
Complete Answer Aggregates for StructuredDocument RetrievalHolger Meuss Klaus U. SchulzCenter for Information and Language Processing (CIS)University of MunichOettingenstr. 67 80538 Munich, Germanye-mail: fmeuss,schulzg@cis.uni-muenchen.deMay 3, 1999AbstractThe use of markup languages like SGML, HTML, or XML for encodingthe structure of documents has lead to many databases where entries are ade-quately described as trees. In this context querying formalisms are interestingthat o�er the possibility to refer both to textual content and logical structure.If answers are formalized as mappings to{or subtrees of{the database, a simpleenumeration of all answers will often su�er from the e�ect that many map-pings/subtrees have common subparts. From a theoretical point of view thismay lead to an exponential time complexity of the presentation of all answers.Concentrating on the language of so-called tree queries|a variant and exten-sion of Kilpel�ainen's Tree Matching formalism|we introduce the notion of a\complete answer aggregate" for a given query. A complete answer aggregateo�ers a compact view of the set of all answers that seems attractive for prac-tical use in IR systems. Since complete answer aggregates use an exhaustivestructure sharing mechanism their maximal size is of order O(d �h � q) where d(q) is the size of the database (query) and h is the maximal depth of a path ofthe database. We give an algorithm that computes a complete answer aggre-gate for a given tree query in time O(d � log(d) � h � q). For the sublanguage ofso-called rigid tree queries, as well as for so-called \non-recursive" databases,an improved bound of O(d � log(d) � q) is obtained. The algorithm is based ona speci�c index structure that supports practical e�ciency.1

Keywords: Tree databases, tree matching, information retrieval, structured doc-uments, query languages, logic.1 IntroductionDatabases where entries are described as trees are interesting for many reasons.Most importantly, the use of markup languages like HTML ([W3C98c]) or XML([W3C98b]) for documents in the World Wide Web, as well as the use of otherSGML ([ISO86, Gol90]) dialects for document exchange in enterprises and institu-tions has lead to huge repositories where both logical structure and textual contentsof documents are explicitly represented using trees of a particular form. The interestin conceiving these document collections as databases has been stressed by variousauthors ([FLM98, Suc98b]) and led to a special W3C workshop dedicated to XMLquery languages ([W3C98a]). Tree databases play also an important role in the areaof computational linguistics. Here during the last years large-scale databases withparse trees of sentences and phrases have been built up (e.g., [MSM93, OMM98]),both for theoretical studies and for practical use in systems, e.g. for machine trans-lation. From a more basic point of view, trees undoubtfully represent a very naturalorganization scheme, and it seems realistic to expect a growing number of applica-tions of tree database techniques in the middle term.In the �eld of Information Retrieval (IR) various models and query languageshave been proposed in the meantime that take both logical structure and the con-tents of documents into account (e.g. [GT87, Bur92, KM93, NBY97, MAG+97]),each suggesting yet another compromise between expressiveness and e�ciency (see[BYN96] and [Loe94] for surveys). One of the most expressive query languagesis Kilpel�ainen's Tree Matching formalism [Kil92]. In this approach, partial de-scriptions of trees are used as queries, and answers are formalized as homomorphicembeddings that correspond to subtrees of the database.In this paper we introduce a formalism that can be considered as a generaliza-tion of Tree Matching. The \tree queries" of our query language essentially addto Kilpel�ainen's matching expressions some additional exibility and expressivity.The main contribution of this paper, though, is a new concept for computing andpresenting answers. This concept is not only relevant for the Tree Matching for-malism but for each retrieval model where answers itself are structured and do notjust return one single pointer to some o�set point in a relevant document.2

As an illustration, imagine a person that wants to retrieve articles that con-tain the key words \document", \retrieval", \tree" and have a �gure. In the TreeMatching formalism { slightly modi�ed here { this request can be formalized usinga tree pattern of the form
article(x)

‘‘document’’ in y1 figure(z)‘‘retrieval’’ in y2 ‘‘tree’’ in y3Under any answer, node x (resp. z) has to be mapped to a document node withlabel \article" (resp. \�gure"). Nodes y1, y2 and y3 have to be mapped to documentnodes with textual contents; the keywords that are speci�ed in the pattern have tooccur in the at text dominated by these nodes. Double arrows indicate descendant(not necessary children) relationship. Since answers return the images of all thenodes, they may be used, for example, to collect all �gures of articles that areconform with this description. Now imagine a database with two articles a1 anda2 that have the desired form. Article a1 (resp. a2) has four (�ve) paragraphs(paragraphs are assumed to have not any inherent logical structure and informallycorrespond to textual nodes), and both articles contain one �gure. In both cases,each paragraph contains the three words \document", \retrieval", \tree". In thissituation each of the nodes yi can be mapped to each of the paragraphs. Sinceanswers correspond to embedding homomorphisms, there is a total of 43+53 = 192possible answers to the query. If answers are presented via enumeration, the userwill hardly have the patience to inspect all of them in order to �nd that thereare just 2 articles and 2 �gures participating to all these answers. Obviously, eachformalism that o�ers a comparable expressivity and formalizes answers as mappingssu�ers from the same problem as long as answers are enumerated.What we suggest instead is computation of a so-called complete answer aggre-gate, an abstract, intensional representation of the set of all answers. The structureof such an aggregate is derived from the query. Basically, each query node is usedas a \container" that collects all the document nodes that represent a possible im-age (\target candidate") of the query node. In addition, each target candidate ina complete answer aggregate is enriched with some administrational informationon possible descendants. For the given query and database the aggregate has thefollowing internal representation. 3

•

Aggx

Aggy1

y
1

y
2

•
y

3

Aggy2

• • • • • • • • • • • • •
z

a1
y

1
y

2

•
y

3

• • • • • • • • • • • • • • • •
z

a2

• •
Aggy3 AggzThe record Aggx collects the possible target candidates for the article node x. Inour example this record has two �elds, indicated by large rectangles. The �rst(second) �eld contains a pointer to article a1 (resp. a2) and a list of four arrays,corresponding to the four children of x in the query (small rectangles). These arraysare used to point to the �elds of possible target candidates for the children, subjectto the choice of x = a1 (resp. x = a2). There are four additional records, fory1; y2; y3, and z respectively. Since these variables represent leaves of the query thestructure of their answer records is simpler. Each record Aggyi just contains a listof pointers (only indicated by dots) to the 4+5 = 9 paragraphs which represent thepossible target candidates for the textual nodes yi (1 � i � 3). Eventually recordAggz has two pointers, each representing a link to a �gure.Externally, the aggregate can be presented to the user in many di�erent ways.We may, e.g., just present the number of possible nodes of each record in a �rststep:

article(x): 2

‘‘document’’ in y1: 9 figure(z): 2‘‘retrieval’’ in y2: 9 ‘‘tree’’ in y3: 9If the user wishes to inspect the two target candidates for the article node x moreclosely, the next step could be to show (in an appropriate way) the list with thearticles a1 and a2 from Aggx. If the reader then decides to inspect a2, an internalview might temporally restrict the aggregate in the following way (narrowing).
Aggx

Aggy1 Aggy2

y
1

y
2

•
y

3

• • • • • • • • • • • • • • • •
z

a2

• • • • • • • • • • • • • • • •
Aggy3 Aggz4

We may provide the user with the information that given his selection of a1 thereare now �ve possible target candidates for the each textual node, and a unique�gure. The user might now decide to inspect the �gure. If he also activates the �rstpossible candidate for y1, y2 and y3 respectively, the actual internal view
Aggx

Aggy1
Aggy2

y
1

y
2

•
y

3

• • • •
z

a2

• • • •
Aggy3 Aggzrepresents one of the 192 possible answers. In another situation the user might �ndthat this particular answer is useless and reactivate the previous state.Orthogonal to the construction of views by narrowing, the user may specifyparts of the query that he does not want to inspect (still, these query parts maybe meaningful since they trigger the selection of answers). In this case some of thequery variables will not be represented in the answer aggregate. The speci�cation ofrecords Aggx that are to be suppressed can be integrated in the query formulationor it can be part of an interactive process during inspection of answers. In the aboveexample the user could for example suppress textual nodes, which would result inthe following (internal) form of the aggregate

Aggx
•

•
z

a1

• •
Aggz

•

•
z

a2

Answer aggregates can also be useful for dynamic change of the database. As anillustration, take a database with trees
A •

• •

• • • • •

B B

C C C C C

•

• •

•••

A

B B

C C CThe aim is to compute a simpli�ed representation where nodes with label B are sup-pressed. This type of \structural simpli�cation" is one of the operations discussedin [GT87]). The complete answer aggregate for the query5

A(x)

C(y)depicted below at the left-hand side, can immediately be translated into the requiredsimpli�ed view of the database on the right-hand side.
•

Aggx

Aggy

y
•

• • • •
y
•

• • •

• • • • • • •

•
A •

• • • • •C C C C C

•

•••

A

C C CYet another aspect where aggregates possibly can o�er some new contribution isranking of answers. In our �rst example we may use the information that a2 hasmore relevant paragraphs than a1 as a justi�cation for an inverted enumerationa2 ! a1 of relevant articles. More sophisticated IR techniques for assigning weightsto key words can perhaps be lifted to account for structure, assigning now weights totarget candidates, depending on the number and weight of possible target candidatesfor the children.These scenarios just indicate some possibilities for using the information that weobtain from an aggregate such as the one depicted above. We stop the discussionat this point, since it is not our principal concern to give an exhaustive list of allpossible ways for using a complete answer aggregate. Instead, the main aim ofthe paper is to give a rigorous de�nition of this notion and a characterization ofits mathematical and computational properties. The concept will be introduced inthe context of a logical reformulation and extension of Kilpel�ainen's Tree Matchingformalism [Kil92].The paper has the following structure. After some formal preliminaries in Sec-tion 2 we �rst formalize collections of tree-structured documents as so-called re-lational document structures in Section 3. A relational document structure is aconventional structure of �rst-order predicate logic that represents a documentdatabase. It should be stressed that this type of formalization can be used forarbitrary databases where entities represent trees. In this sense, databases withdocuments just serve as an illustrating example.The query language is introduced in Section 4. In principle, the full �rst-orderlanguage associated with a given relational document structure can be considered6

as a query language. Under computational aspects, the sublanguage of tree queriesseems to be of particular interest. For this latter language we give an algebraicreformulation of the query evaluation that underpins the direct relationship to theTree Matching formalism.Section 5 �rst introduces the concept of a complete answer formula for the sub-class of so-called \simple tree queries". This notion yields a compact description ofthe full set of answers to a query in terms of a conventional formula of propositionallogic. It is shown that for each simple tree query, Q, and each relational documentstructure, D there exists a unique complete answer formula that represents the setof all answers to Q in D.The \logical" notion of a complete answer formula is then translated into the\physical" notion of a complete answer aggregate for Q. We prove that the size ofthe complete answer aggregate for Q is bounded by O(jQj � jDj � hD) where jQj isthe size of Q, jDj is the number of nodes of D and hD is the maximal length of apath in D. In a tree query we may refer to arbitrary descendants of a node. For thesubclass of \rigid" queries, where we can only refer to immediate children of a nodein a query, we give a better bound O(jQj�jDj). The improved bound is also obtainedfor \non-recursive" databases, i.e., databases where the same label does not occurtwice in a path. Here we have to assume that each query node carries either sometextual information or some label information. In a second step, all these notionsare generalized to the class of so-called \partially ordered tree queries" where it ispossible to impose restrictions on the left-to-right ordering of nodes in the query.The above bounds for the size of the complete answer aggregate of a query still holdfor partially ordered queries.In Section 6 we describe an algorithm that computes the complete answer ag-gregate for a given partially ordered tree query in time O(jQj � jDj � hD � log(jDj)).For rigid queries, as well as for non-recursive databases, the algorithm runs in timeO(jQj � jDj � log(jDj)). In order to guarantee a good practical behaviour of thealgorithm it is based on a special index structure.We conclude in Section 7 with remarks on related work and on some openresearch issues. For the sake of readability some proofs are omitted in the runningtext and collected in an Appendix.The present paper modi�es and extends results of the �rst author presented in[Meu98]. 7

2 Formal preliminariesIn this section we provide some basic mathematical background that is needed later.As usual, if R denotes a binary relation on a set M , then R� (resp. R+) denotesthe reexive-transitive (resp. transitive) closure of R.De�nition 2.1 A (�nite, unordered) tree is a pair (D;*) where D is a �nite,nonempty set and *" is a binary relation on D such that the following conditionsare satis�ed:1. * is cycle-free, i.e., *+ is irreexive,2. for each d0 2 D there exists at most one element d 2 D such that d*d0,3. there exists exactly one element d 2 D, called the root of (D;*) such thatd *� d0 for each d0 2 D.The elements of D are called nodes. If d* d0, then d0 is a child of d, converselyd is called the parent node of d0. Condition 2) expresses that each node has atmost one parent node. It follows from Condition 3) that a node having no parentnode coincides with the root. Distinct children of a common parent node are calledsiblings. If d *+ d0, then d0 is a descendant of d, conversely d is called an ancestorof d0. If d *� d0, then d0 is a reexive descendant of d. A node is a leaf if it doesnot have any child, otherwise it is an inner node.A path of (D;*) is a sequence hd0; : : : ; dni 2 Dn where d0 is the root of (D;*), dnis a leaf of (D;*) and di* di+1 for 0 � i � n � 1. A partial path of (D;*) is apre�x of a path of (D;*).De�nition 2.2 An ordered tree is a tree (D;*), together with a strict partial order<Dlr on D, called left-to-right ordering, that has the following properties:1. <Dlr relates two nodes d1 6= d2 (in the sense that either d1 <Dlr d2 or d2 <Dlr d1)i� neither d1 is a descendant of d2 in (D;*) nor vice versa,2. if d1 and d2 are siblings, then d1 <Dlr d2 implies that d01 <Dlr d02 for all reexivedescendants d01 and d02 of d1 and d2 respectively.If (D;*) is an ordered tree, the union of descendant relationship with left-to-rightordering is called the pre-order relationship and denoted <Dpr. The following lemmais a trivial consequence of the de�nitions.8

Lemma 2.3 Let (D;*) be an ordered tree, let d; e 2 D. Then d <Dlr e i� thereexists a node d0 2 D such that d <Dlr d0 and d0 �Dp e.3 Modeling documents as tree structuresAs established by international standards like SGML [ISO86], we conceive docu-ments as trees where nodes and edges are used to model the logical structure ofthe document. The leaves of a document tree contain the actual at textual con-tent of the document. Obviously, in order to represent databases with structureddocuments as trees we have to adapt the basic data structure. As a �rst stepwe introduce a formal distinction between \structural" nodes and \textual" nodes.Depending on the application area it might be interesting to model additional re-lations on the nodes, and to make these relations available in the querying process.One important example that we discuss below is the left-to-right ordering betweennodes. Since we do not want to restrict the discussion to a speci�c set of relations,other relations that might be relevant, such as e.g. inequality, semantic compar-isons, typing information, attribute values, similarity or proximity, are treated ina generic way as abstract constraints, leaving apart their precise nature. The re-sulting structures for modeling document databases will be treated as conventionalstructures of �rst-order predicate logic in the following sections.Text nodes and structural nodesLet � and � denote two �xed disjoint alphabets, called text alphabet and markupalphabet respectively. We assume that the textual content of a document is modeledby elements of �� (i.e., by strings over �) and the structural markup (labels ofstructural nodes) is modeled by symbols in �.De�nition 3.1 A document structure is a tuple D = (DS ; DT ;*;Lab) where1. (DT [DS ;*) is a tree where DT and DS represent disjoint sets of nodes,2. Lab is a function that assigns to each node d 2 DT a string Lab(d) 2 �� andto each node d 2 DS an element of �.The following condition must hold:3. Each node in DT is a leaf of (DT [DS ;*).9

In the sequel, the nodes in DT and DS are called text nodes and structural nodesrespectively, and D := DT [DS will always denote the joint set of nodes.With a document path of D we mean a path of (DT [DS ;*). The documentstructure is called non-recursive if there does not exist any document path with twodistinct structural nodes that are labeled with the same symbol in �.It should be noted that we model each database as a single tree. Since we mayalways add to a given forest a new root element this decision does not impose anyreal restriction. Recall also that with a tree we mean an unordered tree if not saidotherwise. Ordered trees can be modeled with the relations that we introduce now.Ordering and other relationsLet R denote a �xed �nite set of relation symbols, each equipped with a �xed arity.De�nition 3.2 A relational document structure is a tuple D = (DS ; DT ;*;Lab; I),where (DS ; DT ;*;Lab) is a document structure and I is an interpretation functionfor R, i.e., a mapping that assigns to every relation symbol r 2 R of arity k arelation I(r) � Dk.De�nition 3.3 A relational document structureD = (DS ; DT ;*;Lab; I) is orderedif R contains a symbol <lr where (DT [DS ;*) together with <Dlr := I(<lr) is anordered tree.Example 3.4 The following �gure depicts an ordered relational document struc-ture that represents a collection of articles. Textual nodes are indicated by rectan-gles.
•

top

article •

•• authortitle year bodyjournal• • •

•section •section •section

heading • heading • heading •

article •

• • • •

• • • •

• • • •

Remark 3.5 When using markup languages like SGML, the logical structure of10

documents is encoded using a at representation by means of delimiting tags. Var-ious interesting aspects of the tree structure can be read o� in a simple way:1. two nodes d1; d2 stand in the pre-order relationship, d1 <Dpr d2, i� the openingtag for d1 precedes the opening tag for d2,2. two nodes d1; d2 stand in the left-to-right relationship, d1 <Dlr d2, i� the closingtag for d1 precedes the opening tag for d2,3. node d2 is a descendant of node d1 i� the opening tag for d2 is between thetwo tags for d1.Following De�nition 3.2, relational symbols in R are interpreted as relationsover the set of nodes, D. Though this restriction simpli�es the presentation it doesnot represent a principal limitation of the techniques suggested in this paper. Insome examples we shall take a more liberal point of view and allow for relationsover further sets. For example, attributes could be be modeled as relations betweennodes, attribute names, and values.4 A logical query language for relational documentstructuresIn this section we de�ne a logical query language LR for databases that are repre-sented in the form of relational document structures. In principle the full �rst-orderlanguage associated with the given structure, presented in the �rst section, may beused as query language. For practical use in IR-systems, the sublanguage of so-called\tree-queries" seems to be of particular relevance. This sublanguage, introduced inthe second section, will be studied in the following sections under various aspects.4.1 The full �rst-order languageRecall that the alphabets �, � as well as the signature R are assumed to be �xed.In the sequel, let Var denote a countably in�nite set of variables, denoted x; y; z : : :,and let \in", \�" and \�+" denote three new binary symbols.De�nition 4.1 The set of atomic LR-formulae contains all formulae of the form� x� y, for x; y 2 Var, 11

� x�+ y, for x; y 2 Var,� w in x, for x 2 Var and w 2 �+,� M(x), for x 2 Var and M 2 �,� r(x1; : : : ; xk) where r 2 R has arity k and x1; : : : ; xk 2 Var.Atomic formulae of the form r(x1; : : : ; xk) (r 2 R) are called atomic constraints.LR-formulae are inductively de�ned as follows:� each atomic LR-formula is an LR-formula,� if ' and '1; '2 are LR-formulae, then :', ('1 ^ '2), ('1 _ '2), and('1) '2) are LR-formulae,� if ' is an LR-formula and x 2 Var, then 9x' and 8x' are LR-formulae.An LR-formula ' is an L-formula i� ' does not have a subformula that is an atomicconstraint.We write x �(+) y when refering to formulae of the form x � y and x �+ y at thesame time.Let D = (DS ; DT ;*;Lab; I) be a relational document structure. With a variableassignment in D we mean a (total) mapping � : Var! D.De�nition 4.2 Validity of an atomic LR-formula in D under � is de�ned as fol-lows1:� D j=� x� y i� �(x)*�(y),� D j=� x�+ y i� �(x)*+ �(y),� D j=� w in x i� �(x) is a text node and Lab(�(x)) contains the word w,� D j=� M(x) i� �(x) is a structural node and Lab(�(x)) =M ,� D j=� r(x1; : : : ; xk) i� h�(x1); : : : ; �(xk)i 2 rD.The validity relation is extended as usual to arbitrary LR-formulae: Boolean con-nectives are just lifted to the meta-level, furthermore we de�ne- D j=� 8x' i� for every node d 2 D we have D j=�0 ', where �0(y) := �(y) forall variables y 6= x and �0(x) := d,1In the third condition we do not formally de�ne what it means for a textual node to \contain"a given word w. This might mean \literal" containment, i.e., containment as a substring, or itmight include linguistic normalization techniques like lemmatization or stemming.12

- D j=� 9x' i� there exists a node d 2 D such thatD j=�0 ', where �0(y) := �(y)for all variables y 6= x and �0(x) := d.An LR-formula ' is satis�able i� there exists a relational document structure Dand an assignment � such that D j=� '. The set fr(') of free variables of an LR-formula ' is de�ned as usual. If fr(') is given in a �xed order ~x = hx1; : : : ; xniand if ~d = hd1; : : : ; dni is a sequence of nodes of D we write D j= '[d1; : : : ; dn] i�D j=� ' for each variable assignment � mapping xi to di for 1 � i � n.Atomic formulae of the form \w in x" refer only to textual nodes. Obviously, itis desirable to refer in a similar way to the part of the at text that is dominated bya structural node. If x is a variable of a query that contains a structural conditionof the form M(x), we may write x �+ y ^ w in y to express that the word w mustoccur in the text associated with node x. If more comfort is needed we might addsome \syntactic sugar" and introduce a new type of atomic formula that representsthe above conjunction.De�nition 4.3 A query is a pair Q = ('; ~x) where ' is an LR-formula and ~x is a�xed enumeration of fr('). The set fr(') is also called the set of free variables of Qand denoted in the form fr(Q).De�nition 4.4 Let D be a relational document structure, let Q = ('; ~x) be a querywhere ~x = hx1; : : : ; xni. A sequence ~d = hd1; : : : ; dni of nodes of D is an answer toQ in D i� D j= '[d1; : : : ; dn]. The setAD(Q) := fhd1; : : : ; dni 2 Dn j D j= '[d1; : : : ; dn]gis called the complete set of answers for Q in D.Equivalently, an answer hd1; : : : ; dni can be considered as a partial variable assign-ment mapping xi to di for i = 1; : : : ; n. Both perspectives will be used in thesequel.The e�cient computation of the complete set of answers to a given query can beconsidered as the principal problem of an IR system. In this paper we concentrateon a particular subclass of queries.
13

4.2 Tree queriesIt is natural to assume that most queries aim to retrieve subtrees of a particularform from the database. As long as matters of universal quanti�cation are ignored,the tree queries introduced in the following de�nition are a canonical choice for thisretrieval task.De�nition 4.5 A tree query is a query Q = (^ c; ~x) where is a conjunction ofatomic L-formulae and c is a conjunction of atomic constraints with fr(c) � fr()such that the following condition is satis�ed: there exists a variable x 2 fr(Q),called the root of Q, such that for each y 2 fr(Q) there exists a unique sequence ofvariables x = x0; : : : ; xn = y (n � 0) where contains subformulae xi �(+) xi+1for 0 � i � n � 1. A tree query Q = (^ c; ~x) is rigid if does not contain anyformula of the form y�+ z. A tree query Q is labeling-complete if for each x 2 fr(Q)there exists either a formula of the form w in x in Q or a formula of the formM(x)(M 2 �).The following lemma follows immediately from De�nition 4.5.Lemma 4.6 Let Q = (^ c; ~x) be a tree query. Then1. does not have any �(+)-cycle, i.e., there is no sequence of variables x0; : : : ; xn(n � 0) such that contains subformulae xi �(+) xi+1 for 0 � i � n� 1 anda subformula xn �(+) x0,2. the root of Q is unique, and3. for each y 2 fr(Q) there exists at most one formula in of the form x�(+) y.De�nition 4.7 A tree query Q = (^ c; ~x) is inconsistent if1. ' contains a formula w in x, and a formula of the form M(x) or x�(+) y atthe same time, or2. if ' contains two formulae M(x) and M 0(x) for M 0 6=M 2 �.Clearly, inconsistent tree queries are unsatis�able. Below we shall see that everyconsistent tree query is satis�able if we do not restrict the interpretation of relationsymbols in R. Henceforth, with a tree query we always mean a consistent treequery. Since tree queries have a tree shape, standard notions from trees can beused for describing their structure: 14

De�nition 4.8 Let Q = (^ c; ~x) be a tree query. A variable y 2 fr(Q) is called arigid (resp. soft) child of x 2 fr(Q) in Q i� contains a formula x�y (resp. x�+ y).In this situation, x is called a rigid (soft) parent of y in Q. Two distinct childreny1; y2 of a variable x in Q are said to be siblings in Q. A variable y 2 fr(Q) is areexive descendant of x in Q i� there exists a chain x = x0; : : : ; xk = y of lengthk � 0 such that xi+1 is a child (of either type) of xi in Q, for i = 0; : : : ; k � 1.A partial path of Q is a chain x0; : : : ; xk of length k � 0 starting at the root of Qsuch that xi+1 is a child (of either type) of xi in Q for i = 0; : : : ; k � 1. A path ofQ is a maximal partial path. Let x 2 fr(Q). The height hQ(x) of x with respectto Q is de�ned as follows: hQ(x) := 0 i� x does not have any child in Q, andhQ(x) := maxfhQ(y) + 1 j y is a child of x in Qg otherwise.Note that x is always a reexive descendant of x in Q, for each x 2 fr(Q). Inthe following sections three subclasses of tree queries (simple, local and partiallyordered tree queries) will be considered, each obtained by restricting the classes ofconstraints that may be used in queries.Simple and local tree queriesDe�nition 4.9 Let Q = (^ c; ~x) be a tree query. A constraint r(x0; : : : ; xn) ofc is Q-simple i� either r is unary, or r is binary and x1 (or x0) is a child of x0(resp. x1) in Q. A constraint r(x0; : : : ; xn) of c is Q-local i� Q has a variable xwith children y1; : : : ; yh such that fx0; : : : ; xng � fx; y1; : : : ; yhg. We say that Q isa simple (local) tree query i� each constraint of c is Q-simple (Q-local).It is important to note that \Q-simplicity" is a purely syntactic concept that justrestricts the pairs of variables of Q that can be related in constraints. From asemantic point of view, Q-simple constraints can talk about arbitrary unary orbinary relations over D. Some examples are1. the relation \top-most M -descendant", tmDM (d; e), which expresses that nodee is a descendant of d with label M such that there is no node between d ande with label M in D,2. vertical distance relations such as, e.g, \max-distance(k)(d; e)" which ex-presses that there are at most k � 1 nodes between d and e,3. unary relations encoding typing information, e.g. taxonomic information, suchas being a document of a speci�c type, or a node describing a year,15

4. unary relations expressing that a certain attribute is de�ned for the node andhas a particular value (e.g., \gender = female" if documents are parse treesfor natural language expressions).With Q-local constraints we can even express arbitrary relations in principle. How-ever, we can only constrain the children (plus parent) of a common parent variablex of Q. Some examples are5. comparisons (e.g., \node di dominates a larger part of the database than nodedj"),6. conditions that express that the text parts dominated by di and dj stand ina certain syntactic relationship, such as similarity or containment,7. conditions that express that the text parts dominated by di and dj standin a certain semantic relationship (e.g. chronological comparison of dates,comparison of amounts of money etc.).An important class of Q-local constraints are the constraints yi <lr yj expressingthat two nodes stand in the left-to-right ordering relation <Dlr of D. A formulayi <lr yj will be called a left-to-right ordering constraint.Partially ordered tree queriesDe�nition 4.10 A tree query Q = (^ c; ~x) is partially ordered if each constraintof c is either Q-simple or a left-to-right ordering constraint, and if the subset clr ofleft-to-right ordering constraints in c satis�es the following properties:1. for each constraint yi <lr yj in clr the variables yi and yj are siblings withrespect to Q,2. clr does not have a cycle of the form y0 <lr � � � <lr yn <lr y0.The tree query Q = (^ c; ~x) is linearly ordered if the set of left-to-right constraintsspeci�es a linear ordering for the set of children of each variable x of Q.Note that in particular each partially ordered tree query is a local tree query. Thefollowing lemma shows|in a sense to be made precise|that for local tree queriesthe possible instantiations of the reexive descendants of a variable x 2 fr(Q) inanswers only depend on the instantiation of x, but not on the instantiation of16

the ancestors of x in Q. The lemma will play an essential role for the techniquessuggested in the following sections.Lemma 4.11 Let Q = (^c; ~x) be a local tree query. Let y be a child of x in Q, letY denote the set of proper descendants of y in Q, and let Z = fr(Q)n (Y [fyg). Lethy1; : : : ; yri and hz1; : : : ; zsi denote enumerations of Y and Z respectively. Assumethat ~x has the form hz1; : : : ; zs; y; y1; : : : ; yri. If Q has two answershd1; : : : ; ds; d ; e1; : : : ; erihd01; : : : ; d0s; d ; e01; : : : ; e0rithat coincide on y, then hd1; : : : ; ds; d ; e01; : : : ; e0rihd01; : : : ; d0s; d ; e1; : : : ; eriare answers to Q as well.Proof. This follows immediately from the fact that ^ c does not have any atomicsubformula that contains variables from Y and Z at the same time.4.3 Answers as pseudo-homomorphismsTree queries can be represented in the form of \generalized" tree structures. Thisdescription might o�er a basis for a graphical user interface for queries and leads toa second, algebraic picture of the query evaluation process where answers essentiallybehave like homomorphisms, like elaborated in the Tree Matching formalism [Kil92]and in [Meu98].De�nition 4.12 Let Q = (^ c; ~x) be a tree query. The query tree for Q is the re-lational structure DQ = (XS ; XT ; XU ;*; +*;Lab; I) with the following components:� XS is the set of all variables x occurring in such that has asubformula of the form M(x) or x�(+) y,� XT is the set of all variables x occurring in such that has asubformula w in x,� XU := fr(Q) n (XT [XS),� for x; y 2 X := XS [XT [XU we have x*y i� x� y 2 ,17

� for x; y 2 X we have x +*y i� x�+ y 2 ,� for x 2 XS we have Lab(x) =M i� M(x) 2 ,� for x 2 XT we have Lab(x) = fw1; : : : ; wkg wherefw1; : : : ; wkg = fw 2 �� j w in x 2 g,� I is the interpretation function where hy1; : : : ; yki 2 I(r) i�r(y1; : : : ; yk) 2 c.Note that consistency guarantees that XS\XT = ;, and that Lab is well-de�ned fornodes in XS . By part 1 of Lemma 4.6, the transitive closure of +*[* is cycle-free.Intuitively, DQ = (XS ; XT ; XU ;*; +*;Lab; ~x) can be considered as \generalized"relational document structure with edges of two types. Edges of the form x * yare called rigid, edges of the form x +*y are called soft.2 In contrast to documentstructures, a query tree DQ may have unlabeled nodes if Q is not labeling-complete.Example 4.13 The query tree
article •

• •title author section

heading

•

•

abc

xyz

x0

x1 x2
x3

x4

y1

y2is a query tree for the tree query with the atomic formulae article(x0), x0 � x1,title(x1), x0 � x2, author(x2), x0 �+ x3, section(x3), x3 � x4, heading(x4), x4 � y1,abc in y1, x3�+y2, xyz in y2, and the sequence of variables hx0; x1; x2; x3; x4; y1; y2i.This query may be used to retrieve authors and titles of articles that contain asection with the heading \abc", with the word \xyz " occurring in the section.Lemma 4.14 Each tree query where relation symbols do not have a �xed interpre-tation is satis�able.Proof. Let Q = (^ c; ~x) be a tree query. We may modify the query tree for Qas follows. Each unlabeled node receives a �xed labelM 2 �. Every labeled textualnode x receives as label the concatenation of the words in its label: Lab(X) =w1 � : : : � wk , where fw1; : : : ; wkg = fw 2 �� j w in x 2 g. Each soft edge is2Edges of the form x +* y in a query tree should not be confused with the transitive closure* +D of edges *D in a relational document structure D.18

treated as a rigid edge. Obviously in this way a relational document structure D isobtained such that ^ c holds in D under each variable assignment that maps eachelement of ~x to itself.De�nition 4.15 Let DQ = (XS ; XT ; XU ;* Q; +*Q;LabQ; IQ) be the query treeof the tree query Q, let D = (DS ; DT ;*D ;LabD; ID) be a relational documentstructure. Let XQ := XS [XT [XU . A pseudo-homomorphism from DQ in D is amapping � : XQ ! D such that the following conditions are satis�ed:� for all x 2 XS always �(x) 2 DS,� for all x 2 XT always �(x) 2 DT ,� for all x; y 2 XQ: x*Qy implies �(x)*D �(y),� for all x; y 2 V Q: x +*Q y implies �(x)* +D �(y),� for all x 2 XS: LabQ(x) =M implies LabD(�(x)) =M ,� for all x 2 XT : w 2 LabQ(x) implies LabD(�(x))contains w as substring,� for all r 2 R, for each sequence (y1; : : : ; yk) of variables of Q:hy1; : : : ; yki 2 IQ(r) implies h�(y1); : : : ; �(yk)i 2 ID(r).Example 4.16 The following �gure shows a pseudo-homomorphism for the treequery introduced in Example 4.13 and the relational document structure depictedin Example 3.4.
•

top

article •

•• authortitle year bodyjournal• • •

•section •section •section

heading • heading • heading •

article •

• • • •

• • ••

• • • •

article •

• •title author section

heading

•

•

abc

xyz

The following lemma shows that pseudo-homomorphisms and answers to a giventree query are equivalent notions. The proof can be found in the Appendix.19

Lemma 4.17 Let DQ = (XS ; XT ; XU ;*Q; +*Q;LabQ; IQ) be the query tree of thetree query Q, let D = (DS ; DT ;*D;LabD; ID) be a relational document structure.A mapping � : fr(Q) ! D is a pseudo-homomorphism from DQ in D i� � is ananswer to Q in D.4.4 Partially ordered tree queries and Tree MatchingWe mentioned in the introduction that the present formalism can be understood asa variant and generalization of Kilpel�ainen's Tree Matching formalism [Kil92]. Inthis subsection we briey comment on this point.In Kilpel�ainen's formalism, both patterns (i.e., queries) and targets are �nite,ordered labeled trees. Kilpel�ainen studies ten distinct variants for formalizing thenotion of \inclusion" (homomorphic embedding) between pattern and target. Abasic di�erence is that between unordered and ordered tree inclusion problems. Inthe (un)ordered case the left-to-right ordering of nodes has (not) to be respectedunder an embedding. In our formalism this corresponds to the di�erence betweenunordered tree queries on the one side and linearly ordered tree queries on the otherside.Both for the ordered and the unordered case, �ve speci�c classes are considered.For so-called tree inclusion, the homomorphic embedding has only to respect labelsand ancestorship. For path inclusion, parent relationship has to be respected as well.Basically, path inclusion problems thus correspond to rigid queries, tree inclusionproblems correspond to tree queries with soft edges only. For region inclusion, whichrestricts path inclusion, any child of a target node that has a left sibling and a rightsibling that both belong to the image of the embedding function has to belong tothis image as well. We do not have a similar construct in our formalism. For childinclusion, which restricts region inclusion, the number of children of inner nodeshas to be respected. Again we do not have a similar construct.When we ignore region inclusion and child inclusion, which seem not importantfor database applications, our formalism is more exible than Tree Matching since ina partially ordered tree query we may specify an arbitrary partial ordering betweenthe children of a query node, and we can also have rigid edges and soft edges atthe same time. In this sense, the present formalism generalizes Tree Matching.However, there are also two subtle di�erences:20

� Kilpel�ainen's homomorphic embeddings are always assumed to be injective,we do not impose such a restriction in our formalism.� A relation is \preserved" in Kilpel�ainen's sense under a mapping h if it ispreserved in both directions. For example, a mapping is said to preserveancestorship if, for all nodes x; y of the pattern, x is an ancestor of y if andonly if h(x) is an ancestor of h(y). We only demand the implication from leftto right, i.e., the \only if" direction.These innocent di�erences are responsible for the phenomenon that Kilpel�ainen'sunordered tree inclusion problem is NP-complete even in the decision version (cf.[Kil92]) whereas all the complexity results obtained here are polynomial. Since un-ordered tree inclusion problems represent the most natural variant of Tree Match-ing, the avoidance of the above intractability result can be considered as a majoradvantage of the present formalism.5 Representing complete sets of answers for treequeriesThis section is devoted to the problem of �nding a suitable presentation for thecomplete set of answers to a given tree query. As we demonstrate below, the numberof answers to a tree query Q may be exponential in the size of Q. Hence anexplicit enumeration leads to exponential-time behavior in the worst case. Quitegenerally a naive enumeration will also su�er from many redundancies since di�erentanswers may have several common sub-nodes. This makes it di�cult to extractuseful information from the sequence of answers.The question arises if there is a more compact and organized way of representingall answers, with reasonable space and time requirements. In the �rst subsection weintroduce the concept of a \complete answer formula" for a simple tree query. The\complete answer aggregates" that are introduced in the second subsection yield aphysical representation of complete answer formulae. A complete answer aggregateyields a full representation of all answers that is quadratic in the size of the databasefor simple tree queries. For rigid queries, as well as for labeling-complete queriesover non-recursive databases, the size is linear. In subsections three and four thesenotions and results are extended to local tree queries and to ordered tree queries.Computational aspects are postponed to Section 6.21

5.1 Complete answer formulae for simple tree queriesIn order to introduce our representation technique we �x a simple tree query, Q,and a relational document structure D with set of nodes D. If Q has q variables, inthe worst case the total number of answers to Q is of order O(jDjq), even for rigidqueries.Example 5.1 Let D have the following form (we ignore labels and textual con-tents).
• • • • •

•

...

...

d0

d1 d2 d3 d4 dnThe rigid query Q of the form (x� y1 ^ : : : ^ x� yq; hx; y1; : : : ; yqi) has nq answersin D.The example shows that nodes with a high branching degree may lead to an explo-sion of the number of answers. For queries with soft edges an orthogonal potentialsource of problems is deep nesting:Example 5.2 Let D have the following form.
•
•
•
•

•

d1
d2
d3
d4

dn

...The query Q of the form (x1�+x2^ : : :^xq�1�+xq ; hx1; : : : ; xqi) has �nq � answersin D.How can we avoid an enumeration of all answers? As a starting point, we take alogical perspective. The complete set of answers to Q in D can be represented as aformula in disjunctive normal form_(d1;:::;dq)2AD(Q)(q̂i=1 xi = di);It is well-known that the size of the disjunctive normal form of a formula of proposi-tional logic may be exponential in the size of the original formula. Even if we do nothave anything like an \original" formula here, an obvious idea is to look for formulae22

that are logically equivalent to the disjunction of all answers but of smaller size, andto use a shared representation for multiple occurrences of the same subformula. Ofcourse, from a practical point of view the formulae must o�er a transparent viewof all answers, and given the formula it should be possible to generate each partic-ular answer without computational e�ort. Before we introduce a suitable class offormulae, let us illustrate the basic idea using the above examples.Example 5.3 The set of all answer in Example 5.1 can be encoded as a formulaof size O(q � n) of the form x = d0 ^ q̂i=1(n_j=1 yi = dj):The set of all answers in Example 5.2 can be encoded as a formula of the formn�q+1_i1=1 (x1 = di1 ^ n�q+2_i2=di1+1(x2 = di2 ^ n�q+3_i3=di2+1(: : : n_iq=diq�1+1(xq = diq) : : :)))Given this formula, each answer to Q can be immediately obtained in the followingway. Select a possible value di1 for x1 in the outermost disjunction. Each possiblechoice leads to a speci�c subdisjunction that gives possible values for x2. Continuingin the same way, the choice of a value dik for xk (k < q) always determines anew subdisjunction that determines a set of possible values for xk+1. In moredetail, a value xk = dik always implies that the value for xk+1 can recruit fromfdik+1; : : : ; dn�q+k+1g.Let � stand for the empty sequence (). The following de�nition generalizes theabove type of representation, introducing a class of formulae that may be usedfor \dependent instantiation" of variables, given Q. The idea is to instantiate thevariables of Q in a top-down manner, where the sets of possible values of descendantvariables with respect to Q depend on the chosen instantiations of the ancestorvariables.De�nition 5.4 Let Q = (^ c; ~x) be a simple tree query, let x 2 fr(Q). The setof dependent Q-instantiation formulae for x is inductively de�ned as follows. Firstassume that hQ(x) = 0. For each non-empty set Dx � D, the formula�(x)� :� _d2Dx x = dis a dependent Q-instantiation formula for x. Now assume that hQ(x) > 0. Let; 6= Dx � D. For each d 2 Dx and each child y of x in Q, let �(x;y)(d) be a dependent23

Q-instantiation formula for y. Then�(x)� :� _d2Dx(x = d ^ ^y child of x in Q�(x;y)d)is a dependent Q-instantiation formula for x. There are no other dependent Q-instantiation formulae for x besides those de�ned above. The set Dx is called theset of target candidates for x in �(x)� .Note that the notion of a dependent Q-instantiation formula is de�ned in a purelysyntactical way and does not refer to an answer. In the sequel we use expressionsof the form �(x0;:::;xk)(d0;:::;dk�1) for refering to subformulae of a dependent Q-instantiationformula �(x0)� . These subformulae are inductively de�ned as follows: Assume that�(x0;:::;xk)(d0;:::;dk�1) is a dependent Q-instantiation subformula of �(x0)� of the form_d2Dxk(xk = d ^ ^y child of xk in Q�(xk;y)(d))where k � 0. If xk+1 is a child of xk in Q and dk 2 Dxk , then �(x0;:::;xk+1)(d0;:::;dk) denotes�(xk;xk+1)(dk) . Furthermore each disjunctxk = d ^ ^y child of xk in Q�(xk;y)(d)is written in the form �(x0;:::;xk)(d0;:::;dk) . As an immediate consequence of these de�nitionswe obtainRemark 5.5 Modulo associativity and commutativity of \^" and _", each for-mula �(x0;:::;xk)(d0;:::;dk) is uniquely determined by its subformulae of the form �(x0;:::;xk;y)(d0;:::;dk)where y is a child of xk in Q. Similarly each subformula of the form �(x0;:::;xk�1;xk)(d0;:::;dk�1)is uniquely determined by its subformulae of the form �(x0;:::;xk)(d0;:::;dk) .The following de�nition captures the notion of incrementally instantiating a depen-dent Q-instantiation formula in a top-down manner.De�nition 5.6 The set of partial (resp. total) instantiations of a dependent Q-instantiation formula �(x0)� is inductively de�ned as follows: the empty set \;" isa partial instantiation of �(x0)� . Assume that � is a partial instantiation of �(x0)� .If �(x0)� has a subformula of the form �(x0;:::;xk)(d0;:::;dk) , if fhxi; dii j 1 � i � k � 1g � �and � does not have a pair of the form hxk; di (d 2 D), then � [fhxk; dkig is apartial instantiation of �(x0)� . There are no other partial instantiations besides thosede�ned by the above rules. A partial instantiation � of �(x0)� is a total instantiationi� � contains a pair hx; di for every x 2 fr(�(x0)�).24

Lemma 5.7 Let Q be a simple tree query, let �(x0)� be a dependent Q-instantiationformula. Then every partial instantiation of �(x0)� can be extended to a total in-stantiation of �(x0)� . The set of total instantiations of �(x0)� is non-empty.The lemma can be proven by a trivial induction on hQ(x0).Lemma 5.8 Let Q be a simple tree query, let �(x0)� be a dependent Q-instantiationformula for x0, let d0; : : : ; dk be elements of D. Then the following conditions areequivalent:1. �(x0)� has a subformula �(x0;:::;xk)(d0;:::;dk�1) where dk is a target candidate for xk,2. �(x0)� has a subformula of the form �(x0;:::;xk)(d0;:::;dk) ,3. Q has formulae x0 �(+) x1; : : : ; xk�1 �(+) xk and fhxi; dii j 0 � i � kg is apartial instantiation of �(x0)� .The proof of Lemma 5.8 is simple and can be found in the Appendix. We now cometo the central de�nition of this section.De�nition 5.9 Let Q be a simple tree query with root x0. A dependent Q-instantiation formula �(x0)� for x0 is called a complete answer formula for Q i�each answer to Q is a total instantiation of �(x0)� and vice versa.Complete answer formulae will be denoted in the form �Q. Some of the followingformulations become simpler when introducing the falsum \?" as an additionaldependent Q-instantiation formula. By convention, \?" does not have any instan-tiation. We may now give the �rst kernel result of this paper.Theorem 5.10 For each simple tree query Q = (^c; ~x) and each relational docu-ment structure D there exists a complete answer formula �Q which is unique moduloassociativity and commutativity of \^" and _".Proof. First assume that Q does not have any answer in D. Then \?" is acomplete answer formula for Q. It follows from Lemma 5.7 that Q does not haveanother complete answer formula. Assume now that Q has at least one answer.Since we later see how to compute a complete answer formula �Q for Q (cf. Sec-tions 6.3 and 6.5) we only prove the uniqueness part here. Let x0 be the root of Q,let �(x0)� and �(x0)� be complete answer formulae for Q. Lemma 5.7 and Lemma 5.825

show that �(x0)� has a subformula �(x0;:::;xk)(d0;:::;dk) i� �(x0)� has a subformula �(x0;:::;xk)(d0;:::;dk) .Starting at the subformulae with maximal k it is then trivial to prove by \inverse"induction using Remark 5.5 that corresponding formulae �(x0;:::;xk)(d0;:::;dk) and �(x0;:::;xk)(d0;:::;dk)are equal modulo associativity and commutativity of \^" and _". It follows that�(x0)� and �(x0)� are equal modulo associativity and commutativity of \^" and _".Since we want to obtain a representation where multiple occurrences of the samesubformula are shared, the following simple observation is crucial. The proof, whichstrongly depends on Lemma 4.11, can be found in the Appendix.Lemma 5.11 Let �Q be a complete answer formula for the simple tree query Q.Then two subformulae of �Q of the form �(x0;:::;xk�1;xk)(d0;:::;dk�1;dk) and �(x0;:::;xk�1;xk)(d00;:::;d0k�1;dk) arealways identical modulo associativity and commutativity of \^" and _".5.2 Complete answer aggregates for simple tree queriesOur next aim is to give a compact physical representation of complete answer for-mula. Lemma 5.11 shows that for each pair (xk ; dk) (where xk 2 fr(Q) and dk 2 D)all subformulae of �Q of the form �(x0;:::;xk�1;xk)(d0;:::;dk�1;dk) are identical. We shall write themin the form �xk(dk). In the physical representation, all occurrences of a subformula�x(d) are shared and represented as a �eld Aggx[d] of a record3 Aggx assigned tothe variable x.De�nition 5.12 Let Q = (^ c; ~x) be a simple tree query. An aggregate for Qis a family AggQ of records, fAggx j x 2 ~xg. Each record is composed of a �nitenumber of �elds with indices d 2 D, denoted Aggx[d]. For each child y of x in Q, the�eld Aggx[d] contains a list of pointers, Aggx[d; y]. Each pointer in a list Aggx[d; y]points to a �eld Aggy[e] of the record Aggy. Distinct pointers of Aggx[d; y] pointto distinct �elds.In Examples 5.15 and 5.16 graphical representations for aggregates may be found.Since we are concerned in this section with the size of answers we will de�ne the3In some contexts, the data structure that is used here, with an open number of �elds that areaccessed by arbitrary keys, are called \dictionaries" and distinguished from \records" (which havea �xed number of �elds). Since the terminus \dictionary" is preoccupied to a certain extend inour context we prefer to ignore this di�erence here.26

size of an aggregate as the number of pointers of the aggregate. Modulo a constantfactor this value reects the storage space needed for an aggregate.De�nition 5.13 Let Q = (^ c; ~x) be a simple tree query, let �Q denote thecomplete answer formula for Q. A complete answer aggregate for Q is a Q-aggregateAggQ = fAggx j x 2 ~xg that satis�es the following conditions:1. a record Aggx has a sub�eld Aggx[d] i� �Q has a subformula �x(d),2. a list Aggx[d; y] has a pointer to a �eld Aggy[e] i� �x(d) contains a subformulaof the form �y(e).Remark 5.14 Ignoring the trivial case of an unsatis�able query it is easy to seethat a complete answer formula �Q for a simple tree query Q uniquely determinesthe corresponding complete answer aggregate AggQ. Conversely, given a completeanswer aggregate AggQ we may reconstruct the complete answer formula �Q in thefollowing way: to obtain �Q,� read the record Aggx of the root x of Q as the disjunction of theformulae associated with the sub�elds Aggx[d],� associate with each �eld Aggx[d] the conjunction ofx = d with the formulae associated with the pointer lists Aggx[d; y],� associate with each list of pointers Aggx[d; y] of a �eld Aggx[d] thedisjunction of the formulae associated with the address �elds of the pointers.The correspondence between the two concepts should become more obvious withthe following examples.Example 5.15 The complete answer aggregate for the �rst formula in Example 5.3(an encoding of all answers to the rigid tree query given in Example 5.1) can bedepicted as follows.
•dn•d1

• d0

•dn•d1d2• •d2...

Aggx

Aggy1 Aggy2
Aggyq

•dn•d1 •d2 ...

y1
•• •...

y2
•• •...

yq

•• •......

...

The root variable x can only be instantiated with d0. All other variables can beinstantiated with each of the nodes d1; : : : ; dn.27

In this example, the number of pointers of the aggregate is q � n. Hence the size ofthe aggregate is of order O(q � n).Example 5.16 For the special case q = 4 and n = 8 the complete answer aggregatefor the second formula in Example 5.3 (an encoding of all answers to the tree queryin Example 5.2) has the following form.
•

x2
• • • • • • • • • • • • • •

x2 x2 x2x2

• d1 • d2
d3• d4• • d5Aggx1

•
x3

• • • • • • • • • • • • • •
x3 x3 x3x3

• d2 • d3
d4• d5• • d6Aggx2

•
x4

• • • • • • • • • • • • • •
x4 x4 x4x4

• d3 • d4
d5• d6• • d7Aggx3

• d4 • d6• d7• • d8Aggx4 d5For arbitrary n � q, each record Aggxq contains n� q + 1 target candidates. The�rst target candidate in each record Aggxi (apart from the last �eld Aggxq , whichcontains no pointers at all) has n�q+1 pointers to target candidates in Aggxi+1 , thelast target candidate contains only one pointer. Hence each record Aggxi contains1 + : : : + (n � q + 1) = (n�q+1)(n�q+2)2 pointers, apart from the target candidatesin the leaf record Aggxq . Therefore the total number of pointers in the aggregate is(q � 1) � (n�q+1)(n�q+2)2 , hence of order O(q � (n� q)2).We show now that the size of a complete answer aggregate for a rigid simple treequery, Q, is linear both in the size of the query and the database. In the sequel, letjQj denote the number of symbols of Q. This means in particular that the numberof variables of Q and the number of atomic constraints of Q is bounded by jQj.With jDj we denote the cardinality of D.Theorem 5.17 Let D be a relational document structure and let Q be a rigid simpletree query. Then the size of the complete answer aggregate for Q is of order O(jQj �jDj).Proof. The complete answer aggregate AggQ for Q contains � jQj records Aggx,the total number of �elds Aggx[d] is bounded by jQj � jDj. For a �xed �eld Aggy[e]there is at most one pointer ending at Aggy[e]. In fact, each such pointer starts at28

a �eld of the form Aggx[d] where x is the parent of y in Q: the de�nition of thecomplete answer aggregate implies that the complete answer formula, �Q, has aformula �x(d) with subformula �y(e). Lemma 5.8 and Lemma 5.7 show that �Qhas a total instantiation � mapping x to d and y to e. Since � is an answer to Qand y is a rigid child of x in Q it follows that d is the unique parent of e in D. Wehave seen that the total number of pointers is bounded by jQj � jDj. It follows thatthe total size of AggQ is of order O(jQj � jDj).Theorem 5.18 Let D be a non-recursive relational document structure and let Qbe a labeling-complete tree query. Then the size of the complete answer aggregatefor Q is of order O(jQj � jDj).Proof. Similar to the previous proof. Again, for a �xed �eld Aggy[e] there is atmost one pointer ending at Aggy[e]. In fact, if x denotes the parent of y, then thequery contains a formula M(x) and there is at most one ancestor d of e in D withlabel M .Theorems 5.17 and 5.18 depend on the fact that in the situation of these theo-rems for each �eld Aggx[d] of the complete answer aggregate there exists at mostone vertical pointer that points to Aggx[d]. If we conceive the aggregate as a graph,with the target candidates as nodes and the pointers as edges, then the resultinggraph is a forest. Some nodes of the relational document structure may appear morethan once in this forest, due to the fact that they appear as target candidates inmore than one record. If we use an equivalence relation to collapse these duplicates,the resulting forest is a subforest of the relational document structure.For arbitrary tree queries and databases, a given �eld can serve as the address ofmore than one pointer (see Example 5.16 for an illustration). Hence the graph in-duced by the aggregate is not necessarily a tree and the maximal size also dependson the maximal length of a document path, denoted hD:Theorem 5.19 Let D be a relational document structure and let Q be a simple treequery. Then the size of the complete answer aggregate for Q is of order O(jQj � jDj �hD).Proof. In this case a sub�eld Aggy[e] can serve as the address of at most hDpointers: in fact all pointers with address Aggy[e] start from some �eld Aggx[d]where x is the parent of y in Q and d is an ancestor of e. There are at most hD29

ancestors of e, and for a �xed �eld Aggx[d] there is at most one pointer from Aggx[d]to Aggy[e]. Hence the total number of pointers is bounded by jQj�jDj�hD. It followsthat the total size of AggQ is of order O(jQj � jDj � hD).Examples 5.15 and 5.16 show that the bounds in Theorem 5.17 and Theorem 5.19are sharp. It should be noted that in both bounds we could replace the size jQj ofthe query by the number of variables occurring in Q.5.3 Complete answer formulae for local tree queriesSo far, we have introduced complete answer aggregates for the restricted class ofsimple tree queries only. In this section we briey discuss how the same concept canbe used for more general classes of queries. One important characteristics of thenotion of a complete answer aggregates is the principle that the administrationalinformation that is stored in a �eld Aggx[d] only concerns the possible instantiationsof the children of the variable x in the query Q. This restriction can be interpretedas a form of locality. Since we do not want to give up the principle, the class ofQ-local constraints seems to represent a natural limit for representation techniquesbased on the idea of a complete answer formulae. The characterizations of completeanswer formulae for local tree queries obtained in this section will be used later whentreating the special case of partially ordered tree queries.Let Q be a local tree query. Suppressing all constraints of Q that are not Q-simple we obtain a simple tree query Qs. Let �Qs be the unique complete answerformula forQs (cf. Theorem 5.10). Each subformula �x(d) of �Qs describes the set ofpossible instantiations of the descendants of x under the hypothesis that x is mappedto d. These instantiations respect Q-simple constraints, but not necessarily thesuppressed Q-local constraints. To circumvent this problem we add a new restrictorcondition to each formula �x(d) that guarantees that the instantiation of the childreny1; : : : ; yh of xk in Q satis�es the Q-local constraints imposed on (xk ; y1; : : : ; yh) inQ. In principle the syntactic form of restrictor conditions is arbitrary, as longas they correctly encode Q-local constraints. For the sake of speci�city we usean explicit enumeration of admissible instantiation tuples for (y1; : : : ; yh) in thefollowing de�nitions. The following de�nition captures the syntactical form of anappropriate class of formulae, while the notion complete answer formula de�nedafterwards captures the semantics.De�nition 5.20 Let Q = (^ c; ~x) be a local tree query, let x 2 fr(Q). The set of30

dependent Q-instantiation formulae for x is inductively de�ned as follows. Assumethat hQ(x) = 0. For each non-empty set Dx � D, the formula�(x)� :� _d2Dx x = dis a dependent Q-instantiation formula for x. Now assume that hQ(x) > 0. Let; 6= Dx � D. Let fy1; : : : ; yhg denote the set of children of x in Q. For eachd 2 Dx and each child yi, let �(x;yi)(d) be a dependent instantiation formula for yiwith set of target candidates Dxd(yi). If Rxd(y1; : : : ; yh) is a non-empty subset ofDxd(y1)� � � � �Dxd(yh) such that for all i = 1; : : : ; h and all di 2 Dxd(yi) there existsa tuple in Rxd(y1; : : : ; yh) where the i-th component is di (\contribution obligation"),then �(x)� :� _d2Dx(x = d ^ (y1; : : : ; yh) 2 Rxd(y1; : : : ; yh) ^ ĥi=1�(x;yi)d)is a dependent Q-instantiation formula for x. Besides the above formulae, there areno other dependent Q-instantiation formulae for x.In the sequel, Rxd(y1; : : : ; yh) will be called the restrictor set of the subformulax = d ^ (y1; : : : ; yh) 2 Rxd(y1; : : : ; yh) ^ Vki=1�(x;yi)d . The condition that restrictorsets are always non-empty ensures that partial instantiations of dependent instan-tiation formulae can be extended to total instantiations (see below). The secondcondition on restrictor sets, which will be called \contribution obligation" for thesake of reference, ensures that no target candidate di 2 Dxd(yi) is isolated, i.e. everytarget candidate di 2 Dxd(yi) contributes to at least one answer. As in the caseof simple tree queries we use expressions �(x0;:::;xk)(d0;:::;dk�1) and �(x0;:::;xk)(d0;:::;dk) for refering tosubformulae of a dependent Q-instantiation formula �(x0)� .De�nition 5.21 Let Q be a local tree query. The set of partial (total) instantia-tions of a dependent Q-instantiation formula �x0� is inductively de�ned as follows:for each subformula �x0d0 the mapping fhx0; d0ig is a a partial instantiation of �x0� .Let �(x0;:::;xk)(d0;:::;dk) be a subformula of �x0� of the formxk = dk ^ (y1; : : : ; yh) 2 Rxkdk (y1; : : : ; yh) ^ ĥi=1�(xk;yi)dk(where y1; : : : ; yh is the sequence of children of xk in Q). Assume that � is apartial instantiation of �x0� such that fhxi; dii j i = 1; : : : ; kg � � and � does notinstantiate any child yi of xk. For each tuple (e1; : : : ; eh) 2 Rxkdk (y1; : : : ; yh) themapping � [fhyi; eii j 1 � i � hg is a partial instantiation of �x0� . There are31

no other partial instantiations besides those de�ned by the above rules. A partialinstantiation � of �x0� is a (total) instantiation i� � contains a pair hx; di for everyx 2 fr(�x0�).De�nition 5.22 Let Q be a local tree query, with root x0. A dependent Q-instantiation formula �(x0)� for x0 is called a complete answer formula for Q i�each answer to Q is a total instantiation of �(x0)� and vice versa.Theorem 5.23 For each local tree query Q a complete answer formula �Q isunique modulo associativity and commutativity of \^" and _".The proof is a trivial variant of the proof of Theorem 5.10 and can be found in theAppendix. It can be shown that a complete answer formula for a given local treequery always exists. For the special case of ordered tree queries we shall give analgorithm for computing a complete answer formula in the next section.Lemma 5.24 Let �Q be a complete answer formula for the local tree query Q.Then two subformulae of �Q of the form �(x0;:::;xk�1;xk)(d0;:::;dk�1;dk) and �(x0;:::;xk�1;xk)(d00;:::;d0k�1;dk) arealways identical modulo associativity and commutativity of \^" and _".Again, the proof is a simple variant of the proof for the corresponding Lemma 5.11and can be found in the Appendix. The crucial observation is that Lemma 4.11holds for local queries as well. On the basis of the lemma we may write subformulae�(x0;:::;xk�1;x)(d0;:::;dk�1;d) in the form �x(d) and subformulae of the form �(x0;:::;xk�1;x;yi)(d0;:::;dk�1;d) in theform �x;yi(d).At the end of this section we want to show that the restrictor conditions ofa complete answer formula for a local tree query Q are equivalent to the Q-local(non Q-simple) constraints imposed on the respective variables in Q. A de�nitionis needed before.De�nition 5.25 Let Q be a local tree query, let �x(d) be a subformula of thecomplete answer formula �Q for Q, let y1; : : : ; yh be the children of x. A sequenceof nodes (e1; : : : ; eh) satis�es a constraint r(x; yi1 ; : : : ; yir) (where fyi1 ; : : : ; yirg �fy1; : : : ; yhg) relative to d i� rD(d; ei1 ; : : : ; eir) holds in D.Lemma 5.26 Let Q = (^ c; ~x). In the situation of De�nition 5.25, let R denotethe restrictor set of �x(d), for i = 1; : : : ; h let Di be the set of target candidates32

for yi in �x;yi(d). Then R is the set of all tuples (e1; : : : ; eh) 2 D1 � � � � � Dhwhere (e1; : : : ; eh) satis�es all non Q-simple constraints r(x; yi1 ; : : : ; yir) (wherefyi1 ; : : : ; yirg � fy1; : : : ; yhg) of c relative to d.Lemma 5.26, which is proven in the Appendix, shows that we may use the Q-local constraints itself as restrictor formulae. As a matter of fact this is what weexpect. Though this form of representation seems natural and yields a compactrepresentation it has the disadvantage that it might be far from obvious whichtuples of target candidates for the children variables actually satisfy the relevantset of Q-local constraints. On the other hand, a naive enumeration of all elements ofthe restrictor set might lead to serious space problems, something that we wantedto avoid with the use of answer aggregates. Since the optimal representation ofrestrictor sets depends on the concrete type of Q-local constraints that are used wedo not continue the discussion on this general level. Instead we treat the specialcase of ordered tree queries in more detail.5.4 Complete answer aggregates for partially ordered treequeriesPartially ordered tree queries represent a special subclass of local tree queries, henceall results of the previous section can be applied.Theorem 5.27 For each ordered relational document structure D and each par-tially ordered tree query Q there exists a complete answer formula �Q which isunique modulo associativity and commutativity of \^" and _".Proof. The uniqueness part is a special instance of Theorem 5.23. In Section 6we give an algorithm that computes a complete answer formula for Q.It remains to �nd a suitable representation for restrictor sets that can be usedto immediately enumerate possible instantiations and leads to reasonable spacerequirements.Consider a partially ordered tree query Q. Let Qs denote the simple tree querythat is obtained by suppressing all left-to-right ordering constraints and let AggQsbe the complete answer aggregate for Qs. We assume that the �elds Aggy[e] of eachrecord Aggy are ordered via pre-order relation <Dpr of the nodes e. Similarly pointerlists of the form Aggx[d; y] are ordered following the ordering of their address �elds.33

These assumptions will help to �nd a simple encoding for left-to-right orderingconstraints.To illustrate the idea, consider a pointer Aggx[d; yi[l]] of AggQs pointing to a�eld Aggyi [ei] as indicated in the �gure below. Assume that Q has a constraintyi <lr yj . Now let Aggx[d; yj [m]] be the left-most pointer in Aggx[d; yj] with anaddress �eld Aggyj [e] such that ei <Dlr e.4
• d

•ei ...

Candx

Candyi

y
i •y

j
...

l

••••••••••...
m

...
...... •eCandyj ...

... • • • • • • • • • •
...........................

...In this situation, all pointers Aggx[d; yj [m0]] with index m0 � m have address �eldsAggyj [em0] such that ei <Dlr em0 , and these are the only pointers of Aggx[d; yj [m0]]with an address �eld satisfying this condition. In fact, by our ordering conventionfor �elds we have e �Dp em0 for each such m0 and, since ei <Dlr e, Lemma 2.3 showsthat ei <Dlr em0 . This shows that all pointers have the required property. By choiceof m, no other pointer can satisfy the condition. Hence, in order to encode theleft-to-right ordering constraint yi <lr yj subject to the choices x = d and yi = eiit su�ces to introduce a \horizontal" pointer from Aggx[d; yi[l]] to Aggx[d; yj [m]]as indicated in the following �gure.
• d

•ei ...

Candx

Candyi

y
i •y

j
...

l

••••••••••...
m

...
...... •eCandyj ...

... • • • • • • • • • •
...........................

...

•

The pointer is interpreted in the following way. When instantiating x with d andyi with ei, we may use exactly the pointers Aggx[d; yj [m]], Aggx[d; yj [m + 1]]; : : :for instantiating yj . Of course, when we proceed in this way we have to introducehorizontal pointers for all possible instantiation values of variables and all left-to-right ordering constraints. We illustrate the complete picture with an example:4For the sake of simplicity we assume that such a pointer exists. The discussion of the othercase, where we have to erase Aggx[d; yi[l]], is postponed to Section 6.1.34

Example 5.28 Let D have the following form (we ignore labels and textual con-tents) where the left-to-right ordering between the children of d0 is as depicted inthe �gure.
••••

•
d0

d1 d2 d3 d4
•

d5The complete answer aggregate for the partially ordered tree query Q of the form(x� y1 ^ : : : ^ x� y3 ^ y1 <lr y2 ^ y1 <lr y3; hx; y1; y2; y3i) is the following object.
Aggx

Aggy1

y1

•

•
d1

d0

•
d2

•
d3

•
d4 Aggy2

•
d2

•
d3

•
d4

•
d5

• • • •

y2

• • • •

y3

• • • •

Aggy3

•
d2

•
d3

•
d4

•
d5

• • • •

• • • •

v

y3

y2

1 4 1 14 4

Since there are two left-to-right ordering constraints for y1, y1 <lr y2 and y1 <lr y3,with each vertical pointer of Agg[d0; y1] (line 1) we associate two horizontal pointers(lines y2 and y3). When instantiating y1 with d2, for example, we may instantiatey2 using the pointers to d3; d4 or d5, and similarly for y3.De�nition 5.29 Let Q = (^c; ~x) be a partially ordered tree query. An aggregatefor Q is a family AggQ of records, fAggx j x 2 ~xg. Each record Aggx is composedof an ordered sequence of sub�elds Aggx[d], the ordering is given by the pre-orderrelationship of nodes d in D. For each child yi of x in Q, the �eld Aggx[d] contains atwo-dimensional array Aggx[d; yi]. With Aggx[d; yi[l; �]] we denote the l-th column.1. The �rst entry Aggx[d; yi[l; v]] of Aggx[d; yi[l; �]] is a \vertical" pointer, i.e., apointer to a �eld of the form Aggyi [ei]. Node ei is called the address node ofAggx[d; yi[l; �]]. Address nodes of distinct columns are distinct.2. For each left-to-right ordering constraint yi <lr yj of Q there is one additionalentry Aggx[d; yi[l; yj]] in Aggx[d; yi[l; �]] that represents a pointer to the �rstcolumn Aggx[d; yj [m; �]] with an address node e such that ei <Dlr e. There areno other entries in Aggx[d; yi[l; �]].De�nition 5.30 Let Q = (^ c; ~x) be a partially ordered tree query, let �Q35

denote the complete answer formula for Q. A complete answer aggregate for Q isan aggregate fAggx j x 2 ~xg for Q that satis�es the following conditions.1. Aggx has a sub�eld Aggx[d] i� �Q has a subformula �x(d),2. an array Aggx[d; yi] has a vertical pointer with address �eld Aggyi [e] i� �x(d)has a subformula �yi(e).Remark 5.31 Ignoring the trivial case of an unsatis�able query it is again easy tosee that a complete answer formula �Q for a partially ordered tree query Q uniquelydetermines the corresponding complete answer aggregateAggQ. Conversely, given acomplete answer aggregate AggQ we may reconstruct the complete answer formula�Q in the following way: to obtain �Q� read the record Aggx of the root x of Q as the disjunction of theformulae associated with the sub�elds Aggx[d],� associate with each �eld Aggx[d] the conjunction ofx = d with the horizontal pointer condition (see below)and the formulae associated with the lists of pointers,� associate with each list of pointers Aggx[d; y] of a given �eld Aggx[d] thedisjunction of the formulae associated with the address �elds of the pointers.Assume that Aggx[d] has the pointer arrays Aggx[d; y1]; : : : ;Aggx[d; yh] for the chil-dren y1; : : : ; yh of x inQ. The horizontal pointer condition has the form (y1; : : : ; yh) 2Rxd(y1; : : : ; yh) where Rxd(y1; : : : ; yh) contains all tuples (e1; : : : ; eh) that satisfy thefollowing conditions:1. there exist pointer columns Aggx[d; y1[l1; �]]; : : : ;Aggx[d; yh[lh; �]] where ver-tical pointers have address nodes e1; : : : ; eh,2. for each horizontal pointer Aggx[d; yi[li; yj]] with address Aggx[d; yj [k; �]] wehave k � lj .Clearly, the sets Rxd(y1; : : : ; yh) are exactly the restrictor sets de�ned in De�ni-tion 5.20. Before we show how to compute a complete answer aggregate for apartially ordered tree query we want to give an upper bound for the size.Remark 5.32 Let Q = (^ c; ~x) be a partially ordered tree query, let �Q denotethe complete answer formula for Q. To each pointer p = Aggx[d; yi[l; s]] of �Q weassign a unique triple (L1(p); L2(p); L3(p)) as follows.36

� L1(p) is the address node of the vertical pointer Aggx[d; yi[l; v]] of the columnAggx[d; yi[l; �]] of p.� We de�ne L2(p) := d. Recall that d is always an ancestor of L1(p).� L3(p) is the following atomic subformula/constraint of Q: if s = v (p is avertical pointer) then L3(p) := x �(+) yi is the formula of Q that expressesthat yi is a child of x.If s = yj , then L3(p) is the left-to-right ordering constraint yi <lr yj .Clearly distinct pointers are mapped to distinct triples. Hence the total number ofpointers of �Q is bounded by the number of possible triples. This yields a boundjDj �hD � jQj for queries with soft edges, and a bound jDj � jQj for rigid queries, or forlabeling-complete queries over non-recursive databases. This can be seen as follows.There are jDj possibilities for L1(p). L2(p) must be an ancestor (a parent for rigidqueries) of L1(p). If L1(p) is �xed, there are hD possibilities for L2(p), and justone possibility for rigid queries, or for labeling-complete queries over non-recursivedatabases. Since L3(p) is an atomic subformula of Q, there are jQj possibilities forL3(p).It follows that the bounds for the size of a complete answer aggregate that weobtained for simple tree queries hold for partially ordered tree queries as well.Theorem 5.33 Let D be an ordered relational document structure and let Q bea partially ordered tree query. Then the size of the complete answer aggregate forQ is of order O(jDj � hD � jQj). If Q is rigid, or if Q is labeling complete and Dis non-recursive, then the size of the complete answer aggregate for Q is of orderO(jDj � jQj).6 Computation of complete answer aggregates fortree queriesIn this section we want to prove the following central results.Theorem 6.1 Let D be a relational document structure, let Q be a tree query. IfQ is rigid, or if D is non-recursive and Q is labeling-complete, then it is possibleto compute the complete answer aggregate for Q in time O(jQj � jDj � log(jDj)) andspace O(jQj � jDj). 37

Theorem 6.2 Let D be an ordered relational document structure, let Q be a par-tially ordered tree query. Then it is possible to compute a complete answer aggregatefor Q in time O(jQj � jDj � hD � log(jDj)) and space O(jQj � jDj � hD).Before we describe the algorithm we characterize �elds/pointer columns of aggre-gates that cannot contribute to any instantiation (�rst section). In the algorithm,these �elds and pointer columns will be eliminated by a dedicated sub-procedure.The algorithm uses a special index structure forD that we describe in the second sec-tion. Hereafter, the algorithm itself together with its sub-procedures is described.In section four we discuss complexity issues and add an important optimization.The last part of this section contains the soundness and completeness proof.6.1 Isolated �elds and pointer columnsGiven a partially ordered tree query Q, our algorithm �rst tries to compute a com-plete answer aggregate for the modi�ed query Qs that is obtained by suppressing allleft-to-right ordering constraints of Q. In this situation the algorithm will sometimesintroduce \isolated" �elds that do not contribute to answers.De�nition 6.3 A �eld Aggx[d] of an aggregate for Q is upwards isolated if x isnot the root of Q and if there does not exist any vertical pointer with address�eld Aggx[d]. A �eld Aggx[d] is downwards isolated if for some child y of x thearray Aggx[d; y] is empty. A �eld is isolated if it is upwards isolated or downwardsisolated.As an illustration consider the following aggregate.
• d

•

Candx

Candy1

y
1

...

•

•
...

e •
...

•
...

•
...

...
•
...

•
...

y
2

•
...

•
...

•
...

•
y

1

•
...

•
...

•
...

y
2

•
...

•
...

•
..
.

Candy2Field Aggy1 [e] is upwards isolated. There is no value for x that would allow for aninstantiation of y1 with e. Field Aggx[d] is downwards isolated. An instantiation38

of x with d cannot be completed since there exists no possible instantiation for y2in this case. A similar problem may arise with pointer columns in connection withhorizontal pointers.De�nition 6.4 A pointer column Aggx[d; yi[l; �]] is right isolated if the addressnode of its vertical pointer Aggx[d; yi[l; v]] is a node ei such that for an orderingconstraint yi <lr yj there is no address node e of yj in Aggx[d; yj] such that ei <Dlre. A pointer column Aggx[d; yj [l; �]] with address �eld Aggyj [ej] is left isolatedif there exists a constraint yi <lr yj in Q and if the left-most horizontal pointerAggx[d; yi[1; yj]] points to a column Aggx[d; yj [k; �]] such that k > l.In this situation, an instantiation of yi (yj) with ei (resp. ej) cannot contributeto a successful instantiation of Agg. As an example, consider the following record,where Q is assumed to have a constraint y1 <lr y2.
Candx

y1

• d

1
1

y2

y2

e1
Candy1

• Candy2

•
2 3 4 5

•

•

•

•

•

•

•

•

•

• • • •

e2
• e3

• e8
• e9

• e10
•e4

• e5
•

•
1 2 3 4 5

e7
•e6

•Assume that e10 <Dlr e4. In this case an instantiation of y1 with e4 or e5 cannot becompleted with a suitable instantiation of y2 such that the constraint y1 <lr y2 issatis�ed. The columns Aggx[d; y1[4; �]] and Aggx[d; y1[5; �]] are right-isolated. Wesay that Aggx[d; y1[4; y2]] and Aggx[d; y1[5; y2]] are \dangling" pointers with value?. Assume furthermore that e8 is the �rst element e of the list e6; : : : ; e10 suchthat e1 <Dlr e. In this situation is is clear that an instantiation of y2 with e6 or e7cannot be completed with a corresponding instantiation of y1. The pointer columnsAggx[d; y2[1; �]] and Aggx[d; y2[2; �]] are left-isolated.In the description of the algorithm we shall use dangling pointers with value ?.The adaption of the de�nition of an aggregate for Q is straightforward.
39

6.2 Index architectureThe algorithm for computing a complete answer aggregate for a given query usestwo index structures for D as elaborated in this section. In order to facilitate theindex access we shall assume that D is an ordered relational document structure.Even if such an ordering does not exist a priori, an arti�cial ordering can always beimposed on D. This turns out to be advantageous.In the sequel, we assume that a special �nite subset K of ��, called the set ofkey words, is de�ned. Queries are assumed to be restricted in the sense that foreach formula w in x occurring in a query always w is a key word. Each formulaof the form w in x (w 2 K), M(x) (M 2 �) or r(x) (r 2 R) will be called aunary index formula, formulae of the form r(x; y) (r 2 R) are called binary indexformulae. When we abstract from the variables that are used in the formula wetalk about (unary resp. binary) index predicates5. Note that formulae of the formx � y; x �+ y as well as left-to-right ordering constraints are not treated as indexformulae. The motivation for this distinction is the following: we assume that theinformation that describes the tree structure of the database (i.e., the actual setof nodes, children relationship, left-to-right ordering) is separated from the indexstructure and stored independently.Path selection indexThe path selection index is used to retrieve for each variable that represents a leafof the query a �nite set of so-called inverted partial document paths. This step willbe the basis for the algorithm to be described in the next section.De�nition 6.5 An inverted partial document path is a non-empty sequence ofnodes hdi; di�1; : : : ; d0i such that hd0; : : : ; dii is a partial document path. The ini-tial node of an inverted partial document path hdi; di�1; : : : ; d0i is the bottom-mostnode di. An inverted query path has the form hxk ; : : : ; x0i where hx0; : : : ; xki is a(complete) path of Q.An inverted partial document path will simply be called an inverted documentpath. The path selection index contains for each unary index predicate p a list �p ofinverted document paths.6 �p is assumed to be ordered via pre-order relationship5Theorems 6.2 and 6.1 and the algorithm to be described below refer to partially ordered treequeries only, therefore we can restrict ourselves to unary and binary predicates.6Note that it su�ces to store the initial nodes of the paths.40

of initial nodes. The lists �p are assumed to be \sound" and \complete" in thefollowing sense:Remark 6.6 A node d 2 D is an initial node of an inverted document path in�p for unary index predicate p if and only if d satis�es the predicate p in D, i.e.D j= p[d].Clearly the number of inverted document paths is bounded by jDj. For distinctunary index predicates p and p0 the intersection of the lists �p and �p0 can becomputed in time O(jDj) using a simultaneous traversal of �p and �p0 along <Dpr.This can be generalized to �nite intersections.Lemma 6.7 Let p1; : : : ; pn be unary index predicates. The intersection �p1 \ : : :\�pn can be computed in time O(n � jDj).Given the query Q, each call to the path selection index will be triggered by aninverted query path hxk ; : : : ; x0i. In order to simplify the presentation of the follow-ing algorithm we shall assume that the index access directly yields the intersection�p1 \ : : :\�pn where p1(xk); : : : ; pn(xk) is the complete list of unary index formulaefor variable xk in Q. From Lemma 6.7 we getLemma 6.8 The total time-complexity for the access to the path selection index fora query Q is bounded by O(jQj � jDj).The alignment indexThe algorithm will check if an inverted document path �D that results from the callto the path selection index for an inverted query path �Q = hxk ; : : : ; x0i is conformwith the conditions that are imposed on the variables x0; : : : ; xk in Q. The checkis organized as a bottom-up alignment process. This latter process is supported bythe alignment index.Remark 6.9 For theoretical estimation of the time-complexity of the algorithm tobe described in the following section the following assumption will be made.1. for each node d and each unary index predicate p it is possible to check intime O(log(jDj)) if D j= p[d], and2. for each pair of nodes di*+dj and each binary index predicate r it is possibleto check in time O(log(jDj)) if D j= r[di; dj].41

For unary index predicates p the required test can be implemented by assigning top a list Lp of all nodes of D that satisfy p. If Lp is ordered along the pre-orderrelationship of nodes and if it is accessed by binary search the requested bound isobtained.From a theoretical point of view, a similar approach is possible for binary indexpredicates r, just using a list of lists, Lr. The idea is to store for each d 2 D thelist Lr(d) of all its ancestors d0 such that D j= r[d; d0]. Empty lists Lr(d) can beomitted. Note that the length of each list is restricted by hD. Given (di; dj) we may�rst search for a sublist Lr(di) of Lr, in a second step for an element dj in Lr(di).Both searches may be binary.Surely this strategy is not optimal in concrete cases. However, since all binaryindex predicates are \generic" relations r 2 R is seems hard to suggest a betterapproach that works in full generality.Since we assume that the number of distinct index predicates is �nite and con-stant the above assumptions lead to the following result.Lemma 6.10 Given a pair of document nodes (di; dj) where dj is an ancestor ofdi, and a set of index predicates, P , it is possible to check in time O(log(jDj)) if djsatis�es all unary predicates in P and if (di; dj) satis�es all binary index predicatesin P .6.3 The algorithmIn this section we describe an algorithm that computes a complete answer aggregatefor a tree query Q. The algorithm accepts partially ordered tree queries (thisincludes simple tree queries) that may have rigid and soft edges. For more restrictedinput problems, such as rigid tree queries or simple tree queries, structural simplicityis automatically taken into account. As in the previous section we shall generallyassume that on D a �xed pre-order relationship <Dpr is given.In the following description of the algorithm, two phases may be distinguished.In Phase 1, for a given input query Q an aggregate for Q, Agg, is created thatrepresents an extension of the complete answer aggregate for Q. The aggregateAgg may contain isolated �elds and pointer columns. Two stacks will be used tocollect these isolated elements. In Phase 2, isolated �elds and pointer columnsare systematically removed from Agg and the complete answer aggregate for Q is42

obtained.Phase 1 (aggregate construction)In this phase, two procedures are applied in iterative order. In the �rst step,which consists of the main procedure INCLUDE-PATHS with two sub-proceduresSELECT-ANCESTORS and CREATE, we start with an empty Q-aggregate andenter in bottom-up manner the inverted document paths that are received fromthe access to the path selection index for the inverted query paths. Records,�elds, and vertical pointers are created by need. In the second step, the procedureINTR-HOR-P computes downwards isolated �elds and includes horizontal pointersfor partially ordered tree queries.Procedure INCLUDE-PATHS(Q;Agg; Isol-F)% Compute an aggregate Agg for query Q that is% an extension of the complete answer aggregate for Q.% Compute list Isol-F of upwards isolated �elds in AggbeginAgg := ;;Isol-F:= ;;for each inverted path �Q := hxk; : : : ; x0i of Q % xk leaf, x0 root of QbeginAgg := Agg [fAggxkg where Aggxk is an empty recordmarked as new; % (y1)� := set of inverted document paths obtained from access to path selectionindex for �Q; % (y2)for each path � = hdm; dm�1; : : : ; d0i of � % d0 topmost nodebeginintroduce a �eld Aggxk [dm];apply SELECT-ANCESTORS(Agg; xk; dm; hdm; dm�1 : : : ; d0i; Isol-F);endif one of the new records Aggxk is empty thenfail; % y3 no document path matches) no solutionelsemark all new records as old; % y4 preparation for next query pathendreturn Agg;return Isol-F;end; 43

Procedure SELECT-ANCESTORS(Agg; y; di; hdi; : : : ; d0i; Isol-F)% Enter the inverted partial document path hdi; : : : ; d0i% into Agg (if possible), begin with di in y.% Update list of isolated �elds Isol-F.begin if (y = root of Q or i = 0) thenbeginif y is not root of Q then % y5;Aggy[di] upwards isolatedadd Aggy[di] to Isol-F;else stop; % alignment of the path is �nished successfullyend;else beginx := parent of y in Q;if y is a rigid child of x in Q thenbeginif hdi; di�1i (di) satisfy binary (unary) index formulae forhy; xi (x) in Q thenapply CREATE(x; di�1;Agg; y; di; hdi; : : : ; d0i; Isol-F);else add Aggy[di] to Isol-F;endelse % y is a soft child of x in QbeginNode-Found := false;for each node dj in fdi�1; : : : ; d0gif hdi; dji (di) satisfy binary (unary) index formulaefor hy; xi (x) in Q thenbeginNode-Found := true;apply CREATE(x; dj ;Agg; y; di; hdi; : : : ; d0i; Isol-F);endif not Node-Found thenadd Aggy[di] to Isol-F;end;end;end;Procedure CREATE(x; dj ;Agg; y; di; hdi; : : : ; d0i; Isol-F)% Add node dj to �eld Aggx (if possible) with pointers to node% di in Aggy. If dj did not already exist, continue with44

% remaining nodes in hdj ; : : : ; d0i.% Update list of isolated �elds Isol-F.begin if record Aggx does not exist thenbeginintroduce empty record Aggx marked as new;introduce Aggx[dj] with empty pointer arraysAggx[dj ; z] for the children z of x in Q;add pointer column Aggx[dj ; y[1; �]] to Aggy[dj ; y];introduce a vertical pointer from Aggx[dj ; y[1; v]] to Aggy[di];apply SELECT-ANCESTORS(Agg; x; dj ; hdj : : : ; d0i);endelse if Aggx exists and is marked old thenbeginif �eld Aggx[dj] exists thenbeginadd a new pointer column Aggx[dj ; y[k; �]] to Aggx[dj ; y];% at this step the correct ordering of pointer columns% mirroring the order of address nodes has to be respectedintroduce a vertical pointer from Aggx[dj ; y[k; v]] to Aggy[di];% y6endelse add Aggy[di] to ISOL-F; %y7; Aggy[di] upwards isolatedendelse if Aggx exists and is marked new thenbeginif �eld Aggx[dj] exists thenbeginadd a new pointer column Aggx[dj ; y[k; �]] to Aggx[dj ; y];% at this step the correct ordering of pointer columns% mirroring the order of address nodes has to be respectedintroduce a vertical pointer from Aggx[dj ; y[k; v]] to Aggy[di];% y8endelse % Aggx[d] does yet not existbegin 45

introduce a �eld Aggx[dj] with empty pointer listsAggx[dj ; z] for the children z of x in Q;% the correct ordering of �elds has to be respectedadd a pointer column Aggx[dj ; y[1; �]] to Aggx[dj ; y];introduce a vertical pointer from Aggx[dj ; y[1; v]] to Aggy[di];apply SELECT-ANCESTORS(Agg; x; dj ; hdj : : : ; d0i);end;end;end;Let us summarize the procedures. Given the query Q, inverted query paths aretreated in consecutive order. For each inverted query path �Q with initial node xk,the access to the path selection index yields a set of inverted document paths, �(y2). If P denotes the set of all index formulae for xk in Q, the set � represents theintersection of all the sets of document paths that are associated with predicatesp 2 P in the path selection index, as described in 6.2.7Given an inverted path � 2 �, the inverted query path �Q is recursively matchedagainst � in a bottom-up manner (i.e., from the leaf to the root of Q), checking ateach step if the relevant index formulae are satis�ed. The starting point for eachsingle matching step is a situation where we successfully aligned two pre�xes of theinverted paths � and �Q ending at nodes di and y respectively. If we have reachedthe root either of D or of Q the process stops (in such a situation, if we have notreached the root of Q, the actual �eld is upwards isolated and moved to the stackof isolated �elds, y5). Otherwise the possible choices for the next matching stepdepend on whether y is a rigid child or a soft child of its parent node x in Q. In theformer case we obtain (at most) one subcall to CREATE, where we climb from thealigned children nodes y and di to the parent nodes in �Q and � respectively. Forsoft edges, the parent node x of the query paths can possibly be aligned with severalancestor nodes dj of di, and for each such ancestor we have one call to CREATE.The subprocedure CREATE builds up the aggregate, introducing new arrays, �elds,and vertical pointers by need. We shall assume that vertical pointers are alwaysbi-directional. This will simplify the elimination of isolated pointer columns inStep 2.A remarkable feature of the algorithm, located in subprocedure CREATE (cf.7If P is empty, then � is the set of all inverted paths in the document database. Note thatthese pathological cases do not destroy the worst-case time complexity of the algorithm.46

y6 and y8), is the following. Whenever we encounter a �eld Aggx[d] that alreadyexists, after introducing an appropriate pointer we stop. The intuitive justi�cationis that all the structure (pointers and �elds) that we would obtain by continuationof the alignment process has already been included in the aggregate. This followsfrom the fact that pre�xes of (top-down) document paths that end at the same nodemust necessarily be identical. Hence, when meeting an existing �eld Aggx[d], thepre�x of the actual document path that has still to be consumed is identical to thepre�x of another path that had been aligned earlier, starting from the same �eld ofthe aggregate. Since the result will necessarily be the same, we do not have to dothe work twice. Formally it follows that the subprocedure SELECT-ANCESTORSis never called with the same pair (y; di) twice, which is important for the estimateof the worst-case complexity of the algorithm that we shall give below.A recordAggx is marked \old" (resp. \new") if it has (resp. has not) been createdbefore the treatment of the actual query path �Q (y1; y4). A particular situationarises when we try to enter a new �eld into an old record in the alignment process(y7). It is simple to see that such a �eld cannot contribute to any instantiationof the aggregate since it cannot be combined with the document paths that weintroduced when treating the previous query paths. In other words, such a �eldwould necessarily be downwards isolated. For this reason it is not introduced,which means that the previously visited �eld is upwards isolated.If at the end of the treatment of a query path �Q one of the new records Aggxk isempty after all document paths � 2 � have been considered (y3), then the aggregatecannot be instantiated, i.e., the query has no answer, regardless of possible futuresteps. We stop with failure in such a situation (we might output xk to the user).We should add a general remark on the use of stacks for isolated elements (i.e.,�elds or columns). When adding (a pointer to) an element to one of the two stacks,we colour the element in the aggregate using a marker \yellow" that indicates thatthe element is on the stack. Whenever we say that an element is added to the stackwe always mean that we �rst check if the element is marked \yellow". In this casethe element is not added again to the stack.We now describe the subprocedure that introduces horizontal pointers. Sincewe have to visit each pointer array the procedure is also used to compute theset of downwards isolated �elds of Agg. The remaining subpart of the procedure(y9) becomes vacuous in cases where Q does not have ordering constraints. Theprocedure represents the second and �nal step of Phase 1.47

Procedure INTR-HOR-P(Q;Agg; Isol-F; Isol-PC)% Compute for query Q and aggregate Agg set of isolated �elds, isolated% pointer columns and introduce horizontal pointers into Agg.beginIsol-PC := empty stack;for each array Aggx[d; yi] of Agg;beginif Aggx[d; yi] = empty array thenadd Aggx[d] to Isol-F; % �eld downwards isolatedelsefor each constraint yi <lr yj of Q % y9beginfor each column Aggx[d; yi[l; �]] of Aggx[d; yi]beginei := address node of Aggx[d; yi[l; v]];if exists k := minimal number s.th. address node e ofAggx[d; yj [k; v]] satis�es ei <Dlr e thenbeginif l = 1 and k > 1 then % left isolated columnsfor all k0 < k add Aggx[d; yj [k0; �]]; to Isol-PC ;introduce hor. pointerAggx[d; yi[1; yj]] with address Aggx[d; yj [k; �]];endelsebeginset pointer Aggx[d; yi[l; yj]] to ?;add Aggx[d; yi[l; �]] to Isol-PC ; % right isolationendbeginendendreturn Agg;return Isol-F;return Isol-PC ;end;The procedure has as input the query Q, the aggregate Agg and the stack of48

isolated �elds Isol-F computed in the �rst step. It visits each array Aggx[d; yi] ofthe aggregate. If an array is empty, the corresponding �eld is downwards isolatedand added to the stack of isolated �elds. In the other case, all relevant left-to-rightordering constraints yi <lr yj are considered. For each pointer column the proceduretries to introduce the appropriate horizontal pointer. If this is not possible (i.e., forright isolated pointer columns) a \dangling" pointer is introduced and the pointercolumn is added to the stack of isolated pointer columns. When treating the �rstpointer column Aggx[d; yi[1; �]] we also check if Aggx[d; yj] contains left isolatedpointer columns. These are added to the stack of isolated pointer columns.Phase 2 (elimination of isolated �elds/pointer columns)The input for Phase 2 is the aggregate Agg together with the stack of isolated �eldsIsol-F and the stack of isolated pointer columns Isol-PC as computed in Phase 1.In the aggregate, the elements of these stacks are marked \yellow".Basically the following procedure is very simple. We take the eliminable elementsfrom the stacks and erase them. Since the erasure of an isolated element may lead tonew isolated elements the process has to be organized in a recursive way. If duringthis process a record Aggx becomes empty, then the procedure stops (FAIL = true).Otherwise it continues until all isolated �elds and pointer columns are erased.In the presence of left-to-right ordering constraints, the strategy has to be mod-i�ed. We do not immediately erase an isolated pointer column that serves as theaddress of horizontal pointers. The reason is that we have to re-address these hor-izontal pointers, using the column that represents the right neighbour as the newaddress. With the naive strategy this process possibly would have to be iterated,we would end up with a quadratic complexity.Hence, when treating yellow pointer columns that serve as the target of horizon-tal pointers we proceed in two steps. Instead of erasing the column, we only elimi-nate the (vertical and horizontal) pointers departing from the column and colour thecolumn \red" afterwards. Horizontal pointers to red columns are only re-addressedonce, after all yellow elements have been treated (eliminated or coloured).Procedure CLEAN(Agg; Isol-PC ; Isol-F)% remove isolated �elds and pointer columns in Agg, triggering% new isolated �elds and pointer columns. 49

begin FAIL := false;until FAIL or Isol-PC = Isol-F = ;;beginif Isol-F 6= ; thenbeginAggx[d] := pop(Isol-F);apply ELIM-F(Agg; x; d; Isol-PC ; Isol-F;FAIL);endelsebeginAggx[d; y[l; �]] := pop(Isol-PC);apply ELIM-PC(Agg; x; d; y; l; Isol-PC ; Isol-F);endendif FAIL then fail; % query has no answerfor each red pointer column Aggx[d; y[l; �]] of Aggbeginselect minimal l0 > l where column Aggx[d; y[l0; �]] not red;re-address all horizontal pointers with target Aggx[d; y[l; �]]using new address Aggx[d; y[l0; �]];erase Aggx[d; y[l; �]];end;end;The following subprocedure eliminates/colours isolated pointer columns. We saythat the address �eld Aggy[e] of a vertical pointer Aggx[d; y[l; v]] is upwards isolatedup to Aggx[d; y[l; v]] i� Aggx[d; y[l; v]] is the only vertical pointer with address �eldAggy[e].Procedure ELIM-PC(Agg; x; d; y; l; Isol-PC ; Isol-F)% eliminate column y[l; �] in �eld Aggx[d]% new isolated �elds and pointer columns can be created and% are added to Isol-F and Isol-PC .begin 50

if Aggx[d; y[l; v]] not dangling thenbeginAggy[e] := address �eld of Aggx[d; y[l; v]];if Aggy[e] is upwards isolated up to Aggx[d; y[l; v]] thenadd Aggy[e] to Isol-F;enderase Aggx[d; y[l; v]];if Aggx[d; y[l; �]] is the only non-red column of Aggx[d; y] thenadd Aggx[d] to Isol-F; % y10elsebeginif Aggx[d; y[l; �]] leftmost non-red column of Aggx[d; y] thenbeginlet Aggx[d; y[l0; �]] be the next non-red column of Aggx[d; y];for each hor. pointer Aggx[d; y[l0; yi]] of Aggx[d; y[l0; �]] % y11beginlet Aggx[d; yi[k; �]] := target of Aggx[d; y[l0; yi]];for each k0 < k where column Aggx[d; yi[k0; �]] neither yellow norred add Aggx[d; yi[k0; �]] to Isol-PC ; % y12endendelse if Aggx[d; y[l; �]] right-most non-red column of Aggx[d; y] thenbeginletAggx[d; y[l0; �]] be the largest non-red column smaller thanAggx[d; y[l; �]];let l1; : : : ; lk = l denote the indexes of successor columns ofAggx[d; y[l0; �]] ending at Aggx[d; y[l; �]];for each column Aggx[d; y[li; �]] (1 � i � k)for each horizontal pointer Aggx[d; yj [m; y]] with address Aggx[d; y[li; �]]add Aggx[d; yj [m; �]] to Isol-PC ; % y13enderase all horizontal pointers departing from Aggx[d; y[l; �]];if Aggx[d; y[l; �]] is not target of any horizontal pointer thenerase Aggx[d; y[l; �]]; 51

else colour Aggx[d; y[l; �]] red;end;end;During a call to ELIM-PC the vertical pointer of the column is erased, addingthe target �eld to Isol-F if the �eld becomes upwards isolated. When treating thelast non-red column of an array we know that after the �nal removal of red columnsthe actual �eld will be downwards isolated. Hence the �eld is added to Isol-F (cf.y10). In the situation of y12 the columns Aggx[d; yi[k0; �]] are necessarily left-isolatedwhen removing red columns. In the situation of y13 the columns Aggx[d; yi[k0; �]]are necessarily right-isolated when removing red columns.It remains to describe the procedure that eliminates isolated �elds.Procedure ELIM-F(Agg; x; d; Isol-PC ; Isol-F;FAIL)% eliminate isolated �eld Aggc[d]% if record Aggx becomes empty, the ag FAIL is set to truebegin for each vertical pointer Aggz[d0; x[k; v]] with address �eld Aggx[d]beginrede�ne address of Aggz[d0; x[k; v]] := ?;add Aggz[d0; x[k; �]] to Isol-PC ;endfor each child y of x in Qfor each column Aggx[d; y[l; �]] of Aggx[d; y]beginAggy[e] := address �eld of Aggx[d; y[l; v]];if Aggy[e] is upwards isolated up to Aggx[d; y[l; v]] thenadd Aggy[e] to Isol-F;erase Aggx[d; y[l; �]]enderase Aggx[d];if Aggx = empty record thenFAIL := true; 52

end;6.4 Complexity and practical optimizationBefore we state the main complexity result we start with some general remarks.Remark 6.11 The pre-order relationship<Dpr onD can be represented by assigningto every node d a natural number ord(d) as identi�er so thatord(d1) < ord(d2) i� d1 <pr d2:We assume that the comparison of two natural numbers is of constant-time com-plexity.8 Procedure INTR-HOR-P also includes tests d1 <Dlr d2. For these tests weuse a supplementary pointer structure: each node d 2 D has a pointer to the nodee = minsucc (d) that represents the �rst successor of d with respect to <Dpr that islarger than d with respect to left-to-right ordering. In other words, we have d <Dlr eand there is no node e0 <Dpr e such that d <Dlr e0. With this prerequisite, Lemma 2.3allows to reduce the left-to-right ordering to the pre-order relationship: in fact thelemma shows that for d1; d2 2 D we have d1 <Dlr d2 i� minsucc (d1) �Dp d2 and thelatter formula can be tested in constant time.Remark 6.12 Let E � D and assume that the pre-order relationship \<Dpr" onE is encoded using a binary tree with height log(jDj) where the elements of E arerepresented by the leaves. Assume that each node is coloured black, yellow, or red.Then the following operations can be computed in time O(log(jDj)):� �nd the �rst predecessor (successor) (w.r.t. \<Dpr") of a given element thathas a given colour,� check if a given element is the only (right-most, left-most) element of a givencolour,� change the colour of a given element.8In fact, if we do not impose an upper bound on the natural numbers, the time complexity ofthe comparison is O(log(n)). But it is a reasonable and canonical assumption in database theoryto impose an upper bound on the size of databases, e.g. that the database should not containmore than 232 nodes. Then we can rely on e�cient hardware treatment for the comparison of two32-bit integers. 53

The operations can be implemented by adding to each inner node of the binary treea label \black" (\yellow", or \red") i� it has a successor leaf that has the respectivecolour.We may now state the main complexity result.Theorem 6.13 The worst-case time-complexity of the algorithm described in Sec-tion 6.3 is of order O(jQj � jDj � hD � logjDj). If Q is rigid, or if D is non-recursiveand Q is labeling-complete, then the time-complexity is O(jQj � jDj � log(jDj)).Proof. Lemma 6.8 shows that we may ignore the access to the path selectionindex for obtaining the above bound.First we consider Step 1 of Phase 1 of the algorithm.As we noted in the description of the algorithm the total number of calls to pro-cedure SELECT-ANCESTORS is bounded by jQj � jDj. Each non-trivial test inSELECT-ANCESTORS needs time bounded by O(log(jDj)) (cf. Remark 6.9), thenumber of tests in one call to SELECT-ANCESTORS, similarly as the number ofpossible calls to CREATE, is bounded by hD. Let us investigate each of the stepsof procedure CREATE. Obviously, given x 2 fr(Q) it is possible (e.g., by addingappropriate information to the query) to check in constant-time if a record Aggxexists and to determine whether it is marked as new or old. Using binary search ittakes time O(log(jDj)) to check if a �eld Aggx[dj] exists for given x and dj . Thesame bound holds for the introduction of new pointer columns and �elds wherepre-ordering has to be respected. It follows that one call to CREATE needs timeO(log(jDj)). Hence we obtain a bound O(jQj � jDj � hD � log(jDj)) for the �rst step.We consider Step 2 of Phase 1 of the algorithm (procedure INTR-HOR-P).Remark 5.32 shows that the total number of horizontal pointers is bounded byO(jQj � jDj � hD). Using binary search it takes time O(log(jDj)) to determine thecorrect address for a given pointer. Since each column is added to the stack ofisolated columns at most once we receive the bound O(jQj � jDj � hD � log(jDj)) forStep 2. Summing up, this bound is also obtained for Phase 1.If Q is rigid, or if Q is labeling-complete and D is non-recursive, then eachcall to SELECT-ANCESTORS leads to just one test and to at most to one call ofCREATE. We obtain a bound O(jQj � jDj � log(jDj)) for the �rst step. The numberof pointer columns/vertical pointers that are introduced in Phase 1 is bounded byjQj � jDj. By Remark 5.32, the total number of pointers and pointer columns is54

bounded by O(jQj � jDj) and we receive the bound O(jQj � jDj � log(jDj)) for Phase 1.A simple analysis of Phase 2 shows that for each element (�eld/pointer/pointercolumn) there is only a �xed number of operations that is possibly applied (put theelement on a stack, colour it, compute/rede�ne address, erase the element, check ifelement is only non-red column, or left-most non-red column etc.). Each operationis applied at most once to a given element. This is fairly obvious, we just add someremarks. The horizontal pointers that are inspected at y11 are only inspected once.In fact these pointers belong to the second non-red column of a given array; after�nishing the actual call to ELIM-PC this column will be the �rst column of thearray, which shows that the same pointers cannot be inspected a second time at y11.At y12 note that the computation of each column that has to be added to Isol-PCtakes time O(log(jDj)), by Remark 6.12. The same remark shows that each of theoperations mentioned above can be applied in time O(log(jDj)). Since the numberof elements is bounded by O(jQj � jDj � hD) (general case) and O(jQj � jDj) (rigidqueries, or labeling-complete queries over non-recursive databases) respectively, wereceive the desired complexity bounds for Phase 2.In [Meu98] an even better result for rigid queries was obtained by treating allpaths in a path set returned by the index simultaneously.For practical purposes the following modi�cation of the algorithm seems to behighly preferable. For each query path �Q, we �rst determine the cardinality n(�Q)of the set of inverted document paths �(�Q) that is obtained from access to thepath selection index for �Q. The algorithm then treats query paths in the orderdetermined by the numbers n(�Q), starting with the smallest numbers. Whentreating a new query path �Q, the bottom-most variable x of �Q that has occurredalready in one of the earlier query paths is computed. Here Aggx is the �rst recordwith marker \old" that is reached when we enter in bottom-up manner the documentpaths obtained from the access to the path selection index into the aggregate. Aninverse document path �D 2 �(�Q) can only be entered successfully if it containsa node d such that Aggx has a �eld Aggx[d]. Let us call such a path relevant. Weshow how to compute the subset of relevant paths of �(�Q) in linear time.Let hd1; : : : ; dmi denote the sequence of nodes of the record Aggx, in pre-orderenumeration. An element d 2 fd1; : : : ; dmg is called maximal i� no ancestor of dbelongs to fd1; : : : ; dmg. For each node dl 2 fd1; : : : ; dmg, the set of descendantsde�nes an interval of the form [dl; d�l] of the pre-order relation on D. Node d�l is55

the right-most leaf among the descendants of dl and can be obtained in constanttime (cf. Remark 6.11) using the formula d� = predp(minsucc (d)). The expressionpredp(e) stands for the predecessor of e with respect to pre-order relation <pr. Twointervals [dl; d�l] and [dh; d�h] are either disjoint or one is contained in the other.The intervals of maximal elements are pairwise disjoint and cover all the intervalsof nodes in fd1; : : : ; dmg. The sequence of all maximal elements dl, together withthe right boundaries d�l of their intervals, can be computed in time O(m). In fact,d1 is always maximal. Once we have found that dl is maximal, the �rst elementof dl+1; : : : ; dm that does not belong to [dl; d�l] is the next maximal element of thesequence.Obviously a path �D 2 �(�Q) with initial node e is relevant i� e is in thepre-order interval [dl; d�l] for a maximal node dl of fd1; : : : ; dmg. Recall that eachset �(�Q) is ordered (via index access) according to the pre-order of the initial(bottom-most) nodes. Let he1; : : : ; eni denote the sequence of all initial nodes ofpaths in �(�Q), ordered in this way. Using one simultaneous traversal of (theintervals associated with) the subsequence of maximal nodes in hd1; : : : ; dmi on onehand and he1; : : : ; eni on the other hand we may �lter out the list of all relevantpaths in time O(n+m) � O(jDj).Since the number of query paths is bounded by jQj the total time-complexityof all �ltering steps is bounded by O(jQj � jDj). This shows that the bound for theworst-case complexity of the algorithm is not a�ected by this �ltering.6.5 Soundness and completenessIn this section we prove that the given algorithm in fact computes the completeanswer aggregate for the input query, which completes the proof of Theorems 6.1and 6.2. In view of the bidirectional translation between complete answer formulaeand complete answer aggregates (cf. Remarks 5.14 and 5.31) this also proves theexistence parts of Theorems 5.10 and 5.27. Clearly simple tree queries are a specialcase of partially ordered tree queries, hence we may restrict considerations to thelatter type of queries. Since the algorithm computes complete answer aggregatesas opposed to complete answer formulae we �rst give an internal characterizationof complete answer aggregates. We will show that our algorithm computes anaggregate that satis�es the conditions of this characterization.De�nition 6.14 A mapping � : fr(Q) ! D is an instantiation of the aggregate56

AggQ = fAggx j x 2 fr(Q)g i� the following conditions are satis�ed:1. Aggx has a �eld Aggx[�(x)] for all x 2 fr(Q),2. if y is a child of x in Q, if d = �(x) and e = �(y), then e is an address nodeof a vertical pointer of a column Aggx[d; y[l; �]] of the array Aggx[d; y],3. if �(x) = d and AggQ has a horizontal pointer Aggx[d; yi[l; yj]] with addressAggx[d; yj [m; �]], if ei := �(yi) is the address node of the vertical pointerAggx[d; yi[l; v]], then ej := �(yj) is the address node of a vertical pointerAggx[d; yj [m0; v]] such that m0 � m.We say that each �eld Aggx[�(x)] belongs to the instantiation �. Similarly eachpointer column Aggx[d; y[l; �]] of the form described in 2 is said to belong to �.We may now give the internal characterization of the complete answer aggregatefor Q.Lemma 6.15 Let Q be a partially ordered tree query. An aggregate Agg is thecomplete answer aggregate AggQ for Q i� the following conditions are satis�ed:1. Each instantiation � of Agg is an answer to Q and vice versa,2. every �eld/pointer column of Agg belongs to an instantiation of Agg.The simple proof is omitted. We note that Condition 2 exactly corresponds tothe \contribution obligation" condition for dependent Q-instantiation formulae (cf.paragraph below De�nition 5.20). Hence it remains to prove that the aggregateAgg that represents the output of the algorithm satis�es Conditions 1 and 2. Letus start with some simple observations.Lemma 6.16 Let Agg1 and Isol-F1 denote the output of INCLUDE-PATHS. Thenall upwards isolated �elds of Agg1 are in Isol-F1.Proof. This follows from the fact that whenever we cannot �nish the bottom-upalignment of inverted query path and inverted document paths we add the �eldof the last successful alignment step to Isol-F1 (cf. SELECT-ANCESTORS andCREATE).
57

Lemma 6.17 Let Agg2, Isol-F2 and Isol-PC2 denote the output of Phase 1 (i.e.,the output of INTR-HOR-P). Then all isolated �elds and pointer columns of Agg2are in Isol-F2 and Isol-PC2 respectively.Proof. Clearly Lemma 6.16 implies that upwards isolated �elds are in Isol-F2.INTR-HOR-P treats each array Aggx[d; y] of the aggregate and adds downwardsisolated �elds to Isol-F. It also adds each right or left isolated pointer column toIsol-PC.During Phase 2, let us call a �eld/pointer column quasi-isolated if the elementbecomes isolated when removing red pointer columns.Lemma 6.18 At each time of the computation in Phase 2, each quasi-isolated �eldis either on the actual stack Isol-F or it represents the actual argument of the elim-ination sub-procedure that is executed. Each quasi-isolated pointer column is eitheron the actual stack Isol-PC, or it represents the actual argument of the eliminationsub-procedure that is executed, or it is coloured \red".Proof. Follows from Lemma 6.17 by a trivial induction and inspection ofCLEAN ,noticing that a new quasi-isolated �eld/pointer column can only be the result ofthe elimination/red colouring of a �eld/pointer column that had been quasi-isolatedpreviously.Lemma 6.19 Let Agg3 denote the output aggregate of procedure CLEAN (i.e.,the output of the algorithm). Then Agg3 does not have isolated �elds or pointercolumns.Proof. Consider the situation in CLEAN where both Isol-F and Isol-PC areempty. In this situation by Lemma 6.18, the only quasi-isolated elements that areleft are the red pointer columns. These columns are erased in CLEAN . Clearly theelimination of a red column cannot lead to a new quasi-isolated element.Lemma 6.20 If an aggregate Agg for Q does not have any isolated �eld/pointercolumn, then every �eld/pointer column of Agg belongs to an instantiation of Agg.Proof. We proceed by induction on hQ(x) where x is the root of Q. If hQ(x) = 0,then Aggx is the only record of Agg and the statement is trivial. Assume now that58

hQ(x) > 0, let y1; : : : ; yh denote the children of x in Q. Let Aggi denote the sub-aggregate with topmost record Aggyi (1 � i � h). By induction hypothesis each�eld/pointer column of Aggi belongs to an instantiation of Aggi. Now let Aggz[d0]be a �eld of Agg. We distinguish two cases.In the �rst case, Aggz [d0] is a �eld of a sub-aggregate Aggi. We may use theinduction hypothesis to obtain an instantiation �i of Aggi such that Aggz [d] belongsto �i. Let ei = �(yi). Since Aggyi [ei] is not upwards isolated there exists a �eldAggx[d] with a vertical pointer Aggx[d; yi[li; v]] (for suitable li) with address �eldAggyi [ei]. Since Aggx[d] is not downwards isolated and since no pointer columnof Aggx[d] is left or right isolated it follows easily that we may select for all 1 �j 6= i � h vertical pointers Aggx[d; yj [lj ; v]] with address �elds Aggyj [ej] that obeyCondition 3 of De�nition 6.14. By induction hypothesis, each of the �elds Aggyj [ej]belongs to an instantiation �j of Aggj (1 � j 6= i � h). Combining the mappings�j for 1 � j � h and mapping x to d we obtain an instantiation � of Agg such thatAggz [d0] belongs to �.In the second case, where Aggz[d0] = Aggx[d] is in Aggx we may directly usethe fact that Aggx[d] is not downwards isolated and no pointer column of Aggx[d]is left or right isolated to conclude with the induction hypothesis that there existsan instantiation � of Agg such that Aggz [d0] belongs to �.The proof that each pointer column of Agg belongs to a suitable instantiationof Agg is analogous.Summing up, we have seen that the output aggregate of the algorithm satis�esCondition 2 of Lemma 6.15. We now show completeness of the algorithm.Lemma 6.21 Each answer to Q may be obtained as an instantiation of the aggre-gate Agg that represents the output of Phase 2.Proof. Let � : fr(Q)! D be an answer to Q. If �Q = hxk ; : : : ; x0i is an invertedquery path, then let � = hdm; dm�1; : : : ; d0i denote the unique inverted documentpath with �rst (bottom-most) element �(xk). By assumption, � is one of the pathsobtained by the index access for �Q (cf. Remark 6.6). The mapping � determines amatch ��Q : fxk; : : : ; x0g ! fdm; dm�1; : : : ; d0g that can be used by the algorithmfor successful alignment of the two paths. This shows that after �nishing Part 1 ofPhase 1 each record Aggxi will have a �eld Aggxi [�(xi)] (0 � i � k), with verticalpointer Aggxi [�(xi); xi+1[l; v]] to Aggxi+1 [�(xi+1)] for i < k and suitable l. The59

combination of the mappings ��Q for distinct inverted query paths �Q, i.e, themapping �, satis�es Conditions 1 and 2 of De�nition 6.14. Since � is an answer toQ, and by de�nition of horizontal pointer addresses, it follows also that � satis�esCondition 3 of De�nition 6.14. Hence it de�nes an instantiation of the aggregateAgg1 that is reached after Phase 1.Clearly none of the �elds/pointer columns that belong to � are isolated in Agg1.We now show by induction that none of the �elds/pointer columns that belongto � becomes quasi-isolated when applying ELIM-PC and ELIM-F. This showsthat � is an instantiation of the aggregate Agg2 obtained as output of Phase 2 and�nishes the proof. By Lemma 6.18 it su�ces to show that none of the �elds/pointercolumns that belong to � are added to Isol-F and Isol-PC respectively. A simpleinspection of the procedures ELIM-PC and ELIM-F shows that a �eld/pointercolumn that belongs to � can only be added to Isol-F and Isol-PC during a processwhere we actually eliminate (or colour red) another �eld/pointer column belongingto �. This would mean that the latter �eld/pointer column had been added toIsol-F and Isol-PC before, which contradicts the induction hypothesis.It remains to prove soundness of the algorithm.Lemma 6.22 Each instantiation of the aggregate Agg that represents the outputof Phase 2 is an answer to Q.Proof. Let � be an instantiation of Agg. Let y be a child of x in Q, and lete := �(y) and d := �(x). Remark 6.6 and the tests in SELECT-ANCESTORSensure that (e; d) satis�es all unary and binary index formulae imposed on (y; x) inQ. Condition 3 of De�nition 6.14 ensures that � satis�es all ordering constraints ofQ. Hence � is an answer to Q.7 ConclusionWe introduced a logical language for a variant of the Tree Matching formalism([Kil92]), adding some exibility9 to the original formalism. In this context weintroduced the new concept of a complete answer aggregate. This notion o�ersa concise presentation of the set of all answers to a query. We also showed howto compute a complete answer aggregate with a time/space complexity which is9cf. Section 4.4. 60

optimal modulo a logarithmic factor. The complexity bounds indicate that thealgorithm is interesting for database applications. The algorithm uses two indexstructures that support practical e�ciency.7.1 Related workWe briey survey some related work. To the best of our knowledge no other ap-proach uses the notion of aggregated answers so far, therefore we will not elaborateon this point. Note, however, that the models that are mentioned below use somekind of homomorphic mapping to de�ne the notion of an answers to a query. Henceaggregate techniques could be useful for these systems as well.Tree Matching As we argued in Section 4.4, our approach can be consideredas a modi�cation and extension of the original formalism. It preservs its powerand strength: simplicity of the user interface, declarative semantics, rich queryformalism and structured answers.Dolores Dolores ([FGR98]) is a multimedia IR system that can handle arbitrarydocument structures. It is based on probabilistic logic and thus incorporates thenotion of ranking. Queries are formulas and answers are variable assignments. Theoutstanding strength of Dolores is the capability to express uncertain knowledge. Amajor drawback is its architecture that translates the complete structure of queriesand documents to probabilistic Datalog and thus fails to exploit the special featuresof tree-structured entities in query evaluation. The worst-case complexity of queryevaluation is not mentioned, but due to the fact that Examples 5.1 and 5.2 can beexpressed in Dolores, the time complexity must be at least O(nq), where n is thesize of the database and q the size of the query.Lore Lore [MWA+98] is an IR system for graph-structured documents. We reviewit here as one example for the research going on in the �eld of semistructured data(see [Abi97, Bun97, Suc98a] for surveys). Lore's sophisticated query evaluationmechanism involves the use of multiple index structures. The query language isSQL-based, answers are mappings. With the same argumentation as for Dolores wecan infer that query evaluation is at least of time complexity O(nq), where n is thesize of the database and q the size of the query.61

7.2 Open research issuesSome of the most important questions for further research are the following1. What are the most interesting relevance models for structured document re-trieval, and how can complete answer aggregates help to provide an appro-priate ranking? The �rst question is not restricted to our formalism. Wethink that complete answer aggregates|or their logical descriptions in termsof complete answer formulae|might support some good ranking models, aswe briey indicated in the introduction.2. Given a very large database, is it possible to compute partial answer aggregatesthat guarantee a \su�cient" view of the most signi�cant answers?3. How can aggregates be combined with query modi�cation and relevance feed-back techniques?4. How can aggregates be used for active manipulation of the database?5. Can complete answer aggregates be used for other formalisms as well? Forwhich ones? How?As a matter of fact it is also necessary to implement the algorithm and to checkits practical behavior. One step to improve the e�ciency of the algorithm that hasnot been described here is the use of �ltering techniques for reducing the numberof paths that are obtained from index accesses [MS99].References[Abi97] S. Abiteboul. Querying semi-structured data. In Proc. 6th Int. Conf.on DB Theory, ICDT'97, 1997.[Bun97] Peter Buneman. Semistructured data. In ACM, editor, PODS '97.Proceedings of the Sixteenth ACM SIG-SIGMOD-SIGART Symposiumon Principles of Database Systems, May 12{14, 1997, Tucson, Arizona,pages 117{121. ACM Press, 1997.[Bur92] F. J. Burkowski. An algebra for hierarchically organized text-dominateddatabases. Information Processing & Management, 28(3):333{348,1992. 62

[BYN96] R. Baeza-Yates and G. Navarro. Integrating contents and structure intext retrieval. SIGMOD Record, 25(1):67{79, 1996.[FGR98] N. Fuhr, N. G�overt, and T. R�ollecke. DOLORES: A system for logic-based retrieval of multimedia objects. In Proc. ACM SIGIR '98, 1998.[FLM98] D. Florescu, A. Levy, and A. Mendelzon. Database techniques for theworld-wide-web: A survey. SIGMOD Record, 27(3), 1998.[Gol90] C. F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.[GT87] G. Gonnet and F. Tompa. Mind your grammar: a new approach tomodelling text. In Proc. VLDB'87, pages 339{346, 1987.[ISO86] ISO. Information Processing - Text and O�ce Systems - Standard Gen-eral MarkUp Language (SGML). ISO8879, 1986.[Kil92] P. Kilpel�ainen. Tree Matching Problems with Applications to StructuredText Databases. PhD thesis, Dept. of Computer Science, University ofHelsinki, 1992.[KM93] P. Kilpel�ainen and H. Mannila. Retrieval from hierarchical texts bypartial patterns. In Proc. ACM SIGIR'93, pages 214{222, 1993.[Loe94] A. Loe�en. Text databases: A survey of text models and systems.SIGMOD Record, 23(1):97{106, March 1994.[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore:A database management system for semistructured data. SIGMODRecord (ACM Special Interest Group on Management of Data), 26(3),1997.[Meu98] H. Meuss. Indexed tree matching with complete answer representations.In Proc. Fourth Workshop on Principles of Digital Document Processing(PODDP'98), 1998.[MS99] Holger Meuss and Christian Strohmaier. Improving index structuresfor structured document retrieval. In 21st Annual Colloquium on IRResearch (IRSG'99), 1999.[MSM93] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz.Building a large annotated corpus of english: the Penn Treebank. Com-putational Linguistics, 1993.63

[MWA+98] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and A. Rajamaran. Index-ing semistructured data. Technical report, Stanford University, Com-puter Science Department, 1998.[NBY97] G. Navarro and R. Baeza-Yates. Proximal Nodes: A model to querydocument databases by contents and structure. ACM Transactions onInformation Systems, 15(4):400{435, 1997.[OMM98] J�urgen Oesterle and Petra Maier-Meyer. The gnop (german nounphrase) treebank. In First International Conference on Language Re-sources and Evaluation, Granada, Spain, pages 699 { 703, 1998.[Suc98a] Dan Suciu. An overview of semistructured data. SIGACT News, 1998.[Suc98b] Dan Suciu. Semistructured data and XML. In Proc. of Int. Conf. onFoundations of Data Organization, 1998.[W3C98a] W3C. QL'98 - the query languages workshop, December 1998.http://www.w3.org/TandS/QL/QL98.[W3C98b] World Wide Web Consortium: Extensible Markup Lan-guage (XML) 1.0. W3C Recommendation, February 1998.http://http://www.w3.org/TR/REC-xml.[W3C98c] World Wide Web Consortium: HTML 4.0 Speci�cation. W3C Recom-mendation, April 1998. http://www.w3.org/TR/REC-html40/.AppendixWe give the proofs that were omitted in previous sections. For convenience, therespective lemmata and theorems are repeated.Lemma 4.17 Let DQ = (XS ; XT ; XU ;*Q; +*Q;LabQ; IQ) be the query treeof the tree query Q, let D = (DS ; DT ;*D ;LabD; ID) be a relational documentstructure. A mapping � : fr(Q) ! D is a pseudo-homomorphism from DQ in D i�� is an answer to Q in D.Proof. Let Q = (^ c; ~x). We �rst show the direction \left to right":Let � : fr(Q) ! D be a pseudo-homomorphism from DQ in D. We show for everyatom ' in ^c that D j=� '. All argumentations follow the same line of references,�rst to De�nition 4.12, then to De�nition 4.15, and �nally to De�nition 4.2:64

x � y: With De�nition 4.12 it follows: x * Qy. With De�nition 4.15 we have�(x)*D�(y). Finally De�nition 4.2 implies D j=� x� y.x�+ y: Analogously.w in x: It follows w 2 LabQ(x) and x 2 XT . Then we know that LabD(�(x))contains w as substring and �(x) 2 DT . Therefore D j=� w in x.M(x): Then LabQ(x) = M and x 2 XS . Therefore LabD(�(x)) = M and �(x) 2DS . This results in D j=� M(x).r(x1; : : : ; xk): Then hx1; : : : ; xki 2 IQ(r). It follows that h�(x1); : : : ; �(xk)i 2 ID(r),and therefore D j=� r(x1; : : : ; xk).For the inverse direction let � be an answer to Q in D, i.e. D j=� ^ c. We showthat � is pseudo-homomorphism by validating each case in De�nition 4.15.As in the other direction, every case in the analysis of De�nition 4.15 follows thesame line of arguments: First a reference to De�nition 4.12, then to De�nition 4.2:x 2 XS: With De�nition 4.12 it follows that M(x) 2 or (x �(+) y) 2 . In bothcases De�nition 4.2 together with De�nition 3.1 guarantee that �(x) is a structuralnode.x 2 XT : It follows that (w in x) 2 . Therefore �(x) is a text node.x*Qy: Then (x� y) 2 , and therefore �(x)*D�(y).x*+Qy: Analogously.x 2 XS ;LabQ(x) =M : We have M(x) 2 and then LabD(�(x)) =M .x 2 XT ; w 2 LabQ(x): Then (w in x) 2 , and therefore LabD(�(x)) contains w.hy1; : : : ; yki: It follows that r(y1; : : : ; yk) 2 c, and therefore h�(y1); : : : ; �(yk)i 2ID(r).Lemma 5.8 Let Q be a simple tree query, let �(x0)� be a dependent Q-instantiationformula for x0, let d0; : : : ; dk be elements of D. Then the following conditions areequivalent:1. �(x0)� has a subformula �(x0;:::;xk)(d0;:::;dk�1) where dk is a target candidate for xk,2. �(x0)� has a subformula of the form �(x0;:::;xk)(d0;:::;dk) ,3. Q has formulae x0 �(+) x1; : : : ; xk�1 �(+) xk and fhxi; dii j 0 � i � kg is apartial instantiation of �(x0)� .Proof. The equivalence \1 , 2" follows immediately from the de�nition of thesesubformulae. To prove the implication \2) 3", let �(x0;:::;xk)(d0;:::;dk) be a subformulaof �(x0)� . The de�nition of these formulae shows that xi+1 is a child of xi, for65

i = 0; : : : ; k � 1. Hence Q has formulae x0 �(+) x1; : : : ; xk�1 �(+) xk. A trivialinduction on k shows that fhxi; dii j 0 � i � kg is a partial instantiation of �(x0)� .The inverse implication \3) 2" follows by a trivial induction on k.Lemma 5.11 Let �Q be a complete answer formula for the simple tree queryQ. Then two subformulae of �Q of the form �(x0;:::;xk�1;xk)(d0;:::;dk�1;dk) and �(x0;:::;xk�1;xk)(d00;:::;d0k�1;dk) arealways identical modulo associativity and commutativity of \^" and _".Proof. The proof of Theorem 5.10 shows that it su�ces to verify the follow-ing: if �(x0;:::;xk�1;xk)(d0;:::;dk�1;dk) has a subformula of the form �(x0;:::;xk�1;xk;xk+1;:::;xk+r)(d0;:::;dk�1;dk;dk+1;:::;dk+r) , then�(x0;:::;xk�1;xk)(d00;:::;d0k�1;dk) has a subformula of the form �(x0;:::;xk�1;xk;xk+1;:::;xk+r)(d00;:::;d0k�1;dk;dk+1;:::;dk+r) and viceversa.Let �(x0;:::;xk�1;xk)(d0;:::;dk�1;dk) have a subformula of the form �(x0;:::;xk�1;xk;xk+1;:::;xk+r)(d0;:::;dk�1;dk;dk+1;:::;dk+r) . ByLemma 5.8, �Q has partial instantiations of the form fhxi; dii j 0 � i � k + rgand fhxi; d0ii j 0 � i � kg where dk = d0k. By Lemma 5.7 there exist answers �1(resp.�2) of Q that extend the former (latter) partial instantiation. By Lemma 4.11there exists an answer �3 to Q that coincides with answer �1 on the set of reexivedescendants of xk and with answer �2 on all other variables in fr(Q). Answer �3extends the partial instantiation fhxi; d0ii j 0 � i � k�1g[fhxi; dii j k � i � k+rg.Hence �(x0;:::;xk�1;xk)(d00;:::;d0k�1;dk) has a subformula of the form �(x0;:::;xk�1;xk;xk+1;:::;xk+r)(d00;:::;d0k�1;dk;dk+1;:::;dk+r) . Bysymmetry the lemma follows.Before we can prove Theorem 5.23 some preparation is needed.Lemma 7.1 Let Q be a local tree query, let �x0� be a dependent Q-instantiationformula. Then every partial instantiation of �x0� can be extended to a total instan-tiation of �x0� . The set of total instantiations of �x0� is non-empty.Proof. Follows immediately from the fact that restrictor sets for variables xwith hQ(x) > 0 as well as arbitrary sets of target candidates are always non-empty.Lemma 7.2 Let Q be a local tree query, let �(x0)� be a dependent Q-instantiationformula for x0, let d0; : : : ; dk be elements of D. Then the following conditions areequivalent:1. �(x0)� has a subformula �(x0;:::;xk)(d0;:::;dk�1) where dk is a target candidate for xk,2. �(x0)� has a subformula of the form �(x0;:::;xk)(d0;:::;dk) ,66

3. Q has formulae x0 �(+) x1; : : : ; xk�1 �(+) xk and fhxi; dii j 0 � i � kg is asubset of a partial instantiation of �(x0)� that does not instantiate any child ofxk in Q.Proof. The equivalence \1, 2" is trivial. Implication \2) 3" follows from thecontribution obligation mentioned after De�nition 5.20 using induction on k. Theconverse direction \3) 2" is trivial.Theorem 5.23 For each local tree query Q a complete answer formula �Q isunique modulo associativity and commutativity of \^" and _".Proof. Let �(x0)� and �(x0)� be complete answer formulae for Q. Assume that �(x0)�has a subformula �(x0;:::;xk)(d0;:::;dk) . If xk is a leaf of Q it follows from Lemmata 7.1 and 7.2that �(x0)� has a corresponding subformula �(x0;:::;xk)(d0;:::;dk) . Assume now that y1; : : : ; yh(for h � 1) denotes the set of children of xk in Q. Let (e1; : : : ; eh) be an elementof the restrictor set of �(x0;:::;xk)(d0;:::;dk) . Using Lemmata 7.2 and 7.1 we see that Q hasan answer 1 that maps xi to di for i = 1; : : : ; k and yj to ej for j = 1; : : : ; h. Butthen �(x0)� must have a subformula �(x0;:::;xk)(d0;:::;dk) where (e1; : : : ; eh) is an element of therestrictor set, since otherwise answer 1 could not be obtained as an instantiation of�(x0)� . By symmetry it follows that �(x0)� and �(x0)� have corresponding subformulaeof the form �(x0;:::;xk)(d0;:::;dk) respectively �(x0;:::;xk)(d0;:::;dk) with identical restrictor sets. Startingat the subformulae with maximal k it is then simple to prove by \inverse" inductionthat corresponding formulae �(x0;:::;xk)(d0;:::;dk) and �(x0;:::;xk)(d0;:::;dk) are equal modulo associativ-ity and commutativity of \^". It follows that �(x0)� and �(x0)� are equal moduloassociativity and commutativity of \^" and _".Lemma 5.24 Let �Q be a complete answer formula for the local tree query Q.Then two subformulae of �Q of the form �(x0;:::;xk�1;xk)(d0;:::;dk�1;dk) and �(x0;:::;xk�1;xk)(d00;:::;d0k�1;dk) arealways identical modulo associativity and commutativity of \^" and _".Proof. It su�ces to verify the following: if �(x0;:::;xk�1;xk)(d0;:::;dk�1;dk) has a subformula of theform �(x0;:::;xk�1;xk;xk+1;:::;xk+r)(d0;:::;dk�1;dk;dk+1;:::;dk+r) , then �(x0;:::;xk�1;xk)(d00;:::;d0k�1;dk) has a subformula of the form�(x0;:::;xk�1;xk;xk+1;:::;xk+r)(d00;:::;d0k�1;dk;dk+1;:::;dk+r) and vice versa. Moreover, if hQ(xk+r) > 0, then therestrictor sets of both formulae are identical.Let �(x0;:::;xk�1;xk;xk+1;:::;xk+r)(d0;:::;dk�1;dk;dk+1;:::;dk+r) be a subformula of �(x0;:::;xk�1;xk)(d0;:::;dk�1;dk) . By Lemma 5.8,�Q has partial instantiations that extend the mappings fhxi; dii j 0 � i � k + rgand fhxi; d0ii j 0 � i � kg where dk = d0k. By Lemma 5.7 there exists an answer 1(resp. 2) of Q that extends the former (latter) partial instantiation. By Lemma 4.1167

there exists an answer 3 of Q that coincides with answer 1 on the set of reexivedescendants of xk and with answer 2 on all other variables in fr(Q). Answer 3extends the mapping fhxi; d0ii j 0 � i � k � 1g [fhxi; dii j k � i � k + rg. Butthen �(x0;:::;xk�1;xk)(d00;:::;d0k�1;dk) must have a subformula of the form �(x0;:::;xk�1;xk;xk+1;:::;xk+r)(d00;:::;d0k�1;dk;dk+1;:::;dk+r) .By symmetry the �rst condition mentioned above follows.Assume that that both subformulae exist and that hQ(xk+r) > 0. Let y1; : : : ; yhbe the sequence of children of xk+r and let (e1; : : : ; eh) be an element of the restrictorset of �(x0;:::;xk�1;xk;xk+1;:::;xk+r)(d0;:::;dk�1;dk;dk+1;:::;dk+r) . It follows from Lemma 5.8 and Lemma 5.7 thatQ has an answer 4 that extends the mapping fhxi; dii j 0 � i � k + rg [fhyi; eii ji = 1; : : : ; hg. Lemma 4.11 shows that there exists an answer 5 of Q that extendsthe mapping fhxi; d0ii j 0 � i � k � 1g [fhxi; dii j k � i � k + rg [fhyi; eii ji = 1; : : : ; hg. But then (e1; : : : ; eh) must be an element of the restrictor set of�(x0;:::;xk�1;xk;xk+1;:::;xk+r)(d00;:::;d0k�1;dk;dk+1;:::;dk+r) . By symmetry it follows that both subformulae mentionedabove have the same restrictor set.Lemma 5.26 Let Q = (^ c; ~x). In the situation of De�nition 5.25, let R denotethe restrictor set of �x(d), for i = 1; : : : ; h let Di be the set of target candidates foryi in �x;yi(d). Then R is the set of all tuples (e1; : : : ; eh) 2 D1 � � � � �Dh where(e1; : : : ; eh) satis�es all non Q-simple constraints r(x; yi1 ; : : : ; yir) of c relative to dwhere fyi1 ; : : : ; yirg � fy1; : : : ; yhg.Proof. Let (e1; : : : ; eh) 2 R. By de�nition, (e1; : : : ; eh) 2 D1 � � � � �Dh. It followsfrom Lemma 7.1 and Lemma 7.2 that Q has an answer that extends the mappingfhxi; dii j i = 1; : : : ; kg [fhyi; eii j i = 1; : : : ; hg. This shows that (dk ; e1; : : : ; eh)satis�es all constraints r(xk ; yi1 ; : : : ; yir) in c where fyi1 ; : : : ; yirg � fy1; : : : ; yhg.Conversely let (e1; : : : ; eh) 2 D1 � � � � � Dh, assume that (dk; e1; : : : ; eh) sat-is�es all non Q-simple constraints r(xk ; yi1 ; : : : ; yir) in c where fyi1 ; : : : ; yirg �fy1; : : : ; yhg. Assume, to get a contradiction, that (e1; : : : ; eh) 62 R. Replacing Rwith R [f(e1; : : : ; eh)g we would get a dependent Q-instantiation formula with alarger set of instantiations where still each instantiation is an answer to Q. In fact,since we did not modify any set of target candidates the new Q-instantiation for-mula leads to instantiations that satisfy all Q-simple constraints and L-formulae ofthe query. This would mean that �Q is not a complete answer formula.
68

