
A complete axiomatization forML!1Holger SturmAbstractIn this paper we present a completeness theorem for the in�nitary modallogicML!1 . The proof is based on the new notion of an in�nitary modalconsistency property.11 IntroductionOne can make out several good reasons why in�nitary modal logics shoulddeserve our attention. In the �rst place, and this does not only apply to themodal case, in�nitary logics provide a natural means for overcoming the expres-sive weakness of the corresponding �nite systems. Second, several interestingmodal logics may be regarded | via suitable translations | as fragments ofin�nitary modal logics; the most popular ones are certainly propositional dy-namic logic and the logic of common knowledge. There is legitimate hope thata deeper understanding of in�nitary logics will lead to important insights intotheir respective fragments. Third, in�nitary modal logics themselves might beanalysed as fragments of other logics, namely as fragments of in�nitary ver-sions of �rst-order logic.2 From a logical point of view these fragments showwell-behaviour: quite a few metalogical properties are hereditary from logicsto their modal fragments. Last but not least, in a recent book ([2]) J. Barwiseand L. Moss have pointed out interesting connections between in�nitary modallogics and the theory of non-wellfounded sets.This paper exclusively deals with the logic ML!1 , which is the in�nitaryextension of propositional modal logic that allows conjunctions and disjunc-tions over countable sets of formulas. Together with its companion piece [8] thepaper provides an analysis of this logic with respect to its most basic metalog-ical properties. In [8] we proved Craig's interpolation theorem for ML!1 andpresented a number of preservation results for certain syntactically speci�edclasses of ML!1-formulas. The present paper is concerned with completeness.We introduce an axiomatic calculus, which forms a natural in�nitary extensionof Kripke's system K, and show that it is complete with respect to the set ofvalid ML!1-formulas.1After we had �nished this paper we discovered that completeness for ML!1 had alreadybeen proved in an article by S. Radev ([6]). Since we regard our proof as slightly more elegantand our style of presentation as more lucid, we decided to send our paper to the press though.2This can be done with the aid of a straightforward adaption of J. van Benthem's standardtranslation to the in�nite; obviously, in the case of ML!1 we get L!1! as the target logic.1



The paper is structured as follows. In section 2 we recall some basic notionsof the syntax and semantics of ML!1 . In section 3 we introduce the axiomaticcalculus K!1 and prove its ML!1-soundness. At the beginning of section 4 wegive a brief description of the method of modal consisteny properties due toM. Fitting (see [3]). We then indicate why a straightforward adjustment ofthis method to ML!1 does not work. The section concludes with an informalsketch of an alternative method more suitable for the purposes of ML!1 . Thisnew method is based on the notion of an in�nitary modal consistency property,which is introduced at the beginning of section 5. The main result of this sectionprovides a model existence theorem regarding this type of consistency property.In section 6 we �rst show that the set of countable consistent sets of ML!1-formulas forms an in�nitary modal consistency property. The completenesstheorem for ML!1 is then obtained by an application of this result and themodel existence theorem from section 5.2 Syntax and semanticsFor the following we �x a countable set P := fpn jn 2 !g of propositionalletters. The set F!1 of in�nitary modal formulas (over P) is then de�ned as thesmallest set X such thatP � X,if ' is in X, then :' is in X,if � is a countable subset of X, then V� and W� are in X,3if ' is in X, then �' and �' are in X.If � contains only two formulas ' and  , we usually write ('^ ) and ('_ )instead of Vf'; g respectively Wf'; g. We also use (' !  ) and (' $  )as convenient metalinguistic abbreviations. The set of subformulas of a modalformula ', denoted by sf('), is de�ned inductively:sf(pn) := fpng, for n 2 !,sf(: ) := sf( ) [ f: g,sf(V�) := S'2� sf(') [ fV�g,sf(W�) := S'2� sf(') [ fW�g,sf(�') := sf(') [ f�'g,sf(�') := sf(') [ f�'g.3A set is called countable if it is �nite or of cardinality !. If � is the empty set, V� isabbreviated by > and W� by ?.
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The semantics of ML!1 is based on models of the form A = (A;RA; V A),where A is a non-empty set, RA a binary relation on A, and V A a valuationfunction from P into the power set of A. A pointed model is a pair (A; a)consisting of a model A and a distinguished element a 2 A. The truth of amodal formula in a pointed model is de�ned in a familiar way:(A; a) j= pn :, a 2 V A(pn), for n 2 !,(A; a) j= :' :, (A; a) 6j= ',(A; a) j= V� :, for every ' 2 �: (A; a) j= ',(A; a) j= W� :, there is a ' 2 �: (A; a) j= ',(A; a) j= �' :, 9a0 2 A(RAaa0&(A; a0) j= '),(A; a) j= �' :, 8a0 2 A(RAaa0 ) (A; a0) j= ').Throughout this paper we make use of a special syntactical operation �,which is de�ned as follows:� pn := :pn, for n 2 !,� (:') := ',� (V�) := Wf:' j' 2 �g,� (W�) := Vf:' j' 2 �g,� (�') := �:',� (�') := �:'.Roughly speaking, given a modal formula ', � ' is obtained from ' byreplacing the main operator by its dual and by pushing the negation sign onestep inside. This type of operation is often met in the framework of in�nitarylogic (see [1, 4]). It is easy to verify that � ' and :' are equivalent for each' 2 F!1 .The standard de�nition of the modal degree of a formula has the conse-quence that for every formula ', :' and � ' are of the same syntacticalcomplexity. On several occasions it will be useful to have a measure of syntac-tical complexity with respect to which the degree of � ' is smaller than thedegree of :', if ' is non-atomic:dg(pn) := dg(:pn) := 0, for n 2 !,dg(:') := dg(� ') + 1, if ' 62 P,dg(V�) := dg(W�) := supfdg(') j' 2 �g+ 1,dg(�') := dg(�') := dg(') + 1. 3



3 The calculus K!1In this section we introduce the axiomatic calculus K!1 . As for the heuristic,�nding promising axioms and rules turns out to be an easy exercise: we justhave to combine Kripke's system K with the propositional part of Keisler'saxiomatization of L!1! (see [4]).De�nition 3.1 The calculus K!1 is de�ned by the following axiom schemasand rules:A1 Each substitution instance of a tautology of boolean logic.A2 :'$� '.A3 �W�! Wf�' j' 2 �g.4A4 '! W�, for ' 2 �.R1 If ' and '!  are provable, then  is provable.R2 If '!  is provable, then �'! � is provable.R3 If '!  is provable for each ' 2 �, then W�!  is provable.A proof in K!1 is an �-sequence of ML!1-formulas, with � < !1, such thateach item of the sequence is an instance of one of the axioms A1 to A4 or isinferred from earlier formulas by one of the rules R1 to R3. A modal formula' is K!1-provable, abbreviated by `K!1 ', i� there is a proof in K!1 that has' as its last item. A countable set � of ML!1-formulas is called consistent i�:V� is not provable in K!1 .Lemma 3.2 (Soundness) For every ' 2 F!1 , if `K!1 ' then (A; a) j= ' forevery pointed model (A; a).Proof: By trans�nite induction on the length of K!1-proofs. �4 Modal consistency propertiesA non-empty set S of sets of ML-formulas is said to be a modal consistencyproperty, if S is closed under subsets and each s 2 S satis�es the followingconditions:c1 if ' 2 s, then :' 62 s,c2 if :' 2 s, then s [ f� 'g 2 S,c3 if (' ^  ) 2 s, then s [ f'g 2 S and s [ f g 2 S,c4 if (' _  ) 2 s, then s [ f'g 2 S or s [ f g 2 S,4Important instances of A3 are: �(' _  )! �' _ � and �?! ?.4



c5 if �' 2 s, then f'g [ f j �  2 sg 2 S.By utilizing c1 to c5 it can be shown that each member of a modal con-sistency property S is contained in a saturated theory, that is, for each s 2 Sthere is a set of ML-formulas t such that s � t, and(i) if ' 2 t, then :' 62 t,(ii) if :' 2 t, then � ' 2 t,(iii) if (' ^  ) 2 t, then ' 2 t and  2 t,(iv) if (' _  ) 2 t, then ' 2 t or  2 t.If every member of S can be extended to a saturated theory t which alsosatis�es (v), then S is called a strong modal consistency property:(v) if �' 2 t, then f'g [ f j �  2 tg 2 S.What makes a consistency property S a valuable metalogical tool is the factthat we can prove a model existence theorem with respect to it, that is, we canshow that each member of S has a model. A careful examination of the proofof this result leads to the insight that in the case of modal logic the proof canonly be carried through under the assumption that S is strong. To see this,let's recapitulate the main steps of the proof:(1) The canonical S-model AS = (AS ; RS; VS) is de�ned as follows: Let ASbe the set of saturated theories satisfying (v), put RStt0 i� f j �  2 tg � t0,and VS(pn) := ft 2 AS j pn 2 tg, for n 2 !.(2) The following one-way version of the truth lemma is proved by induction:For every t 2 AS and every ML-formula ', if ' 2 t then (AS ; t) j= '. Considerthe case ' := � 2 t. Suppose there is a t0 2 AS with  2 t0 and RStt0, then,by induction hypothesis, (AS; t0) j=  , hence (AS ; t) j= '. Moreover, such t0exists only if the set s := f g [ f� j � � 2 tg is contained in an element of AS ;that's the point where the strongness assumption on S must be brought intoplay. Since t satis�es (v), s 2 S, thus, by the strongness of S, there is a t0 2 ASsuch that s � t0, which completes the proof.(3) The model existence theorem is easily obtained from (2): Suppose s 2 S,then s can be extended to a saturated theory t. Since S is strong, t can be chosenfrom AS, hence, by (2), each element of t is true in (AS; t), thus s is satis�able.To prove completeness for ML it now su�ces to show that the set U of allK-consistent sets of ML-formulas forms a strong modal consistency property.Suppose this has been proved, then we can reason as follows: Assume 6`K ',hence f:'g is K-consistent, hence f:'g 2 U . By (3) f:'g is satis�able, hence6j= '. That U satis�es c1 to c4 is quite obvious. For c5 we argue as follows: Lets 2 U and �' 2 s, and assume � := f'g [ f j �  2 sg is not in U . Then �is not K-consistent, hence there are  1; : : : ;  n 2 � such that `K ' ! (: 1 _: : : _ : n). By an application of R2 we obtain `K �' ! �(: 1 _ : : : _ : n),hence, by the �nitary version of A3, `K �'! (�: 1 _ : : :_�: n). By A2 we5



get `K �'! (:�  1 _ : : : _:�  n). Because �' as well as � 1; : : : ;� n arecontained in s, this contradicts the consistency of s.To prove the strongness of U , let s 2 U . A standard construction provides achain hsn jn 2 !i of members of U , with s0 = s, such that the union t := Sn2! snof this chain is a saturated theory. By using compactness it is easy to verifythat t is consistent, hence t 2 U . That t satis�es (v) is then implied by the factthat U satis�es c5.When we focus our attention on ML!1 we may �rst get the impressionthat the above method can be applied here as well. The notion of a modalconsistency property, for instance, is adjusted as follows: We demand that theelements of S are countable, and replace c3 and c4 by c3a respectively c4a:c3a if V� 2 s, then for each ' 2 �, s [ f'g 2 S,c4a if W� 2 s, then there is a ' 2 � such that s [ f'g 2 S.Accordingly, we may adjust the de�nition of a saturated theory. So farso good. But when we turn towards the completeness proof we meet withinsurmountable di�culties. Proving that K!1 completely axiomatizes the setof valid ML!1-formulas requires three things: (a) �xing a suitable set S, (b)verifying that S is a consistency property, (c) showing that S is strong. As for(a), let S be the set of all countable consistent subsets of F!1 . That S forms aconsistency property is easily checked. What remains is (c); but this is exactlythe point where we get stuck. To see this, let s 2 S. Exploiting the countablefragment of F!1 generated by s | for a precise de�nition see the next section| we can �nd a saturated theory t which contains s. To be a bit more precise,we can construct a chain hsn jn 2 !i of elements of S, with s0 = s, such thatt := Sn2! sn is a saturated theory.5 Suppose �' 2 t and f'g[f j� 2 tg 62 S.Analogous to the �nite case we obtain `K!1 �'! Wf:� j � 2 tg by modalreasoning. If we could now assume that t were consistent, then we would get acontradiction like in the �nite case. Unfortunately, this is exactly what we mustnot assume. Since ML!1 lacks compactness, S is not closed under the unionof !-chains, and, what is really bad, there is no other strategy for ensuring theconsistency of t within sight.In the remainder of this paper we develop a new method which avoids theabove di�culties and by which we will obtain a completeness proof for ML!1in section 6. The following remarks provide an informal sketch of its maincomponents. They should help the reader to understand the things to comeand give him some motivation for working through the tedious formal details.Let s be a countable consistent set of ML!1-formulas. According to whatwe have considered so far there is no guarantee that by way of expanding swe �nally reach an element of a (canonical) model in which s holds; what wehave to do, instead, is to construct a whole model from the bottom up, that is,5In fact, we can do a slightly better job. We can ensure that t is negation complete in thefollowing sense: for each ' contained in the fragment generated by s, either ' 2 t or :' 2 t.However, the reader will notice that even this stronger feature does not help.6



we have to create all the saturated theories which are needed for satisfying ssimultaneously.6To see this, suppose we had already completed the construction of the modelA. Similar to the �nite case the elements of A are saturated theories, and RAand V A are de�ned accordingly. The key to the whole method is the proof ofthe truth lemma. So let's consider its problematic case �' 2 t1. To obtain(A; t1) j= �' we need a t2 2 A containing ' such that RAt1t2, that is f j � 2t1g � t2.That such a t2 is at our disposal can be secured as follows: By assumptiont1 has been constructed in an inductive process. Thus there is a natural numbern such that �' is already contained in the n-th approximation sn1 of t1. Theconstruction is so designed that there is a number m > n such that f'g will beadded in the m-th step. As f'g should eventually be expanded to the wantedt2, we put sm2 := f'g. From now on we must take care that after each stepthe approximations of t1 and t2 are related to each other so as to allow RAt1t2in the end. That means that for every � 2 sm1 the formula  has to beadded to sm2 at some point. But that's not su�cient; we also must take careof formulas � that will be added to sm1 in a later step of the construction,that means that whenever a formula � enters sk1, with k > m, there shouldbe a number l > k such that  2 sl2. Obviously, the latter is only possible iff g[ sk2 is consistent. To ensure this we use the following trick: �rst note, thaton level m, �V sm2 2 sm1 holds by assumption. The trick is to preserve this sortof connection throughout the whole process, that is, to ensure that for everyk > m, �V sk2 2 sk1. It should be obvious that in order to carry this out it is notenough to work with pairs of sets of formulas, we have to consider sequences ofarbitrary �nite length.Though the foregoing remarks supply su�cient evidence for the claim thatin the case of ML!1 it is much more di�cult to construct a model for a givenconsistent set s than it is in the �nite case, the reader may still hope that thiscomplication does not a�ect the notion of a consistency property proper forML!1 . Unfortunately, this hope has to be dashed. The notion of an in�nitarymodal consistency property as de�ned in the next section will turn out to berather elaborated. To make plain that we really are in need of such a strangelooking notion, we jump back into the model construction as described above.Suppose we have already carried out the construction up to stage m, andassume there is a sequence hsm0 ; : : : ; smn i such that for every i < n, �V smi+1 2 smi ;a sequence of this sort is said to be S-perfect. Remember that the sets to beconstructed should be saturated theories. To make our point, we consider thedisjunction case: Suppose smn contains a formula of the shape W�. Then wehave to �nd a set s0n and a formula ' 2 � such that ' 2 s0n and smn � s0n. Infact, our job is much more di�cult; we also have to �nd elements s00; : : : ; s0n�1of S with smi � s0i, for each i < n, such that hs00; : : : ; s0ni is a S-perfect sequence.As we see it there is only one way to make sure that this can be done, namelyby adding a respective clause to the de�nition of a consistency property, that6With regard to this aspect our method has a precursor in the area of in�nitary intuitionisticlogic (see [5]). 7



is, by requiring something like the following: S is a consistency property onlyif for every S-perfect sequence hs0; : : : ; sni,7C4 if W� 2 sn, then there is a ' 2 � and a S-perfect sequence hs00; : : : ; s0nisuch that ' 2 s0n and for all i � n, si � s0i.Admittedly, this does not look very tempting. What one would prefer is arestricted version of C2 | for obvious reasons we call it C4.2 | which is onlyformulated for S-perfect sequences of length 2, that is for pairs of elements ofS, and a theorem that tells us that, if S satis�es C4.2 then S satis�es the wholeC4 as well. However, as the following example suggests this is impossible: Lets0 := f� � (p _ q);�� :pg, s1 := f�(p _ q)g and s2 := fp _ qg. By the choiceof these elements hs0; s1; s2i is S-perfect. Now, suppose S contains the setsf�(p ^ (p _ q));�(p _ q)g and fp; p _ qg, but contains no s with fq; p _ qg �s. It is easy to check that S does not satisfy C4; note that the sequencehs0; s1; s2i has no suitable expansion. On the other hand, the pair hf�(p ^(p _ q));�(p _ q); fp; p _ qggi is a proper extension of hs1; s2i regarding C4.2.Any other attempt to restrict the length of the sequences to be considered inC4 by a �nite bound can be wrecked by a similar argument. Of course, theseconsiderations are far from a proof but they should help to deliver our notionof an in�nitary modal consistency property of its arti�cial character.5 In�nitary modal consistency propertiesIn this section we introduce in�nitary modal consistency properties and provea model existence theorem with respect to them. The proof of this theoremrelies on the existence of certain countable fragments of ML!1 .De�nition 5.1 Let s be a set of ML!1-formulas. The fragment generated bys | F(s) for short | is de�ned as the smallest set X such thati) s � X,ii) X is closed under subformulas,iii) X is closed under �;:;�;�;_ and ^.Note that if s is countable, then F(s) is countable as well.De�nition 5.2 Let hs0; : : : ; sni be a �nite sequence of countable sets ofML!1-formulas such that �V si+1 2 si, for all i < n, and let ' 2 F!1 . By induction(up to n) we de�ne a new sequence E(s0; : : : ; sn; ') of the same length whichsatis�es the following conditions:for each i < n: �V[E(s0; : : : ; sn; ')]i+1 2 [E(s0; : : : ; sn; ')]i,87The o�cial clause C4 in De�nition 5.5 looks a bit more constructive: employing thefunction E , the extensions s0i are de�ned explicitly.8In general, if � is a �nite sequence of length n, and i < n, then [�]i denotes the (i+1)-thitem of �. 8



for each i � n: si � [E(s0; : : : ; sn; ')]i, and' 2 [E(s0; : : : ; sn; ')]n.For the de�nition of E(s0; : : : ; sn; ') we use the following auxiliary function:f(0) := sn [ f'g,f(i+ 1) := sn�(i+1) [ f�V f(i)g, for i < n.Finally, let E(s0; : : : ; sn; ') := hf(n); : : : ; f(0)i.De�nition 5.3 Let S be a set of countable sets of ML!1-formulas. A �nitesequence hs0; : : : ; sni of elements of S is called a perfect S-sequence, or simplyS-perfect, i� �V si+1 2 si, for every i < n.The following lemma is an easy but useful consequence of the precedingde�nition.Lemma 5.4 Let hs0; : : : ; sni and hs00; : : : ; s0n�1i be two S-perfect sequences, andsuppose si � s0i holds for each i < n, then hs00; : : : ; s0n�1; sni is S-perfect.Proof: By inspection. �The central notion of this section is introduced in the next de�nition.De�nition 5.5 A set S of countable sets ofML!1-formulas is called an in�ni-tary modal consistency property i�C0 ; 2 S, and for every s; s0 2 S: if s � s0 and ' 2 s0, then s [ f'g 2 S,C1 for every s 2 S and ' 2 F!1 : if ' 2 s then :' 62 s,and every perfect S-sequence hs0; : : : ; sni satis�es the following conditions:C2 If :' 2 sn, then E(s0; : : : ; sn;� ') is a S-sequence.C3 If V� 2 sn, then E(s0; : : : ; sn; ') is a S-sequence, for every ' 2 �.C4 If W� 2 sn, then there is at least one ' 2 � such that E(s0; : : : ; sn; ') isa S-sequence.C5 If �' 2 sn, then hs0; : : : ; sn; f'gi is a S-sequence.C6 If �' 2 sn�1, then E(s0; : : : ; sn; ') is a S-sequence.In C2 to C6 it is only required that the new sequences E(: : :) are S-sequences.That they are perfect is an immediate consequence of De�nition 5.2.Theorem 5.6 (Model Existence) Let S be an in�nitary modal consistencyproperty, and suppose s 2 S. Then s is satis�able, that is, there is a pointedmodel (A; a) such that (A; a) j= V s. 9



Proof: Let X be the set fh0; i0; i1; : : : ; im�1i jm 2 !&8k < m(ik 2 ! n f0g)g.The carrier of the model (A; a) to be created consists of saturated sets ofML!1-formulas indexed by elements of X . The relation RA is de�ned by RAtxty i�there is a j 2 ! with y = x � hji, and V A(pn) is the set of tx 2 A such thatpn 2 tx, for n 2 !. Finally, A is tree-like and generated by a, where s � a = th0i.The elements of the model will be created inductively in ! stages. Through-out the construction we must take care that on each level n the sets approxi-mating the elements tx, snx for short, satisfy the following conditions:E1 For every x 2 X , snx 2 S.E2 fsnx jsnx 6= ;g is �nite.E3 If m � n, then smx � snx.E4 For every n; j 2 ! and x; y 2 X : if sny 6= ; and y = x�hji, then �V sny 2 snx.E5 For every n; k; j 2 ! and x 2 X : if snx�hki 6= ; and j < k, then snx�hji 6= ;.It is easy to see that E1 and E4 implyE6 If i0; i1; : : : ; im�1 2 ! n f0g and snh0;i0;:::;im�1i 6= ;, then the sequencehsnh0i; snh0;i0i; : : : ; snh0;i0;:::;im�1ii is S-perfect.Let l0; l1; l2; : : : be an enumeration of the set fhx; 'i jx 2 X &' 2 F(s)g so thateach element occurs in�nitely often. As F(s) is countable such an enumerationexists.For the start of the construction, put s0h0i := s, and s0x := ; for each x 6= h0i.Suppose that the sets snx have been constructed so as to satisfy E1 to E5.Consider ln = hz; 'i and let z = h0; i0; : : : ; im�1i. There are two cases to bedistinguished. (i) ' 62 snz : put sn+1x := snx for each x 2 X . (ii) ' 2 snz : here wehave to consider a number of subcases depending on the syntactical shape of '.' 2 P: Let sn+1x := snx for every x 2 X .' := : : De�ne sn+1x as [E(snh0i; snh0;i0i; : : : ; snh0;i0;:::;im�1i;�  )]0, if x = h0i,[E(snh0i; snh0;i0i; : : : ; snh0;i0;:::;im�1i;�  )]j+1, if there is a j < m such that x =h0; i0; : : : ; iji, and snx else.By induction hypothesis hsnh0i; snh0;i0i; : : : ; snh0;i0;:::;im�1ii is S-perfect. UsingC2 (from De�nition 5.5) and the induction hypothesis it is easy to see that thenew sets sn+1x satisfy E1 to E5.' := V�: If � � snz , de�ne sn+1x := snx, for each x 2 X ; otherwise choose the�rst element  from a �xed wellorder of � with  62 snz . The new sets sn+1x arede�ned similar to the foregoing case, just replace �  by  . To prove E1 to E5we make use of C3 and the induction hypothesis.' := W�: By C4 there is a  2 � such that E(snh0i; snh0;i0i; : : : ; snh0;i0;:::;im�1i;  )is a S-sequence. The de�nition of the sets sn+1x can now be overtaken from theconjunction case.' := � : Let k be the smallest j 2 ! n f0g with snz�hji = ;. We putsn+1x := f g, if x = z � hki, and sn+1x := snx else. The rest is clear.10



' := � : Consider the set G(z) := fj 2 ! j snz�hji 6= ;g. Again, we have tomake a distinction.(i) G(z) = ;: Put sn+1x := snx for each x 2 X .(ii) G(z) 6= ;: By induction hypothesis and E2, G(z) is �nite. Hence, by anapplication of E5, there is a k 2 ! nf0g such that G(z) = f1; : : : ; kg. Moreover,the induction hypothesis implies for every j 2 G(z)(*) hsnh0i; : : : ; snz ; snz�hjii is S-perfect.By induction we de�ne �nite sequences �j , for 1 � j � k, as follows:�1 := E(snh0i; snh0;i0i; : : : ; snz ; snz�h1i;  ), and�j := E([�j�1]0; : : : ; [�j�1]m; snz�hji;  ), for 1 < j � k.Finally, we de�ne the new sets sn+1x assnz�hji [ f g, if there is a j 2 G(z) with x = z � hji,[�k]0, if x = h0i,[�k]l+1, if there is a number l < m such that x = h0; i0; : : : ; ili, andsnx else.Using (*), C6 and Lemma 5.4 it is easy to verify that the so de�ned sets sn+1xhave all the required features.Suppose that the construction has been carried out for every n 2 !. To�nish the construction we set tx := Sn2! snx for each x 2 X . Now, the model(A; a) can be de�ned as follows. As A choose the set ftx j tx 6= ;g. De�ne RAby RAtxty :, 9j 2 !(y = x � hji), and let V A(pn) := ftx j pn 2 txg for n 2 !.Finally, put a := th0i.The following statement can then be shown by an induction on the degreeof ': 8' 2 F(s)8x 2 X (' 2 tx ) (A; tx) j= ').Suppose dg(') = 0. Then ' is either atomic or the negation of an atomicformula. In the �rst case the claim follows by the de�nition of V A. For thesecond case let ' := :pm; hence there is a minimal k 2 ! with :pm 2 skx. As skxsatis�es E1, C1 implies pm 62 skx. Moreover, by the same argument we obtainpm 62 snx for every n > k, hence pm 62 tx, hence (A; tx) j= ' by the de�nition ofV A.If dg(') > 0, the argument depends on the form of '. Suppose ' := : with 62 P. By construction there is n 2 ! such that : 2 snx. Consider the smallestm > n with lm = hx;: i. According to the construction we get �  2 sm+1x ,hence �  2 tx. Then the induction hypothesis yields (A; tx) j=�  (note thatdg(� ') < dg(:')), thus (A; tx) j= : . For conjunction and disjunction wecan reason in a similar way. The case ' := � is obvious.For ' := � , assume RAtxty. Consider the smallest m 2 ! with smy 6= ;;then choose the smallest n > m such that ln = hx;� i. By construction weobtain  2 sn+1y , hence (A; ty) j=  by induction hypothesis. From this weeasily conclude (A; tx) j= � . 11



As an instance of the above claim we obtain (A; th0i) j= V th0i and then(A; th0i) j= V s. Consequently, we have shown that each element of an in�ni-tary modal consistency property has a model. This completes the proof of thetheorem. �6 CompletenessThe main task of this section is to prove that the set U of all countable consistentsets of ML!1-formulas is a consistency property in the sense of De�nition 5.5.From this result (Theorem 6.5) the completeness theorem for ML!1 can easilybe derived by an application of Theorem 5.6. In the proof of Theorem 6.5 wemake use of a number of little results which concern the derivability of certainformulas in K!1 . For the sake of lucidity we state and prove them as seperatelemmas.Lemma 6.1 Let hs0; : : : ; sni be U -perfect, and ` V sn ! V[E(s0; : : : ; sn; ')]n.Then for each i � n it holds that ` V si ! V[E(s0; : : : ; sn; ')]i.Proof: By induction on i we show`^ sn�i !^[E(s0; : : : ; sn; ')]n�i:The case i = 0 holds by assumption. Suppose that`^ sn�i !^[E(s0; : : : ; sn; ')]n�i:Hence by R2 we get` �^ sn�i ! �^[E(s0; : : : ; sn; ')]n�i:Since [E(s0; : : : ; sn; ')]n�(i+1) is de�ned as sn�(i+1) [ f�V[E(s0; : : : ; sn; ')]n�igand �V sn�i 2 sn�(i+1) the desired result follows at once. �Lemma 6.2 Let hs0; : : : ; sni be a sequence of countable sets of ML!1-formulassuch that �V si+1 2 si for every i < n. Suppose there is a j < n such that sjis consistent. Then for every k > j, sk is consistent.Proof: Assume to the contrary that there is a k > j for which sk is inconsistent;choose k to be minimal. For this k we conclude`^ sk ! ?;hence, again using R2,` �^ sk ! �?and by assumption on hs0; : : : ; sni`^ sk�1 ! �?:As :�? is a theorem of K!1 the latter contradicts the consistency of sk�1. �12



Lemma 6.3 Let s 2 U and � a countable set of ML!1-formulas. Then s [fW�g is consistent if and only if there is a ' 2 � such that s[f'g is consistent.Proof: For the direction from left to right we use R3; the other direction isproved by an application of A4. �Lemma 6.4 Let hs0; : : : ; sni be a U -perfect sequence, and suppose W� 2 sn.Then for every i � n:` �^ sn�i $_f�^[E(s0; : : : ; sn; ')]n�i j' 2 �g:Proof: For i = 0 we argue as follows.(: For every ' 2 � we get`^[E(s0; : : : ; sn; ')]n !^ snby De�nition 5.2. Then R2 yields` �^[E(s0; : : : ; sn; ')]n ! �^ snfrom which we conclude, by R3,`_f�^[E(s0; : : : ; sn; ')]n j' 2 �g ! �^ sn:): Without loss of generality we can assume that there is a  such thatV sn :=  ^W�. By A1 and A4 we �rst obtain` '! ( ! (^ sn ^ '));and then` '! ( ! (_f^ sn ^ ' j' 2 �g))for every ' 2 �. Thus R3 implies`_�! ( !_f^ sn ^ ' j' 2 �g);from which we conclude` �^ sn ! �_f^ sn ^ ' j' 2 �gby A1 and R2. Finally, an application of A3 leads to` �^ sn !_f�(^ sn ^ ') j' 2 �g;where the latter is nothing but the desired result` �^ sn !_f�^[E(s0; : : : ; sn; ')]n j' 2 �g:For the induction step let V sn�(i+1) :=  ^ �V sn�i; an application of R2provides` �^ sn�(i+1) $ �( ^ �^ sn�i):By induction hypothesis it follows that` �^ sn�(i+1) $ �( ^_f�^[E(s0; : : : ; sn; ')]n�i j' 2 �g):13



Using A1, A4, R3 and R2 we eventually obtain` �^ sn�(i+1) $ �_f ^ �^[E(s0; : : : ; sn; ')]n�i j' 2 �g:Together with ` �V[E(s0; : : : ; sn; ')]n�i ! �V sn�i this implies` �^ sn�(i+1) $ �_f^ sn�(i+1) ^ �^[E(s0; : : : ; sn; ')]n�i j' 2 �g;and then, by A3, A4, R2 and R3,` �^ sn�(i+1) $_f�(^ sn�(i+1) ^ �^[E(s0; : : : ; sn; ')]n�i) j' 2 �g:Taking De�nition 5.2 into account we conclude` �^ sn�(i+1) $_f�^[E(s0; : : : ; sn; ')]n�(i+1) j' 2 �g;which completes the proof. �Theorem 6.5 U is an in�nitary modal consistency property.Proof: We have to show that U satis�es C0 to C6 from De�nition 5.5. C0 andC1 are obvious from the De�nition of U . For the remaining clauses assume thaths0; : : : ; sni is U -perfect. In each case it su�ces to verify that the items of therespective E(s0; : : : ; sn; ') are consistent.For C2 we use A2 and Lemma 6.1. C3 is shown by the same lemma andthe K!1-provability of V�! ', where the latter follows from A1, A2 and A4.The case C5 is obvious; note that from the inconsistency of ' the inconsistencyof �' would follow by R2 and A3. The remaining two cases require a bit morecare.For C4 suppose W� 2 sn. Then Lemma 6.4 implies` �^ s1 $_f�^[E(s0; : : : ; sn; ')]1 j' 2 �g:As s0 is consistent and �V s1 2 s0, an application of Lemma 6.3 providesa ' 2 � such that [E(s0; : : : ; sn; ')]0, that is s0 [ f�V[E(s0; : : : ; sn; ')]1g, isconsistent. Then Lemma 6.2 ensures the consistency of [E(s0; : : : ; sn; ')]i foreach i � n; thus E(s0; : : : ; sn; ') is a U -sequence.To prove C6 suppose �' 2 sn�1. It is easy to see that for every  ; � 2 F!1` � ^��! �( ^ �):On the assumption that �V sn 2 sn�1 and �' 2 sn�1 this yields`^ sn�1 ! �(^ sn ^ '):Since [E(s0; : : : ; sn; ')]n�1 is de�ned as sn�1 [ f�(V sn ^ ')g we obtain`^ sn�1 !^[E(s0; : : : ; sn; ')]n�1:An application of Lemma 6.1 yields`^ si !^[E(s0; : : : ; sn; ')]ifor each i < n. The consistency of [E(s0; : : : ; sn; ')]0 is then a consequenceof the consistency of s0, and this yields, by an application of Lemma 6.2, theconsistency of [E(s0; : : : ; sn; ')]i for every i > 0. �The paper closes with its main result, the completeness theorem forML!1 .14



Theorem 6.6 (Completeness) Let ' 2 F!1, then j= ' if and only if `K!1 '.Proof: The soundness part was proved in section 3. The other direction is astraightforward consequence of Theorem 6.5 and Theorem 5.6. �AcknowledgementsThe author would like to thank Stefan Iwan, Alexander Kurz and Hans Lei�for helpful comments on an earlier version of this paper.References[1] J. Barwise: Admissible Sets and Structures. Springer, Heidelberg 1975.[2] J. Barwise, L. Moss: Vicious Circles. CSLI Publications, Stanford 1996.[3] M. Fitting: Model existence theorems for modal and intuitionistic logics, Jour-nal of Symbolic Logic 38 (1973), 613{627.[4] H.J. Keisler: Model Theory for In�nitary Logic. North-Holland, Amster-dam 1971.[5] M.E. Nadel: In�nitary intuitionistic logic from a classical point of view, Annalsof Mathematical Logic 14 (1978), 159{91.[6] S. Radev: In�nitary propositional normal modal logic, Studia Logica 46 (1987),291{309.[7] H. Sturm: Modale Fragmente von L!! und L!1!, PhD thesis, University ofMunich, CIS, Munich 1997.[8] H. Sturm: Interpolation and preservation inML!1 , Munich 1998, forthcoming.
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