p, 9, L, L, L oy, u,u’)
apply(e. ' L L Ly, L, 1) = sat(s, 7', y)
R apply(p, ', L, L, Ly cju,cpu’) = fail(¢, ¢, y, u,u')
\Z] apply(s »@’ L1, Ly, ciu, L) = fail(p, ¢y, u, L)
Yk apply(p, @', L. L. 1Ly, L cpu') = fail(g, ¢y, L, u)
vj Faillo, 'y ey, u') = fail(g, o'y, u, ')
Vk Faillp, @'y, Lyeru') = fail(p, @'y, L, u')
faillp, ¢’ y, L, L) = neat(p. ', L,y)
next(p, ¢, v, any) = next(p, 9, arx,y)

Yi#n next(p, ', x,a;y) = shift(p, ¢’ aiy12,y)

next(yp, p ,a, L) = shift(p, ¢’ anx, L)
Vi shift(p, ¢, 1’ a;y) = shift(p, @', a;x,y)

shift(p, o o, L) = apply(p, o', L, L oa, L 1, 1)

The idea behind this set of axioms is the following. Consider a morphism ¢ from

A* to C*. We can encode ¢ as the sequence wi L, ..., w, L where w; = p(a;).

Now consider the term Post(p, ¢') where ¢ and ¢’ are two morphisms encoded
in this way. The rewriting system R, when applied to this term, will apply ¢
and ¢’ to each non-empty word o € A" in some increasing order, until a solu-
tion of p() = ¢’ (@) is found, provided one exists. Otherwise, it will never stop.
Axiom 0 converts Post(p, ¢') into apply(p, ', L, L,ay L, 1. 1, 1) which starts
the search for a solution of PCP and for each term apply(p, ', L, L, al, 1, 1, 1)
with « € A", R acts as follows.

e Axioms 1 through 6 apply ¢ and ¢’ to a. Axioms 1 and 2 perform

the application to the first a; in «, destructing the morphisms which are
restored by axioms 4 and 5. Axiom 3 prepares for this restoration and
axiom 6 prepares for the application to the next a; in a. Eventually,
we get apply(p, @', L, L, L @l p(a)L, ¢'(«) L) where @, p(«) and ¢ ()

denote the words obtained by reversing a, ¢(«) and ¢’'(«). Note that the
application of the morphisms is destructive to avoid a copy which would
make the theory non-linear.

Axioms 7 destructs ¢(«) and ¢'(«) one symbol at once until either eve-
rything has been removed or a difference is found. If no difference is
found then « is a solution of PCP. Axiom 8 stops the process and returns
sat(p, @', al) where @ is the word obtained by reversing «.
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e Axioms 9, 10 and 11 detect all possible differences between ¢(«) and
/
o' ().

e Axioms 12 and 13 destruct what remains from ¢(«) and ¢'(«) after a
difference has been detected. This destruction is done one symbol at once
to keep the theory regular. Eventually, we get fail(p, ', al, L, 1)

e Once () and ¢'(«) have been completely destructed, axiom 14 prepa-
res for the computation of the next « which is performed by axioms 15
through 18.

e At last, axiom 19 prepares for the application of ¢ and ¢’ to this next «
and the whole process starts again with axiom 1.

This process may be depicted as follows

Post(p, ¢') apply(p, @', L, Loap L, 1, 1, 1)

/—> apply(p, @', L, Lol 1, 1, 1)

a+next(a)
Y _
, L apply(p, ', L, L, L al, p(a)L, ¢'(«) L)

pla)#¢' (o)

4
sat(p, @' al)

We establish the following results for £.
Proposition 3.1 £ is simple
Theorem 4 The word problem is decidable modulo £.

Idea of the proof. The proof works in three steps. We first consider the regular
set of terms

TY = apply((C* L))" (C*L)", L, L, AL, L, 1, 1) U sat((C*L)", (C*L)", A" L)

and show that £-equality is decidable in 79,

In a second time, we show that any outermost R-derivation eventually yields
a term of the form C[t1,...,t,] where each t; belongs to 7' and C[] is an R-
irreducible context of which no other subterm belongs to 7.

Finally we show that if ¢ = C[ty,...,t,] and t' = C'[t},....t;] have this
form then t =¢ ¢’ if and only if C[] = C'[] and for each i, t; =¢ t,. From what
precedes, these last equalities are decidable. O

Proposition 4.1 Each symbol in AUCU {sat} is a constructor of £.



Idea of the proof. We consider a RPO with a total precedence which makes any
symbol in AUCU {sat} smaller then any symbol in { Post, apply, restore, fail,
next, shift}. We show that the completion of £ with this ordering will never
fail to orient an equation. Finally, we show that the symbols in AU CU {sat}
may not occur at the top of a left-hand side of a rule in the (infinite) completed
system. O

We define now £ as the theory obtained by adding a prime to Post, apply,
restore, fail, next and shift in £ From the proposition 4.1, £ and &’ share
only constructors. Finally, we get the theorem:

Theorem 5 The word problem is undecidable modulo £ U &’

Idea of the proof. We show that if ¢ and ¢’ are the encoding of two morphisms
from A* to C* then Post(p, ') =guer Post' (¢, ¢') if and only if there exists a
non-empty « € A" such that p(«) = ¢'(«). Hence the theorem. O
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1 Introduction

Reduction orderings that are total on ground terms play an important réle in
many areas of automated deduction. For example, unfailing completion [4]—a
variant of Knuth-Bendix completion that avoids failure due to incomparable
critical pairs presupposes such an ordering. In addition, using a reduction
ordering that is total on ground terms, one can show that any finite set of
ground equations has a decidable word problem [13, 20]. It is very easy to
obtain such orderings. Indeed, many of the standard methods for constructing
reduction orderings yield orderings that are total on ground terms: both Knuth-
Bendix orderings [12] and lexicographic path orderings [10] are total on ground
terms if they are based on a total precedence ordering on the set of function
symbols.

Things become more complex if one is interested in reduction orderings that
are compatible with a given equational theory E. Such orderings, which are, for
example, used in rewriting modulo equational theories [8, 9, 2], can be seen as
orderings on E-equivalence classes. E-compatible reduction orderings that are
total on (E-equivalence classes of ) ground terms can be employed for similar
purposes as the usual reduction orderings that are total on ground terms. For
example, let AC denote a theory that axiomatizes associativity and commutati-
vity of several binary function symbols, where the signature may contain addi-
tional free function symbols. An AC-compatible reduction ordering that is total
on ground terms can be used to show that for any finite set G of ground equati-
ons, the word problem is decidable for ACUG [14, 15]. The first AC-compatible
reduction ordering total on ground terms was described in [15]. It is based on
a relatively complex polynomial interpretation in which the coefficients of the
polynomials are again integer polynomials. Surprisingly, it turned out to be
rather hard to construct AC-compatible reduction orderings by appropriately
modifying standard orderings such as recursive path orderings [7]. The main
idea underlying most proposals in this direction (e.g., [5, 3, 11, 6]) is to apply
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certain transformations such as flattening to the terms before comparing them
with one of the standard path orderings. A major drawback of these approa-
ches is that they impose rather strong restrictions on the precedence orderings
on function symbols that may be used. One consequence of these restrictions
is that the obtained AC-compatible orderings are not total on ground terms if
more than one AC-symbol is present. This problem has finally been overcome
in [18, 19], where an AC-compatible reduction ordering total on ground terms
is defined that is based on a recursive path ordering (with status). In [17] it
was shown that this approach can even be used to construct reduction orderings
total on ground terms that are compatible with theories that axiomatize several
associative, commutative, associative-commutative, and free symbols.

The present paper proposes a different way of attacking the problem of how
to construct E-compatible orderings that are total on ground terms. It was
motivated by the observation that it is very easy to define an AC-compatible
reduction ordering total on ground terms if there is only one AC-symbol in
the signature. Instead of directly defining an AC-compatible ordering total on
ground terms for the case of more than one AC-symbol, we try to obtain such an
ordering by combining the orderings that exist for the case of one AC-symbol.!
To be more precise, assume that AC| axiomatizes associativity-commutativity
of the symbol 4+ € ¥ and that AC» axiomatizes associativity-commutativity of
the symbol * € X9, where 31 and X9 are disjoint signatures that may contain
additional free function symbols. For 1 = 1,2, let >; be an AC;-compatible re-
duction ordering that is total on the AC;-equivalence classes of ground terms,
Le., >; can be seen as a total ordering on T(%;,0)/=,., . In order to define
a reduction ordering that is total on 7 (3; U 2270))/:/\6';.402
orderings =1 and »9, we utilize the fact that this combined algebra can be
represented as the amalgamated product of the single algebras T (X;,0)/= . .
This product was introduced in [1] in the context of combining unification alg(l)—
rithms. The construction of the amalgamated product represents the universe

from the given

of T(X; U X, (0)/;4(;,1&4(,2 as a (possibly infinite) tower of layers. In principle,
the combined ordering compares elements of the combined algebra first with
respect to the layers they are in: elements in higher layers are larger than ele-
ments in lower ones. If two elements are in the same layer, then one of the
original orderings (> or >2) is used to compare them.

This combination approach is, of course, not restricted to AC-theories. It
can be used to combine arbitrary compatible reduction orderings that are total
on ground terms, provided that the single theories are over disjoint signatu-
res and satisfy some additional properties that will be introduced below. For
example, theories that axiomatize associativity, commutativity, or associativity-
commutativity of a binary function symbol satisfy these properties.

! This should not be confused with Rubio’s approach for combining orderings on disjoint
signatures [17]. To obtain his combined ordering, which extends given orderings on terms over
the single signatures to an ordering on terms over the union of the signatures, he presupposes
the existence of a compatible reduction ordering total on ground terms for the combined
signature. In the present paper, the main goal is to show that such an ordering exists.
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2 Compatible reduction orderings

Let ¥ be a signature, and let T'(X, X') denote the terms over X with variables
in X. A reduction ordering on T(X, X) is a strict partial ordering > that
is Noetherian, stable under X-operations (i.e., s > t implies f(...,s,...) =
fo. . t,...) for all f € ¥), and stable under substitutions (i.e., s > ¢ implies
o(s) »= o(t) for all X-substitutions o). In the following, we will restrict our
attention to reduction orderings on ground terms, which means that stability
under substitutions can be dispensed with. However, the ground terms that
will be considered may contain additional free constants from a set of constants
C with CNY = 0. By a slight abuse of notation, the set of these ground
terms will be written as T'(X,C). The only difference between variables and
free constants is the fact that constants cannot be replaced by substitutions,
and thus it is possible to order them with a reduction ordering.

Let F be a set of identities over X, and let =g denote the equational theory
induced by E. A reduction ordering > is E-compatible iff s = t, s =p s, and
t =p t' imply s’ > /. Thus, an E-compatible reduction ordering induces a well-
defined ordering on the set of =p-equivalence classes. For a set of free constants
C, the E-free algebra with generators C, i.e., T(Z,C)/=,, will be denoted by
(C)s,p. The set of free constants occurring in a term ¢ is denoted by C(t). We
call a reduction ordering total on (C)y; 1 (or simply “total on ground terms,” if
the set of ground terms is clear from the context) iff it induces a total ordering
on (C)x g, i.e., iff for all s,t € T(X,C) we have s > t, or s =p t, or s < t.

If FE is a consistent equational theory (i.e., admits models of cardinality
greater than 1), then we have ¢ #p ¢ for every pair of distinct free constants
¢, € C. Thus, an E-compatible reduction ordering total on (C)y; g yields a to-
tal Noetherian ordering on C. We say that an E-compatible reduction ordering
extends a total Noetherian ordering > on C' iff its restriction to C' coincides with
>. In the following, we consider only consistent equational theories (without
mentioning it explicitly as a condition).

We close this second by stating some properties of equational theories and
reduction orderings compatible with equational theories that will be important
for the proof of our combination result:

Lemma 2.1 1. If there exists a non-empty E-compatible reduction ordering,
then E s a reqular equational theory. In particular, we have for all terms

s, t € T(X,C) that s =g t implies C(s) = C(t).

2. If there exists a non-empty F-compatible reduction ordering, then for any
free constant ¢ € C' and term t € T(3,C) we can have ¢ =p t only if ¢
occurs exactly once in t.

3. If = is an E-compatible reduction ordering total on (C)y , then ¢ € C(t)
for a free constant ¢ € C' and a term t #p ¢ implies t > c.
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4. Let = be an E-compatible reduction ordering total on (C)y ., and assume
that 0 € X s a signature constant and ¢ € C s a free constant. If there
erists a term s containing 0 such that s =p ¢, then 0 is the smallest
element of (C)x g with respect to .

3 Combination of orderings

In principle, we want to solve the following combination problem: Let ¥, 39
be disjoint signatures and FEj, F» be equational theories over the respective
signature. Assume that, for © = 1,2 and any set C' of free constants, there
exists an E;-compatible reduction ordering »; that is total on (C)y, p,. Can
the orderings >1,>2 be used to construct an (E; U Es)-compatible reduction
ordering that is total on (C)x,us,, B UE, ?

The next example demonstrates that this is not always possible.

Example 3.1 Let 3y := {+,0}, X9 := {x,1}, By := { + 0 = z}, and Ey :=
{z+1 =z} Tt is easy to see that there exist E;-compatible reduction orderings
>=; that are total on (C)yx, g,. In fact, since any term in T(2;,C) is =p, -
equivalent to a term in T'({+},C), and since =y, is the syntactic equality on
T({+},C), one can simply take a lexicographic path ordering that is induced
by a well-ordering of C'. The same argument applies to Es.

However, assume that > is an (E] U E»)-compatible reduction ordering total
on (C)s,us, B uE,- Obviously, we have ¢ + 0 =pg,ug, ¢ and ¢ %1 =gy, c
By Property 4 of Lemma 2.1, both 0 and 1 must be the smallest element in
(CYx,uny B UE, » Which is a contradiction since 0 #p,up, 1.

In our general combination result, this kind of problem is avoided by restricting
the attention to theories whose signatures do not contain function symbols, i.e.,
the only constants that may occur are free constants.?

There is a second restriction that must hold for our method to apply. The
orderings >, =2 must satisfy the following constant dominance condition:

Definition 3.2 Let > be an E-compatible reduction ordering total on (C)x. .
Then > satisfies the constant dominance condition (CDC) iff for all t € T(X, C)
and ¢ € C such that ¢ = ¢ for all ¢ € C (t), we have ¢ > t.

Intuitively, this means that large constants dominate terms containing only
small constants. An arbitrary E-compatible reduction ordering total on ground
terms need not satisfy this property. For certain equational theories, however,
the existence of an arbitrary F-reduction ordering total on ground terms im-
plies the existence of such an ordering that also satisfies the CDC. Let C be
a countably infinite set of free constants. For a term ¢t € T(X,C) and a free

2 Actually, it would be sufficient to apply this restriction to one of the two theories to be
combined.
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constant ¢ € C, let |t|. denote the number of occurrences of ¢ in t. We say that
the equational theory E is strongly reqular iff s =g ¢ implies |s|. = [t|. for all
terms s, € T(X, C') and free constants c.

S

Lemma 3.3 Let E be strongly reqular. If there erists an E-compatible re-
duction ordering total on (C)x. g, then there also exists such an ordering that
additionally satisfies the CDC.

For example, theories axiomatizing commutativity, associativity, or associativity-
commutativity of a binary function symbol are obviously strongly regular.

Our method for combining compatible reduction orderings depends on the
representation of (C)y,uy, p Uk, as the free amalgamated product of (C)y, g,
and (C)y, g,, as introduced in [1].3

The free amalgamated product

The free amalgamated product of (C)y, g, and (C)y, p, is defined using two
ascending towers of the following form: We consider disjoint sets of free con-
stants Coe = UiZg Ci and Do = U2 D; such that Cy = C. In addition, for
n > 0, let A, be the carrier set of (Ui—, Ci)x, ,, and let B4 be the carrier
set of (Ui—y Di)s,,E,- The partitioning of C'ny and Do into the sets C; and D;
is such that sets on corresponding floors of the double tower shown in Figure 1
have the same cardinality.

Thus, there are bijections hgy : Ag — Dy, g1 : B1\Dy — C4, and for all n > 1,
bijections h, : A, \ (Ap—1UC,) = D, and gnt1: Bptr \ (Bo U D,) = Chta.

Let Ay be the carrier set of (Cx)x, g, i.€., the union of all set in the left
tower, and let Bog be the carrier set of (Dx)y, B, 1.¢., the union of all set in
the right tower. The above bijections can be used in the obvious way to define
bijections

o0 oo
hoo 1= U h; Ugi__&] A = By and gy = U hl-_1 Ugit1 : Boo = Ao
=0 =0

By definition, A, is equipped with a Y{-structure, and the bijections hy and
goo can be used to carry the Yo-structure on By, to A (see [1] for details). As
shown in [1], the (X7 U ¥g)-algebra A, with carrier set A, that is obtained
this way is isomorphic to (C)x,us, £ /UE, -

An ordering on the free amalgamated product

As mentioned above, we assume that the signatures ¥ and ¥s do not contain
constant symbols, i.e., the only constants are free constants. In addition, assume

31t should be noted, however, that we use a slightly modified construction, which is not as
symmetric as the original one, but more easy to adapt to our purposes.
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An+l \ (An ) Cn«l»l) D’IL+1

Crnt1 But1\ (BpUDy)
A\ (A1 UC) D,
Ch By, \ (Bp1UDy 1)
s B>\ (B UDy)
A1\ (AU Cy) D
C By \ Dy
A Dy

Figure 1: The double tower of the amalgamation construction.

that, for ¢ = 1, 2, there is a mechanism for constructing E;-compatible reduction
orderings that satisfies the following properties:

1. For any finite or countably infinite set of free constants C' and any total

Noetherian ordering > on C, the mechanism yields an F;-compatible re-
(%)

duction ordering =

the CDC.

that extends >, is total on (C)y;, p,, and satisfies

Zigy

. The mechanism is monotone in the following sense: Let C7 C Cs, let >
be a total Noetherian ordering on C7, and let >5 be a total Noetherian
ordering on Cy such that >; C >2. Then >gi.’>1 - %glﬁh.

. The mechanism is invariant under monotone renaming of free constants.
To be more precise, let >; be a total Noetherian ordering on C4, >9 be
a total Noetherian ordering on C5, and let @ : C| — C5 be an order
gi)l t implies 7(s) >(jl,>3 7(t), where the terms
7(s), (t) are obtained from s,t by replacing the free constants in these

isomorphism. Then s >

terms by their m-images.

Theorem 3.4 Assume that X1 and Yo are disjoint signatures that do not con-

tain constant symbols, and that, for « = 1,2, there exist mechanisms for con-

structing E;-compatible reduction orderings total on ground terms satisfying the

three conditions from above.

1. Then there exists an (E1 U Es)-compatible reduction ordering that is total

on <C>211 UXg, EqUES -
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2. If the word problem for E; and the orderings >((i)> are decidable for i =
1,2, then the combined ordering s also decidable.

Instead of giving a formal proof of the first part of the theorem (which would
violate the page limit), we give an intuitive description of how this ordering
looks like. Its definition depends on the representation of (C)x,ux,, p,uE, as the
free amalgamated product A of (C)x, g, and (C)y, g,. Going from bottom
to top, one simultaneously defines an ordering on A, and By by induction.
Elements that belong to different levels of one of the towers are compared
according to their height in the tower. Elements in a level A, \ (4,1 U C,)
are compared with respect to the Ej-compatible ordering on A, obtained by
the mechanism (assuming that the precedence ordering on J;_, C; is already
defined). Elements in a level C), are ordered using the bijection g,, : B, \ (B,-1U
D,_1) = D, (assuming that the ordering on B, \ (B,—1 U D, _1) is already
defined). The right tower is treated analogously.

In this construction, the induction base is given by an arbitrary total Noethe-
rian ordering on C'. The combined ordering obtained this way depends on the
set C' and on the ordering on C used for starting the inductive construction.
Thus, we again obtain a construction mechanism that transforms a given total
Noetherian ordering on a set of free constants C' into an (E; U Es)-compatible
reduction ordering that is total on (C)s,ux, rur,. The combined ordering
does not satisfy the CDC. However, if E1 and FEs are strongly regular, then so
is By U Eo. Thus, Lemma 3.3 can be used to modify the combined ordering
into one satisfying the CDC. It can be shown that the mechanism satisfies the
other properties required in Theorem 3.4. Consequently, the construction can
be applied iteratedly, provided that the involved theories are strongly regular.

The decision procedure for the combined ordering depends on a method
that is similar to the approach used to show that the word problem for F| U E»
is decidable, provided that the word problems for the single theories F, Eo are
decidable (see, e.g., [16]).

4 Conclusion

The aim of this work was to develop a general approach for combining compati-
ble orderings that are total on ground terms. The main motivation was that it
is often relatively easy to design such orderings for “small” signatures and theo-
ries, whereas it is rather involved to give a direct definition of an appropriate
ordering in the case of signatures that contain several symbols axiomatized by
equational theories over disjoint subsets of the signature. As an example, we
have mentioned the case of signatures containing free symbols and more than
one AC-symbol.

The main restrictions that must hold for this combination approach to apply
are

103



1. The signatures of the single theories must not contain constant symbols,
i.e., the only available constants are free constants.

2. Both theories must admit compatible orderings total on ground terms
that satisfy the constant dominance condition (CDC).

These restrictions seem to be not overly severe. In fact, we have shown by an
example that a violation of the first condition may lead to cases where a com-
patible ordering total on ground terms does not exist for the combined theory.
In addition, for strongly regular theories (such as associativity, commutativity,
or associativity-commutativity of a binary function symbol), the existence of
a compatible orderings total on ground terms implies the existence such an
ordering that also satisfies the CDC.

A major drawback of the presented combination approach is that until now
it does not yield a non-trivial ordering for terms with variables. Indeed, we have
defined an ordering on (C)y;,ux,, £ Uk, , Where the elements of C' are treated as
free constants. For an ordering on terms with variables, one must also have
stability under substitution. For some application (e.g., the decision problem for
ground equations modulo AC), having an ordering on ground terms is sufficient.
For other applications where one works with terms containing variables (such as
unfailing completion), this is not quite satisfactory. For example, for unfailing
completion, using an ordering where all terms with variables are incomparable
would mean that none of the identities can be oriented into a rule, and thus
all of them must be used in both directions to compute critical pairs. Thus, an
important open problem is to extend the combined ordering in a non-trivial way
to an ordering on terms with variables. It might be that this makes additional
restrictions on the theories necessary (such as requiring them to be collapse-

free).

References

[1] F. Baader and K.U. Schulz. Combination of constraint solving techniques:
An algebraic point of view. In Proceedings of the 6th International Con-
ference on Rewriting Techniques and Applications, Kaiserslautern (Ger-
many), volume 914 of Springer LNCS, pages 352 366, Berlin, 1995.

[2] L. Bachmair. Canonical Equational Proofs. Birkhauser, Boston, Basel,

Berlin, 1991.

[3] L. Bachmair. Associative-commutative reduction orderings. Information
Processing Letters, 43:21-27, 1992.

[4] L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion without fai-
lure. In H. Ait-Kaci and M. Nivat, editors, Resolution of Equations in
Algebraic Structures, volume 2: Rewriting Techniques, chapter 1, pages
1 30. Academic Press, New York, 1989.

104



[5]

[12]

[13]

[14]

[15]

[16]

L. Bachmair and D.A. Plaisted. Associative path orderings. In J. P.
Jouannaud, editor, Proceedings of the International Conference on Rewri-
ting Techniques and Applications, volume 202 of Springer LNCS, pages
241-254, Berlin-Heidelberg-New York, 1986.

C. Delor and L. Puel. Extension of the associative path ordering to a chain
of associative commutative symbols. In C. Kirchner, editor, Proceedings of
the Fifth International Conference on Rewriting Techniques and Applica-
tions (Montreal, Canada), volume 690 of Springer LNCS, pages 389-404,
Berlin, 1993.

N. Dershowitz. Orderings for term-rewriting systems. Theoretical Compu-
ter Science, 17(3):279-301, 1982.

G. Peterson and M.E. Stickel. Complete sets of reductions for some equa-
tional theories. Journal of the ACM, 28:223-264, 1981.

J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a
set of equations. SIAM Journal on Computing, 15:1155-1196, 1984.

S. Kamin and J.-J. Levy. Two generalizations of the recursive path or-
dering. Univ. of Illinois at Urbana-Champaign. Unpublished manuscript,
1980.

D. Kapur, G. Sivakumar, and H. Zhang. A new method for proving ter-
mination of AC-rewrite systems. In Proceedings of the Tenth International
Conference of Foundations of Software Technology and Theoretical Com-
puter Science, volume 472 of Springer LNCS, pages 133-148, Berlin, 1990.

D.E. Knuth and P.B. Bendix. Simple word problems in universal algebras.
In J. Leech, editor, Computational Problems in Abstract Algebra, pages
263-267. Pergamon Press, Oxford, 1970.

D. S. Lankford. Canonical inference. Memo ATP-32, Automatic Theorem
Proving Project, University of Texas, Austin, TX, December 1975.

C. Marche. On ground AC-completion. In R. Book, editor, Proceedings
of the Fourth International Conference on Rewriting Techniques and Ap-
plications (Como, Italy), volume 488 of Springer LNCS, pages 411-422,
Berlin, 1991.

P. Narendran and M. Rusinowitch. Any ground associative-commutative
theory has a finite canonical system. In R. Book, editor, Proceedings of the
Fourth International Conference on Rewriting Techniques and Applications
(Como, Italy), volume 488 of Springer LNCS, pages 423-433, Berlin, 1991.

T. Nipkow. Combining matching algorithms: The regular case. In
N. Dershowitz, editor, Proceedings of the Third International Conference
on Rewriting Techniques and Applications (Chapel Hill, NC), volume 355
of Springer LNCS, pages 343-358, Berlin, 1989.

105



[17]

[18]

[19]

[20]

A. Rubio. Automated Deduction with Constrained Clauses. PhD Thesis,
Universita Politecnica de Catalunya, Barcelona, Spain, 1994.

A. Rubio and R. Nieuwenhuis. A precedence-based total AC-compatible
ordering. In C. Kirchner, editor, Proceedings of the Fifth International
Conference on Rewriting Techniques and Applications (Montreal, Canada),

volume 690 of Springer LNCS, pages 374 388, Berlin, 1993.

A. Rubio and R. Nieuwenhuis. A total AC-compatible ordering based on
RPO. Theoretical Computer Science, 142, 1995.

W. Snyder. Efficient ground completion: An O(nlogn) algorithm for ge-
nerating reduced sets of ground rewrite rules equivalent to a set of ground
equations E. In N. Dershowitz, editor, Proceedings of the Third Interna-
tional Conference on Rewriting Techniques and Applications (Chapel Hill,
NC), volume 355 of Springer LNCS, pages 419-433, Berlin, 1989.

106



Combining Unification and Built-In Constraints

(Abstract)

Farid Ajili Claude Kirchner
INRIA Lorraine & CRIN
615 rue du jardin botanique BP 101
54602 Villers-les-Nancy Cedex, France
email: {Farid.Ajili,Claude Kirchner}@loria.fr

In less than a decade, Deduction with Constraints (DwC) has opened a
new universe in computer science. DwC can be viewed from two perspectives:
one related to the automated deduction framework [17, 19], the other to the
development and usage of programming languages based on logic [7, 14].

Within the automated deduction framework, constraints on the generic data
structure “terms” have become a popular tool because they allow to express
and encode strategies and to modularise deduction processes [19]. We call
symbolic, constraints over terms [11]. There are plenty of symbolic constraint
systems, some examples are unification (see [16] for a survey), disunification
[10], ordering [5], membership [9, 13] and feature constraints [1]. The most
well-known example is equational unification. Equational unification is nothing
but solving equations between terms when the function symbols of the terms
satisfy a certain equational theory.

Within programming languages based on logic, the purpose is to develop a
class of programming languages, which incorporates the computational proper-
ties of a logical theory with the efficiency of constraint solving. In this setting,
Constraint Logic Programming (CLP) [7, 8, 15], instance of the Constraint Pro-
gramming paradigm, is an elegant generalisation of logic programming, aimed
at replacing unification by the concept of constraint solving over a computation
domain. Thus, CLP is a class of languages, which merges the computational
properties of Horn-clause logic and efficient constraint solving over a given do-
main. J. Jaffar & J.-L. Lassez proposed in [14] a theoretical semantic, CLP (D),
explaining the meaning of a CLP program, which is parametrised by the com-
putation domain D in which variables can have values. Thus, a taxonomy of
CLP languages is to classify them according to their domains: one can have
CLP(R), CLP(Q), CLP(FD) and so forth. We call built-in, constraints over
such mathematical domains [2].

The need for more complex combined constraints involving several primitive
constraint languages is of prime interest in many application areas. A simple
example of such a situation exists in using a combined theory of naturals and
strings to express the simple property that a natural is divisible by 9 iff the sum
of its digits is divisible by 9. This could be expressed in the theory of naturals
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alone but in a less natural way.

Combination techniques have been thoroughly investigated in the last decade
for symbolic constraints [3, 6, 18, 20]. In the case of equational unification, the
problem is stated as follows: given two unification algorithms in two (consi-
stent) equational theories Eq and E5, how to find a unification algorithm for
E1 U Es. M. Schmidt-Schauf§ solved the general problem for disjoint function
symbols sets [20]. Some extensions of this result were considered: in [18] and
[12], sharing of constants and constructors are respectively allowed.

In [4], F. Baader & K. Schulz have showed how to combine constraint solvers
for two arbitrary “Simply Combinable” structures over disjoint signatures into a
solver for their combined structure. In addition, many CLP dialects allow that
different kinds of built-in constraints coexist and must be solved in appropriate
domains. For example, the structure underlying Prolog IIT [8] allows “mixed”
constraints on lists of rational trees, where some nodes can be lists or booleans
and so forth.

This paper relies on the fact that a combination of symbolic and built-in
constraint languages often makes it possible to express and tackle problems
that none of these languages can overcome alone in a natural way. For exam-
ple, J. Avenhaus & K. Becker [2] have provided an approach of how to enrich
an equational specification with a built-in algebra and asserted that such an
approach makes the programming language more powerful. So, we are consi-
dering a problem, which has many important practical applications, but which
is in full generality, undecidable. This is why in this paper we are presenting
a general framework that provides some tools to solve this problem in specific
cases.

We consider the problem of combining unification constraints interpreted
in a term quotient A-structure A = T(F,X)/=,, on one side, with built-in
constraints interpreted in a term generated X-structure B on the other side.
Here, we assume that we are in presence of a set of functions II from A and B.
One can notice that, because of variables of X, a non-trivial function 7 in II
has to be defined only over the variable-free (i.e, ground) sub-structure of A.
The main difficulty comes from the fact that if a variable of X appears both
in a unification constraint and in a built-in constraint then it has not the same
behaviour. To illustrate the point, assume that A = T (F, X')/=,, is the quotient
term algebra of terms, where F = {a, f} and E = {f(x1,22) = f(x2,21)}, let
B be the usual structure of naturals. Suppose that II is containing a function
computing the size (number of nodes) of a ground term and let 7 be a function
symbol used to refer 7 in the syntax. In the combined formula:

¢ = f(z,a) =g fla,z) AN7(x)+1y1 < 2y2+ s(0)

x is intended to represent any element of 7 (F, X)) in the unification sub-formula
and only ground terms in the built-in sub-formula because one needs a natural
value for 7(x) to decide whether the inequality holds in B. Thus the valuations
of & are not the same in the two situations.

This point motivates the modular approach that we adopt in this paper. The
basic idea is to break a formula ¢ in the combined theory into three formulae:
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a A-formula ¢, a X-formula ¢y, and a “heterogeneous” formula ¢y containing

at least a symbol 7, which refers to some shared function 7 in II. On one side,

‘he semantic interest of such an approach allows to define an own interpretation
tl t t t of 1 h all to defi t tat
for ¢4, while those of “pure” formulae ¢pa and ¢y are preserved. On the other

side, it allows to “use the right tool for the job” and gives a mean to filter

information throughout the three levels in a cooperative way.

We propose a canonical form, called quasi-solved form, for the mixed cons-

traints in the case where only homomorphisms are allowed in II. Such a quasi-

solved form is incremental and provides a relatively weak satisfiability test.
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Unification in equational theories is a widely studied area. There has been
much progress in algorithms for specific equational theories as well as in the
combination of disjoint theories. The first general combination method was
presented by M. Schmidt-Schaufl [SS89] and a more efficient version of this al-
gorithm was described by A. Boudet [Bou90]. Like them, most authors deal
with algorithms for computing complete sets of unifiers but decision procedures
gain more and more importance. An algorithm for combining decision proce-
dures of disjoint equational theories was presented by Baader and Schulz in
[BS92]. This algorithm leads to many interesting theoretical results but due to
the large search space its direct implementation is useless for practical purposes.

When investigating possibilities of optimizations for this algorithm, one is
confronted with several problems. In contrast to the case where complete sets
of unifiers are computed, in the case of decision procedures there is little infor-
mation the optimizations can be based on. In order to get over this drawback,
we present an extended combination algorithm which tries to choose a decision
deterministically by calling pre-tests specific for the theories used in the unifi-
cation problem.

While running the algorithm for combining decision procedures several non-
deterministic choices have to be made (see figure 1). Some variables have to
be identified, each variable has to be indexed with one of the theories occuring
in the unification problem, and the variables have to be ordered with a linear
ordering. The theory indices determine which variables have to be treated as
constants in I'g or [', respectively, i.e. in which part of the unification problem
they must not be instantiated. The ordering induces linear constant restrictions
(LCR) restricting the set of unifiers. For each constant these restrictions specify
a set of variables which must not be mapped to a term containing this constant.
The unification problem I'j is solvable if and only if there is a pair (I',,I",)
where [}, and I}, are solvable with their LCR.

Depending on the theories involved, some of these choices can be made
deterministically; e.g. for a collapse-free theory E; the equation & = t with
t ¢ V imposes that  has to be instantiated by E;, i.e. ind(xz) = E;; for a
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unification problem for E U F
sig(E) Nsig(F) =

variable abstraction
yields pure problems

variable identification: x =y or v # y
non-det.

steps theory index: ind(x) = F or ind(x) = F

linear ordering: v < yory <x

unification problem  unification problem
with LCR for £  with LCR for F

Figure 1: The basic combination algorithm

regular theory F; the equation y = t|, with ind(x) # F; imposes that y has
to be mapped to a term containing the constant z, i.e. * < y. For specific
theories more rules of this kind can be set up. As the example for regular
theories shows, some choices (that have been made earlier in one theory) can
imply new choices in another theory. This interplay between different theories
proposes to use an algorithm where the choices made so far are propagated back
and forth between the component algorithms of the theories involved. Starting
with some initial information (like that in the example for collapse-free theories)
each theory alternately computes new information. If this process comes to an
end because no new information can be computed, a nondeterministic choice
has to be made. After this choice the propagation process can be started again
with the new information.

For most examples this combination algorithm has a search space which is
significantly smaller than that of the original algorithm. But as a drawback
new component algorithms for the theories occuring in the problem are needed
which are capable of computing the desired information. Moreover, these al-
gorithms should consider the special way in which they are called. Standard
unification algorithms are “one shot” algorithms, they are started only once
with all information they need given and compute final results. Component
algorithms for our combination method must be able to cope with partial in-
formation and deliver something which is not necessarily the final result yet
meaningful. More importantly, when receiving new information the algorithms
should not restart computation from scratch but rather continue on the base
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of their prior internal states. Otherwise, the search space would be partially
shifted from the combination algorithm to the component algorithms.

For the free theory, A, AC, and AC1T such algorithms can be built by exten-
ding some well known methods. For example, the AC-algorithm is based on the
minimal solutions of the homogeneous diophantine equations corresponding to
the AC-unification problem. Information relevant for the combination method
can be derived from these solutions.

The combination method and component algorithms for the free theory and
AC have been implemented in COMMON-LISP using the KEIM toolkit [HKK+94];
component algorithms for A and ACT are currently implemented and tested. In
the following we show some results of our optimizations. Table 1 gives an over-
view of the running time for some collections of AC-unification problems which
come from the REVEAL theorem prover. Each collection contains all unification
problems that have to be solved during the proof search or completion of the
respective example. The first three examples are simple completions or proofs
and the other three examples are from the REVEAL distribution. All examples
except the first one contain two AC-symbols and several free symbols.

Name Num. A B C
Abelian group 29 | 3.6 5.0 54
Boolean ring 5l | 3.2 4.0 9.3
Boolean algebra 122 | 12 24.2
exboolston 87| 12 990
exgrobner 1002 | 138 1800
exugsl2 404 | 112 >12h

Table 1: Running time in seconds

The second column shows the number of unification problems in each ex-
ample. Column A contains the running time of the algorithm with all optimi-
zations, including the special algorithms for AC' and the free theory. Column B
shows the running time of the algorithm if the special AC-algorithm is substi-
tuted by a procedure which uses only the fact that AC' is regular and collapse-
free; in column C the running time of the algorithm without any optimizations
can be seen. A missing value means that the calculation has been aborted after
two hours. This table shows that our optimizations enable the combination
method to be usable in practice.
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Abstract

Introducing equality into standard Horn clauses leads to a program-
ming paradigm known as Equational Logic Programming. On another
hand, Linear Completion is a powerful mechanism for evaluation of logic
programs. We propose here a scheme to extend this technique to the equa-
tional framework. Thus we provide a goal-oriented solving procedure, kee-
ping the well-known advantages of Linear Completion : a reduced search
space with a loop avoiding effect and the possibility to finitely synthesize
an infinite set of answers.

1 Introduction

The combination of logic and functional programming arouse much interest
since the beginning of the last decade and different techniques have been pro-
posed to merge these two features (see [7] for a survey). Equations allow to
represent functional programs while Horn clauses are suited for logic programs.
The mix of these two formalisms leads to the notion of equational clause; this
combined language is known as Equational Logic Programming. Two main ap-
proaches can be distinguished to execute such languages. The first one ([9], [8])
consists in considering that equational logic programs are logic programs with
a subjacent equality theory E distinct from the standard syntactic Clark equa-
lity. It is implicitly assumed that the set of clauses decomposes into disjoint
sets of equations (defining E') and predicate headed clauses : thus, the solutions
of equations are computed by a specific E-unification algorithm, which is then
called by the Prolog procedure instead of a usual syntactic unification. Unfor-
tunately, E-unification is a very hard problem ([15]) but there are restrictions
ensuring a usable algorithm.

The second approach, such as [6], [12] and [2], considers clauses as conditio-
nal rewrite rules and applies evaluation mechanisms issued from term rewriting
techniques. To deal with formulas involving only equality predicate, general
predicates p(T) are turned into equations p(Z) = true where true is a new con-
stant symbol (in that way, a pure logic program is viewed as an equational one).
Then, execution relies on performing superposition between heads of programs
clauses or between the head of a program clause and a goal. These techniques
mix bottom-up and top-down strategies and the efficiency of a concrete imple-
mentation is strongly related to the strategy for the choice the inference rule to

apply.
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In fact, there is an other way to adapt rewrite technique for evaluating
pure logic programs. The idea is to transform a logic program into a set of
rewrite rules and to execute them using a restricted version of KB completion
called Linear Completion (LC'). Linear Completion acts also as a completion
mechanism but this completion is focused on a particular goal. For a given goal,
LC' computes a set of terminal rewrite rules. This set of answer rules can be
considered as the specialization of the initial program for this particular goal :
it defines the full set of solutions for a given query, even if this set is infinite.

The contribution of this paper is to propose an extension of LC including the
equational framework. Equational Linear Completion (ELC') keeps the opera-
tional advantages of LC and provides a mechanism to execute equational logic
programs focused on goal solving. The usual systems combine resolution (top-
down) and completion (bottom-up) of the initial program. The completion part
is required in order to compute new clauses that are equational consequences
of the program and thus to insure completeness of the mechanism. The pro-
blem is that unnecessary clauses can be computed which are not involved in
the resolution of the goal. For instance, if we consider the following program
containing only two facts ¢ ~ b and a ~ ¢, given the goal <— b ~ ¢, which is
an equational consequence of the program, the initial set of clauses has to be
completed by superposing a ~ b onto a =~ ¢ in order to get the new fact b ~ c.
But if we add the fact p(a) and if we want to prove p(b), the mechanism will
also complete the program, will generate the two atoms p(b) and p(c) while it
suffices to prove p(a) Aa ~ b (which is logically equivalent). In fact, no comple-
tion is required in that case. Completion of the initial program can drastically
degrade operational efficiency. ELC' will be able to solve such a goal without
requiring these bottom-up inferences. As in LC, for a given goal, K LC' compu-
tes a set of terminal rewrite rules. This set of answer rules can be considered
as the specialization of the initial program for this particular goal : it defines
the full set of solutions for a given query, even if this set is infinite.

The following example, despite its simplicity, shows the different problems
we want to tackle. Considering the following program :

L p(f(z)) + p(z).

2. p(g(x)) + glz) = .

3. gla) ~ a.

4. h(g(z)) ~a <+ h(z) ~a.

we want to compute the answers to the goal < p(x). The correct answers are
a, the f"(a) and the ¢"(a), but they are obtained differently. The first clause
defines recursively p and will cause an infinite computation. Since we do not
affirm that f(z) ~ z, the only way to give all the answers with a classical
mechanism is to enumerate all the f(a). The second clause define also an
infinite set of answer but since we have g(a) ~ a, it suffices to provide a (as usual
we are only interested by the smallest answer w.r.t. the equational theory). At
last, the classical mechanism performs completion over 3. and 4. and generate
h(a) =~ a + h(a) ~ a which also causes termination problems. This is the
behaviour of the usual methods designed for equational logic programs, based
on completion techniques [6, 12, 2]. ELC' leads to the following derivation tree :
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p(x) = Ans(z)

Ans(g(z)) = true{g(z) ~ z}
|
Ans(g(a)) — true Ans(f(x)),p(xz) = p(x)

Ans(a) = true Ans(f(x)), Ans(z) — Ans(x)

The philosophy of ELC'is to generate from a given goal, a set of rules containing
only the predicate Ans which defines the whole set of answers. Here we get two
terminal rules: Ans(a) — true which defines a ground answer a and a formula
Ans(x), Ans(f(x)) — Ans(x) whose meaning is “if = is an answer then f(x)
is still an answer”. No bottom-up inference is needed in this derivation. ELC
allows to validate the definition of predicate p by a finite calculus that defines
as well the smallest ground answer and the representation of all the answers
that are not reducible to this ground answer. ELC invokes completion only
for the equational part of the program and only if nothing else can be done
to compute the solutions. If we add the clause p(z) < p(k(z)) to the previous
program, this leads to a looping goal derivation < p(z),« p(k(z)),« p(k(k(z)))

. with the usual mechanisms. Using ELC this calculus is stopped thanks to
a simplification by ancestor goal.

In section 2, some technical preliminaries are given and the transformation
of equational logic programs into equational rewrite programs is defined. In
section 3, we describe our mechanism by a transition system and we show some
applications, pointing out its properties. In section 4, we show that the logical
meanings of equational logic programs and equational rewrite programs are
the same. We also prove that our mechanism is sound and complete w.r.t.
this declarative meaning. In section 5, we explore some future works and we
conclude.

2 Preliminaries

We assume the reader familiar with basic rewrite [5] and logic programming
notions [11].

2.1 Equational Logic Programs

Given a set of variables V and a set of function symbols F, We denote by
T (V,F) the set of first order terms build over the two previous sets. T (resp. 5 or
t) will denote a list of variables (resp. terms). A substitution o is a finite domain
mapping from X to T (V,F). Substitutions are extended by homomorphism
over T(V,F). We denote by t|,, the subterm of ¢ at occurrence w (occurrences
are classically defined by induction) and by t[w < #'], the term equal to t except
for the subterm at occurrence w which has been replaced by t'. Given a set P
of predicate symbols, atoms are predicates applied to terms. A special symbol
~ belonging to P will be used in infix notation : an atom s ~ ¢ where s and ¢

117



are in T (V, F) will be called an equation. 5 ~ t is an abbreviation for the set of
equations sy >~ ty. s, ~t, if §= (s, --,s,) and t = (t1,---,t,). We consi-
der definite equational logic clauses: A < Eyi, ..., By, By,...;By (or A+ E, B
to abbreviate) where A is an atom, F1, ..., B, are equations and By, ..., B,, are
non-equality atoms. A is called the head of the clause and En, ..., E,, By, ..., By,
the body. As usual, the intended meaning of such a clause is the universally
quantified logical formula Bi A---AB, ANE{A---ANFE,, = A. A clause with
an empty body is called a fact. An equational logic program is a finite set of
clauses. An equational logic goal is a formula < FE, B where F is a multiset of
equations and B a multiset of atoms.

2.2 Equational Rewrite Programs

We want to translate equational logic programs into set of rewrite rules. Thus a
simplification ordering < is assumed on terms, allowing to orient the equalities
[ ~ r. In the following, we suppose that each equation [ ~ r is such that [ £ r.
Since we handle non-equality atoms, we need an extension of this ordering to
atoms. Thus we assume a precedence over predicate symbols such that ~ will
be the biggest predicate symbol and true the least one. Doing that, we get a
full ordering over the atoms and we shall consider its multiset extension.

Our transformation of an equational clause is based on the fact that BAE =
A has the same informative content than AABAE < BAE (i.e. the formula
(A<= BAE) < (AABAE < BAE) is a theorem in first order logic). Such an
equivalence is denoted A, B — B{E} to separate the purely equational atoms
from the logical ones and is considered, from now on, as a rewrite rule. If F is
empty, we merely write A, B — B.

An equational rewrite program is just a set of such rewrite rules and we
give a transformation function which generates such a program from a given
equational logic program.

Definition 1 The transformation function i is a function whose input is an
equational logic program P and output is an equational rewrite program ¢ (P).
The rules of ¥(P) are obtained in the following way :

1. A fact A s transformed into the rewrite rule A — true. Such a rule is a
fact rule.

2. A clause A <— E. B is transformed into A, B — B{E}. Such a rule is an

if rule.

where A denotes an atom or an equation, B a conjunction of atoms, E a con-
Junction of equations.

We can remark that two levels of rewrite equations are interwoven here: the
equational theory over T (X, F) defined by ~ and the theory defined by the
rewrite rules of the program over the atoms.
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3 Operational Mechanism

The operational semantics defined in [2] and [12] are based on completion me-
chanisms. Proving a goal <— £, B w.r.t. an equational program P consists in
generating the empty clause from PU{< E, B} (i.e. proving the inconsistency
of this set of clauses). Linear completion is a restricted completion mechanism
focused on goal solving. We adapt here this technique to the equational frame-
work. During the execution of our mechanism, substitutions will appear. Final
substitutions constitute the answers to the initial query. Considering a substi-
tution as a set of syntactic equalities allows us to deal with them as constraints
(symbolic constraints at this step). Thus we extract the current substitution
from the goal and we record it outside the goal as a constraint. This way will
render easier the extension of our inference system to a non symbolic constraint
context. Now, a rewrite rule has the following form :

L — R{E}[0]

Such a rule stands for (L) — 0(R){0(E)}. In the context of rewrite programs,
we need to translate a logic goal into a rewrite rule. We add a special predicate
symbol Ans not defined in the program and such that : Vp € P, true < Ans < p.
A query rule is a rule of the form B — Ans(Z){E} where T are the free variables
occurring in B and E (Ans predicate has an arity equal to the number of free
variables occurring in the initial goal).

3.1 The Inference System

As mentioned in the introduction, completion is needed to insure completeness
of our mechanism. But we restrict these bottom-up computation steps to the
equation headed clauses. If the theory defined by ~ is not confluent (for in-
stance, b ~ ¢ is an equational consequence of @ ~ b and a ~ ¢ but can not be
treated by narrowing), we have to complete the program. Since this completion
process can lead to infinite computations, the completed program is generated
apart from the top-down goal solving process and anyway, these completion ru-
les will be applied only when nothing else can be done. We define a special set
of rules ¥(P)* which contains equational rewrite rules that are deduced from
the initial program rules by the following standard inference rules :
Program Completion Rules PCR
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Deduce

Y(P)”
l/)(P)* U {tl[w — 82] ~ s1,B1,By — B17BQ{E1,E2}[[91 N B A CT]]}

if t) ~s1,B — Bl{El}[[Hl]],tz ~ s9, By — Bz{Eg}[[@g]] € T/’(P)*
and 001t1|, = bty

Tautology deletion

$(P)* U {s ~t.B — B{E[0]}
P(P)*

if 0s = 0t

Clearly, we start with ¢ (P)* = (P).

Now, we define the goal oriented part of our mechanism (top-down evaluation).
Equational Linear Completion (ELC) is described as a pair (I,3) where [ is
a set of inference rules and X is a strategy defining a precedence over these
inference rules. An inference rule ¢ € I is presented as:

(g; M)

(g': M")

where g and ¢ are goal rules and M and M’ are set of goal rules. Since
M' = M U{g} for some inference rules, M represents the memory of the
derivation in the sense that the mechanism stores in this set some of the previous
goal rules which could be used to simplify the current goal.

Definition 2 A derivation is a chain :
(90 ; MU) AL ] (.(]n ;Mn)

where each inference ~+ 1s performed using a rule 1 € I according to the strateqgy
. A deriwation stops if no more inference rule can be applied to the current
computation state. We also use the notation (g; M)Fi(gn; My) when there is
a derivation from (g; M) to (g, ; My) (we generally omit the subscript I ).

Our set I of inference rules is divided into two parts POR and FEOR, each
operating for a specific task. From an implementation point of view, each me-
chanism can work separately in a concurrent computation. The first inference
rules compute over the logic part of the goal.

Predicate Oriented Rules POR
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Delete

(L & R{E}[O]; M)
(B; M)

if 0L =6R
Orient

(L ¢ R{E)[]: M)
(L~ R{E}[6]: M)

it 6L - R
Predicate Resolution

(p(?), L = R{E>}[61]; M)
(B.L & B, R{Ey, F2,5 = t}[0; A 6a]; M)

if p(3), B — B{E1}[02] € ¥(P) and M' = M U {p(¢), L — R{E.»}[02]}
Simplify

(Gl,L — R{El}[[el]]. M)
(D, L < R{E}[0: A oT; M)

if G2 — D{Eg}[[@g]] € T/’(P) UM and 3()‘, 092G2 = HlGl and ngEz g HlEl

Answer Reduction
(Ans(t), L — R{E}[01]; M)
(Ans(tjw < r]), B, L +» B,R{E,E'}[61L N6 No]; M)

if | ~r,B— B{E'}]6:2] € ¥(P)" and 06:%, = 06l and 61, is not a variable

Delete allows to stop useless computation. Orient insures that the goal rule is
oriented according to the simplification ordering. Predicate Resolution differs
from the usual inference systems designed for equational logic programs since
predicates are resolved as in constraint logic programming : the equality bet-
ween the arguments of the goal predicate and the program rule predicate will
be treated apart by the equational inference system described below. Substi-
tutions are recorded as constraints and no equational unification is required.
Stmplify is a key feature of this mechanism : simplification of a current rule
by one of its ancestors allows to avoid some loops. Since Ans predicate is not
defined by the program rules, a rewrite rule containing only this predicate is
a terminal rule as soon as the arguments are reduced : such a rule synthesi-
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zes a set of answers. Answer Reduction is invoked in order to reduce answers
w.r.t. the subjacent equational theory. This inference corresponds in fact to
a bottom-up computation step usually performed between a predicate headed
clause and equation. In our context, since we transform the initial program
into a set of specialized rewrite rules that synthesizes the program for the given
goal, this kind of operation can be simulated by this top-down inference.The
next inference rules use narrowing to solve the equational part E of the goal
(i.e. to solve equations such as s ~ t).

Equational Oriented Rules FOR

Equational Deduction

(L — R{s ~t,E}[01]; M)
(L = R{slw +r]~t, E|,Es}[01 NO2 N o]; M)

if 0615, =06l and | =7, B — B{FE»}[02] € v(P)" and 615 4 61t

and 05|, is not a variable

Unification

(L — R{s ~t,E}[0]; M)
(L — R{E}[0 No]; M)

if 00s = o6t

Equational Deduction corresponds to a narrowing operation. Unification allows
to transform equations into substitutions. We propose to invoke completion
rules only when needed i.e. when no equational resolution step can be per-
formed to solve an equation. The set ¢(P)* previously defined can be viewed
as a blackboard since completion can be involved in different branches of the
derivation. The equation to solve is delayed until a usable equational rewrite
rule is generated in ¢(P)* while another branch can be explored.

We implicitly assume that, before going on into a derivation, each side of
the current goal rule is fully simplified by the two meta-reduction rules : X, X —
X, X, true — X. The strategy ¥ is expressed as the following precedence >
over the set I and over the rules of PCR :

Simplify > Delete > Orient > Predicate Resolution > Answer reduction >
Unification > Equational deduction 3> Deduce > Tautology deletion.

We see that we delay as much as possible equational resolution to focus on the
logical part. A selection rule is a function that select an atom to be treated
in the current goal rule. Here we choose the maximum atom of the right hand
side of the goal. The philosophy of ELC is to transform the initial rewrite
program and the associated query rule into a new set of rules containing only
Ans predicate and substitutions as constraints, capturing the intended answers.
So, the definition of a success goal rule follows:

Definition 3 A rule g s a success goal rule if it 1s of one of the forms:
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o Ans(t) — true[d]

o Ans(ty),..., Ans(t,) > Ans(tnt1), ... Ans(t,)[0]

3.2 Pointing out Advantages

Equational Linear Completion mechanism benefits from the loop avoiding pro-
perties of Linear Completion. In [12], deletion rules are introduced that avoid
some redundant completion steps. The problem is due to the fact that the
completion mechanism generates tautologies of two types: t ~ ¢t < B and
A« A, B. This is highlighted by the following example (extracted from [12]):

plc,b,b).

b~ c<+ ple,e,b),ple,b,c).
plx,y,x) < p(z,y,y).
pla,z,y) < p(z,y,y).

The goal is + p(c,c,¢). With the usual mechanisms, every inference over this
set of clauses leads to a tautology or an existing clause. But these tautologies
are necessary to prove the goal and may not be removed. With ELC, we do
not even need to complete the initial set of clauses since there is only one clause
with an equational head. Starting from the query p(c, ¢, ¢) — Ans, we generate
Ans — true. No completion inference is needed to prove that goal and the
unproductive inference are stopped using simplification and deletion.

Consider now the equational logic program:

1. p(a).
2. p(f(x)) « p(x).
3. f(x) ~a <+ p(z).

For the query < p(z), the set of answer is only {a} since each answer is of
the form f"(a) and can be reduced to ¢ with the clause 3. Usual evaluation
mechanisms provide an infinite computation. In the introduction, the example
has shown the ability to synthesize by a finite representation an infinite set
of answers. Here the problem is quite different since there is an infinity of
answers but which are all equationally equivalent. Considering our transformed
program :

1. p(a) — true.
2. p(f(x)),p(z) — p(x)
3. f(x)~a,p(x) = p(z)

we get the following derivation tree:
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p(x) = true

Predicate Resolution Predicate Resolution with 2
with 1 /\

Ans(a) — true p(y), Ans(z) — p(y){f(y) = =}
Simplify with G
Ans(y), Ans(x) = Ans(y){f(y) = =}
Equational Deduction with 3

Ans(y), Ans(x), p(a) — Ans(y), p(a){z = a}

Unification and Simplify with 1

Ans(y), Ans(x) = Ans(y)[z = a]

These examples highlight the loop avoiding and synthesis aspects of our me-
chanism.

4 Declarative Semantics

Logic programming with equality has a clearly defined semantics ([8], [6], [2]) we
briefly recall here. The reader is supposed to be familiar with the interpretation,
model and logical consequence notions. In [8, 9], it is assumed that the set of
clauses in an equational program P decomposes into disjoint sets of conditional
equations and of predicate-headed clauses. But, as in [12], there is no essential
difficulties to omit this hypothesis.

4.1 Model-theoretic and Fixpoint Semantics of Equational Lo-
gic Programs

Given an equational logic program P, the Herbrand universe U(P) associated
to P is the set of ground terms built over the set Func(P) of function symbols
appearing in P. The Herbrand base B(P) is the set of ground atoms built over
the set Pred(P) of predicate symbols appearing in P : thus B(P) includes the
set of ground equations s ~ t where s and ¢ belong to U(P). We denote by
Gr(P) the set of ground instances of clauses of P. In standard logic program-
ming, a Herbrand interpretation I is any subset of B(P), but in the case of
equational programs, a more specific notion is necessary. As usual, we shall
identify a congruence ~ with the set of equations s ~ ¢ such that s ~ ¢. If [
is a subset of B(P), we denote I™ the smallest congruence on U(P) such that
s ~ t whenever s ~t € I.

Definition 4 A (Herbrand) E-interpretation I is a subset of B(P) with the ad-
ditional properties :

e [V C,

o if plty. -+ tn) € T (p distinet from =) and ty = sy € I, 1y = s, €
then p(s1,--+,s,) € 1.
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In the following, interpretation will mean Herbrand E-interpretation. Thus we
have a simple notion of truth.

Definition 5 Gwwen an interpretation I, we say a ground atom is BE-true wn I if
it is wn I, E-false otherwise. Similarly, a conjunction of ground atoms is E-true
wn I iff all of the atoms are E-true in I, E-false otherwise.

Definition 6 Guven an interpretation I, a ground clause C' s E-true wn I iff the
head of C' is E-true in I or its body is E-false in 1. A clause C is E-true wn I iff
all its ground instances are E-true in I. In that case, I 1s a Herbrand E-model

of C.
In the following E-model will mean Herbrand E-model.

Definition 7 An interpretation I is an E-model of an equational program P iff
I is an E-model of each clause of P.

There is a natural relationship between this notion of (Herbrand) E-model and

the usual notion of Herbrand model. Let us consider the following set Eq(P)

of universally quantified first order axioms :

T T

TNy Y=

TNz T Y Yz

flza, o ymn) = f(y1, Yn) & 1 2 Y1, -, Tp = Yy for each f € Func(P)

(i, yn) < plxr, - @y), 21 2 Y1, Ty =y, for each p € Pred(P) \ {~}
We have the following property relating E-models and standard Herbrand

models :

Proposition 1 Let P an equational logic program. I is an E-model of P iff I 1s
a Herbrand model of P U Eq(P).

Since the previous notion meets the model-intersection property and that B(P)
is an E-model of P, there is a least E-model : Mpg(P). This is the meaning of
P. We have the following characterization of Mp(P) :

Proposition 2 Given a ground atom A, A € Mg(P) iff PUEq(P) = A (i.e. A
is a logical consequence of P U Eq(P) ).

We recall now the definition of the immediate consequence operator. Since
we have equations, the process is divided up into two steps. Let I be an E-
interpretation of P.

Definition 8 Tp(I) =TEp(I)UTLp(I) with
TEp(I)={s~te B(P)|s~t« BeGr(P),B is E-true in I }~

and
TLp(I)= {p(si,....sn) € B(P) | p(t1,....,t,) < B € Gr(P),

Nisi~t; ANB is E-true in | UTEp(I)}

Informally, TEp(I) corresponds to the equational consequences of the program
while TLp(I) concerns the logic part. The set of E-interpretations with subset
inclusion forms a complete lattice : bottom element is {s ~ s | s € U(P)} and
top element is B(P). Tp maps E-interpretations into E-interpretations and we
have the following properties :

125



Proposition 3
- Tp 1s a continuous operator,
-1 is an E-model of P iff Tp(I) C I,
- Mp(P)=1fp(Tp) =Tpr T w.

Asin the standard case, the model-theoretic and the fixpoint semantics coincide.

4.2 A Fixpoint Semantics for Equational Rewrite Programs

We define now a fixpoint semantics for an equational rewrite program, i (P).
We must add to B(P) the symbol true. As in the logic programming case, it is
easy to define an operator similar to T'p. Each E-interpretation is augmented
with the element true : the set of augmented E-interpretations is yet a complete
lattice for subset inclusion with bottom element {s ~ s | s € U(P)} U {true}
and top element B(P) U {true}.

DCﬁDitiOﬂ 9 TUY(P) (I) = TEU’(P) (I) U TLL")(P) (I) with
TEup(I)={s~t€ B(P)|s~tB— B{E} € Gr(P),BAE E-true in I}~

and

TLypy(I) = A{p(s1,....sn) € B(P) | p(t1,....,t,), B = B{E} € Gr(P),
BANEN;s; ~t; E-true in [ U TEL,;,(p)(I)}

There is no difficulty to prove :
Proposition 4 Ty (py is a continuous operator.

We have thus an equivalence between semantics of a logic program P and
its associated rewrite program (P) : this result claims the soundness of our
transformation function 1.

Proposition 5 Given an equational logic program P, 1 fp(Tp)U{true} = 1fp(Typ))-

4.3 Equivalence with Operational Semantics

The (ground) operational semantics of our mechanism is naturally defined as
follows :

Definition 10 Let be 1p(P) an equational rewrite program :
OW(P)) = {p(3) € B(P) | p(5) = Ans - Ans — true}
U{s~teB(P)|Ans — true{s ~ t} F Ans — true}

In this section, we show that our mechanism is sound and complete with regard
to the declarative semantics (the complete proofs can be found in [14]). In
the equational case, a completeness result differs from the usual completeness
result of Logic Programming, since we are only interested in finding the smallest
solution w.r.t. the ordering. For instance, if we consider the two rules program :
f(z) = x < p(a) and p(a) «, although p(f™(x)) is valid for all n, we only
generate the solution p(a).

Proposition 6 Given an equational program P, we have :

O(Y(P)) = Mg (P)
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5 Future Works and Conclusion

In this paper, we propose a scheme for the execution of equational logic pro-
grams based on an extension of Linear Completion. We transform the initial
equational program into a set of rewrite rules and we define a fixpoint seman-
tics for this equational rewrite program. The transformation is thus proved
semantics preserving since the semantics of the logic program coincides with
the fixpoint semantics of the corresponding rewrite program. The evaluation
mechanism is described by an inference system which is shown sound and com-
plete. The strategy is focused on a goal-oriented computation and restricts
completion as far as possible. Thanks to Linear Completion, we gain w.r.t. the
others mechanisms ([3, 6, 12]) synthesis ability and loop avoidance.

The method proposed here to compute in equational logic can be improved
in several ways taking advantages of previous researches. Some works proposes
an approach to include negation in equational logic programming [3] and [10].
Linear completion has already been extended to logic programs with negation
[1] and this extension could be applied to the mechanism presented here. Work
is in progress to include such a negation : this would offer a kind of constructive
negation for equational logic programming.

On another hand, the constraint used here are only symbolic constraints.
[13] shows that general constraint domains can be combined with linear com-
pletion methods. In an equational framework, it is tempting to deal with equa-
tions as constraints. But, in a standard constraint framework, the constraints
are built-in predicates resolved apart by a specific solver, independent of the
user-defined predicated or rules. In the case of equational programming, the
equations (and thus the subjacent theory) could be user defined and could not
be solved apart from the user program. A kind of dynamic solver is necessary
here. This solver should probably cooperate with built-in solver that allows to
use non symbolic constraints.
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Combinator reduction systems with algebraic data types are the foundations
for non-strict functional programming languages. Proving properties of func-
tional programs is essential for verification, compilation and efficient execution
of functional programs.

In contrast to strict functional programming languages that have a fixed (sta-
tic) strategy to evaluate expressions, non-strict functional languages do not have
such a prescribed simple evaluation strategy. They typically use so-called lazy
evaluation, which combines call-by-need with sharing. A compiler for non-strict
functional languages requires information about the cases in which a static eva-
luation strategy can be used in order to compile efficient code. This information
is also helpful for implicit parallelisation.It is usually called “strictness” infor-
mation. A function f is strict in its k" argument, iff non-termination of ay,
implies that evaluation of (faj...a,) does not terminate. This is more or less
equivalent to: The evaluation of a (fai...a,) requires the evaluation of ay.

A generalisation is context analysis, which also extracts information on deeper
evaluation. For example, the function length will always evaluate the spine of
the list, whereas the function sum will always evaluate the list to normal form.
Strictness analysis is usually done using abstract interpretation based on deno-
tational semantics. We shall use abstract reduction, a kind of abstract inter-
pretation using the operational instead of the denotational semantics. It is also
related to top-down narrowing. However, we have the more general situation
that at the function position, an expression is permitted.

The calculus is non-deterministic and constructs a tableau using expansion rules
and rules testing for loops. The final labels at the leaves are used to represent
the set of all solutions.

The presented calculus for strictness context analysis is able to solve constraints
of the form.

teC

where t is an expression including free variables, and C' is a context describing
a set.
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If we have defined lists using the constructors Nil and Cons, written using infix
colons(:), and using a combinator listcase with the following definition:

listcase Nil fg=f
fg

listcase (awas) f g = ga as

then we define length as follows:

length zs = listcase xs () lengthcons ,
lengthcons y ys = 1 + (length ys)

Now consider the problem length xs € Bot, where Bot is a representation of
undefined expressions and Top is a representation of all expressions.

The calculus will return the solution s = INF, where the context INF is recur-
sively defined as INF := {Bot} U Top : INF.

The interpretation is that (length xs) is undefined if zs is an infinite list or a
list with undefined tail. From the view of a compiler, this can be interpreted as
follows: if (length xs) is to be evaluated, then it is safe to evaluate the spine
of the list zs before applying length to xs.

As a further example consider

append s ys = listcase zs ys (appendcons ys)
appendcons ys z zs = z: (append zs ys)

for which our calculus will produce the following result if asked how the argu-
ments of append zs ys can be evaluated if the application is evaluated.

The calculus starts with append zs ys € Bot and results in the following repre-
sentation of all solutions:

(zs,ys) = (Bot, Top) U (Top : xs, Top) U (Nil,Bot)

Essentially, it says that the first argument needs to be evaluated, but the second
argument does not need to be evaluated as long as we do not reach the end of
the spine of the first list.
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Abstract

We show how higher order unification (HOU) can be considered as a
typed narrowing in a suitable first order equational theory. The theory in
question is presented by a simple calculus of explicit substitutions, Av, due
to Lescanne. The main task consists in embedding HOU in Av-unification
and decoding Av-unifiers as S-unifiers. Since Av is ground confluent and
strongly normalizing on the set of simply typed terms, a typed narrowing,
called Av-narrowing is readily proved to be ground complete. This work
may be seen as a combination of two previous ones. Dougherty used such
an embedding in combinatory logic. A drawback is that the structure of
the A-terms is lost. More recently, Dowek, Hardin and Kirchner trans-
lated Huet’s preunification algorithm in Ao, another calculus of explicit
substitutions. Beside the differences between HOU and preunification,
Av-narrowing analyzes in finer detail the process of building solutions.

A detailed version with proofs can be found at

http://www.loria.fr/ briaud

Introduction

Higher-order unification (HOU) solves equations where the unknowns may be
functions, or, formally, equations between simply typed A-terms. For instance,

whose solutions are z — Au.u and = — Au.f. As the simply typed A-calculus is
confluent and strongly normalizing, a simple and natural idea comes to mind,
namely to unify via narrowing. The fact that 8 reduction is not a first-order
rewrite relation constitutes the main difficulty.

A second difficulty is that HOU is impractical. Specifically, expressed as trans-
formation rules [SG89], the search tree leading to a set of unifiers is infinitely
branching. To overcome this problem, [Hue76] introduced the notion of pre-
unifier. A given HOU problem has a preunifier if and only if it admits an
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HO-unifier. As a consequence, preunification, like HOU, is undecidable. Ne-
vertheless, this is a practical and basic procedure of higher-order theorem pro-
vers, such as Isabelle [Pau90], or higher-order logic programming languages,
such as AProlog [MN86]. Still, due to f-reduction and the way substitutions
are usually handled, preunification is thought to be difficult to implement.

Dougherty [Dou93] avoids the first mentioned problem by means of a trans-
lation to simply typed combinatory logic (CL), which he called C-unification.
This requires a trick since CL involves only weak S-reduction. Dougherty pro-
ves that a variant of typed narrowing is complete with respect to C-unification,
but in his approach, he looses the structure of the A-terms.

Most of A-calculi with explicit substitutions, such as Aoy and Av, aim at expres-
sing [-reduction by means of a first order term rewriting system. Thus, they
give another way of translating HOU into a first order setting and of unifying
via narrowing. These calculi are quite different. For instance, Av tries to intro-
duce as few operators as possible, whereas Aoy introduces derived operations
such as the composition of explicit substitutions; Aoy is confluent on open terms
whereas Av is only ground confluent and PSN.

The work described in [DHK95] reduces HOU to a first-order equational uni-
fication in a theory presented by Aoy Then, although unification in such a
calculus can be performed by narrowing, they present a specialized algorithm
that computes Bn-preunifiers for greater efficiency. Their approach could be
improved in three respects: Aoy is rather complex, the Aogunification rules can
be made more elementary, and their rules for g-unification are incomplete.

Departing from [DHK95], our approach consists of two parts. First, the study
in a simple setting of what we think is the heart of problem: how to decompose
wn small steps HOU by means of explicit substitutions. In other words, compute
[-unifiers by means of Av-narrowing. Second, the use of this study to design a
preunification algorithm that makes small steps, easy to implement. In other
words, compute On-preunifiers in the spirit of Av-narrowing. The work descri-
bed here concerns the first part. Its first aim is to show that a system simpler
than A\'s is sufficient to do the whole job. In particular, since Av does not in-
clude the composition of substitutions, we show that such a compositionis not
mandatory to express HOU in an explicit substitutions framework. The second
alm is to prove that Av-narrowing is complete with respect to HOU and, as it
is very simple to understand, to show that it provides an interesting alternative
to build, at least manually, HO-unifiers.

1 Higher Order Unification

If M and N are two A-terms of the same type then a SB-unifier of M and N
is a substitution 6 such that (M) =3 O(N). A substitution is presented as a
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finite set of pairs (z;, M;). Applying such a substitution to a term N consists
in replacing the free variables x; of N by the terms M; avoiding free variable
of any M; to be bound in the resulting term. Renaming bound variables in
N prevents that capture. Such a renaming is part of the substitution process.
Applying € to M is also:

O(N)=(Aey...xy . N)M;y... M,

For example, substituting = by y in Ay.z yields Az.y. On the contrary, first-order
substitution, called grafting in this paper, does not take into account bound
variables, hence, does not prevent the capture of free variables. For instance,
grafting y for « in Ay.x gives Ay.y. To sum up, substitution is grafting with
renaming.

Let us illustrate HOU with an example. We consider a basic type 4, 7(M)
denotes the type of M and the following 7 function,

T)
Y)
z)

The two A-terms xgzy and gaz admit as a S-unifier the substitution

G—>2Z2—->Y =1
Y
Z

(
(
(

5099

{(z, Auguguz.uz(ug, u2)), (y,9),(2,a)}

Generally, given a S-unification problem M == N, one is interested in a com-
plete set of f-unifiers of M == N. Such a set, denoted CSUz(M == N), is a
set of B-unifiers of M and N such that for any S-unifier 8 of M == N, there is
a substitution in CSUz(M == N) which subsumes 6.

We show now how to embed HOU into the Av framework. To ease the corre-
spondence between f-unification and Av-unification, it is convenient to abstract
the free variables of the A-terms to be unified as follows: let & be a ordering
of FV(MN), 0 is a S-unifier of M and N iff 0 is a S-unifier of (AZ.M)Z and
(AZ.N)Z. The interest of taking an ordering of F'V (M N) comes from the equi-

valences:
O(M) =5 O(N)
O((AZ.M)Z) =5 O(AZ.N)T)
(AEM)O(Z) =5 (A.N)O(T)
AZ.M and AZ.N which contain no free variables are easily translated into terms

with de Bruijn indices according to the following syntax where A is a type, f
is a constant and ¢, € CYy/ .

Nat nu= 0|n+1
Pure Term au= flc,|n]|aa|a

The set Cy is a mirror of the set of variables V. We do not detail here its
motivation, which is quite technical.

133



The function DBz, where 7 is a sequence of variables, translates a A-term to a
pure term:

DBg(x) = jif j is the index of the first occurrence of x in #
DBz(y) = ¢ ify¢ga
DBz(MN) = DBzM) DBz(N)

DBz(Ay.M) = XA. DB,z(M)if y is of type A
If # is void, then we shall write DB instead of DB;. For example,

DB(Ax. Ay z.xgzy) = AXAY.AZ. 2901
DBz Ay z.gaz) = AXAY.AZ. ga0

The function BDgz, extracting a A-term from a pure term can be defined likewise
and will be used to decode Av-unifiers. DBz and BDz are converse.

2 \v-unification

Before introducing Av-unification, we simply type Av and include variables of V.

Nat n == 0|n+1
Term a == z| f|ec|n|aal N.a|als]
Subst s == a/| T | M(s)

where € V., f is a constant, ¢, € Cy,

Moreover we type B and Lambda and we add two rules to Av as follows:

Beta (AA.z)b —  z[b/]

App (zy)[s] - w[sly[s]
Lambda (MA.z)[s] = AA.z[fi(s)]
FVar 0[b/] - b

RVar n+ 1[b/] n

FVarLift 0[f(s)] — 0
RVarLift n+1(i(s)] nls]

VarShift n[f] - n+1
Const fls] - f
ConstVar c,[s] — Co

Like higher-order unification, Av-unification is defined on the set AT of simply
typed Av-terms. Av is confluent on ground Av-terms of AT and Av is strongly
normalizing on AT [LRD94, BBLRDY6].

To illustrate how variables are mixed with ground terms, consider for instance
Az Ay Nz.xgzy)z - AY.Az.xgzy

With Av, the combinator A X.AY.AZ.2 ¢ 0 1 applied to the variable x can be
rewritten:
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AXAYAZ290 1)z — (AY.AZ2g01) [z/]
AV AZ((2 ¢ 01) [1P(2/)])
= AYAZ2 [P(2))] g (1P (2)] 0 [P (/)] L [17(x/)]
= AYAZO /][N g 0L

— AYAZa g 01

In the last Av-term, a grafting replaces « by a Av-term. Unlike in the Av-term
AA.z, no capture may happen in AY.AZ.z [T][1] ¢ 0 1, as the two T act as
renaming operators.

Precisely, a grafting is a function 8 : V. — Term, identified with its unique
homomorphic extension, such that x8 # = for only finitely many = € V.
Graftings play for Av-unification the same role as substitutions for HOU. Spe-
cifically, if @ and b are two Av-terms of the same type then a Av-unifier of
a and b is a grafting 6 such that af =y, 0. Such an equation is denoted
a == b. For example, one may check that xgzy == gaz admits the grafting
{x = AGZY0 11l y~ g,z a} as a \v-unifier.

3 Embedding HOU into \v-unification

H embeds HOU into Av-unification. It associates a Av-unification problem to
a [-unification problem.

Let M, N be two A-terms of the same type, and # an ordering of FV(MN).
The Av-unification problem associated with M == N is

H(M) == H(N)

where

H(M) = DB(A\Z.M)Z, H(N) = DB(A\Z.N)&

At first sight, the associated problem depends on Z, but in fact, this is not the
case.
If M = Au.z and N = Au.a are of type 7 — 7, then

H(M) = (AZXil)z =y, Ai.z[f]
H(N) = (AZXi.a)z =y, MN.a

1 in H(M) prevents z from being captured by a grafting like [1/z].

Theorem 1 Let M == N be a B-unification problem. The B-unifiers of M ==
N are exactly the ground Av-unifiers of H(M) == H(N).
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4 )v-narrowing
Counsider the equation xza == ay with the following types:

o)=Y - B=A
T(x)=(Y — B) — B
T(y) =Y

Expressed in the Av-unification framework, the equation xa == ay is unchan-
ged. Here is a branch of the search space explored by Av-narrowing on that
equation:

ra == ay

Beta |v—=AA.xy 1(21)=B

zila/] == ay
App|zi—agesy  T(r2) =Y =B, 7(x3)=Y
zala/Jaslaf] == ay
FVar |r2—0
a(zsla/]) == ay

Typed Unif

y == 3a/]
The Av-narrowing steps of this branch build the non-ground Av-unifier
o = {x = M.(Lz3), y = a3[a/]}.
More generally,

Theorem 2 A\v-narrowing is a ground complete method of Av-unification.

5 Translation of non-ground \v-unifiers

The issue is now to translate the graftings produced by Av-narrowing into (-
unifiers. Ground graftings are translated by BD. What about non-ground
graftings? In the last example, we get the non-ground Av-unifier

o={x— AA.(1 z3), y— x3[a/]}

We would like to get the S-unifier

{(z, Auu(zs(u))), (y,x3a)}

To translate o, we just need to compose it with a ground grafting, called op.
The subscript B in o means ”back translation”. The role of op is the following:
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given a A-term AA.Q z3, the fact that x5 depends on 0, i.e. may be replaced by
a term containing 0, is implicit. op makes this dependency explicit:

op={x3— ¢, 0}

Indeed, the new constant ¢, € Cy is a function of 0, or, put it differently,
depends explicitly on 0. Furthening the previous example, we get:

oop =), {2 = ANA.0(c.0),y — c.a,z3— ¢, 0}

oop is ground Av-unifier of za == ay. Hence by theorem 1, it can be translated
into a B-unifier of za == ay:

{(z, Muu(zu)), (y, za)}

Theorem 3 Let M == N be a B-unification problem. Let S the set of graftings
produced by A\v-narrowing and solving H(M) == H(N). One can estract a
CSUz(M == N) out of S.

6 Conclusion

The main interest of this work is that it provides an elementary procedure, Av-
narrowing, for a quite complex problem, higher order unification. However, as
already said, HOU, and Av-narrowing alike, are impractical due to the presence
of infinitely branching nodes in the search space. Our current work consists in
designing transformation rules that makes as small steps as Av-narrowing and
produce Bn-preunifiers, still in the framework described here. Such an approach
is interesting in the sense that it would give a simple preunification algorithm
very near to its implementation.
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Linear Second-Order Unification deals with completely general second-order
typed unification problems, where the set of unifiers under consideration is re-
stricted: they instantiate free variables by linear terms, i.e. terms where any
A-abstraction binds one and only one occurrence of a bound variable. This
properly extends context unification, studied by Comon and Schmidt-Schauf,
considering non-unary variables and A-bindings. This also makes some (tri-
vial) unification problems finitary, which would be infinitary considered as con-
text unification problems. In this talk we present some classes of decidable
linear second-order unification problems, trying to enlarge the class defined by
Schmidt-Schauf} for context unification.
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The inefficiency of AC-completion is mainly due to the doubly exponential
number of AC-unifiers and thereby of critical pairs generated. We present AC-
complete E-unification, a new technique whose goal is to reduce the number
of AC-critical pairs inferred by performing unification in a extension E of AC
(e.g. ACU, Abelian groups, Boolean rings, ...) in the process of normalized
completion [1, 2]. The idea is to represent complete sets of AC-unifiers by
(smaller) sets of E-unifiers. Not only do the theories E used for unification
have exponentially fewer most general unifiers than AC, but one can remove
from a complete set of F-unifiers those solutions which have no FE-instance
which is an AC-unifier.

First, we define AC-complete E-unification and describe its fundamental
properties. We show how AC-complete E-unification can be done in the ele-
mentary case, and how the known combination techniques for unification algo-
rithms can be reused for our purposes. Finally, we give some evidence of the
kind of speedup that can be obtained by presenting some experiments with the
Ci:ME theorem prover.

References

[1] C. Marché. Normalised rewriting and normalised completion. In Proceedings
of the Ninth Annual IEEE Symposium on Logic in Computer Science, pages
394 403, Paris, France, July 1994. IEEE Comp. Soc. Press.

[2] C. Marché. Normalized rewriting: an alternative to rewriting modulo a set
of equations. Journal of Symbolic Computation, 1996. to appear.

*This research was supported in part by the EWG CCL, the HCM Network CONSOLE,
and the “GDR de programmation du CNRS”.

140



