
Between Finite State and Prolog: Constraint-BasedAutomata and E�cient Recognition of PhrasesKlaus U. Schulz and Thomasz MikolajewskiCIS, University of MunichOettingenstr. 67, D-80538 M�unchen, Germanye-mail: schulz/thomasz@cis.uni-muenchen.deAbstractThis paper describes a new type of automaton that has been developed atCIS Munich for e�cient recognition of phrases in text �les. The concept of aconstraint-based automaton is tailored to sets of phrases where grammaticality de-pends on morphological agreement conditions. It incorporates features from threesides: traditional �nite state techniques, methods from constraint programming,and some technology from modern large-scale electronic dictionaries. A miniatureprogramming language with a special purpose constraint solver, tokenizing routi-nes for input text �les, and with built-in access to large electronic dictionaries hasbeen built to support e�cient implementation of constraint-based automata. Inthis paper we describe the formal concept of a constraint based automaton. Wegive the syntax of transition rules and explain the procedural behaviour. Additio-nal information on background algorithms and on some details of the miniatureprogramming language are also included. Some experimental results are descri-bed that compare the performance of constraint based automata with Prolog andilluminate the range of potential applications.1 IntroductionIn computational linguistics, e�cient recognition of phrases is an important prerequisitefor many ambitious goals, such as, e.g., automated extraction of terminology , part ofspeech desambiguation, and automated translation. If one wants to recognize a certainwell-de�ned set of phrases, the question comes up which type of computational deviceshould be optimal for this task. In many cases, �nite state methods are appropriate andfavourable because of their e�ciency ([GrP, Ta95, Sc96]). However, often one wouldlike to recognize sets of more complex phrases where correct resolution of grammaticalstructure requires morphological analysis. As an example, consider the analysis ofgerman noun phrases.� for a correct separation between two consecutive noun phrases (as in \der K�onigden Tieren"1) on the one hand and a single complex noun phrase (as in \der1\the king to the animals" 1

K�onig der Tiere"2) on the other hand, case dependencies have to be taken intoaccount,� for a correct analysis of relative clauses with extraposition (as in \die Fu�ballspielerden Ball, die.."3) number information is required.Similarly, morphological information is needed for correct resolution of verb-argumentstructure and for other phenomena. As the impact of morphological information grows,�nite state techniques become more and more inappropriate. In principle, of course,arbitrary agreement constraints can be encoded in the transitions of a �nite stateautomaton, as long as a �nite number of morphological variants is considered only.The following �gure exempli�es this possibility, showing how to enforce agreement innumber of an adjective and a noun in a �nite state automaton.
•

•

•

•

sing_noun

plur_noun

sing_adj

plur_adjHowever, if we want recognize a non-trivial subset, say, of all german noun phrases, thenthe size of any �nite state automaton necessarily exceeds a reasonable bound becauseof the inevitable multiple duplication of transition rules that is caused by the largenumber of morphological variants. This means that the design and implementation ofan appropriate �nite state automaton is in practice an infeasible task.In this situation, Prolog is a prominent alternative. In the example given above, wemay just introduce a variable for the number in order to enforce agreement.
• • •

adj(x) noun(x)Still, one might ask if current Prolog systems o�er an optimal solution. De�nitely itwould be inappropriate to rely on the uni�cation mechanisms. The reason is that themorphological information that comes with a given input token after lexical analysis isdisjunctive in nature: from the background dictionary we typically obtain a �nite setof possible morphological values for a given word form. Since logical variables cannotrepresent disjunctions, we would have make extensive use of the backtracking mecha-nism in the recognition process, which leads to poor performance. Constraint-basedextensions of Prolog, such as PROLOG III [Col90] or ECLiPSe [EC95], o�er much bet-ter possibilities in this respect but their built-in constraints are of course not tuned tocontrol of morphological agreement conditions. Another point where the possibilitieso�ered by Prolog/CLP might be improved is the lexical look-up. Usually, the integra-tion of dictionaries in CLP languages is made in an ad hoc way or based on traditionaldata base techniques. However, lexical look-up in electronic dictionaries{where words2\the king of the animals"3\the soccers the ball, who...". 2

are represented in a suitable way4|can be made much more e�cient using transducertechniques. Clearly such techniques should be integrated in any modern system forrecognition of phrases. Eventually it is an open question if the heavy machinery of afully edged CLP language leads to a loss of e�ciency if compared with more limitedconcepts.In this paper we describe the notion of a constraint-based automaton. The new con-cept incorporates characteristic features both of �nite state techniques and constraintprogramming; on the implementation side, modern technology as it has been developedin the context of large-scale electronic dictionaries has been integrated.� From �nite state automata we inherit the general structure of rules and determi-nistic execution.� A special constraint solver, based on arc-consisteny techniques ([Ma77]), facilita-tes the control of morphological agreement conditions. An adequate treatmentof other linguistic concepts is supported through uni�cation over rational trees([Col84]).� E�cient look-up methods, originally developed by the second author for the ger-man CISLEX dictionary [GM94, Ma94], support direct access to large-scale elec-tronic dictionaries of the DELA-type [Co90, Si93].A miniature programming language has been developed and implemented in C for sup-porting e�cient implementation of constraint-based automata. This language comeswith a special optimization. A built-in preprocessing step for constraint-based auto-mata extracts a �nite state model for deterministic control of the automaton. Phraserecognition is then organized as a two phase process. In the �rst phase, lexical catego-ries of input words are analyzed using the deterministic �nite state control only. Oncean admissible sequence of categories has been found by this �ltering process, the rele-vant subsegment of the input is analyzed by the constraint-based automaton, envokingnow constraint-solving and uni�cation.In two respects, then, the concept of a constraint-based automaton lies between�nite state technology and Prolog/CLP. First, the syntactic form of transition rulesis more restricted than a program clause of a constraint logic program. Second, whenprocessing an input text �le, classical �nite state techniques are used as long as possible,and the real power of uni�cation and constraint solving is only envoked once a suitablecandidate sequence of input tokens has been found by the �ltering process. The presentwork builts up on earlier theoretical investigations on automata with built-in uni�cation[SG95].The paper has the following structure. In Section 2 we describe how morphologicalinformation is treated in constraint-based automata. In Section 3 we specify the formalsyntax of states and transition rules. We describe the control of constraint-based auto-mata, and the two phase recognition process. Section 4 provides a formal model for thecomputation with constraint-based automata. Section 5 gives some empirical results4E.g., using tries, lookup rates up to 13.000 words per seconds are reached on NeXT or Sun for theCISLEX system [GM94]. 3

on the performance of constraint-based automata in our current implementation andcorresponding programs written in ECLiPSe Prolog. An appendix is added where theconstraint solver is described in detail.2 Morphological variables and morphological constraintsIn this section we explain which kind of constraints we use for constraint-based auto-mata, and how we use them. Ignoring some peculiarities concerning the nature of cons-traints, the following techniques are well-known in the area of constraint programming.Nevertheless, a brief description seems inevitable if we want to explain the conceptof a constraint-based automaton. We start with some information on the backgrounddictionary.Entries in electronic full form dictionaries for lexical categories like nouns, deter-miners, adjectives, verbs etc. are typically equipped with morphological information.This information stores which values of features like number, gender etc. can be asso-ciated with a given inected form of a word. In general it is not possible to specify theset of possible values for each of the relevant features separately since there are manyinterdependencies. For example, the german determiner \die" can have both valuesplural and singular for number, in the singular case the gender is always femininum,while in the plural case all three german genders are possible. For this reason the mor-phological information that is attached to these entries has|modulo variants in thestyle of representation|the form of a �nite set of tuples, each tuple representing onepossible combination of values for a �xed sequence of features. E.g., the entry for thegerman determiner \den" in the CISLEX dictionary [GM94, Ma94] has the formden d.DET4:dmFy:dmMy:dmNy:aeMyEach of the four character sequences in bold-face represents one possible quadruple ofvalues for the features case;number; gender;declination-type, on the basis of an enco-ding that is not relevant here. In the sequel, such a �nite sequence of tuples will becalled a box of morphological tuples, for simplicity. We shall always assume5 that alltuples of a given box have the same type, which means that their components representvalues for the same sequence of features.In the syntax for a constraint-based automata, variables may be used to refer toboxes of the form described above. These variables will be called morphological varia-bles. When we use a constraint-based automaton for evaluating a given sequence ofinput words, the lexical look-up will bind morphological variables to the boxes that areassociated with the input tokens in the dictionary. Once this instantiation has takenplace, morphological variables behave essentially in the same way as the \�nite domainvariables" of modern CLP languages (e.g., [DS88]).5In a few cases the morphological information that is attached to a given entry in the CISLEXdictionary is not of a completely homogeneous form. For the sake of clarity we shall not comment onthis point which causes some additional technical di�culties in the actual handling of constraints.4

In order to deal with grammatical agreement conditions, two types of constraintsfor morphological variables can be used in a constraint-based automaton. Assignmentconstraints have the form x: B where x is a morphological variable and B is box. Sucha constraints may be used to bind x explicitly to B, without any reference to the back-ground dictionary. Coincidence constraints have the form T : x = y. Here x and y aremorphological variables and T is a sequence of features, such as, e.g., hgender;numberi.A constraint hgender;numberi: x = y, for example, expresses that the correct values ofx and y must agree on gender and number. If new constraints are added, the assign-ment of boxes to morphological variables may be changed dynamically. Before weexplain this mechanism we have to describe the global organization of constraints inmore detail.In a constraint-based automaton, constraints are organized in a network. Such anetwork can be represented in the form of a �nite graph. Each vertice is labelled witha pair x: B where x is a morphological variable and B is a box which represents theset of possible values for x. The arcs of the graph are labelled with the coincidenceconstraints between these variables. The following �gure gives an example. Ci�j standsfor the set of coincidence constraints between variables xi and xj.
•

•

•

•

•

•

x1:B1

x2:B2 x3:B3

x5:B5

x7:B7

x4:B4

C 1-2

C
1-7 C 7-4

C2-3

C
2-5

C
3-4

C 5-
7

C 5-
3

A network of constraintsWhen lookin at the arcs of such a network one will often detect certain inconsistencies.Assume, for example, that box B1 in our network is fhsing; 1i; hplur; 1i; hplur; 2ig, thatB2 is fhsing;nominativ; 2i; hplur;nominativ; 3ig and that C1�2 contains the constrainthpersoni: x1 = x2. The constraint expresses that the correct values for x1 and x2respectively must have the same value for \person". But then hsing; 1i cannot be thecorrect value for x1 since there is no entry in B2 where \person" has the value 1. Forthe same reason, x1 cannot have the value hplur; 1i, and x2 cannot have the valuehplur;nominativ; 3i. Hence, by \�ring" the constraint hpersoni: x1 = x2 we will obtainthe new assignments x1: fhplur; 2ig and x2: fhsing;nominativ; 2ig.With these new assignments, the subnet including the two nodes for x1 and x2 andthe arc between these nodes is consistent in the following sense: for each selection of apossible value v1 for x1 we may choose a possible value v2 for x2 such that v1 and v2satisfy all constraints for x1 and x2. A network of constraints is arc-consistent ([Ma77])if each subnet with two nodes is consistent.When we run a constraint-based automaton on a given sequence of input tokens, a5

constraint solving mechanism is applied that maintains the arc-consistency of the net-work of morphological constraints that are accumulated during the analysis. A special-purpose constraint-solver for morphological constraints has been developed that remo-ves inconsistencies in a given two-node subnet. In order to maintain arc-consistencyof the whole network we use the algorithm AC3 from [Ma77]. This algorithm, well-established in the constraint programming community, has worst-case complexity ed3where e denotes the number of variables and d is the cardinality of the largest domain(box) of a variable ([MF85]).A net is called globally consistent if each selection of values ~v for a subset ~x of theset of all variables such that ~v respects all constraints between variables in ~x can beextended to a global selection of values for all variables such that all constraints in thenet are satis�ed. It is wellknown that arc-consistency does not necessarily imply globalconsistency. In particular it might be impossible in an arc-consistent net to chooseeven one selection of values for the variables that respects all constraints, as can bedemonstrated with the following simple example.
(sing,2)
(plur,2)

(sing,1)
(plur,2)

(sing,2)
(plur,1)

<num>:x=z

<num>:x=y

<pers>:y=z

x y

z

Arc-consistency does not guarantee globally consistencyIn general, NP-complete algorithms are needed to maintain global consistency in anetwork. For this reason most systems in constraint programming are based on thesimpler notion of arc-consistency. In our practical work with constraint-based automatawe did not �nd any situation where an inconsistency on the morphological level wasnot detected by the constraint-solver.3 Syntax of Constraint-Based AutomataIn this section we desribe the syntactic form of the states and transition rules of aconstraint-based automaton. We begin with a de�nition of boxes and constraints. Forthe sake of transparency and generality we give generic de�nitions that do not dependon the morphology of a particular language.3.1 Boxes, constraints and termsDe�nition 3.1 Let F be a �nite set of features, assume that each feature f 2 Fcomes with a set of possible values, Vf . A type is a non-empty sequence of distinctfeatures. Hence the set of types is �nite. To each type T = hf1; : : : ; fki we assign the6

set BT := Vf1 � : : :� Vfk of possible values of type T . A box is a �nite, non-empty setB of possible values of the same type T . This type T is called the type of box B.It should be noted that the features in F may also characterize semantic properties,in principle. But the constraints that we introduce below are not tuned to semanticinformation, for two simple reasons. Still, the amount of semantic information thatcan be found in large-scale electronic dictionaries is rather limited. Furthermore, theintegration of general techniques for the treatment of semantic information would pre-suppose that this kind of information is standardized at least in some way, and still itis far from clear how such a standard should look like.De�nition 3.2 Amorphological constraint is an expression of the form x: B or T : x = ywhere B is a box and T is a type. Constraints of the form x: B are called assignmentconstraints, constraints of the form T : x = y are called coincidence constraints.6Morphological onstraints can be used to formulate conditions on morphologicalagreement. In order to support the handling of other linguistic phenomena, such as,e.g., extraposition, general long-distance dependencies, and computation of semanticrepresentation, the states of a constraint-based automaton are �rst-order terms like inProlog. Transitions will be based both on uni�cation and on constraint solving.Let � be a �rst-order signature, i.e., a set of free function symbols7, all of �xedarity, and let Var be a countably in�nite set of variables.De�nition 3.3 The set of terms is the smallest set of expressions that is closed underthe following construction rules.� Every variable and every constant a 2 � is a term.� If t1; : : : ; tn are terms, and if f 2 � is an n-ary function symbol, then f(t1; : : : ; tn)is a term.Note that in the syntax of terms, no distinction is made between logical variablesand morphological variables. In practice, type checking is left to the uni�cation andconstraint solving subprocedures.De�nition 3.4 A constraint is a morphological constraint or a locical constraint, i.e.,an equality t1 = t2 between terms. A constraint set is a �nite set C of constraints.If C denotes a constraint set, then C= (resp. Ca; Cc) denotes the set of all logical(assignment, coincidence) constraints in C.6In our actual implementation, additional constraints of the form x: T may be used for the con-venience of the user, where T is a type. Internally, these constraints are equivalent to assignmentconstraints x: BT .7The set �, the set of features, and the set of possible values of features are assumed to be disjoint.7

3.2 States and Transition RulesA constraint-based automaton has the surface structure of an ordinary �nite stateautomaton, which means that it has one start state, a �nite number of �nal states,and a �nite number of transition rules between states. The \states" of a constraint-based automaton, however, may be rather complex objects. We shall now specify thesyntactic form of the start state, the �nal state and transition rules. Two points willbe postponed for simplicity:1. In practice, each state and each transition rule is equipped with some additionalinformation that is used to control execution of the automaton.2. Constraint-based automata possibly have a �nite number of subordinate constraint-based automata, and there are special rules for calling subautomata.Both the form of and the role of the control declaration, and the organization of sub-automata will be explained below.Start and �nal states of a constraint-based automaton are expressions of the form s; Cwhere s is a term and C is a �nite (possibly empty) set of morphological constraints.Lexical transition rules have the form h Cat(x1;:::;xk)�! t; C where h, and t are terms, Catis a lexical category, x1; : : : ; xk 2 Var, and C is a �nite set of morphological constraints.Empty transition rules have the form h ! t; C where h, and t are terms, and C isa �nite set of morphological constraints.We generally assume that a background dictionary D is given with entries of theform w : Cat(B1; : : : ; Bk) where w is a (possibly inected form of a) word, Cat is alexical category, and B1; : : : ; Bk is a sequence of boxes of distinct type.Because the syntax does not take care of types, some caution is necessary whenwriting the transition rules of a constraint-based automaton. For example, the eva-luation of a coincidence constraint T : x = y will only succeed once both x and y areinstantiated and bound to boxes of appropriate types Tx and Ty where T is a subtypeof both types. The evaluation of an assignment constraint x: B will fail if x is boundto a box B0 such that B and B0 have distinct type, or if x is bound to a non-variableterm.Control declarations and deterministic �nite state control. Constrained-basedautomata use a rigid control mechanism that makes it possible to execute the auto-maton temporarily exactly like an ordinary deterministic �nite state automaton. Inorder to explain this control principle we have to describe now the full syntactic formof states and transition. The start state, each of the �nal states and each transitionrule is labelled with a number m. In addition, start state and lexical transition rulesare equipped with a control declaration of the form[Cat1 : n1; : : : ;Catk : nk]8

where each Cati denotes a lexical category and each ni is a number of a transition rulesor a �nal state (1 � i � k). The last entry may also be a plain number nk of a �nitestate, in which case the declaration has the form [Cat1 : n1; : : : ;Catk�1 : nk�1; nk].The naive idea of how to use this information is the following. Once the evaluationof the present (state or) transition rule is �nished, the machine will check if the nextinput token is of category Cat1; or Cat2, etc. If (i is the smallest number such that) thenext input token is of category Cati, then the automaton will use rule number ni forevaluating this input token.8 If the last entry is a plain number nk, then the automatonwill switch to the �nal state nk in all cases where the previous entries do not match. Ifthe last entry of the declaration has the \conditional" form Catk : nk, and if the nextinput token �ts none of the categories mentioned in the control declaration, then theevaluation fails.The real use of the information is more powerful. Given the numbers and controldeclarations of a constraint-based automaton A we assign to A a �nite state controlcompanion AFSC in the following way. The states of AFSC are the (numbers of) rulesof A. Moreover, AFSC has a transition n Cat�! m i� the control declaration of rule n ofA has an entry Cat : m. A �nal entry nk in the control declaration of rule number mis translated into an empty (vacuous, silent) transition m ��! nk to the �nal state nk.Example 3.5 The following �ve lines represent a constraint-based automaton A thatmay be used for recognition of german noun phrases of the simple form det adj� noun.The start state has number 1, the �nal state number 5. Letters g; k; n stand for thefeatures gender; case;number.1: S [det : 2]2: S det(x)�! S(x) [adj : 3;noun : 4]3: S(x) adj(y)�! S(x) fhg; k; ni: x = yg [adj : 3;noun : 4]4: S(x) noun(y)�! S(x) fhg; k; ni: x = yg [5]5: S(x)The companion AFSC of A is the following deterministic �nite state automaton:
adj

det

adj

noun

1 2

5

3

4

noun

εOn the basis of the companion AFSC, the search for correct phrases proceedes in twosteps. In the �rst phase, we only use AFSC until a suitable candidate sequence of8In our actual implementation, a decision to use rule ni for the next step of the evaluation is notmodi�ed at a later point since no backtracking is used. In principle, this can lead to unwanted failuresince the wrong part-of speech category might be selected �rst for lexically ambigous input tokens. Forthe analysis of german corpora this was not a problem.9

input tokens w1 : : : ; wk has been found. In the above example, every sequence ofwords w1 : : : ; wk�1; wk will be considered as a candidate where the dictionary D has adeterminer of the form w1, adjectives of the form w2; : : : ; wk�1, and a noun of the formwk. Once a candidate sequence w1 : : : ; wk has been found, A will be used in the secondphase to process w1 : : : ; wk using constraint-solving and uni�cation. Procedurally, thetransition rules of a constraint-based automaton A are treated like program clauses ofa CLP program, see Section 4 and the appendix for details. Note that it is only in thissecond phase where morphological conditions are checked.The advantage of the two phase recognition process is twofold. First, because ofthe deterministic control no backtracking mechanism is needed.9 Second, as long asthe automaton does not enter into the second phase, no renaming of transition rules isnecessary. This is one important contrast to Prolog, where each rule has to be renamed,using a new set of variables, before it may be used in the derivation, and a good amountof computation time is spent just for this task. With constraint-based automata, thisprocess starts only once we enter phase two.Constraint-based automata with subautomata. In order to facilitate the designof large constraint-based automata, we introduced a new type of transition rule forcalling a subautomaton. Each subautomaton has a unique �nite state. Rules callinga subautomaton have the form h (B:s;f)�! t; C where h; s; f , and t are terms, and C isa �nite set of morphological constraints. B is the name of the subautomaton that iscalled, and s and f are �-terms that can be uni�ed with the start state and the �nalstate of B respectively. The idea behind these rules is the following. When B is called, sand the (�-term of the) start state of B are uni�ed. Since h and s may share variables,it is possible to pass relevant information from h to the start state (term) of B throughuni�cation. When the call to B is �nished, uni�cation of the �nal state (term) of Bwith f may be used to lift information to the state (term) t.Since we did not want to abandon the deterministic �nite state control principleand the two phase recognition process, the set of all subautomata of a constraint-basedautomaton is organized in a strictly hierarchical, non-recursive way.4 The formal modelIn order to give a better picture of the evaluation with constrained based automatawe shall now introduce a formal model. First, we shall de�ne what it means that anautomaton accepts a given input sequence. We shall then introduce a ground versionof a constraint-based automaton that comes with its own simple notion of acceptance.It will be shown that both notions of acceptance coincide. To begin with, we have tode�ne the solution domain for constraints. Readers that are familiar with rational treescan safely ignore the following de�nitions.A position is a �nite sequence hn1; : : : ; nki of natural numbers. A tree domain isa set t of positions that is closed under pre�xes and has the following property: if9The price that has to be paid is that grammars have to be written in a rigid format.10

hn1; : : : ; nki 2 t and nk > 0, then hn1; : : : ; nk � 1i 2 t. A leaf of a tree domain t is amaximal position, i.e., a position hn1; : : : ; nki such that t does not have any element ofthe form hn1; : : : ; nk; nk+1i.De�nition 4.1 Let � be a signature, i.e., a set of function symbols. An m-tree over� is a pair ht;Di where t is a tree domain and D is a labelling function, i.e., a functionwith domain t such that for all � 2 t1. D(�) is an n-ary element of � if � has n > 0 successors,2. D(�) is a constant of � or a possible value of some type (Def. 3.1) if � is a leaf.Subtrees are de�ned as usual. An m-tree is rational if it contains only a �nite numberof distinct subtrees. With T we denote the set of all rational m-trees over the (�xed)signature �.The set T of rational m-trees will be the solution domain for constraints. Anassignment is a mapping � : Var ! T . Each assignment will be identi�ed with itsunique homomorphic extension to the set of all terms. We write t� for the image ofthe term t under the assignment �.De�nition 4.2 An assignment � satis�es an assignment constraint x: B i� x� 2 B.An assignment � satis�es a coincidence constraint T : x = y if x� and y� are boxes thathave the subtype T and if x� and y� coincide on all features in T . An assignment �satis�es a logical constraint x = y if x� = y�. An assignment � satis�es a constraintset C if � satis�es each c 2 C.In order to simplify the discussion we shall restrict the following considerations toconstrained based automata with (start state, �nal states and) lexical transition rulesonly. We shall also ignore matters of control. With more technical ballast, the formalmodel can be lifted to automata with rules that call subautomata, and to rules withcontrol declaration.In the sequel, let A denote a constrained based automaton, and let D denote a �xedbackground dictionary.De�nition 4.3 A closed path of A is given by a sequence� = (t0; C0); R1; : : : ; Rk; (hk+1; Ck+1)where t0; C0 is the start state of A, each Ri is a transition rule hi Cati(xi1 ;:::;ximi)�! ti; Ciof A, for i = 1; : : : ; k, and hk+1; Ck+1 is a �nal state of A. In more detail, statesand transitions of � are assumed to be renamed in such a way that all members of �are variable-disjoint. The closed path � is a candidate path for the sequence of wordsw1 : : : wk, given D, if D contains entries wi : Cati(Bi1; : : : ; Bimi), for i = 1; : : : ; k.11

Let � be a candidate path for w1 : : : wk. The constraint set assigned to � andw1 : : : wk is C� := k[i=0fti = hi+1g [k+1[i=0 Ci [k[i=1(mi[j=1xij: Bij):If an assignment � satis�es C�, then it uni�es consecutive heads and tails of transi-tion rules of �, it satis�es all morphological constraints occurring in � and it selectsmorphological values for the words w1 : : : wk that are possible according to D.De�nition 4.4 The input sequence w1; : : : ; wk is accepted by (A;D) ifA has a closedpath � that is a candidate path for w1; : : : ; wk, given D, such that the constraint setC� assigned to � has a solution.Given D, each state and transition rule of A can be thaught of representing apossibly in�nite collection of ground states and transition rules in the following sense.De�nition 4.5 The set of admissible ground instances of a state t; C isft� j � : Var ! T ; � solves Cg � T :The set of admissible ground instances of a rule h Cat(x1;:::;xm)�! t; C is the set of alltransition rules of the form h� w�! t� where the assignment � solves C and where Dcontains an entry w : Cat(B1; : : : ; Bm) such that x�i 2 Bi, for i = 1; : : : ;m.De�nition 4.6 The ground version GrD(A) of the constraint-based automaton A,given D, contains all admissible ground instances of the start state and of the �nalstates of A, and of the transition rules of A. The instances of the start state of A arethe start states of GrD(A), the instances of the �nal states of A are the �nal states ofGrD(A).As we see in the example below, GrD(A) can be represented as a labelled directed graphwhere vertices are rational m-trees, edges represent transitions that are triggered bywords (full forms) occurring in the dictionary D.An admissible path of GrD(A) is a sequence of transitions, with labels w1; : : : ; wk,say, leading from a start state of GrD(A) to a �nal state.De�nition 4.7 The sequence w1; : : : ; wk is licensed by GrD(A) i� GrD(A) has anadmissible path with labels w1; : : : ; wk.Example 4.8 Let A be the automaton1: s2: s det(x)�! p(0; x) fx: fhsingi; hplurigg3: p(x; y) adj�! p(s(x); y)4: p(x; y) noun(z)�! f fhni: y = zg5: f 12

with start s and �nal state f . Assume that D contains the entries one: det(hsingi), two:det(hpluri), big: adj, car: noun(hsingi), cars: noun(hpluri). Then the following �gurerepresents GrD(A). States that cannot be reached from the start state s are omittedfor simplicity.
p(0,<sing>)

p(s2(0),<sing>)

p(s(0),<sing>)

p(0,<plur>)

p(s2(0),<plur>)

p(s(0),<plur>)

f

big

big big

big

bigbig

car

carscar

cars

s

one two

... ...

......

... ...

In this example, each sequence of the form \one (big)� car" or \two (big)� cars" islicensed by GrD(A).Theorem 4.9 A sequence of input tokens w1; : : : ; wk is licensed by GrD(A) i� w1; : : : ; wkis accepted by (A;D).Proof. Assume that w1; : : : ; wk is accepted by (A;D) on the closed path� = (t0; C0); R1; : : : ; Rk; (hk+1; Ck+1):Since � is a candidate path for w1; : : : ; wk, each Ri is a transition rule of the formhi Cati(xi1;:::;ximi)�! ti; Ci where D has entries wi : Cati(Bi1; : : : ; Bimi), for i = 1; : : : ; k. Byassumption, C� has a solution �. This implies that xij� 2 Bij, for i = 1; : : : ; k andj = 1; : : : ;mi. It follows that h�1 w1�! t�1 ; : : : ; h�k w1�! t�kis an admissible path of GrD(A) since h�1 = t�0 (resp. t�k = h�k+1) is a start (resp. �nal)state of GrD(A) and since also t�i = h�i+1, for i = 1; : : : k � 1. Hence w1; : : : ; wk islicensed by GrD(A).Conversely, if w1; : : : ; wk is licensed by GrD(A), let R01; : : : ; R0k be an admissiblepath of GrD(A) where the ground rule R0i has the form h�ii wi�! t�ii , for i = 1; : : : ; k.Here A has a corresponding rule Ri of the form hi Cati(xi1;:::;ximi)�! ti; Ci where the assign-ment �i solves Ci and where D has an entry wi : Cati(Bi1; : : : ; Bimi) such that xij�i 2 Bij ,13

for i = 1; : : : ; k and j = 1; : : : ;mi. Moreover, if (t0; C0) denotes the start state of A,then there exists an assignment �0 that satis�es C0 such that t�00 = h�11 , and thereexists a �nal state (hk+1; Ck+1) of A and an assignment �k+1 that satis�es Ck+1 suchthat h�k+1k+1 = t�kk . It follows that� = (t0; C0); R1; : : : ; Rk; (hk+1; Ck+1)is a candidate path for w1 : : : wk. Without loss of generality we may assume that startstate, �nal state, and transition rules are pairwise variable disjoint. Hence we mayassume that �0 = : : : = �k+1 =: �. But then the assignment � satis�es the constraintset C� assigned to � and w1 : : : wk, given D, which shows that w1; : : : ; wk is acceptedby A.5 Preliminary empirical evaluationIn order to support the implementation of constraint-based automata, a miniatureprogramming language has been implemented in C. The source code contains ca. 8.000lines. The language accepts as input Prolog-style transitions rules of the form givenabove (rules may call a subautomaton). Given the program for a constraint-basedautomaton, a built-in preprocessing step computes the �nite state control companionbefore evaluating the given text �le.The table given below summarizes the results of a preliminary empirical evaluationwhere we compared the computation time for extracting all phrases of a particularform from a text of 200kByte (16:500 words). The experiments run on a SUN Sparc10, times are in seconds.The six lines of the table describe independent experiments were we extracted aparticular set of phrases in each case. In the �rst experiment, we searched for an em-pty category, in other words, for a simple non-existing phrase. The second line gives theresults where we extracted words that belong to a �nite set of lexical categories. Thethird line describes the time to extract all noun phrases of the simple form \determinerfollowed by a �nite sequence of adjectives followed by a noun". The next experimentsused constraint-based automata with subautomata, the numbers in brackets give thenesting degree. PP(1) (resp. PP(9)) stands for some automaton for recognizing prepo-sitional phrases with one (resp. nine) level(s) of subordinate automata. NP(3) standsfor an automaton for noun phrases with three levels of subordinate automata.The �rst column gives the times that were needed using a grammar with constraintsin ECLiPSe Prolog. One optimization has been built-in already here. Instead of usinga global dictionary with alle the words of the text (which would lead to much worseresults), each sentence is processed with a small dictionary that containts just all thewords of the sentence in order to make the lexical look-up more e�cient. The times inthe �rst (second) column include (exclude) the computation of the local dictionaries.The third and fourth column give the processing times using constraint-based automata,counting (column 3) or disregarding (column 4) the time for printing correct phraseson the screen. The last two columns compare the times of columns 1 and 3 respectivelycolumns 2 and 4. 14

1. ECLiPSe 2. ECLiPSe 3. Constraint-B. 4. CBA 1:3 2:4PROLOG - temp. dict. Automaton - print timeEmpty Cat. 775 28 1 1 775 30Particle 780 31 5 3 150 10det adj� n 830 83 27 17 30 5PP(1) 815 68 10 7 80 10NP(3) 890 140 17 10 50 14PP(9) 990 240 16 14 60 176 ConclusionWe have introduced the concept of a constraint-based automaton. With this newnotion, recognition of phrases is based on some form of computation that lies between�nite state techniques and logic programming with constraints. Our aim was to create atool for e�cient recognition of phrases, supporting control of morphological agreementconditions. First evaluation results indicate that in fact a reasonable gain in e�ciencycould be obtained if compared with CLP implementations. In our actual work, we seevarious further possibilities for optimization, both on the conceptual level and on thelevel of the implementation. To some extend, the possible optimizations depend on thestructure of phrases that we want to extract. Empirically, the extraction of \short"noun phrases in german corpora shows that there are some characteristic sequences ofboxes such that most of the correct phrases come with one of these sequences. If we usea variant of the dictionary where boxes are replaced by numbers, and if we encode thesecharacteristic sequences as sequences of numbers, then it is possible to \built-in" thesesequences and to avoid constraint solving in most of the cases. On the implementationside, the internal renaming (copying) of rules|which is actually necessary during phasetwo|can probably be reduced to a minimum, since in general each rule is only useda restricted number of times (typically once, or twice) during the analysis of a givensequence of input tokens.References[Col84] A. Colmerauer, \Equations and inequations on �nite and in�nite trees," in:Proc. 2nd Int. Conf. on Fifth Generation Computer Systems, 1984, pp. 85-99.[Col90] A. Colmerauer, \An introduction to PROLOG III," C. ACM 33, 1990, pp.69{90.[Co90] B. Coutois, \Un syst�eme de dictionaires �electroniques pour les mots simplesdu francais." in Language Francais 78, 1990.[DS88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, \The ConstraintLogic Programming Language CHIP." in Proc. of the 2nd International Con-ference on Fifth Generation Computer Systems, 1988, pp. 249-264.[EC95] \ECLiPSe 3.5 User Manual", ECRC Munich, 1995.[GrP] M. Gross, D. Perrin (Eds.), \Electronic Dictionaries and Automata in Com-putational Linguistics," Springer LNCS 377, 1989.15

[GM94] F. Guenthner and P. Maier: �Uberblick zum CISLEX-W�orterbuch-System,CIS-Bericht, 1994, Lexikographica, to appear.[Ma77] A.K. Mackworth, \Consistency in Networks of Relations," AI Journal 8 (1),1977, pp. 99-118.[MF85] A.K. Mackworth, E.C. Freuder, \The Complexity of some Polynomial Net-work Consistency Algorithms for Constraint Satisfaction Problems," Arti�-cial Intelligence 25, 1985, pp. 65-74.[Ma94] P. Maier: Lexikon und Lemmatisierung, CIS-Bericht-95-84.[Sc96] A. Schiller, \Multilingual Finite-State Noun Phrase Extraction," In: Procee-dings of the ECAI 96 Workshop \Extended Finite State Models of Language",A. Kornai (Ed.), pp. 65-69.[SG95] K.U. Schulz, D.M. Gabbay, \Logic Finite Automata," In: Applied Logic:How, What and Why, L. P�olos, M. Masuch (Eds.), Kluwer Academic Publis-hers, 1995, pp. 237-285.[Si93] M. Silberztein, \Dictionaires �electroniques et analyse automatique de textes,"Masson, Paris, 1993.[Ta95] P. Tapanainen, \RXRC Finite-State Compiler," Technical Report MLTT-020, Rank Xerox Research Center, Meylan, France, 1995.

16

Appendix: The Constraint SolverIn the actual implementation, the �nite state control companion AFSC of a constraint-based automaton A acts as a transducer. Recall that the sequence of states of AFSCthat are visited in a successful run of AFSC, for input w1 : : : wk, say, represents a closedpath � of A which is a candidate path for w1 : : : wk, given the background dictionaryD. In our implementation, the output of AFSC is just the constraint set C� associatedwith � (De�nition 4.3). In order to check if w1 : : : wk is accepted on � it remains todecide solvability of C�. In this appendix we shall describe the treatment of C�.In the sequel, constraint sets C are described as triples (C=; Ca; Cc) where C=denotes the set of logical constraints (equations) of C, Ca denotes the assignmentconstraints of C and Cc denotes the coincidence constraints of C. Empty componentsare omitted.De�nition 6.1 A constraint set (C=; Ca) is an assignment table, if the following con-ditions are satis�ed:1. C= contains only equations x = t, where x is a variable and t is an arbitrary term,and equations t1 = t2, where t1 and t2 are non-variable terms. All left-hand sidesof equations in C= are distinct.2. C= does not have a cyclic subsystem, i.e., a subsystem of the form t1 = t2; : : : ; tn�1 =tn; tn = t1,3. a variable that occurs as a left-hand side of an equation in C= does not occur inCa and vice versa. A variable has at most one occurrence in Ca.De�nition 6.2 A constraint set (C=; Ca; Cc) is in solved form if (C=; Ca) is an assign-ment table and if the following conditions hold:4. each variable x occurring in Cc also occurs in Ca.5. whenever Cc contains a constraint T : x = y, then T is a subtype of the boxesBx; By, where x: Bx and y: By are the unique assignment constraint for x and yin Ca (compare 3, 4) respectively.6. (Ca; Cc) represents a consistent network.If conditions 1-5 are satis�ed and (Ca; Cc) is an arc-consistent network we say that(C=; Ca; Cc) is in arc solved form.We distinguish three types of variables in C: variables occurring in Ca are calledmorphological variables. The left-hand sides of the equations in C= are called dependentvariables, and the remaining variables of C (which can only occur in the right-handsides of the equations of C=) are called parameter variables.17

Theorem 6.3 Let C be a constraint system in solved form. Then there exists anassignment � that satis�es C.Proof. (Sketch) Since (Ca; Cc) represents a consistent net, we can choose an appropriatevalue vx for all morphological variables x such that all constraints in (Ca; Cc) aresatis�ed when we assign vx to x. Next, parameter variables are mapped to arbitrarym-trees. It remains to assign appropriate values to the dependent variables such thatthe equations in C= are satis�ed. We iterate the process where we replace the variablesoccurring in the right-hand sides of the equations in C= by their chosen values (formorphological variables and parameter variables) or by the right-hand sides of theirde�ning equations (for dependent variables). In�nite iteration of this process leads tom-trees on the right-hand sides. The limit equations can be considered as an assignmentof m-trees to dependent variables, and it is easily seen that the resulting assignmenton all variables of C represents a solution of C= and hence of C.Lemma 6.4 Let (C=; Ca; Cc) be a constraint system in arc solved form. If (Ca; Cc) issolvable, then also (C=; Ca; Cc) is solvable.We shall now describe a procedure that transfers a given constraint set C into anequivalent constraint set in arc solved form. The procedure may fail, indicating (typeinconsistencies or) unsolvability of C. With a straightforward modi�cation of the laststep we could turn this into a solved form procedure, which would yield a decisionprocedure for solvability. It is just for e�ciency reasons that we compute arc solvedforms.The representant of a term t with respect an assignment table (C=; Ca) is eithert itself if t does not occur as the left-hand side of an equation in C=, or it is therepresentant of t0 if C= contains an equation t = t0. Conditions 1 and 2 of De�nition 6.1ensure that each term has a unique representant. Note that, in general, subterms ofrepresentants are not themselves representants.Arc-Solved Form ProcedureThe input is a constraint set (Ca; C=; Cc) such that every variable occurring in CCalso occurs in Ca. The procedure has two phases. In the �rst phase, (Ca; C=) istransformed into an assignment table (C1a ; C1=) such that (Ca; C=) and (C1a ; C1=) havethe same solutions. As a side e�ect, new constraints may be added to Cc which meansthat we have may obtain an extension C1c of Cc. The process may also fail, indicatingunsolvability. In the second phase, (C1a ; C1=; C1c) is transformed into an equivalent arcsolved form. Again this step may fail.First Phase. Assume that we have reached a system (S=; Sa;Da;D=;Dc), startingfrom (;; ;; Ca; C=; Cc), such that (S=; Sa) is an assignment table. If both Da and D=are empty, then (C1a ; C1=; C1c) := (S=; Sa;Dc) is the output of phase 1. In the othercase,I. Let x: B 2 Da. We compute the representant t of x with respect to (S=; Sa).18

1. If t is a non-variable term, then we stop with failure (\box-term clash").2. If t := y is a morphological variable of (S=; Sa), let y: B0 2 Sa.(a) If B and B0 have distinct domain type, then we stop with failure.(b) If B and B0 have the same domain type, then we compute B00 := B \ B0.i. If B00 = ;, then we stop with failure.ii. If B00 6= ; we replace y: B0 in Sa by y: B00.3. If t = z is a variable, but not a morphological variable, then we add z: B to Sa.II. Assume now that Da = ; 6= D=. Let t1 = t2 2 D=. Both sides are replaced bytheir representants with respect to D=. Let t01 = t02 be the equation that is obtained.In the following cases, we stop with failure:4. If t01 and t02 are morphological variables of (S=; Sa), with boxes of distinct type,5. If t01 is a morphological variable and t02 is a non-variable term, or vice versa.6. If t01 and t02 are non-variable terms with distinct topmost function symbols,In the remaining case, we proceed as follows.7. If t01 and t02 are morphological variables of (S=; Sa), with boxes of the same typeT , then we add T : t01 = t02 to Dc.8. If t01 = y is a morphological variable and t02 = x is a variable, but not a morpho-logical variable, then we add x = y to S=.9. Similarly, if t02 = y is a morphological variable and t01 = x is a variable, but not amorphological variable, then we add x = y to S=.10. If t01 = x is a variable, but not a morphological variable, and t02 is a term, thenwe add x = t02 to S=.11. If t01 is a non-variable term and t02 = x is a variable, but not a morphologicalvariable, then we add x = t01 to S=.12. If t01 has the form f(r1; : : : ; rn) and t02 has the form f(s1; : : : ; sn), then we addthe equation f(r1; : : : ; rn) = f(s1; : : : ; sn) to S=, and we add the equations r1 =s1; : : : ; rn = sn to D=.Since new equations may be created during the �rst phase (see 12), termination isperhaps not obvious. But only subterms of input terms may occur in equations. Insituation 12, two di�erent subterms are identi�ed (i.e., they receive the same represen-tant) according to S=. Hence the number of di�erent subterms in the input systemputs a bound on the maximal number of applications of rule 12.19

Proposition 6.5 The �rst phase terminates. If (Ca; C=; CC) is solvable, the �rstphase does not fail. If (C1a; C1=; C1c) is the output, then (C1a ; C1=) is an assignmenttable.Second Phase. Let (C1a ; C1=; C1c) be the output of the �rst phase. We update eachcoincidence constraint of C1c , replacing each variable by its representant with respectto C1=. Let D1c denote the new set of constraints.I. For each T : x = y 2 D1c we consider the assignments x: Bx and y: By in C1a . If T isnot a subtype both of the type of Bx and By, then we stop with failure.II. If part I succeeds, we check arc-consistency of the network (C1a ; C1=;D1c), removingarc-inconsistent values in the domains (boxes) associated with morphological variables,as indicated in Section 2. This step may fail if an empty domain is found. In the othercase, we obtain the arc-consistent net (C2a ; C1c). Then (C2a ; C1=; C1c) is the output of thealgorithm.Theorem 6.6 If the arc solved form procedure fails for input C, then C is unsolvable.If the arc solved form procedure does not fail for input C, the output (C2a ; C1=; C1c) is inarc-solved form. If the net (C2a; C1c) is consistent, then C is solvable.

20

