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Klaus U. SchulzCISUniversit�at M�unchenOettingenstr. 67D-80538 M�unchen, Germanyschulz@cis.uni-muenchen.deJanuary 14, 1999AbstractContext uni�cation is a natural variant of second order uni�ca-tion that represents a generalization of word uni�cation at the sametime. While second order uni�cation is wellknown to be undecidableand word uni�cation is decidable it is currently open if solvability ofcontext equations is decidable. We show that solvability of systems ofcontext equations with two context variables is decidable. The contextvariables may have an arbitrary number of occurrences, and the equa-tions may contain an arbitrary number of individual variables as well.The result holds under the assumption that the �rst order backgroundsignature is �nite.1 IntroductionA ground context is a ground term with exactly one occurrence of a spe-cial constant that represents a missing argument. Ground contexts can beapplied to ground terms, which results in a replacement of the special con-stant by the given ground term. Similarly ground contexts can be appliedto ground contexts. From this perspective, a ground term can be consideredto be composed of ground contexts and ground terms in di�erent ways.Context uni�cation speaks about this form of composition. Given a �rst-order signature, a set of individual variables and a set of so-called context1



variables, context terms are built like �rst order terms with additional con-text variables. Syntactically, context variables are treated like unary func-tion symbols. A context equation is an equation between context terms.A solution of a context equation is a substitution that maps both sides ofthe equation to identical ground terms, where substitutions are mappingsthat assign ground contexts over the given �rst order signature to contextvariables. The main result of this paper is the followingTheorem 1.1 (Main Theorem) Solvability of �nite systems of contextequations with two context variables is decidable.Both context variables may have an arbitrary number of occurrences, andthe equations may contain an arbitrary number of individual variables aswell. The result holds under the assumption that the �rst order backgroundsignature is �nite. The paper provides a partial solution to the ContextUni�cation Problem that has recently attracted considerable attention [3, 4,13, 29, 18, 19, 24]:Is solvability of arbitrary context equations decidable?The interest in this problem relies on its close connection to several otherwell-studied decision problems.Context uni�cation represents a natural variant of second order uni�ca-tion, which is known to be undecidable ([8, 6, 14]). Ground contexts|thesubstitution instances of context variables|can be considered as �-termswith exactly one occurrence of a single �-bound variable.1 Second orderuni�cation is di�erent in two respects: �rst, substitution instances of secondorder variables may have an arbitrary number of �-bound variables (de-pending on the arity of the variable). Second, there is no limitation on thenumber of occurrences of a given bound variable in the substitution term,and in particular this number may be zero. This second property makesan important di�erence to context uni�cation. A recent result [23] showsthat second order uni�cation becomes decidable if an upper bound on thenumber of occurrences of a given bound variable in the substitution term is�xed. If context uni�cation would turn out to be decidable, the latter resultwould be a simple consequence. It is known that second order uni�cationis undecidable even for problems with one second order variable only [7].Hence our results show that with respect to decidable fragments there is1In other formulations of context uni�cation, instances of second order variables mayhave an arbitrary number of bound variables, each having exactly one occurrence.2



at least some signi�cant di�erence between context uni�cation and secondorder uni�cation.Context uni�cation can also be considered as a generalization of worduni�cation [15, 1, 11, 25, 26, 12, 5]. Decidability of word uni�cation had beenan open problem for many years. The problem was raised by A. A. Markovin the late 1950's who hoped to prove the undecidability of Hilbert's tenthproblem by showing undecidability of the word uni�cation problem. Inthis context, Y. Matiyasevich [17] gave a simple decision procedure forword uni�cation problems where each variable occurs at most twice. Later,J.I. Hmelevskii (see [10]) proved decidability of word uni�cation for problemswith two and three variables with an arbitrary number of occurrences. Inhis famous paper [15], G. S. Makanin then fully solved the problem, showingthat solvability of arbitrary word equations is decidable.In [25] Makanin's result was generalized in the following way: given aword equation W1 = W2 with variables in fX1; : : : ;Xng and constants inthe �nite alphabet C, and given regular languages L1; : : : ;Ln over C, it isdecidable if there exists a solution S of W1 = W2 where S(Xi) 2 Li, fori = 1; : : : ; n. This result will be used here to prove the Main Theorem.An important role of Makanin's result or its extension in [25] is thefollowing. Given a new decision problem P, a reduction of P to word uni-�cation (with regular constraints) shows that P is decidable. Conversely areduction of word uni�cation to P shows that the problem is hard. See [5, 9]for various applications of this technique. On this background it seems clearthat a positive decidability result for context uni�cation would have manyinteresting consequences. From a practical point of view, context uni�cationis used as a formalism for semantic analysis of natural language utterances[18, 19]. It also occurs in the context of distributive uni�cation [22] andcompletion of rewrite systems with membership constraints [3, 4].Some partial results concerning context uni�cation are the following.J. Levy [13] has shown that solvability of context uni�cation problems whereeach variable occurs at most twice is decidable. In [21] there is an algo-rithm and a sketch of a proof showing that solvability of so-called strati�edcontext uni�cation problems is decidable; a complete proof for a restrictedsignature is published in [22]. Strati�cation imposes strong restrictions onthe nesting of context variables. In [24] the authors have given an upperbound on the so-called exponent of periodicity of a minimal solution of acontext equation. In the case of word equations a similar bound was akey ingredient of Makanin's decidability result. J. Niehren, M. Pinkal andP. Ruhrberg [18] showed that context uni�cation and so-called \equality3



up-to constraints" are equally expressive. It is also shown there that one-step rewriting constraints can be expressed by strati�ed context uni�cationproblems. Recently, it was noticed [20] that the converse is also true, whichshows that strati�ed context uni�cation and one-step rewriting constraintsare interreducible. It was also noticed in [18] that the �rst-order theory ofcontext uni�cation is undecidable, using the fact that the �rst-order theoryof one-step rewriting is undecidable [27, 28, 16]. This result was improvedby S. Vorobyov [29] who showed that the 898 equational theory of contextuni�cation is co-recursively enumerable hard.The proof of Theorem 1.1 uses a series of four non-deterministic trans-lation steps. First we restrict considerations to single context equations.Eventually, a given context equation with two context variables is translatedinto a �nite set of systems of word equations with so-called linear constantrestrictions. Linear constant restrictions [2] represent a special type of theregular constraints described above.1. In the �rst translation step, which will be described in Section 4, agiven context equation is non-deterministically transformed into a so-called generalized context problem. Such a problem essentially gives apartial description of a ground term that represents a (hypothetical)solution of the given equation.2. In the second step (Section 5), this description is slightly extended byguessing the function symbols at so-called branching points of contextvariables.3. Whereas the �rst two translation steps work for an arbitrary numberof context variables, the third translation step in Section 6 is muchmore delicate. Here some subparts of the given generalized contextproblem have to be identi�ed, and as a result we may obtain othersubparts that are again subject to identi�cation. In general it seemsat least very di�cult to �nd a strategy for identi�cation that canguarantee termination. However, in the case of two context variablesa special failure condition can be used that solves this problem. Therather technical correctness proof for the third translation is given inthe Appendix.4. In Section 7 �nally the resulting problems are translated into systemsof word equations with linear constant restriction. This last translationagain does not depend on the number of context variables.4



In Section 8 we combine the results for the single translation steps and proveTheorem 1.1, �rst for the case of a single context equation. We show howto extend the decision procedure to �nite systems of context equations. Awhole bunch of technical notions that is needed will be given in the followingsection.2 Formal PreliminariesThroughout this paper, � denotes a �nite signature of function symbolshaving at least one constant. With ar(f) we denote the arity of the functionsymbol f 2 �. Besides the symbols from �, a special constant \
" thatdoes not belong to � will be used. With �
 := � [ f
g we denote theextended signature where 
 is treated as a constant.V denotes an in�nite set of context variables X;Y;Z; : : :. We shall alsouse individual variables x; y; z; : : :, and X denotes the set of individual vari-ables.2.1 Notions based on term representationWe �rst give syntax and semantics of context uni�cation. To begin with,ground terms over � and (occurrences of) subterms are de�ned as usual.De�nition 2.1 A ground context is a ground �
-term t that has exactlyone occurrence of the constant 
, called the \hole" of t. With a subterm ofa ground context t we always mean a �-subterm of t. The ground context
 is called the empty ground context.Given a ground context s and a ground term/context t we write st for theground term/context that is obtained from s when we replace the occurrenceof 
 in s by t. Note that this form of composition is associative.De�nition 2.2 The set of context terms over �, X and V is inductivelyde�ned as follows:� each constant a 2 � is a context term,� each individual variable x 2 X is a context term,� if t1; : : : ; tn are context terms and f 2 � is n-ary, then f(t1; : : : ; tn)is a context term,� if t is a context term and X 2 V, then X(t) is a context term.5



A context equation is an equation of the form s = t where s and t are contextterms.De�nition 2.3 A substitution is a mapping S that assigns a ground contextS(X) to each X 2 V, and a ground term S(x) to each x 2 X . The mappingS is extended to arbitrary context terms as follows� S(a) := a for each constant a 2 �,� S(f(t1; : : : ; tn) := f(S(t1); : : : ; S(tn)) for n-ary f 2 �,� S(X(t)) := S(X)S(t) for X 2 V.A substitution S is a solution of the context equation s = t if S(s) = S(t).Example 2.4 Let � := ff; g; ag where f is binary, g is unary, and ais a constant. The context equation X(X(a)) = f(Y (f(Y (a); Z(a))); x)is solved by the substitution X 7! f(g(
); g(g(a))), Y 7! g(
), Z 7!g(g(
)); x 7! g(g(a)) since under this substitution both sides are mapped tof(g(f(g(a); g(g(a)))); g(g(a))).De�nition 2.5 A solution S of the context equation s = t is positive i�S maps each context variable appearing in s = t to a non-empty groundcontext.Clearly, in order to decide solvability of a given context equation s = t itsu�ces to have a procedure for deciding positive solvability: we may simplyguess which context variables are instantiated by the empty ground contextand instantiate these variables by 
 in the equation s = t. In the sequel,with a solution of a context equation we always mean a positive solution.De�nition 2.6 The ground context s is a subcontext of the ground term ti� there exists a ground term t1 and a ground context r such that t = rst1.Note that in this situation the root of the given occurrence of t1 marks theposition of the (�lled) hole of s. In this sense we can talk about the positionof the hole of an occurrence of a ground subcontext, regardless of the factthat the ground term t does not have any occurrence of the constant 
.De�nition 2.7 The ground context s is a su�x of the ground context t i�t can be represented in the form t = rs, for some ground context r.6



De�nition 2.8 Let t be a ground context. The main path of t is the pathfrom the root to 
. The side area of t is the set of all nodes that do notbelong to the main path.Following the remarks above we shall also talk about the main path/sidearea of a given occurrence of a ground context as a subcontext of a groundterm. The following de�nition yields the basis for the correspondence be-tween ground contexts and words that we shall use in Section 7 for the �naltranslaton step.De�nition 2.9 A ground context C is a letter i� the hole of C is in depth1. For each ground context C with hole in depth k there exists a uniquesequence of letters C1; : : : ; Ck such that C = C1 � � �Ck. The elementsC1; : : : ; Ck are called the letters of C.Let us �x some notational convention for the rest of the paper. With aground term we always mean a ground �-term if not mentioned otherwise.Ground terms and ground contexts will be denoted with letters t; r; s. Whenwe �x a particular occurrence of a ground term/context in a given groundterm/context we use expressions with superscripts like t(i); r(j) etc. Thesame convention will be used for other expressions.2.2 Notions based on tree representationDe�nition 2.10 A tree domain is a �nite, non-empty set N of sequencesof positive natural numbers of length n � 0 such that1. N is rooted, i.e., there exists an element � 2 N such that � is a pre�xof each element of N ,2. �1 2 N and �1 � �2 in N implies �1 � �3 2 N , for all pre�xes �3 of �2.The elements of N are called nodes. If the node � is a proper pre�x of �0,then �0 is called a descendant of �, and � is an ancestor of �0. If the lengthof �0 is the length of � plus 1, then �0 is a child of �. A node is a leaf ifit does not have any child, otherwise it is an inner node. A node of N isbranching if it has at least two distinct children in N . Two nodes �1 and �2are incompatible if neither �1 is a pre�x of �2 nor vice versa.De�nition 2.11 A subtree domain of a tree domain N is a subset N 0 of Nthat is a tree domain. 7



The preorder relationship on a tree domain is the strict linear orderwhere nodes are enumerated using the following recursive traversal order:to traverse a given subtree domain, �rst traverse the �rst (second,...) imme-diate subtree domain, and then visit the root. This relation extends bothancestor relationship and the left-to-right ordering.De�nition 2.12 Let N be a tree domain. A �eld of N is a sequence ofnodes ' = (�0; : : : ; �k) (k � 1) such that �i+1 is a child of �i, for 0 � i � k�1.Node �0 (�k) is the initial (resp. �nal) node of the �eld, the number k isthe length of the �eld. The side area of (�0; : : : ; �k) is the set of all nodesof N that are descendants of one of the nodes �0; : : : ; �k�1, but neither inf�0; : : : ; �kg nor in the set of descendants of �k. Fields of length 1 are calledatomic. Two �elds of N are branching if they have a common node and if the�nal nodes are incompatible. The maximal common pre�x of the �nal nodesis called the branching point of the two �elds. Let �1 and �2 be incompatiblenodes. The maximal common pre�x of �1 and �2 is denoted MCPN (�1; �2).De�nition 2.13 A labeled tree domain is a pair (N;Lab) where N is a treedomain and Lab : N ! � is a partial function such that Lab(�) = f 2 �implies that � has exactly k := ar(f) children of the form � � h1i; : : : ; � � hki.Note that each ground term in a natural way represents a labeled treedomain with a total labeling function. In the sequel, we do not distinguishbetween these two notions. We shall also treat ground contexts as totallylabeled tree domains (N;Lab) where Lab : N ! �
.De�nition 2.14 If ' = (�0; : : : ; �k) is a �eld of the ground term t, then 'together with its side area de�nes a unique non-empty ground subcontexts of t. The root of s is given by �0, and �k marks the position of the hole.This subcontext is called the ground subcontext of t with main path '.If F : N1 ! N2 is a mapping between two labeled tree domains(N1;Lab1) and (N2;Lab2), we say that F respects branching points ifF (MCPN1(�1; �2)) = MCPN2(F (�1); F (�2)) for all incompatible nodes �1; �2of N1. We say that F respects children relationship for labeled nodes if eachchild of a labeled node � 2 N1 is mapped to a child of F (�) under F .De�nition 2.15 Let (N1;Lab1) and (N2;Lab2) be labeled tree domains.An injective mapping F : N1 ! N2 is a labeled tree embedding i� F re-spects root, �-labels, preorder relationship, branching points, and childrenrelationship for labeled nodes. 8



If ' = (�0; : : : ; �k) is a �eld of N1 we write F (') or F (�0; : : : ; �k) for thesub�eld of N2 with initial (resp. �nal) node F (�0) (resp. F (�k)). Note thatF respects branching points i� F (�) is the branching point of F ('1); F ('2),for all branching �elds '1 and '2 of N1 with branching point �.3 Generalized Context ProblemsWe may now de�ne the central data structure of the translation steps to bedescribed later.De�nition 3.1 A generalized context problem over the signature � is atuple T = hN;Lab;CB;Field; IB;Nodei where1. (N;Lab) is a labeled tree domain.2. CB is a �nite set. The elements of CB are called context bases. Eachcontext base has a unique type. The type of a context base is a contextvariable. Context bases are written in the form cb, or in the morespeci�c form X(i) where i is a natural number and X is the type.3. Field is a function that assigns to each context base cb 2 CB a �eldField(cb) of N .4. IB is a �nite set. The elements of IB are called individual bases. Eachindividual base has a unique type, which is an individual variable.Individual bases are written in the form ib, or in the more speci�cform x(i) where i is a natural number and x is the type.5. Node : IB ! N is a total function.The following conditions have to be satis�ed:6. each child of an unlabeled node of T is a non-initial node of the �eldof a base of T ,7. each leaf � of N is either labeled with an individual constant in � orthere exists an individual base ib 2 IB with Node(ib) = �.T is called �rst order if CB and Field are empty.
9



See Example 3.3 for a graphical representation of a generalized context prob-lem. If T is �rst order, each inner node of T is labeled, by Condition 6. Inthis case T can be considered as a �rst order term where in addition nodesmay be decorated with individual variables. More general, given the notionof a solution as introduced below, Condition 6 ensures that the values of thebases uniquely determine the solution.Since in a generalized context problem T each context base has a unique�eld we may also refer to the �nal (resp. initial) node, and similarly tothe side area of a given context base. Two context bases are branching iftheir �elds are branching. The branching point of the �elds is also calledthe branching point of the two context bases. A context base cb is atomicif Field(cb) is atomic. A context base cb1 is a subbase of cb2 if Field(cb1) isa sub�eld of Field(cb2).De�nition 3.2 Let T = hN;Lab;CB;Field; IB;Nodei be a generalized con-text problem. A solution of T is a pair (t; S) where t is a ground term andS is a labeled tree embedding from N to the set of nodes of t such that thefollowing conditions hold:1. for all context bases X(i) and X(j) of the same type X of T the groundsubcontexts of t with main paths S(Field(X(i))) and S(Field(X(j)))respectively are identical, and2. for all individual bases x(i) and x(j) of the same type x of T the groundsubterms of t with roots S(Node(x(i))) and S(Node(x(j))) respectivelyare identical.If (t; S) is a solution of T and � is a node of T we write Ŝ(�) for the subtermof t with root S(�). If ' is a �eld of T we write Ŝ(') for the groundsubcontext of t with main path S('). If X(i) is a context base of T we writeŜ(X(i)) for Ŝ(Field(X(i))). Since all context bases of type X are mapped tothe same ground context we also write Ŝ(X) instead of Ŝ(X(i)). Similary,if x(i) is an individual base of T we write Ŝ(x(i)) for the ground subtermŜ(Node(x(i))) and we write Ŝ(x) instead of Ŝ(x(i)).Example 3.3 The following �gure represents a generalized context problemT and the solution term t of a solution (t; S). The grey areas represent theground contexts Ŝ(X) = Ŝ(X(1)) = � � � = Ŝ(X(4)).10
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Remark 3.4 Let � be a labeled node of the generalized context problemT , and let �1; : : : ; �n be the children of �. If (t; S) is a solution of T , thenŜ(�1); : : : ; Ŝ(�n) is the sequence of the maximal subterms of Ŝ(�).Remark 3.5 Let � be an unlabeled node of the generalized context problemT , and let �1 and �2 be two distinct children of �. If (t; S) is a solution ofT , then S(�) is the branching point of the �elds S(�; �1) and S(�; �2) in tsince S respects branching points. This shows that the number of childrenof � in T cannot exceed the arity of the label of S(�).The following de�nition introduces a concept that will become centrallater.De�nition 3.6 Let T = hN;Lab;CB;Field; IB;Nodei be a generalized con-text problem. An atomic sub�eld (�; �0) of the �eld of a base cb 2 CB, withlabeled node �, is called a letter description of T (or of cb) with main node� and label Lab(�). If �0 is the i-th child of �, then (�; �0) has direction i.We use symbols L;L1 etc. to denote letter descriptions. With ld(T ) wedenote the set of all letter descriptions of T . Note that if (t; S) is a solutionof T and L is a letter description of the context base cb of T , then theground subcontext Ŝ(L) is a subletter of Ŝ(cb). This follows easily from thefact that S preserves children of labeled nodes.
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4 Translation of context equations into general-ized context problemsIn this section we de�ne the notion of a superposition of two generalized con-text problems and use it for translating context equations into generalizedcontext problems.De�nition 4.1 Let T1 = hN1;Lab1;CB1;Field1; IB1;Node1i and T =hN;Lab;CB;Field; IB;Nodei be generalized context problems. An embed-ding of T1 in T is a labeled tree embedding F : N1 ! N such that1. each �eld of a context base of type X of T1 is mapped to the �eld ofa context base of the same of type X of T under F , for all X 2 V,2. each node of an individual base of type x of T1 is mapped to the nodeof an individual base of the same type x of T under F , for all x 2 X .Lemma 4.2 If there exists an embedding F of T1 in T , and if (t; S) is asolution of T , then (t; F � S) is a solution of T1.Proof. Obvious.De�nition 4.3 Let n � 2. The generalized context problem T is a super-position of the generalized context problems T1; : : : ; Tn i� for i = 1; : : : ; nthere are embeddings Fi of Ti in T such that the following conditions hold:1. For each context base X(r) of T there exists i 2 f1; : : : ; ng and acontext base X(s) of the same type of Ti such that Field(X(r)) =Fi(Fieldi(X(s))),2. For each individual base x(r) of T there exists i 2 f1; : : : ; ng and anindividual base x(s) of the same type of Ti such that Node(x(r)) =Fi(Nodei(x(s))),3. For each node � of T either there exists i 2 f1; : : : ; ng and a node�0 of Ti such that � = Fi(�0), or there are two distinct indices i; j 2f1; : : : ; ng and bases cb1 2 CBi and cb2 2 CBj such that the imagesof cb1 and cb2 in T branch at �.4. Modulo renaming of exponents, the set of context (individual) bases ofT is the union of the sets of context (individual) bases of the problemsT1; : : : ; Tn. 12



It should be noted that the nodes of individual bases are not necessarilyleaves.Lemma 4.4 For i = 1; : : : ; n, let Ti = hNi;Labi;CBi;Fieldi; IBi;Nodeii bea generalized context problem.1. The set of all superpositions of T1; : : : ; Tn is (modulo renaming ofnodes/exponents) �nite.2. If, for some ground term t, each Ti (1 � i � n) has a solution of theform (t; Si) where the embeddings Si assign the same ground context(resp. term) to context (individual) bases of the same type, then thereexists a superposition T of T1; : : : ; Tn with a solution of the form (t; S)where S(Si(�)) = Si(�) for all nodes � of Ti (1 � i � n).Proof. 1. The �rst statement is an obvious consequence of De�nition 4.3.2. For i = 1; : : : ; n, let (t; Si) be a solution of Ti where the solutionsSi assign the same ground context (term) to context (individual) bases ofthe same type. Call a node � of t relevant if it has the form Si(�0) for some�0 2 Ni (i 2 f1; : : : ; ng), or if there exist distinct indices i; j 2 f1; : : : ; ng andcontext bases cb1 2 CBi and cb2 2 CBj such that the �elds Si(Fieldi(cb1))and Sj(Fieldj(cb2)) branch at �. Note that the root of t is relevant. Let Ndenote the set of relevant nodes of t. Let Lab denote the labeling functionwhere exactly the nodes �0 2 N are labeled that have the form Si(�0) forsome labeled node �0 2 Ni (i 2 f1; : : : ; ng), and where Lab(�) := Labi(�0).Since the mappings Si are solutions it follows that Lab coincides with thenatural labeling of the nodes of the ground term t which in particular impliesthat Lab is well de�ned. Now introduce a set of context (individual) bases,CB (resp. IB), and a function Field (resp. Node) as follows: for each baseX(r) (resp. x(r)) of Ti (i 2 f1; : : : ; ng), CB (resp. IB) contains a base oftype X (resp. x) with �eld Si(Fieldi(X(r))) (resp. node Si(Nodei(x(r)))).It is obvious that T := hN;Lab;CB;Field; IB;Nodei is a superpositionof T1; : : : ; Tn where the mappings Si represent the embeddings (1 � i � n).We show that (t; IdN ) (where IdN is the identity mapping on N) represents asolution of T . Obviously IdN respects root, �-labels, preorder relationship,and children relationship for labeled nodes.In order to show that IdN preserves branching points it su�ces toshow that for two incompatible relevant nodes �1 and �2 of N always� := MCP(�1; �2) is again relevant. We may assume that none of the nodesbetween � and �1 (resp. �2) is relevant. We distinguish two cases.13



Case 1: there exists an index i 2 f1; : : : ; ng and nodes �01; �02 2 Ti suchthat �j = Si(�0j) for j = 1; 2. Since Si preserves branching points it followsthat � = MCPt(�1; �2) = Si(MCPN1(�01; �02)) is relevant.Case 2: In the remaining case there exist distinct indices i; j 2 f1; : : : ; ngand nodes �01 2 Ni and �02 2 Nj such that �1 = Si(�01) and �2 = Sj(�02). Weconsider the parents �001 and �002 of the nodes �01 and �02 respectively. Firstassume that one of these nodes, say, �001 , is labeled. Because S1 preserveschildren relationship of labeled nodes, then the father of �1 is labeled andrelevant. Our assumptions imply that it coincides with � and we are done.In the second case both �001 and �002 are unlabeled. Hence, by Condition 6of De�nition 3.1 there exist context bases cb1 2 CBi and cb2 2 CBj suchthat Fieldi(cb1) contains �001 and �01 and Fieldj(cb2) contains �002 and �02. Theimage of Fieldi(cb1) under Si contains �1 and the image of Fieldj(cb2) underSj contains �2. Moreover, our assumptions on relevance of nodes imply thatboth image �elds also contain �. It follows that the �elds Si(Fieldi(cb1))and Sj(Fieldj(cb2)) branch at �, which implies that � is relevant.Summing up, we have seen that IdN is a labeled tree embedding. If X(r)and X(s) are two context bases of T , with �elds 'r and 's, say, then thereexist bases X(r0) and X(s0) of problems Ti and Tj with �elds 'r0 and 's0such that Si('r0) = 'r and Sj('s0) = 's. Let 'r00 and 's00 denote the �eldsof t that represent the images of 'r0 (resp. 's0) under Si (resp. Sj). Ourassumptions on Si and Sj show that the two ground subcontexts of t withmain paths 'r00 and 's00 coincide. On the other hand, by construction, the�elds 'r00 and 's00 of t represent the images of 'r and 's under IdN . Hencewe have ^IdN (X(r)) = ^IdN (X(s)).In the same way it follows that ^IdN (x(r)) = ^IdN (x(s)) for all individualbases x(r) and x(s) of the same type of T . It follows that (t; IdN ) is in facta solution of T . Obviously we have IdN (Si(�)) = Si(�) for all nodes � of Ti(1 � i � n).De�nition 4.5 For i = 1; : : : ; n, let Ti = hNi;Labi;CBi;Fieldi; IBi;Nodeiibe a generalized context problem. Assume that each Ti (1 � i � n) hasa solution of the form (t; Si) where the Si assign the same ground context(term) to context (individual) bases of the same type. The superpositionT of T1; : : : ; Tn described in Part 3 of the previous proof will be called thesuperposition given by the joint image of T1; : : : ; Tn in t under S1; : : : ; Sn,and S := IdN is the canonical solution of T extending S1; : : : ; Sn.14



The following translation lemma makes use of the fact that each con-text term t represents in a natural way a generalized context problem,T := (Nt;Labt;CBt;Fieldt; IBt;Nodet), where Nt (Labt) is the set of po-sitions (resp. labeling function) of the term t, where CBt (res. IBt) is givenby the set of all occurrences of context (resp. individual) variables in t,where Fieldt(X(i)) has as its initial (resp. �nal) node the position of thei-th occurrence of X in t (resp. the position of the head symbol of its ar-gument term), and where Node(x(i)) is the position of the i-th occurrenceof x in t. Note that (Nt;Labt;CBt;Fieldt; IBt;Nodet) is trivially solvablein the sense that each assignment of non-empty ground contexts (groundterms) to the context variables (individual variables) in t de�nes a solutionof (Nt;Labt;CBt;Fieldt; IBt;Nodet).Lemma 4.6 (Transl1) For each context equation E it is possible to com-pute a �nite set T of generalized context problems such that E has a solutioni� some T 2 T has a solution. If E has occurrences of k context variablesonly, the same holds for the problems in T .Proof. Consider a context equation t1 := t2. As described above, eachof the context terms ti can be considered as a trivially solvable generalizedcontext problem Ti. Let T denote the set of superpositons of T1 and T2.If t1 := t2 has a solution2, then T1 and T2 have solutions (t; S1) and (t; S2)that satisfy the conditions given in Lemma 4.4. The lemma shows that anelement of T has a solution. If some member T of T has a solution, thenit follows from Lemma 4.2 that T1 and T2 have solutions of the form (t; S1)and (t; S2) respectively where S1 and S2 assign the same ground context tocontext (resp. individual) variables of the same type. It follows that t1 := t2has a solution.5 Transparent generalized context problemsIn this section we describe a simple translation that assigns to a given gen-eralized context problem T a �nite set of generalized context problems T 0where the branching points of bases are always labeled nodes. Given an un-labeled branching point, we essentially just guess the label of the branchingpoint. Here it is essential that the given �rst-order signature � is �nite.2Recall that with a solution of a context equation we always mean a positive solution.15



De�nition 5.1 A generalized context problem T is transparent i� eachbranching point of two bases of T is always labeled.The following simple observation will be used in the correctness proof ofthe �nal translation into word equations with linear constant restriction inSection 7.Lemma 5.2 Let T be a transparent generalized context problem. Each un-labeled inner node of T has exactly one child.Proof. Let � be an unlabeled inner node of the transparent generalizedcontext problem T . By transparency, � cannot be a branching point of twobases of T . Part 6 of De�nition 3.1 shows that � has exactly one child.We may now give the translation procedure.De�nition 5.3 [Procedure (Transl2)] The input of this procedure is ageneralized context problem T . If there exists a branching point � of twobases of T that is unlabeled, with children �1; : : : ; �m, say, then1. non-deterministically choose a function symbol f 2 �, of arity n � m,and label � with f ,2. introduce n new children in the left-to-right order �01; : : : ; �0n.3. Now each old child �i is nondeterministically either identi�ed withsome new child �0j, or appended as the unique child of �0j. In this step,distinct new children �0j are used for distinct old children �i, and theleft-to-right ordering is respected.4. Each new child �0j that is not used in the previous step representsa leaf. We introduce an individual base ib of new type and de�neNode(ib) = �0j . We always use distinct types x 2 X for individualbases of distinct leaves.5. Repeat Steps 1-4 until all branching nodes are labeled.6. Update the �eld function accordingly.The output of the procedure consists of the set T of all generalized contextproblems that are reached by suitable choices in the nondeterministic steps.16



De�nition 5.4 Let L = (�; �0) be a letter description of the generalizedcontext problem T with label f of arity n. The n� 1 children of � that aredi�erent from �0 are called the top side nodes of L. We write h�1; : : : ; �n�1i =tsn(L) if �1; : : : ; �n�1 is the sequence of all top side nodes of L in the naturalleft-to-right ordering. In this situation, �i is called the i-th top side node ofL. A node � is called a top side node of T if � is a top side node of a letterdescription of T . With tsn(T ) we denote the set of all top side nodes of T .If L and L0 are two letter descriptions with the same label and direction,and if � (resp. �0) is the i-th top side node of L (resp. L0), then � and �0are called corresponding top side nodes of L and L0.Lemma 5.5 ((Transl2)) Assume that (Transl2) generates the output setT , given the generalized context problem T as input. Then1. T is (modulo renaming of new individual bases) �nite,2. each element of T is a transparent generalized context problem. If Thas only context bases of k types, then the same holds for the general-ized context problems in T .3. if T has a solution, then some T 0 2 T has a solution,4. if some T 0 2 T has a solution, then T is solvable.Proof. 1. Part 1 is obvious. 2. Let T 0 2 T . In order to show thatT 0 is a generalized context problem we verify that T 0 satis�es Condition 6of De�nition 3.1. All other conditions are trivially satis�ed. Consider anew child �0j. If �0j represents an unlabeled node of the new problem, theneither �0j is identi�ed with an unlabeled child �i, or �0j has exactly one childthat represents an old child �i. In the �rst case it follows that �0j and itschildren satisfy Condition 6 of De�nition 3.1. In the second case note that�i, as a child of the unlabeled node �, is a non-initial node of some base ofT . It follows again that �0j and his unique child �i satisfy Condition 6 ofDe�nition 3.1. It follows from Part 3 of (Transl2) that the procedure doesnot introduce new branching points. Hence T 0 is transparent. Obviously, ifT has only context bases of two types, then the same holds for the generalizedcontext problems in T .3. Let (t; S) be a solution of T . Consider a branching point � of twobases of T that is unlabeled. If �i and �j are two distinct children of �, thenthe largest common pre�x of S(�i) and S(�j) in t is MCPt(S(�i); S(�j)) =S(MCPT (�i; �j)) = S(�). If follows easily that for one of the problems T 017



generated by (Transl2) there exists an embedding S0 such that (t; S0) solvesT 0. 4. Part 4 follows from the fact that for each of the new problems T 0there exist an embedding of T in T 0, using Lemma 4.2.6 Identi�cation of letter descriptionsWe now come to the most di�cult translation step. The basic idea is verysimple. We want to guess which letter descriptions of a given transparentgeneralized context problem T are mapped to the same ground letter undera given (hypothetical) solution of T , and we want to identify these letterdescriptions. We shall proceed in an indirect way and guess (roughly) whichtop side nodes of T are mapped to identical ground terms. The subtrees ofthese top side nodes are replaced by a common superposition, which meansthat each solution of the new problem will always map these subtrees to thesame ground term. If for given letter descriptions L1 and L2 of the newproblem each pair of corresponding top side nodes is identi�ed in this sense,this also means that L1 and L2 are mapped to the same ground letter underany solution.Given this simple idea, there are essentially two complications. First,a closer look at the technical details shows that we cannot simultaneouslytreat all equivalence classes of top side nodes that we would like to identify.The di�culty arises from the fact that a letter description may be part ofthe side area of another letter description. We proceed in an iterative way,identifying top side nodes in \top-down" manner.Second, when we superimpose the subtrees of two given top side nodeswe may obtain new branching points of bases in the superposition, whichmeans that we may produce new letter descriptions and new top side nodesat such a step. As long as we do not restrict the number of context variables(i.e., the number of types of context bases), we see no way to guaranteetermination. For this reason we consider input problems that only havecontext bases of two types. In this case, termination can be enforced.The procedure will also identify the subtrees of all nodes that representthe image of the same individual variable.Before we can give the algorithm, several concepts are needed. The �rstnotion explains when two generalized context problems can be consideredto be essentially identical. 18



De�nition 6.1 For i = 1; 2, let Ti = hNi;Labi;CBi;Fieldi; IBi;Nodeii bea generalized context problem. T1 and T2 are strictly isomorphic i� thereexists a bijection F : N1 ! N2 such that F is an embedding (cf. Def. 4.1)of T1 in T2 and F�1 is an embedding of T2 in T1. Each pair of the form(�; F (�)) (� 2 N1) is called a pair of corresponding nodes of T1 and T2.The following de�nition formalizes the concept of the subproblem of ageneralized context problem T given by a particular node of T .De�nition 6.2 Let � be a node of the generalized context problem T =hN;Lab;CB;Field; IB;Nodei. The subproblem of T de�ned by � is the gen-eralized context problem T � = hN�;Lab�;CB�;Field�; IB�;Node�i with thefollowing components: N� is the set of descendants of �, together with �.Lab� is the restriction of Lab to N�. Let cb be a context base of CB suchthat jField(cb) \ N�j � 2. If Field(cb) � N�, then cb is a context baseof CB� with the same �eld and type as in T . If Field(cb) 6� N� we intro-duce a \placeholder" base cb0 with �eld Field�(cb0) := Field(cb) \ N� inCB� that represents the su�x Field(cb) \ N� of cb. The context base cb0receives a new context variable as its type. For each individual base ib ofT with Node(ib) 2 N� the set IB� inherits a base ib of the same type withNode�(ib) := Node(ib).De�nition 6.3 A transparent generalized context problem T is marked i�for every atomic sub�eld ' of the �eld of a context base of T there exist acontext base cb of T such that Field(cb) = '.The following lemma clari�es the role of markedness.Lemma 6.4 Let �1 and �2 be two nodes of the generalized context problemT with solution (t; S). If T is marked and if the problems T �1 and T �2 arestrictly isomorphic, then Ŝ(�01) = Ŝ(�02) for each pair of corresponding nodes(�01; �02) of T �1 and T �2 . In particular Ŝ(�1) = Ŝ(�2).Proof. Simple, cf. Lemma 4.2.De�nition 6.5 Let L and L0 be two letter descriptions of the generalizedcontext problem T with the same label and direction. L and L0 are strictlyisomorphic i� for all corresponding top side nodes � and �0 of L and L0 thesubproblems T � and T �0 are strictly isomorphic.19



The next proposition is a simple consequence of Condition 6 of De�ni-tion 3.1.Proposition 6.6 Let L1 and L2 be strictly isomorphic letter descriptions ofthe generalized context problem T . If (t; S) is a solution of T , then Ŝ(L1) =Ŝ(L2).De�nition 6.7 Let T be a marked generalized context problem. A solu-tion (t; S) of T is rigid i� it satis�es the following condition for all letterdescriptions L1 and L2 of T : Ŝ(L1) = Ŝ(L2) i� L1 and L2 are strictlyisomorphic.Rigid solutions are introduced since in the last translation step only rigidsolvability of a marked generalized context problem ensures solvability of itstranslation (a system of word equations with linear constant restriction.)De�nition 6.8 Let T = hN;Lab;CB;Field; IB;Nodei be a transparentgeneralized context problem. Given an individual variable x 2 X we saythat � 2 N is an x-node of T i� T has an individual base ib of type x withNode(ib) = �. Let Y � X be a set of individual variables. The subset � ofN is called Y-closed i�, for each y 2 Y the following condition holds: if �contains an y-node, then � contains each y-node of T .We may now give the translation algorithm. In the following procedurewe use two sets �i and �i. Intuitively, �i collects the equivalence classesof all the nodes that have been identi�ed already, and �i represents the setof all nodes that are still subject to identi�cation. In the sequel, let rel(T )denote the set of all top side nodes and of all nodes of individual bases of T .De�nition 6.9 [Procedure (Transl3)] The input is a transparent gener-alized context problem T = hN0;Lab0;CB0;Field0; IB0;Node0i with contextbases of type X or Y only. Let X0 denote the set of all individual variablesx 2 X such that T has an x-node. In a �rst step, T is transformed intothe problem T0 = hN0;Lab0;CB0;Field0; IB0;Node0;�0;�0i where �0 := ;represents the empty partition and �0 := rel(T0).I. Assume that we have reached after i steps the problemTi = hNi;Labi;CBi;Fieldi; IBi;Nodei;�i;�ii20



where �i = f�1; : : : ; �ig is a partition of a subset of rel(Ti) and where�i = (rel(Ti) n S�i). If �i = ;, then go to II, otherwise go to III.II. If Ti is yet not completely marked, then we add appropriate bases ofdistinct type until a problem T 0 is reached that is completely marked. NowT 0 represents an output problem of (Transl3).III. Choose a non-empty subset �i+1 = f�1; : : : ; �mg of �i that satis�es thefollowing conditions:(a) �i+1 does not contain two labeled nodes with distinct label,(b) �i+1 is a set of maximal elements of �i in the sense that �i+1 does nothave any element that is a descendant of another node in �i,(c) �i+1 is X -closed.If this is not possible, then fail. Otherwise1. nondeterministically choose a superposition T S0 of the problemsT �1i ; : : : ; T �mi de�ned by �1; : : : ; �m.2. If �i+1 does not have any x-node for some x 2 X0, then we apply thefollowing Failure Condition: If T S0 contains two context bases cb1 andcb2 such that cb1 has a node that falls in the side area of cb2, thenfail.3. If the superposition T S0 contains any pair of branching bases wherethe branching node is unlabeled, then introduce a label using the sameprocedure as in (Transl2). If at this step we introcude new individualbases (cf. Step 4 of (Transl2)), then it is important to use a new typez that is not in X0. Repeat this until the superposition represents atransparent problem T S1 .4. With each atomic sub�eld of a context base of T S1 associate a newcontext base Z(0), using distinct base types Z for distinct �elds. LetT S denote the resulting problem.5. Replace each problem T �ji (1 � j � m) by a strictly isomorphic copyT Sj of T S . If the (placeholder) base cb0 of T S represents a (su�xof a) base cb in T �ji , then (the su�x of) cb and its corresponding21



(placeholder) base receive the same �eld in T Sj . For each context baseof the superposition T S that is not a placeholder base, including thenew bases of the form Z(0) introduced in Step 4, we use a new baseof the same type in T Sj , context bases that represent the same contextbase of T S receive corresponding �elds in the problems T Sj . Similarly,for each individual base of T S we use a new base of the same typein T Sj , individual bases that represent the same individual base of T Sreceive corresponding nodes in the problems T Sj .Let Ti+1 = hNi+1;Labi+1;CBi+1;Fieldi+1; IBi+1;Nodei+1;�i+1;�i+1idenote the problem obtained in this way where �i+1 := �i [ f�i+1g and�i+1 := rel(Ti+1) nS�i+1. Go to I.Note that if the input problem T0 is �rst order, then (Transl3) reduces to a�rst order uni�cation procedure where the failure condition before Step 1 ofCase III corresponds to the occur-check. For the following two lemmas wealways assume that we use as input for (Transl3) a transparent generalizedcontext problem T with bases of type X or Y . In the Appendix we prove(cf. Lemma 9.4)Lemma 6.10 The procedure (Transl3) terminates.Also the rather technical proof of the following theorem will be given inthe Appendix (cf. Theorem 9.18).Theorem 6.11 Let T denote the output set of (Transl3).1. T is �nite,2. Each T 0 2 T is a marked generalized context problem.3. If T has a solution, then there exists a problem T 0 2 T such that T 0has a rigid solution.4. If in T 0 two individual bases ib1 and ib2, with nodes �1 and �2, say,have the same type, then the subproblems T 0�1 and T 0�2 are strictlyisomorphic.5. If some T 0 2 T has a solution, then T is solvable.22



7 Translation into word equations with linear con-stant restrictionWe come now to the �nal translation step. In this section we�x a transparent and marked generalized context problem T =hN;Lab;CB;Field; IB;Nodei that satis�es the following condition (y): If inT two individual bases ib1 and ib2, with nodes �1 and �2, say, have the sametype, then the subproblems T �1 and T �2 are strictly isomorphic. Recall thatthe output problems of (Transl3) have this property, by Theorem 6.11. Forsimplicity we also assume that for each �eld ' of T there exists at most onebase cb of T with �eld '. It is simple to see that a given generalized contextproblem can always be \normalized" in this sense without changing any ofthe relevant properties and preserving (rigid) solvability in both directions.In fact, whenever two bases cb1 and cb2 of T , say, of type X and Y , havethe same �eld, we may erase cb2 and afterwards assign the new type X toall other bases of type Y .We consider the equivalence relation on the set of all letter descriptionsof T that is given by strict isomorphism. To each equivalence class weassign a letter C, using distinct letters for distinct classes. Each member Lof the class is said to have letter-type C, and L is called an occurrence of theletter-type C in T . With C we denote the set of all letter-types of T .If S is a solution of T , then all occurrences L of the letter-type C 2 Creceive the same image Ŝ(L) under S, by Proposition 6.6. This letter isdenoted as Ŝ(C).In the sequel, VT denotes the set of context variables (i.e., types ofcontext bases) occurring in T . We say that the letter-type C occurs inX 2 VT if C has an occurrence L that is a letter description of a contextbase X(i) of T of type X. Conversely we say that X 2 VT occurs in the sidearea of C 2 C if there exists a context base X(i) of T of type X that is inthe side area of some occurrence L of C.The translation of T will be a pair (WT ; <) whereWT is a system of wordequations and \<" is a linear constant restriction for WT . Here WT is theresult of a (deterministic) translation of context bases and letter descriptionsof T into word equations, to be described below. The choice of the linearordering \<" represents a non-deterministic step, details are given below.
23



Step 1: Translation of context bases and letter descriptionsTo each context base cb of T , say, of type X, with �eld (�0; : : : ; �k), weassign the word equation X = Z0; : : : ; Zk�1where Zi is the unique (see above) context variable such that (�i; �i+1) isthe �eld of a base of type Zi, for i = 0; : : : ; k� 1. To each letter descriptionL of T , say, of type C, with �eld (�; �0), we assign the word equationC = Zwhere Z is the unique context variable such that (�; �0) is the �eld of a baseof type Z.Let WT denote the set of all word equations assigned to the contextbases and letter descriptions of T in this way.Step 2: Choice of linear constant restrictionGiven X 2 VT , a letter-type C 2 C, and nodes �; �0 2 N we de�neC <1 X :, C occurs in X;X <1 C :, X occurs in the side area of C;� <1 X :, � is in the side area of an occurrence of X,� <1 C :, � is in the side area of an occurrence of C,X <1 � :, X occurs in the subtree of T with root �,C <1 � :, C occurs in the subtree of T with root �,� <1 �0 :, � is a descendant of �0.If \<1" contains any cycle, we stop with failure. In the other case, let C0be a new symbol. Nondeterministically choose a linear ordering \<" onVT [ C [ fC0g that extends the restriction of \<1" to VT [ C and has C0 asits minimal element.OutputThe set of output problems of the translation procedure is the set of all pairsof the form (WT ; <) described above. In each case WT represents a systemof word equations over the alphabet of variables VT and the set of constants24



C [ fC0g, and \<" represents a linear constant restriction for WT 3. Inmore detail, we demand that a solution of (WT ; <) does not instantiate anyvariable X 2 VT with the empty word.Completeness and soundness of the translationWe �rst show completeness.Lemma 7.1 If T has a rigid solution, then there exists an output problem(WT ; <) that has a solution.Proof. Let S be a rigid solution of T . Recall that S assigns the sameletter Ŝ(C) to all occurrences of a given letter-type C in T , while lettersŜ(C1) and Ŝ(C2) are distinct for C1 6= C2. Similarly Ŝ assigns a uniqueground context (resp. ground term) to each base (resp. node) of T . ForX 2 VT , C 2 C and nodes �; �0 of T de�neC �1 X :, Ŝ(C) is a letter of Ŝ(X);X �1 C :, Ŝ(X) is a proper subcontext of Ŝ(C);� �1 X :, Ŝ(X) has a subterm Ŝ(�),� �1 C :, Ŝ(C) has a subterm Ŝ(�),X �1 � :, Ŝ(�) has a subcontext Ŝ(X),C �1 � :, Ŝ(�) has a subcontext Ŝ(C),� �1 �0 :, Ŝ(�) is a proper subterm of Ŝ(�0).Consider one of these relations �1 �1 �2 de�ned above. For i = 1; 2, let#�Ŝ(�1) denote the number of nodes of Ŝ(�i) that are labeled with a symbolin �. If �1 = C 2 C and �2 = X 2 VT , then #�Ŝ(�1) � #�Ŝ(�2). In allother cases it is easy to see that #�Ŝ(�1) < #�Ŝ(�2). It follows that �1does not have any cycle. It is also clear that \�1" extends the relation<1 de�ned in Step 2 above. Hence there exists a linear ordering \<" on3A word equation over the alphabet of constants C and the alphabet of variables V is anexpression of the formW1 =W2 whereW1 andW2 are words over the joint alphabet C[V.Let S be a mapping that assigns a word S(X) to each variable X in the equation. S is asolution of W1 =W2 if both sides of the equation become identical when we replace eachoccurrence of a variable X by the word S(X). A linear constant restriction is given by alinear ordering \<" on the set of constants and variables occurring in the equation. Thesolution S of W1 = W2 respects the linear constant restriction \<" if X < c implies thatc does not occur in S(X), for each variable X and each constant c occurring in W1 =W2.25



VT [C [ fC0g that extends \�1" and represents a possible choice in Step 2.We consider the output problem (WT ; <).For X 2 VT , let sX;1; : : : ; sX;nX denote the sequence of letters of theground context Ŝ(X). We replace each letter sX;i of the form Ŝ(C) for someC 2 C by the constant C, and each of the remaining letters by C0. Byrigidness of S, the replacement instance of each letter is wellde�ned. LetS0(X) be the resulting word in the alphabet C [ fC0g.To see that S0 is a solution of WT we �rst consider a word equation ofWT of the form X = Z0; : : : ; Zk�1. Since S is a solution of T we haveŜ(X) = Ŝ(Z0) : : : Ŝ(Zk�1):It follows that S0(X) = S0(Z0) : : : S 0(Zk�1)which shows that S0 solves the above equation. Consider now a word equa-tion of WT of the form C = Z. Since S is a solution of T we haveŜ(C) = Ŝ(Z):It follows that C = S0(Z)which shows that S0 solves the above equation. Summing up, we have seenthat S0 solves WT .To check validity of the linear constant restriction, assume that the letterC 2 C occurs in S0(X). Then, by de�nition of S0, Ŝ(C) is a letter of Ŝ(X)and we have C <1 X by our choice in Step 2. This shows that S0 satis�esthe linear constant restriction imposed by \<".We may now show soundness.Lemma 7.2 If an output problem (W; <) has a solution, then T has asolution.Proof. Assume that (W; <) has a solution S. It follows from the failurecondition of Step 2 that there exists a linear ordering \<2" on C [ VT [N [ fC0g that extends \<" and has C0 as minimal element. Let t0 be anarbitrary letter, and let b be a �xed constant in �. We shall now construct,by simultaneous induction on \<2",� a mapping S1 that assigns a ground term S1(�) to each node � 2 N ,26



� a mapping S2 that assigns letters (resp. ground contexts) to the ele-ments of C [ fC0g (resp. VT ).The idea behind the de�nition of S1 is to use the terms assigned to thechildren of a node � for constructing S1(�). As a matter of fact, if �i is achild of �, then S1(�) may have various subterms of the form S1(�i), butjust exactly one of these occurrences has its origin in the use of S1(�i) in theconstruction of S1(�). In order to distinguish this occurrence notationally,we denote it in the form t(�i).Let � 2 N be a leaf. If � is labeled with a 2 �, then S1(�) := a. If �is the node of an individual base, then we de�ne S1(�) := b. In addition,let S2(C0) := t0. Now assume that S1 and S2 have been de�ned, up to acertain element of the linear ordering \<2". We consider the �rst element �of \<2" where S1 or S2 respectively is yet not de�ned.1. if � = � is an inner node that is labeled with the n-ary functionsymbol f , and if �1; : : : ; �n are its children, then we de�ne S1(�) :=f(S1(�1); : : : ; S1(�n)). Using the notational convention explainedabove, this term will be written in the form t(�) = f(t(�1); : : : ; t(�n)).2. if � = � is an unlabeled inner node, then � is a non-�nal nodeof a base (cf. Def. 3.1, 6.), and � has exactly one child �0 (cf.Lemma 5.2). Moreover, (�; �0) is the �eld of a unique base cb, say,of type Z. Since Z <1 � we have also Z <2 � and we may de�net� = S1(�) := S2(Z)(S1(�0)) = S2(Z)(t�0).3. if � = X is a context variable, let S(X) = CX;1 � � �CX;nX . Since Srespects the linear constant restriction imposed by \<" the constantsCX;i 2 C [ fC0g are smaller than X with respect to \<2". Accord-ingly, for each constant CX;i, the letter S2(CX;i) has been de�ned byinduction hypothesis. We de�ne S2(X) := S2(CX;1) � � � S2(CX;n).4. if � = C is a letter-type, let L = (�; �0) denote an occurrenceof C in T . Let f (resp. i) be the label (resp. direction) of L,let (�1; : : : ; �n) be the sequence of all children of �. By assump-tion, S1(�j) has been de�ned for 1 � j � n. We de�ne S2(C) :=f(S1(�1); : : : ; S1(�i�1);
; S1(�i+1); : : : ; S1(�n)).Now let �> denote the root of T . We want to show that (t(�>); S0) is asolution of T , where for all � 2 N the node S0(�) is given by the position ofthe root of t(�). 27



Since S assigns a non-empty word to each variable X 2 VT a trivialinduction shows that S2(X) is always a non-empty ground context. Fromthis it follows immediately that S0 is an injective mapping from N to theset of nodes of t(�T ). By construction S0 preserves root, �-labels, childrenof �-labeled nodes, and preorder relations.In order to show that S0 respects branching points it su�ces to show thatwhenever �1 and �2 are two distinct children of a node � of T , then S0(�1)and S0(�2) are distinct children of S0(�) in t(�>). Since unlabeled nodes ofT never have two distinct children this follows from Step 1 above.We now show that Ŝ0 assigns the same ground context to the �elds ofbases of the same type X, for all X 2 VT . This follows directly from thefollowing two claims, which will be proven by simultaneous induction on\<2".C1. if (�; �0) is an occurrence of C 2 C in T , then Ŝ0(�; �0) = S2(C),C2. if X(i) is an occurrence of X 2 VT in T , then Ŝ0(X(i)) = S2(X).Assume that Claims 1 and 2 have been shown for all predecessors of � 2C [ VT with respect to \<2".First assume that � = C 2 C. It follows from the de�nition of S2(C)in Step 4 above that the occurrence (�; �0) of C that has been used in thisstep for de�ning S2(C) satis�es Condition C1. By induction hypothesis forC2 we know that all occurrences of the same context variable X in the sidearea of an occurrence of C | which all are smaller than C with respect to<2 | are mapped to the same ground context S2(X) under Ŝ0. Since alloccurrences of C in T are strictly isomorphic it follows easily that all otheroccurrences of C in T are mapped to the same letter under Ŝ0, which provesCondition C1 for C.Now assume that � = X 2 VT . Let X(s) be an occurrence of X 2 VTin T , and let Field(X(s)) = (�i; : : : ; �j). In each atomic sub�eld (�l; �l+1) of(�i; : : : ; �j), node �l is either labeled or unlabeled. For simplicity we assumethat (�i; : : : ; �j) has the form (�i; �i+1; �i+2) where �i is labeled and �i+1 isunlabeled.The �eld (�i; �i+1) represents a letter description of X, say, of type C.Note that C <1 X and hence C <2 X. Let Z(r) denote the unique base ofT with �eld (�i+1; �i+2). It follows from the de�nition of WT that S solvesthe equation X = CZ. Hence from the de�nition of S2 (Case 3 above) wesee that S2(X) = S2(C)S2(Z):28



Moreover, since C <2 X we know by induction hypothesis C1 for C thatŜ0(�i; �i+1) = S2(C). In addition it follows from Case 2 of the de�nition ofS1 that Ŝ0(Z(r)) = S2(Z).It follows now that Ŝ0(�i; �i+1; �i+2), which is the composition ofŜ0(�i; �i+1) and Ŝ0(�i+1; �i+2), has the form S2(C)S2(Z) = S2(X), whichproves that Ŝ0(X(i)) = S2(X).By our special assumption (y) on individual variables it follows fromLemma 6.4 that Ŝ0 assigns the same ground term to nodes �1 and �2 when-ever there are two individual bases of the same type with nodes �1 and �2respectively.8 Summing upWe are now able to prove the Main Theorem (Theorem 1.1).Theorem 8.1 It is decidable if a �nite system of context equations withtwo context variables and an arbitrary number of individual variables has asolution.Proof. We �rst treat the case where we just have one input equation.Let s = t be a context equation with two context variables. Combining theresults of Lemma 4.6, Lemma 5.5, Lemma 6.10, Theorem 6.11, Lemma 7.1,and Lemma 7.2 it follows that we may e�ectively compute a �nite set Mof multi-word equations with linear constant restriction such that s = thas a solution if and only if a multi-word equation with linear constantrestriction in M has a solution. The results in [25] on regular solutions ofword equations show that solvability of multi-word equations with linearconstant restriction is decidable. Hence the result follows.Let us now consider the case where we have a �nite system of contextequations, fs1 = t1; : : : ; sn = tng as input. We show how to reduce itto the �rst situation. We may assume that there is at least one functionsymbol \f" of arity n > 1 in the signature � (since otherwise we are inthe monadic case where context uni�cation problems directly translate intoword equations). For simplicity we assume that \f" has arity 2 (if thearity is greater than 2 we may use essentially the same encoding whereother arguments of f are �lled with a �xed constant a 2 �). Obviously,fs1 = t1; : : : ; sn = tng has a solution if and only if the context equationf(s1; f(s2; f(: : :))) = f(t1; f(t2; f(: : :))) has a solution.29
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9 AppendixIt remains to give the proofs for Lemma 6.10 and Theorem 6.11.Lemma 9.1 Let z 2 X be an individual variable. Assume that Ti+1 hasan z-node, but Ti doesn't. Then each z-node of Ti+1 is a top side node ofTi+1. Moreover, if � and �0 are two z-nodes of Ti+1, then �i+1 containsnodes �1 and �01 such that T �1i+1 and T �01i+1 are strictly isomorphic and havecorresponding and strictly isomorphic letter descriptions L and L0 where �1and �01 are corresponding top side nodes of L and L0.Proof. It is easy to see that an individual base of new type z can onlyarise from Part 3 of the subprocedure of Case III where we apply Step 4 of(Transl2). The nodes of the individual bases ib that are introduced at thisstep are the children of the labeled branching point of two context bases,which means that they are top side nodes of the superposition T S1 . All thenew individual bases receive a new type. By construction, all the variants T Sjof T S that are created in Step 5 of Case III are strictly isomorphic problems.The lemma follows easily.Lemma 9.2 Let � 2 S�i and �0 2 �i. Then � is not a descendant of �0.Proof. We use induction. Assume that the statement holds for �i and�i. Then Condition (b) for the choice of �i+1 ensures that the conditionholds for �i+1 and �i+1 as well since in the Steps 1-5 new relevant nodesare only created below the nodes of �i+1.Lemma 9.3 Each � 2 �i is X -closed.Proof. This holds trivially for i = 0 where �0 is empty. Assume that thestatement is correct for Ti and �i. First let � 2 �i+1 be an x-node of Ti+1.Since in Step 3 of Case III always new individual variables are used it followseasily that in this case �i+1 also contains an x-node �0 of the predecessorproblem Ti. Hence �i+1 contains all x-nodes of Ti, by Condition (c). Whenbuilding Ti+1, new x-nodes always belong to �i+1 (cf. Step 5). It followsthat �i+1 contains all x-nodes of Ti+1.Now let � 2 � 2 �i be an x-node of Ti+1. When building Ti+1, newz-nodes (for some z 2 X ) are only created below|or at|the nodes of �i+1.Assume that � is not an x-node of Ti. Since � 62 �i+1 this would mean that �33



is a descendant of an element �0 of �i+1. This is impossible, by Lemma 9.2.We have seen that � is an x-node of Ti. By induction hypothesis, � containsall x-nodes of Ti. Since, as we saw, no new x-nodes are created when buildingTi+1 it follows that � contains all x-nodes of Ti+1.We may now give the proof of Lemma 6.10:Lemma 9.4 The procedure (Transl3) terminates.Proof. We consider the measure � on T0; T1; : : : that is given by thelexicographic order with the following components:(1) The number of individual variables x 2 X0 such that �ihas an x-node,(2) the number of top side nodes � of �i where T �i is not�rst order,(3) the total number of top side nodes in �i.Clearly this measure is well-founded. We show that each call to Case III,where we move from Ti to Ti+1, reduces the measure.Case 1. If �i+1 contains an x-node for some x 2 X0, then, by Lemma 9.3,�i+1 contains all x-nodes of Ti+1. Hence, by Lemma 9.3, the �rst componentof � decreases.Case 2. If �i+1 does not contain any x-node of Ti for x 2 X0 we applythe Failure Condition of Step 2. The condition shows that in this case thesuperposition T S0 does not have any branching bases.First consider the subcase where for some �j 2 �i+1 the subproblem T �jiis not �rst order. Consider any new top side node � 2 tsn(Ti+1) n tsn(Ti).Clearly � is a descendant of a node �0 2 �i+1 and there exists a contextbase cb with jFieldi+1(cb) \ T �0i+1j � 2 such that � is in the side area ofcb. But now the Failure Condition implies that the subproblem T �i+1 is �rstorder. Hence we decreased the second component of � while leaving the �rstcomponent unchanged.Now assume that all the subproblems T �ji for �j 2 �i+1 are �rst order.Obviously the superposition T S does not have any top side node in this case.Hence the total number of top side nodes in �i decreases and the �rst twocomponents of � are left unchanged.34



De�nition 9.5 Let T be a transparent generalized context problem and letX be a context variable where T has a base of type X. The set of contextbases of su�x type X of T is recursively de�ned as follows:1. each context base of type X is of su�x type X,2. if cb1 and cb2 are context bases of T of the same type, if the contextbase cb3 of T has su�x typeX and if Field(cb2) is a su�x of Field(cb3),then cb1 has su�x type X.Obviously, if (t; S) is a solution of T and cb has su�x type X, then Ŝ(cb)is a su�x of Ŝ(X).The following property characterizes the context bases that are generatedin (Transl3), as we shall see below.De�nition 9.6 Let X and Y be two context variables. T is called X-Y -binary i� every context base cb of T is a (proper or improper) subbase of acontext base of su�x type X or Y .Lemma 9.7 Each of the problems Ti generated by (Transl3) and each out-put problem T 0 is X-Y -binary.Proof. Obviously T0 is X-Y -binary. As an induction hypothesis, assumethat Ti is X-Y -binary. Let cb be a context base of Ti+1. It may be(1) a base of Ti,(2) a copy of a base of Ti (cf. Step 5 of Case III),(3) a placeholder base of Ti (construction of T �ji ),(4) a copy of a placeholder base of Ti (cf. Step 5 of Case III),(5) a subbase Z(h) of a base of type 1{4 (cf. Steps 4, 5 of Case III),1. If cb has type (1), then by induction hypothesis cb is a subbase of a baseof su�x type X or Y of Ti. Clearly the same property holds in Ti+1 as well.2. If cb = cbj has type (2) and is the copy of the base cbk of type (1), letT �ji+1 and T �ki+1 denote the variants of T S that contain these bases. By 1, cbkis a subbase of a base of su�x type X or Y of Ti+1. Since T �ji+1 and T �ki+1 arestrictly isomorphic the same holds for cbj as well.3. If cb has type (3), assume that cb represent the su�x of the base cb0 ofTi. By 1, cb0 is a subbase of a base of su�x type X or Y of Ti+1. Since cb35



is in Ti+1 a subbase of cb0 also cb is a subbase of a base of su�x type X orY of Ti+1.4. If cb = cbj has type (4) and is the copy of the placeholder base cbkof type (3), let T �ji+1 and T �ki+1 denote the variants of T S that contain thesebases. By 3, cbk is a subbase of a base of su�x type X or Y of Ti+1. SinceT �ji+1 and T �ki+1 are strictly isomorphic the same holds for cbj as well.5. If cb has type (5), then it is a subbase of a base of Ti+1 of one of thetypes (1)-(4). It follows from the previous cases that cb is a subbase of abase of su�x type X or Y of Ti+1.We have seen that each of the problems Ti generated by (Transl3) isX-Y -binary. Obviously this implies that each output problem T 0 is X-Y -binary.De�nition 9.8 Let T be an X-Y -binary transparent generalized contextproblem. A set � of top side nodes of T is called X-Y -stable i� for each� 2 � and each context base cb of T such that jField(cb) \ T �j � 2 either(1) Field(cb) � T � and cb has type X or Y , or(2) Field(cb) 6� T � and cb has su�x type X or Y , or(3) cb is a subbase of a context base of type (1) or (2).Lemma 9.9 For each of the problems Ti generated by (Transl3) the set �iis X-Y -stable.Proof. Obviously �0 is X-Y -stable. As an induction hypothesis, assumethat �i is X-Y -stable w.r.t. Ti. Let � 2 �i+1 and let cb be a context baseof Ti+1 such that jFieldi+1(cb) \ T �i+1j � 2.First we assume that � is not a descendant of any node in �i+1.Lemma 9.2 implies that � does not have a descendant in �i+1. Both prop-erties together imply that cb is a base of Ti with Fieldi(cb) = Fieldi+1(cb).In addition it follows that � 2 �i. By induction hypothesis, either(1) Fieldi(cb) � T �i and cb has type X or Y in Ti, or(2) Fieldi(cb) 6� T �i and cb has su�x type X or Y in Ti, or(3) cb is a subbase of a context base of type (1) or (2) of Ti.It follows that cb has in Ti+1 the corresponding property as well.36



Now let � be a descendant of �j 2 �i+1 in T �ji+1. As in the previous proofwe distinguish the cases where cb is(1) a base of Ti,(2) a copy of a base of Ti (cf. Step 5 of Case III),(3) a placeholder base of Ti (construction of T �ji ),(4) a copy of a placeholder base of Ti (cf. Step 5 of Case III),(5) a subbase Z(h) of a base of type 1{4 (cf. Steps 4, 5 of Case III),1. If cb has type (1), then jFieldi(cb)\T �ji j � 2. Since �j 2 �i, by inductionhypothesis, either(1) Fieldi(cb) � T �ji and cb has type X or Y in Ti, or(2) Fieldi(cb) 6� T �ji and cb has su�x type X or Y in Ti, or(3) cb is a subbase of a context base of type (1) or (2) of Ti.But then, since � is a descendant of �j in Ti+1 it is easy to see that either(1') Fieldi+1(cb) � T �i+1 and cb has type X or Y in Ti+1, or(2') Fieldi+1(cb) 6� T �i+1 and cb has su�x type X or Y in Ti+1,(3') or cb is a subbase of a context base of type (1) or (2) of Ti+1.2. If cb = cbj has type (2) and is the copy of the base cb0 of type (1), letT �ki+1 denote the variant of T S that contains cb0, and let �0 denote the nodeof T �ki+1 that corresponds to �. Since T �ki+1 and T �ji+1 are strictly isomorphicwe know that jFieldi+1(cb0) \ T �0i+1j � 2. It follows from the previous casethat either(1') Fieldi+1(cb0) � T �0i+1 and cb0 has type X or Y in Ti+1, or(2') Fieldi+1(cb0) 6� T �0i+1 and cb0 has su�x type X or Y in Ti+1,(3') or cb0 is a subbase of a context base of type (1) or (2) of Ti+1.Because of the strict isomorphism between T �ki+1 and T �ji+1 the same holds forcb and � as well.3. If cb has type (3) and represents the su�x of the context base cb0, thencb0 has type (1). It follows from Case 1 that cb0 has one of the possibletypes in Ti+1. Hence the su�x cb, which starts at the predecessor �j of �,has one of the possible types, too. 37



4. If cb = cbj has type (4) and is the copy of the placeholder base cb0of type (3), let T �ki+1 denote the variant of T S that contains cb0, and let �0denote the node of T �ki+1 that corresponds to �. Since T �ki+1 and T �ji+1 arestrictly isomorphic we know that jFieldi+1(cb0) \ T �0i+1j � 2. It follows fromthe previous case that either(1') Fieldi+1(cb0) � T �0i+1 and cb0 has type X or Y in Ti+1, or(2') Fieldi+1(cb0) 6� T �0i+1 and cb0 has su�x type X or Y in Ti+1,(3') or cb0 is a subbase of a context base of type (1) or (2) of Ti+1.Because of the strict isomorphism between T �ki+1 and T �ji+1 the same holds forcb and � as well.5. If cb has type (5), then it is a subbase of a base cb0 of the form treatedin the previous cases. We have seen that cb0 has one of the three possibletypes. It follows that its subbase cb has one of the three possible types.The following lemmas are needed for justifying the use of Condition 2(Failure Condition) in Case III of (Transl3). First, some criteria for theunsolvability of a generalized context problem are given that generalize theoccur-check in �rst-order syntactic uni�cation.Lemma 9.10 Let s1 and s2 be two su�xes of the same ground context s,and let s(1)1 and s(2)2 be occurrences of s1 and s2 respectively in the groundterm t. If s(1)1 is completely contained in the side area of s(2)2 , then s1 is aproper su�x of s2.Proof. Otherwise s2 would be a su�x of s1. This would mean that thesu�x s(2)2 of s1 properly contains an occurrence s(1)1 of s1, which obviouslyis impossible.Corollary 9.11 Let s1 and s2 be two su�xes of the ground context s, andlet s(1)1 and s(2)2 be occurrences of s1 and s2 respectively in the ground termt. Then the main paths of s(1)1 and s(2)2 cannot represent branching �elds.Proof. Assume that the main paths of s(1)1 and s(2)2 are branching atpoint �. Let r(1)1 and r(2)2 denote the su�xes of s(1)1 and s(2)2 with root �,and let t(1)1 and t(2)2 denote the su�xes of r(1)1 and r(2)2 that start at the twochildren of � on the main paths of these contexts. By the previous lemma,38



t(1)1 is a proper su�x of r(2)2 and t(2)2 is a proper su�x of r(1)1 . This impliesthat r1 = r2 and r(1)1 = r(2)2 , a contradiction.De�nition 9.12 Let T be a transparent generalized context problem. Let(t; S) be a solution of T . With \�S" we denote the equivalence relationon ld(T ) de�ned by L �S L0 i� Ŝ(L) = Ŝ(L). With [L]S we denote theequivalence class of L 2 ld(T ) with respect to \�S". For �; �0 2 tsn(T )we de�ne � �1S �0 i� there exist letter descriptions L �S L0 and an indexi such that � (resp. �0) represents the i-th top side node of L (resp. L0).The equivalence relation \�S" generated by \�1S" is called the equivalencerelation on tsn(T ) induced by S. With [�]S we denote the equivalence classof � 2 tsn(T ) with respect to \�S".Remark 9.13 In the situation of the previous de�nition we have � �S �0i� there exists a sequence of pairs (L1; �1); : : : ; (Ln; �n) of letter descriptionsLj and top side nodes �j of Lj in T , with � = �1 and �0 = �n, such that forall consecutive pairs (Lj ; �j); (Lj+1; �j+1) (1 � j � n� 1) either(a) Lj �S Lj+1 and �j and �j+1 are corresponding top side nodes of Ljand Lj+1, or(b) �j = �j+1 and Lj 6= Lj+1 belong to branching context bases where �jis a child of the branching point.De�nition 9.14 Let T be an X-Y -binary transparent generalized contextproblem. A context base cb of T is X-Y -normal for the top side node � ofT i� jField(cb) \ T �j � 2 and if either(1) Field(cb) � T � and cb has type X or Y , or(2) Field(cb) 6� T � and cb has su�x type X or Y .Lemma 9.15 Let T be a generalized context problem with solution (t; S)that is X-Y -binary. Let � be a top side node of the letter description L forthe base cb of su�x type X. If the context base cb0 is X-Y -normal for �,then cb0 has su�x type Y .Proof. Assume that cb0 has su�x type X. If Field(cb0) � T �, then cb0has type X. Then Lemma 9.10 yields a contradiction. In the other case, cband cb0 are branching bases and Corollary 9.11 yields a contradiction.39



Lemma 9.16 Let T be an X-Y -binary generalized context problem withsolution (t; S). Let L1 �S L2 be two letter descriptions of T , let �1 and �2be corresponding top side nodes of L1 and L2. If the context bases cb1 andcb2 of T are X-Y -normal for �1 and �2 respectively, then either both cb1and cb2 have su�x type X or both have su�x type Y .Proof. Assume, to get a contradiction, that cb1 = Y (u)0 has su�x type Yand cb2 = X(v)0 has type su�x X. Let L1 (resp. L2) be a letter descriptionof the base cb3 (resp. cb4). Since T is X-Y -binary we may assume that cb3and cb4 have su�x type X or Y .
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• • η2
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= Y0
(u) = X0

(v)Lemma 9.15 shows that cb3 has su�x type X and cb4 has su�x type Y .Let cb3 = X(r)1 and cb4 = Y (s)1 . We claim that the �eld of Y (u)0 cannotbe completely contained in T �1 . Otherwise, since Y (u)0 is X-Y -normal for�1, Y (u)0 would have type Y and Ŝ(Y ) would be a proper subcontext ofŜ(L1) = Ŝ(L2) which is a subletter both of Ŝ(X) and Ŝ(Y ) and we obtain acontradiction. Likewise, the �eld of X(v)0 cannot be completely contained inthe side area of L2. We conclude that the main node �01 of L1 is the branchingpoint of Y (u)0 and X(r)1 , and the main node �02 of L2 is the branching pointof X(v)0 and Y (s)1 . We consider the following su�xes of the given bases:1: the su�x X2 of X(r)1 starting at �01,2: the su�x Y2 of Y (u)0 starting at �01,3: the su�x X3 of X(v)0 starting at �02,4: the su�x Y3 of Y (s)1 starting at �02,5: the su�x X 02 of X2 starting at the respective child of �01,6: the su�x Y 03 of Y3 starting at the respective child of �02.We have the following situation.
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Obviously Ŝ(X2) and Ŝ(X3) are distinct. Hence either Ŝ(X2) is a propersu�x of Ŝ(X3) or vice versa. Since Ŝ(L1) = Ŝ(L2) Lemma 9.10 shows thatŜ(X3) is a proper su�x of Ŝ(X2) and, since �01 is labeled, a su�x of Ŝ(X 02).Symmetrically it follows that Ŝ(Y2) is a su�x of Ŝ(Y 03). The observationsshow that have now the following chain, where the symbol \�" (resp. \�")denote proper (non-strict) subcontext relationship:Ŝ(Y 03) � Ŝ(X3) � Ŝ(X 02) � Ŝ(Y2) � Ŝ(Y 03):This yields a contradiction.Lemma 9.17 Let T be an X-Y -binary generalized context problem withsolution (t; S). Let �1 �S �2 be two top side nodes of T . If the context basescb1 and cb2 of T are X-Y -normal for �1 and �2 respectively, then eitherboth cb1 and cb2 have su�x type X or both have su�x type Y .Proof. If there exist two letter descriptions L1 �S L2 such that �1 and �2are corresponding top side nodes of L1 and L2, then we are in the situationof Lemma 9.16 and we are done. We shall now show that the other situationdoes not occur, which proves the lemma.Assume that we are in the remaining case. For i = 1; 2, let �1 be atop side node of the letter description Li. Since �1 �S �2, but L1 6�S L2,Remark 9.13 shows that there exist two distinct letter descriptions L01 andL3 with L1 �S L01 such that the top side node �01 of L01 that correspondsto �1 is also a top side node of L3. L01 and L3 have di�erent direction andL1 6�S L3.Since T is X-Y -binary we may assume that L1 is a letter description ofa base X(u)0 of su�x type X. By Lemma 9.15, cb1 = Y (v)0 has su�x type Y .We distinguish two cases: 41



Case 1: L01 is a letter description of a base X(w)1 of su�x type X. Inthis case, L3 is a letter description of a base Y (r)1 of su�x type Y , by Corol-lary 9.11. If Field(cb1) � T �1 , then cb1, which is X-Y -normal for �1, hastype Y and because of L1 �S L01 Lemma 9.10 yields a contradiction. Itfollows that the main node of L1 is in Field(cb1).Let Y2 denote the su�x of Y (v)0 starting at the main node of L1, and letY3 denote the su�x of Y (r)1 starting at the main node of L01 (or L3). Wehave the following picture:
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L3Obviously Ŝ(Y2) 6= Ŝ(Y3). If Ŝ(Y2) is a proper su�x of Ŝ(Y3), then L1 �S L01shows that Ŝ(Y2) has a subcontext of the form Ŝ(Y2) in its own side area,which yields a contradiction. Conversely, if Ŝ(Y3) is a proper su�x of Ŝ(Y2),then L1 �S L01 shows that Ŝ(Y3) has a subcontext of the form Ŝ(Y3) in itsown side area, which yields a contradiction. Hence this case cannot occur.Case 2: L01 is a letter description of a base Y (w)1 of su�x type Y . IfField(cb1) � T �1 , then cb1, which is X-Y -normal for �1, has type Y andbecause of L1 �S L01 Lemma 9.10 yields a contradiction. It follows that themain node of L1 is in Field(cb1). Let Y2 denote the su�x of Y (v)0 startingat the main node of L1, and let Y3 denote the su�x of Y (w)1 starting at themain node of L01. Because of L1 �S L01 Lemma 9.10 shows that Ŝ(Y2) is aproper su�x of Ŝ(Y3).In addition we know in the present situation that L3 is a letter descriptionof a base X(r)1 of su�x type X. Let X2 denote the su�x of X(u)0 startingat the main node of L1, and let X3 denote the su�x of X(r)1 starting atthe main node of L01. Lemma 9.10 shows that Ŝ(X3) is a proper su�x ofŜ(X2). With X 02 (resp. Y 03) we denote the su�xes of X2 (resp. Y3) startingat the respective successor of the main node of L1 (resp. L01). We have thefollowing picture:
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Now Ŝ(X 02) is a proper subcontext of Ŝ(Y2) which is a su�x of Ŝ(Y 03). Fur-thermore Ŝ(Y 03) is a proper subcontext of Ŝ(X3) which is a su�x of Ŝ(X 02).Hence Ŝ(X 02) has a proper subcontext of the form Ŝ(X 02) which yields acontradiction. Hence this case can also not occur.We now prove Theorem 6.11:Theorem 9.18 Let T denote the output set of (Transl3), where we usethe transparent generalized context problem T with bases of type X or Y asinput.1. T is �nite,2. Each T 0 2 T is a marked generalized context problem.3. If T has a solution, then there exists a problem T 0 2 T such that T 0has a rigid solution.4. If in T 0 two individual bases ib1 and ib2, with nodes �1 and �2, say,have the same type, then the subproblems T 0�1 and T 0�2 are strictlyisomorphic.5. If some T 0 2 T has a solution, then T is solvable.Proof. 1. Since, by Lemma 9.4, there are only a �nite number of iter-ations of the procedure described in Case III of (Transl3), it follows easilyfrom Part 1 of Lemma 4.4 that T is �nite.2. Clearly each output problem is a generalized context problem. Byassumption, the input problem T0 is transparent. A simple induction showsthat each problem Ti reached by iterations of the procedure of Case III istransparent (cf. Step 3 of (Transl3)). The procedure of Case II cannotintroduce branching points. Hence each output problem T 0 is transparent.But then, obviously the procedure that is applied in Case II of (Transl3)implies that T 0 is marked.3. Let (t; S) be a solution of T . We have to describe possible choices inthe non-deterministic steps that lead to a generalized context problem thathas a rigid solution. Let us introduce the following de�nition: Let (t; Si) bea solution of Ti. A subset � of rel(Ti) is called �Si-closed if it satis�es thatfollowing condition: if � contains the top side node �1, and if �1 �Si �2,then � contains �2, 43



As an induction hypothesis, assume that for some i � 0 we have founda problem Ti = hNi;Labi;CBi;Fieldi; IBi;Nodei;�i;�ii such that(0) there exists an embedding of T0 in Ti,(1) �i = f�1; : : : ; �ig is a partition of a subset of rel(Ti). If �1 and �2 be-long to the same class of �i, then T �1i and T �2i are strictly isomorphic.(2) If � and �0 are distinct y-nodes of Ti for some y 62 X0, then �i containsa set � with nodes �1 and �01 and strictly isomorphic letter descriptionsL and L0 with corresponding positions in T �1i and T �01i such that � and�0 are corresponding top side nodes of L and L0.(3) For each � 2 S�i and for each atomic sub�eld ' in T �i : if ' is asub�eld of a context base, then there exists an atomic base cb with�eld ' in Ti.We also assume that there exists a solution (t; Si) of Ti such that(4) Each element � of �i is �Si-closed and X -closed.(5) for � 2 S�i and �0 2 �i the ground term Ŝi(�) is not a proper subtermof Ŝi(�0).Note that T0 vacuously satis�es these conditions since �0 is empty and T0does not contain any y-node for y 62 X0.We �rst consider the situation where S�i = rel(Ti), i.e., Case II of(Transl3). We want to show that (t; Si) is a rigid solution of Ti. Let L1and L2 be letter descriptions of Ti and assume that Ŝi(L1) = Ŝi(L2). Let�1 (resp. �2) be the j-th top side node of L1 (resp. L2). Since L1 �Si L2we have �1 �Si �2. Condition (4) shows that �1 and �2 belong to the sameclass of �i. Condition (1) shows that T �1i and T �2i are strictly isomorphic.It follows that L1 and L2 are strictly isomorphic. We have seen that (t; Si)is a rigid solution of Ti. Condition (3) ensures that the letter descriptionsof Ti are not a�ected by the �nal marking (cf. Case II). Hence (t; Si) is alsoa rigid solution of the output problem.We now treat the situation where S�i 6= rel(Ti), i.e., Case III of(Transl3).Selection of �i+1. Consider a minimal �Si-closed and X0-closed set � �rel(Ti). By (4), either � � �i or � is a subset of an element of �i. Note alsothat the nodes of a minimal �Si-closed and X0-closed set � are mapped toidentical ground terms under Si. Let us denote this ground term in the form44



Ŝi(�). Among all minimal �Si-closed and X0-closed subsets of rel(Ti) thatare subsets of �i we choose as �i+1 one set where Ŝi(�i+1) is a maximal4ground term. Given this choice of �i+1 it is obvious that conditions (a) and(b) are satis�ed. By choice, �i+1 is X0-closed. Let � and �0 be two y-nodesof Ti for y 62 X0. By (1), � and �0 are corresponding top side nodes of strictlyisomorphic letter descriptions L and L0 of Ti. It follows that � �Si �0. Thisshows that �i+1 is X -closed. Clearly, since Ti is solvable, the selection of �cannot lead to failure before Step 1. By (5) and choice of �i+1 we have(6) 8� 2 �i+1, T �i does not contain a node in S�i, andStep 1, superposition. Let �i+1 =: f�1; : : : ; �mg. As T S we choose thesuperposition which is given by the joint embedding (cf. Def. 4.5) of theproblems T �1i ; : : : ; T �mi in Ŝi(�1) under the restrictions of Si to T �1i ; : : : ; T �mirespectively. We have to show that the Failure Condition (Step 2 of CaseIII) does not apply.Assume that �i+1 does not have any x-node for x 2 X0. Let �j; �k 2 �i+1.Let cbj and cbk be two bases of Ti such that jT �ji \ Fieldi(cbj)j � 2 andjT �ki \ Fieldi(cbk)j � 2. By Lemma 9.7, �i+1 � �i is X-Y -stable. Hencecbj and cbk are subbases of (not necessarily distinct) context bases cb0j andcb0k such that cb0j is X-Y -normal for �j and cb0k is X-Y -normal for �k. Inaddition we know that �j �Si �k by (2) and choice of �i+1. By Lemma 9.17we may assume without loss of generality that both cb0j and cb0k have su�xtype X.Assume, to get a contradiction, that in the superposition T S0 the con-text base cb0j (or its placeholder base) has a node in the side area of cb0k(or its placeholder base) or vice versa. Then either cb0j and cb0k (or theirplaceholder bases) are branching in T S0 , in which case Corollary 9.11 yieldsa contradiction, or cb0j , which is normal for �j , has type X, in which caseLemma 9.10 yields a contradiction.We have seen that in T S0 neither cb0j (or its placeholder base) has a nodein the side area of cb0k (or its placeholder base) nor vice versa. It follows thatin T S0 neither cbj (or its placeholder base) has a node in the side area of cbk(or its placeholder base) nor vice versa. This shows that Failure Condition 2of Case III does not apply. LetTi+1 = hNi+1;Labi+1;CBi+1;Fieldi+1; IBi+1;Nodei+1;�i+1;�i+1i4maximal w.r.t other ground terms of the form Ŝi(�) for minimal �Si -closed and X0-closed � � �i. 45



be de�ned as described in Case III. We have to show that the above Condi-tions (0)-(5) hold for Ti+1.(0') Obviously there exists a canonical embedding of Ti in Ti+1. By (0)there exists an embedding of T0 in Ti+1.In the sequel, we do not distinguish between nodes of Ti and their imagesunder the canonical embedding in Ti+1.(1') Obviously �i+1 = f�1; : : : ; �i; �i+1g is a partition of a subset ofrel(Ti+1). Let � and �0 belong to the same class of �i+1. If �; �0 2 �i+1,then by construction (cf. Steps 3 and 4 in Case III) T �i+1 and T �0i+1 arestrictly isomorphic. If �; �0 belong to the same class of �i, then byassumption (1) T �i and T �0i are strictly isomorphic. Both � and �0 donot belong to �i+1, and by (6), neither � nor �0 is a descendant of anode in �i+1. Hence T �i and T �0i are only modi�ed if some descendantof � or of �0 is in �i+1. If �j 2 �i+1 falls in T �i , say, and if �0j is thecorresponding node of T �0i , then it follows from the strict isomorphism(see (1)) between T �i and T �0i and from �j 2 �i+1 that either both �jand �0j are top side nodes where �j �Si �0j, or both are x-nodes forsome x 2 X0. Hence by choice of �i+1 we have �0j 2 �i+1. This ob-servation shows that the subproblems T �ji and T �0ji of T �i and T �0i arereplaced by the steps of Case III by strictly isomorphic subproblems.It follows that T �i+1 and T �0i+1 are strictly isomorphic.(2') Let � and �0 be distinct y-nodes of Ti+1 for some y 62 X0. If � and�0 are y-nodes of Ti, then by assumption (2) there exists � 2 �i withnodes �1 and �01 in � and strictly isomorphic letter descriptions L andL0 with corresponding positions in T �1i and T �01i such that � and �0 arecorresponding top side nodes of L and L0. By (1), T �1i and T �01i arestrictly isomorphic. As in (1) it follows that T �1i+1 and T �01i+1 are againstrictly isomorphic. Hence the images of L and L0 in Ti+1 are strictlyisomorphic and we are done.In the other case Ti does not have a y-node. In this case the statement(2') follows from Lemma 9.1.(3') Let � 2 S�i+1 and let ' be an atomic sub�eld of T �i+1 that is a sub�eldof a context base. If � 2 �i+1 then it follows from Steps 3 and 4 inCase III that there exists an atomic base cb with �eld ' in Ti+1. If46



� 2 S�i and if ' is a �eld of a subproblem T �ji for some �j 2 �i+1then it follows again from Steps 3 and 4 in Case III that there existsan atomic base cb with �eld ' in Ti+1. In the remaining case it followsfrom the induction hypothesis that there exists an atomic base cb with�eld ' in Ti+1.Let Si+1 denote the canonical extension of Si which is given by the jointembedding of the problems T �1i ; : : : ; T �mi in Ŝi(�1) (cf. De�nition 4.5). Thismeans that (�) for L 2 ld(Ti) (resp. � 2 tsn(Ti)) we have Ŝi(L) = Ŝi+1(L)(resp. Ŝi(�) = Ŝi+1(�))).(4') We �rst show that the sets in �i+1 are X -closed. Let � 2 �i. Sinceby assumption (4) � is X -closed in Ti it follows from (6) that � isX -closed in Ti+1. The set �i+1 is X -closed by restriction (c) (cf. CaseIII of (Transl3)). If �i+1 contains an x-node, then all x-nodes of Ti+1are in �i+1. It remains to show that the sets in �i+1 are �Si+1-closed,i.e., with � 2 �k 2 f�1; : : : ; �i+1g and � �Si+1 �0 we have �0 2 �k,for all �0 2 tsn(Ti+1). By Remark 9.13, since � �Si+1 �0 there existsa sequence of pairs (L1; �1); : : : ; (Ln; �n) of letter descriptions Lj andtop side nodes �j of Lj in Ti+1, with � = �1 and �0 = �n, such that forall consecutive pairs (Lj ; �j); (Lj+1; �j+1) (1 � j � n� 1) either(a) Lj �Si+1 Lj+1 and �j and �j+1 are corresponding top side nodesof Lj and Lj+1, or(b) �j = �j+1 and Lj 6= Lj+1 belong to branching context bases.We use a subinduction to show that for all 1 � j � n always Lj is aletter description of Ti, �j is a top side node of Ti and �1 �Si �j . Thisshows that � �Si �0 and, by (4) and choice of �i+1, that �0 2 �k.For j = 1 we only have to show that L1 is in Ti. Otherwise therewould be an ancestor �0 of � that belongs to �i+1. By choice of �i+1this would mean that � is in �1 [ : : : [ �i. But then, by (�), Ŝi(�) is aproper subterm of Ŝi(�0), which contradicts (5).For the induction step, assume that Lj (�j) is a letter description (topside node) of Ti and �1 �Si �j . First assume (a) that Lj �Si+1 Lj+1and �j and �j+1 are corresponding top side nodes of Lj and Lj+1. IfLj+1 is not a letter description of Ti, or if �j+1 is not a top side nodeof Ti, then there exists an ancestor �0 of �j+1 that belongs to �i+1.Then, by induction hypothesis, Ŝi+1(�1) = Ŝi+1(�j+1) would be a47



proper subterm of Ŝi+1(�0). By (�), Ŝi(�1) would be a proper subtermof Ŝi(�0), which contradicts (5). In the second case (b) �j = �j+1and Lj 6= Lj+1 belong to branching context bases. As above theassumption that Lj+1 does not belong to Ti leads to a contradiction.(5') Let � 2 S�i+1 and �0 2 �i+1. First assume that �0 2 tsn(Ti). Inparticular �0 2 �i. If � 2 S�i, then by (5), Ŝi(�) = Ŝi+1(�) isnot a proper subterm of Ŝi(�0) = Ŝi+1(�0). If � 2 �i+1 the choiceof �i+1 guarantees that Ŝi(�) = Ŝi+1(�) is not a proper subterm ofŜi(�0) = Ŝi+1(�0). Now assume that �0 62 tsn(Ti), which means that�0 is a new top side node of Ti+1. Then �0 is a descendant of a node�j 2 �i+1. Since, by (5), Ŝi(�) = Ŝi+1(�) is not a proper subterm ofŜi(�j) = Ŝi+1(�j) it follows that Ŝi+1(�) is not a proper subterm ofŜi+1(�0).4. Let Ti be the last problem that is reached before we come to Case II. Let� and �0 be two x-nodes of Ti, for some x 2 X . Both are in rel(Ti), hencein S�i. It follows from (4) of the previous step that � and �0 belong to thesame class of �i. By (1), the problems T �i and T �0i are strictly isomorphic.By (3), the �nal marking of Case II does not modify T �i and T �0i . Hencethe subproblems of the output T 0 given by the nodes � and �0 are strictlyisomorphic as well.5. Let T 0 2 T be solvable. In Part 3 above we have seen there exists anembedding of T in T 0. By Lemma 4.2, T is solvable.
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