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1 PrefaceEquational uni�cation is a generalization of syntactic uni�cation in which se-mantic properties of function symbols are taken into account. For example,assume that the function symbol \+" is known to be commutative. Given theuni�cation problem x+ y := a+ b (where x and y are variables, and a and b areconstants), an algorithm for syntactic uni�cation would return the substitutionfx 7! a; y 7! bg as the only (and most general) uni�er: to make x+ y and a+ bsyntactically equal, one must replace the variable x by a and y by b. However,commutativity of \+" implies that fx 7! b; y 7! bg also is a uni�er in the sensethat the terms obtained by its application, namely b + a and a + b, are equalmodulo commutativity of \+". More generally, equational uni�cation is con-cerned with the problem of how to make terms equal modulo a given equationaltheory, which speci�es semantic properties of the function symbols that occurin the terms to be uni�ed.In this chapter, we �rst motivate equational uni�cation by its applicationsin theorem proving and term rewriting. In addition to applications that requirethe computation of uni�ers, we will also mention constraint-based approaches,in which only solvability of uni�cation problems (i.e., the existence of uni�ers)must be tested. Then we extend the de�nitions known from syntactic uni�ca-tion (such as most general uni�er) to the case of equational uni�cation. It turnsout that, for equational uni�cation, one must be more careful when introducingthese notions. In the third section, we will mention some uni�cation results forspeci�c equational theories. In the fourth, and central, section of this chapter,�This work is a preliminary version of the chapter on uni�cation theory in a volume onautomated deduction produced by the participants of the nationwide German research pro-gramme on automated deduction (SSP \Deduktion"). It was supported by a DFG grant (SSP\Deduktion") and by the EC Working Group CCL II.1



we treat the important problem of how to combine uni�cation algorithms. Thisproblem occurs, for example, if we have a uni�cation algorithm that can treatthe commutative symbol \+" and another algorithm that can treat the asso-ciative symbol "�", and we want to unify terms that contain both symbols. InSection 6, we will reconsider uni�cation from a more logical and algebraic pointof view. This will yield an interesting logical characterization of the theoriesto which the combination approach introduced in the previous section applies.Finally, we conclude with a short section in which other interesting topics inthe �eld of equational uni�cation are mentioned, which could not be treated inmore detail in this chapter.2 MotivationIt is a well-known phenomenon that general purpose methods that can treat awide range of problems are usually less e�cient on a speci�c problem than spe-cial purpose methods designed for solving this very problem. The integration ofsuch special purpose methods into general purpose approaches thus combinesthe advantages of the general purpose method (such as 
exibility and wideapplicability) with the advantages of the special purpose method (such as e�-ciency). An instance of this phenomenon can be observed in automated deduc-tion, where general purpose theorem provers are known to go astray when facedwith equational axioms that specify simple \semantic" properties of functionsymbols, such as associativity or commutativity. Already in 1967 J.A. Robin-son [53] proposed that substantial progress (\a new plateau") could be achievedby removing these troublesome axioms from the data base, and building themdirectly into the inference rules of the deductive machinery. One way of achiev-ing this goal was proposed by G. Plotkin in his pioneering paper [50]. He showedthat (under certain assumptions) equational axioms can be removed from theset of input clauses of a resolution-based theorem prover if the usual syntactic(Robinson-style) uni�cation is replaced by equational uni�cation. Plotkin's ap-proach of building-in equational theories is thus only applicable if there existspecial purpose uni�cation algorithms for equational theories that axiomatizecommon semantic properties of function symbols. In the area of equationaluni�cation, such theories have been thoroughly studied, and this has lead toan impressive collection of results on and e�cient algorithms for uni�cation inequational theories (see Section 4 for some examples).The usefulness of equational uni�cation has independently been discoveredin the area of term rewriting, where certain equational axioms like commuta-tivity cause problems because they cannot be oriented into terminating rewriterules. Rewriting modulo equational theories [49, 36] takes such problematic ax-ioms completely out of the rewriting process: in principle, these axioms generatea congruence relation on terms, and rewriting is performed modulo this congru-ence. Consequently, in the computation of critical pairs during Knuth-Bendixcompletion, syntactic uni�cation must be replaced by uni�cation modulo thiscongruence, that is, equational uni�cation.2



The traditional applications of syntactic uni�cation in term rewriting andresolution-based theorem proving depend on an algorithm that computes a mostgeneral (syntactic) uni�er of the terms to be uni�ed. In Plotkin's approach andin Knuth-Bendix completion modulo equational theories, the rôle of the mostgeneral uni�er is taken on by a complete sets of uni�ers, that is, a set of uni�ersthat \represents" all solutions of the uni�cation problem (see Section 3 for aformal de�nition). Unfortunately, such complete sets may become very largeor even in�nite. In the context of term rewriting, this may lead to a hugeor even in�nite number of critical pairs and possibly new rules, and in thetheorem proving application it may lead to a combinatorial explosion of thesearch space or even an in�nitely branching search space. It should be noted,however, that this may still be more e�cient than \blindly" searching for allsolutions of the uni�cation problem with a general purpose theorem prover,and more promising than terminating the Knuth-Bendix completion procedureunsuccessfully because a non-orientable equational axiom was encountered.Constraint-based approaches to automated deduction and term rewriting[15, 47, 41] require decision procedure for equational uni�cation, that is, algo-rithms that decide whether a given equational uni�cation problem is solvableor not. To be more precise, these approaches avoid the problems caused bylarge complete sets of uni�ers since equational uni�cation is no longer used asa mechanism for generating instantiations of variables (by applying the com-puted uni�ers), but rather as a �lter that prohibits instantiations that do notsatisfy the (uni�cation) constraints. In each step of the deductive process, con-straints are added that describe under which conditions the step is possible.No additional branching of the search space is introduced this way. At suitablepoints in the deductive process, the accumulated constraints are tested for solv-ability, to �nd out whether there are still admissible instances. For uni�cationconstraints, this test can be realized with the help of a decision procedure forequational uni�cation.3 Basic notionsAn equational theory over the signature � is de�ned by a set E of identitiesbetween �-terms, i.e., a subset of T (�; V ) � T (�; V ), where V is a countablyin�nite set of variables. From a logical point of view, such an identity is auniversally quanti�ed equational axiom. With =E we denote the equationaltheory de�ned by E, that is, the least congruence relation on T (�; V ) that isclosed under substitution and contains E. T (�; V )==E denotes the quotientterm algebra modulo =E, which is the free algebra with generators V in theclass of all models of E. In the following, we will usually forget about the formaldistinction between an equational theory =E and its de�ning set of identitiesE, i.e., we will also call E an equational theory. An equational theory E isnon-trivial i� x 6=E y for distinct variables x; y 2 V . It is easy to see that thisis equivalent to saying that E has a model of cardinality greater than 1.3



Example 3.1 Let � = ffg for the binary function symbol f . The theory Af :=ff(f(x; y); z) = f(x; f(y; z))g expresses associativity of f , Cf := ff(x; y) =f(y; x)g expresses commutativity of f , and ACf := Af [Cf states that f mustbe associative and commutative. From a logical point of view, Af correspondsto the formula 8x:8y:8z:f(f(x; y); z) = f(x; f(y; z)). The class of all models ofAf is the class of all semigroups. For a set of variables V , the quotient termalgebra T (�; V )==Af is isomorphic to V +, the free semigroup with generatorsV , which consists of all words over the alphabet V and interprets the functionsymbol f as concatenation of words.If the function symbol f is clear from the context or irrelevant, then thesetheories will be denoted A, C, and AC.In equational uni�cation, as in the case of the usual (Robinson-style) syn-tactic uni�cation, to \unify" terms means to make them equal by applying asuitable substitution. Instead of using syntactic equality, equational uni�cationemploys equality modulo a given equational theory E. Syntactic uni�cationcan be obtained as a special case if one takes the empty set of identities, whichhas syntactic equality of terms as its equational theory, i.e., s =; t i� s = t.De�nition 3.2 Let � be a signature and E be an equational theory over �. AnE-uni�cation problem over � is a �nite set of equations between �-terms, thatis, a set of the form � := fs1 := t1; : : : ; sn := tng where s1; : : : ; tn 2 T (�; V ).The �-substitution � is an E-uni�er (or solution) of � i� si� =E ti� holds forall i; 1 � i � n. The set of all E-uni�ers of � is denoted by U�E (�).For example, let � = fa; b; fg, where a; b are nullary function symbols (i.e., con-stant symbols) and f is a binary function symbol. The Cf -uni�cation problem� := ff(x; y) := f(a; b)g has two Cf -uni�ers:fx 7! a; y 7! bg and fx 7! b; y 7! ag:If we consider � as an ;-uni�cation problem, then only the �rst of these twosubstitutions is an ;-uni�er (i.e., syntactic uni�er).For a given E-uni�cation problem over �, the signature � determines whichfunction symbols may occur in the terms to be uni�ed and in the uni�ers.The above example shows that � may be larger than sig(E), the set of allfunction symbols that occur in an identity of E: considered as a Cf -uni�cationproblem, � contains the additional constant symbols a; b, and considered asan ;-uni�cation problem, � also contains an additional binary function symbol.These additional symbols are called free symbols since their interpretation is notconstrained by the equational theory. The next de�nition classi�es uni�cationproblems according to which symbols may be contained in � n sig(E).De�nition 3.3 Let � be a signature, and let E be an equational theory and �an E-uni�cation problem over �. 4



1. � is called an elementary E-uni�cation problem i� � n sig(E) = ;.2. � is called an E-uni�cation problem with constants i� �n sig(E) containsonly constant symbols.3. � is always a general E-uni�cation problem, i.e., for general E-uni�cationproblems, � n sig(E) may contain function symbols of arbitrary arity.For syntactic uni�cation, we have E = ;, and thus there are no elementaryuni�cation problems, and uni�cation problems with constants are rather trivial.Thus, only general uni�cation problems are of interest.1 For other equationaltheories E, all three types of uni�cation may be of interest, and they may leadto di�erent results:� There exists an equational theory for which elementary uni�cation is de-cidable, but uni�cation with constants is undecidable (see [14]).� From the development of the �rst algorithm for AC-uni�cation with con-stants [61, 45], it took almost a decade until the termination of an algo-rithm for general AC-uni�cation was shown [24, 25].Thus, it is usually important to specify, for which type of uni�cation a par-ticular result holds, and to �nd out which kind of uni�cation problems occurin an application. In the applications in term rewriting and theorem provingmentioned above, one usually obtains general E-uni�cation problems. The nextexample demonstrates this for the case of building-in equational theories intoresolution-based theorem provers.Example 3.4 When talking about Af -uni�cation, one may �rst think of uni-fying modulo Af terms built by using just the symbol f and variables, orequivalently, of unifying words over the alphabet V of all variables. However,suppose that a resolution-based theorem prover|which has built-in the theoryAf|receives the formula9x: (8y:f(x; y) = y ^ 8y:9z:f(z; y) = x)as an axiom. In a �rst step, this formula must be Skolemized, i.e., the existentialquanti�ers have to be replaced by new function symbols. In our example, weneed a nullary symbol e and a unary symbol i in the Skolemized form8y:f(e; y) = y ^ 8y:f(i(y); y) = eof the axiom. Hence, even if we start with formulae containing only terms builtover f , the theorem prover eventually has to handle terms containing additionalfree symbols.1Sometimes it is more convenient to represent a syntactic uni�cation problem � as an ele-mentary uni�cation problem with respect to the \free theory" that is de�ned by the \dummy"identities f(x1; : : : ; xn) = f(x1; : : : ; xn) for all function symbols f occurring in �.5



For many interesting equational theories (such as the theory AC), designingan algorithm for uni�cation with constants is a lot easier than directly comingup with an algorithm for the general case. Hence, the question arises whetherthere is a general method that allows to \lift" an algorithm for E-uni�cationwith constants to an algorithm for general E-uni�cation. It turns out that thisis a special case of the more general problem of how to combine uni�cationalgorithms for equational theories over disjoint signature, to which we devotethe central section of this chapter (see Section 5).Complete sets of E-uni�ersFor a given E-uni�cation problem � over �, the set of all E-uni�ers is usuallyin�nite. For syntactic uni�cation, the most general uni�er � of � yields a com-pact representation of U�; (�) since all uni�ers can be obtained as instances of �.For arbitrary equational theories, a single uni�er is often not su�cient to repre-sent the set of all uni�ers: the rôle of the most general uni�er is taken on by thecomplete set of uni�ers. Before we can de�ne this notion, we must make precisewhat kind of instantiation relation is used in the case of E-uni�cation. Theinstantiation preorder �WE , which is parameterized by a �nite set of variablesW , is de�ned as follows:� �WE � i� there exists a substitution � such that x� =E x��for all variables x 2W .If � �WE � then � is called an E-instance of � on W , and � is said to be moregeneral than � onW . Obviously, if � is an E-uni�er of �, and � is an E-instanceof � on the set of variables occurring in �, then � is also an E-uni�er of �.De�nition 3.5 Let � be an E-uni�cation problem over �. A complete set ofE-uni�ers of � is a set cU�E (�) that satis�es the following conditions:1. each � 2 cU�E (�) is an E-uni�er of �, and2. for all � 2 U�E (�) there exists � 2 cU�E (�) such that � �WE �, where W isthe set of variables occurring in �.For reasons of e�ciency, such a complete set should be as small as possible.For example, in term rewriting modulo equational theories each element of thecomplete set leads to a critical pair, which must be tested for con
uence andmay lead to a new rule, and in resolution-based theorem proving each element ofthe complete set opens a new branch of the search tree. Thus, one is interestedin minimal complete sets �U�E (�) of E-uni�ers of �, that is, complete setssatisfying the additional condition3. For all �; � 2 �UE(�), � �WE � implies � = �.6



If �U�E (�) = f�g has cardinality 1, then the element � of this set is called amost general E-uni�er of �.Example 3.6 Consider the Af -uni�cation problem with constants� := ff(x; a) := f(a; x)g:For n � 1, let �n be a substitution that maps x to the term f(a; : : : f(a; a) : : :)having n occurrences of the free constant a. Each substitution �n solves �modulo Af , and each Af -uni�er of � is equal modulo Af to a substitution �nfor some n � 1. It follows that f�n j n = 1; 2; : : :g is a complete set of Af -uni�ers of �. Since the terms x�n are ground terms, and since x�n 6=Af x�mfor n 6= m, it is easy to see that the set f�n j n = 1; 2; : : :g is minimal as well.A minimal complete set of E-uni�ers may not always exist, but if it does thenit is unique up to the equivalence relation �WE induced by the preorder �WE (see[26]): � �WE � i� � �WE � ^ � �WE �For this reason, the uni�cation type of an equational theory E can be de�nedwith respect to the cardinality and existence of minimal complete sets. Moreprecisely, an equational theory has three di�erent kinds of uni�cation types,depending on which type of uni�cation problems are considered. The de�ni-tion below is formulated for elementary uni�cation. The uni�cation types foruni�cation with constants (general uni�cation) are obtained by replacing \el-ementary E-uni�cation problem" by \E-uni�cation problem with constants"(\general E-uni�cation problem").Elementary uni�cation type 1 (unitary):A minimal complete set �UE(�) exists for all elementary E-uni�cationproblems �, and it always has cardinality � 1.Elementary uni�cation type ! (�nitary):A minimal complete set �UE(�) exists for all elementary E-uni�cationproblems �, and it is always �nite.Elementary uni�cation type 1 (in�nitary):A minimal complete set �UE(�) exists for all elementary E-uni�cationproblems �, and there exists at least one elementary E-uni�cation prob-lem for which this set is in�nite.Elementary uni�cation type 0 (zero):There exists at least one elementary E-uni�cation problem � that doesnot have a minimal complete set of E-uni�ers.Examples 3.7 We give an example for each uni�cation type:� The empty theory ; is unitary (for general uni�cation) since every solvableuni�cation problem has a most general syntactic uni�er, which yields aminimal complete set of cardinality 1 (see [52]). Unsolvable uni�cationproblems always have the empty set as minimal complete set of uni�ers.7



� Commutativity Cf is �nitary for all three kinds of uni�cation (see, e.g.,[59]). The problem ff(x; y) := f(a; b)g is an example of a Cf -uni�cationproblem with constants that has a minimal complete set of Cf -uni�ers ofcardinality > 1.� Plotkin [50] has shown that a general Af -uni�cation problem always hasa minimal complete set of Af -uni�ers, and he described an algorithm thatenumerates such a set (see Section 4 below). Example 3.6 shows that suchsets may already be in�nite for Af -uni�cation with constants, and one canshow that even the elementary Af uni�cation problem ff(x; y) := f(y; x)ghas an in�nite minimal complete set of Af -uni�ers.2� The theory AIf := Af [ ff(x; x) = xg of idempotent semigroups is oftype zero. This was shown in [54] for uni�cation with constants, andin [1] for elementary uni�cation: the elementary AIf -uni�cation problemff(x; f(y; x)) := f(x; f(z; x))g does not have a minimal complete set ofAIf -uni�ers.For these examples, the uni�cation type does not depended on which kind ofuni�cation (elementary, general, or with constants) is considered. In general,however, they may lead to di�erent uni�cation types. For example, there existtheories that are unitary with respect to elementary uni�cation, but only �ni-tary with respect to uni�cation with constants. One such example is the theoryof Abelian monoids, i.e., AC1 := ACf [ ff(1; x) = xg, where 1 is a constantsymbol (see, e.g., [30]).Readers that are more familiar with syntactic uni�cation may have won-dered why our de�nition of complete and minimal complete sets of uni�ersdi�ers from the usual de�nition of most general uni�ers for syntactic uni�ca-tion in that the instantiation preorder �WE is restricted to the set W of allvariables occurring in the uni�cation problem. If we changed the de�nition ofminimal complete sets of uni�ers such that substitutions are compared on allvariables, then we would obtain di�erent uni�cation types. For example, thetheory AC1 would no longer be unitary for elementary uni�cation [2]. Sincethe restricted instantiation preorder is su�cient for the above mentioned appli-cations of E-uni�cation, there is no reason for using an instantiation preorderthat yields worse uni�cation types.Another di�erence to the usual presentation of syntactic uni�cation is thatour uni�cation problems consist of sets of equations rather than of one sin-gle equation. For general E-uni�cation, there is no di�erence between solv-ing a system of equations or a single equation: the E-uni�cation problem� := fs1 := t1; : : : ; sn := tng can be encoded in the general E-uni�cation problemff(s1; : : : ; sn) := f(t1; : : : ; tn)g, where f is an n-ary free function symbol thatdoes not occur in �. However, for elementary E-uni�cation and E-uni�cationwith constants, there may be signi�cant di�erences. For example, there ex-ists an equational theory E such that all elementary E-uni�cation problems of2This can, for example, be seen when analyzing the behaviour of Plotkin's algorithm onthis input. 8



cardinality 1 (i.e., single equations) have minimal complete sets of E-uni�ers,but E is of elementary uni�cation type 0 since there exists an elementary E-uni�cation problems of cardinality 2 that does not have a minimal complete setof E-uni�ers [16].Uni�cation algorithmsAs mentioned in Section 2, there are two di�erent types of applications of E-uni�cation. The �rst, more \traditional" type of applications simply replacesthe most general uni�er by a complete set of uni�ers. Usually, these approachesare only applied to �nitary theories, i.e., theories that allow for �nite completesets of uni�ers. In these applications, one needs an algorithm that is able tocompute a �nite complete set of E-uni�ers for a given E-uni�cation problem.We will call such an algorithm an E-uni�cation algorithm. For reasons of e�-ciency, the algorithm should in fact compute a minimal complete set.For non-�nitary theories, one is sometimes interested in an enumerationof a complete set of uni�ers. We call a procedure that is able to enumeratea (minimal) complete set of E-uni�ers a (minimal) E-uni�cation procedure.It should be noted that the set of all E-uni�ers is a complete set, and thatit is always possible to enumerate this set since equality modulo E is semi-decidable: simply dove-tail an enumeration of all substitution with a semi-decision procedure that tests whether a given substitution is a uni�er. Thus, ifone designs an E-uni�cation procedure, one must take care that this procedureis more e�cient and less redundant than the trivial E-uni�cation proceduresketched above.Constraint-based applications of E-uni�cation need to know whether a givenE-uni�cation problem has a solution or not. An algorithm that is able to decidethis problem is called a decision procedure for E-uni�cation. In constraint-basedapplications, one usually has the situation that the constraint sets are increas-ing: after a set of constraints � has been tested for solvability, an inference stepadds a new constraint, and then the augmented set of constraints �0 must againbe tested for solvability. Hence, it is desirable to have an incremental decisionprocedure, i.e., a procedure that is able to reuse (some of) the work done duringtesting � for solvability when faced with the larger set �0.Note that an E-uni�cation algorithm always yields a decision proceduresince a given input problem has a solution i� the complete set that is returnedby the algorithm is non-empty. An E-uni�cation procedure (even a minimalone) need not yield a decision procedure since it may run forever even thoughthere are no solutions.4 Three example theoriesIn uni�cation theory, the uni�cation properties of a larger number of di�er-ent equational theories have been investigated. Usually, one was interested in9



�nding answers to (some of) the following questions:� Is solvability of E-uni�cation problems decidable? What is the complexityof this decision problem? How can one design practical algorithms for thedecision problem? Can one �nd incremental decision procedures?� What is the uni�cation type of E? If E is �nitary: is there an (e�cient)E-uni�cation algorithm? How large are the minimal complete sets? Whatis the complexity of computing these sets? For non-�nitary E: is there aminimal E-uni�cation procedure? Are there interesting special cases forwhich this procedure is guaranteed to terminate?As mentioned above, the answers to these questions may di�er, depending onwhich kind of uni�cation problem (elementary, with constants, or general) isconsidered. In many cases, it turned out to be easier to design uni�cationalgorithms or decision procedure �rst for E-uni�cation with constants, andthen use general combination methods (see Section 5) to obtain an algorithmor decision procedure for general E-uni�cation.Most of the results for speci�c theories and references to the literature canbe found in survey articles on uni�cation [60, 35, 9]. A table of complexityresults for uni�cation is contained in [37]. Instead of recounting these results,we consider three equational theories as examples:Af := ff(f(x; y); z) = f(x; f(y; z))g;ACf := Af [ ff(x; y) = f(y; x)g;ACIf := ACf [ ff(x; x) = xg:The goal is not to provide an extensive list of references (which can be found inthe above mentioned overviews) or to give a detailed description of a uni�cationalgorithm or decision procedure, but rather to convey an intuition on howuni�cation in these theories works. For the �rst theory, we sketch a minimaluni�cation procedure, for the second a uni�cation algorithm, and for the thirda decision procedure.Uni�cation under associativityThe theory Af axiomatizes associativity of the binary function symbol f . Sincethe corresponding free algebra is the free semigroup, whose elements are words,Af -uni�cation problems with constants are often called word equations. Thefollowing is a brief synopsis of the known results:Uni�cation type: in�nitary for all three kinds of uni�cation [50],Uni�cation procedure: there exists a minimal uni�cation procedure for gen-eral Af -uni�cation [50, 43]. Using a decision procedure (see below) as asubprocedure it is possible to modify this procedure such that it alwaysterminates on uni�cation problems that have a �nite minimal completeset of Af -uni�ers [34, 57]. 10



Decision problem: Af -uni�cation is decidable both for uni�cation with con-stants [46] and for general Af -uni�cation [4],Complexity: the decision problem is known to be NP-hard [10], but the currentbest bound on the time complexity of Makanin's algorithm is nondeter-ministic triple-exponential [42].After a long series of attacks and partial solutions, the decision problem was�nally solved by G.S. Makanin [46]. His description of the decision procedurefor Af -uni�cation with constants is rather long and complex (70 pages of verytersely written material), but this appears to be due to the inherent complex-ity of the problem. Subsequent descriptions of the algorithm [48, 34, 57] havesimpli�ed and clari�ed the presentation, but in essence they still coincide withMakanin's original version, from which they inherit the complexity. The de-cision problem for general Af -uni�cation was solved with the help of generalcombination techniques (see Section 5).In the following, we brie
y describe Plotkin's minimal Af -uni�cation proce-dure. To make the presentation simpler, we restrict ourselves to Af -uni�cationwith constants, and consider only single equations (i.e., Af -uni�cation problemswith constants of cardinality 1). Let V be a set of variables, and C be a set of(free) constants. Modulo Af , terms built using the binary symbol f , variablesfrom V , and constants from C can be seen as non-empty words over the alpha-bet V [ C. In uni�cation problems reached by applying Plotkin's procedure,we will sometimes also encounter the empty word ".The procedure builds a (possibly in�nite) tree, which can be seen as a searchtree for Af -uni�ers of the uni�cation problem at the root of the tree. The treeis inductively de�ned as follows. Let fu0 := v0g be the original uni�cationproblem, where u0; v0 2 (V [ C)+.Initialization: Create a tree that consists just of a root, which is labelledby the pair (u0 := v0 j id) where id stands for the identity substitution.Leaf extension: Assume that the leaf node k under consideration has label(u := v j �), where u; v are (possibly empty) words over V [ C. We distinguishthe following cases:1. Assume that one of u; v is the empty word. If u = " = v, then k is asuccess-node, and � is a uni�er. Otherwise, k is a failure-node.2. Assume that u = au0 starts with the constant a and v = bv0 starts withthe constant b. If a = b, then create one new leaf node that is a directsuccessor of k and is labelled by (u0 := v0 j �). Otherwise, k is a failure-node.3. Assume that u = au0 starts with the constant a and v = yv0 starts withthe variable y. Let �1 := fy 7! ag and �2 := fy 7! ayg. Create twonew leaf nodes that are direct successors of k. Label one of them with(u0�1 := v0�1 j ��1) and the other with (u0�2 := y(v0�2) j ��2).11



4. The case where u starts with a variable and v with a constant is treatedsymmetrically.5. Assume that u = xu0 and v = xv0 start with the same variable x. Createa new leaf node that is a direct successor of k and is labelled with (u0 :=v0 j �).6. Assume that u = xu0 starts with the variable x and v = yv0 starts with thevariable y 6= x. Let �1 := fy 7! xyg, �2 := fy 7! xg, and �3 := fx 7! yxg.Create three new leaf nodes that are direct successors of k. Label the �rstwith (u0�1 := y(v0�1) j ��1), the second with (u0�2 := v0�2 j ��2), and thethird with (x(u0�3) := v0�3 j ��3).The substitutions that are labels of success-nodes in this tree form a minimalcomplete set of Af -uni�ers of the Af -uni�cation problem with constants fu0 :=v0g [58, 57]. Since the tree may have in�nite paths, it must be generated in abreadth-�rst manner.To get an intuition of how the procedure works, let us consider the thirdcase of the leaf extension step in more detail. If � is a uni�er of the wordequation au0 := yv0, then a(u0�) = (au0)� = (yv0)� = (y�)(v0�). Hence, y� muststart with the constant a. Now, either y� = a or y� starts with a and continueswith a non-empty su�x. This corresponds to the two cases considered in thecorresponding leaf extension step. In the second case, the variable y is replacedby ay, that is, y is reused and now stands for the non-empty su�x obtained byremoving the leading a from y�. The equations in the label of the new leavesare obtained by applying �1 or �2 to au0 := yv0, and removing the two leadinga's.As an example, let us �rst consider the uni�cation problem fax := xag:ax := xa j id ! a := a j fx 7! ag ! " := " j fx 7! ag#ax := xa j fx 7! axg ! a := a j fx 7! aag ! " := " j fx 7! aag#ax := xa j fx 7! aaxg ! a := a j fx 7! aaag ! " := " j fx 7! aaag#� � �We see that the uni�cation problem fax := xag reproduces itself, and that thereare in�nitely many success-nodes, which yield the uni�ers fx 7! ang for n � 1.The uni�cation problem fax := xbg produces in�nitely many failure nodes and
12



no success-node:ax := xb j id ! a := b j fx 7! ag failure#ax := xb j fx 7! axg ! a := b j fx 7! aag failure#ax := xb j fx 7! aaxg ! a := b j fx 7! aaag failure#� � �In both examples, the tree generated by Plotkin's procedure is in�nite, but only�nitely many di�erent uni�cation problems occur as labels of nodes in the tree.It is easy to see that this phenomenon always occurs if one starts with auni�cation problem fu0 := v0g such that every variable occurs at most twicein the word u0v0. In fact, in this situation, the length of the words uv suchthat u := v occurs as a uni�cation problem in the tree generated by Plotkin'sprocedure is bounded by the length of u0v0. Since the uni�cation problemsu := v occurring in the tree are built with the variables and free constantsoccurring in u0v0, there are only �nitely many di�erent uni�cation problemsof this kind. As a consequence, one obtains that Plotkin's procedure yields adecision procedure for Af -uni�cation problems in which every variable occursat most twice. This is achieved by not extending a leaf k if it is labelled with auni�cation problem that occurs in the label of a node above k. In our examplefax := xbg, the node with label (ax := xb j fx 7! axg) need not be extended,and one can immediately decide that the problem does not have a solution. Inthe example fax := xag, it is easy to determine from a �nite part of the tree howall uni�ers look like. However, this is not always possible, even for the caseswhere Plotkin's procedure equipped with the above described cycle test yields adecision procedure (see [32] for an example of an Af -uni�cation problem wherethe set of uni�ers cannot be represented in a \parameterized way").If variables occur more than twice, then the tree may become in�nite withoutany repetitions of uni�cation problems. As an example, the interested readermay consider what happens if Plotkin's procedure is applied to the uni�cationproblem faxx := xxbg.Uni�cation under associativity and commutativityThe theory ACf , which axiomatizes associativity and commutativity of a bi-nary function symbol, is the theory most frequently used in rewriting moduloequational theories and in theorem proving with built-in theories. It turnsout that it is more convenient to investigate �rst uni�cation in the theoryAC1f := ACf [ ff(x; 1) = xg, which extends ACf by an identity that saysthat the constant symbol 1 is a unit element for f . Let us start with a briefsynopsis of the results known about these two theories:13



Uni�cation type: AC1 is unitary for elementary uni�cation, and �nitary for uni-�cation with constants and for general uni�cation, whereas AC is �nitaryfor all three types of uni�cation [61, 45, 24, 25]. The number of uni�ersin a minimal complete set of ACf -uni�ers may be doubly exponential inthe size of a given (elementary) ACf -uni�cation problem [22].Uni�cation algorithm: there exist ACf and AC1f -uni�cation algorithms for allthree types of uni�cation [61, 45, 40, 27, 17, 30, 31, 44, 12].Complexity of the decision problem: The decision problem for ACf and AC1f -uni�cation with constants is NP-complete, and solvability of general ACfand AC1f -uni�cation problems can also be decided by NP-algorithms [37].In the following, we sketch a uni�cation algorithm. To keep things simple,we will mainly restrict our attention to elementary ACf and AC1f -uni�cation.We start with an algorithm that computes a most general AC1f -uni�er for everyelementary AC1f -uni�cation problems. The algorithm for ACf takes this mostgeneral uni�er and derives a complete set of ACf -uni�ers from it.Let � := ff; 1g where f is binary and 1 is a constant symbol, and let Vbe a countably in�nite set of variables. For a term t 2 T (�; V ) and a variablex 2 V , we denote with jtjx the number of occurrences of x in t. These numberscan be used to characterize equality modulo AC1f :s =AC1f t i� jsjx = jtjx for all x 2 V:It is easy to see that 1 is the only element of its =AC1f -equivalence class. Anyterm in T (�; V ) n f1g is equivalent to a term in T (ffg; V ), and for termss; t 2 T (ffg; V ) we have s =AC1f t i� s =ACf t.An equation s := t between terms in T (�; V ) can be translated into a homo-geneous linear Diophantine equation. Let fx1; : : : ; xng be the set of variablesoccurring in s or t. The equation s := t corresponds to the equation(�) a1x1 + : : :+ anxn = b1x1 + : : : + bnxn;where ai := jsjxi and bi := jtjxi for i = 1; : : : ; n. If (c1; : : : ; cn) 2 INn is a solutionof (�), i.e., an n-tuple of nonnegative integers such that a1c1 + : : : + ancn =b1c1 + : : : + bncn, then the following is an AC1f -uni�er of s := t:fx1 7! zc1 ; : : : ; xn 7! zcng;where z is a variable and zci abbreviates the term f(z; f(z; � � � f(z; z) � � �)) thathas ci occurrences of z.3 Conversely, if � is an AC1f -uni�er of s := t and z 2 Vis a variable, then (jx1�jz; : : : ; jxn�jz) is a solution of (�) in INn. If one has morethan one equation in the uni�cation problem, then one obtains a system of linearDiophantine equations of the form (�), which must be solved simultaneously.Obviously, the tuple (0; : : : ; 0) is a (trivial) solution of every homogeneouslinear Diophantine equation of the form (�), which corresponds to the trivial3We have z0 = 1 (for ci = 0) and z1 = z (for ci = 1).14



AC1f -uni�er of s := t, i.e., the substitution that replaces every variable occur-ring in s or t by 1. Thus, every elementary AC1f -uni�cation problem has auni�er.The most general AC1f -uni�er of a given elementary AC1f -uni�cation prob-lem can be obtained from the set of minimal non-trivial solutions of the cor-responding system of linear Diophantine equations. A solution (c1; : : : ; cn)of a system of homogeneous linear Diophantine equations is a minimal non-trivial solution i� it is not the trivial solution (0; : : : ; 0) and every solution(d1; : : : ; dn) 6= (c1; : : : ; cn) satisfying d1 � c1; : : : ; dn � cn is trivial. One canshow that the set of all minimal non-trivial solutions of a given system of ho-mogeneous linear Diophantine equations is always �nite. Algorithms for com-puting these solutions are, for example, described in [28, 33, 19, 12, 51, 21, 20].If this set is empty, then the trivial uni�er that replaces every variable occur-ring in the uni�cation problem by 1 is the most general uni�er. Otherwise, letf(c1;1; : : : ; c1;n); : : : ; (ck;1; : : : ; ck;n)g be the set of minimal non-trivial solutionsof the system of linear Diophantine equations corresponding to the elementaryAC1f -uni�cation problem �. Then the following is a most general AC1f -uni�erof �: fx1 7! zc1;11 � � � zck;1k ; : : : ; xn 7! zc1;n1 � � � zck;nk g;where zc1;i1 � � � zck;ik abbreviates the term f(zc1;i1 ; f(� � � f(zck�1;ik�1 ; zck;ik ) � � �)).As an example, let us consider the AC1f -uni�cation problem� := ff(x1; x2) := f(x3; x4)g:The corresponding linear Diophantine equation is x1+x2 = x3+x4, which hasthe minimal non-trivial solutions f(1; 0; 1; 0); (1; 0; 0; 1); (0; 1; 1; 0); (0; 1; 0; 1)g.Hence, the most general AC1f -uni�er4 of � is� := fx1 7! f(z1; z2); x2 7! f(z3; z4); x3 7! f(z1; z3); x4 7! f(z2; z4)g:Assume that � is an ACf -uni�cation problem, i.e., in contrast to an AC1f -uni�cation problem, the terms in the problem and the terms introduced by theuni�ers cannot be the unit element 1. � may, however, also be seen as a AC1f -uni�cation problem, and thus we can compute the most general AC1f -uni�erof �. Obviously, every ACf -uni�er of � is also an AC1f -uni�er of �, and thusan instance of the most general AC1f -uni�er. However, the instantiation maydepend on the presence of the unit element 1. In our example, � := fx1 7!z1; x2 7! z4; x3 7! z1; x4 7! z4g is an ACf -uni�er of �, which is an AC1f -instance of the most general AC1f -uni�er �: � = �� for the �-substitution� := fz2 7! 1; z3 7! 1g. However, � is not an admissible substitution for thesmaller signature ffg. Consequently, � is not an ACf -instance of �.In order to obtain a minimal complete set of ACf -uni�ers of an ACf -uni�cation problem �, one must look at all possible ways of applying such4In the representation of this uni�er, we have used the fact that 1 is an unit element forf ; for example, x1� = f(z1; z2) instead of f(z1; f(z2; f(1; 1))).15



erasing substitutions � to the most general AC1f -uni�er of �. To be more pre-cise, assume that the most general AC1f -uni�er � of � introduces the variablesz1; : : : ; zk. For every subset Z of fz1; : : : ; zkg, we de�ne �Z := fz 7! 1 j z 2 Zg.Obviously, each substitution ��Z is an AC1f -uni�ers of �. This substitutioncan also be seen as an ACf -uni�er i� xi��Z 6=AC1f 1 for all variables xi occur-ring in �. In this case, we say that �Z is admissible for �. It can be shown thatthe set f��Z j Z � fz1; : : : ; zkg and �Z admissible for �gis a minimal complete set of ACf -uni�ers of �. In our example, this set contains7 elements, corresponding to the subsets ;, fz1g, fz2g, fz3g, fz4g, fz1; z4g, andfz2; z3g of Z = fz1; z2; z3; z4g.There are two di�erent ways of extending this approach to ACf -uni�cationwith constants. Stickel [61] �rst treats free constants like variables, computesthe minimal complete set of uni�ers for the elementary problem obtained thisway, and uses this set to read o� a minimal complete set for the original problem.Thus, in Stickel's approach one still solves homogeneous linear Diophantineequations. In contrast, Livesey and Siekmann handle constants with the helpof inhomogeneous equations (see [31] for details). General ACf -uni�cation canagain be treated using general combination techniques (see Section 5).Uni�cation under associativity, commutativity, and idempotenceThe theory ACIf axiomatizes associativity, commutativity and idempotence ofthe binary symbol f . For example, logical conjunction and disjunction, andunion and intersection of sets satisfy these axioms. Let us �rst summarize theresults from uni�cation theory concerning this equational theory:Uni�cation type: ACIf is �nitary for all three types of uni�cation [45, 18, 3, 38].As for ACf , the number of uni�ers in a minimal complete set of ACIf -uni�ers may be doubly exponential in the size of a given (elementary)ACIf -uni�cation problem [38].Uni�cation algorithm: there exist uni�cation algorithms for all three types ofACIf -uni�cation [3, 38].5Complexity of the decision problem: For elementary ACIf -uni�cation and forACIf -uni�cation with constants, the decision problem is polynomial, andsolvability of general ACIf -uni�cation problems is NP-complete [37].In the following, we sketch the polynomial decision procedure for ACIf -uni�cation with constants. Let � := ffg where f is binary, and let V and Cbe countably in�nite sets of variables and (free) constants, respectively. For aterm t 2 T (� [ C; V ), we denote with V (t) the set of variables occurring in t,5To be more precise, [3] describes an algorithm for ACI1f -uni�cation with constants (wherean additional unit element is present). The transition from ACI1f -uni�cation to ACIf -uni�cation can be achieved in the same way as for ACf .16



and with C(t) the set of free constants occurring in t. These sets can be usedto characterize equality modulo ACIf :s =ACIf t i� V (s) = V (t) and C(s) = C(t):Let � := fs1 := t1; : : : ; sn := tng be an ACIf -uni�cation problem with con-stants, let x1; : : : ; xk 2 V be the variables and c1; : : : ; c` 2 C the free constantsoccurring in �. Without loss of generality, we assume that ` � 1: if � is an ele-mentary ACIf -uni�cation problem, then we take an arbitrary constant c1 2 C.It is easy to see that � is solvable i� it has an ACIf -uni�er � such that(�) V (xi�) = ; and C(xi�) � fc1; : : : ; c`g for i = 1; : : : ; k:In fact, if � is an arbitrary ACIf -uni�er of �, then � can be obtained from � byreplacing in the terms xi� all free constants in C n fc1; : : : ; c`g and all variablesby c1.The existence of a solution � satisfying (�) can now be expressed with thehelp of propositional Horn formulae. To this purpose, we introduce a propo-sitional variable Px;c for every pair (x; c) 2 fx1; : : : ; xkg � fc1; : : : ; c`g, whichhas the intended meaning \c 62 C(x�)". These variables are used to build thefollowing formulae:� For each x 2 fx1; : : : ; xkg the formula `̂i=1Px;ci!) false;which expresses that each variable must be replaced by a non-empty term,i.e., C(x�) 6= ;.� For each equation s := t 2 � and each c 2 C(s) n C(t) the formula0@ ^x2V (t)Px;c1A) false:Since c occurs in s, and thus also in s�, it must also occur in t�. Becausec does not occur in t, this is only possible if it is introduced by �, i.e., ifc 2 C(x�) for some x 2 V (t).� Symmetrically, we have for each equation s := t 2 � and each c 2 C(t) nC(s) the formula 0@ ^x2V (s)Px;c1A) false:� For each equation s := t 2 � and each c 2 C n (C(s) [ C(t)) the formula0@ ^x2V (s)Px;c1A, 0@ ^x2V (t)Px;c1A ;17



which expresses that a constant that does not occur in s := t may beintroduced on the left-hand side i� it is introduced on the right-handside. Actually, this formula is not a Horn formula, but it can easily beexpressed by a set of jV (s)j � jV (t)j Horn formulae.It is easy to see that the set of these Horn formulae is satis�able i� � has asolution (satisfying (�)). Since the size of this set of Horn formulae is polynomialin the size of �, and since satis�ability of sets of propositional Horn formulaecan be decided in linear time [23], this shows that solvability of ACIf -uni�cationproblems with constants can be decided in polynomial time.For example, consider the equation f(a; x) := f(y; b), where a; b are constantsand x; y are variables. The corresponding set of propositional Horn formulaeconsists of� (Px;a ^ Px;b)) false and (Py;a ^ Py;b)) false,� Py;a ) false and Px;b ) false.Because of the second two formulae, an evaluation that satis�es these formulaemust assign false to Py;a and to Px;b, that is, in a solution � of f(a; x) := f(y; b),the constant a must occur in y� and the constant b must occur in x�. With thisassignment, the �rst two formulae are trivially satis�ed. For this reason, Px;aand Py;b can be assigned arbitrary Boolean values. For example, if we assign thevalue true to both, then this corresponds to the substitution fx 7! b; y 7! ag,which is an ACIf -uni�er of the equation satisfying (�).5 Combination of uni�cation algorithmsThe uni�cation algorithms and decision procedures for the theories AC andACI sketched above cannot treat general uni�cation problems, that is, prob-lems containing additional free function symbols. The interpretation of thesefree function symbols is not constrained by the theory under consideration.Thus, an AC- or ACI-uni�cation problem that contains only these free symbolscan be solved by an algorithm for syntactic uni�cation. This suggest that analgorithm for general AC- or ACI-uni�cation could be obtained by appropri-ately combining an algorithm for AC- or ACI-uni�cation with constants withan algorithm for syntactic uni�cation. More generally, the additional functionsymbols not contained in the signature of AC may be non-free themselves, thatis, their properties may be de�ned by another equational theory. For example,in many application one must deal with AC-uni�cation problems that containmore than one AC-symbol. As an example, consider the theory of Booleanrings: both addition + and multiplication � are associative-commutative. Ifone tries to handle this theory via term rewriting, one usually employs rewrit-ing modulo associativity and commutativity of addition and multiplication, i.e.,modulo the theory AC+[AC�. In this setting, the computation of critical pairsdepends on an algorithm for general (AC+ [AC�)-uni�cation. The question is18



thus how to obtain such an algorithm from algorithms for AC-uni�cation withconstants and for syntactic uni�cation. The research on this question resultedin uni�cation algorithms that can treat uni�cation problems containing severalAC-symbols and free symbols [61, 62, 24, 31].It turned out that the approaches used in the context of combining AC-uni�cation with syntactic uni�cation can also be employed in the more generalsetting of the so-called combination problem for uni�cation:Assume that E1; : : : ; En are equational theories over pairwise dis-joint signatures.6 How can algorithms for uni�cation modulo Ei(i = 1; : : : ; n) be combined to an algorithm for uni�cation moduloE1 [ � � � [En.The �rst solutions to this more general problem [40, 63, 29, 64, 13] were re-stricted to theories that satisfy certain restrictions (such as collapse-freeness orregularity7) on the syntactic form of their de�ning identities. These restrictionsmade sure that the theories behaved similar to AC and syntactic equality. Thetheory ACI could not be treated by these methods since it is not collapse-free.The problem was �nally solved in a very general form by Schmidt-Schau�[55]. His approach imposes no restriction on the syntactic form of the identi-ties. The only requirements on the single theories Ei to be combined are ofan algorithmic nature: Ei-uni�cation problems with constants must be �nitarysolvable in Ei, and so-called \constant elimination problems" (see [55] for ade�nition) must be �nitary solvable in Ei. It is easy to see that ACI satis�esthese properties. The major drawback of this method is that it can combineonly uni�cation algorithms (i.e., algorithms computing complete sets of uni-�ers). Decision procedures cannot be treated with this approach. For example,it is not possible to show decidability of general A-uni�cation with the help ofthis method.A general combination methodWe shall now describe the combination method introduced in [4]. In contrastto the method by Schmidt-Schau�, it can be used both for combining uni�ca-tion algorithms and for combining decision procedures. As for the method ofSchmidt-Schau�, algorithms for uni�cation with constants for the single theoriesEi are not really su�cient for the combination approach to apply. However,instead of splitting the algorithmic problem into two parts (uni�cation withconstants and constant elimination), we restrict our attention to only one typeof problem, which is a generalization of uni�cation with constants:6Note that without this disjointness condition there cannot be a general combinationmethod since, for non-disjoint signatures, (E1 [ : : : [ En)-uni�cation may be undecidable(non-�nitary) even though Ei-uni�cation is decidable (�nitary) (for i = 1; : : : ; n).7A theory E is called collapse-free if it does not contain an identity of the form x = t wherex is a variable and t is a non-variable term, and it is called regular if the left- and right-handsides of the identities contain the same variables.19



De�nition 5.1 An E-uni�cation problem with linear constant restrictions con-sists of an E-uni�cation problem with constants � and a linear ordering < onthe variables and free constants occurring in �. An E-uni�er (or solution) ofthis problem is an E-uni�er � of � that satis�esx < c ) c does not occur in x�for all variables x and free constants c occurring in �.For example, let E := fh(x) = h(x)g and consider the E-uni�cation problemwith constants � := fh(x) := h(c)g. Since E contains only a trivial identityfor h, E-uni�cation is simply syntactic uni�cation, and thus any solution of �must substitute x by c. If we add the constant restriction x < c to �, then theobtained E-uni�cation problem with linear constant restrictions does not havea solution.In order to make clear which are the free constants and which the variablesof a given E-uni�cation problem with linear constant restrictions, we will writesuch a problem as a 4-tuple h�;X;C;<i where X denotes the set of variablesand C the set of free constants, and < is a linear ordering on X [C. Completesets of solutions of E-uni�cation problems with linear constant restrictions arede�ned as in the case of E-uni�cation with constants.Let E1; : : : ; En be non-trivial equational theories over disjoint signatures.Our �rst goal is to reduce solvability of a given elementary (E1 [ � � � [ En)-uni�cation problem �0 to solvability of Ei-uni�cation problems with linear con-stant restrictions. To this purpose, �0 is �rst transformed into an equivalentproblem in decomposed form. An (elementary) (E1[� � �[En)-uni�cation prob-lem � is in decomposed form i� � = �1[� � �[�n where each �i is an elementaryEi-uni�cation problem. The transformation simply introduces new variablesfor alien subterms and adds appropriate new equations (see [4] for details).Example 5.2 Let E1 := f(x � y) � z = x � (y � z)g for a binary (in�x) symbol� and E2 := fh(x) := h(x)g for a unary symbol h, and consider the (E1 [ E2)-uni�cation problem �0 := fh(x) � y := y � h(z1 � z2)g:On the left-hand side, h(x) is an alien subterm of the term h(x) � y. This termcan be replaced by a new variable x1, provided that we add a new equationx1 := h(x). Similarly, the alien subterms on the right-hand side can be replacedby variables. This results in the decomposed problem� := fx1 � y := y � x2; x3 := z1 � z2g [ fx1 := h(x); x2 := h(x3)g:Unfortunately, it is not the case that a decomposed (E1 [ � � � [En)-uni�cationproblem � = �1 [ � � � [ �n is solvable if all the subproblems �i are separatelysolvable modulo Ei. The reason is that there is an interaction between theproblems �i via shared variables. Thus, a solution of �1 might replace a shared20



variable by one term, and a solution of �2 might replace this variable by a com-pletely di�erent term, and it is not clear how these two incompatible solutionscould be combined to a solution of the whole problem. To avoid incompati-ble solutions of the single problems, we must (nondeterministically) add someadditional information:1. First, we must choose a partition � = fP1; : : : ; Pkg of the set of variablesoccurring in �. For each of the classes Pi, let xi 2 Pi be a representative ofthis class, and let X� := fx1; : : : ; xkg be the set of these representatives.The substitution that replaces, for all i = 1; : : : ; k, each element of Pi byits representative xi is denoted by ��. The uni�cation problem ��� =�1�� [ � � � [ �n�� is obtained from � = �1 [ � � � [ �n by applying �� tothe terms occurring in �. Obviously, X� is the set of variables occurringin ���.2. Second, we choose a labelling function L : X� ! f1; : : : ; ng, which assignsa theory label to each variable occurring in ���. We denote the set ofvariables with label i by Xi, and de�ne Ci := X� nXi.3. Finally, we choose a linear ordering < on X�.With the help of L and <, each of the elementary Ei-uni�cation problems�i�� is turned into the Ei-uni�cation problem with linear constant restrictionsh�i��;Xi; Ci; <i, i.e., the variables with label i are still treated as variables,but the variables with di�erent label are treated as (free) constants.Proposition 5.3 Let � := �1 [ � � � [ �n be an (elementary) (E1 [ � � � [ En)-uni�cation problem in decomposed form. Then the following statements areequivalent:1. � is solvable, i.e., there exists an (E1 [ � � � [En)-uni�er of �.2. There exists a partition �, a labelling function L : X� ! f1; : : : ; ng, and alinear ordering < on X� such that, for all i = 1; : : : ; n, the Ei-uni�cationproblem with linear constant restrictions h�i��;Xi; Ci; <i is solvable.A proof of this proposition can be found in [4, 8]. Obviously, any (E1[� � �[En)-uni�cation problem can be transformed into a decomposed (E1 [ � � � [ En)-uni�cation problem in polynomial time, and an appropriate partition �, alabelling function L and linear ordering < can be guessed in nondeterminis-tic polynomial time. This yield the following combination result for decisionprocedures:Theorem 5.4 Let E1; : : : ; En be non-trivial equational theories over disjointsignatures.1. If solvability of Ei-uni�cation problems with linear constant restrictions isdecidable for i = 1; : : : ; n, then solvability of elementary (E1 [ � � � [ En)-uni�cation problems is decidable.21



2. If solvability of Ei-uni�cation problems with linear constant restrictions isdecidable by an NP-algorithm for i = 1; : : : ; n, then solvability of elemen-tary (E1[� � �[En)-uni�cation problems is decidable by an NP-algorithm.As an example, let us reconsider the decomposed uni�cation problem� := fx1 � y := y � x2; x3 := z1 � z2g [ fx1 := h(x); x2 := h(x3)gcomputed in Example 5.2. Let � be the partition where x1 and x2 constituteone class, and all the other classes are singletons, and assume that x1 is therepresentative of the class fx1; x2g. Hence, X� = fx; x1; x3; y; z1; z2g, �� =fx2 7! x1g, and ��� = �1�� [ �2�� where�1�� = fx1 � y := y � x1; x3 := z1 � z2g and �2�� = fx1 := h(x); x1 := h(x3)g:If we choose the labelling L(x3) = L(y) = 1 and L(x1) = L(x) = L(z1) =L(z2) = 2, and the linear ordering z1 < z2 < x3 < x < x1 < y, then wehave X1 = C2 = fx3; yg and X2 = C1 = fx1; x; z1; z2g. The substitution�1 := fx3 7! z1 � z2; y 7! x1g solves the E1-uni�cation problem with linearconstant restrictions h�1��;X1; C1; <i, and �2 := fx1 7! h(x3); x 7! x3g solvesthe E2-uni�cation problem with linear constant restrictions h�2��;X2; C2; <i.By Proposition 5.3, this implies that the decomposed problem � (and thusalso the original problem �0) has a solution. The solutions �1 and �2 can becombined into a solution � of � by induction on the linear order <:� = fz1 7! z1; z2 7! z2; x3 7! z1 � z2; x 7! z1 � z2;x1 7! h(z1 � z2); x2 7! h(z1 � z2); y 7! h(z1 � z2)g:A formal de�nition of the combined solution can be found in [4, 8]. Givencomplete sets of solutions of the Ei-uni�cation problems with linear constantrestrictions induced by a chosen triple (�; L;<), one obtains a set of solutionsof the original problem by constructing all possible combined solutions. Itcan be shown (see [4, 8]) that the union of these sets for all possible triples(�; L;<) yields a complete set of solutions of the original problem. Since thereare only �nitely many di�erent triples (�; L;<), we thus obtain the followingcombination result for uni�cation algorithms:Theorem 5.5 Let E1; : : : ; En be non-trivial equational theories over disjointsignatures that are �nitary for Ei-uni�cation with linear constant restrictions.Then E1 [ � � � [En is �nitary for elementary uni�cation.This theorem is e�ective in the sense that algorithms computing �nite completesets of solutions of Ei-uni�cation problems with linear constant restrictions canbe used to construct (via the above described nondeterministic combinationmethod) an algorithm for elementary (E1 [ � � � [En)-uni�cation.As examples of theories that satisfy the prerequisites of our two combinationtheorems, we mention free theories, A, AC and ACI:22



1. For a �nite signature �, the free theory F� consists of the identitiesf(x1; : : : ; xn) := f(x1; : : : ; xn) where f is an n-ary symbol in �. Obvi-ously, uni�cation modulo F� is just syntactic uni�cation. It is easy to seethat F�-uni�cation with linear constant restrictions is unitary and decid-able in linear time. In fact, such a problem has a solution i� the mostgeneral uni�er of the corresponding syntactic uni�cation problem satis�esthe constant restrictions. In this case, this uni�er is also a most generalsolution of the problem with linear constant restrictions. Consequently,free theories can always be handled by our combination method. Thisshows that the results of Theorem 5.4 and 5.5, which were formulated forelementary uni�cation in the combined theory, can be lifted to generaluni�cation by just adding an appropriate free theory in the combinationprocess.2. For A, decidability of uni�cation problems with linear constant restric-tions is an easy consequence of a result by Schulz [56] on a generalizationof Makanin's decision procedure. Together with decidability of uni�cationwith linear constant restrictions for free theories, this implies that generalA-uni�cation is decidable by Theorem 5.4.3. For AC, solvability of uni�cation problems with constants can be reducedto solvability of systems of homogeneous and inhomogeneous linear Dio-phantine equations (see [31]). It is very easy to handle constant restric-tions in this reduction: xi < c simply means that the variable xi must beset to zero in the inhomogeneous equation corresponding to c (see [6] formore details). Consequently, solvability of AC-uni�cation problems withlinear constant restrictions can be reduced to an integer programmingproblem, and is thus decidable by an NP-algorithm. By Theorem 5.4 thisimplies that general AC-uni�cation is NP-decidable.Since AC is a regular equational theory, the fact that AC is �nitary foruni�cation with constants implies that it is also �nitary for uni�cationwith linear constant restrictions. In fact, for a regular equational theory,a complete set of solutions of a given uni�cation problem with linearconstant restrictions can be obtained from a complete set of solutions ofthe corresponding uni�cation problem with constants by simply removingthose uni�ers not satisfying the constant restrictions. The reason is thatany instance of a uni�er not satisfying the constant restrictions also doesnot satisfy the constant restrictions.8 By Theorem 5.5, we can concludethat AC is �nitary with respect to general uni�cation.4. For ACI, the decision procedure for uni�cation with constants describedin Section 4 can easily be extended to a decision procedure for ACI-uni�cation with linear constant restrictions: since the intuitive meaningof the propositional variable Px;c is \c 62 C(x�)", a constant restrictionx < c simply means that Px;c must be assigned the value true. However,we can no longer restrict our attention to uni�ers that introduce only8Note that this need not be the case for non-regular theories.23



free constants contained in the uni�cation problem: we must allow foran additional free constant c in C (see [6] for details). As for the caseof uni�cation with constants, this reduction yields a polynomial decisionprocedure for ACI-uni�cation with linear constant restrictions. Thus,Theorem 5.4 implies that general ACI-uni�cation is NP-decidable.Since the theory ACI is regular, the same argument as for AC shows thatACI is �nitary for uni�cation with linear constant restrictions, and thusalso with respect to general uni�cation.Optimization techniquesBoth Schmidt-Schauss' method and the general combination method describedabove solve the problem of how to combine uni�cation algorithms and decisionprocedures for uni�cation only from a theoretical point of view. Since thesemethods are highly nondeterministic, signi�cant optimizations are necessarybefore one can hope for a combined uni�cation algorithms that can be used ina realistic application.Some simple optimizations are quite straightforward. In both algorithms,it is possible to restrict all nondeterministic choices to \shared" variables, thatis, variables that occur in at least two subproblems of the decomposed prob-lem. Another simple optimization for the algorithm given in [8] relies on theobservation that di�erent linear orders need not lead to di�erent constant re-strictions. For example, assume that x; y are variables and c; d are constants.Then the ordering x < c < d < y leads to the same restrictions on solutions ofa uni�cation problem as the ordering x < d < c < y (both just say that x mustnot be replaced by a term containing c or d). This observation can be used toprune the number of di�erent linear orderings that must be considered.An optimized version of Schmidt-Schauss' algorithm has been described byA. Boudet [11]. Basically, Boudet's algorithm takes a mixed uni�cation prob-lem in decomposed form and computes uni�ers for the pure subproblems in thecomponent theories. Nondeterministic choices (of theory labels for variables,etc.) are only made to resolve con
icts that are created by incompatible instan-tiations made by these uni�ers. In this respect, the algorithm creates only the\necessary" nondeterminism. However, for non-unitary theories, it introducesanother source of nondeterminism, which is due to the fact that, for every uni-�er in a complete set computed during the algorithm, it opens a new branch ofthe search tree.When combining decision procedures, no information on the form of the uni-�ers of the pure subproblems is available in general. For this reason, Boudet'soptimization techniques cannot be used in this context. Two orthogonal op-timization approaches for the general combination algorithm described abovehave been introduced in [39]. The �rst method, called iterative decomposition,applies to the combination of n > 2 theories. Unlike the general combinationmethod described above, it does not make all the nondeterministic decisionsbefore trying to solve the resulting uni�cation problems with linear constant24



restrictions. It starts with the �rst theory by making only the decisions thatare necessary for solving �1. If this system turns out to be solvable for somespeci�c combination of decisions, the remaining decisions necessary for the sec-ond system are made, etc. Whereas this �rst method determines in which ordernondeterministic decision should best be made, the second one shows how to usespeci�c algorithms for the component theories to reach certain decisions deter-ministically. In principle, these speci�c algorithms provide partial informationon the form of the uni�ers, and this information is used to preclude certaindecisions. A synthesis of both techniques has been implemented, and run timetests show that the optimized combination method obtained this way leads tocombined decision procedures that have a quite reasonable time complexity [39].6 Uni�cation from a logical and algebraic point ofviewIt is well-known that the decision problems for elementary uni�cation and foruni�cation with constants correspond to \natural" classes of logical decisionproblems. In addition, they can also be seen as decision problems for certainfree algebras. In the following, we shall show that a similar logical and alge-braic characterization can (simultaneously) be given for general uni�cation anduni�cation with linear constant restrictions.Before we can recall the characterizations for elementary uni�cation andfor uni�cation with constants, we must introduce some notation. Let � be asignature and E be an equational theory such that sig(E) = �. An atomic �-formula is an equation s = t between �-terms. A positive �-matrix is built fromatomic �-formulae using conjunction and disjunction, and a positive �-sentenceis a quanti�er-pre�x followed by a positive �-matrix containing only variablesbound by the pre�x. Such a positive �-sentence is called existential i� its pre�xcontains only existential quanti�ers, and it is called a positive AE �-sentencei� its quanti�er pre�x consists of a block of universal quanti�ers followed bya block of existential quanti�ers. The positive (positive existential, positiveAE) �-theory of E consists of all positive (positive existential, positive AE)�-sentences that are true in all models of E. The positive (positive existential,positive AE) �-theory of the free algebra T (�; V )==E consists of all positive(positive existential, positive AE) sentences that are true in T (�; V )==E .Theorem 6.1 Let � be a signature, and E be a non-trivial equational theorysuch that sig(E) = �.1. Solvability of elementary E-uni�cation problems is decidable i� the pos-itive existential �-theory of E is decidable i� the positive existential �-theory of T (�; V )==E for a countably in�nite set of variables V is decid-able.2. Solvability of E-uni�cation problems with constants is decidable i� the25



positive AE �-theory of E is decidable i� the positive AE �-theory ofT (�; V )==E for a countably in�nite set of variables V is decidable.The �rst statement should be obvious, and the second becomes clear if oneSkolemizes the universal quanti�ers in the positive AE sentence (which replacesthe universally quanti�ed variables by free constants).For example, the elementary Af -uni�cation problem ff(x; y) := f(y; x)gcan be translated into the positive existential sentence 9x:9y:f(x; y) = f(y; x),and the Af -uni�cation problem with constants ff(a; y) := f(y; a)g (where a isa constant) can be translated into the positive AE sentence 8x:9y:f(x; y) =f(y; x).In [8, 5], this characterization was generalized to general uni�cation anduni�cation with linear constant restrictions as follows:Theorem 6.2 Let � be a signature, and E be a non-trivial equational theorysuch that sig(E) = �. Then the following statements are equivalent:1. Solvability of E-uni�cation problems with linear constant restrictions isdecidable.2. The positive �-theory of E is decidable.3. The positive �-theory of T (�; V )==E for a countably in�nite set of vari-ables V is decidable.4. Solvability of general E-uni�cation problems is decidable.This theorem gives a nice logical and algebraic characterization of general E-uni�cation and of the (at �rst sight rather technical) concept of E-uni�cationwith linear constant restrictions. From a practical point of view, it is interestingbecause it shows that any theory that can reasonably be integrated in a univer-sal deductive machinery via uni�cation can also be combined with other suchtheories. In fact, we have pointed out above (see Example 3.4) that such anintegration usually requires algorithms for general uni�cation, and the theoremshows that such an algorithm also makes sure that the preconditions for ourcombination method are satis�ed.9In the following, we motivate the equivalence between the decision problemsfor E-uni�cation with linear constant restrictions, for the positive theory of E,and for general E-uni�cation by sketching how these problems can be translatedinto each other (see [8] for details):� Any E-uni�cation problem with linear constant restrictions h�;X;C;<ican be translated into an an equivalent positive �-sentence �� as follows:9Actually, the theorem makes this statement only for decision procedure, but in [8] it isshown that the equivalence between general uni�cation and uni�cation with linear constantrestrictions also holds with respect to uni�cation algorithms.26



both variables and free constants are treated as variables in this formula;the matrix of �� is the conjunction of all equations in �; and in the quan-ti�er pre�x, the elements of X (variables in �) are universally quanti�ed,the elements of C (free constants in �) are existentially quanti�ed, andthe order of the quanti�cations is given by the linear ordering <.� Given a positive �-sentence � with conjunctive10 matrix, one �rst removesuniversal quanti�ers by Skolemization. The obtained existential formulais translated into a uni�cation problem in the obvious way. The resultingproblem may contain Skolem function, which explains why it may be ageneral E-uni�cation problem.� The combination method described above shows how solvability of agiven general E-uni�cation problem can be reduced to solvability of E-uni�cation problems with linear constant restrictions.As an example, consider the free theory Ffgg := fg(x) = g(x)g, and the Ffgg-uni�cation problem with constants fx := g(c)g. If we add the constant restric-tion x < c, then this problem is not solvable (since any solution must substitutex by the term g(c), which contains the constant c). However, under the restric-tion c < x the problem is solvable. The following are the positive sentencesand general uni�cation problems obtained by translating these two uni�cationproblems with linear constant restrictions:uni�cation with lcr positive sentence general uni�cationfx := g(c)g; x < c 9x:8y: x = g(y) fx := g(h(x))gfx := g(c)g; c < x 8y:9x: x = g(y) fx := g(d)gFor example, 9x:8y: x = g(y) is not valid in the theory of Ffgg since this formulasays that g must be a constant function, which obviously does not follow fromFfgg. Correspondingly, fx := g(h(x))g does not have a solution because it leadsto an occur-check failure during syntactic uni�cation.Theorem 6.2 together with our combination result for decision proceduresyields the following modularity result for decidability of positive theories:Theorem 6.3 Let E1; : : : ; En be non-trivial equational theories over disjointsignatures. Then the positive theory of E1 [ : : :[En is decidable i� the positivetheories of the component theories Ei are decidable, for i = 1; : : : ; n.In its equivalent algebraic formulation, this theorem says that the positive the-ory of the combined free algebra T (�; V )==E for � := �1 [ � � � [ �n andE := E1 [ � � � [ En is decidable i� the positive theories of the free algebrasT (�i; V )==Ei are decidable, for i = 1; : : : ; n. This algebraic combination result10To make the description simpler, we do not consider disjunction her; in [8] it is shownhow disjunction can be handled. 27



can be proved directly (see [5]), using an explicit algebraic construction of thecombined free algebra from the single free algebras. In addition, the combina-tion result is generalized in [5] to free structures, i.e., to the case of signaturesthat may also contain predicate symbols, and in [7] to a more general class ofstructures, which we called quasi-free structures. The algebra of rational treesis an example of a quasi-free structure that is not free.7 Further topicsThe purpose of this chapter was to introduce the notions that are importantin uni�cation theory, and to illustrate the results obtained in this researcharea by giving some examples. There are, however, other interesting topicsin uni�cation theory that we have not addressed at all. Exhaustive surveyson most aspects of equational uni�cation and related topics can be found in[60, 35, 9]. To give an impression on what additional topics there are in this area,we mention the following three problems (references to the relevant literaturecan, for example, be found in [9]:General procedures for equational uni�cation. The uni�cation algorithms andprocedure described in Section 4 were speci�c to the equational theory underconsideration. In contrast, a general uni�cation procedure receives as input notonly the uni�cation problem, but also the equational theory modulo which theproblem is to be solved. A special case of such a procedure is the narrowingprocedure, which assumes that the equational theory is given by a con
uentand terminating term rewriting system.Higher-order uni�cation and matching. Instead of considering �rst-order termsand equational theories, one may ask how to compute a representation of theset of all solutions of an equation between higher-order terms? The main dif-ference to �rst-order uni�cation is that the terms may now contain variablesfor functions, which may be replaced by substitutions.Uni�cation in sort theories. In many applications, the universe on which func-tion symbols operate is not just one homogeneous set, but it is divided intodi�erent subsets, which are represented by sorts (such as the sort of integers,the sort of lists, etc.). In a simple many-sorted environment (where sorts areinterpreted as arbitrary non-empty sets), uni�cation does not behave very dif-ferently from the single-sorted case considered in this chapter. However, as soonas one considers order-sorted signatures (where one sort may be declared to bea subsort of another), things become a lot more complex.References[1] F. Baader. Uni�cation in idempotent semigroups is of type zero. J. Auto-mated Reasoning, 2(3):283{286, 1986.28
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