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Abstract

In this paper we present a completeness theorem for the infinitary modal
logic ML,,. The proof is based on the new notion of an infinitary modal
consistency property.1

1 Introduction

One can make out several good reasons why infinitary modal logics should
deserve our attention. In the first place, and this does not only apply to the
modal case, infinitary logics provide a natural means for overcoming the expres-
sive weakness of the corresponding finite systems. Second, several interesting
modal logics may be regarded — wvia suitable translations — as fragments of
infinitary modal logics; the most popular ones are certainly propositional dy-
namic logic and the logic of common knowledge. There is legitimate hope that
a deeper understanding of infinitary logics will lead to important insights into
their respective fragments. Third, infinitary modal logics themselves might be
analysed as fragments of other logics, namely as fragments of infinitary ver-
sions of first-order logic.? From a logical point of view these fragments show
well-behaviour: quite a few metalogical properties are hereditary from logics
to their modal fragments. Last but not least, in a recent book ([2]) J. Barwise
and L. Moss have pointed out interesting connections between infinitary modal
logics and the theory of non-wellfounded sets.

This paper exclusively deals with the logic ML, , which is the infinitary
extension of propositional modal logic that allows conjunctions and disjunc-
tions over countable sets of formulas. Together with its companion piece [8] the
paper provides an analysis of this logic with respect to its most basic metalog-
ical properties. In [8] we proved Craig’s interpolation theorem for ML, and
presented a number of preservation results for certain syntactically specified
classes of ML, -formulas. The present paper is concerned with completeness.
We introduce an axiomatic calculus, which forms a natural infinitary extension
of Kripke’s system K, and show that it is complete with respect to the set of
valid ML, -formulas.

! After we had finished this paper we discovered that completeness for ML, had already
been proved in an article by S. Radev ([6]). Since we regard our proof as slightly more elegant
and our style of presentation as more lucid, we decided to send our paper to the press though.

2This can be done with the aid of a straightforward adaption of J. van Benthem’s standard
translation to the infinite; obviously, in the case of ML, we get L., as the target logic.



The paper is structured as follows. In section 2 we recall some basic notions
of the syntax and semantics of ML,,. In section 3 we introduce the axiomatic
calculus K, and prove its ML, -soundness. At the beginning of section 4 we
give a brief description of the method of modal consisteny properties due to
M. Fitting (see [3]). We then indicate why a straightforward adjustment of
this method to ML, does not work. The section concludes with an informal
sketch of an alternative method more suitable for the purposes of ML,,. This
new method is based on the notion of an infinitary modal consistency property,
which is introduced at the beginning of section 5. The main result of this section
provides a model existence theorem regarding this type of consistency property.
In section 6 we first show that the set of countable consistent sets of ML, -
formulas forms an infinitary modal consistency property. The completeness
theorem for ML, is then obtained by an application of this result and the
model existence theorem from section 5.

2 Syntax and semantics

For the following we fix a countable set P := {p,|n € w} of propositional
letters. The set F,,, of infinitary modal formulas (over P) is then defined as the
smallest set X such that

P C X,

if p is in X, then —¢p is in X,

if ® is a countable subset of X, then A ® and \/ ® are in X,?
if p is in X, then Q¢ and Oy are in X.

If ® contains only two formulas ¢ and v, we usually write (pA1)) and (pV))

instead of A{p, ¢} respectively \/{p,1}. We also use (¢ — ) and (¢ + 9)
as convenient metalinguistic abbreviations. The set of subformulas of a modal

formula ¢, denoted by sf (), is defined inductively:

) = Uyea s () U{A @},
) = Uyea sf(9) U{V 0},

A set is called countable if it is finite or of cardinality w. If & is the empty set, A @ is
abbreviated by T and \/ ® by L.



The semantics of ML, is based on models of the form A = (4, R* V?),
where A is a non-empty set, R* a binary relation on A, and V* a valuation
function from P into the power set of A. A pointed model is a pair (2, a)
consisting of a model 2 and a distinguished element a € A. The truth of a
modal formula in a pointed model is defined in a familiar way:

,a) = py e a € Vip,), for n € w,
,a) e e (A a) o,

,a) E \N® & for every ¢ € ®: (U, a) E o,
,a) E V@ :& thereisa p € ®: (A, a) = o,

(A
(
(
(
(%, a) = Op & o’ € A(R%aa' & (U, a') = ¢),
(

)
)
)
)
)
)

R N S I~

,a) E Oy & Va' € A(R*ad = (U,d') E ¢).

Throughout this paper we make use of a special syntactical operation ~,
which is defined as follows:

~ Py = —pn, for n € w,

(mp) ==,

(A®) :=V{-p|p € 2},
~ (V@) :=A{~¢|p € P},
~ (Op) := O,

(

~ (Qp) == 0.

Roughly speaking, given a modal formula ¢, ~ ¢ is obtained from ¢ by
replacing the main operator by its dual and by pushing the negation sign one
step inside. This type of operation is often met in the framework of infinitary
logic (see [1, 4]). It is easy to verify that ~ ¢ and —¢ are equivalent for each
v € Fo,.

The standard definition of the modal degree of a formula has the conse-
quence that for every formula ¢, - and ~ ¢ are of the same syntactical
complexity. On several occasions it will be useful to have a measure of syntac-
tical complexity with respect to which the degree of ~ ¢ is smaller than the
degree of -, if ¢ is non-atomic:

dg(pn) = dg(—p,) :=0, for n € w,

(
g(=p) :==dg(~ @)+ 1,if p ¢ P,
(
(

=

dg(N\ @) :=dg(V @) := sup{dg(p)| ¢ € } + 1,
dg(Op) = dg(Oy) = dg(p) + 1.



3 The calculus K,

In this section we introduce the axiomatic calculus K, . As for the heuristic,
finding promising axioms and rules turns out to be an easy exercise: we just
have to combine Kripke’s system K with the propositional part of Keisler’s
axiomatization of L, (see [4]).

Definition 3.1 The calculus K, is defined by the following axiom schemas
and rules:

A1 Each substitution instance of a tautology of boolean logic.
A2 —p &~ .

A3 OV @ = V{Op|p e d}.t

Ad o = \/ D, for p € D.

R1 If ¢ and ¢ — 1) are provable, then v is provable.

R2 If ¢ — 1 is provable, then Q¢ — Q1 is provable.

R3 If ¢ — % is provable for each ¢ € ®, then \/ ® — ) is provable.

A proof in K, is an a-sequence of ML, -formulas, with o < wy, such that
each item of the sequence is an instance of one of the axioms Al to A4 or is
inferred from earlier formulas by one of the rules R1 to R3. A modal formula
¢ is K, -provable, abbreviated by kg, ¢, iff there is a proof in K, that has
@ as its last item. A countable set ® of ML, -formulas is called consistent iff
= A\ @ is not provable in K, .

Lemma 3.2 (Soundness) For every ¢ € F,,, if bk, ¢ then (A, a) = ¢ for
every pointed model (A, a).

Proof: By transfinite induction on the length of K, -proofs. O

4 Modal consistency properties

A non-empty set S of sets of ML-formulas is said to be a modal consistency
property, if S is closed under subsets and each s € S satisfies the following
conditions:

cl if ¢ € s, then —p & s,
c2 if ~p € s, then sU {~ ¢} € S,
c3 if (p A1) € s, then sU{p} € S and sU {y} € S,

cd if (p V1)) € s, then sU{p} € Sor sU{¢} €S,

*Important instances of A3 are: O(p V1) = OpV Otp and 0L — L.



ch if Qg € s, then {p} U{y| Oy € s} € S.

By utilizing cl to cb it can be shown that each member of a modal con-
sistency property S is contained in a saturated theory, that is, for each s € S
there is a set of M L-formulas ¢ such that s C ¢, and

(i

(ii

if o € ¢, then —p & ¢,
if ~p €t, then ~ p € ¢,

(iii) if (@ A1) € t, then ¢ € t and ) € t,

)
)
)
(iv) if (o V1)) € t, then @ € t or ¢ € t.

If every member of S can be extended to a saturated theory ¢ which also
satisfies (v), then S is called a strong modal consistency property:

(v) if Op € t, then {p} U {yp| O €t} € S.

What makes a consistency property S a valuable metalogical tool is the fact
that we can prove a model existence theorem with respect to it, that is, we can
show that each member of S has a model. A careful examination of the proof
of this result leads to the insight that in the case of modal logic the proof can
only be carried through under the assumption that S is strong. To see this,
let’s recapitulate the main steps of the proof:

(1) The canonical S-model As = (As, Rs, Vs) is defined as follows: Let Ag
be the set of saturated theories satisfying (v), put Rgtt' iff {¢p| O € t} C ¢/,
and Vs(p,) := {t € As|p, € t}, for n € w.

(2) The following one-way version of the truth lemma is proved by induction:
For every t € Ag and every M L-formula ¢, if ¢ € t then (s, t) = . Consider
the case ¢ = Q1) € t. Suppose there is a t' € Ag with ¢ € ' and Rgtt', then,
by induction hypothesis, (As,t') = v, hence (As,t) = ¢. Moreover, such ¢’
exists only if the set s := {4} U{x | O x € t} is contained in an element of Ag;
that’s the point where the strongness assumption on S must be brought into
play. Since ¢ satisfies (v), s € S, thus, by the strongness of S, there isa t' € Ag
such that s C ¢/, which completes the proof.

(3) The model existence theorem is easily obtained from (2): Suppose s € S,
then s can be extended to a saturated theory ¢. Since S is strong, ¢ can be chosen
from Ag, hence, by (2), each element of ¢ is true in (g, ), thus s is satisfiable.

To prove completeness for ML it now suffices to show that the set U of all
K-consistent sets of M L-formulas forms a strong modal consistency property.
Suppose this has been proved, then we can reason as follows: Assume Fx ¢,
hence {—p} is K-consistent, hence {—¢} € U. By (3) {—} is satisfiable, hence
¥ . That U satisfies ¢l to ¢4 is quite obvious. For c5 we argue as follows: Let
s € U and Qg € s, and assume ¥ := {p} U{¢p| O € s} is not in U. Then
is not K-consistent, hence there are v,,...,1, € ¥ such that Fx ¢ — (=), V

.V —p,). By an application of R2 we obtain Fx O — O(—9py V...V —,),
hence, by the finitary version of A3, Fx O — (O—1py V...V O—p,). By A2 we



get Fx QO — (=0, V...V —=0O1,). Because Qp as well as Oy, ..., O, are
contained in s, this contradicts the consistency of s.

To prove the strongness of U, let s € U. A standard construction provides a
chain (s, |n € w) of members of U, with s, = s, such that the union ¢ := J,,.,,
of this chain is a saturated theory. By using compactness it is easy to verify
that ¢ is consistent, hence ¢t € U. That ¢ satisfies (v) is then implied by the fact
that U satisfies c¢5.

Sn

When we focus our attention on ML,, we may first get the impression
that the above method can be applied here as well. The notion of a modal
consistency property, for instance, is adjusted as follows: We demand that the
elements of S are countable, and replace c3 and c4 by c3a respectively c4a:

c3a if A ® € s, then for each p € @, sU{p} € S,

cda if \/ @ € s, then there is a ¢ € ® such that s U {¢p} € S.

Accordingly, we may adjust the definition of a saturated theory. So far
so good. But when we turn towards the completeness proof we meet with
insurmountable difficulties. Proving that K, completely axiomatizes the set
of valid ML, -formulas requires three things: (a) fixing a suitable set S, (b)
verifying that S is a consistency property, (c) showing that S is strong. As for
(a), let S be the set of all countable consistent subsets of F,,. That S forms a
consistency property is easily checked. What remains is (c¢); but this is exactly
the point where we get stuck. To see this, let s € S. Exploiting the countable
fragment of F,, generated by s — for a precise definition see the next section
— we can find a saturated theory ¢ which contains s. To be a bit more precise,
we can construct a chain (s, |n € w) of elements of S, with sq = s, such that
t := Upe, Sn 18 a saturated theory.” Suppose Q¢ € tand {p}U{y |0y €t} € S.
Analogous to the finite case we obtain g, Oy — V{—~0O | 0% € t} by modal
reasoning. If we could now assume that ¢ were consistent, then we would get a
contradiction like in the finite case. Unfortunately, this is exactly what we must
not assume. Since ML, lacks compactness, S is not closed under the union
of w-chains, and, what is really bad, there is no other strategy for ensuring the
consistency of ¢ within sight.

In the remainder of this paper we develop a new method which avoids the
above difficulties and by which we will obtain a completeness proof for ML,
in section 6. The following remarks provide an informal sketch of its main
components. They should help the reader to understand the things to come
and give him some motivation for working through the tedious formal details.

Let s be a countable consistent set of ML, -formulas. According to what
we have considered so far there is no guarantee that by way of expanding s
we finally reach an element of a (canonical) model in which s holds; what we
have to do, instead, is to construct a whole model from the bottom up, that is,

®In fact, we can do a slightly better job. We can ensure that ¢ is negation complete in the
following sense: for each ¢ contained in the fragment generated by s, either ¢ € t or - € t.
However, the reader will notice that even this stronger feature does not help.



we have to create all the saturated theories which are needed for satisfying s
simultaneously.5

To see this, suppose we had already completed the construction of the model
2. Similar to the finite case the elements of A are saturated theories, and R¥
and V*? are defined accordingly. The key to the whole method is the proof of
the truth lemma. So let’s consider its problematic case ¢y € t;. To obtain
(2,t,) E Op we need a ty € A containing ¢ such that R*¢,t,, that is {¢ | Oy €
1} Cto.

That such a ¢, is at our disposal can be secured as follows: By assumption
t; has been constructed in an inductive process. Thus there is a natural number
n such that Q¢ is already contained in the n-th approximation s} of ¢;. The
construction is so designed that there is a number m > n such that {p} will be
added in the m-th step. As {¢} should eventually be expanded to the wanted
ts, we put si" := {¢}. From now on we must take care that after each step
the approximations of #; and ¢, are related to each other so as to allow R¥¢t,
in the end. That means that for every Oy € s]* the formula 7 has to be
added to sJ* at some point. But that’s not sufficient; we also must take care
of formulas () that will be added to s7* in a later step of the construction,
that means that whenever a formula [t enters s¥, with k& > m, there should
be a number [ > k such that ¢) € si. Obviously, the latter is only possible if
{1} Usk is consistent. To ensure this we use the following trick: first note, that
on level m, O A s5* € s7* holds by assumption. The trick is to preserve this sort
of connection throughout the whole process, that is, to ensure that for every
k> m, O A\ sk € sk. It should be obvious that in order to carry this out it is not
enough to work with pairs of sets of formulas, we have to consider sequences of
arbitrary finite length.

Though the foregoing remarks supply sufficient evidence for the claim that
in the case of ML, it is much more difficult to construct a model for a given
consistent set s than it is in the finite case, the reader may still hope that this
complication does not affect the notion of a consistency property proper for
ML, . Unfortunately, this hope has to be dashed. The notion of an infinitary
modal consistency property as defined in the next section will turn out to be
rather elaborated. To make plain that we really are in need of such a strange
looking notion, we jump back into the model construction as described above.

Suppose we have already carried out the construction up to stage m, and
assume there is a sequence (sy’, ..., s!") such that for every i <n, O A s7t, € s
a sequence of this sort is said to be S-perfect. Remember that the sets to be
constructed should be saturated theories. To make our point, we consider the
disjunction case: Suppose s contains a formula of the shape \/ ®. Then we
have to find a set s/, and a formula ¢ € ® such that ¢ € 5] and 5" C s). In
fact, our job is much more difficult; we also have to find elements sg,...,s),

of S with s7* C s/, for each i < n, such that (s{,...,s,) is a S-perfect sequence.
As we see it there is only one way to make sure that this can be done, namely

by adding a respective clause to the definition of a consistency property, that

5With regard to this aspect our method has a precursor in the area of infinitary intuitionistic
logic (see [5]).



is, by requiring something like the following: S is a consistency property only
if for every S-perfect sequence (s, ..., 8,),"

!

C4 if V ® € s, then there is a ¢ € ® and a S-perfect sequence (s, ...,s])
such that ¢ € s and for all t <n, s; C s..

Admittedly, this does not look very tempting. What one would prefer is a
restricted version of C2 — for obvious reasons we call it C4.2 — which is only
formulated for S-perfect sequences of length 2, that is for pairs of elements of
S, and a theorem that tells us that, if S satisfies C4.2 then S satisfies the whole
C4 as well. However, as the following example suggests this is impossible: Let
s50:={00 (pVq),00-p}, s; :={0(pVq)} and s, := {pV ¢q}. By the choice
of these elements (sg, s1,s2) is S-perfect. Now, suppose S contains the sets
{0 A (pVq),0(pVaq} and {p,pV q}, but contains no s with {g,p V q} C
s. It is easy to check that S does not satisfy C4; note that the sequence
(80, S1,52) has no suitable expansion. On the other hand, the pair ({O(p A
(pVq),0(pVq),{p,pVq}}) is a proper extension of (s;,s,) regarding C4.2.
Any other attempt to restrict the length of the sequences to be considered in
C4 by a finite bound can be wrecked by a similar argument. Of course, these
considerations are far from a proof but they should help to deliver our notion
of an infinitary modal consistency property of its artificial character.

5 Infinitary modal consistency properties

In this section we introduce infinitary modal consistency properties and prove
a model existence theorem with respect to them. The proof of this theorem
relies on the existence of certain countable fragments of ML, .

Definition 5.1 Let s be a set of ML, -formulas. The fragment generated by
s — F(s) for short — is defined as the smallest set X such that

i) sC X,
ii) X is closed under subformulas,
iii) X is closed under ~,—, ¢, 0,V and A.

Note that if s is countable, then F(s) is countable as well.

Definition 5.2 Let (sg,...,s,) be a finite sequence of countable sets of ML, -
formulas such that ¢ A s;41 € s;, for all 1 < n, and let ¢ € F,,. By induction
(up to n) we define a new sequence E(sq, ..., Sy, ) of the same length which
satisfies the following conditions:

for each i < n: O A[E(S0s -+ 8n, ©)]ix1 € [E(Sos- -+ ) Snr @)]is

"The official clause C4 in Definition 5.5 looks a bit more constructive: employing the
function £, the extensions s; are defined explicitly.

®In general, if o is a finite sequence of length n, and i < n, then [o]; denotes the (i 4 1)-th
item of o.



for each i <n: s; C [E(So,---,Sn, ¥)]i, and
0 € [E(Soy-+-18n,0)]n-
For the definition of £(sy,. .., s,,p) we use the following auxiliary function:
£(0) = 52 U {io}.
fli+1) = sn_41) U{O A f(i)}, for i <n.
Finally, let £(so, ..., Sn, @) = (f(n),..., f(0)).

Definition 5.3 Let S be a set of countable sets of ML, -formulas. A finite
sequence (S, ..., s,) of elements of S is called a perfect S-sequence, or simply
S-perfect, iff O A s;11 € s;, for every 7 < n.

The following lemma is an easy but useful consequence of the preceding
definition.

Lemma 5.4 Let (sg,...,8,) and (s},...,s, ) be two S-perfect sequences, and
suppose s; C s, holds for each i < mn, then (sy,...,8h_1,8n) is S-perfect.
Proof: By inspection. O

The central notion of this section is introduced in the next definition.

Definition 5.5 A set S of countable sets of ML, -formulas is called an infini-
tary modal consistency property iff

CO 0 € S, and for every s,s' € S: if s C s’ and p € §', then sU {p} € S,
C1 for every s € Sand ¢ € F,,,: if ¢ € s then —p & s,

and every perfect S-sequence (sq, ..., $,) satisfies the following conditions:

C2 If —p € s,, then E(sg,...,8,,~ ) is a S-sequence.
C3 If A® € s,, then E(sq,...,8,, ) is a S-sequence, for every ¢ € ®.

C4 If \/ @ € s,, then there is at least one ¢ € ® such that E(sg,...,s,, ) is
a S-sequence.

C5 If Oy € s, then (sg,...,s,, {p}) is a S-sequence.

C6 If Oy € s,,_1, then E(sg, ..., Sp, ) is a S-sequence.

In C2 to C6 it is only required that the new sequences £(. . .) are S-sequences.
That they are perfect is an immediate consequence of Definition 5.2.

Theorem 5.6 (Model Existence) Let S be an infinitary modal consistency
property, and suppose s € S. Then s is satisfiable, that is, there is a pointed
model (A, a) such that (A,a) = A s.



Proof: Let X be the set {(0,i0,%1,...,im 1)|m € w& Yk < m(iy € w\ {0})}.
The carrier of the model (2, a) to be created consists of saturated sets of ML, -
formulas indexed by elements of X. The relation R* is defined by R¢,t, iff
there is a j € w with y = z o (j), and V*(p,) is the set of t, € A such that
Pn € tg, for n € w. Finally, A is tree-like and generated by a, where s C a = £ ).

The elements of the model will be created inductively in w stages. Through-
out the construction we must take care that on each level n the sets approxi-
mating the elements t,, s? for short, satisfy the following conditions:

El For every x € X, s? € S.

E2 {s7]s" # 0} is finite.

E3 If m < n, then s C s”.

E4 Forevery n,j € wand z,y € X: if 57 # () and y = zo(j), then O A s € s7.
E5 For every n,k,j € w and z € X if s,y # 0 and j < k, then sp_ ., # 0.

It is easy to see that E1 and E4 imply

E6 If dg,i1,...,0m—1 €w\ {0} and sfy,; . # 0, then the sequence
(800 800,i0)2 + + + 5 S{0i0,.vive 1)) 18 S-perfect.

Let Iy, 11,15, ... be an enumeration of the set {(z, @) |z € X & ¢ € F(s)} so that
each element occurs infinitely often. As F(s) is countable such an enumeration
exists.

For the start of the construction, put sf,, := s, and sJ := () for each z # (0).
Suppose that the sets s have been constructed so as to satisfy E1 to E5.
Consider 1, = (z,¢) and let z = (0,4q,...,%,_1). There are two cases to be
distinguished. (i) ¢ & s”: put s"*' := s” for each z € X. (ii) ¢ € s": here we
have to consider a number of subcases depending on the syntactical shape of .

p € P: Let s"t! 1= s" for every z € X.

@ = —): Define s"' as [5(3?0 S0si0y> 3 S{0sioromsive 1)1 ™ P))o, if z = (0),

)
[E(ST0ys ST0si0ys =+ + 3 S00si0iim 1y~ P)]j41, if there is a j < m such that z =
(0,9, ...,1;), and s” else.

By induction hypothesis (s{gy,8{0.i0ys -+ 870,i0,....in 1)) 18 S-perfect. Using
C2 (from Definition 5.5) and the induction hypothesis it is easy to see that the
new sets s”*! satisfy E1 to E5.

© = N\®: If ® C 57, define s"*' := 5", for each z € X; otherwise choose the
first element v from a fixed wellorder of ® with 1) & s”. The new sets s”*! are
defined similar to the foregoing case, just replace ~ 1 by 1. To prove E1l to E5
we make use of C3 and the induction hypothesis.

¢ =\ ®@: By C4 there is a ¢ € ® such that E(s7yy, 70+ 500si0rie 1) P)
is a S-sequence. The definition of the sets s”*! can now be overtaken from the
conjunction case.

¢ = O Let k be the smallest j € w\ {0} with s7,, = 0. We put
sttl={y}, if z = z 0 (k), and s""! := s” else. The rest is clear.
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¢ = Oy: Consider the set G(2) := {j € w|sl,; # 0}. Again, we have to
make a distinction.

(i) G(z) = 0: Put "t := s" for each z € X.

(ii) G(z) # 0: By induction hypothesis and E2, G(z) is finite. Hence, by an
application of E5, there is a k € w\ {0} such that G(z) = {1,...,k}. Moreover,
the induction hypothesis implies for every j € G(z)

(*) (8{oys - -+ 1855 8005y 18 S-perfect.
By induction we define finite sequences o7, for 1 < j < k, as follows:
ol = E(5Thy» 8b.ioyr - -+ » 55 Shor1ys 1), and
ol = E([07 oy 5 (077 my 8205y, %), for 1 < j < k.
Finally, we define the new sets s"*! as

8%y U {9}, if there is a j € G(2) with z = z 0 (j),

[0*]o, if 2 = (0),
[0*]111, if there is a number [ < m such that z = (0, i, ...,%), and
st else.

n+1
z

Using (*), C6 and Lemma 5.4 it is easy to verify that the so defined sets s
have all the required features.

Suppose that the construction has been carried out for every n € w. To
finish the construction we set t, := (J,,c,, s» for each z € X. Now, the model
(2,a) can be defined as follows. As A choose the set {t,|t, # 0}. Define R*
by R¥,t, < 3j € w(y = z o (j)), and let V¥(p,,) := {t, |pn € t,} for n € w.
Finally, put a := t .

The following statement can then be shown by an induction on the degree
of o: Yp € F(s)Vr € X(p € t, = (A, t,) = ¢).

Suppose dg(p) = 0. Then ¢ is either atomic or the negation of an atomic
formula. In the first case the claim follows by the definition of V*. For the
second case let ¢ = —p,,; hence there is a minimal k € w with —p,, € sk. As sk
satisfies E1, C1 implies p,, ¢ s*. Moreover, by the same argument we obtain
Pm & s for every n > k, hence p,, & t., hence (,1,) = ¢ by the definition of
VA

If dg(y) > 0, the argument depends on the form of ¢. Suppose p = —1) with
1 & P. By construction there is n € w such that —¢ € s?. Consider the smallest
m > n with [,, = (z, ). According to the construction we get ~ ¢ € s™*!
hence ~ 9 € t,. Then the induction hypothesis yields (2, ¢,) =~ 1 (note that
dg(~ ) < dg(—yp)), thus (A, t.) = —1. For conjunction and disjunction we
can reason in a similar way. The case ¢ = Q1) is obvious.

For ¢ = [, assume R¥t,t,. Consider the smallest m € w with sy F 0;
then choose the smallest n > m such that [,, = (x,0t). By construction we
obtain ¢ € s7*', hence (,t,) = ¢ by induction hypothesis. From this we
easily conclude (2,%,) = .
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As an instance of the above claim we obtain (U, %)) = Atpy and then
(A, t0y) = As. Consequently, we have shown that each element of an infini-
tary modal consistency property has a model. This completes the proof of the
theorem. O

6 Completeness

The main task of this section is to prove that the set U of all countable consistent
sets of ML, -formulas is a consistency property in the sense of Definition 5.5.
From this result (Theorem 6.5) the completeness theorem for ML, can easily
be derived by an application of Theorem 5.6. In the proof of Theorem 6.5 we
make use of a number of little results which concern the derivability of certain
formulas in K. For the sake of lucidity we state and prove them as seperate
lemmas.

Lemma 6.1 Let (sg,...,S,) be U-perfect, and = N\ s, = ANE(Soy---,8n,¢)]n-
Then for each i < n it holds that = N\ s; = N[E(Sos-- -y Sn, ©)]i-

Proof: By induction on 7 we show

F /\ Sp_i — /\[5(30, s Sy @) i

The case 1 = 0 holds by assumption. Suppose that
H /\ Sp_i — /\[5(30, ey Sy )i

Hence by R2 we get
F O/\sn,i — (}/\[5(30, R )|

Since [E(So,- -+ 8ns @)|n—(i+1) is defined as s,_(;11) U {O A[E(S0s -+, Sn,©)]n—i}
and O A s,,—; € S,,—(;+1) the desired result follows at once. O

Lemma 6.2 Let (sg,...,S,) be a sequence of countable sets of ML, -formulas
such that O A\ siy1 € s; for every i < n. Suppose there is a j < n such that s;
s consistent. Then for every k > j, s 4s consistent.

Proof: Assume to the contrary that there is a k > j for which s;, is inconsistent;
choose k to be minimal. For this & we conclude

A sk — L,

hence, again using R2,
O /\ s — OL

and by assumption on (s, .., S,)
F A sk-1 — OL.

As = ¢ L is a theorem of K, the latter contradicts the consistency of s;_;. O
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Lemma 6.3 Let s € U and ® a countable set of ML, -formulas. Then s U
{V @} is consistent if and only if there is a ¢ € ® such that sU{p} is consistent.

Proof: For the direction from left to right we use R3; the other direction is
proved by an application of A4. O

Lemma 6.4 Let (sg,...,S,) be a U-perfect sequence, and suppose \| ® € s,,.
Then for every i < n:

H O/\Snfi « \/{O /\[5(307 cee ,Sn,(p)]n,i | pe '1)},

Proof: For ¢ = 0 we argue as follows.
«: For every ¢ € ® we get

H /\[5(807---,Sn,<,0)]n — /\sn
by Definition 5.2. Then R2 yields
F 0/\[5(30,...,sn,<p)]n — O/\sn
from which we conclude, by R3,
FVAO Ao, 50 9)]n [0 € @} = O J\ s

=: Without loss of generality we can assume that there is a 1 such that
Asn =1 AV ®. By Al and A4 we first obtain

o= (1 = (N saA o)),
and then

Fo—= @ = (V{As.Aelpe})
for every ¢ € ®. Thus R3 implies

FVe— = V{As.Aplpe®}),

from which we conclude

FONsn = OV{AsnAple e ®}
by Al and R2. Finally, an application of A3 leads to

FO N sn—= V{O(N\snn) g € @},

where the latter is nothing but the desired result

0 A s = VIO NE (S0, - -, 500 9)la | 9 € D).

For the induction step let As, 1) = ¥ A O As,—;; an application of R2
provides

o /\ Sn—(i+1) < O A O /\ Sn—i)-
By induction hypothesis it follows that

H O/\sn_(iﬂ) < Oy A \/{O /\[5(30, ey Sy @) i | @ € P}
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Using A1, A4, R3 and R2 we eventually obtain

H <> /\ Sn—(i+1) A <> \/{1/) A <> /\[8(307 ceey Sny QD)]n—z | pE ¢}
Together with = O A[€(Soy -3 Sn, ©)]n_i = O A S,_; this implies

H <> /\ Sn—(i+1) A <> \/{/\ Sn—(i+1) A <> /\[8(307 <e s Sny QD)]n—l | pE ¢}’
and then, by A3, A4, R2 and R3,

O /\ Sp—(i41) < \/{(}(/\ Sn—(it1) N O /\[8(30, ey Sy @) i) | @ € P}

Taking Definition 5.2 into account we conclude

H <> /\ Sn—(i+1) A \/{O /\[8(307 -y Sny @)]n—(i-ﬁ-l) | p e (D}a
which completes the proof. O

Theorem 6.5 U is an infinitary modal consistency property.

Proof: We have to show that U satisfies CO to C6 from Definition 5.5. CO and
C1 are obvious from the Definition of U. For the remaining clauses assume that
(S0y---,8,) is U-perfect. In each case it suffices to verify that the items of the
respective E(sg, ..., S,, ) are consistent.

For C2 we use A2 and Lemma 6.1. C3 is shown by the same lemma and
the K, -provability of A ® — ¢, where the latter follows from A1, A2 and A4.
The case Cb is obvious; note that from the inconsistency of ¢ the inconsistency
of O would follow by R2 and A3. The remaining two cases require a bit more
care.

For C4 suppose \/ @ € s,,. Then Lemma 6.4 implies

O A st & VIO AEGo,- - sm,0)]i [0 € ).

As sq is consistent and ¢ A s; € sg, an application of Lemma 6.3 provides
a @ € ® such that [E(sg,-..,5n,©)]o, that is so U {OA[E(S0,---)Sn, @)1}, 18
consistent. Then Lemma 6.2 ensures the consistency of [E(so,. .., S, ¢)]; for
each i < n; thus £(sg,...,s,, ) is a U-sequence.

To prove C6 suppose Ly € s,,_1. It is easy to see that for every ¢, x € F,,

F oy AOx — O(¢ A x).
On the assumption that ¢ A s, € s,,_; and Oy € s, this yields

H /\Sn—l — O(Asn Ap).
Since [E(S0, -+ Sn, @)]n—1 is defined as s,, 1 U {O(A s, A ¢)} we obtain

+ /\sn,l — A[E(so,...,sn,tp)]n,l.

An application of Lemma, 6.1 yields

= /\si — /\[5(80, oy Sns )i

for each i < m. The consistency of [E(sg,...,Sn, )]0 18 then a consequence
of the consistency of s, and this yields, by an application of Lemma 6.2, the
consistency of [E(sg, ..., 8., p)]; for every i > 0. O

The paper closes with its main result, the completeness theorem for ML, .
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Theorem 6.6 (Completeness) Let p € F,,, then |= ¢ if and only if bk, .
Proof: The soundness part was proved in section 3. The other direction is a
straightforward consequence of Theorem 6.5 and Theorem 5.6. U
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