A complete axiomatization for $\mathcal{M} \mathcal{L}_{\omega_{1}}$

Holger Sturm

Abstract

In this paper we present a completeness theorem for the infinitary modal $\operatorname{logic} \mathcal{M} \mathcal{L}_{\omega_{1}}$. The proof is based on the new notion of an infinitary modal consistency property. ${ }^{1}$

1 Introduction

One can make out several good reasons why infinitary modal logics should deserve our attention. In the first place, and this does not only apply to the modal case, infinitary logics provide a natural means for overcoming the expressive weakness of the corresponding finite systems. Second, several interesting modal logics may be regarded - via suitable translations - as fragments of infinitary modal logics; the most popular ones are certainly propositional $d y$ namic logic and the logic of common knowledge. There is legitimate hope that a deeper understanding of infinitary logics will lead to important insights into their respective fragments. Third, infinitary modal logics themselves might be analysed as fragments of other logics, namely as fragments of infinitary versions of first-order logic. ${ }^{2}$ From a logical point of view these fragments show well-behaviour: quite a few metalogical properties are hereditary from logics to their modal fragments. Last but not least, in a recent book ([2]) J. Barwise and L. Moss have pointed out interesting connections between infinitary modal logics and the theory of non-wellfounded sets.

This paper exclusively deals with the $\operatorname{logic} \mathcal{M} \mathcal{L}_{\omega_{1}}$, which is the infinitary extension of propositional modal logic that allows conjunctions and disjunctions over countable sets of formulas. Together with its companion piece [8] the paper provides an analysis of this logic with respect to its most basic metalogical properties. In [8] we proved Craig's interpolation theorem for $\mathcal{M} \mathcal{L}_{\omega_{1}}$ and presented a number of preservation results for certain syntactically specified classes of $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas. The present paper is concerned with completeness. We introduce an axiomatic calculus, which forms a natural infinitary extension of Kripke's system K, and show that it is complete with respect to the set of valid $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas.

[^0]The paper is structured as follows. In section 2 we recall some basic notions of the syntax and semantics of $\mathcal{M} \mathcal{L}_{\omega_{1}}$. In section 3 we introduce the axiomatic calculus $K_{\omega_{1}}$ and prove its $\mathcal{M} \mathcal{L}_{\omega_{1}}$-soundness. At the beginning of section 4 we give a brief description of the method of modal consisteny properties due to M. Fitting (see [3]). We then indicate why a straightforward adjustment of this method to $\mathcal{M} \mathcal{L}_{\omega_{1}}$ does not work. The section concludes with an informal sketch of an alternative method more suitable for the purposes of $\mathcal{M} \mathcal{L}_{\omega_{1}}$. This new method is based on the notion of an infinitary modal consistency property, which is introduced at the beginning of section 5 . The main result of this section provides a model existence theorem regarding this type of consistency property. In section 6 we first show that the set of countable consistent sets of $\mathcal{M} \mathcal{L}_{\omega_{1}}$ formulas forms an infinitary modal consistency property. The completeness theorem for $\mathcal{M} \mathcal{L}_{\omega_{1}}$ is then obtained by an application of this result and the model existence theorem from section 5 .

2 Syntax and semantics

For the following we fix a countable set $\mathcal{P}:=\left\{p_{n} \mid n \in \omega\right\}$ of propositional letters. The set $\mathcal{F}_{\omega_{1}}$ of infinitary modal formulas (over \mathcal{P}) is then defined as the smallest set X such that

$$
\mathcal{P} \subseteq X
$$

if φ is in X, then $\neg \varphi$ is in X,
if Φ is a countable subset of X, then $\Lambda \Phi$ and $\bigvee \Phi$ are in $X,{ }^{3}$
if φ is in X, then $\diamond \varphi$ and $\square \varphi$ are in X.
If Φ contains only two formulas φ and ψ, we usually write $(\varphi \wedge \psi)$ and $(\varphi \vee \psi)$ instead of $\bigwedge\{\varphi, \psi\}$ respectively $\bigvee\{\varphi, \psi\}$. We also use $(\varphi \rightarrow \psi)$ and $(\varphi \leftrightarrow \psi)$ as convenient metalinguistic abbreviations. The set of subformulas of a modal formula φ, denoted by $s f(\varphi)$, is defined inductively:

$$
\begin{aligned}
& s f\left(p_{n}\right):=\left\{p_{n}\right\}, \text { for } n \in \omega, \\
& s f(\neg \psi):=s f(\psi) \cup\{\neg \psi\}, \\
& s f(\wedge \Phi):=\bigcup_{\varphi \in \Phi} s f(\varphi) \cup\{\bigwedge \Phi\}, \\
& s f(\bigvee \Phi):=\bigcup_{\varphi \in \Phi} s f(\varphi) \cup\{\bigvee \Phi\}, \\
& s f(\square \varphi):=s f(\varphi) \cup\{\square \varphi\}, \\
& s f(\diamond \varphi):=s f(\varphi) \cup\{\Delta \varphi\} .
\end{aligned}
$$

[^1]The semantics of $\mathcal{M} \mathcal{L}_{\omega_{1}}$ is based on models of the form $\mathfrak{A}=\left(A, R^{\mathfrak{A}}, V^{\mathfrak{2} l}\right)$, where A is a non-empty set, $R^{\mathfrak{A}}$ a binary relation on A, and $V^{\mathfrak{Q}}$ a valuation function from \mathcal{P} into the power set of A. A pointed model is a pair (\mathfrak{A}, a) consisting of a model \mathfrak{A} and a distinguished element $a \in A$. The truth of a modal formula in a pointed model is defined in a familiar way:

$$
\begin{aligned}
& (\mathfrak{A}, a) \models p_{n}: \Leftrightarrow a \in V^{\mathfrak{A}}\left(p_{n}\right), \text { for } n \in \omega, \\
& (\mathfrak{A}, a) \models \neg \varphi: \Leftrightarrow(\mathfrak{A}, a) \not \models \varphi, \\
& (\mathfrak{A}, a) \models \wedge \Phi: \Leftrightarrow \text { for every } \varphi \in \Phi:(\mathfrak{A}, a) \models \varphi, \\
& (\mathfrak{A}, a) \models \bigvee \Phi: \Leftrightarrow \text { there is a } \varphi \in \Phi:(\mathfrak{A}, a) \models \varphi, \\
& (\mathfrak{A}, a) \models \diamond \varphi: \Leftrightarrow \exists a^{\prime} \in A\left(R^{\mathfrak{A}} a a^{\prime} \&\left(\mathfrak{A}, a^{\prime}\right) \models \varphi\right), \\
& (\mathfrak{A}, a) \models \square \varphi: \Leftrightarrow \forall a^{\prime} \in A\left(R^{\mathfrak{A}} a a^{\prime} \Rightarrow\left(\mathfrak{A}, a^{\prime}\right) \models \varphi\right) .
\end{aligned}
$$

Throughout this paper we make use of a special syntactical operation \sim, which is defined as follows:

$$
\begin{aligned}
& \sim p_{n}:=\neg p_{n}, \text { for } n \in \omega, \\
& \sim(\neg \varphi):=\varphi, \\
& \sim(\wedge \Phi):=\bigvee\{\neg \varphi \mid \varphi \in \Phi\}, \\
& \sim(\bigvee \Phi):=\bigwedge\{\neg \varphi \mid \varphi \in \Phi\}, \\
& \sim(\square \varphi):=\diamond \neg \varphi, \\
& \sim(\diamond \varphi):=\square \neg \varphi .
\end{aligned}
$$

Roughly speaking, given a modal formula $\varphi, \sim \varphi$ is obtained from φ by replacing the main operator by its dual and by pushing the negation sign one step inside. This type of operation is often met in the framework of infinitary logic (see [1, 4]). It is easy to verify that $\sim \varphi$ and $\neg \varphi$ are equivalent for each $\varphi \in \mathcal{F}_{\omega_{1}}$.

The standard definition of the modal degree of a formula has the consequence that for every formula $\varphi, \neg \varphi$ and $\sim \varphi$ are of the same syntactical complexity. On several occasions it will be useful to have a measure of syntactical complexity with respect to which the degree of $\sim \varphi$ is smaller than the degree of $\neg \varphi$, if φ is non-atomic:

$$
\begin{aligned}
& d g\left(p_{n}\right):=d g\left(\neg p_{n}\right):=0, \text { for } n \in \omega, \\
& d g(\neg \varphi):=d g(\sim \varphi)+1, \text { if } \varphi \notin \mathcal{P}, \\
& d g(\wedge \Phi):=d g(\bigvee \Phi):=\sup \{d g(\varphi) \mid \varphi \in \Phi\}+1, \\
& d g(\square \varphi):=d g(\diamond \varphi):=d g(\varphi)+1 .
\end{aligned}
$$

3 The calculus $K_{\omega_{1}}$

In this section we introduce the axiomatic calculus $K_{\omega_{1}}$. As for the heuristic, finding promising axioms and rules turns out to be an easy exercise: we just have to combine Kripke's system K with the propositional part of Keisler's axiomatization of $\mathcal{L}_{\omega_{1} \omega}$ (see [4]).

Definition 3.1 The calculus $K_{\omega_{1}}$ is defined by the following axiom schemas and rules:

A1 Each substitution instance of a tautology of boolean logic.
A2 $\neg \varphi \leftrightarrow \sim \varphi$.
$\mathrm{A} 3 \diamond \bigvee \Phi \rightarrow \bigvee\{\diamond \varphi \mid \varphi \in \Phi\}$. ${ }^{4}$
A4 $\varphi \rightarrow \bigvee \Phi$, for $\varphi \in \Phi$.
R1 If φ and $\varphi \rightarrow \psi$ are provable, then ψ is provable.
R2 If $\varphi \rightarrow \psi$ is provable, then $\diamond \varphi \rightarrow \diamond \psi$ is provable.
R3 If $\varphi \rightarrow \psi$ is provable for each $\varphi \in \Phi$, then $\bigvee \Phi \rightarrow \psi$ is provable.
A proof in $K_{\omega_{1}}$ is an α-sequence of $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas, with $\alpha<\omega_{1}$, such that each item of the sequence is an instance of one of the axioms A1 to A4 or is inferred from earlier formulas by one of the rules R1 to R3. A modal formula φ is $K_{\omega_{1}}$-provable, abbreviated by $\vdash_{K_{\omega_{1}}} \varphi$, iff there is a proof in $K_{\omega_{1}}$ that has φ as its last item. A countable set Φ of $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas is called consistent iff $\neg \Lambda \Phi$ is not provable in $K_{\omega_{1}}$.

Lemma 3.2 (Soundness) For every $\varphi \in \mathcal{F}_{\omega_{1}}$, if $\vdash_{K_{\omega_{1}}} \varphi$ then $(\mathfrak{A}, a) \models \varphi$ for every pointed model (\mathfrak{A}, a).

Proof: By transfinite induction on the length of $K_{\omega_{1}}$-proofs.

4 Modal consistency properties

A non-empty set S of sets of $\mathcal{M} \mathcal{L}$-formulas is said to be a modal consistency property, if S is closed under subsets and each $s \in S$ satisfies the following conditions:

```
c 1 if \(\varphi \in s\), then \(\neg \varphi \notin s\),
\(c 2\) if \(\neg \varphi \in s\), then \(s \cup\{\sim \varphi\} \in S\),
c3 if \((\varphi \wedge \psi) \in s\), then \(s \cup\{\varphi\} \in S\) and \(s \cup\{\psi\} \in S\),
c4 if \((\varphi \vee \psi) \in s\), then \(s \cup\{\varphi\} \in S\) or \(s \cup\{\psi\} \in S\),
```

[^2]c5 if $\delta \varphi \in s$, then $\{\varphi\} \cup\{\psi \mid \square \psi \in s\} \in S$.
By utilizing c1 to c5 it can be shown that each member of a modal consistency property S is contained in a saturated theory, that is, for each $s \in S$ there is a set of $\mathcal{M L}$-formulas t such that $s \subseteq t$, and
(i) if $\varphi \in t$, then $\neg \varphi \notin t$,
(ii) if $\neg \varphi \in t$, then $\sim \varphi \in t$,
(iii) if $(\varphi \wedge \psi) \in t$, then $\varphi \in t$ and $\psi \in t$,
(iv) if $(\varphi \vee \psi) \in t$, then $\varphi \in t$ or $\psi \in t$.

If every member of S can be extended to a saturated theory t which also satisfies (v), then S is called a strong modal consistency property:
(v) if $\diamond \varphi \in t$, then $\{\varphi\} \cup\{\psi \mid \square \psi \in t\} \in S$.

What makes a consistency property S a valuable metalogical tool is the fact that we can prove a model existence theorem with respect to it, that is, we can show that each member of S has a model. A careful examination of the proof of this result leads to the insight that in the case of modal logic the proof can only be carried through under the assumption that S is strong. To see this, let's recapitulate the main steps of the proof:
(1) The canonical S-model $\mathfrak{A}_{S}=\left(A_{S}, R_{S}, V_{S}\right)$ is defined as follows: Let A_{S} be the set of saturated theories satisfying (v), put $R_{S} t t^{\prime}$ iff $\{\psi \mid \square \psi \in t\} \subseteq t^{\prime}$, and $V_{S}\left(p_{n}\right):=\left\{t \in A_{S} \mid p_{n} \in t\right\}$, for $n \in \omega$.
(2) The following one-way version of the truth lemma is proved by induction: For every $t \in A_{S}$ and every $\mathcal{M} \mathcal{L}$-formula φ, if $\varphi \in t$ then $\left(\mathfrak{A}_{S}, t\right) \models \varphi$. Consider the case $\varphi \doteq \diamond \psi \in t$. Suppose there is a $t^{\prime} \in A_{S}$ with $\psi \in t^{\prime}$ and $R_{S} t t^{\prime}$, then, by induction hypothesis, $\left(\mathfrak{A}_{S}, t^{\prime}\right) \models \psi$, hence $\left(\mathfrak{A}_{S}, t\right) \models \varphi$. Moreover, such t^{\prime} exists only if the set $s:=\{\psi\} \cup\{\chi \mid \square \chi \in t\}$ is contained in an element of A_{S}; that's the point where the strongness assumption on S must be brought into play. Since t satisfies (v), $s \in S$, thus, by the strongness of S, there is a $t^{\prime} \in A_{S}$ such that $s \subseteq t^{\prime}$, which completes the proof.
(3) The model existence theorem is easily obtained from (2): Suppose $s \in S$, then s can be extended to a saturated theory t. Since S is strong, t can be chosen from A_{S}, hence, by (2), each element of t is true in $\left(\mathfrak{A}_{S}, t\right)$, thus s is satisfiable.

To prove completeness for $\mathcal{M} \mathcal{L}$ it now suffices to show that the set U of all K-consistent sets of $\mathcal{M} \mathcal{L}$-formulas forms a strong modal consistency property. Suppose this has been proved, then we can reason as follows: Assume $\vdash_{K} \varphi$, hence $\{\neg \varphi\}$ is K-consistent, hence $\{\neg \varphi\} \in U$. Вy (3) $\{\neg \varphi\}$ is satisfiable, hence $\neq \varphi$. That U satisfies c 1 to c 4 is quite obvious. For c 5 we argue as follows: Let $s \in U$ and $\delta \varphi \in s$, and assume $\Sigma:=\{\varphi\} \cup\{\psi \mid \square \psi \in s\}$ is not in U. Then Σ is not K-consistent, hence there are $\psi_{1}, \ldots, \psi_{n} \in \Sigma$ such that $\vdash_{K} \varphi \rightarrow\left(\neg \psi_{1} \vee\right.$ $\left.\ldots \vee \neg \psi_{n}\right)$. By an application of R 2 we obtain $\vdash_{K} \diamond \varphi \rightarrow \diamond\left(\neg \psi_{1} \vee \ldots \vee \neg \psi_{n}\right)$, hence, by the finitary version of $\mathrm{A} 3, \vdash_{K} \diamond \varphi \rightarrow\left(\diamond \neg \psi_{1} \vee \ldots \vee \diamond \neg \psi_{n}\right)$. By A2 we
get $\vdash_{K} \diamond \varphi \rightarrow\left(\neg \square \psi_{1} \vee \ldots \vee \neg \square \psi_{n}\right)$. Because $\diamond \varphi$ as well as $\square \psi_{1}, \ldots, \square \psi_{n}$ are contained in s, this contradicts the consistency of s.

To prove the strongness of U, let $s \in U$. A standard construction provides a chain $\left\langle s_{n} \mid n \in \omega\right\rangle$ of members of U, with $s_{0}=s$, such that the union $t:=\bigcup_{n \in \omega} s_{n}$ of this chain is a saturated theory. By using compactness it is easy to verify that t is consistent, hence $t \in U$. That t satisfies (v) is then implied by the fact that U satisfies c 5 .

When we focus our attention on $\mathcal{M}_{\omega_{1}}$ we may first get the impression that the above method can be applied here as well. The notion of a modal consistency property, for instance, is adjusted as follows: We demand that the elements of S are countable, and replace c3 and c4 by c3a respectively c4a:
c3a if $\Lambda \Phi \in s$, then for each $\varphi \in \Phi, s \cup\{\varphi\} \in S$,
c4a if $\bigvee \Phi \in s$, then there is a $\varphi \in \Phi$ such that $s \cup\{\varphi\} \in S$.
Accordingly, we may adjust the definition of a saturated theory. So far so good. But when we turn towards the completeness proof we meet with insurmountable difficulties. Proving that $K_{\omega_{1}}$ completely axiomatizes the set of valid $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas requires three things: (a) fixing a suitable set S, (b) verifying that S is a consistency property, (c) showing that S is strong. As for (a), let S be the set of all countable consistent subsets of $\mathcal{F}_{\omega_{1}}$. That S forms a consistency property is easily checked. What remains is (c); but this is exactly the point where we get stuck. To see this, let $s \in S$. Exploiting the countable fragment of $\mathcal{F}_{\omega_{1}}$ generated by s - for a precise definition see the next section - we can find a saturated theory t which contains s. To be a bit more precise, we can construct a chain $\left\langle s_{n} \mid n \in \omega\right\rangle$ of elements of S, with $s_{0}=s$, such that $t:=\bigcup_{n \in \omega} s_{n}$ is a saturated theory. ${ }^{5}$ Suppose $\diamond \varphi \in t$ and $\{\varphi\} \cup\{\psi \mid \square \psi \in t\} \notin S$. Analogous to the finite case we obtain $\vdash_{K_{\omega_{1}}} \diamond \varphi \rightarrow \bigvee\{\neg \square \psi \mid \square \psi \in t\}$ by modal reasoning. If we could now assume that t were consistent, then we would get a contradiction like in the finite case. Unfortunately, this is exactly what we must not assume. Since $\mathcal{M} \mathcal{L}_{\omega_{1}}$ lacks compactness, S is not closed under the union of ω-chains, and, what is really bad, there is no other strategy for ensuring the consistency of t within sight.

In the remainder of this paper we develop a new method which avoids the above difficulties and by which we will obtain a completeness proof for $\mathcal{M} \mathcal{L}_{\omega_{1}}$ in section 6. The following remarks provide an informal sketch of its main components. They should help the reader to understand the things to come and give him some motivation for working through the tedious formal details.

Let s be a countable consistent set of $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas. According to what we have considered so far there is no guarantee that by way of expanding s we finally reach an element of a (canonical) model in which s holds; what we have to do, instead, is to construct a whole model from the bottom up, that is,

[^3]we have to create all the saturated theories which are needed for satisfying s simultaneously. ${ }^{6}$

To see this, suppose we had already completed the construction of the model \mathfrak{A}. Similar to the finite case the elements of A are saturated theories, and $R^{\mathfrak{2}}$ and $V^{\mathfrak{2}}$ are defined accordingly. The key to the whole method is the proof of the truth lemma. So let's consider its problematic case $\Delta \varphi \in t_{1}$. To obtain $\left(\mathfrak{A}, t_{1}\right) \models \diamond \varphi$ we need a $t_{2} \in A$ containing φ such that $R^{\mathfrak{A}} t_{1} t_{2}$, that is $\{\psi \mid \square \psi \in$ $\left.t_{1}\right\} \subseteq t_{2}$.

That such a t_{2} is at our disposal can be secured as follows: By assumption t_{1} has been constructed in an inductive process. Thus there is a natural number n such that $\Delta \varphi$ is already contained in the n-th approximation s_{1}^{n} of t_{1}. The construction is so designed that there is a number $m>n$ such that $\{\varphi\}$ will be added in the m-th step. As $\{\varphi\}$ should eventually be expanded to the wanted t_{2}, we put $s_{2}^{m}:=\{\varphi\}$. From now on we must take care that after each step the approximations of t_{1} and t_{2} are related to each other so as to allow $R^{2} t_{1} t_{2}$ in the end. That means that for every $\square \psi \in s_{1}^{m}$ the formula ψ has to be added to s_{2}^{m} at some point. But that's not sufficient; we also must take care of formulas $\square \psi$ that will be added to s_{1}^{m} in a later step of the construction, that means that whenever a formula $\square \psi$ enters s_{1}^{k}, with $k>m$, there should be a number $l>k$ such that $\psi \in s_{2}^{l}$. Obviously, the latter is only possible if $\{\psi\} \cup s_{2}^{k}$ is consistent. To ensure this we use the following trick: first note, that on level $m, \diamond \wedge s_{2}^{m} \in s_{1}^{m}$ holds by assumption. The trick is to preserve this sort of connection throughout the whole process, that is, to ensure that for every $k>m, \diamond \wedge s_{2}^{k} \in s_{1}^{k}$. It should be obvious that in order to carry this out it is not enough to work with pairs of sets of formulas, we have to consider sequences of arbitrary finite length.

Though the foregoing remarks supply sufficient evidence for the claim that in the case of $\mathcal{M} \mathcal{L}_{\omega_{1}}$ it is much more difficult to construct a model for a given consistent set s than it is in the finite case, the reader may still hope that this complication does not affect the notion of a consistency property proper for $\mathcal{M} \mathcal{L}_{\omega_{1}}$. Unfortunately, this hope has to be dashed. The notion of an infinitary modal consistency property as defined in the next section will turn out to be rather elaborated. To make plain that we really are in need of such a strange looking notion, we jump back into the model construction as described above.

Suppose we have already carried out the construction up to stage m, and assume there is a sequence $\left\langle s_{0}^{m}, \ldots, s_{n}^{m}\right\rangle$ such that for every $i<n, \diamond \wedge s_{i+1}^{m} \in s_{i}^{m}$; a sequence of this sort is said to be S-perfect. Remember that the sets to be constructed should be saturated theories. To make our point, we consider the disjunction case: Suppose s_{n}^{m} contains a formula of the shape $\bigvee \Phi$. Then we have to find a set s_{n}^{\prime} and a formula $\varphi \in \Phi$ such that $\varphi \in s_{n}^{\prime}$ and $s_{n}^{m} \subseteq s_{n}^{\prime}$. In fact, our job is much more difficult; we also have to find elements $s_{0}^{\prime}, \ldots, s_{n-1}^{\prime}$ of S with $s_{i}^{m} \subseteq s_{i}^{\prime}$, for each $i<n$, such that $\left\langle s_{0}^{\prime}, \ldots, s_{n}^{\prime}\right\rangle$ is a S-perfect sequence.

As we see it there is only one way to make sure that this can be done, namely by adding a respective clause to the definition of a consistency property, that

[^4]is, by requiring something like the following: S is a consistency property only if for every S-perfect sequence $\left\langle s_{0}, \ldots, s_{n}\right\rangle,{ }^{7}$

C4 if $\bigvee \Phi \in s_{n}$, then there is a $\varphi \in \Phi$ and a S-perfect sequence $\left\langle s_{0}^{\prime}, \ldots, s_{n}^{\prime}\right\rangle$ such that $\varphi \in s_{n}^{\prime}$ and for all $i \leq n, s_{i} \subseteq s_{i}^{\prime}$.

Admittedly, this does not look very tempting. What one would prefer is a restricted version of C 2 - for obvious reasons we call it C 4.2 - which is only formulated for S-perfect sequences of length 2 , that is for pairs of elements of S, and a theorem that tells us that, if S satisfies C4.2 then S satisfies the whole C 4 as well. However, as the following example suggests this is impossible: Let $s_{0}:=\{\diamond \diamond(p \vee q), \square \square \neg p\}, s_{1}:=\{\diamond(p \vee q)\}$ and $s_{2}:=\{p \vee q\}$. By the choice of these elements $\left\langle s_{0}, s_{1}, s_{2}\right\rangle$ is S-perfect. Now, suppose S contains the sets $\{\diamond(p \wedge(p \vee q)), \diamond(p \vee q)\}$ and $\{p, p \vee q\}$, but contains no s with $\{q, p \vee q\} \subseteq$ s. It is easy to check that S does not satisfy C4; note that the sequence $\left\langle s_{0}, s_{1}, s_{2}\right\rangle$ has no suitable expansion. On the other hand, the pair $\langle\{\diamond(p \wedge$ $(p \vee q)), \diamond(p \vee q),\{p, p \vee q\}\}\rangle$ is a proper extension of $\left\langle s_{1}, s_{2}\right\rangle$ regarding C4.2. Any other attempt to restrict the length of the sequences to be considered in C4 by a finite bound can be wrecked by a similar argument. Of course, these considerations are far from a proof but they should help to deliver our notion of an infinitary modal consistency property of its artificial character.

5 Infinitary modal consistency properties

In this section we introduce infinitary modal consistency properties and prove a model existence theorem with respect to them. The proof of this theorem relies on the existence of certain countable fragments of $\mathcal{M} \mathcal{L}_{\omega_{1}}$.

Definition 5.1 Let s be a set of $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas. The fragment generated by $s-\mathcal{F}(s)$ for short - is defined as the smallest set X such that
i) $s \subseteq X$,
ii) X is closed under subformulas,
iii) X is closed under $\sim, \neg, \diamond, \square, \vee$ and \wedge.

Note that if s is countable, then $\mathcal{F}(s)$ is countable as well.
Definition 5.2 Let $\left\langle s_{0}, \ldots, s_{n}\right\rangle$ be a finite sequence of countable sets of $\mathcal{M} \mathcal{L}_{\omega_{1}}-$ formulas such that $\Delta \wedge s_{i+1} \in s_{i}$, for all $i<n$, and let $\varphi \in \mathcal{F}_{\omega_{1}}$. By induction (up to n) we define a new sequence $\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)$ of the same length which satisfies the following conditions:

$$
\text { for each } i<n: \diamond \wedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{i+1} \in\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{i},{ }^{8}
$$

[^5]\[

$$
\begin{aligned}
& \text { for each } i \leq n: s_{i} \subseteq\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{i} \text {, and } \\
& \varphi \in\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n} .
\end{aligned}
$$
\]

For the definition of $\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)$ we use the following auxiliary function:

$$
\begin{aligned}
& f(0):=s_{n} \cup\{\varphi\}, \\
& f(i+1):=s_{n-(i+1)} \cup\{\diamond \wedge f(i)\}, \text { for } i<n .
\end{aligned}
$$

Finally, let $\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right):=\langle f(n), \ldots, f(0)\rangle$.
Definition 5.3 Let S be a set of countable sets of $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas. A finite sequence $\left\langle s_{0}, \ldots, s_{n}\right\rangle$ of elements of S is called a perfect S-sequence, or simply S-perfect, iff $\diamond \wedge s_{i+1} \in s_{i}$, for every $i<n$.

The following lemma is an easy but useful consequence of the preceding definition.

Lemma 5.4 Let $\left\langle s_{0}, \ldots, s_{n}\right\rangle$ and $\left\langle s_{0}^{\prime}, \ldots, s_{n-1}^{\prime}\right\rangle$ be two S-perfect sequences, and suppose $s_{i} \subseteq s_{i}^{\prime}$ holds for each $i<n$, then $\left\langle s_{0}^{\prime}, \ldots, s_{n-1}^{\prime}, s_{n}\right\rangle$ is S-perfect.

Proof: By inspection.
The central notion of this section is introduced in the next definition.
Definition 5.5 A set S of countable sets of $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas is called an infinitary modal consistency property iff
$\mathrm{C} 0 \emptyset \in S$, and for every $s, s^{\prime} \in S$: if $s \subseteq s^{\prime}$ and $\varphi \in s^{\prime}$, then $s \cup\{\varphi\} \in S$,
C1 for every $s \in S$ and $\varphi \in \mathcal{F}_{\omega_{1}}$: if $\varphi \in s$ then $\neg \varphi \notin s$,
and every perfect S-sequence $\left\langle s_{0}, \ldots, s_{n}\right\rangle$ satisfies the following conditions:
C2 If $\neg \varphi \in s_{n}$, then $\mathcal{E}\left(s_{0}, \ldots, s_{n}, \sim \varphi\right)$ is a S-sequence.
C3 If $\Lambda \Phi \in s_{n}$, then $\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)$ is a S-sequence, for every $\varphi \in \Phi$.
C4 If $\bigvee \Phi \in s_{n}$, then there is at least one $\varphi \in \Phi$ such that $\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)$ is a S-sequence.

C5 If $\Delta \varphi \in s_{n}$, then $\left\langle s_{0}, \ldots, s_{n},\{\varphi\}\right\rangle$ is a S-sequence.
C6 If $\square \varphi \in s_{n-1}$, then $\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)$ is a S-sequence.
In C 2 to C 6 it is only required that the new sequences $\mathcal{E}(\ldots)$ are S-sequences. That they are perfect is an immediate consequence of Definition 5.2.

Theorem 5.6 (Model Existence) Let S be an infinitary modal consistency property, and suppose $s \in S$. Then s is satisfiable, that is, there is a pointed model (\mathfrak{A}, a) such that $(\mathfrak{A}, a)=\wedge s$.

Proof: Let \mathcal{X} be the set $\left\{\left\langle 0, i_{0}, i_{1}, \ldots, i_{m-1}\right\rangle \mid m \in \omega \& \forall k<m\left(i_{k} \in \omega \backslash\{0\}\right)\right\}$. The carrier of the model (\mathfrak{A}, a) to be created consists of saturated sets of $\mathcal{M} \mathcal{L}_{\omega_{1}-}$ formulas indexed by elements of \mathcal{X}. The relation $R^{\mathfrak{A}}$ is defined by $R^{\mathfrak{R}} t_{x} t_{y}$ iff there is a $j \in \omega$ with $y=x \circ\langle j\rangle$, and $V^{\mathfrak{2}}\left(p_{n}\right)$ is the set of $t_{x} \in A$ such that $p_{n} \in t_{x}$, for $n \in \omega$. Finally, \mathfrak{A} is tree-like and generated by a, where $s \subseteq a=t_{\langle 0\rangle}$.

The elements of the model will be created inductively in ω stages. Throughout the construction we must take care that on each level n the sets approximating the elements t_{x}, s_{x}^{n} for short, satisfy the following conditions:

E1 For every $x \in \mathcal{X}, s_{x}^{n} \in S$.
E2 $\left\{s_{x}^{n} \mid s_{x}^{n} \neq \emptyset\right\}$ is finite.
E3 If $m \leq n$, then $s_{x}^{m} \subseteq s_{x}^{n}$.
E4 For every $n, j \in \omega$ and $x, y \in \mathcal{X}$: if $s_{y}^{n} \neq \emptyset$ and $y=x \circ\langle j\rangle$, then $\diamond \wedge s_{y}^{n} \in s_{x}^{n}$.
E5 For every $n, k, j \in \omega$ and $x \in \mathcal{X}$: if $s_{x \circ\langle k\rangle}^{n} \neq \emptyset$ and $j<k$, then $s_{x \circ\langle j\rangle}^{n} \neq \emptyset$.
It is easy to see that E1 and E4 imply
E6 If $i_{0}, i_{1}, \ldots, i_{m-1} \in \omega \backslash\{0\}$ and $s_{\left\langle 0, i_{0}, \ldots, i_{m-1}\right\rangle}^{n} \neq \emptyset$, then the sequence $\left\langle s_{\langle 0\rangle}^{n}, s_{\left\langle 0, i_{0}\right\rangle}^{n}, \ldots, s_{\left\langle 0, i_{0}, \ldots, i_{m-1}\right\rangle}^{n}\right\rangle$ is S-perfect.

Let $l_{0}, l_{1}, l_{2}, \ldots$ be an enumeration of the set $\{\langle x, \varphi\rangle \mid x \in \mathcal{X} \& \varphi \in \mathcal{F}(s)\}$ so that each element occurs infinitely often. As $\mathcal{F}(s)$ is countable such an enumeration exists.

For the start of the construction, put $s_{\langle 0\rangle}^{0}:=s$, and $s_{x}^{0}:=\emptyset$ for each $x \neq\langle 0\rangle$. Suppose that the sets s_{x}^{n} have been constructed so as to satisfy E1 to E5. Consider $l_{n}=\langle z, \varphi\rangle$ and let $z=\left\langle 0, i_{0}, \ldots, i_{m-1}\right\rangle$. There are two cases to be distinguished. (i) $\varphi \notin s_{z}^{n}$: put $s_{x}^{n+1}:=s_{x}^{n}$ for each $x \in \mathcal{X}$. (ii) $\varphi \in s_{z}^{n}$: here we have to consider a number of subcases depending on the syntactical shape of φ.
$\varphi \in \mathcal{P}:$ Let $s_{x}^{n+1}:=s_{x}^{n}$ for every $x \in \mathcal{X}$.
$\varphi \doteq \neg \psi:$ Define s_{x}^{n+1} as $\left[\mathcal{E}\left(s_{\langle 0\rangle}^{n}, s_{\left\langle 0, i_{0}\right\rangle}^{n}, \ldots, s_{\left\langle 0, i_{0}, \ldots, i_{m-1}\right\rangle}^{n}, \sim \psi\right)\right]_{0}$, if $x=\langle 0\rangle$, $\left[\mathcal{E}\left(s_{\langle 0\rangle}^{n}, s_{\left\langle 0, i_{0}\right\rangle}^{n}, \ldots, s_{\left\langle 0, i_{0}, \ldots, i_{m-1}\right\rangle}^{n} \sim \psi\right)\right]_{j+1}$, if there is a $j<m$ such that $x=$ $\left\langle 0, i_{0}, \ldots, i_{j}\right\rangle$, and s_{x}^{n} else.

By induction hypothesis $\left\langle s_{\langle 0\rangle}^{n}, s_{\left\langle 0, i_{0}\right\rangle}^{n}, \ldots, s_{\left\langle 0, i_{0}, \ldots, i_{m-1}\right\rangle}^{n}\right\rangle$ is S-perfect. Using C2 (from Definition 5.5) and the induction hypothesis it is easy to see that the new sets s_{x}^{n+1} satisfy E1 to E5.
$\varphi \doteq \bigwedge \Phi:$ If $\Phi \subseteq s_{z}^{n}$, define $s_{x}^{n+1}:=s_{x}^{n}$, for each $x \in \mathcal{X}$; otherwise choose the first element ψ from a fixed wellorder of Φ with $\psi \notin s_{z}^{n}$. The new sets s_{x}^{n+1} are defined similar to the foregoing case, just replace $\sim \psi$ by ψ. To prove E1 to E5 we make use of C 3 and the induction hypothesis.
$\varphi \doteq \bigvee \Phi:$ By C 4 there is a $\psi \in \Phi$ such that $\mathcal{E}\left(s_{\langle 0\rangle}^{n}, s_{\left\langle 0, i_{0}\right\rangle}^{n}, \ldots, s_{\left\langle 0, i_{0}, \ldots, i_{m-1}\right\rangle}^{n}, \psi\right)$ is a S-sequence. The definition of the sets s_{x}^{n+1} can now be overtaken from the conjunction case.
$\varphi \doteq \Delta \psi$: Let k be the smallest $j \in \omega \backslash\{0\}$ with $s_{z o\langle j\rangle}^{n}=\emptyset$. We put $s_{x}^{n+1}:=\{\psi\}$, if $x=z \circ\langle k\rangle$, and $s_{x}^{n+1}:=s_{x}^{n}$ else. The rest is clear.
$\varphi \doteq \square \psi:$ Consider the set $G(z):=\left\{j \in \omega \mid s_{z<\langle j\rangle}^{n} \neq \emptyset\right\}$. Again, we have to make a distinction.
(i) $G(z)=\emptyset$: Put $s_{x}^{n+1}:=s_{x}^{n}$ for each $x \in \mathcal{X}$.
(ii) $G(z) \neq \emptyset$: By induction hypothesis and $\mathrm{E} 2, G(z)$ is finite. Hence, by an application of E5, there is a $k \in \omega \backslash\{0\}$ such that $G(z)=\{1, \ldots, k\}$. Moreover, the induction hypothesis implies for every $j \in G(z)$
$\left.\left(^{*}\right) \quad\left\langle s_{\langle 0\rangle}^{n}\right\rangle, \ldots, s_{z}^{n}, s_{z<\langle j\rangle}^{n}\right\rangle$ is S-perfect.
By induction we define finite sequences σ^{j}, for $1 \leq j \leq k$, as follows:

$$
\begin{aligned}
\sigma^{1} & :=\mathcal{E}\left(s_{\langle 0\rangle}^{n}, s_{\left\langle 0, i_{0}\right\rangle}^{n}, \ldots, s_{z}^{n}, s_{z<\langle 1\rangle}^{n}, \psi\right), \text { and } \\
\sigma^{j} & :=\mathcal{E}\left(\left[\sigma^{j-1}\right]_{0}, \ldots,\left[\sigma^{j-1}\right]_{m}, s_{z<\langle j\rangle}^{n}, \psi\right), \text { for } 1<j \leq k .
\end{aligned}
$$

Finally, we define the new sets s_{x}^{n+1} as

$$
\begin{aligned}
& s_{z \circ\langle j\rangle}^{n} \cup\{\psi\}, \text { if there is a } j \in G(z) \text { with } x=z \circ\langle j\rangle, \\
& {\left[\sigma^{k}\right]_{0}, \text { if } x=\langle 0\rangle,} \\
& {\left[\sigma^{k}\right]_{l+1}, \text { if there is a number } l<m \text { such that } x=\left\langle 0, i_{0}, \ldots, i_{l}\right\rangle, \text { and }} \\
& s_{x}^{n} \text { else. }
\end{aligned}
$$

Using $\left(^{*}\right)$, C 6 and Lemma 5.4 it is easy to verify that the so defined sets s_{x}^{n+1} have all the required features.

Suppose that the construction has been carried out for every $n \in \omega$. To finish the construction we set $t_{x}:=\bigcup_{n \in \omega} s_{x}^{n}$ for each $x \in \mathcal{X}$. Now, the model (\mathfrak{A}, a) can be defined as follows. As A choose the set $\left\{t_{x} \mid t_{x} \neq \emptyset\right\}$. Define $R^{\mathfrak{2}}$ by $R^{\mathfrak{A}} t_{x} t_{y}: \Leftrightarrow \exists j \in \omega(y=x \circ\langle j\rangle)$, and let $V^{\mathfrak{2}}\left(p_{n}\right):=\left\{t_{x} \mid p_{n} \in t_{x}\right\}$ for $n \in \omega$. Finally, put $a:=t_{\langle 0\rangle}$.

The following statement can then be shown by an induction on the degree of $\varphi: \forall \varphi \in \mathcal{F}(s) \forall x \in \mathcal{X}\left(\varphi \in t_{x} \Rightarrow\left(\mathfrak{A}, t_{x}\right) \models \varphi\right)$.

Suppose $d g(\varphi)=0$. Then φ is either atomic or the negation of an atomic formula. In the first case the claim follows by the definition of V^{2}. For the second case let $\varphi \doteq \neg p_{m}$; hence there is a minimal $k \in \omega$ with $\neg p_{m} \in s_{x}^{k}$. As s_{x}^{k} satisfies E1, C1 implies $p_{m} \notin s_{x}^{k}$. Moreover, by the same argument we obtain $p_{m} \notin s_{x}^{n}$ for every $n>k$, hence $p_{m} \notin t_{x}$, hence $\left(\mathfrak{A}, t_{x}\right) \models \varphi$ by the definition of $V^{2 t}$.

If $d g(\varphi)>0$, the argument depends on the form of φ. Suppose $\varphi \doteq \neg \psi$ with $\psi \notin \mathcal{P}$. By construction there is $n \in \omega$ such that $\neg \psi \in s_{x}^{n}$. Consider the smallest $m>n$ with $l_{m}=\langle x, \neg \psi\rangle$. According to the construction we get $\sim \psi \in s_{x}^{m+1}$, hence $\sim \psi \in t_{x}$. Then the induction hypothesis yields $\left(\mathfrak{A}, t_{x}\right) \models \sim \psi$ (note that $d g(\sim \varphi)<d g(\neg \varphi)$), thus ($\left.\mathfrak{A}, t_{x}\right) \models \neg \psi$. For conjunction and disjunction we can reason in a similar way. The case $\varphi \doteq \Delta \psi$ is obvious.

For $\varphi \doteq \square \psi$, assume $R^{\mathfrak{2}} t_{x} t_{y}$. Consider the smallest $m \in \omega$ with $s_{y}^{m} \neq \emptyset$; then choose the smallest $n>m$ such that $l_{n}=\langle x, \square \psi\rangle$. By construction we obtain $\psi \in s_{y}^{n+1}$, hence $\left(\mathfrak{A}, t_{y}\right) \models \psi$ by induction hypothesis. From this we easily conclude $\left(\mathfrak{A}, t_{x}\right)=\square \psi$.

As an instance of the above claim we obtain $\left(\mathfrak{A}, t_{\langle 0\rangle}\right) \models \bigwedge t_{\langle 0\rangle}$ and then $\left(\mathfrak{A}, t_{\langle 0\rangle}\right) \vDash \wedge s$. Consequently, we have shown that each element of an infinitary modal consistency property has a model. This completes the proof of the theorem.

6 Completeness

The main task of this section is to prove that the set U of all countable consistent sets of $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas is a consistency property in the sense of Definition 5.5. From this result (Theorem 6.5) the completeness theorem for $\mathcal{M} \mathcal{L}_{\omega_{1}}$ can easily be derived by an application of Theorem 5.6. In the proof of Theorem 6.5 we make use of a number of little results which concern the derivability of certain formulas in $K_{\omega_{1}}$. For the sake of lucidity we state and prove them as seperate lemmas.

Lemma 6.1 Let $\left\langle s_{0}, \ldots, s_{n}\right\rangle$ be U-perfect, and $\vdash \wedge s_{n} \rightarrow \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n}$. Then for each $i \leq n$ it holds that $\vdash \wedge s_{i} \rightarrow \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{i}$.

Proof: By induction on i we show

$$
\vdash \bigwedge s_{n-i} \rightarrow \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-i}
$$

The case $i=0$ holds by assumption. Suppose that

$$
\vdash \bigwedge s_{n-i} \rightarrow \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-i}
$$

Hence by $R 2$ we get

$$
\vdash \diamond \bigwedge s_{n-i} \rightarrow \diamond \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-i}
$$

Since $\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-(i+1)}$ is defined as $s_{n-(i+1)} \cup\left\{\diamond \wedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-i}\right\}$ and $\diamond \wedge s_{n-i} \in s_{n-(i+1)}$ the desired result follows at once.

Lemma 6.2 Let $\left\langle s_{0}, \ldots, s_{n}\right\rangle$ be a sequence of countable sets of $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas such that $\diamond \bigwedge s_{i+1} \in s_{i}$ for every $i<n$. Suppose there is a $j<n$ such that s_{j} is consistent. Then for every $k>j, s_{k}$ is consistent.

Proof: Assume to the contrary that there is a $k>j$ for which s_{k} is inconsistent; choose k to be minimal. For this k we conclude

$$
\vdash \bigwedge s_{k} \rightarrow \perp
$$

hence, again using $R 2$,

$$
\vdash \diamond \bigwedge s_{k} \rightarrow \diamond \perp
$$

and by assumption on $\left\langle s_{0}, \ldots, s_{n}\right\rangle$

$$
\vdash \bigwedge s_{k-1} \rightarrow \diamond \perp
$$

As $\neg \diamond \perp$ is a theorem of $K_{\omega_{1}}$ the latter contradicts the consistency of s_{k-1}.

Lemma 6.3 Let $s \in U$ and Φ a countable set of $\mathcal{M} \mathcal{L}_{\omega_{1}}$-formulas. Then $s \cup$ $\{\bigvee \Phi\}$ is consistent if and only if there is $a \varphi \in \Phi$ such that $s \cup\{\varphi\}$ is consistent.

Proof: For the direction from left to right we use R3; the other direction is proved by an application of $A 4$.

Lemma 6.4 Let $\left\langle s_{0}, \ldots, s_{n}\right\rangle$ be a U-perfect sequence, and suppose $\bigvee \Phi \in s_{n}$. Then for every $i \leq n$:

$$
\vdash \diamond \bigwedge s_{n-i} \leftrightarrow \bigvee\left\{\diamond \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-i} \mid \varphi \in \Phi\right\}
$$

Proof: For $i=0$ we argue as follows.
\Leftarrow : For every $\varphi \in \Phi$ we get

$$
\vdash \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n} \rightarrow \bigwedge s_{n}
$$

by Definition 5.2. Then R2 yields

$$
\vdash \diamond \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n} \rightarrow \diamond \bigwedge s_{n}
$$

from which we conclude, by R3,

$$
\vdash \bigvee\left\{\diamond \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n} \mid \varphi \in \Phi\right\} \rightarrow \diamond \bigwedge s_{n}
$$

\Rightarrow : Without loss of generality we can assume that there is a ψ such that $\bigwedge s_{n} \doteq \psi \wedge \bigvee \Phi$. By A1 and A4 we first obtain

$$
\vdash \varphi \rightarrow\left(\psi \rightarrow\left(\bigwedge s_{n} \wedge \varphi\right)\right)
$$

and then

$$
\vdash \varphi \rightarrow\left(\psi \rightarrow\left(\bigvee\left\{\bigwedge s_{n} \wedge \varphi \mid \varphi \in \Phi\right\}\right)\right)
$$

for every $\varphi \in \Phi$. Thus R3 implies

$$
\vdash \bigvee \Phi \rightarrow\left(\psi \rightarrow \bigvee\left\{\bigwedge s_{n} \wedge \varphi \mid \varphi \in \Phi\right\}\right)
$$

from which we conclude

$$
\vdash \diamond \bigwedge s_{n} \rightarrow \diamond \bigvee\left\{\bigwedge s_{n} \wedge \varphi \mid \varphi \in \Phi\right\}
$$

by A1 and R2. Finally, an application of A3 leads to

$$
\vdash \diamond \bigwedge s_{n} \rightarrow \bigvee\left\{\diamond\left(\bigwedge s_{n} \wedge \varphi\right) \mid \varphi \in \Phi\right\}
$$

where the latter is nothing but the desired result

$$
\vdash \diamond \bigwedge s_{n} \rightarrow \bigvee\left\{\diamond \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n} \mid \varphi \in \Phi\right\}
$$

For the induction step let $\bigwedge s_{n-(i+1)} \doteq \psi \wedge \diamond \wedge s_{n-i}$; an application of R 2 provides

$$
\vdash \diamond \bigwedge s_{n-(i+1)} \leftrightarrow \diamond\left(\psi \wedge \diamond \bigwedge s_{n-i}\right)
$$

By induction hypothesis it follows that

$$
\vdash \diamond \bigwedge s_{n-(i+1)} \leftrightarrow \diamond\left(\psi \wedge \bigvee\left\{\diamond \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-i} \mid \varphi \in \Phi\right\}\right)
$$

Using A1, A4, R3 and R2 we eventually obtain

$$
\vdash \diamond \bigwedge s_{n-(i+1)} \leftrightarrow \diamond \bigvee\left\{\psi \wedge \diamond \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-i} \mid \varphi \in \Phi\right\}
$$

Together with $\vdash \diamond \wedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-i} \rightarrow \diamond \wedge s_{n-i}$ this implies

$$
\vdash \diamond \bigwedge s_{n-(i+1)} \leftrightarrow \diamond \bigvee\left\{\bigwedge s_{n-(i+1)} \wedge \diamond \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-i} \mid \varphi \in \Phi\right\}
$$

and then, by A3, A4, R2 and R3,

$$
\vdash \diamond \bigwedge s_{n-(i+1)} \leftrightarrow \bigvee\left\{\diamond\left(\bigwedge s_{n-(i+1)} \wedge \diamond \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-i}\right) \mid \varphi \in \Phi\right\}
$$

Taking Definition 5.2 into account we conclude

$$
\vdash \diamond \bigwedge s_{n-(i+1)} \leftrightarrow \bigvee\left\{\diamond \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-(i+1)} \mid \varphi \in \Phi\right\}
$$

which completes the proof.
Theorem 6.5 U is an infinitary modal consistency property.
Proof: We have to show that U satisfies C 0 to C 6 from Definition 5.5. C0 and C 1 are obvious from the Definition of U. For the remaining clauses assume that $\left\langle s_{0}, \ldots, s_{n}\right\rangle$ is U-perfect. In each case it suffices to verify that the items of the respective $\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)$ are consistent.

For C2 we use A2 and Lemma 6.1. C3 is shown by the same lemma and the $K_{\omega_{1}}$-provability of $\Lambda \Phi \rightarrow \varphi$, where the latter follows from A1, A2 and A4. The case C5 is obvious; note that from the inconsistency of φ the inconsistency of $\diamond \varphi$ would follow by R2 and A3. The remaining two cases require a bit more care.

For C 4 suppose $\bigvee \Phi \in s_{n}$. Then Lemma 6.4 implies

$$
\vdash \diamond \bigwedge s_{1} \leftrightarrow \bigvee\left\{\diamond \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{1} \mid \varphi \in \Phi\right\}
$$

As s_{0} is consistent and $\diamond \wedge s_{1} \in s_{0}$, an application of Lemma 6.3 provides a $\varphi \in \Phi$ such that $\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{0}$, that is $s_{0} \cup\left\{\diamond \wedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{1}\right\}$, is consistent. Then Lemma 6.2 ensures the consistency of $\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{i}$ for each $i \leq n$; thus $\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)$ is a U-sequence.

To prove C6 suppose $\square \varphi \in s_{n-1}$. It is easy to see that for every $\psi, \chi \in \mathcal{F}_{\omega_{1}}$

$$
\vdash \diamond \psi \wedge \square \chi \rightarrow \diamond(\psi \wedge \chi)
$$

On the assumption that $\diamond \wedge s_{n} \in s_{n-1}$ and $\square \varphi \in s_{n-1}$ this yields

$$
\vdash \bigwedge s_{n-1} \rightarrow \diamond\left(\bigwedge s_{n} \wedge \varphi\right)
$$

Since $\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-1}$ is defined as $s_{n-1} \cup\left\{\diamond\left(\bigwedge s_{n} \wedge \varphi\right)\right\}$ we obtain

$$
\vdash \bigwedge s_{n-1} \rightarrow \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{n-1}
$$

An application of Lemma 6.1 yields

$$
\vdash \bigwedge s_{i} \rightarrow \bigwedge\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{i}
$$

for each $i<n$. The consistency of $\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{0}$ is then a consequence of the consistency of s_{0}, and this yields, by an application of Lemma 6.2, the consistency of $\left[\mathcal{E}\left(s_{0}, \ldots, s_{n}, \varphi\right)\right]_{i}$ for every $i>0$.

The paper closes with its main result, the completeness theorem for $\mathcal{M} \mathcal{L}_{\omega_{1}}$.

Theorem 6.6 (Completeness) Let $\varphi \in \mathcal{F}_{\omega_{1}}$, then $\models \varphi$ if and only if $\vdash_{K_{\omega_{1}}} \varphi$.
Proof: The soundness part was proved in section 3. The other direction is a straightforward consequence of Theorem 6.5 and Theorem 5.6.

Acknowledgements

The author would like to thank Stefan Iwan, Alexander Kurz and Hans Leiß for helpful comments on an earlier version of this paper.

References

[1] J. Barwise: Admissible Sets and Structures. Springer, Heidelberg 1975.
[2] J. Barwise, L. Moss: Vicious Circles. CSLI Publications, Stanford 1996.
[3] M. Fitting: Model existence theorems for modal and intuitionistic logics, Journal of Symbolic Logic 38 (1973), 613-627.
[4] H.J. Keisler: Model Theory for Infinitary Logic. North-Holland, Amsterdam 1971.
[5] M.E. Nadel: Infinitary intuitionistic logic from a classical point of view, Annals of Mathematical Logic 14 (1978), 159-91.
[6] S. Radev: Infinitary propositional normal modal logic, Studia Logica 46 (1987), 291-309.
[7] H. Sturm: Modale Fragmente von $\mathcal{L}_{\omega \omega}$ und $\mathcal{L}_{\omega_{1} \omega}$, PhD thesis, University of Munich, CIS, Munich 1997.
[8] H. Sturm: Interpolation and preservation in $\mathcal{M} \mathcal{L}_{\omega_{1}}$, Munich 1998, forthcoming.

[^0]: ${ }^{1}$ After we had finished this paper we discovered that completeness for $\mathcal{M} \mathcal{L}_{\omega_{1}}$ had already been proved in an article by S. Radev ([6]). Since we regard our proof as slightly more elegant and our style of presentation as more lucid, we decided to send our paper to the press though.
 ${ }^{2}$ This can be done with the aid of a straightforward adaption of J. van Benthem's standard translation to the infinite; obviously, in the case of $\mathcal{M} \mathcal{L}_{\omega_{1}}$ we get $\mathcal{L}_{\omega_{1} \omega}$ as the target logic.

[^1]: ${ }^{3}$ A set is called countable if it is finite or of cardinality ω. If Φ is the empty set, $\bigwedge \Phi$ is abbreviated by T and $\bigvee \Phi$ by \perp.

[^2]: ${ }^{4}$ Important instances of A3 are: $\diamond(\varphi \vee \psi) \rightarrow \diamond \varphi \vee \diamond \psi$ and $\diamond \perp \rightarrow \perp$.

[^3]: ${ }^{5}$ In fact, we can do a slightly better job. We can ensure that t is negation complete in the following sense: for each φ contained in the fragment generated by s, either $\varphi \in t$ or $\neg \varphi \in t$. However, the reader will notice that even this stronger feature does not help.

[^4]: ${ }^{6}$ With regard to this aspect our method has a precursor in the area of infinitary intuitionistic logic (see [5]).

[^5]: ${ }^{7}$ The official clause C4 in Definition 5.5 looks a bit more constructive: employing the function \mathcal{E}, the extensions s_{i}^{\prime} are defined explicitly.
 ${ }^{8}$ In general, if σ is a finite sequence of length n, and $i<n$, then $[\sigma]_{i}$ denotes the $(i+1)$-th item of σ.

