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Abstract

The use of markup languages like SGML, HTML, or XML for encoding
the structure of documents has lead to many databases where entries are ade-
quately described as trees. In this context querying formalisms are interesting
that offer the possibility to refer both to textual content and logical structure.
If answers are formalized as mappings to—or subtrees of-the database, a simple
enumeration of all answers will often suffer from the effect that many map-
pings/subtrees have common subparts. From a theoretical point of view this
may lead to an exponential time complexity of the presentation of all answers.
Concentrating on the language of so-called tree queries—a variant and exten-
sion of Kilpeldinen’s Tree Matching formalism—we introduce the notion of a
“complete answer aggregate” for a given query. A complete answer aggregate
offers a compact view of the set of all answers that seems attractive for prac-
tical use in IR systems. Since complete answer aggregates use an exhaustive
structure sharing mechanism their maximal size is of order O(d-h-q) where d
(q) is the size of the database (query) and h is the maximal depth of a path of
the database. We give an algorithm that computes a complete answer aggre-
gate for a given tree query in time O(d - log(d) - h - ¢). For the sublanguage of
so-called rigid tree queries, as well as for so-called “non-recursive” databases,
an improved bound of O(d - log(d) - q) is obtained. The algorithm is based on

a specific index structure that supports practical efficiency.
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1 Introduction

Databases where entries are described as trees are interesting for many reasons.
Most importantly, the use of markup languages like HTML ([W3C98c]) or XML
([W3C98b]) for documents in the World Wide Web, as well as the use of other
SGML ([ISO86, Gol90]) dialects for document exchange in enterprises and institu-
tions has lead to huge repositories where both logical structure and textual contents
of documents are explicitly represented using trees of a particular form. The interest
in conceiving these document collections as databases has been stressed by various
authors ([FLM98, Suc98b]) and led to a special W3C workshop dedicated to XML
query languages ([W3C98a]). Tree databases play also an important role in the area
of computational linguistics. Here during the last years large-scale databases with
parse trees of sentences and phrases have been built up (e.g., [MSM93, OMM98]),
both for theoretical studies and for practical use in systems, e.g. for machine trans-
lation. From a more basic point of view, trees undoubtfully represent a very natural
organization scheme, and it seems realistic to expect a growing number of applica-

tions of tree database techniques in the middle term.

In the field of Information Retrieval (IR) various models and query languages
have been proposed in the meantime that take both logical structure and the con-
tents of documents into account (e.g. [GT87, Bur92, KM93, NBY97, MAG*97]),
each suggesting yet another compromise between expressiveness and efficiency (see
[BYN96] and [Loe94] for surveys). One of the most expressive query languages
is Kilpeldinen’s Tree Matching formalism [Kil92]. In this approach, partial de-
scriptions of trees are used as queries, and answers are formalized as homomorphic

embeddings that correspond to subtrees of the database.

In this paper we introduce a formalism that can be considered as a generaliza-
tion of Tree Matching. The “tree queries” of our query language essentially add
to Kilpeldinen’s matching expressions some additional flexibility and expressivity.
The main contribution of this paper, though, is a new concept for computing and
presenting answers. This concept is not only relevant for the Tree Matching for-
malism but for each retrieval model where answers itself are structured and do not

just return one single pointer to some offset point in a relevant document.



As an illustration, imagine a person that wants to retrieve articles that con-
tain the key words “document”, “retrieval”, “tree” and have a figure. In the Tree
Matching formalism — slightly modified here — this request can be formalized using

a tree pattern of the form

article(x)
“*document’’ inyq “retrieva’ iny, “tree’’ inyg figure(z)

Under any answer, node x (resp. z) has to be mapped to a document node with
label “article” (resp. “figure”). Nodes yi, y» and ys3 have to be mapped to document
nodes with textual contents; the keywords that are specified in the pattern have to
occur in the flat text dominated by these nodes. Double arrows indicate descendant
(not necessary children) relationship. Since answers return the images of all the
nodes, they may be used, for example, to collect all figures of articles that are
conform with this description. Now imagine a database with two articles a; and
ay that have the desired form. Article a; (resp. a2) has four (five) paragraphs
(paragraphs are assumed to have not any inherent logical structure and informally
correspond to textual nodes), and both articles contain one figure. In both cases,
each paragraph contains the three words “document”, “retrieval”, “tree”. In this
situation each of the nodes y; can be mapped to each of the paragraphs. Since
answers correspond to embedding homomorphisms, there is a total of 43 + 53 = 192
possible answers to the query. If answers are presented via enumeration, the user
will hardly have the patience to inspect all of them in order to find that there
are just 2 articles and 2 figures participating to all these answers. Obviously, each
formalism that offers a comparable expressivity and formalizes answers as mappings

suffers from the same problem as long as answers are enumerated.

What we suggest instead is computation of a so-called complete answer aggre-
gate, an abstract, intensional representation of the set of all answers. The structure
of such an aggregate is derived from the query. Basically, each query node is used
as a “container” that collects all the document nodes that represent a possible im-
age (“target candidate”) of the query node. In addition, each target candidate in
a complete answer aggregate is enriched with some administrational information
on possible descendants. For the given query and database the aggregate has the

following internal representation.
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The record Agg, collects the possible target candidates for the article node z. In
our example this record has two fields, indicated by large rectangles. The first
(second) field contains a pointer to article a1 (resp. as) and a list of four arrays,
corresponding to the four children of z in the query (small rectangles). These arrays
are used to point to the fields of possible target candidates for the children, subject
to the choice of z = ay (resp. = = as). There are four additional records, for
Y1,Y2,¥y3, and z respectively. Since these variables represent leaves of the query the
structure of their answer records is simpler. Each record Agg,. just contains a list
of pointers (only indicated by dots) to the 4+ 5 = 9 paragraphs which represent the
possible target candidates for the textual nodes y; (1 < i < 3). Eventually record

Agg, has two pointers, each representing a link to a figure.

Externally, the aggregate can be presented to the user in many different ways.
We may, e.g., just present the number of possible nodes of each record in a first

step:

article(x): 2

“‘document’ iny,: 9 “retrieval” iny,: 9 “‘tree”’ iny3: 9 figure(2): 2

If the user wishes to inspect the two target candidates for the article node = more
closely, the next step could be to show (in an appropriate way) the list with the
articles a; and a» from Agg,. If the reader then decides to inspect a2, an internal

view might temporally restrict the aggregate in the following way (narrowing).

Aggy 41

SN

Addy, Agdy, Agdys AgYz



We may provide the user with the information that given his selection of a; there
are now five possible target candidates for the each textual node, and a unique
figure. The user might now decide to inspect the figure. If he also activates the first

possible candidate for y1, y> and y3 respectively, the actual internal view

Adgy Y1 Ya Y3 z

Addy, Adgy, Adgy; Adgz

represents one of the 192 possible answers. In another situation the user might find

that this particular answer is useless and reactivate the previous state.

Orthogonal to the construction of views by narrowing, the user may specify
parts of the query that he does not want to inspect (still, these query parts may
be meaningful since they trigger the selection of answers). In this case some of the
query variables will not be represented in the answer aggregate. The specification of
records Agg, that are to be suppressed can be integrated in the query formulation
or it can be part of an interactive process during inspection of answers. In the above
example the user could for example suppress textual nodes, which would result in

the following (internal) form of the aggregate

AdOy | z z

Answer aggregates can also be useful for dynamic change of the database. As an

illustration, take a database with trees

A A

C  Cc c*ccC c C cC

The aim is to compute a simplified representation where nodes with label B are sup-
pressed. This type of “structural simplification” is one of the operations discussed

in [GT87]). The complete answer aggregate for the query
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depicted below at the left-hand side, can immediately be translated into the required

simplified view of the database on the right-hand side.
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Yet another aspect where aggregates possibly can offer some new contribution is
ranking of answers. In our first example we may use the information that as has
more relevant paragraphs than a; as a justification for an inverted enumeration
as — ay of relevant articles. More sophisticated IR techniques for assigning weights
to key words can perhaps be lifted to account for structure, assigning now weights to
target candidates, depending on the number and weight of possible target candidates

for the children.

These scenarios just indicate some possibilities for using the information that we
obtain from an aggregate such as the one depicted above. We stop the discussion
at this point, since it is not our principal concern to give an exhaustive list of all
possible ways for using a complete answer aggregate. Instead, the main aim of
the paper is to give a rigorous definition of this notion and a characterization of
its mathematical and computational properties. The concept will be introduced in
the context of a logical reformulation and extension of Kilpeldinen’s Tree Matching

formalism [Kil92].

The paper has the following structure. After some formal preliminaries in Sec-
tion 2 we first formalize collections of tree-structured documents as so-called re-
lational document structures in Section 3. A relational document structure is a
conventional structure of first-order predicate logic that represents a document
database. It should be stressed that this type of formalization can be used for
arbitrary databases where entities represent trees. In this sense, databases with

documents just serve as an illustrating example.

The query language is introduced in Section 4. In principle, the full first-order

language associated with a given relational document structure can be considered



as a query language. Under computational aspects, the sublanguage of tree queries
seems to be of particular interest. For this latter language we give an algebraic
reformulation of the query evaluation that underpins the direct relationship to the

Tree Matching formalism.

Section 5 first introduces the concept of a complete answer formula for the sub-
class of so-called “simple tree queries”. This notion yields a compact description of
the full set of answers to a query in terms of a conventional formula of propositional
logic. It is shown that for each simple tree query, (2, and each relational document
structure, D there exists a unique complete answer formula that represents the set

of all answers to @) in D.

The “logical” notion of a complete answer formula is then translated into the
“physical” notion of a complete answer aggregate for (). We prove that the size of
the complete answer aggregate for @) is bounded by O(|Q| - |D| - hp) where |Q| is
the size of @, |D| is the number of nodes of D and hp is the maximal length of a
path in D. In a tree query we may refer to arbitrary descendants of a node. For the
subclass of “rigid” queries, where we can only refer to immediate children of a node
in a query, we give a better bound O(|Q|-|D|). The improved bound is also obtained
for “non-recursive” databases, i.e., databases where the same label does not occur
twice in a path. Here we have to assume that each query node carries either some
textual information or some label information. In a second step, all these notions
are generalized to the class of so-called “partially ordered tree queries” where it is
possible to impose restrictions on the left-to-right ordering of nodes in the query.
The above bounds for the size of the complete answer aggregate of a query still hold

for partially ordered queries.

In Section 6 we describe an algorithm that computes the complete answer ag-
gregate for a given partially ordered tree query in time O(|Q| - |D| - hp - log(|D])).
For rigid queries, as well as for non-recursive databases, the algorithm runs in time
O(Q| - |D| - log(|D])). In order to guarantee a good practical behaviour of the

algorithm it is based on a special index structure.

We conclude in Section 7 with remarks on related work and on some open
research issues. For the sake of readability some proofs are omitted in the running

text and collected in an Appendix.

The present paper modifies and extends results of the first author presented in

[Meu98].



2 Formal preliminaries

In this section we provide some basic mathematical background that is needed later.
As usual, if R denotes a binary relation on a set M, then R* (resp. R") denotes

the reflexive-transitive (resp. transitive) closure of R.

Definition 2.1 A (finite, unordered) tree is a pair (D,—) where D is a finite,
nonempty set and “~” is a binary relation on D such that the following conditions

are satisfied:

1. —is cycle-free, i.e., =7 is irreflexive,
2. for each d' € D there exists at most one element d € D such that d—d’,

3. there exists exactly one element d € D, called the root of (D,—) such that
d —* d' for each d' € D.

The elements of D are called nodes. If d — d’, then d' is a child of d, conversely
d is called the parent node of d’. Condition 2) expresses that each node has at
most one parent node. It follows from Condition 3) that a node having no parent
node coincides with the root. Distinct children of a common parent node are called
siblings. If d =1 d', then d' is a descendant of d, conversely d is called an ancestor
of d'. If d ~* d', then d' is a reflexive descendant of d. A node is a leaf if it does

not have any child, otherwise it is an inner node.

A path of (D,—) is a sequence (dp, ..., d,) € D™ where dy is the root of (D,—), d,
is a leaf of (D,—) and d; — d;11 for 0 < i < n — 1. A partial path of (D,—) is a
prefix of a path of (D,—).

Definition 2.2 An ordered tree is a tree (D,—), together with a strict partial order

<l€ on D, called left-to-right ordering, that has the following properties:

1. <l€ relates two nodes d; # do (in the sense that either d; <£ ds or ds <£ dy)

iff neither d; is a descendant of ds in (D,—) nor vice versa,

2. if d; and ds are siblings, then d; <l[,), d> implies that d} <l[73 d), for all reflexive

descendants d} and d), of d; and dy respectively.

If (D,—) is an ordered tree, the union of descendant relationship with left-to-right
ordering is called the pre-order relationship and denoted <£~- The following lemma

is a trivial consequence of the definitions.



Lemma 2.3 Let (D,—) be an ordered tree, let dye € D. Then d <[ e iff there

exists a node d' € D such that d <[} d' and d' <] e.

3 Modeling documents as tree structures

As established by international standards like SGML [ISO86], we conceive docu-
ments as trees where nodes and edges are used to model the logical structure of
the document. The leaves of a document tree contain the actual flat textual con-
tent of the document. Obviously, in order to represent databases with structured
documents as trees we have to adapt the basic data structure. As a first step
we introduce a formal distinction between “structural” nodes and “textual” nodes.
Depending on the application area it might be interesting to model additional re-
lations on the nodes, and to make these relations available in the querying process.
One important example that we discuss below is the left-to-right ordering between
nodes. Since we do not want to restrict the discussion to a specific set of relations,
other relations that might be relevant, such as e.g. inequality, semantic compar-
isons, typing information, attribute values, similarity or proximity, are treated in
a generic way as abstract constraints, leaving apart their precise nature. The re-
sulting structures for modeling document databases will be treated as conventional

structures of first-order predicate logic in the following sections.

Text nodes and structural nodes

Let ¥ and A denote two fixed disjoint alphabets, called text alphabet and markup
alphabet respectively. We assume that the textual content of a document is modeled
by elements of ¥£* (i.e., by strings over ¥) and the structural markup (labels of

structural nodes) is modeled by symbols in A.
Definition 3.1 A document structure is a tuple D = (Dg, Dy,—, Lab) where

1. (Dr U Dg,—) is a tree where Dy and Dg represent disjoint sets of nodes,

2. Lab is a function that assigns to each node d € D a string Lab(d) € ¥* and

to each node d € Dg an element of T".
The following condition must hold:

3. Each node in Dy is a leaf of (Dr U Dg,—).



In the sequel, the nodes in Dy and Dg are called text nodes and structural nodes

respectively, and D := D U Dg will always denote the joint set of nodes.

With a document path of D we mean a path of (D U Dg,—). The document
structure is called non-recursive if there does not exist any document path with two

distinct structural nodes that are labeled with the same symbol in T'.

It should be noted that we model each database as a single tree. Since we may
always add to a given forest a new root element this decision does not impose any
real restriction. Recall also that with a tree we mean an unordered tree if not said

otherwise. Ordered trees can be modeled with the relations that we introduce now.

Ordering and other relations
Let R denote a fixed finite set of relation symbols, each equipped with a fixed arity.

Definition 3.2 A relational document structureis a tuple D = (Dg, Dr,—, Lab, I),
where (Dg, Dy,—, Lab) is a document structure and I is an interpretation function
for R, i.e., a mapping that assigns to every relation symbol r € R of arity k a

relation I(r) C D*.

Definition 3.3 A relational document structure D = (Dg, Dr,—, Lab, I) is ordered
if R contains a symbol <;. where (D7 U Dg,—) together with <P:= I(<;,) is an

ordered tree.

Example 3.4 The following figure depicts an ordered relational document struc-
ture that represents a collection of articles. Textual nodes are indicated by rectan-

gles.

top

Remark 3.5 When using markup languages like SGML, the logical structure of

10



documents is encoded using a flat representation by means of delimiting tags. Var-

ious interesting aspects of the tree structure can be read off in a simple way:

1. two nodes d;, dy stand in the pre-order relationship, d; <£T da, iff the opening

tag for d; precedes the opening tag for ds,

2. two nodes dy, ds stand in the left-to-right relationship, d; <2 da, iff the closing
tag for dy precedes the opening tag for dy,

3. node d, is a descendant of node d; iff the opening tag for ds is between the

two tags for d.

Following Definition 3.2, relational symbols in R are interpreted as relations
over the set of nodes, D. Though this restriction simplifies the presentation it does
not represent a principal limitation of the techniques suggested in this paper. In
some examples we shall take a more liberal point of view and allow for relations
over further sets. For example, attributes could be be modeled as relations between

nodes, attribute names, and values.

4 A logical query language for relational document
structures

In this section we define a logical query language L for databases that are repre-

sented in the form of relational document structures. In principle the full first-order

language associated with the given structure, presented in the first section, may be

used as query language. For practical use in IR-systems, the sublanguage of so-called

“tree-queries” seems to be of particular relevance. This sublanguage, introduced in

the second section, will be studied in the following sections under various aspects.

4.1 The full first-order language

Recall that the alphabets X, T as well as the signature R are assumed to be fixed.
In the sequel, let Var denote a countably infinite set of variables, denoted z,y, 2. ..,

and let “in”, “<” and “<<™” denote three new binary symbols.

Definition 4.1 The set of atomic L -formulae contains all formulae of the form

— z <y, for z,y € Var,

11



- x ATy, for z,y € Var,
- w in z, for z € Var and w € &+,
- M (z), for x € Var and M €T,

— r(z1,...,2) where r € R has arity k and z1,...,z; € Var.

Atomic formulae of the form r(zq,...,z;) (r € R) are called atomic constraints.

Ly -formulae are inductively defined as follows:

— each atomic Lgr-formula is an Lr-formula,
_ if ¢ and 1, ps are Lr-formulae, then =y, (w1 A p2), (1 V p2), and
(p1 = 2) are Lr-formulae,

- if ¢ is an Lr-formula and z € Var, then Jzp and Vzp are Lr-formulae.

An Li-formula ¢ is an L-formula iff o does not have a subformula that is an atomic

constraint.

We write # <) y when refering to formulae of the form z <y and = <t y at the

same time.

Let D = (Dg, Dy,—, Lab, I) be a relational document structure. With a variable

assignment in D we mean a (total) mapping v : Var — D.

Definition 4.2 Validity of an atomic Lgr-formula in D under v is defined as fol-

lows!:
- DEyzyiff v(z)—v(y),
— DE,r<tyiff v(z) = v(y),
— D, winziff v(z) is a text node and Lab(v(z)) contains the word w,
— D, M(z) iff v(z) is a structural node and Lab(v(z)) = M,
— DEyr(zy,...,z) iff (v(z1),...,v(2R)) € TD.

The validity relation is extended as usual to arbitrary Lg-formulae: Boolean con-

nectives are just lifted to the meta-level, furthermore we define

- D |, Yz iff for every node d € D we have D |=, ¢, where v/(y) := v(y) for
all variables y # x and v'(z) :=d,

Hn the third condition we do not formally define what it means for a textual node to “contain”
a given word w. This might mean “literal” containment, i.e., containment as a substring, or it

might include linguistic normalization techniques like lemmatization or stemming.

12



- D |, Jzypiff there exists anode d € D such that D =, ¢, where v/'(y) := v(y)
for all variables y # x and v'(z) := d.

An Lr-formula ¢ is satisfiable iff there exists a relational document structure D
and an assignment v such that D &, ¢. The set fr(p) of free variables of an Li-
formula ¢ is defined as usual. If fr(p) is given in a fixed order ¥ = (x1,...,%,)
and if d = (dy,...,d,) is a sequence of nodes of D we write D = @[dy, ..., d,] iff

D [,  for each variable assignment v mapping z; to d; for 1 <i < n.

Atomic formulae of the form “w in z” refer only to textual nodes. Obviously, it
is desirable to refer in a similar way to the part of the flat text that is dominated by
a structural node. If z is a variable of a query that contains a structural condition
of the form M (z), we may write x <t y A w in y to express that the word w must
occur in the text associated with node z. If more comfort is needed we might add
some “syntactic sugar” and introduce a new type of atomic formula that represents

the above conjunction.

Definition 4.3 A query is a pair @ = (p, Z) where ¢ is an Lr-formula and 7 is a
fixed enumeration of fr(y). The set fr(¢p) is also called the set of free variables of @

and denoted in the form fr(Q).

Definition 4.4 Let D be a relational document structure, let @ = (p, Z) be a query
where & = (x1,...,2,). A sequence d= (dy,...,d,) of nodes of D is an answer to

Qin Diff D |=y[di,...,dy]. The set

Ap(Q) :=={{d1,...,dn) € D" | D = ¢[dy, ..., dn]}

is called the complete set of answers for Q in D.

Equivalently, an answer (dy,...,d,) can be considered as a partial variable assign-
ment mapping x; to d; for ¢ = 1,...,n. Both perspectives will be used in the
sequel.

The efficient computation of the complete set of answers to a given query can be
considered as the principal problem of an IR system. In this paper we concentrate

on a particular subclass of queries.

13



4.2 Tree queries

It is natural to assume that most queries aim to retrieve subtrees of a particular
form from the database. As long as matters of universal quantification are ignored,
the tree queries introduced in the following definition are a canonical choice for this

retrieval task.

Definition 4.5 A iree query is a query Q = (¢ A ¢, £) where 4 is a conjunction of
atomic L-formulae and ¢ is a conjunction of atomic constraints with fr(c) C fr(4))
such that the following condition is satisfied: there exists a variable z € fr(Q),
called the root of @, such that for each y € fr(Q) there exists a unique sequence of
variables = %, ...,2, = y (n > 0) where ¢ contains subformulae z; <(*) z;,,
for 0 <i <n—1. A tree query @ = (¢ A ¢, %) is rigid if 1) does not contain any
formula of the form y <™ z. A tree query Q is labeling-complete if for each z € fr(Q)
there exists either a formula of the form w in z in @ or a formula of the form M (z)

(M eT).
The following lemma follows immediately from Definition 4.5.
Lemma 4.6 Let Q = (¢ Ac, %) be a tree query. Then

1. 1 does not have any <Y -cycle, i.e., there is no sequence of variables xo, . . ., Tp
(n > 0) such that 1 contains subformulae x; A i for0<i<n—1 and

a subformula x, <) zq,
2. the root of Q is unique, and
3. for each y € fr(Q) there exists at most one formula in 1 of the form z 1) y.
Definition 4.7 A tree query Q = (¢ A ¢, %) is inconsistent if
1. ¢ contains a formula w in 2, and a formula of the form M (z) or 2 <) y at

the same time, or

2. if ¢ contains two formulae M (x) and M'(z) for M' # M € T.

Clearly, inconsistent tree queries are unsatisfiable. Below we shall see that every
consistent tree query is satisfiable if we do not restrict the interpretation of relation
symbols in R. Henceforth, with a tree query we always mean a consistent tree
query. Since tree queries have a tree shape, standard notions from trees can be

used for describing their structure:

14



Definition 4.8 Let @ = (¢ A ¢, ¥) be a tree query. A variable y € fr(Q) is called a
rigid (resp. soft) child of z € fr(Q) in Q iff ¢ contains a formula z <y (resp. z <17 y).
In this situation, z is called a rigid (soft) parent of y in ). Two distinct children
y1,y2 of a variable z in @ are said to be siblings in ). A variable y € fr(Q) is a
reflexive descendant of x in @) iff there exists a chain z = xg,...,x; = y of length
k > 0 such that x;y; is a child (of either type) of z; in @, for i = 0,...,k — 1.
A partial path of @ is a chain xg, ...,z of length k > 0 starting at the root of @
such that z;11 is a child (of either type) of z; in Q for i =0,...,k — 1. A path of
@ is a maximal partial path. Let x € fr(Q). The height hg(z) of x with respect
to @ is defined as follows: hg(z) := 0 iff z does not have any child in @, and
hg(x) := max{hg(y) + 1| y is a child of z in @} otherwise.

Note that z is always a reflexive descendant of z in @, for each z € fr(Q). In
the following sections three subclasses of tree queries (simple, local and partially
ordered tree queries) will be considered, each obtained by restricting the classes of

constraints that may be used in queries.

Simple and local tree queries

Definition 4.9 Let Q = (¢ A ¢, %) be a tree query. A constraint r(zog, ..., %,) of
¢ is Q-simple iff either r is unary, or r is binary and z1 (or o) is a child of xg
(resp. z1) in Q. A constraint r(zg,...,z,) of ¢ is Q-local iff Q) has a variable z
with children y1, ...,y such that {xq,..., 2} C {x,y1,...,yn}. We say that Q is
a simple (local) tree query iff each constraint of ¢ is Q-simple (Q-local).

It is important to note that “@Q-simplicity” is a purely syntactic concept that just
restricts the pairs of variables of () that can be related in constraints. From a
semantic point of view, ()-simple constraints can talk about arbitrary unary or

binary relations over D. Some examples are

1. the relation “top-most M -descendant”, tmﬁ,(d, e), which expresses that node
e is a descendant of d with label M such that there is no node between d and

e with label M in D,

2. vertical distance relations such as, e.g, “max-distance(k)(d,e)” which ex-

presses that there are at most k& — 1 nodes between d and e,

3. unary relations encoding typing information, e.g. taxonomic information, such

as being a document of a specific type, or a node describing a year,

15



4. unary relations expressing that a certain attribute is defined for the node and
has a particular value (e.g., “gender = female” if documents are parse trees

for natural language expressions).

With @Q-local constraints we can even express arbitrary relations in principle. How-
ever, we can only constrain the children (plus parent) of a common parent variable

x of . Some examples are

5. comparisons (e.g., “node d; dominates a larger part of the database than node

d;”),

6. conditions that express that the text parts dominated by d; and d; stand in

a certain syntactic relationship, such as similarity or containment,

7. conditions that express that the text parts dominated by d; and d; stand
in a certain semantic relationship (e.g. chronological comparison of dates,

comparison of amounts of money etc.).

An important class of (-local constraints are the constraints y; <;» y; expressing
that two nodes stand in the left-to-right ordering relation <} of D. A formula

yi <ir y; will be called a left-to-right ordering constraint.

Partially ordered tree queries

Definition 4.10 A tree query @Q = (¢ A ¢, %) is partially ordered if each constraint
of ¢ is either @-simple or a left-to-right ordering constraint, and if the subset ¢, of

left-to-right ordering constraints in ¢ satisfies the following properties:

1. for each constraint y; <i» y; in ¢, the variables y; and y; are siblings with

respect to (@,

2. ¢ does not have a cycle of the form yo <;r -+ <gr Yn <ir Yo.

The tree query Q = (¢ Ac, ¥) is linearly ordered if the set of left-to-right constraints

specifies a linear ordering for the set of children of each variable x of @.

Note that in particular each partially ordered tree query is a local tree query. The
following lemma shows—in a sense to be made precise—that for local tree queries
the possible instantiations of the reflexive descendants of a variable z € fr(Q) in

answers only depend on the instantiation of x, but not on the instantiation of
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the ancestors of x in ). The lemma will play an essential role for the techniques

suggested in the following sections.

Lemma 4.11 Let Q = (Y Ac, T) be a local tree query. Lety be a child of z in Q, let
Y denote the set of proper descendants of y in Q, and let Z = fr(Q)\ (Y U{y}). Let
(Y1, yry and (z1,...,25) denote enumerations of Y and Z respectively. Assume

that Z has the form (z1,...,25,Y,Y1,-.-,Yr). If Q has two answers

<d1,...,d3, d ,61,...,6,-)
(dy,....d,, d ,ef,...,e.)

» Lgo » Cp

that coincide on y, then

(dy,...,ds, d ej,...,e.)

»er

<I1,...,d,s, d ,61,...,6,-)

are answers to ) as well.

Proof. This follows immediately from the fact that ¢ A ¢ does not have any atomic

subformula that contains variables from Y and Z at the same time. O

4.3 Answers as pseudo-homomorphisms

Tree queries can be represented in the form of “generalized” tree structures. This
description might offer a basis for a graphical user interface for queries and leads to
a second, algebraic picture of the query evaluation process where answers essentially
behave like homomorphisms, like elaborated in the Tree Matching formalism [Kil92]
and in [Meu98].

Definition 4.12 Let Q = (¢ Ac¢, Z) be a tree query. The query tree for @ is the re-

lational structure Do = (Xg, X, XU,—\,i\, Lab, I) with the following components:

—  Xg is the set of all variables = occurring in  such that ¢ has a
subformula of the form M (z) or z <) y,

— Xy is the set of all variables 2 occurring in v such that ¢ has a
subformula w in z,

- Xp:=1£(Q)\ (X7 U X5s),

— forx,y € X := XgUXrU Xy we have z—y iff z <y € 9,
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— forx,yEXwehavexi\yiffxd"'yE111,

— for # € Xg we have Lab(x) = M iff M(z) € ¢,

— for # € X7 we have Lab(z) = {w1,...,wy} where
{wi,...,w;} ={w € T* |w in x € ¢},

— I is the interpretation function where (y1,...,yx) € I(r) iff

r(yla'-'ayk) €c.

Note that consistency guarantees that XsN X7 = (), and that Lab is well-defined for
nodes in Xg. By part 1 of Lemma 4.6, the transitive closure of Ru—is cycle-free.
Intuitively, Do = (Xs, X7, X U,—\,i\, Lab, #) can be considered as “generalized”
relational document structure with edges of two types. Edges of the form z — y
are called rigid, edges of the form =z & y are called soft.2 In contrast to document

structures, a query tree Do may have unlabeled nodes if () is not labeling-complete.

Example 4.13 The query tree

is a query tree for the tree query with the atomic formulae article(zo), xo < 21,
title(w1), g < ma, author(zry), zo A* x3, section(xs), 3 < x4, heading(zry), T4 Qy1,
abc inyy, 23 <4t ys, xy7 in ys, and the sequence of variables (xq, z1,z2, 3, Z4, Y1, Y2)-
This query may be used to retrieve authors and titles of articles that contain a

X

section with the heading “abc”, with the word “xyz ” occurring in the section.

Lemma 4.14 Each tree query where relation symbols do not have a fixed interpre-

tation is satisfiable.

Proof. Let Q = (¥ Ac,T) be a tree query. We may modify the query tree for @
as follows. Each unlabeled node receives a fixed label M € I'. Every labeled textual
node x receives as label the concatenation of the words in its label: Lab(X) =

wy o ...0wg, where {wy,...,wr} = {w € T* | w in x € ¢¥}. Each soft edge is

2Edges of the form z X y in a query tree should not be confused with the transitive closure

—\D+ of edges —p in a relational document structure D.
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treated as a rigid edge. Obviously in this way a relational document structure D is
obtained such that ) A ¢ holds in D under each variable assignment that maps each

element of ¥ to itself. O

Definition 4.15 Let Dg = (Xg, X7, Xv,— Q,i\Q,LabQ,IQ) be the query tree
of the tree query @, let D = (Dg,Dy,—p,Labp,Ip) be a relational document
structure. Let X := XgU X7 U Xy. A pseudo-homomorphism from D¢ in D is a

mapping v : Xg — D such that the following conditions are satisfied:
- for all z € Xg always v(z) € Dg,
— for all z € Xt always v(z) € Dr,
— for all z,y € Xg: x— gy implies v(z) —=p v(y),
— for all z,y € V<: xi\Q y implies v(z) = v(y),
- for all x € Xg: Labg(z) = M implies Labp(v(z)) = M,
- for all € X7: w € Labg(z) implies Labp (v(z))
contains w as substring,
— for all r € R, for each sequence (yi,...,yx) of variables of Q:
(1, yr) € Iq(r) implies (v(y1),...,v(yx)) € Ip(r).
Example 4.16 The following figure shows a pseudo-homomorphism for the tree

query introduced in Example 4.13 and the relational document structure depicted

in Example 3.4.

The following lemma shows that pseudo-homomorphisms and answers to a given

tree query are equivalent notions. The proof can be found in the Appendix.
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Lemma 4.17 Let Dg = (XS,XT,XU,—\Q,i\Q,LabQ,IQ) be the query tree of the
tree query Q, let D = (Dg, Dr,—p,Labp,Ip) be a relational document structure.
A mapping v : fr(Q) — D is a pseudo-homomorphism from Dg in D iff v is an

answer to Q in D.

4.4 Partially ordered tree queries and Tree Matching

We mentioned in the introduction that the present formalism can be understood as
a variant and generalization of Kilpeldinen’s Tree Matching formalism [Kil92]. In

this subsection we briefly comment on this point.

In Kilpeldinen’s formalism, both patterns (i.e., queries) and targets are finite,
ordered labeled trees. Kilpeldinen studies ten distinct variants for formalizing the
notion of “inclusion” (homomorphic embedding) between pattern and target. A
basic difference is that between unordered and ordered tree inclusion problems. In
the (un)ordered case the left-to-right ordering of nodes has (not) to be respected
under an embedding. In our formalism this corresponds to the difference between
unordered tree queries on the one side and linearly ordered tree queries on the other

side.

Both for the ordered and the unordered case, five specific classes are considered.
For so-called tree inclusion, the homomorphic embedding has only to respect labels
and ancestorship. For path inclusion, parent relationship has to be respected as well.
Basically, path inclusion problems thus correspond to rigid queries, tree inclusion
problems correspond to tree queries with soft edges only. For region inclusion, which
restricts path inclusion, any child of a target node that has a left sibling and a right
sibling that both belong to the image of the embedding function has to belong to
this image as well. We do not have a similar construct in our formalism. For child
inclusion, which restricts region inclusion, the number of children of inner nodes

has to be respected. Again we do not have a similar construct.

When we ignore region inclusion and child inclusion, which seem not important
for database applications, our formalism is more flexible than Tree Matching since in
a partially ordered tree query we may specify an arbitrary partial ordering between
the children of a query node, and we can also have rigid edges and soft edges at
the same time. In this sense, the present formalism generalizes Tree Matching.

However, there are also two subtle differences:
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e Kilpeldinen’s homomorphic embeddings are always assumed to be injective,

we do not impose such a restriction in our formalism.

e A relation is “preserved” in Kilpeldinen’s sense under a mapping h if it is
preserved in both directions. For example, a mapping is said to preserve
ancestorship if, for all nodes z,y of the pattern, z is an ancestor of y if and
only if h(x) is an ancestor of h(y). We only demand the implication from left

to right, i.e., the “only if” direction.

These innocent differences are responsible for the phenomenon that Kilpeldinen’s
unordered tree inclusion problem is NP-complete even in the decision version (cf.
[Kil92]) whereas all the complexity results obtained here are polynomial. Since un-
ordered tree inclusion problems represent the most natural variant of Tree Match-
ing, the avoidance of the above intractability result can be considered as a major

advantage of the present formalism.

5 Representing complete sets of answers for tree

queries

This section is devoted to the problem of finding a suitable presentation for the
complete set of answers to a given tree query. As we demonstrate below, the number
of answers to a tree query () may be exponential in the size of (). Hence an
explicit enumeration leads to exponential-time behavior in the worst case. Quite
generally a naive enumeration will also suffer from many redundancies since different
answers may have several common sub-nodes. This makes it difficult to extract

useful information from the sequence of answers.

The question arises if there is a more compact and organized way of representing
all answers, with reasonable space and time requirements. In the first subsection we
introduce the concept of a “complete answer formula” for a simple tree query. The
“complete answer aggregates” that are introduced in the second subsection yield a
physical representation of complete answer formulae. A complete answer aggregate
yields a full representation of all answers that is quadratic in the size of the database
for simple tree queries. For rigid queries, as well as for labeling-complete queries
over non-recursive databases, the size is linear. In subsections three and four these
notions and results are extended to local tree queries and to ordered tree queries.

Computational aspects are postponed to Section 6.
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5.1 Complete answer formulae for simple tree queries

In order to introduce our representation technique we fix a simple tree query, @,
and a relational document structure D with set of nodes D. If () has ¢ variables, in
the worst case the total number of answers to @ is of order O(|D|?), even for rigid

queries.

Example 5.1 Let D have the following form (we ignore labels and textual con-

tents).

d d, dy d, q

The rigid query @ of the form (z <y A ... Az Qy,, (%, y1,...,Yy)) has n? answers
in D.

The example shows that nodes with a high branching degree may lead to an explo-
sion of the number of answers. For queries with soft edges an orthogonal potential

source of problems is deep nesting:

Example 5.2 Let D have the following form.

The query @ of the form (21 <T z2A... Azy_1 < 2y, (71,...,2,)) has (Z) answers
in D.

How can we avoid an enumeration of all answers? As a starting point, we take a
logical perspective. The complete set of answers to () in D can be represented as a
formula in disjunctive normal form

q

\/ (/\xl:dl)a

(diyeydg)EAD(Q) i=1
It is well-known that the size of the disjunctive normal form of a formula of proposi-
tional logic may be exponential in the size of the original formula. Even if we do not

have anything like an “original” formula here, an obvious idea is to look for formulae
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that are logically equivalent to the disjunction of all answers but of smaller size, and
to use a shared representation for multiple occurrences of the same subformula. Of
course, from a practical point of view the formulae must offer a transparent view
of all answers, and given the formula it should be possible to generate each partic-
ular answer without computational effort. Before we introduce a suitable class of

formulae, let us illustrate the basic idea using the above examples.

Example 5.3 The set of all answer in Example 5.1 can be encoded as a formula

of size O(q - n) of the form

The set of all answers in Example 5.2 can be encoded as a formula of the form

n—g+1 n—g+2 n—q+3 n
\V @=d,n \/ @=d,n \/ (.. \/ (@,=d,)..))
i1=1 ig:di1+1 ig:di2+l iquiq_1+1

Given this formula, each answer to () can be immediately obtained in the following
way. Select a possible value d;, for z; in the outermost disjunction. Each possible
choice leads to a specific subdisjunction that gives possible values for z3. Continuing
in the same way, the choice of a value d;, for z;, (k < ¢) always determines a
new subdisjunction that determines a set of possible values for xpy;. In more

detail, a value z; = d;, always implies that the value for 2,41 can recruit from

{diy 415 s dn—gik1}

Let € stand for the empty sequence (). The following definition generalizes the
above type of representation, introducing a class of formulae that may be used
for “dependent instantiation” of variables, given (). The idea is to instantiate the
variables of Q in a top-down manner, where the sets of possible values of descendant
variables with respect to () depend on the chosen instantiations of the ancestor

variables.

Definition 5.4 Let Q = (¢ A ¢, %) be a simple tree query, let z € fr(Q). The set
of dependent Q-instantiation formulae for x is inductively defined as follows. First
assume that hg(z) = 0. For each non-empty set D, C D, the formula
Al =\ z=d
deD,

is a dependent @-instantiation formula for z. Now assume that hg(z) > 0. Let

) # D, C D. For each d € D, and each child y of z in Q, let Ag)’y) be a dependent
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@-instantiation formula for y. Then
A® =\ @=dn N\ AP
deD, y child of 2 in Q
is a dependent (Q-instantiation formula for x. There are no other dependent Q-
instantiation formulae for x besides those defined above. The set D, is called the

set of target candidates for x in AEI).

Note that the notion of a dependent (Q-instantiation formula is defined in a purely
syntactical way and does not refer to an answer. In the sequel we use expressions

of the form A(Z07x) ) for refering to subformulae of a dependent Q-instantiation

(do,...7dk,
formula AEW. These subformulae are inductively defined as follows: Assume that
Aggz:zl) is a dependent Q-instantiation subformula of AL of the form

\/ @e=da N\ A

deDmk y child of 2, in Q
where k > 0. If x4, is a child of zj, in @ and dj, € D,,, then Agzg’:::’;”:)“) denotes
AE;:)’““). Furthermore each disjunct

m=dn N\ ALY

y child of 2}, in Q

($0,...7:Ek)

is written in the form 5( o) As an immediate consequence of these definitions

we obtain

Remark 5.5 Modulo associativity and commutativity of “A” and “V”, each for-

mula 5?;{?:_’_’_’:;:)) is uniquely determined by its subformulae of the form Agzgz::)y)

where ¥ is a child of z;, in Q. Similarly each subformula of the form Agg;:::)xk)

is uniquely determined by its subformulae of the form 65525:))

The following definition captures the notion of incrementally instantiating a depen-

dent @-instantiation formula in a top-down manner.

Definition 5.6 The set of partial (resp. total) instantiations of a dependent Q-

instantiation formula AEIO) is inductively defined as follows: the empty set “}” is
(zo)

a partial instantiation of A¢"°’. Assume that v is a partial instantiation of AEW.
If A" has a subformula of the form 6807“";6’“)), if {{z;,d;) |1<i<k—-1}Cuw
0’..., k

and v does not have a pair of the form (xj,d) (d € D), then v U {(zy,di)} is a

)

partial instantiation of AE’”O . There are no other partial instantiations besides those

defined by the above rules. A partial instantiation v of AE’”O) is a total instantiation

iff v contains a pair (z,d) for every z € fr(A")).
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Lemma 5.7 Let QQ be a simple tree query, let AEW be a dependent QQ-instantiation

1:0)

formula. Then every partial instantiation of AE can be extended to a total in-

stantiation of AE’”O). The set of total instantiations of AE’”O) is mon-empty.

The lemma can be proven by a trivial induction on hg(zo).

Lemma 5.8 Let Q be a simple tree query, let AE’”") be a dependent QQ-instantiation

formula for xg, let dy,...,d; be elements of D. Then the following conditions are

equivalent:

1. AL has g subformula Aggﬁ:il) where dy, is a target candidate for xy,

2. A" has g subformula of the form 5?525:)),

3. Q has formulae xo <) z1, ..., 2,1 <)z, and {zi,d;) | 0<i<k}isa
)

partial instantiation of NG
The proof of Lemma 5.8 is simple and can be found in the Appendix. We now come

to the central definition of this section.

Definition 5.9 Let @@ be a simple tree query with root xg. A dependent Q-
instantiation formula AEIO) for zq is called a complete answer formula for @ iff

o

each answer to ( is a total instantiation of A and vice versa.

Complete answer formulae will be denoted in the form Ag. Some of the following
formulations become simpler when introducing the falsum “1” as an additional
dependent ()-instantiation formula. By convention, “1” does not have any instan-

tiation. We may now give the first kernel result of this paper.

Theorem 5.10 For each simple tree query Q = (v Ac, &) and each relational docu-
ment structure D there exists a complete answer formula Ag which is unique modulo

associativity and commutativity of “A” and “V”.

Proof. First assume that ) does not have any answer in D. Then “L1” is a
complete answer formula for Q). It follows from Lemma 5.7 that ) does not have
another complete answer formula. Assume now that () has at least one answer.
Since we later see how to compute a complete answer formula Ag for @ (cf. Sec-
tions 6.3 and 6.5) we only prove the uniqueness part here. Let o be the root of @,

let, AE’”O) and AE””O) be complete answer formulae for (). Lemma 5.7 and Lemma 5.8
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show that A has a subformula, 6552;:)) iff A has a subformula )\Ezg’_’_’_”gl’:)).

Starting at the subformulae with maximal k it is then trivial to prove by “inverse”

(xo,...7:tk) and A(xo,...7:tk)

induction using Remark 5.5 that corresponding formulae §(d0 ) (dororrdy)

are equal modulo associativity and commutativity of “A” and “V”. It follows that
A and A% are equal modulo associativity and commutativity of “A” and “V”.

O

Since we want to obtain a representation where multiple occurrences of the same
subformula are shared, the following simple observation is crucial. The proof, which

strongly depends on Lemma, 4.11, can be found in the Appendix.

Lemma 5.11 Let Ag be a complete answer formula for the simple tree query Q.
(ZO,...,Zk_l,Ik) (107---’1‘7@—1711@)
Then two subformulae of Ag of the form §(do,...,dk_1,dk) and 5(%,___’%71’@) are

always identical modulo associativity and commutativity of “A” and “V”.

5.2 Complete answer aggregates for simple tree queries

Our next aim is to give a compact physical representation of complete answer for-

mula. Lemma 5.11 shows that for each pair (xy,di) (where zj, € fr(Q) and dy, € D)

all subformulae of Ag of the form §lTorTe=121) 416 jdentical. We shall write them
(doyerdr—1,ds)

in the form 4., (di). In the physical representation, all occurrences of a subformula

. (d) are shared and represented as a field Agg,[d] of a record® Agg, assigned to

the variable z.

Definition 5.12 Let Q = (¥ A ¢, %) be a simple tree query. An aggregate for @
is a family Aggg of records, {Agg, | * € ¥}. Each record is composed of a finite
number of fields with indices d € D, denoted Agg, [d]. For each child y of z in @, the
field Agg,.[d] contains a list of pointers, Agg,[d,y]. Each pointer in a list Agg,[d, y]
points to a field Agg,[e] of the record Agg,. Distinct pointers of Agg,[d,y] point
to distinct fields.

In Examples 5.15 and 5.16 graphical representations for aggregates may be found.

Since we are concerned in this section with the size of answers we will define the

3In some contexts, the data structure that is used here, with an open number of fields that are
accessed by arbitrary keys, are called “dictionaries” and distinguished from “records” (which have
a fixed number of fields). Since the terminus “dictionary” is preoccupied to a certain extend in

our context we prefer to ignore this difference here.
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size of an aggregate as the number of pointers of the aggregate. Modulo a constant

factor this value reflects the storage space needed for an aggregate.

Definition 5.13 Let @@ = (¢ A ¢, %) be a simple tree query, let Ag denote the
complete answer formula for Q. A complete answer aggregate for Q) is a Q-aggregate

Aggo = {Agg, | x € ¥} that satisfies the following conditions:

1. arecord Agg, has a subfield Agg, [d] iff Ag has a subformula d,(d),

2. alist Agg,[d,y] has a pointer to a field Agg, [e] iff §.(d) contains a subformula
of the form d,(e).

Remark 5.14 Ignoring the trivial case of an unsatisfiable query it is easy to see
that a complete answer formula Ag for a simple tree query ) uniquely determines
the corresponding complete answer aggregate Agg,. Conversely, given a complete
answer aggregate Agg, we may reconstruct the complete answer formula Ag in the
following way: to obtain Ag,
— read the record Agg, of the root x of () as the disjunction of the
formulae associated with the subfields Agg,[d],
— associate with each field Agg,[d] the conjunction of
x = d with the formulae associated with the pointer lists Agg,[d, y],
— associate with each list of pointers Agg,[d,y] of a field Agg,[d] the

disjunction of the formulae associated with the address fields of the pointers.

The correspondence between the two concepts should become more obvious with

the following examples.

Example 5.15 The complete answer aggregate for the first formula in Example 5.3
(an encoding of all answers to the rigid tree query given in Example 5.1) can be

depicted as follows.

.do

@\@@
)T

o o[ |4| noy edeg |- [or | - aoayu[aria] - [o |

Aggy

The root variable z can only be instantiated with dy. All other variables can be

instantiated with each of the nodes dy,...,d,.
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In this example, the number of pointers of the aggregate is ¢ - n. Hence the size of

the aggregate is of order O(q - n).

Example 5.16 For the special case ¢ = 4 and n = 8 the complete answer aggregate
for the second formula in Example 5.3 (an encoding of all answers to the tree query

in Example 5.2) has the following form.

odl -d2 0d3 'd4 0d5
X2 X2

Adx, X2 X2 X2
[afJeefedi [alo]oIed| [eTa]o] | [2]8] | [3]

My [ Ndy | VWdy [NdsNdg
X3 | X3

Adax, X3 X3 X3
[a[oJedsfe i [al ]| [a]]*] | [4]4]

vdg | N, [Vdg [NdgNg
X4 X4

X4 X4 Xa
noooinnoinoniinoiia

NN
SARCIN

For arbitrary n > ¢, each record Aggmq contains n — q¢ + 1 target candidates. The

AgYy,

Aggy,

first target candidate in each record Agg,, (apart from the last field Aggxq, which
contains no pointers at all) has n—g+1 pointers to target candidates in Aggmﬂ, the
last target candidate contains only one pointer. Hence each record Agg,. contains
14...+n—q+1)= w pointers, apart from the target candidates
in the leaf record Aggwq. Therefore the total number of pointers in the aggregate is

(g—1)- (n—g+1)(n—g+2)

5 , hence of order O(q - (n — q)?).

We show now that the size of a complete answer aggregate for a rigid simple tree
query, (0, is linear both in the size of the query and the database. In the sequel, let
|@Q| denote the number of symbols of (). This means in particular that the number
of variables of () and the number of atomic constraints of @ is bounded by |Q].

With |D| we denote the cardinality of D.

Theorem 5.17 Let D be a relational document structure and let Q) be a rigid simple
tree query. Then the size of the complete answer aggregate for Q is of order O(|Q]-
D).

Proof. The complete answer aggregate Agg,, for @ contains < |Q| records Agg,,
the total number of fields Agg,[d] is bounded by |Q| - |D|. For a fixed field Agg,[e]

there is at most one pointer ending at Agg, [e]. In fact, each such pointer starts at
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a field of the form Agg,[d] where z is the parent of y in @: the definition of the
complete answer aggregate implies that the complete answer formula, Ag, has a
formula d,(d) with subformula d,(e). Lemma 5.8 and Lemma 5.7 show that Ag
has a total instantiation v mapping x to d and y to e. Since v is an answer to ()
and y is a rigid child of z in @ it follows that d is the unique parent of e in D. We
have seen that the total number of pointers is bounded by |Q| - |D|. It follows that
the total size of Aggy is of order O(|Q| - |D|). O

Theorem 5.18 Let D be a non-recursive relational document structure and let )

be a labeling-complete tree query. Then the size of the complete answer aggregate

for Q is of order O(|Q| - |D]).

Proof. Similar to the previous proof. Again, for a fixed field Agg, [e] there is at
most one pointer ending at Agg,[e]. In fact, if x denotes the parent of y, then the
query contains a formula M (z) and there is at most one ancestor d of ¢ in D with

label M. O

Theorems 5.17 and 5.18 depend on the fact that in the situation of these theo-
rems for each field Agg,[d] of the complete answer aggregate there exists at most
one vertical pointer that points to Agg,[d]. If we conceive the aggregate as a graph,
with the target candidates as nodes and the pointers as edges, then the resulting
graph is a forest. Some nodes of the relational document structure may appear more
than once in this forest, due to the fact that they appear as target candidates in
more than one record. If we use an equivalence relation to collapse these duplicates,
the resulting forest is a subforest of the relational document structure.

For arbitrary tree queries and databases, a given field can serve as the address of
more than one pointer (see Example 5.16 for an illustration). Hence the graph in-
duced by the aggregate is not necessarily a tree and the maximal size also depends

on the maximal length of a document path, denoted hp:

Theorem 5.19 Let D be a relational document structure and let Q be a simple tree
query. Then the size of the complete answer aggregate for Q is of order O(|Q|-|D|-
hp).

Proof. In this case a subfield Agg,[e] can serve as the address of at most hp
pointers: in fact all pointers with address Agg,[e] start from some field Agg,[d]

where z is the parent of y in ) and d is an ancestor of e. There are at most hp
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ancestors of e, and for a fixed field Agg, [d] there is at most one pointer from Agg, [d]
to Agg,le]. Hence the total number of pointers is bounded by |Q|-|D|-hp. It follows
that the total size of Aggg is of order O(|Q| - |D| - hp). O

Examples 5.15 and 5.16 show that the bounds in Theorem 5.17 and Theorem 5.19
are sharp. It should be noted that in both bounds we could replace the size |@| of

the query by the number of variables occurring in Q.

5.3 Complete answer formulae for local tree queries

So far, we have introduced complete answer aggregates for the restricted class of
simple tree queries only. In this section we briefly discuss how the same concept can
be used for more general classes of queries. One important characteristics of the
notion of a complete answer aggregates is the principle that the administrational
information that is stored in a field Agg,[d] only concerns the possible instantiations
of the children of the variable z in the query (). This restriction can be interpreted
as a form of locality. Since we do not want to give up the principle, the class of
(-local constraints seems to represent a natural limit for representation techniques
based on the idea of a complete answer formulae. The characterizations of complete
answer formulae for local tree queries obtained in this section will be used later when

treating the special case of partially ordered tree queries.

Let @ be a local tree query. Suppressing all constraints of @) that are not Q-
simple we obtain a simple tree query )s. Let Ag, be the unique complete answer
formula for @5 (cf. Theorem 5.10). Each subformula d,(d) of Ag, describes the set of
possible instantiations of the descendants of z under the hypothesis that x is mapped
to d. These instantiations respect (Q-simple constraints, but not necessarily the
suppressed ()-local constraints. To circumvent this problem we add a new restrictor
condition to each formula §,(d) that guarantees that the instantiation of the children
Y1,---,yn of zp in @ satisfies the @-local constraints imposed on (zg,y1,...,yn) in
Q. In principle the syntactic form of restrictor conditions is arbitrary, as long
as they correctly encode (Q-local constraints. For the sake of specificity we use
an explicit enumeration of admissible instantiation tuples for (yi,...,ys) in the
following definitions. The following definition captures the syntactical form of an
appropriate class of formulae, while the notion complete answer formula defined

afterwards captures the semantics.

Definition 5.20 Let Q = (¢ A ¢, Z) be a local tree query, let x € f(Q). The set of
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dependent Q-instantiation formulae for x is inductively defined as follows. Assume
that hg(z) = 0. For each non-empty set D, C D, the formula

A(’”' \/a:—

deD,

is a dependent @-instantiation formula for z. Now assume that hg(z) > 0. Let
0 # D, C D. Let {yi,-..,yn} denote the set of children of x in @. For each
d € D, and each child y;, let Ag)’y") be a dependent instantiation formula for y;
with set of target candidates D% (y;). If R%(yi,...,yn) is a non-empty subset of
D%(y1) x -+ x D%(yp,) such that for all i = 1,...,h and all d; € D%(y;) there exists

atuplein RY(y1,...,ys) where the i-th component is d; (“contribution obligation”),
then
h
A =\ (@=dAr,...,y0) € RS, ,yn) A [\ ATY)
deD, i=1

is a dependent (Q-instantiation formula for z. Besides the above formulae, there are

no other dependent ()-instantiation formulae for x.

In the sequel, Rj(yi,...,yn) will be called the restrictor set of the subformula
z=dA (yi,-.-,yn) € R%(y1,...,yn) A /\f:1 Agf’yi). The condition that restrictor
sets are always non-empty ensures that partial instantiations of dependent instan-
tiation formulae can be extended to total instantiations (see below). The second
condition on restrictor sets, which will be called “contribution obligation” for the
sake of reference, ensures that no target candidate d; € D3(y;) is isolated, i.e. every
target candidate d; € D7(y;) contributes to at least one answer. As in the case

of simple tree queries we use expressions A(IO’ ;: ) and 6(“’ ’z’“)) for refering to

subformulae of a dependent )-instantiation formula A(IO

Definition 5.21 Let @ be a local tree query. The set of partial (total) instantia-
tions of a dependent @-instantiation formula A%° is inductively defined as follows:
for each subformula 3" the mapping {(zo,do)} is a a partial instantiation of Af°.

Let 6530’ z’“)) be a subformula of A% of the form

h

T = dk A (y17 N 7yh) € Rz:(ylﬂ N 7yh) A /\ Agikh%)
i=1
(where y1,...,y is the sequence of children of zp in Q). Assume that v is a

partial instantiation of A?° such that {(z;,d;) |7 = 1,...,k} C v and v does not
instantiate any child y; of zj. For each tuple (e1,...,e) € R;: (y1,...,yn) the
mapping v U {(y;,e;) | 1 < i < h} is a partial instantiation of A¥°. There are
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no other partial instantiations besides those defined by the above rules. A partial

instantiation v of A?0 is a (total) instantiation iff v contains a pair (z,d) for every

x € fr(A%0).

Definition 5.22 Let (Q be a local tree query, with root zo. A dependent Q-
instantiation formula AEIO) for zq is called a complete answer formula for @ iff

each answer to (@ is a total instantiation of AEIO) and vice versa.

Theorem 5.23 For each local tree query () a complete answer formula Ag is

unique modulo associativity and commutativity of “A” and “V7.

The proof is a trivial variant of the proof of Theorem 5.10 and can be found in the
Appendix. It can be shown that a complete answer formula for a given local tree
query always exists. For the special case of ordered tree queries we shall give an

algorithm for computing a complete answer formula in the next section.

Lemma 5.24 Let Ag be a complete answer formula for the local tree query Q.

Then two subformulae of Ag of the form 5&25::33 and 5&5;;:;:)) are

always identical modulo associativity and commutativity of “A” and “V7.

Again, the proof is a simple variant of the proof for the corresponding Lemma 5.11
and can be found in the Appendix. The crucial observation is that Lemma 4.11
holds for local queries as well. On the basis of the lemma we may write subformulae
6525”;’;’;”:_’11:;)) in the form 6, (d) and subformulae of the form Agzz::g)y) in the
form A, 4, (d).

At the end of this section we want to show that the restrictor conditions of
a complete answer formula for a local tree query ) are equivalent to the ()-local

(non @-simple) constraints imposed on the respective variables in (). A definition

is needed before.

Definition 5.25 Let @@ be a local tree query, let d,(d) be a subformula of the
complete answer formula Ag for @, let y1,...,yn be the children of z. A sequence
of nodes (ey,...,en) satisfies a constraint r(z,y;,,...,y:, ) (where {yi,,...,yi } C

{y1,...,yn}) relative to d iff rp(d,e;,,...,e; ) holds in D.

Lemma 5.26 Let Q = (Y Ac,Z). In the situation of Definition 5.25, let R denote
the restrictor set of 6,(d), for i = 1,...,h let D; be the set of target candidates
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for y; in Ay, (d). Then R is the set of all tuples (e1,...,en) € D1 X -+ x Dy,
where (e1,...,ep) satisfies all non Q-simple constraints r(x,y;,,.-.,Y;.) (where

{Wirs- v} S Y1, -5 yn}) of ¢ relative to d.

Lemma 5.26, which is proven in the Appendix, shows that we may use the Q-
local constraints itself as restrictor formulae. As a matter of fact this is what we
expect. Though this form of representation seems natural and yields a compact
representation it has the disadvantage that it might be far from obvious which
tuples of target candidates for the children variables actually satisfy the relevant
set of @-local constraints. On the other hand, a naive enumeration of all elements of
the restrictor set might lead to serious space problems, something that we wanted
to avoid with the use of answer aggregates. Since the optimal representation of
restrictor sets depends on the concrete type of Q-local constraints that are used we
do not continue the discussion on this general level. Instead we treat the special

case of ordered tree queries in more detail.

5.4 Complete answer aggregates for partially ordered tree

queries

Partially ordered tree queries represent a special subclass of local tree queries, hence

all results of the previous section can be applied.

Theorem 5.27 For each ordered relational document structure D and each par-
tially ordered tree query @) there exists a complete answer formula Ag which is

unique modulo associativity and commutativity of “A” and “V”.

Proof. The uniqueness part is a special instance of Theorem 5.23. In Section 6

we give an algorithm that computes a complete answer formula for Q. O

It remains to find a suitable representation for restrictor sets that can be used
to immediately enumerate possible instantiations and leads to reasonable space

requirements.

Consider a partially ordered tree query Q. Let Qs denote the simple tree query
that is obtained by suppressing all left-to-right ordering constraints and let Aggg
be the complete answer aggregate for Q5. We assume that the fields Agg, [e] of each
record Agg, are ordered via pre-order relation <£T of the nodes e. Similarly pointer

lists of the form Agg, [d,y] are ordered following the ordering of their address fields.
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These assumptions will help to find a simple encoding for left-to-right ordering

constraints.

To illustrate the idea, consider a pointer Agg,[d,y;[l]] of Agg,_ pointing to a
field Agg,,[e:] as indicated in the figure below. Assume that @ has a constraint
¥i <ir y;. Now let Agg,[d,y;[m]] be the left-most pointer in Agg,[d,y;] with an
address field Agg, [e] such that e; <Pet

od
CandX |

. yi‘...7 ‘ Y

m
o seerneeny

Candy | . [87] . | o cany [ [SHINTIRT] -

In this situation, all pointers Agg, [d,y;[m']] with index m' > m have address fields
Agg,.[en] such that e; <P e, and these are the only pointers of Agg,[d,y;[m']]
with an address field satisfying this condition. In fact, by our ordering convention
for fields we have e Sz? e for each such m' and, since e; <P e, Lemma 2.3 shows
that e; <ll2 em' . This shows that all pointers have the required property. By choice
of m, no other pointer can satisfy the condition. Hence, in order to encode the
left-to-right ordering constraint y; <;,» y; subject to the choices x = d and y; = e;
it suffices to introduce a “horizontal” pointer from Agg,[d,y;[l]] to Agg,[d, y;[m]]

as indicated in the following figure.

ed
Candx |

- V.\--MLM'"-;«\\\'&\Q

con[ 5[] - om, []SHENAL -

The pointer is interpreted in the following way. When instantiating x with d and
y; with e;, we may use exactly the pointers Agg, [d,y;[m]], Agg,[d,y;[m + 1]],...
for instantiating y;. Of course, when we proceed in this way we have to introduce
horizontal pointers for all possible instantiation values of variables and all left-to-

right ordering constraints. We illustrate the complete picture with an example:

4For the sake of simplicity we assume that such a pointer exists. The discussion of the other

case, where we have to erase Agg,[d,y;[l]], is postponed to Section 6.1.

34



Example 5.28 Let D have the following form (we ignore labels and textual con-
tents) where the left-to-right ordering between the children of dp is as depicted in
the figure.

The complete answer aggregate for the partially ordered tree query @ of the form

(z<AQyr Ao Az <Qys Ayr <ir Y2 A1 <ir Y3, (T, Y1, Y2,y3)) is the following object.

-do

Aggy

%,{4

4 Ca 4
Agy,|dy|dy|d3[ds|  AdDy,

WEALALAEA

Since there are two left-to-right ordering constraints for y1, y1 <;» y2 and y1 < y3,
with each vertical pointer of Agg[dy, y1] (line 1) we associate two horizontal pointers
(lines y» and y3). When instantiating y; with ds, for example, we may instantiate

y2 using the pointers to ds, ds or ds, and similarly for ys.

Definition 5.29 Let Q = (¢ Ac, &) be a partially ordered tree query. An aggregate
for @ is a family Aggg of records, {Agg, | * € #}. Each record Agg, is composed
of an ordered sequence of subfields Agg,[d], the ordering is given by the pre-order
relationship of nodes d in D. For each child y; of  in @, the field Agg,[d] contains a
two-dimensional array Agg,[d,y;]. With Agg, [d, y;[l, *]] we denote the I-th column.

1. The first entry Agg,[d,y:[l,v]] of Agg,[d,y:[l,*]] is a “vertical” pointer, i.e., a
pointer to a field of the form Agg, [e;]. Node e; is called the address node of
Agg.[d,yi[l, #]]- Address nodes of distinct columns are distinct.

2. For each left-to-right ordering constraint y; <;» y; of @ there is one additional
entry Agg, [d,y:[l,y;]] in Agg,[d,yi[l,*]] that represents a pointer to the first
column Agg, [d,y;[m, *]] with an address node e such that e; </ e. There are

no other entries in Agg,[d, y;[l, *]].

Definition 5.30 Let Q = (¢ A ¢, %) be a partially ordered tree query, let Ag
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denote the complete answer formula for Q. A complete answer aggregate for @ is

an aggregate {Agg, | x € &} for @) that satisfies the following conditions.

1. Agg, has a subfield Agg,[d] iff Ag has a subformula d,(d),

2. an array Agg,[d,y;] has a vertical pointer with address field Agg,.[e] iff 0. (d)

has a subformula d,, (e).

Remark 5.31 Ignoring the trivial case of an unsatisfiable query it is again easy to
see that a complete answer formula A for a partially ordered tree query () uniquely
determines the corresponding complete answer aggregate Agg,. Conversely, given a
complete answer aggregate Agg, we may reconstruct the complete answer formula
Ag in the following way: to obtain Ag
— read the record Agg, of the root z of ) as the disjunction of the
formulae associated with the subfields Agg,[d],
— associate with each field Agg,[d] the conjunction of
x = d with the horizontal pointer condition (see below)
and the formulae associated with the lists of pointers,
— associate with each list of pointers Agg,[d, y] of a given field Agg,[d] the
disjunction of the formulae associated with the address fields of the pointers.
Assume that Agg,[d] has the pointer arrays Agg,[d, y1], ..., Agg.[d, y] for the chil-
drenyy,...,yp of x in Q. The horizontal pointer condition has the form (y1,...,yn) €

R%(y1,...,yn) where R%(y1,...,yp) contains all tuples (e1,...,ep) that satisfy the

following conditions:

1. there exist pointer columns Agg,[d,y1[l1,*]],..., Agg,[d, yn[ln, *]] where ver-

tical pointers have address nodes eq,...,ep,

2. for each horizontal pointer Agg, [d,y;[l;,y;]] with address Agg,[d,y,[k, *]] we
have k <1;.

Clearly, the sets R%(yi,...,yn) are exactly the restrictor sets defined in Defini-
tion 5.20. Before we show how to compute a complete answer aggregate for a

partially ordered tree query we want to give an upper bound for the size.

Remark 5.32 Let Q = (¢ A ¢, Z) be a partially ordered tree query, let Ag denote
the complete answer formula for Q. To each pointer p = Agg,[d, y;[l, s]] of Ag we
assign a unique triple (L1(p), L2(p), L3(p)) as follows.
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e Ly(p) is the address node of the vertical pointer Agg,[d, y;[l,v]] of the column

e We define Ly(p) := d. Recall that d is always an ancestor of Ly (p).

e L3(p) is the following atomic subformula/constraint of @: if s = v (p is a
vertical pointer) then Ls(p) := 2 <(t) y; is the formula of Q that expresses
that y; is a child of z.

If s = y;, then L3(p) is the left-to-right ordering constraint y; <;r y;.

Clearly distinct pointers are mapped to distinct triples. Hence the total number of
pointers of Ag is bounded by the number of possible triples. This yields a bound
|D|-hp - |@Q| for queries with soft edges, and a bound |D|-|Q| for rigid queries, or for
labeling-complete queries over non-recursive databases. This can be seen as follows.
There are |D| possibilities for L (p). L2(p) must be an ancestor (a parent for rigid
queries) of Ly (p). If Li(p) is fixed, there are hp possibilities for La(p), and just
one possibility for rigid queries, or for labeling-complete queries over non-recursive
databases. Since L3(p) is an atomic subformula of @, there are |@| possibilities for

Ls(p).

It follows that the bounds for the size of a complete answer aggregate that we

obtained for simple tree queries hold for partially ordered tree queries as well.

Theorem 5.33 Let D be an ordered relational document structure and let () be
a partially ordered tree query. Then the size of the complete answer aggregate for
Q is of order O(|D| - hp - |Q|). If Q is rigid, or if Q) is labeling complete and D
is non-recursive, then the size of the complete answer aggregate for Q) is of order

o(D[-1QI)-

6 Computation of complete answer aggregates for

tree queries

In this section we want to prove the following central results.

Theorem 6.1 Let D be a relational document structure, let Q) be a tree query. If
Q is rigid, or if D is non-recursive and @ is labeling-complete, then it is possible
to compute the complete answer aggregate for Q in time O(|Q| - |D| - log(|D|)) and
space O(1Q| - |D)).
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Theorem 6.2 Let D be an ordered relational document structure, let () be a par-

tially ordered tree query. Then it is possible to compute a complete answer aggregate

for Q in time O(|Q| - |D| - hp - log(|D])) and space O(|Q| - |D| - hp).

Before we describe the algorithm we characterize fields/pointer columns of aggre-
gates that cannot contribute to any instantiation (first section). In the algorithm,
these fields and pointer columns will be eliminated by a dedicated sub-procedure.
The algorithm uses a special index structure for D that we describe in the second sec-
tion. Hereafter, the algorithm itself together with its sub-procedures is described.
In section four we discuss complexity issues and add an important optimization.

The last part of this section contains the soundness and completeness proof.

6.1 Isolated fields and pointer columns

Given a partially ordered tree query @, our algorithm first tries to compute a com-
plete answer aggregate for the modified query @ that is obtained by suppressing all
left-to-right ordering constraints of (). In this situation the algorithm will sometimes

introduce “isolated” fields that do not contribute to answers.

Definition 6.3 A field Agg,[d] of an aggregate for @ is upwards isolated if x is
not the root of @@ and if there does not exist any vertical pointer with address
field Agg,[d]. A field Agg,[d] is downwards isolated if for some child y of = the
array Agg,[d,y] is empty. A field is isolated if it is upwards isolated or downwards

isolated.

As an illustration consider the following aggregate.

V .d

Candy | v, Y2 Y1 Y2

Cand
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Field Agg,, [e] is upwards isolated. There is no value for z that would allow for an

/
—

instantiation of y; with e. Field Agg,[d] is downwards isolated. An instantiation
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of x with d cannot be completed since there exists no possible instantiation for y»
in this case. A similar problem may arise with pointer columns in connection with

horizontal pointers.

Definition 6.4 A pointer column Agg,[d, y;[l, *]] is right isolated if the address
node of its vertical pointer Agg,[d,y;[l,v]] is a node e; such that for an ordering
constraint y; < y; there is no address node e of y; in Agg, [d,y;] such that e; <P
e. A pointer column Agg,[d,y;[l, ] with address field Agg, [e;] is left isolated
if there exists a constraint y; <; y; in @ and if the left-most horizontal pointer

Agg.d,y;[1,y;]] points to a column Agg,[d, y;[k, ]] such that k& > [.

In this situation, an instantiation of y; (y;) with e; (resp. e;) cannot contribute
to a successful instantiation of Agg. As an example, consider the following record,

where () is assumed to have a constraint y; <;» ys.

ed
y1 y2
Candx 1 2 345 1 2 3 45
s
%o/qr%-
ST/ VIVIVS
Candy, | e, &) & & & Candy, | &5/ &/| & &|

Assume that e <£ e4- In this case an instantiation of y; with e4 or e5 cannot be
completed with a suitable instantiation of y» such that the constraint y; <. y2 is
satisfied. The columns Agg,[d,y1[4, *]] and Agg,[d,y1[5, ¥]] are right-isolated. We
say that Agg,[d,y1[4,y2]] and Agg,[d,y1[5,y:2]] are “dangling” pointers with value
1. Assume furthermore that eg is the first element e of the list eg,...,e1q such
that e; <ll2 e. In this situation is is clear that an instantiation of ys with eg or e7
cannot be completed with a corresponding instantiation of ;. The pointer columns

Agg.ld,y2[1, #]] and Agg,[d, y2[2, %]] are left-isolated.

In the description of the algorithm we shall use dangling pointers with value L.

The adaption of the definition of an aggregate for @) is straightforward.
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6.2 Index architecture

The algorithm for computing a complete answer aggregate for a given query uses
two index structures for D as elaborated in this section. In order to facilitate the
index access we shall assume that D is an ordered relational document structure.
Even if such an ordering does not exist a priori, an artificial ordering can always be

imposed on D. This turns out to be advantageous.

In the sequel, we assume that a special finite subset K of ¥*, called the set of
key words, is defined. Queries are assumed to be restricted in the sense that for
each formula w in z occurring in a query always w is a key word. Each formula
of the form w in z (w € K), M(z) (M € T) or r(z) (r € R) will be called a
unary indezx formula, formulae of the form r(z,y) (r € R) are called binary index
formulae. When we abstract from the variables that are used in the formula we
talk about (unary resp. binary) index predicates®. Note that formulae of the form
z dy,z <4ty as well as left-to-right ordering constraints are not treated as index
formulae. The motivation for this distinction is the following: we assume that the
information that describes the tree structure of the database (i.e., the actual set
of nodes, children relationship, left-to-right ordering) is separated from the index

structure and stored independently.

Path selection index

The path selection index is used to retrieve for each variable that represents a leaf
of the query a finite set of so-called inverted partial document paths. This step will

be the basis for the algorithm to be described in the next section.

Definition 6.5 An inverted partial document path is a non-empty sequence of
nodes (d;,d;_1,...,dp) such that (do,...,d;) is a partial document path. The ini-
tial node of an inverted partial document path (d;,d;—1, . ..,do) is the bottom-most
node d;. An inverted query path has the form (zy,...,xzq) where (xg,...,zt) is a

(complete) path of Q.

An inverted partial document path will simply be called an inverted document
path. The path selection index contains for each unary index predicate p a list II,, of

inverted document paths.5 II, is assumed to be ordered via pre-order relationship

5Theorems 6.2 and 6.1 and the algorithm to be described below refer to partially ordered tree

queries only, therefore we can restrict ourselves to unary and binary predicates.
6Note that it suffices to store the initial nodes of the paths.
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of initial nodes. The lists II, are assumed to be “sound” and “complete” in the

following sense:

Remark 6.6 A node d € D is an initial node of an inverted document path in

II, for unary index predicate p if and only if d satisfies the predicate p in D, i.e.

D |= pld].

Clearly the number of inverted document paths is bounded by |D|. For distinct
unary index predicates p and p’ the intersection of the lists II, and II, can be
computed in time O(]D|) using a simultaneous traversal of II, and II,; along <5).

This can be generalized to finite intersections.

Lemma 6.7 Let pi,...,p, be unary index predicates. The intersection I, N...N

I, can be computed in time O(n - |D|).

Given the query @, each call to the path selection index will be triggered by an
inverted query path (zy,...,zo). In order to simplify the presentation of the follow-
ing algorithm we shall assume that the index access directly yields the intersection
I, N...NII,, where pi(zk),...,pn(zk) is the complete list of unary index formulae

for variable x in @. From Lemma 6.7 we get

Lemma 6.8 The total time-complexity for the access to the path selection index for

a query Q is bounded by O(|Q] - |D|).

The alignment index

The algorithm will check if an inverted document path 7p that results from the call
to the path selection index for an inverted query path 7g = (@, ..., %) is conform
with the conditions that are imposed on the variables zg,...,x; in Q). The check
is organized as a bottom-up alignment process. This latter process is supported by

the alignment index.

Remark 6.9 For theoretical estimation of the time-complexity of the algorithm to

be described in the following section the following assumption will be made.

1. for each node d and each unary index predicate p it is possible to check in

time O(log(|D])) if D |= p[d], and

2. for each pair of nodes d; — *d; and each binary index predicate r it is possible

to check in time O(log(|D|)) if D |= r[d;, d;].
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For unary index predicates p the required test can be implemented by assigning to
p a list L, of all nodes of D that satisfy p. If L, is ordered along the pre-order
relationship of nodes and if it is accessed by binary search the requested bound is

obtained.

From a theoretical point of view, a similar approach is possible for binary index
predicates r, just using a list of lists, L,.. The idea is to store for each d € D the
list L,.(d) of all its ancestors d’ such that D |= r[d,d']. Empty lists L,(d) can be
omitted. Note that the length of each list is restricted by hp. Given (d;, d;) we may
first search for a sublist L,(d;) of L,, in a second step for an element d; in L,(d;).

Both searches may be binary.

Surely this strategy is not optimal in concrete cases. However, since all binary
index predicates are “generic” relations r € R is seems hard to suggest a better

approach that works in full generality.

Since we assume that the number of distinct index predicates is finite and con-

stant the above assumptions lead to the following result.

Lemma 6.10 Given a pair of document nodes (d;,d;) where d; is an ancestor of
d;, and a set of index predicates, P, it is possible to check in time O(log(|D|)) if d;
satisfies all unary predicates in P and if (d;,d;) satisfies all binary index predicates

mn P.

6.3 The algorithm

In this section we describe an algorithm that computes a complete answer aggregate
for a tree query Q. The algorithm accepts partially ordered tree queries (this
includes simple tree queries) that may have rigid and soft edges. For more restricted
input problems, such as rigid tree queries or simple tree queries, structural simplicity
is automatically taken into account. As in the previous section we shall generally

assume that on D a fixed pre-order relationship <3, is given.

In the following description of the algorithm, two phases may be distinguished.
In Phase 1, for a given input query ) an aggregate for (), Agg, is created that
represents an extension of the complete answer aggregate for Q. The aggregate
Agg may contain isolated fields and pointer columns. Two stacks will be used to
collect these isolated elements. In Phase 2, isolated fields and pointer columns

are systematically removed from Agg and the complete answer aggregate for @ is
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obtained.

Phase 1 (aggregate construction)

In this phase, two procedures are applied in iterative order. In the first step,
which consists of the main procedure INCLUDE-PATHS with two sub-procedures
SELECT-ANCESTORS and CREATE, we start with an empty Q-aggregate and
enter in bottom-up manner the inverted document paths that are received from
the access to the path selection index for the inverted query paths. Records,
fields, and vertical pointers are created by need. In the second step, the procedure
INTR-HOR-P computes downwards isolated fields and includes horizontal pointers

for partially ordered tree queries.

Procedure INCLUDE-PATHS(Q, Agg, Isol-F)
% Compute an aggregate Agg for query @) that is
% an extension of the complete answer aggregate for Q.

% Compute list Isol-F of upwards isolated fields in Agg

begin
Agg = 0;
Isol-F:= {);
for each inverted path mg := (xk,...,zo) of Q % x, leaf, zp root of Q
begin
Agg:= AggU {Agg,, } where Agg, is an empty record
marked as new; % (1)
IT := set of inverted document paths obtained from access to path selection
index for mg; % (12)
for each path m = (dm,dm—1,...,do) of II % do topmost node
begin
introduce a field Agg,, [dn];
apply SELECT-ANCESTORS(Agg, Tk, dm, (dm,dm—1 . ..,do), Isol-F);
end
if one of the new records Agg,, is empty then
fail; % T3 no document path matches = no solution
else
mark all new records as old; % 4 preparation for next query path
end
return Agg;

return Isol-F;

end;
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Procedure SELECT-ANCESTORS(Agg,y,di,{di,...,do), Isol-F)
% Enter the inverted partial document path (d;, ..., do)
% into Agg (if possible), begin with d; in y.
% Update list of isolated fields Isol-F.
begin
if (y = root of @ or i = 0) then
begin
if y is not root of ) then % t5, Agg, [d:] upwards isolated
add Agg,[d;] to Isol-F;
else stop; % alignment of the path is finished successfully
end;
else begin
x := parent of y in @Q;
if y is a rigid child of z in @ then
begin
if (di,d;—1) (d;) satisfy binary (unary) index formulae for
(y,z) (z) in Q then
apply CREATE(z,d;—1, Agg, y,d;,{(d;, . ..,do), Isol-F);
else add Agg,[d;] to Isol-F;
end
else % vy is a soft child of z in Q
begin
Node-Found := false;
for each node d; in {d;_1,...,do}
if (d;,d;) (d;) satisfy binary (unary) index formulae
for (y,z) (z) in Q then
begin
Node-Found := true;
apply CREATE(z,d;, Agg,y,d;, (d;, . ..,do), Isol-F);
end
if not Node-Found then
add Agg, [d;] to Isol-F}
end;
end;

end;

Procedure CREATE(z,d;, Agg,y,d;, {(d;,...,do), Isol-F)
% Add node d; to field Agg, (if possible) with pointers to node

% d; in Agg,. If d; did not already exist, continue with
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% remaining nodes in (d;, ..., do).
% Update list of isolated fields Isol-F.
begin
if record Agg, does not exist then
begin
introduce empty record Agg, marked as new;
introduce Agg,[d;] with empty pointer arrays
Agg.[dj, 2] for the children z of z in Q;
add pointer column Agg, [d;,y[1, *]] to Agg,[d;, y];
introduce a vertical pointer from Agg,[d;,y[1,v]] to Agg,[d:];
apply SELECT-ANCESTORS(Agg, z,d;,{(d; ...,do));
end
else if Agg, exists and is marked old then
begin
if field Agg,[d;] exists then
begin
add a new pointer column Agg,[d;, y[k, *]] to Agg,[d;,yl;
% at this step the correct ordering of pointer columns
% mirroring the order of address nodes has to be respected
introduce a vertical pointer from Agg,[d;,y[k,v]] to Agg,[d:];
% te
end
else add Agg, [di] to ISOL-F; %tr, Agg,ld;] upwards isolated
end
else if Agg, exists and is marked new then
begin
if field Agg,[d;] exists then
begin
add a new pointer column Agg,[d;,y[k, *]] to Agg.[d;,y];
% at this step the correct ordering of pointer columns
% mirroring the order of address nodes has to be respected

introduce a vertical pointer from Agg,[d;,y[k,v]| to Agg,[d:];

% ts
end
else % Agg,[d] does yet not exist
begin
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introduce a field Agg, [d;] with empty pointer lists
Agg,[d;, z] for the children z of z in Q;
% the correct ordering of fields has to be respected
add a pointer column Agg,[d;, y[1, *]] to Agg,[d;,y];
introduce a vertical pointer from Agg,[d;,y[1,v]] to Agg,[d:];
apply SELECT-ANCESTORS(Agg, z,d;,{d; ...,do));
end;
end;

end;

Let us summarize the procedures. Given the query @, inverted query paths are
treated in consecutive order. For each inverted query path mg with initial node zy,
the access to the path selection index yields a set of inverted document paths, II
(f2). If P denotes the set of all index formulae for z;, in @, the set II represents the
intersection of all the sets of document paths that are associated with predicates
p € P in the path selection index, as described in 6.2.7
Given an inverted path 7 € II, the inverted query path mg is recursively matched
against 7 in a bottom-up manner (i.e., from the leaf to the root of @), checking at
each step if the relevant index formulae are satisfied. The starting point for each
single matching step is a situation where we successfully aligned two prefixes of the
inverted paths m and mg ending at nodes d; and y respectively. If we have reached
the root either of D or of @) the process stops (in such a situation, if we have not
reached the root of (), the actual field is upwards isolated and moved to the stack
of isolated fields, {5). Otherwise the possible choices for the next matching step
depend on whether y is a rigid child or a soft child of its parent node z in @. In the
former case we obtain (at most) one subcall to CREATE, where we climb from the
aligned children nodes y and d; to the parent nodes in mg and 7 respectively. For
soft edges, the parent node z of the query paths can possibly be aligned with several
ancestor nodes d; of d;, and for each such ancestor we have one call to CREATE.
The subprocedure CREATE builds up the aggregate, introducing new arrays, fields,
and vertical pointers by need. We shall assume that vertical pointers are always
bi-directional. This will simplify the elimination of isolated pointer columns in

Step 2.

A remarkable feature of the algorithm, located in subprocedure CREATE (cf.

"If P is empty, then TI is the set of all inverted paths in the document database. Note that

these pathological cases do not destroy the worst-case time complexity of the algorithm.

46



16 and Tg), is the following. Whenever we encounter a field Agg,[d] that already
exists, after introducing an appropriate pointer we stop. The intuitive justification
is that all the structure (pointers and fields) that we would obtain by continuation
of the alignment process has already been included in the aggregate. This follows
from the fact that prefixes of (top-down) document paths that end at the same node
must necessarily be identical. Hence, when meeting an existing field Agg,[d], the
prefix of the actual document path that has still to be consumed is identical to the
prefix of another path that had been aligned earlier, starting from the same field of
the aggregate. Since the result will necessarily be the same, we do not have to do
the work twice. Formally it follows that the subprocedure SELECT-ANCESTORS
is never called with the same pair (y, d;) twice, which is important for the estimate

of the worst-case complexity of the algorithm that we shall give below.

A record Agg, is marked “old” (resp. “new”) if it has (resp. has not) been created
before the treatment of the actual query path 7o (f1,74). A particular situation
arises when we try to enter a new field into an old record in the alignment process
(f7). It is simple to see that such a field cannot contribute to any instantiation
of the aggregate since it cannot be combined with the document paths that we
introduced when treating the previous query paths. In other words, such a field
would necessarily be downwards isolated. For this reason it is not introduced,

which means that the previously visited field is upwards isolated.

If at the end of the treatment of a query path mg one of the new records Agg,, is
empty after all document paths = € II have been considered (f3), then the aggregate
cannot be instantiated, i.e., the query has no answer, regardless of possible future

steps. We stop with failure in such a situation (we might output z to the user).

We should add a general remark on the use of stacks for isolated elements (i.e.,
fields or columns). When adding (a pointer to) an element to one of the two stacks,
we colour the element in the aggregate using a marker “yellow” that indicates that
the element is on the stack. Whenever we say that an element is added to the stack
we always mean that we first check if the element is marked “yellow”. In this case

the element is not added again to the stack.

We now describe the subprocedure that introduces horizontal pointers. Since
we have to visit each pointer array the procedure is also used to compute the
set of downwards isolated fields of Agg. The remaining subpart of the procedure
(t9) becomes vacuous in cases where () does not have ordering constraints. The

procedure represents the second and final step of Phase 1.
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Procedure INTR-HOR-P(Q, Agg, Isol-F, Isol-PC)
% Compute for query Q and aggregate Agg set of isolated fields, isolated
% pointer columns and introduce horizontal pointers into Agg.
begin
Isol-PC:= empty stack;
for each array Agg, [d,y:] of Agg;
begin
if Agg,[d,y;] = empty array then
add Agg,[d] to Isol-F; % field downwards isolated
else
for each constraint y; <;» y; of Q % to
begin
for each column Agg, [d, yi[l, *]] of Agg,[d,yi]
begin
e; := address node of Agg,[d, yi[l,v]];
if exists k := minimal number s.th. address node e of
Agg.[d, y;[k, v]] satisfies e; </, e then
begin
ifl=1and k > 1 then % left isolated columns
for all k' < k add Agg,[d,y;[k,*]], to Isol-PC;
introduce hor. pointer Agg,[d, yi[1, y;]] with address Agg,[d, y;[k, #]];
end
else
begin
set pointer Agg,[d, yi[l, y;]] to L;
add Agg,[d, yi[l, #]] to Isol-PC; % right isolation
end
begin
end
end
return Agg;
return Isol-F;
return Isol-PC;

end;

The procedure has as input the query @, the aggregate Agg and the stack of
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isolated fields Isol-F computed in the first step. It visits each array Agg,[d,y;] of
the aggregate. If an array is empty, the corresponding field is downwards isolated
and added to the stack of isolated fields. In the other case, all relevant left-to-right
ordering constraints y; <;, y; are considered. For each pointer column the procedure
tries to introduce the appropriate horizontal pointer. If this is not possible (i.e., for
right isolated pointer columns) a “dangling” pointer is introduced and the pointer
column is added to the stack of isolated pointer columns. When treating the first
pointer column Agg,[d,y;[1, *]] we also check if Agg, [d,y;] contains left isolated

pointer columns. These are added to the stack of isolated pointer columns.

Phase 2 (elimination of isolated fields/pointer columns)

The input for Phase 2 is the aggregate Agg together with the stack of isolated fields
Isol-F and the stack of isolated pointer columns Isol-PC as computed in Phase 1.

In the aggregate, the elements of these stacks are marked “yellow”.

Basically the following procedure is very simple. We take the eliminable elements
from the stacks and erase them. Since the erasure of an isolated element may lead to
new isolated elements the process has to be organized in a recursive way. If during
this process a record Agg, becomes empty, then the procedure stops (FAIL = true).

Otherwise it continues until all isolated fields and pointer columns are erased.

In the presence of left-to-right ordering constraints, the strategy has to be mod-
ified. We do not immediately erase an isolated pointer column that serves as the
address of horizontal pointers. The reason is that we have to re-address these hor-
izontal pointers, using the column that represents the right neighbour as the new
address. With the naive strategy this process possibly would have to be iterated,

we would end up with a quadratic complexity.

Hence, when treating yellow pointer columns that serve as the target of horizon-
tal pointers we proceed in two steps. Instead of erasing the column, we only elimi-
nate the (vertical and horizontal) pointers departing from the column and colour the
column “red” afterwards. Horizontal pointers to red columns are only re-addressed

once, after all yellow elements have been treated (eliminated or coloured).

Procedure CLEAN(Agg, Isol-PC, Isol-F)
% remove isolated fields and pointer columns in Agg, triggering

% new isolated fields and pointer columns.
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begin
FAIL := false;
until FAIL or Isol-PC = Isol-F = {;
begin
if Isol-F # () then
begin
Agg,[d] := pop(Isol-F);
apply ELIM-F(Agg, x,d, Isol-PC, Isol-F, FAIL);
end
else
begin
Agg,[d, y[l, ]] := pop(Isol-PC);
apply ELIM-PC(Agg, z,d,y,l, Isol-PC, Isol-F);
end
end
if FAIL then fail; % query has no answer
for each red pointer column Agg, [d, y[l, *]] of Agg
begin
select minimal I’ > [ where column Agg,[d,y[l', ]] not red;
re-address all horizontal pointers with target Agg,[d, y[l, *]]
using new address Agg,[d, y[l', *]];
erase Agg,[d, y[l, #]];
end;

)

end;

The following subprocedure eliminates/colours isolated pointer columns. We say
that the address field Agg, [e] of a vertical pointer Agg,[d, y[l,v]] is upwards isolated
up to Agg,[d,y[l,v]] iff Agg,[d,y[l,v]] is the only vertical pointer with address field
Agg,le].

Procedure ELIM-PC(Agg, x,d,y,l, Isol-PC, Isol-F)
% eliminate column y[l, *] in field Agg,[d]

% new isolated fields and pointer columns can be created and

% are added to Isol-F and Isol-PC.

begin
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if Agg,[d,y[l,v]] not dangling then
begin
Agg, [e] := address field of Agg,[d, y[l,v]];
if Agg,[e] is upwards isolated up to Agg,[d, y[l,v]] then
add Agg,[e] to Isol-F;
end

erase Agg.[d, y[l,v]];

if Agg.[d,y[l,*]] is the only non-red column of Agg,[d,y] then
add Agg,[d] to Isol-F; % t10

else
begin
if Agg,[d, y[l, *]] leftmost non-red column of Agg,[d,y] then
begin
let Agg,[d,y[l', ]] be the next non-red column of Agg,[d, y];
for each hor. pointer Agg,[d,y[l', y:]] of Agg.[d,yll',*]] % t11
begin
let Agg, [d, yi[k, +]] := target of Agg,[d,y[l', yll;
for each k' < k where column Agg,[d, y:[k’, *]] neither yellow nor
red add Agg,[d, yi[K', *]] to Isol-PC; % f12
end

end

else if Agg,[d, y[l, #]] right-most non-red column of Agg,[d,y] then
begin
let Agg,[d, y[lo, *]] be the largest non-red column smaller than Agg,[d, y[l, *]];
let I1,...,lx =1 denote the indexes of successor columns of
Agg,ld, yllo, ]| ending at Agg, [d, y[l, «]];
for each column Agg, [d,y[l;,*]] (1 <i<k)
for each horizontal pointer Agg,[d, y;[m,y]] with address Agg, [d, y[l;, *]]

add Agg,[d,y;[m, %] to Isol-PC; % t13

end

erase all horizontal pointers departing from Agg,[d, y[l, *]];
if Agg,[d, y[l, #]] is not target of any horizontal pointer then

erase Agg,[d, y[l, #]];
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else colour Agg,[d,y[l, #]] red;
end;

)

end;

During a call to ELIM-PC the vertical pointer of the column is erased, adding
the target field to Isol-F if the field becomes upwards isolated. When treating the
last non-red column of an array we know that after the final removal of red columns
the actual field will be downwards isolated. Hence the field is added to Isol-F (cf.
T10)- In the situation of 112 the columns Agg, [d, y;[k', ]| are necessarily left-isolated
when removing red columns. In the situation of {13 the columns Agg,[d,y;[k', *]]

are necessarily right-isolated when removing red columns.

It remains to describe the procedure that eliminates isolated fields.

Procedure ELIM-F(Agg, z,d, Isol-PC, Isol-F, FAIL)
% eliminate isolated field Agg_[d]
% if record Agg, becomes empty, the flag FAIL is set to true

begin
for each vertical pointer Agg,[d', z[k,v]] with address field Agg,[d]
begin
redefine address of Agg, [d', z[k,v]] := L;
add Agg,[d, z[k, «]] to Isol-PC;

end

for each child y of z in Q
for each column Agg, [d, y[l, *]] of Agg,[d, ]
begin
Agg, [e] := address field of Agg, [d,y[l,v]];
if Agg, [e] is upwards isolated up to Agg,[d, y[l,v]] then
add Agg,[e] to Isol-F;
erase Agg..[d,y[l, *]]

end

erase Agg,[d];
if Agg, = empty record then
FAIL := true;
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end;

6.4 Complexity and practical optimization

Before we state the main complexity result we start with some general remarks.

Remark 6.11 The pre-order relationship <Il,)r on D can be represented by assigning

to every node d a natural number ord(d) as identifier so that
ord(dy) < ord(ds) iff di <pr ds.

We assume that the comparison of two natural numbers is of constant-time com-
plexity.® Procedure INTR-HOR-P also includes tests d; <l’2 ds. For these tests we
use a supplementary pointer structure: each node d € D has a pointer to the node
e = minsucc (d) that represents the first successor of d with respect to <] that is
larger than d with respect to left-to-right ordering. In other words, we have d <2 e
and there is no node e’ <£T e such that d <l€ e'. With this prerequisite, Lemma 2.3
allows to reduce the left-to-right ordering to the pre-order relationship: in fact the
lemma shows that for di,d, € D we have dy <[} dy iff minsucc (dy) <P d» and the

latter formula can be tested in constant time.

Remark 6.12 Let E C D and assume that the pre-order relationship “<B,” on
E is encoded using a binary tree with height log(|D|) where the elements of E are
represented by the leaves. Assume that each node is coloured black, yellow, or red.

Then the following operations can be computed in time O(log(|D])):

e find the first predecessor (successor) (w.r.t. “<D”) of a given element that

has a given colour,

e check if a given element is the only (right-most, left-most) element of a given

colour,

e change the colour of a given element.

8In fact, if we do not impose an upper bound on the natural numbers, the time complexity of
the comparison is O(log(n)). But it is a reasonable and canonical assumption in database theory
to impose an upper bound on the size of databases, e.g. that the database should not contain
more than 232 nodes. Then we can rely on efficient hardware treatment for the comparison of two

32-bit integers.
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The operations can be implemented by adding to each inner node of the binary tree
a label “black” (“yellow”, or “red”) iff it has a successor leaf that has the respective

colour.

We may now state the main complexity result.

Theorem 6.13 The worst-case time-complezity of the algorithm described in Sec-
tion 6.3 is of order O(|Q| - |D| - hp - log|D|). If Q is rigid, or if D is non-recursive
and Q is labeling-complete, then the time-complexity is O(|Q| - |D| - log(|D|)).

Proof. Lemma 6.8 shows that we may ignore the access to the path selection

index for obtaining the above bound.

First we consider Step 1 of Phase 1 of the algorithm.
As we noted in the description of the algorithm the total number of calls to pro-
cedure SELECT-ANCESTORS is bounded by |Q| - |D|. Each non-trivial test in
SELECT-ANCESTORS needs time bounded by O(log(|D|)) (cf. Remark 6.9), the
number of tests in one call to SELECT-ANCESTORS, similarly as the number of
possible calls to CREATE, is bounded by hp. Let us investigate each of the steps
of procedure CREATE. Obviously, given z € fr(Q) it is possible (e.g., by adding
appropriate information to the query) to check in constant-time if a record Agg,
exists and to determine whether it is marked as new or old. Using binary search it
takes time O(log(|D])) to check if a field Agg,[d;] exists for given & and d;. The
same bound holds for the introduction of new pointer columns and fields where
pre-ordering has to be respected. It follows that one call to CREATE needs time
O(log(|D])). Hence we obtain a bound O(|Q| - |D| - hp - log(|D|)) for the first step.

We consider Step 2 of Phase 1 of the algorithm (procedure INTR-HOR-P).
Remark 5.32 shows that the total number of horizontal pointers is bounded by
O(|Q| - |D| - hp). Using binary search it takes time O(log(|D|)) to determine the
correct address for a given pointer. Since each column is added to the stack of
isolated columns at most once we receive the bound O(|Q| - |D| - hp - log(|D])) for

Step 2. Summing up, this bound is also obtained for Phase 1.

If @ is rigid, or if @ is labeling-complete and D is non-recursive, then each
call to SELECT-ANCESTORS leads to just one test and to at most to one call of
CREATE. We obtain a bound O(|Q| - |D| - log(|D])) for the first step. The number
of pointer columns/vertical pointers that are introduced in Phase 1 is bounded by

|Q| - |D|. By Remark 5.32, the total number of pointers and pointer columns is
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bounded by O(|Q]-|D|) and we receive the bound O(|Q|-|D|-log(|D|)) for Phase 1.

A simple analysis of Phase 2 shows that for each element (field/pointer/pointer
column) there is only a fixed number of operations that is possibly applied (put the
element on a stack, colour it, compute/redefine address, erase the element, check if
element is only non-red column, or left-most non-red column etc.). Each operation
is applied at most once to a given element. This is fairly obvious, we just add some
remarks. The horizontal pointers that are inspected at 11 are only inspected once.
In fact these pointers belong to the second non-red column of a given array; after
finishing the actual call to ELIM-PC this column will be the first column of the
array, which shows that the same pointers cannot be inspected a second time at 1.
At f12 note that the computation of each column that has to be added to Isol-PC
takes time O(log(|D])), by Remark 6.12. The same remark shows that each of the
operations mentioned above can be applied in time O(log(|D|)). Since the number
of elements is bounded by O(|Q| - |D| - hp) (general case) and O(|Q] - |D]) (rigid
queries, or labeling-complete queries over non-recursive databases) respectively, we

receive the desired complexity bounds for Phase 2. [l

In [Meu98] an even better result for rigid queries was obtained by treating all

paths in a path set returned by the index simultaneously.

For practical purposes the following modification of the algorithm seems to be
highly preferable. For each query path g, we first determine the cardinality n(7g)
of the set of inverted document paths II(mg) that is obtained from access to the
path selection index for mg. The algorithm then treats query paths in the order
determined by the numbers n(mg), starting with the smallest numbers. When
treating a new query path mg, the bottom-most variable z of 7o that has occurred
already in one of the earlier query paths is computed. Here Agg, is the first record
with marker “old” that is reached when we enter in bottom-up manner the document
paths obtained from the access to the path selection index into the aggregate. An
inverse document path mp € II(7g) can only be entered successfully if it contains
a node d such that Agg, has a field Agg,[d]. Let us call such a path relevant. We

show how to compute the subset of relevant paths of II(7mg) in linear time.

Let (dy,...,dy) denote the sequence of nodes of the record Agg,, in pre-order
enumeration. An element d € {di,...,dy} is called mazimal iff no ancestor of d
belongs to {di,...,dn}. For each node d; € {d,...,dn}, the set of descendants

defines an interval of the form [d;,d;}] of the pre-order relation on D. Node dj is
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the right-most leaf among the descendants of d; and can be obtained in constant
time (cf. Remark 6.11) using the formula d* = pred,(minsucc (d)). The expression
pred,(e) stands for the predecessor of e with respect to pre-order relation <. Two
intervals [d;,d}] and [d,d}] are either disjoint or one is contained in the other.
The intervals of maximal elements are pairwise disjoint and cover all the intervals
of nodes in {di,...,d,}. The sequence of all maximal elements d;, together with
the right boundaries dj of their intervals, can be computed in time O(m). In fact,
dy is always maximal. Once we have found that d; is maximal, the first element
of dit1,...,dn that does not belong to [d;,d;] is the next maximal element of the

sequence.

Obviously a path mp € I(mg) with initial node e is relevant iff e is in the
pre-order interval [d;, d;] for a maximal node d; of {d:,...,d»}. Recall that each
set II(mg) is ordered (via index access) according to the pre-order of the initial
(bottom-most) nodes. Let (ei,...,e,) denote the sequence of all initial nodes of
paths in II(mg), ordered in this way. Using one simultaneous traversal of (the
intervals associated with) the subsequence of maximal nodes in (d;,...,d,,) on one
hand and (e, ...,e,) on the other hand we may filter out the list of all relevant

paths in time O(n 4+ m) < O(|D|).

Since the number of query paths is bounded by |@Q]| the total time-complexity
of all filtering steps is bounded by O(|@] - |D|). This shows that the bound for the

worst-case complexity of the algorithm is not affected by this filtering.

6.5 Soundness and completeness

In this section we prove that the given algorithm in fact computes the complete
answer aggregate for the input query, which completes the proof of Theorems 6.1
and 6.2. In view of the bidirectional translation between complete answer formulae
and complete answer aggregates (cf. Remarks 5.14 and 5.31) this also proves the
existence parts of Theorems 5.10 and 5.27. Clearly simple tree queries are a special
case of partially ordered tree queries, hence we may restrict considerations to the
latter type of queries. Since the algorithm computes complete answer aggregates
as opposed to complete answer formulae we first give an internal characterization
of complete answer aggregates. We will show that our algorithm computes an

aggregate that satisfies the conditions of this characterization.

Definition 6.14 A mapping v : fr(Q) — D is an instantiation of the aggregate
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Aggo = {Agg, | » € fr(Q)} iff the following conditions are satisfied:

1. Agg, has a field Agg,[v(z)] for all z € fr(Q),

2. if y is a child of z in @, if d = v(z) and e = v(y), then e is an address node
of a vertical pointer of a column Agg, [d, y[l, ¥]] of the array Agg,[d,y],

3. if v(z) = d and Aggg has a horizontal pointer Agg,[d, y;[l,y;]] with address
Agg.[d,yj[m,x]], if e; := v(y;) is the address node of the vertical pointer
Agg.ld,y;[l,v]], then e; := v(y;) is the address node of a vertical pointer
Agg.d,y;[m',v]] such that m’' > m.

We say that each field Agg,[v(z)] belongs to the instantiation v. Similarly each
pointer column Agg, [d, y[l, *]] of the form described in 2 is said to belong to v.

We may now give the internal characterization of the complete answer aggregate

for Q.

Lemma 6.15 Let Q be a partially ordered tree query. An aggregate Agg is the
complete answer aggregate Aggy for Q iff the following conditions are satisfied:

1. FEach instantiation v of Agg is an answer to () and vice versa,

2. every field/pointer column of Agg belongs to an instantiation of Agg.

The simple proof is omitted. We note that Condition 2 exactly corresponds to
the “contribution obligation” condition for dependent Q-instantiation formulae (cf.
paragraph below Definition 5.20). Hence it remains to prove that the aggregate
Agg that represents the output of the algorithm satisfies Conditions 1 and 2. Let

us start with some simple observations.

Lemma 6.16 Let Agg, and Isol-F; denote the output of INCLUDE-PATHS. Then
all upwards isolated fields of Agg, are in Isol-F.

Proof. This follows from the fact that whenever we cannot finish the bottom-up
alignment of inverted query path and inverted document paths we add the field
of the last successful alignment step to Isol-Fy (cf. SELECT-ANCESTORS and
CREATE). O
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Lemma 6.17 Let Agg,, Isol-Fy and Isol-PCy denote the output of Phase 1 (i.e.,
the output of INTR-HOR-P). Then all isolated fields and pointer columns of Agg,

are in Isol-Fy and Isol-PCsy respectively.

Proof. Clearly Lemma 6.16 implies that upwards isolated fields are in Isol-F.
INTR-HOR-P treats each array Agg,[d,y] of the aggregate and adds downwards
isolated fields to Isol-F. It also adds each right or left isolated pointer column to

Isol-PC. O

During Phase 2, let us call a field/pointer column quasi-isolated if the element

becomes isolated when removing red pointer columns.

Lemma 6.18 At each time of the computation in Phase 2, each quasi-isolated field
is either on the actual stack Isol-F or it represents the actual argument of the elim-
ination sub-procedure that is executed. Fach quasi-isolated pointer column is either
on the actual stack Isol-PC, or it represents the actual argument of the elimination

sub-procedure that is executed, or it is coloured “red”.

Proof. Follows from Lemma 6.17 by a trivial induction and inspection of CLEAN,,
noticing that a new quasi-isolated field/pointer column can only be the result of
the elimination/red colouring of a field /pointer column that had been quasi-isolated

previously. [l

Lemma 6.19 Let Agg, denote the output aggregate of procedure CLEAN (i.e.,
the output of the algorithm). Then Aggs does not have isolated fields or pointer

columns.

Proof. Consider the situation in CLEAN where both Isol-F and Isol-PC are
empty. In this situation by Lemma 6.18, the only quasi-isolated elements that are
left are the red pointer columns. These columns are erased in CLEAN. Clearly the

elimination of a red column cannot lead to a new quasi-isolated element. O

Lemma 6.20 If an aggregate Agg for () does not have any isolated field/pointer
column, then every field/pointer column of Agg belongs to an instantiation of Agg.

Proof. We proceed by induction on hg(z) where z is the root of Q. If hg(z) =0,
then Agg, is the only record of Agg and the statement is trivial. Assume now that
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ho(z) > 0, let yi1,...,yp denote the children of = in ). Let Agg; denote the sub-
aggregate with topmost record Agg,. (1 < i < h). By induction hypothesis each
field /pointer column of Agg; belongs to an instantiation of Agg;. Now let Agg,[do]
be a field of Agg. We distinguish two cases.

In the first case, Agg.[do] is a field of a sub-aggregate Agg;. We may use the
induction hypothesis to obtain an instantiation v; of Agg; such that Agg.[d] belongs
to v;. Let e; = v(y;). Since Agg, [e;] is not upwards isolated there exists a field
Agg,[d] with a vertical pointer Agg,[d,y:[l;,v]] (for suitable I;) with address field
Agg,.lei]. Since Agg,[d] is not downwards isolated and since no pointer column
of Agg,[d] is left or right isolated it follows easily that we may select for all 1 <
j # i < h vertical pointers Agg,[d, y;[l;,v]] with address fields Agg, [e;] that obey
Condition 3 of Definition 6.14. By induction hypothesis, each of the fields Aggyj lej]
belongs to an instantiation v; of Agg; (1 < j # i < h). Combining the mappings
v; for 1 < j < h and mapping z to d we obtain an instantiation v of Agg such that

Agg,[do] belongs to v.

In the second case, where Agg,[dy] = Agg,[d] is in Agg, we may directly use
the fact that Agg,[d] is not downwards isolated and no pointer column of Agg, [d]
is left or right isolated to conclude with the induction hypothesis that there exists

an instantiation v of Agg such that Agg,[dy] belongs to v.

The proof that each pointer column of Agg belongs to a suitable instantiation

of Agg is analogous. O

Summing up, we have seen that the output aggregate of the algorithm satisfies

Condition 2 of Lemma 6.15. We now show completeness of the algorithm.

Lemma 6.21 FEach answer to Q may be obtained as an instantiation of the aggre-

gate Agg that represents the output of Phase 2.

Proof. Let v : fr(Q) — D be an answer to Q. If 7o = (..., zo) is an inverted
query path, then let 7 = (d;, dim—1,--.,do) denote the unique inverted document
path with first (bottom-most) element v(z;). By assumption, 7 is one of the paths
obtained by the index access for 7o (cf. Remark 6.6). The mapping v determines a
match vy, : {zg,..., 20} = {dm,dm_1,...,do} that can be used by the algorithm
for successful alignment of the two paths. This shows that after finishing Part 1 of
Phase 1 each record Agg,, will have a field Agg,.[v(z;)] (0 <i < k), with vertical
pointer Agg, [v(z;),ziv1[l,v]] to Agg,,. [v(ziy1)] for i < k and suitable [. The

i+1
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combination of the mappings v, for distinct inverted query paths mg, i.e, the
mapping v, satisfies Conditions 1 and 2 of Definition 6.14. Since v is an answer to
(), and by definition of horizontal pointer addresses, it follows also that v satisfies
Condition 3 of Definition 6.14. Hence it defines an instantiation of the aggregate

Agg, that is reached after Phase 1.

Clearly none of the fields/pointer columns that belong to v are isolated in Agg; .
We now show by induction that none of the fields/pointer columns that belong
to v becomes quasi-isolated when applying ELIM-PC and ELIM-F. This shows
that v is an instantiation of the aggregate Agg, obtained as output of Phase 2 and
finishes the proof. By Lemma 6.18 it suffices to show that none of the fields/pointer
columns that belong to v are added to Isol-F and Isol-PC respectively. A simple
inspection of the procedures ELIM-PC and ELIM-F shows that a field/pointer
column that belongs to v can only be added to Isol-F and Isol-PC during a process
where we actually eliminate (or colour red) another field/pointer column belonging
to v. This would mean that the latter field/pointer column had been added to
Isol-F and Isol-PC before, which contradicts the induction hypothesis. [l

It remains to prove soundness of the algorithm.

Lemma 6.22 FEach instantiation of the aggregate Agg that represents the output

of Phase 2 is an answer to Q.

Proof. Let v be an instantiation of Agg. Let y be a child of x in @, and let
e := v(y) and d := v(z). Remark 6.6 and the tests in SELECT-ANCESTORS
ensure that (e, d) satisfies all unary and binary index formulae imposed on (y,z) in
Q. Condition 3 of Definition 6.14 ensures that v satisfies all ordering constraints of

(). Hence v is an answer to Q. O

7 Conclusion

We introduced a logical language for a variant of the Tree Matching formalism
([Kil92]), adding some flexibility? to the original formalism. In this context we
introduced the new concept of a complete answer aggregate. This notion offers
a concise presentation of the set of all answers to a query. We also showed how

to compute a complete answer aggregate with a time/space complexity which is

9¢f. Section 4.4.
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optimal modulo a logarithmic factor. The complexity bounds indicate that the
algorithm is interesting for database applications. The algorithm uses two index

structures that support practical efficiency.

7.1 Related work

We briefly survey some related work. To the best of our knowledge no other ap-
proach uses the notion of aggregated answers so far, therefore we will not elaborate
on this point. Note, however, that the models that are mentioned below use some
kind of homomorphic mapping to define the notion of an answers to a query. Hence

aggregate techniques could be useful for these systems as well.

Tree Matching As we argued in Section 4.4, our approach can be considered
as a modification and extension of the original formalism. It preservs its power
and strength: simplicity of the user interface, declarative semantics, rich query

formalism and structured answers.

Dolores Dolores ([FGR98]) is a multimedia IR system that can handle arbitrary
document structures. It is based on probabilistic logic and thus incorporates the
notion of ranking. Queries are formulas and answers are variable assignments. The
outstanding strength of Dolores is the capability to express uncertain knowledge. A
major drawback is its architecture that translates the complete structure of queries
and documents to probabilistic Datalog and thus fails to exploit the special features
of tree-structured entities in query evaluation. The worst-case complexity of query
evaluation is not mentioned, but due to the fact that Examples 5.1 and 5.2 can be
expressed in Dolores, the time complexity must be at least O(n?), where n is the

size of the database and ¢ the size of the query.

Lore Lore [MWA™98]is an IR system for graph-structured documents. We review
it here as one example for the research going on in the field of semistructured data
(see [Abi97, Bun97, Suc98a] for surveys). Lore’s sophisticated query evaluation
mechanism involves the use of multiple index structures. The query language is
SQL-based, answers are mappings. With the same argumentation as for Dolores we
can infer that query evaluation is at least of time complexity O(n?), where n is the

size of the database and ¢ the size of the query.
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7.2 Open research issues

Some of the most important questions for further research are the following

1. What are the most interesting relevance models for structured document re-
trieval, and how can complete answer aggregates help to provide an appro-
priate ranking? The first question is not restricted to our formalism. We
think that complete answer aggregates—or their logical descriptions in terms
of complete answer formulae—might support some good ranking models, as

we briefly indicated in the introduction.

2. Given a very large database, is it possible to compute partial answer aggregates

that guarantee a “sufficient” view of the most significant answers?

3. How can aggregates be combined with query modification and relevance feed-

back techniques?
4. How can aggregates be used for active manipulation of the database?

5. Can complete answer aggregates be used for other formalisms as well? For

which ones? How?

As a matter of fact it is also necessary to implement the algorithm and to check
its practical behavior. One step to improve the efficiency of the algorithm that has
not been described here is the use of filtering techniques for reducing the number

of paths that are obtained from index accesses [MS99].
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Appendix

We give the proofs that were omitted in previous sections. For convenience, the

respective lemmata and theorems are repeated.

Lemma 4.17 Let Dg = (XS,XT,XU,—\Q,i\Q,LabQ,IQ) be the query tree

of the tree query @, let D = (Dg, Dr,—p,Labp,Ip) be a relational document

structure. A mapping v : fr(Q) — D is a pseudo-homomorphism from Dg in D iff

v is an answer to @@ in D.

Proof. Let Q = (¢ A ¢, ). We first show the direction “left to right”:

Let v : fr(Q) — D be a pseudo-homomorphism from Dg in D. We show for every

atom ¢ in ¢ Ac that D £, ¢. All argumentations follow the same line of references,

first to Definition 4.12, then to Definition 4.15, and finally to Definition 4.2:
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x < y: With Definition 4.12 it follows: z — gy. With Definition 4.15 we have
v(z)— pv(y). Finally Definition 4.2 implies D =, z < y.

x <7 y: Analogously.

w in x: It follows w € Labg(z) and € Xg. Then we know that Labp(v(z))
contains w as substring and v(z) € Dp. Therefore D =, w in .

M (z): Then Labg(xz) = M and = € Xg. Therefore Labp(v(z)) = M and v(z) €
Dg. This results in D =, M(z).

r(z1,...,xk): Then (z1,...,zx) € Ig(r). It follows that (v(x1),...,v(zx)) € In(r),
and therefore D |, r(z1,...,z).

For the inverse direction let v be an answer to @ in D, i.e. D |&, ) Ac. We show
that v is pseudo-homomorphism by validating each case in Definition 4.15.
As in the other direction, every case in the analysis of Definition 4.15 follows the
same line of arguments: First a reference to Definition 4.12, then to Definition 4.2:
x € Xg: With Definition 4.12 it follows that M (z) € ¢ or (z <(*) y) € 1. In both
cases Definition 4.2 together with Definition 3.1 guarantee that v(z) is a structural
node.
x € Xp: It follows that (w in x) € ¢. Therefore v(z) is a text node.
z— qy: Then (z <y) € 9, and therefore v(z) — pr(y).
r— Z)y: Analogously.

x € Xg, Labg(z) = M: We have M(z) € ¢ and then Labp(v(z)) = M.

x € X1,w € Labg(x): Then (w in z) € 1, and therefore Labp(v(z)) contains w.
(y1,---,yk): Tt follows that 7(y1,...,yx) € ¢, and therefore (v(y1),...,v(yx)) €
ID(T‘). O

Lemma 5.8 Let Q be a simple tree query, let AE’”O) be a dependent ()-instantiation
formula for xo, let dy,...,d be elements of D. Then the following conditions are

equivalent:

1. AP has a subformula Agz;’g:zl) where dy, is a target candidate for xy,

2. A" has q subformula of the form 5552;:)),

3. Q has formulae xo <) z1, ..., 2,1 <)z, and {zi,d;) | 0<i<k}isa

partial instantiation of Al

Proof. The equivalence “1 < 2” follows immediately from the definition of these
subformulae. To prove the implication “2 = 37, let 58{;’;:)) be a subformula

of AEIO). The definition of these formulae shows that z;1 is a child of z;, for

65



i=0,...,k—1. Hence Q has formulae zo <) z1,...,z5_1 <P 2. A trivial
induction on k shows that {(x;,d;) | 0 < ¢ < k} is a partial instantiation of Alro).

The inverse implication “3 = 2” follows by a trivial induction on k. |

Lemma 5.11 Let Ag be a complete answer formula for the simple tree query

Q. Then two subformulae of Ag of the form 6(%’ g: 11’5:)) and 680’ m;:“ 11”;:)) are

always identical modulo associativity and commutativity of “A” and “V”.

Proof. The proof of Theorem 5.10 shows that it suffices to verify the follow-

(@or-sZk-1,2k) oo o subformula of the form 6(9”0’ ’x’“’“z’“’x’“*““"x’“*"), then

ing: if 6

(doyeeesdp—1,dr) wde—1,dk,drt1,--digr)
(m07 Tl — 1,Ik) (m07 7zk—17mk7mk+17~~~7zk+r) .
6%7 ) has a subformula of the form 6(d57...,d;_1,dk,dk+1,...7dk+r) and vice

versa.

(1‘0’ s Th— 1,$k) zOy 7mk—17zk7zk+1y---’mk+1~)

Let 6 e ) have a subformula of the form 6 U diodinn i) By
Lemma 5.8, Ag has partial instantiations of the form {(xi,di) |0<i<k+r}
and {(z;,d}) | 0 < i < k} where d;, = dj,. By Lemma 5.7 there exist answers vy
(resp.vs) of @ that extend the former (latter) partial instantiation. By Lemma 4.11
there exists an answer v3 to () that coincides with answer v; on the set of reflexive
descendants of xp and with answer v, on all other variables in fr(Q). Answer v
extends the partial instantiation {(z;,d}) | 0 <i < k—1}U{(z;,d;) | k <i < k+7}.

(1‘0’ s Th— 1’ k) (m07~~~7zk—17mk7zk+1’~~~yzk+r)
Hence 6 B has a subformula of the form 6(d67---7d;c_17dk:7dk+17---7dk+7‘) . By
symmetry the lemma follows. [l

Before we can prove Theorem 5.23 some preparation is needed.

Lemma 7.1 Let ) be a local tree query, let A*® be a dependent Q-instantiation
formula. Then every partial instantiation of A¥® can be extended to a total instan-

tiation of AZ°. The set of total instantiations of AZ° is non-empty.

Proof. Follows immediately from the fact that restrictor sets for variables z
with hg(z) > 0 as well as arbitrary sets of target candidates are always non-empty.

O

Lemma 7.2 Let Q be a local tree query, let AEW be a dependent Q)-instantiation
formula for xo, let dy,...,d be elements of D. Then the following conditions are
equivalent:

1. A" has q subformula Agg;’:zl) where dy, is a target candidate for xy,

2. A" has g subformula of the form 58{;’2”:;,
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3. Q has formulae xo <) 1, ... 21 <) xp and {{x;,d;) |0 <i <k} isa

zo)

subset of a partial instantiation of AE that does not instantiate any child of

T in Q.

Proof. The equivalence “1 < 2” is trivial. Implication “2 = 3” follows from the
contribution obligation mentioned after Definition 5.20 using induction on k. The

converse direction “3 = 2” is trivial. O

Theorem 5.23 For each local tree query QQ a complete answer formula Ag is

unique modulo associativity and commutativity of “A” and “V”.

Proof. Let A and A" be complete answer formulae for ). Assume that A0

has a subformula 65525;“)) If z;, is a leaf of () it follows from Lemmata 7.1 and 7.2
that A has a corresponding subformula )\Eggz:)) Assume now that y1,...,ys

(for h > 1) denotes the set of children of zj in Q. Let (e,...,ep) be an element

of the restrictor set of 655253 . Using Lemmata 7.2 and 7.1 we see that @ has

an answer 1 that maps x; to d; fori =1,...,k and y; toe; for j =1,...,h. But
then A{"®) must have a subformula /\5222:)) where (eq,...,ep) is an element of the

restrictor set, since otherwise answer 1 could not be obtained as an instantiation of

A9 By symmetry it follows that A" and A" have corresponding subformulae

of the form 5?;2;:)) respectively 5?;2;:)) with identical restrictor sets. Starting

at the subformulae with maximal & it is then simple to prove by “inverse” induction

that corresponding formulae 6855:)) and Agzg’_’_’_”gl’:)) are equal modulo associativ-

ity and commutativity of “A”. Tt follows that A and AL are equal modulo

associativity and commutativity of “A” and “V”. |

Lemma 5.24 Let Ag be a complete answer formula for the local tree query Q).

Then two subformulae of Ag of the form 55;;)5:__115:)) and 55;5;;:;:)) are

always identical modulo associativity and commutativity of “A” and “V”.

(Iowuwk—hzk)
(dor s 1.dx) has a subformula of the

(Z0) s TR 1 TR s ThAg 15> LRy (20) s r—1,2)
(doyosdre—1,d1ydieg1eenydigr) ? then §(d{),---’d§c,1,dk)
6(m07---7xk—17mk7$k+17---7$k+r)
(dyseeesdiy_ 1 i g1y i)

Proof. Tt suffices to verify the following: if §
form 4 has a subformula of the form
and vice versa. Moreover, if hg(zkyr) > 0, then the

restrictor sets of both formulae are identical.

(BOsee s @l — 11Tk LR 1yee e T hootr) (0 s Th—1,Tk)
Let 6(d07...,dk,1,dk,dk+1,...,dk+r) be a subformula of 6(d07___7dk717dk) . By Lemma 5.8,
Ag has partial instantiations that extend the mappings {(z;,d;) | 0 <i < k+r}
and {(z;,d;) | 0 < i < k} where d; = dj,. By Lemma 5.7 there exists an answer 1

(resp. 2) of @ that extends the former (latter) partial instantiation. By Lemma 4.11
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there exists an answer 3 of () that coincides with answer 1 on the set of reflexive
descendants of z;, and with answer 2 on all other variables in fr(Q)). Answer 3
extends the mapping {(z;,d}) |0 < i <k -1} U {(z;,d;) | Kk <i < k+r}. But
then 6(%’ ’g,’“ 175’“)) must have a subformula of the form 6(%’ g: 11,’5:,’;::11,7 g::’)).

By symmetry the first condition mentioned above follows.

Assume that that both subformulae exist and that hg(zg4+r) > 0. Let y1,...,yn

be the sequence of children of 2, and let (eq, ..., ep) be an element of the restrictor

$0, ’fk—lyzk’l‘k+ly---’mk+r)
set of 5 ol 1,dk,dr g1, dpegr)

@ has an answer 4 that extends the mapping {(z;,d;) | 0 <i <k +r}U {{y;,e;) |

. It follows from Lemma 5.8 and Lemma 5.7 that

i=1,...,h}. Lemma 4.11 shows that there exists an answer 5 of @ that extends
the mapping {(z;,d}) | 0 < i < k—1}U{{z;,d;) | k < i < k+r}U{{ye) |

i =1,...,h}. But then (ej,...,en) must be an element of the restrictor set of

5(m07---7xk—17mk7$k+17---7$k+r)
(dfyseeesdfy_15drsdig1y s digr)

above have the same restrictor set. O

. By symmetry it follows that both subformulae mentioned

Lemma 5.26 Let Q = (¢ A, Z). In the situation of Definition 5.25, let R denote
the restrictor set of §,(d), fori =1,... h let D; be the set of target candidates for
yi in Ay, (d). Then R is the set of all tuples (e1,...,ep) € D1 x --- x Dy, where
(e1,...,en) satisfies all non Q-simple constraints r(z,y;,, ...,y ) of ¢ relative to d

where {yim"':yir} g {yla"'ayh}-

Proof. Let (eq,...,ex) € R. By definition, (e1,...,ep) € Dy X -+ X Dp. Tt follows
from Lemma 7.1 and Lemma 7.2 that @) has an answer that extends the mapping
{aid;) |1 =1,...,k}U{{yi,e;) | i = 1,...,h}. This shows that (dy,e1,...,ep)

satisfies all constraints r(xg, yi,,...,yi,) in ¢ where {yi,,...,yi, } C{y1,...,yn}

Conversely let (e1,...,ep) € Dy X -+ X Dy, assume that (dg,ei,...,ep) sat-
isfies all non @-simple constraints r(xg,y;,,-..,y;) in ¢ where {y;,,...,y:i.} C
{y1,...,yn}. Assume, to get a contradiction, that (e1,...,es) ¢ R. Replacing R
with RU {(e1,...,en)} we would get a dependent @Q)-instantiation formula with a
larger set of instantiations where still each instantiation is an answer to (). In fact,
since we did not modify any set of target candidates the new @Q-instantiation for-
mula leads to instantiations that satisfy all Q-simple constraints and L-formulae of

the query. This would mean that Ag is not a complete answer formula. O
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