Between Finite State and Prolog: Constraint-Based
Automata and Efficient Recognition of Phrases

Klaus U. Schulz and Thomasz Mikolajewski
CIS, University of Munich
Oettingenstr. 67, D-80538 Miinchen, Germany
e-mail: schulz/thomasz@cis.uni-muenchen.de

Abstract

This paper describes a new type of automaton that has been developed at
CIS Munich for efficient recognition of phrases in text files. The concept of a
constraint-based automaton is tailored to sets of phrases where grammaticality de-
pends on morphological agreement conditions. It incorporates features from three
sides: traditional finite state techniques, methods from constraint programming,
and some technology from modern large-scale electronic dictionaries. A miniature
programming language with a special purpose constraint solver, tokenizing routi-
nes for input text files, and with built-in access to large electronic dictionaries has
been built to support efficient implementation of constraint-based automata. In
this paper we describe the formal concept of a constraint based automaton. We
give the syntax of transition rules and explain the procedural behaviour. Additio-
nal information on background algorithms and on some details of the miniature
programiming language are also included. Some experimental results are descri-
bed that compare the performance of constraint based automata with Prolog and
illuminate the range of potential applications.

1 Introduction

In computational linguistics, efficient recognition of phrases is an important prerequisite
for many ambitious goals, such as, e.g., automated extraction of terminology , part of
speech desambiguation, and automated translation. If one wants to recognize a certain
well-defined set of phrases, the question comes up which type of computational device
should be optimal for this task. In many cases, finite state methods are appropriate and
favourable because of their efficiency ([GrP, Ta95, Sc96]). However, often one would
like to recognize sets of more complex phrases where correct resolution of grammatical
structure requires morphological analysis. As an example, consider the analysis of
german noun phrases.

e for a correct separation between two consecutive noun phrases (as in “der Konig
den Tieren”!) on the one hand and a single complex noun phrase (as in “der

! “the king to the animals”

.. .) . .
Konig der Tiere”=) on the other hand, case dependencies have to be taken into
account,

e for a correct analysis of relative clauses with extraposition (as in “die FuSballspieler
den Ball, die..”?) number information is required.

Similarly, morphological information is needed for correct resolution of verb-argument
structure and for other phenomena. As the impact of morphological information grows,
finite state techniques become more and more inappropriate. In principle, of course,
arbitrary agreement constraints can be encoded in the transitions of a finite state
automaton, as long as a finite number of morphological variants is considered only.
The following figure exemplifies this possibility, showing how to enforce agreement in
number of an adjective and a noun in a finite state automaton.

sing_adj . sing_noun

N

S

plur_adj plur_noun

However, if we want recognize a non-trivial subset, say, of all german noun phrases, then
the size of any finite state automaton necessarily exceeds a reasonable bound because
of the inevitable multiple duplication of transition rules that is caused by the large
number of morphological variants. This means that the design and implementation of
an appropriate finite state automaton is in practice an infeasible task.

In this situation, Prolog is a prominent alternative. In the example given above, we
may just introduce a variable for the number in order to enforce agreement.

adj(x) noun(x)

Still, one might ask if current Prolog systems offer an optimal solution. Definitely it
would be inappropriate to rely on the unification mechanisms. The reason is that the
morphological information that comes with a given input token after lexical analysis is
disjunctive in nature: from the background dictionary we typically obtain a finite set
of possible morphological values for a given word form. Since logical variables cannot
represent disjunctions, we would have make extensive use of the backtracking mecha-
nism in the recognition process, which leads to poor performance. Constraint-based
extensions of Prolog, such as PROLOG III [Col90] or ECL'PS® [EC95], offer much bet-
ter possibilities in this respect but their built-in constraints are of course not tuned to
control of morphological agreement conditions. Another point where the possibilities
offered by Prolog/CLP might be improved is the lexical look-up. Usually, the integra-
tion of dictionaries in CLP languages is made in an ad hoc way or based on traditional
data base techniques. However, lexical look-up in electronic dictionaries—where words

2“the king of the animals”
3“the soccers the ball, who...”.

are represented in a suitable way*—can be made much more efficient using transducer
techniques. Clearly such techniques should be integrated in any modern system for
recognition of phrases. Eventually it is an open question if the heavy machinery of a
fully fledged CLP language leads to a loss of efficiency if compared with more limited
concepts.

In this paper we describe the notion of a constraint-based automaton. The new con-
cept incorporates characteristic features both of finite state techniques and constraint
programming; on the implementation side, modern technology as it has been developed
in the context of large-scale electronic dictionaries has been integrated.

e From finite state automata we inherit the general structure of rules and determi-
nistic execution.

e A special constraint solver, based on arc-consisteny techniques ([Ma77]), facilita-
tes the control of morphological agreement conditions. An adequate treatment
of other linguistic concepts is supported through unification over rational trees

([Col84]).

e Efficient look-up methods, originally developed by the second author for the ger-
man CISLEX dictionary [GM94, Ma94], support direct access to large-scale elec-
tronic dictionaries of the DELA-type [C090, Si93].

A miniature programming language has been developed and implemented in C for sup-
porting efficient implementation of constraint-based automata. This language comes
with a special optimization. A built-in preprocessing step for constraint-based auto-
mata extracts a finite state model for deterministic control of the automaton. Phrase
recognition is then organized as a two phase process. In the first phase, lexical catego-
ries of input words are analyzed using the deterministic finite state control only. Once
an admissible sequence of categories has been found by this filtering process, the rele-
vant subsegment of the input is analyzed by the constraint-based automaton, envoking
now constraint-solving and unification.

In two respects, then, the concept of a constraint-based automaton lies between
finite state technology and Prolog/CLP. First, the syntactic form of transition rules
is more restricted than a program clause of a constraint logic program. Second, when
processing an input text file, classical finite state techniques are used as long as possible,
and the real power of unification and constraint solving is only envoked once a suitable
candidate sequence of input tokens has been found by the filtering process. The present
work builts up on earlier theoretical investigations on automata with built-in unification

[SGO5).

The paper has the following structure. In Section 2 we describe how morphological
information is treated in constraint-based automata. In Section 3 we specify the formal
syntax of states and transition rules. We describe the control of constraint-based auto-
mata, and the two phase recognition process. Section 4 provides a formal model for the
computation with constraint-based automata. Section 5 gives some empirical results

*E.g., using tries, lookup rates up to 13.000 words per seconds are reached on NeXT or Sun for the

CISLEX system [GMO94].

on the performance of constraint-based automata in our current implementation and
corresponding programs written in ECL'PS® Prolog. An appendix is added where the
constraint solver is described in detail.

2 Morphological variables and morphological constraints

In this section we explain which kind of constraints we use for constraint-based auto-
mata, and how we use them. Ignoring some peculiarities concerning the nature of cons-
traints, the following techniques are well-known in the area of constraint programming.
Nevertheless, a brief description seems inevitable if we want to explain the concept
of a constraint-based automaton. We start with some information on the background
dictionary.

Entries in electronic full form dictionaries for lexical categories like nouns, deter-
miners, adjectives, verbs etc. are typically equipped with morphological information.
This information stores which values of features like number, gender etc. can be asso-
ciated with a given inflected form of a word. In general it is not possible to specify the
set of possible values for each of the relevant features separately since there are many
interdependencies. For example, the german determiner “die” can have both values
plural and singular for number, in the singular case the gender is always femininum,
while in the plural case all three german genders are possible. For this reason the mor-
phological information that is attached to these entries has—modulo variants in the
style of representation—the form of a finite set of tuples, each tuple representing one
possible combination of values for a fixed sequence of features. E.g., the entry for the
german determiner “den” in the CISLEX dictionary [GM94, Ma94] has the form

den d.DET4:.dmFy:dmMy:dmNy:aeMy

Each of the four character sequences in bold-face represents one possible quadruple of
values for the features case, number, gender, declination-type, on the basis of an enco-
ding that is not relevant here. In the sequel, such a finite sequence of tuples will be
called a boz of morphological tuples, for simplicity. We shall always assume® that all
tuples of a given box have the same type, which means that their components represent
values for the same sequence of features.

In the syntax for a constraint-based automata, variables may be used to refer to
boxes of the form described above. These variables will be called morphological varia-
bles. When we use a constraint-based automaton for evaluating a given sequence of
input words, the lexical look-up will bind morphological variables to the boxes that are
associated with the input tokens in the dictionary. Once this instantiation has taken
place, morphological variables behave essentially in the same way as the “finite domain
variables” of modern CLP languages (e.g., [DS88]).

°In a few cases the morphological information that is attached to a given entry in the CISLEX
dictionary is not of a completely homogeneous form. For the sake of clarity we shall not comment on
this point which causes some additional technical difficulties in the actual handling of constraints.

In order to deal with grammatical agreement conditions, two types of constraints
for morphological variables can be used in a constraint-based automaton. Assignment
constraints have the form z: B where z is a morphological variable and B is box. Such
a constraints may be used to bind x explicitly to B, without any reference to the back-
ground dictionary. Coincidence constraints have the form T: © = y. Here = and y are
morphological variables and T is a sequence of features, such as, e.g., (gender, number).
A constraint (gender, number): x =y, for example, expresses that the correct values of
x and y must agree on gender and number. If new constraints are added, the assign-
ment of boxes to morphological variables may be changed dynamically. Before we
explain this mechanism we have to describe the global organization of constraints in
more detail.

In a constraint-based automaton, constraints are organized in a network. Such a
network can be represented in the form of a finite graph. Each vertice is labelled with
a pair xz: B where z is a morphological variable and B is a box which represents the
set of possible values for . The arcs of the graph are labelled with the coincidence
constraints between these variables. The following figure gives an example. C;_; stands
for the set of coincidence constraints between variables z; and ;.

A network of constraints

When lookin at the arcs of such a network one will often detect certain inconsistencies.
Assume, for example, that box B; in our network is {(sing, 1), (plur, 1), (plur, 2) }, that
Bs is {(sing, nominativ, 2), (plur, nominativ,3) } and that C]_» contains the constraint
(person): x1 = x2. The constraint expresses that the correct values for x; and s
respectively must have the same value for “person”. But then (sing, 1) cannot be the
correct value for z; since there is no entry in By where “person” has the value 1. For
the same reason, z; cannot have the value (plur,1), and z2 cannot have the value
(plur, nominativ, 3). Hence, by “firing” the constraint (person): z1 = x2 we will obtain
the new assignments x1: {(plur,2)} and zo: {(sing, nominativ,2)}.

With these new assigniments, the subnet including the two nodes for x; and x> and
the arc between these nodes is consistent in the following sense: for each selection of a
possible value v; for ©1 we may choose a possible value v9 for zo such that vy and v9
satisfy all constraints for z; and z2. A network of constraints is arc-consistent ([MaT77])
if each subnet with two nodes is consistent.

When we run a constraint-based automaton on a given sequence of input tokens, a

Ut

constraint solving mechanism is applied that maintains the arc-consistency of the net-
work of morphological constraints that are accumulated during the analysis. A special-
purpose constraint-solver for morphological constraints has been developed that remo-
ves inconsistencies in a given two-node subnet. In order to maintain arc-consistency
of the whole network we use the algorithm ACj3 from [Ma77]. This algorithm, well-
established in the constraint programming community, has worst-case complexity ed?
where e denotes the number of variables and d is the cardinality of the largest domain

(box) of a variable ([MF85]).

A net is called globally consistent if each selection of values ¥ for a subset & of the
set of all variables such that ¢ respects all constraints between variables in & can be
extended to a global selection of values for all variables such that all constraints in the
net are satisfied. It is wellknown that arc-consistency does not necessarily imply global
consistency. In particular it might be impossible in an arc-consistent net to choose
even one selection of values for the variables that respects all constraints, as can be
demonstrated with the following simple example.

(sing,1)
(plur,2)

<nUM>:x=y

<nNuM>:X=z <pers>y=z

(sing,2) (sing,2)
(plur,2) (plur,2)

Arc-consistency does not guarantee globally consistency

In general, NP-complete algorithms are needed to maintain global consistency in a
network. For this reason most systems in constraint programming are based on the
simpler notion of arc-consistency. In our practical work with constraint-based automata
we did not find any situation where an incounsistency on the morphological level was
not detected by the constraint-solver.

3 Syntax of Constraint-Based Automata

In this section we desribe the syntactic form of the states and transition rules of a
constraint-based automaton. We begin with a definition of boxes and constraints. For
the sake of transparency and generality we give generic definitions that do not depend
on the morphology of a particular language.

3.1 Boxes, constraints and terms

Definition 3.1 Let F be a finite set of features, assume that each feature f € F
comes with a set of possible values, Vy. A type is a non-empty sequence of distinct
features. Hence the set of types is finite. To each type T' = (f1,..., fr) we assign the

set By :=Vy, x ... X Vy, of possible values of type T'. A boz is a finite, non-empty set
B of possible values of the same type T. This type T is called the type of box B.

It should be noted that the features in F may also characterize semantic properties,
in principle. But the constraints that we introduce below are not tuned to semantic
information, for two simple reasons. Still, the amount of semantic information that
can be found in large-scale electronic dictionaries is rather limited. Furthermore, the
integration of general techniques for the treatment of semantic information would pre-
suppose that this kind of information is standardized at least in some way, and still it
is far from clear how such a standard should look like.

Definition 3.2 A morphological constraint is an expression of the form xz: BorT: x =y
where B is a box and T is a type. Constraints of the form z: B are called assignment
constraints, constraints of the form T': z =y are called coincidence constraints.

Morphological onstraints can be used to formulate conditions on morphological
agreement. In order to support the handling of other linguistic phenomena, such as,
e.g., extraposition, general long-distance dependencies, and computation of semantic
representation, the states of a constraint-based automaton are first-order terms like in
Prolog. Transitions will be based both on unification and on constraint solving.

Let ¥ be a first-order signature, i.e., a set of free function symbols’, all of fixed
arity, and let Var be a countably infinite set of variables.

Definition 3.3 The set of terms is the smallest set of expressions that is closed under
the following construction rules.

e Every variable and every constant a € X is a term.

o Ifty,.... ¢, are terms, and if f € 3 is an n-ary function symbol, then f(t;,...,,)
is a term.

Note that in the syntax of terms, no distinction is made between logical variables
and morphological variables. In practice, type checking is left to the unification and
constraint solving subprocedures.

Definition 3.4 A constraint is a morphological constraint or a locical constraint, i.e.,
an equality t| = to between terms. A constraint set is a finite set C' of constraints.
If C' denotes a constraint set, then C= (resp. C,,C.) denotes the set of all logical
(assignment, coincidence) constraints in C.

In our actual implementation, additional constraints of the form x: T may be used for the con-
venience of the user, where T is a type. Internally, these constraints are equivalent to assignment
constraints z: Br.

"The set I, the set of features, and the set of possible values of features are assumed to be disjoint.

3.2 States and Transition Rules

A constraint-based automaton has the surface structure of an ordinary finite state
automaton, which means that it has one start state, a finite number of final states,
and a finite number of transition rules between states. The “states” of a constraint-
based automaton, however, may be rather complex objects. We shall now specify the
syntactic form of the start state, the final state and transition rules. Two points will
be postponed for simplicity:

1. In practice, each state and each transition rule is equipped with some additional
information that is used to control execution of the automaton.

2. Constraint-based automata possibly have a finite number of subordinate constraint-
based automata, and there are special rules for calling subautomata.

Both the form of and the role of the control declaration, and the organization of sub-
automata will be explained below.

Start and final states of a constraint-based automaton are expressions of the form s, C
where s is a term and C' is a finite (possibly empty) set of morphological constraints.

o o, Cat‘(Xl,...,Xk>
Lexical transition rules have the form h —" " t,C where h, and t are terms, Cat

is a lexical category, x1,...,x; € Var, and C is a finite set of morphological constraints.

Empty transition rules have the form h — ¢,C where h, and t are terms, and C' is
a finite set of morphological constraints.

We generally assume that a background dictionary D is given with entries of the
form w : Cat(By, ..., By) where w is a (possibly inflected form of a) word, Cat is a

lexical category, and By, ..., By, is a sequence of boxes of distinct type.

Because the syntax does not take care of types, some caution is necessary when
writing the transition rules of a constraint-based automaton. For example, the eva-
luation of a coincidence constraint T': x = y will only succeed once both =z and y are
instantiated and bound to boxes of appropriate types T, and T, where T' is a subtype
of both types. The evaluation of an assignment constraint z: B will fail if z is bound
to a box B’ such that B and B’ have distinct type, or if is bound to a non-variable
term.

Control declarations and deterministic finite state control. Constrained-based
automata use a rigid control mechanism that makes it possible to execute the auto-
maton temporarily exactly like an ordinary deterministic finite state automaton. In
order to explain this control principle we have to describe now the full syntactic form
of states and transition. The start state, each of the final states and each transition
rule is labelled with a number m. In addition, start state and lexical transition rules
are equipped with a control declaration of the form
[Caty :ny, ..., Caty : ng]

where each Cat; denotes a lexical category and each n; is a number of a transition rules
or a final state (1 < i < k). The last entry may also be a plain number ny of a finite
state, in which case the declaration has the form [Caty : ny,..., Catg_q : np_1,ngl.

The naive idea of how to use this information is the following. Once the evaluation
of the present (state or) transition rule is finished, the machine will check if the next
input token is of category Caty, or Cato, etc. If (7 is the smallest number such that) the
next input token is of category Cat;, then the automaton will use rule number n; for
evaluating this input token.® If the last entry is a plain number ny,, then the automaton
will switch to the final state ng in all cases where the previous entries do not match. If
the last entry of the declaration has the “conditional” form Caty : ng, and if the next
input token fits none of the categories mentioned in the control declaration, then the
evaluation fails.

The real use of the information is more powerful. Given the numbers and control
declarations of a constraint-based automaton A we assign to A a finite state control
companion A, in the following way. The states of Ayqc are the (numbers of) rules
of A. Moreover, Arsc has a transition n 2 m iff the control declaration of rule n of
A has an entry Cat : m. A final entry nj in the control declaration of rule number m
is translated into an empty (vacuous, silent) transition m —5 ng to the final state ny,.

Example 3.5 The following five lines represent a constraint-based automaton A that
may be used for recognition of german noun phrases of the simple form det adj* noun.
The start state has number 1, the final state number 5. Letters g, k,n stand for the
features gender, case, number.

1. S [det : 2]

2. S (IL(J;) S(x) [adj: 3, noun : 4]
3. S(x) aL(‘y)) S(z) {{g,k.n): x =y} [adj: 3, noun: 4]
4. S(x) reunly) S(z) {{g,k,n): z =y} [5]

5. S(x)

On the basis of the companion Arsc, the search for correct phrases proceedes in two
steps. In the first phase, we only use Apse until a suitable candidate sequence of

8In our actual implementation, a decision to use rule n; for the next step of the evaluation is not
modified at a later point since no backtracking is used. In principle, this can lead to unwanted failure
since the wrong part-of speech category might be selected first for lexically ambigous input tokens. For
the analysis of german corpora this was not a problem.

input tokens wi ..., w; has been found. In the above example, every sequence of
words wy ..., wg_1,wy will be considered as a candidate where the dictionary D has a
determiner of the form wi, adjectives of the form ws,...,wi_1, and a noun of the form
wy. Once a candidate sequence wy ..., wg has been found, A will be used in the second
phase to process w ..., w; using constraint-solving and unification. Procedurally, the
transition rules of a constraint-based automaton A are treated like program clauses of
a CLP program, see Section 4 and the appendix for details. Note that it is only in this
second phase where morphological conditions are checked.

The advantage of the two phase recognition process is twofold. First, because of
the deterministic control no backtracking mechanism is needed.” Second. as long as
the automaton does not enter into the second phase, no renaming of transition rules is
necessary. This is one important contrast to Prolog, where each rule has to be renamed,
using a new set of variables, before it may be used in the derivation, and a good amount
of computation time is spent just for this task. With constraint-based automata, this
process starts only once we enter phase two.

Constraint-based automata with subautomata. In order to facilitate the design
of large constraint-based automata, we introduced a new type of transition rule for
calling a subautomaton. Each subautomaton has a unique finite state. Rules calling
a subautomaton have the form h (B:—S’)/) t,C where h,s, f, and t are terms, and C' is
a finite set of morphological constraints. B is the name of the subautomaton that is
called, and s and f are X-terms that can be unified with the start state and the final
state of B respectively. The idea behind these rules is the following. When B is called, s
and the (X-term of the) start state of B are unified. Since h and s may share variables,
it is possible to pass relevant information from h to the start state (term) of B through
unification. When the call to B is finished, unification of the final state (term) of B
with f may be used to lift information to the state (term) ¢.

Since we did not want to abandon the deterministic finite state control principle
and the two phase recognition process, the set of all subautomata of a constraint-based
automaton is organized in a strictly hierarchical, non-recursive way.

4 The formal model

In order to give a better picture of the evaluation with constrained based automata
we shall now introduce a formal model. First, we shall define what it means that an
automaton accepts a given input sequence. We shall then introduce a ground version
of a constraint-based automaton that comes with its own simple notion of acceptance.
It will be shown that both notions of acceptance coincide. To begin with, we have to
define the solution domain for constraints. Readers that are familiar with rational trees
can safely ignore the following definitions.

A position is a finite sequence (ni,...,ny) of natural numbers. A tree domain is
a set t of positions that is closed under prefixes and has the following property: if

?The price that has to be paid is that grammars have to be written in a rigid format.

10

(n1,...,ng)y € tand ng > 0, then (ny,...,np — 1) € t. A leaf of a tree domain t is a

maximal position, i.e., a position (ny,...,ng) such that ¢ does not have any element of
the form (ny,...,ng, ngr).

Definition 4.1 Let X be a signature, i.e., a set of function symbols. An m-tree over
Y is a pair (t, D) where t is a tree domain and D is a labelling function, i.e., a function
with domain ¢ such that for all 7 € ¢

1. D(m) is an n-ary element of X if has n > 0 successors,

2. D(m) is a constant of ¥ or a possible value of some type (Def. 3.1) if 7 is a leaf.

Subtrees are defined as usual. An m-tree is rational if it contains only a finite number
of distinct subtrees. With 7 we denote the set of all rational m-trees over the (fixed)
signature 2.

The set T of rational m-trees will be the solution domain for constraints. An
assignment is a mapping « : Var — 7. Each assignment will be identified with its
unique homomorphic extension to the set of all terms. We write t* for the image of
the term ¢ under the assignment .

Definition 4.2 An assignment « satisfies an assignment constraint «: B iff «® € B.
An assignment « satisfies a coincidence constraint T: x = y if @ and y® are boxes that
have the subtype T and if z” and y“ coincide on all features in 7. An assignment «
satisfies a logical constraint x = y if % = y“. An assignment « satisfies a constraint
set C if « satisfies each ¢ € C.

In order to simplify the discussion we shall restrict the following considerations to
constrained based automata with (start state, final states and) lexical transition rules
only. We shall also ignore matters of control. With more technical ballast, the formal
model can be lifted to automata with rules that call subautomata, and to rules with
control declaration.

In the sequel, let A denote a constrained based automaton, and let D denote a fixed
background dictionary.

Definition 4.3 A closed path of A is given by a sequence

™= (ZL'07 00)7 Rlv R 7Rk7 (h’]{'+1w Ck+1)

where ty, Cy is the start state of A, each R; is a transition rule h; o ti, C;
of A, for v+ = 1,...,k, and hjy1,Cry is a final state of A. In more detail, states
and transitions of 7 are assumed to be renamed in such a way that all members of 7
are variable-disjoint. The closed path 7 is a candidate path for the sequence of words
wi ... wg, given D, if D contains entries w; : Ca,ti(Bi, e ,Bfnl,), fore=1,... k.

11

Let m be a candidate path for w; ...w;. The constraint set assigned to = and
Wl ... W 18

k k+1 ko my . ‘
C, = U{ILL = hiy1} U U C; U U(U i B})
1=0 1=0 =1 j=1

If an assignment « satisfies C'z, then it unifies consecutive heads and tails of transi-
tion rules of m, it satisfies all morphological constraints occurring in 7 and it selects
morphological values for the words wy ... wy that are possible according to D.

Definition 4.4 The input sequence wy, ..., wy is accepted by (A, D) if A has a closed
path 7 that is a candidate path for wy, ..., wy, given D, such that the constraint set
C'; assigned to 7 has a solution.

Given D, each state and transition rule of A can be thaught of representing a
possibly infinite collection of ground states and transition rules in the following sense.

Definition 4.5 The set of admissible ground instances of a state ¢,C' is

{t* | a: Var - T,«a solves C} CT.

The set of admissible ground instances of a rule h Cat(xlifxm) t,C is the set of all
transition rules of the form h® — t* where the assignment « solves C' and where D
contains an entry w : Cat(By, ..., B,,) such that & € B;, fori =1,...,m.

Definition 4.6 The ground version Grp(A) of the constraint-based automaton A,
given D, contains all admissible ground instances of the start state and of the final
states of A, and of the transition rules of A. The instances of the start state of A are
the start states of Grp(A), the instances of the final states of A are the final states of

arp(A).

As we see in the example below, Grp(A) can be represented as a labelled directed graph
where vertices are rational m-trees, edges represent transitions that are triggered by
words (full forms) occurring in the dictionary D.

An admissible path of Grp(.A) is a sequence of transitions, with labels wy, ..., wg,
say, leading from a start state of Grp(A) to a final state.
Definition 4.7 The sequence wy,...,wy is licensed by Grp(A) iff Grp(A) has an

admissible path with labels wy, ..., wg.

Example 4.8 Let A be the automaton

1. s

9. 5 p((')7 x) {z: {(sing), (plur)}}
3. plz,y) BN p(s(z),y)

4 pla,y) " g {{n): y =)

5 f

12

with start s and final state f. Assume that D contains the entries one: det({sing)), two:
det({plur)), big: adj, car: noun((sing)), cars: noun({plur)). Then the following figure
represents Grp(A). States that cannot be reached from the start state s are omitted
for simplicity.

bi.g ng

p(s%(0) <sing>)
@sﬁ ng>)

big
p(s«»s@

p(0,<sing>) p(0,<plur>)

In this example, each sequence of the form “one (big)* car’ or “two (big)* cars” is
licensed by Grp(.A).

Theorem 4.9 A sequence of input tokens wy, ..., wy is licensed by Grp(A) iff wy, ..., wg
is accepted by (A, D).

Proof. Assume that wy, ..., wp is accepted by (A, D) on the closed path

7 = (to,Co), Ry, -, Ry, (Pgy1, Cry1)-

Since 7 is a candidate path for wq,...,w;, each R; is a transition rule of the form
Cati(xl X‘mi . i ;)

hi — ti, C; where D has entries w; : Cat;(Bj,..., B,,.), fori=1,... k. By
. pRe] " + .

assutnption, Cr has a solution . This implies that <%~ € Bj, for « = 1,..., %k and

7=1,...,m;. It follows that
h{ =L o hy e th

is an admissible path of Grp(A) since h{ = t{ (resp. t7 = h{) is a start (resp. final)
state of Grp(A) and since also e = h?;rl, for 2 = 1,...k — 1. Hence wi,...,wy is

licensed by Grp(.A).

Conversely, if wy,...,wy is licensed by Grp(A), let R?, . ,R? be an admissible
path of Grp(A) where the ground rule RY has the form A" L t, for i =1,....k.

@
Cat; (x ..l)

3o tmy

Here A has a corresponding rule R; of the form h; t;, C; where the assign-
. . o :
ment «; solves C; and where D has an entry w; : Cat;(Bj,..., B;,,) such that 2} € B,

13

fori=1,...,k and j = 1,...,m;. Moreover, if (ty,Cy) denotes the start state of A,
then there exists an assignment «q that satisfies Cp such that t5° = h{', and there
exists a final state (hpy1,Cry1) of A and an assignment i that satisfies Ciy1 such

that hfjﬁ = t;:’“. It follows that
™= (t07 00)7 Rlv R 7Rk7 (h’]{'+1w Ck+1)

is a candidate path for wy ...wy. Without loss of generality we may assume that start
state, final state, and transition rules are pairwise variable disjoint. Hence we may
assume that g = ... = @y =: . But then the assignment « satisfies the constraint
set C assigned to m and wy ... wy, given D, which shows that w1, ..., w; is accepted

by A. O

5 Preliminary empirical evaluation

In order to support the implementation of constraint-based automata, a miniature
programming language has been implemented in C. The source code contains ca. 8.000
lines. The language accepts as input Prolog-style transitions rules of the form given
above (rules may call a subautomaton). Given the program for a constraint-based
automaton, a built-in preprocessing step computes the finite state control companion
before evaluating the given text file.

The table given below summarizes the results of a preliminary empirical evaluation
where we compared the computation time for extracting all phrases of a particular
form from a text of 200kByte (16.500 words). The experiments run on a SUN Sparc
10, times are in seconds.

The six lines of the table describe independent experiments were we extracted a
particular set of phrases in each case. In the first experiment, we searched for an em-
pty category, in other words, for a simple non-existing phrase. The second line gives the
results where we extracted words that belong to a finite set of lexical categories. The

&

third line describes the time to extract all noun phrases of the simple form “determiner
followed by a finite sequence of adjectives followed by a noun”. The next experiments
used constraint-based automata with subautomata, the numbers in brackets give the
nesting degree. PP(1) (resp. PP(9)) stands for some automaton for recognizing prepo-
sitional phrases with one (resp. nine) level(s) of subordinate automata. NP(3) stands

for an automaton for noun phrases with three levels of subordinate automata.

The first column gives the times that were needed using a grammar with constraints
in ECL'PS® Prolog. One optimization has been built-in already here. Instead of using
a global dictionary with alle the words of the text (which would lead to much worse
results), each sentence is processed with a small dictionary that containts just all the
words of the sentence in order to make the lexical look-up more efficient. The times in
the first (second) column include (exclude) the computation of the local dictionaries.
The third and fourth column give the processing times using constraint-based automata,
counting (column 3) or disregarding (column 4) the time for printing correct phrases
on the screen. The last two columns compare the times of columns 1 and 3 respectively
columns 2 and 4.

14

1. ECL'PS® H 2. ECL'PS® | 3. Constraint-B. 4. CBA ‘ 1:3 ‘ 2:4

PROLOG - temp. dict. Automaton - print time
Empty Cat. 775 28 1 1 775 | 30
Particle 780 31 5 3 150 10
det adj* n 330 33 27 17 30 5
PP(1) 815 68 10 7 80 10
NP(3) 890 140 17 10 50 14
PP(.()) 990 240 16 14 60 17

6 Conclusion

We have introduced the concept of a constraint-based automaton. With this new
notion, recognition of phrases is based on some form of computation that lies between
finite state techniques and logic programming with constraints. Our aim was to create a
tool for efficient recognition of phrases, supporting control of morphological agreement
conditions. First evaluation results indicate that in fact a reasonable gain in efficiency
could be obtained if compared with CLP implementations. In our actual work, we see
various further possibilities for optimization, both on the conceptual level and on the
level of the implementation. To some extend, the possible optimizations depend on the
structure of phrases that we want to extract. Empirically, the extraction of “short”
noun phrases in german corpora shows that there are some characteristic sequences of
boxes such that most of the correct phrases come with one of these sequences. If we use
a variant of the dictionary where boxes are replaced by numbers, and if we encode these
characteristic sequences as sequences of numbers, then it is possible to “built-in” these
sequences and to avoid constraint solving in most of the cases. On the implementation
side, the internal renaming (copying) of rules which is actually necessary during phase
two—can probably be reduced to a minimum, since in general each rule is only used
a restricted number of times (typically once, or twice) during the analysis of a given
sequence of input tokens.

References

[Col84] A. Colmerauer, “Equations and inequations on finite and infinite trees,” in:
Proc. 2nd Int. Conf. on Fifth Generation Computer Systems, 1984, pp. 85-99.

[Col90] A. Colmerauer, “An introduction to PROLOG III,” C. ACM 33, 1990, pp.69—
90.

[Co90] B. Coutois, “Un systeme de dictionaires eélectroniques pour les mots simples
du francais.” in Language Francais 78, 1990.

[DS88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, “The Constraint
Logic Programming Language CHIP.” in Proc. of the 2nd International Con-
ference on Fifth Generation Computer Systems, 1988, pp. 249-264.

[EC95] “ECL'PS¢ 3.5 User Manual”, ECRC Munich, 1995.

[GrP] M. Gross, D. Perrin (Eds.), “Electronic Dictionaries and Automata in Com-
putational Linguistics,” Springer LNCS 377, 1989.

[GM94]

[Ma77]

[MF85]

[Ma94]

[Sc96]

[SGO5)

[Si93]

[Ta95]

F. Guenthner and P. Maier: Uberblick zum CISLEX-Woérterbuch-System,
CIS-Bericht, 1994, Lexikographica, to appear.

A K. Mackworth, “Consistency in Networks of Relations,” Al Journal 8 (1),
1977, pp. 99-118.

A.K. Mackworth, E.C. Freuder, “The Complexity of some Polynomial Net-
work Consistency Algorithms for Constraint Satisfaction Problems,” Artifi-
cral Intelligence 25, 1985, pp. 65-74.

P. Maier: Lexikon und Lemmatisierung, CIS-Bericht-95-84.

A. Schiller, “Multilingual Finite-State Noun Phrase Extraction,” In: Procee-
dings of the ECAI 96 Workshop “Extended Finite State Models of Language”,
A. Kornai (Ed.), pp. 65-69.

K.U. Schulz, D.M. Gabbay, “Logic Finite Automata,” In: Applied Logic:
How, What and Why, L. Pélos, M. Masuch (Eds.), Kluwer Academic Publis-
hers, 1995, pp. 237-285.

M. Silberztein, “Dictionaires électroniques et analyse automatique de textes,”
Masson, Paris, 1993.

P. Tapanainen, “RXRC Finite-State Compiler,” Technical Report MLTT-
020, Rank Xerox Research Center, Meylan, France, 1995.

16

Appendix: The Constraint Solver

In the actual implementation, the finite state control companion Apse of a constraint-
based automaton A acts as a transducer. Recall that the sequence of states of Apgc
that are visited in a successful run of Apgc, for input wi ... wy, say, represents a closed
path 7 of A which is a candidate path for wi ...wy, given the background dictionary
D. In our implementation, the output of Aps is just the constraint set C associated
with 7 (Definition 4.3). In order to check if wi...wy is accepted on 7 it remains to
decide solvability of C';. In this appendix we shall describe the treatment of C.

In the sequel, constraint sets C' are described as triples (C=,C,,C.) where C—
denotes the set of logical constraints (equations) of C', C, denotes the assignment
constraints of C' and C. denotes the coincidence constraints of C'. Empty components
are omitted.

Definition 6.1 A constraint set (C=,C,) is an assignment table, if the following con-
ditions are satisfied:

1. C= contains only equations x = t, where x is a variable and t is an arbitrary term,
and equations t; = t9, where £ and 9 are non-variable terms. All left-hand sides
of equations in C_ are distinct.

2. C— does not have a cyclic subsystem, i.e., a subsystem of the form ¢; = #»,...,t,_1 =

tn,tn =11,
3. a variable that occurs as a left-hand side of an equation in C_ does not occur in

(', and vice versa. A variable has at most one occurrence in C,.

Definition 6.2 A constraint set (C=, Cy, C;) is in solved form if (C=, C,) is an assign-
ment table and if the following conditions hold:

4. each variable z occurring in C' also occurs in Cj.

5. whenever C. contains a constraint T: x =y, then 7T is a subtype of the boxes
B,, By, where z: B, and y: B, are the unique assignment constraint for z and y
in C, (compare 3, 4) respectively.

6. (C4,C.) represents a consistent network.

If conditions 1-5 are satisfied and (Cy, () is an arc-consistent network we say that

(C=,Cq, C.) is in arc solved form.

We distinguish three types of variables in C': variables occurring in C, are called
morphological variables. The left-hand sides of the equations in C= are called dependent
variables, and the remaining variables of C' (which can only occur in the right-hand
sides of the equations of C_) are called parameter variables.

17

Theorem 6.3 Let C' be a constraint system in solved form. Then there exists an
assignment « that satisfies C.

Proof. (Sketch) Since (C,, C.) represents a consistent net, we can choose an appropriate
value v, for all morphological variables x such that all constraints in (Cy,C.) are
satisfied when we assign v, to x. Next, parameter variables are mapped to arbitrary
m-trees. It remains to assign appropriate values to the dependent variables such that
the equations in C_ are satisfied. We iterate the process where we replace the variables
occurring in the right-hand sides of the equations in C= by their chosen values (for
morphological variables and parameter variables) or by the right-hand sides of their
defining equations (for dependent variables). Infinite iteration of this process leads to
m-trees on the right-hand sides. The limit equations can be considered as an assignment
of m-trees to dependent variables, and it is easily seen that the resulting assignment
on all variables of C' represents a solution of C— and hence of C. O

Lemma 6.4 Let (C—,C,,C.) be a constraint system in arc solved form. If (C,, C,) is
solvable, then also (C=,Cy,C.) is solvable.

We shall now describe a procedure that transfers a given constraint set C' into an
equivalent constraint set in arc solved form. The procedure may fail, indicating (type
inconsistencies or) unsolvability of C. With a straightforward modification of the last
step we could turn this into a solved form procedure, which would yield a decision
procedure for solvability. It is just for efficiency reasons that we compute arc solved
forms.

The representant of a term t with respect an assignment table (C=,C,) is either
t itself if ¢ does not occur as the left-hand side of an equation in C_, or it is the
representant of ' if C— contains an equation £ = #'. Conditions 1 and 2 of Definition 6.1
ensure that each term has a unique representant. Note that, in general, subterms of
representants are not themselves representants.

Arc-Solved Form Procedure

The input is a constraint set (Cy, C=,C.) such that every variable occurring in C¢
also occurs in C,. The procedure has two phases. In the first phase, (C,,C=) is
transformed into an assignment table (C!, CL) such that (C,,C=) and (C}, CL) have
the same solutions. As a side effect, new constraints may be added to C. which means
that we have may obtain an extension C! of C.. The process may also fail, indicating
unsolvability. In the second phase, (C!,CL, C!) is transformed into an equivalent arc
solved form. Again this step may fail.

First Phase. Assume that we have reached a system (S=, S, Dy, D=, D..), starting
from (0,0,C,,C=,C.), such that (S=,S,) is an assignment table. If both D, and D-
are empty, then (C!,CL,Cl) := (S_,S,,D.) is the output of phase 1. In the other
case,

I. Let z: B € D,. We compute the representant ¢ of z with respect to (S=,S,).

18

1. If t is a non-variable term, then we stop with failure (“box-term clash™).
2. If ¢t := y is a morphological variable of (S—,S,), let y: B’ € S,.
(a) If B and B’ have distinct domain type, then we stop with failure.

(b) If B and B’ have the same domain type, then we compute B” := BN B'.

i. If B” = (), then we stop with failure.

ii. If B” # () we replace y: B'in S, by y: B”.
3. If ¢ = 2z is a variable, but not a morphological variable, then we add z: B to S,.
II. Assume now that D, = 0 # D—. Let t; = to» € D—. Both sides are replaced by

their representants with respect to D—. Let #| = #, be the equation that is obtained.
In the following cases, we stop with failure:

4. If ¢} and #}, are morphological variables of (S=, S,), with boxes of distinct type,
5. If ¢} is a morphological variable and t} is a non-variable term, or vice versa.

6. If ¢} and ¢, are non-variable terms with distinct topmost function symbols,
In the remaining case, we proceed as follows.

7. If ¢} and #,, are morphological variables of (S=, S,), with boxes of the same type
T, then we add T': t| =t} to D..

8. If ¢} = y is a morphological variable and t,, = x is a variable, but not a morpho-
logical variable, then we add =z = y to S=.

9. Similarly, if #, = y is a morphological variable and | = z is a variable, but not a
morphological variable, then we add = =y to S=.

10. If ¢} = =z is a variable, but not a morphological variable, and t, is a term, then
we add = = t}, to S_.

11. If ¢} is a non-variable term and #, = z is a variable, but not a morphological
variable, then we add = =t} to S—.

12. If ¢} has the form f(r1,...,r,) and t) has the form f(sy,...,sy), then we add
the equation f(ry,...,r,) = f(s1,...,8,) to S—, and we add the equations r| =
Sl,... Ty = S, to D—.

Since new equations may be created during the first phase (see 12), termination is
perhaps not obvious. But only subterms of input terms may occur in equations. In
situation 12, two different subterms are identified (i.e., they receive the same represen-
tant) according to S—. Hence the number of different subterms in the input system
puts a bound on the maximal number of applications of rule 12.

19

Proposition 6.5 The first phase terminates. If (Cq,C—,C¢q) is solvable, the first
phase does not fail. If (C!,CL,C') is the output, then (C!,CL) is an assignment
table.

Second Phase. Let (C!,CL, C!) be the output of the first phase. We update each
coincidence constraint of C!, replacing each variable by its representant with respect
to CL. Let D! denote the new set of constraints.

I. For each T: = =y € D! we consider the assignments z: B, and y: B, in CL If T is
not a subtype both of the type of B, and B, then we stop with failure.

I1. If part I succeeds, we check arc-consistency of the network (C},CL, D!), removing
arc-inconsistent values in the domains (boxes) associated with morphological variables,
as indicated in Section 2. This step may fail if an empty domain is found. In the other
case, we obtain the arc-consistent net (C2,C}). Then (C2,CL,C}) is the output of the
algorithm.

Theorem 6.6 If the arc solved form procedure fails for input C', then C' is unsolvable.
If the arc solved form procedure does not fail for input C, the output (C2,CL, CL) is in
arc-solved form. If the net (C’g, C'Cl) 15 consistent, then C s solvable.

20

