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Abstract

Context unification is a natural variant of second order unifica-
tion that represents a generalization of word unification at the same
time. While second order unification is wellknown to be undecidable
and word unification is decidable it is currently open if solvability of
context, equations is decidable. We show that solvability of systems of
context equations with two context variables is decidable. The context
variables may have an arbitrary number of occurrences, and the equa-
tions may contain an arbitrary number of individual variables as well.
The result holds under the assumption that the first order background
signature is finite.

1 Introduction

A ground context is a ground term with exactly one occurrence of a spe-
cial constant that represents a missing argument. Ground contexts can be
applied to ground terms, which results in a replacement of the special con-
stant by the given ground term. Similarly ground contexts can be applied
to ground contexts. From this perspective, a ground term can be considered
to be composed of ground contexts and ground terms in different ways.
Context unification speaks about this form of composition. Given a first-
order signature, a set of individual variables and a set of so-called context



variables, context terms are built like first order terms with additional con-
text variables. Syntactically, context variables are treated like unary func-
tion symbols. A context equation is an equation between context terms.
A solution of a context equation is a substitution that maps both sides of
the equation to identical ground terms, where substitutions are mappings
that assign ground contexts over the given first order signature to context
variables. The main result of this paper is the following

Theorem 1.1 (Main Theorem) Solvability of finite systems of context
equations with two context variables is decidable.

Both context variables may have an arbitrary number of occurrences, and
the equations may contain an arbitrary number of individual variables as
well. The result holds under the assumption that the first order background
signature is finite. The paper provides a partial solution to the Context
Unification Problem that has recently attracted considerable attention [3, 4,
13, 29, 18, 19, 24]:

Is solvability of arbitrary context equations decidable?

The interest in this problem relies on its close connection to several other
well-studied decision problems.

Context unification represents a natural variant of second order unifica-
tion, which is known to be undecidable ([8, 6, 14]). Ground contexts—the
substitution instances of context variables—can be considered as A-terms
with exactly one occurrence of a single A-bound variable.! Second order
unification is different in two respects: first, substitution instances of second
order variables may have an arbitrary number of A-bound variables (de-
pending on the arity of the variable). Second, there is no limitation on the
number of occurrences of a given bound variable in the substitution term,
and in particular this number may be zero. This second property makes
an important difference to context unification. A recent result [23] shows
that second order unification becomes decidable if an upper bound on the
number of occurrences of a given bound variable in the substitution term is
fixed. If context unification would turn out to be decidable, the latter result
would be a simple consequence. It is known that second order unification
is undecidable even for problems with one second order variable only [7].
Hence our results show that with respect to decidable fragments there is

'In other formulations of context unification, instances of second order variables may
have an arbitrary number of bound variables, each having exactly one occurrence.



at least some significant difference between context unification and second
order unification.

Context unification can also be considered as a generalization of word
unification [15, 1, 11, 25, 26, 12, 5]. Decidability of word unification had been
an open problem for many years. The problem was raised by A. A. Markov
in the late 1950’s who hoped to prove the undecidability of Hilbert’s tenth
problem by showing undecidability of the word unification problem. In
this context, Y. Matiyasevich [17] gave a simple decision procedure for
word unification problems where each variable occurs at most twice. Later,
J.I. Hmelevskii (see [10]) proved decidability of word unification for problems
with two and three variables with an arbitrary number of occurrences. In
his famous paper [15], G. S. Makanin then fully solved the problem, showing
that solvability of arbitrary word equations is decidable.

In [25] Makanin’s result was generalized in the following way: given a
word equation Wi = Wy with variables in {Xy,..., X, } and constants in
the finite alphabet C, and given regular languages Lq,..., L, over C, it is
decidable if there exists a solution S of Wi = Wy where S(X;) € L;, for
1 =1,...,n. This result will be used here to prove the Main Theorem.

An important role of Makanin’s result or its extension in [25] is the
following. Given a new decision problem P, a reduction of P to word uni-
fication (with regular constraints) shows that P is decidable. Conversely a
reduction of word unification to P shows that the problem is hard. See [5, 9]
for various applications of this technique. On this background it seems clear
that a positive decidability result for context unification would have many
interesting consequences. From a practical point of view, context unification
is used as a formalism for semantic analysis of natural language utterances
[18, 19]. It also occurs in the context of distributive unification [22] and
completion of rewrite systems with membership constraints [3, 4].

Some partial results concerning context unification are the following.
J. Levy [13] has shown that solvability of context unification problems where
each variable occurs at most twice is decidable. In [21] there is an algo-
rithm and a sketch of a proof showing that solvability of so-called stratified
context unification problems is decidable; a complete proof for a restricted
signature is published in [22]. Stratification imposes strong restrictions on
the nesting of context variables. In [24] the authors have given an upper
bound on the so-called exponent of periodicity of a minimal solution of a
context equation. In the case of word equations a similar bound was a
key ingredient of Makanin’s decidability result. J. Niehren, M. Pinkal and
P. Ruhrberg [18] showed that context unification and so-called “equality



up-to constraints” are equally expressive. It is also shown there that one-
step rewriting constraints can be expressed by stratified context unification
problems. Recently, it was noticed [20] that the converse is also true, which
shows that stratified context unification and one-step rewriting constraints
are interreducible. It was also noticed in [18] that the first-order theory of
context unification is undecidable, using the fact that the first-order theory
of one-step rewriting is undecidable [27, 28, 16]. This result was improved
by S. Vorobyov [29] who showed that the V3% equational theory of context
unification is co-recursively enumerable hard.

The proof of Theorem 1.1 uses a series of four non-deterministic trans-
lation steps. First we restrict considerations to single context equations.
Eventually, a given context equation with two context variables is translated
into a finite set of systems of word equations with so-called linear constant
restrictions. Linear constant restrictions [2] represent a special type of the
regular constraints described above.

1. In the first translation step, which will be described in Section 4, a
given context equation is non-deterministically transformed into a so-
called generalized context problem. Such a problem essentially gives a
partial description of a ground term that represents a (hypothetical)
solution of the given equation.

2. In the second step (Section 5), this description is slightly extended by
guessing the function symbols at so-called branching points of context
variables.

3. Whereas the first two translation steps work for an arbitrary number
of context variables, the third translation step in Section 6 is much
more delicate. Here some subparts of the given generalized context
problem have to be identified, and as a result we may obtain other
subparts that are again subject to identification. In general it seems
at least very difficult to find a strategy for identification that can
guarantee termination. However, in the case of two context variables
a special failure condition can be used that solves this problem. The
rather technical correctness proof for the third translation is given in
the Appendix.

4. In Section 7 finally the resulting problems are translated into systems
of word equations with linear constant restriction. This last translation
again does not depend on the number of context variables.



In Section 8 we combine the results for the single translation steps and prove
Theorem 1.1, first for the case of a single context equation. We show how
to extend the decision procedure to finite systems of context equations. A
whole bunch of technical notions that is needed will be given in the following
section.

2 Formal Preliminaries

Throughout this paper, . denotes a finite signature of function symbols
having at least one constant. With ar(f) we denote the arity of the function
symbol f € 3. Besides the symbols from ¥, a special constant “Q2” that
does not belong to ¥ will be used. With ¥ := ¥ U {Q} we denote the
extended signature where € is treated as a constant.

VY denotes an infinite set of context variables X,Y,Z,.... We shall also
use individual variables z,y, z, ..., and X denotes the set of individual vari-
ables.

2.1 Notions based on term representation

We first give syntax and semantics of context unification. To begin with,
ground terms over ¥ and (occurrences of) subterms are defined as usual.

Definition 2.1 A ground context is a ground X%-term ¢ that has exactly
one occurrence of the constant €2, called the “hole” of {. With a subterm of
a ground context ¢ we always mean a Y-subterm of ¢. The ground context
Q is called the empty ground context.

Given a ground context s and a ground term/context ¢ we write st for the
ground term/context that is obtained from s when we replace the occurrence
of Q in s by ¢t. Note that this form of composition is associative.

Definition 2.2 The set of context terms over ¥, X and V is inductively
defined as follows:

— each constant a € X is a context term,

— each individual variable z € X’ is a context term,

— if t1,...,t, are context terms and f € ¥ is n-ary, then f(t1,...,%,)
is a context term,

— iftis a context term and X € V, then X(¢) is a context term.



A context equation is an equation of the form s = ¢ where s and t are context
terms.

Definition 2.3 A substitution is a mapping S that assigns a ground context
S(X) to each X € V, and a ground term S(z) to each x € X. The mapping
S is extended to arbitrary context terms as follows

(a) := a for each constant a € %,

)
(f(t1y.- tn) :== f(S(t1),...,S(ty)) for n-ary f € %,
- S(X(t)) := S(X)S(t) for X € V.

<

S
S

A substitution S is a solution of the context equation s = ¢ if S(s) = S(¥).

Example 2.4 Let ¥ := {f,g9,a} where f is binary, g is unary, and «a
is a constant. The context equation X (X (a)) = f(Y(f(Y(a),Z(a))),x)
is solved by the substitution X — f(g(R2),9(g9(a))), ¥ — ¢(Q), Z —
9(9(R)),z — g(g(a)) since under this substitution both sides are mapped to

f(g(f(9(a),9(g(a)))), 9(g(a)))-

Definition 2.5 A solution S of the context equation s = t is positive iff
S maps each context variable appearing in s = ¢ to a non-empty ground
context.

Clearly, in order to decide solvability of a given context equation s = ¢ it
suffices to have a procedure for deciding positive solvability: we may simply
guess which context variables are instantiated by the empty ground context
and instantiate these variables by €2 in the equation s = t. In the sequel,
with a solution of a context equation we always mean a positive solution.

Definition 2.6 The ground context s is a subcontext of the ground term ¢
iff there exists a ground term ¢; and a ground context r such that ¢ = rsty.

Note that in this situation the root of the given occurrence of £; marks the
position of the (filled) hole of s. In this sense we can talk about the position
of the hole of an occurrence of a ground subcontext, regardless of the fact
that the ground term ¢ does not have any occurrence of the constant (2.

Definition 2.7 The ground context s is a suffiz of the ground context ¢ iff
t can be represented in the form ¢ = rs, for some ground context r.



Definition 2.8 Let ¢ be a ground context. The main path of t is the path
from the root to . The side area of ¢ is the set of all nodes that do not
belong to the main path.

Following the remarks above we shall also talk about the main path/side
area of a given occurrence of a ground context as a subcontext of a ground
term. The following definition yields the basis for the correspondence be-
tween ground contexts and words that we shall use in Section 7 for the final
translaton step.

Definition 2.9 A ground context C is a letter iff the hole of C is in depth
1. For each ground context C' with hole in depth k there exists a unique
sequence of letters Ci,...,C} such that ¢ = C7---C;. The elements
Ci,...,C are called the letters of C.

Let us fix some notational convention for the rest of the paper. With a
ground term we always mean a ground Y-term if not mentioned otherwise.
Ground terms and ground contexts will be denoted with letters ¢, 7, s. When
we fix a particular occurrence of a ground term/context in a given ground
term/context we use expressions with superscripts like t@ rU) ete. The
same convention will be used for other expressions.

2.2 Notions based on tree representation

Definition 2.10 A tree domain is a finite, non-empty set N of sequences
of positive natural numbers of length n > 0 such that

1. N is rooted, i.e., there exists an element 17 € N such that 7 is a prefix
of each element of N,

2. m € N and 1 oy in N implies 71 o n3 € N, for all prefixes n3 of ne.

The elements of N are called nodes. If the node 7 is a proper prefix of 7/,
then ' is called a descendant of n, and 7 is an ancestor of n’. If the length
of ' is the length of n plus 1, then 7’ is a child of 5. A node is a leaf if
it does not have any child, otherwise it is an inner node. A node of N is
branching if it has at least two distinct children in N. Two nodes 7; and 7
are incompatible if neither 7y is a prefix of 7y nor vice versa.

Definition 2.11 A subtree domain of a tree domain N is a subset N’ of N
that is a tree domain.



The preorder relationship on a tree domain is the strict linear order
where nodes are enumerated using the following recursive traversal order:
to traverse a given subtree domain, first traverse the first (second,...) imme-
diate subtree domain, and then visit the root. This relation extends both
ancestor relationship and the left-to-right ordering.

Definition 2.12 Let N be a tree domain. A field of N is a sequence of
nodes ¢ = (0o, ..., nk) (k > 1) such that n;41 is a child of n;, for 0 < i < k—1.
Node 19 (ni) is the initial (resp. final) node of the field, the number £ is
the length of the field. The side area of (ng,...,n) is the set of all nodes
of N that are descendants of one of the nodes 7g,...,n_1, but neither in
{no,...,nx} nor in the set of descendants of n;. Fields of length 1 are called
atomic. Two fields of N are branching if they have a common node and if the
final nodes are incompatible. The maximal common prefix of the final nodes
is called the branching point of the two fields. Let n; and 12 be incompatible
nodes. The maximal common prefix of 1; and 7, is denoted MCP y (11, 72).

Definition 2.13 A labeled tree domain is a pair (N, Lab) where N is a tree
domain and Lab : N — ¥ is a partial function such that Lab(n) = f € &
implies that 1 has exactly k := ar(f) children of the form no(1),...,no (k).

Note that each ground term in a natural way represents a labeled tree
domain with a total labeling function. In the sequel, we do not distinguish
between these two notions. We shall also treat ground contexts as totally
labeled tree domains (N, Lab) where Lab: N — %%

Definition 2.14 If ¢ = (n9,..., %) is a field of the ground term ¢, then ¢
together with its side area defines a unique non-empty ground subcontext
s of t. The root of s is given by 7y, and 1 marks the position of the hole.
This subcontext is called the ground subcontext of t with main path .

If F : Ny — Ny is a mapping between two labeled tree domains
(N1, Laby) and (Ns, Labs), we say that F respects branching points if
F(MCPy, (n1,72)) = MCPy, (F(n1), F(n2)) for all incompatible nodes 11, 12
of Ni. We say that F' respects children relationship for labeled nodes if each
child of a labeled node n € N; is mapped to a child of F(n) under F.

Definition 2.15 Let (Ny, Lab;) and (N2, Laby) be labeled tree domains.
An injective mapping F : Ny — Ny is a labeled tree embedding iff F re-
spects root, Y-labels, preorder relationship, branching points, and children
relationship for labeled nodes.



If o = (no,...,m) is a field of Ny we write F(p) or F(ng,...,n;) for the
subfield of Ny with initial (resp. final) node F'(ny) (resp. F(nx)). Note that
F respects branching points iff F'(n) is the branching point of F(¢1), F(p2),
for all branching fields ¢; and @9 of N7 with branching point 7.

3 Generalized Context Problems

We may now define the central data structure of the translation steps to be
described later.

Definition 3.1 A generalized context problem over the signature X is a
tuple T = (N, Lab, CB, Field, IB, Node) where

1. (N, Lab) is a labeled tree domain.

2. CB is a finite set. The elements of CB are called context bases. Each
context base has a unique type. The type of a context base is a context
variable. Context bases are written in the form cb, or in the more
specific form X (@ where i is a natural number and X is the type.

3. Field is a function that assigns to each context base ¢cb € CB a field
Field(cb) of N.

4. IBis a finite set. The elements of IB are called individual bases. Each
individual base has a unique type, which is an individual variable.
Individual bases are written in the form ib, or in the more specific
form 2( where i is a natural number and z is the type.

5. Node: IB — N is a total function.
The following conditions have to be satisfied:

6. each child of an unlabeled node of T' is a non-initial node of the field
of a base of T',

7. each leaf nn of N is either labeled with an individual constant in ¥ or
there exists an individual base ib € IB with Node(ib) = .

T is called first order if CB and Field are empty.



See Example 3.3 for a graphical representation of a generalized context prob-
lem. If T is first order, each inner node of T is labeled, by Condition 6. In
this case T can be considered as a first order term where in addition nodes
may be decorated with individual variables. More general, given the notion
of a solution as introduced below, Condition 6 ensures that the values of the
bases uniquely determine the solution.

Since in a generalized context problem T each context base has a unique
field we may also refer to the final (resp. initial) node, and similarly to
the side area of a given context base. Two context bases are branching if
their fields are branching. The branching point of the fields is also called
the branching point of the two context bases. A context base cb is atomic
if Field(cb) is atomic. A context base chy is a subbase of cby if Field(chy) is
a subfield of Field(chs).

Definition 3.2 Let T'= (N, Lab, CB, Field, IB, Node) be a generalized con-
text problem. A solution of T is a pair (¢,.S) where ¢ is a ground term and
S is a labeled tree embedding from N to the set of nodes of ¢ such that the
following conditions hold:

1. for all context bases X () and X () of the same type X of T the ground

subcontexts of ¢ with main paths S(Field(X®)) and S(Field(X)))
respectively are identical, and

2. for all individual bases (" and z(9) of the same type z of T' the ground
subterms of ¢ with roots S(Node(z(")) and S(Node(z7))) respectively
are identical.

If (¢, ) is a solution of T' and 7 is a node of T’ we write S(n) for the subterm
of t with root S(n). If ¢ is a field of T we write S(¢) for the ground
subcontext of ¢ with main path S(y). If X(?) is a context base of T' we write
S(X @) for S(Field(X®)). Since all context bases of type X are mapped to
the same ground context we also write S(X) instead of S(X(?). Similary,
if 2@ is an individual base of T we write S(z(®) for the ground subterm
S(Node(z™)) and we write S(z) instead of S(z(®).

Example 3.3 The following figure represents a generalized context problem

T and the solution term ¢ of a solution (t, 19) The grey areas represent the
ground contexts S(X) = S(X() = ... = §(Xx4),
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Remark 3.4 Let n be a labeled node of the generalized context problem
T, and let ny,...,n, be the children of n. If (¢,S) is a solution of 7', then
S(m),...,S(n,) is the sequence of the maximal subterms of S(n).

Remark 3.5 Let n be an unlabeled node of the generalized context problem
T, and let 7; and 79 be two distinct children of 7. If (¢,5) is a solution of
T, then S(n) is the branching point of the fields S(n,n:) and S(n,n2) in ¢
since S respects branching points. This shows that the number of children
of n in T cannot exceed the arity of the label of S(n).

The following definition introduces a concept that will become central
later.

Definition 3.6 Let T'= (N, Lab, CB, Field, IB, Node) be a generalized con-
text problem. An atomic subfield (n,7n’) of the field of a base cb € CB, with
labeled node 7, is called a letter description of T' (or of ¢b) with main node
n and label Lab(n). If ' is the i-th child of 7, then (n,7’) has direction i.

We use symbols L, L; etc. to denote letter descriptions. With Id(T) we
denote the set of all letter descriptions of T'. Note that if (¢, S) is a solution
of T and L is a letter description of the context base cb of T, then the
ground subcontext S(L) is a subletter of $(cb). This follows easily from the
fact that S preserves children of labeled nodes.

11



4 Translation of context equations into general-
ized context problems

In this section we define the notion of a superposition of two generalized con-
text problems and use it for translating context equations into generalized
context problems.

Definition 4.1 Let 73 = (Ny,Lab;, CBy,Field;,IBy, Node;) and T =
(N, Lab, CB, Field, IB, Node) be generalized context problems. An embed-
ding of Ty in T is a labeled tree embedding F' : Ny — N such that

1. each field of a context base of type X of T} is mapped to the field of
a context base of the same of type X of T' under F, for all X € V,

2. each node of an individual base of type x of T} is mapped to the node
of an individual base of the same type z of T under F', for all z € X.

Lemma 4.2 If there exists an embedding F of Ty in T, and if (t,5) is a
solution of T, then (t,F o S) is a solution of T}.

Proof. Obvious. O

Definition 4.3 Let n > 2. The generalized context problem T is a super-
position of the generalized context problems Ty,...,T, iff for i = 1,...,n
there are embeddings F; of T; in T' such that the following conditions hold:

1. For each context base X(") of T there exists i € {1,...,n} and a
context base X(9) of the same type of T} such that Field(X()) =

Fj(Field;( X)),

2. For each individual base (") of T there exists i € {1,...,n} and an
individual base z(*) of the same type of T; such that Node(z(")) =
F;(Node;(z(*))),

3. For each node n of T either there exists i € {1,...,n} and a node
n' of T; such that n = F;(n'), or there are two distinct indices 4,5 €
{1,...,n} and bases cb; € CB; and cby € CB; such that the images
of ¢by and cby in T branch at 7.

4. Modulo renaming of exponents, the set of context (individual) bases of
T is the union of the sets of context (individual) bases of the problems
Ty,...,T,.

12



It should be noted that the nodes of individual bases are not necessarily
leaves.

Lemma 4.4 Fori=1,...,n, let T; = (N;, Lab;, CB;, Field;, IB;, Node;) be
a generalized context problem.

1. The set of all superpositions of Ty,..., T, is (modulo renaming of
nodes/exponents) finite.

2. 1f, for some ground term t, each T; (1 < i < mn) has a solution of the
form (t,S;) where the embeddings S; assign the same ground context
(resp. term) to context (individual) bases of the same type, then there
exists a superposition T of Ty, ..., T, with a solution of the form (t,S)
where S(S;(n)) = Si(n) for all nodes n of T; (1 <i<mn).

Proof. 1. The first statement is an obvious consequence of Definition 4.3.

2. Fori=1,...,n, let (t,5;) be a solution of T; where the solutions
S; assign the same ground context (term) to context (individual) bases of
the same type. Call a node n of ¢t relevant if it has the form S;(n’) for some
n' € N; (i € {1,...,n}), or if there exist distinct indices 4,j € {1,...,n} and
context bases cby € CB; and cby € CB; such that the fields S;(Field;(cbi))
and Sj(Field;(chs)) branch at 7. Note that the root of ¢ is relevant. Let N
denote the set of relevant nodes of ¢. Let Lab denote the labeling function
where exactly the nodes ' € N are labeled that have the form S;(n’) for
some labeled node ' € N; (i € {1,...,n}), and where Lab(n) := Lab;(n).
Since the mappings S; are solutions it follows that Lab coincides with the
natural labeling of the nodes of the ground term ¢ which in particular implies
that Lab is well defined. Now introduce a set of context (individual) bases,
CB (resp. IB), and a function Field (resp. Node) as follows: for each base
X (resp. ) of T; (i € {1,...,n}), CB (resp. IB) contains a base of
type X (resp. x) with field S;(Field;(X (")) (resp. node S;(Node;(z(™))).

It is obvious that T' := (N, Lab, CB, Field, IB, Node) is a superposition
of Ty,...,T, where the mappings S; represent the embeddings (1 < i <mn).
We show that (¢, Idy) (where Idy is the identity mapping on N) represents a
solution of T'. Obviously Idy respects root, >-labels, preorder relationship,
and children relationship for labeled nodes.

In order to show that Idy preserves branching points it suffices to
show that for two incompatible relevant nodes 77 and 7y of N always
1 := MCP(ny,n2) is again relevant. We may assume that none of the nodes
between n and 7y (resp. 72) is relevant. We distinguish two cases.

13



Case 1: there exists an index ¢ € {1,...,n} and nodes 1}, 75 € T; such
that n; = Si(n;-) for j = 1,2. Since S; preserves branching points it follows
that n = MCPy(n1,n2) = S;(MCP y, (n},n5)) is relevant.

Case 2: In the remaining case there exist distinct indices 7,5 € {1,...,n}
and nodes 1] € N; and 75 € N; such that n; = S;(n}) and 72 = S;(n5). We
consider the parents n{ and 74 of the nodes 7} and 7} respectively. First
assume that one of these nodes, say, n{, is labeled. Because S; preserves
children relationship of labeled nodes, then the father of 7; is labeled and
relevant. Our assumptions imply that it coincides with n and we are done.
In the second case both n{ and 7y are unlabeled. Hence, by Condition 6
of Definition 3.1 there exist context bases cb; € CB; and cby € CB; such
that Field;(cb;) contains i} and 7] and Field;(cby) contains 75 and n5. The
image of Field;(cb) under S; contains 1, and the image of Field;(cby) under
S contains 7. Moreover, our assumptions on relevance of nodes imply that
both image fields also contain 7. It follows that the fields S;(Field;(cby))
and S;(Field;(cbs)) branch at 1, which implies that 7 is relevant.

Summing up, we have seen that Idy is a labeled tree embedding. If X (")
and X(®) are two context bases of T, with fields ¢, and ¢,, say, then there
exist bases X(") and X&) of problems T} and T; with fields ¢, and ¢y
such that S;(¢,) = ¢, and Sj(ps) = @s. Let @7 and @z denote the fields
of t that represent the images of ¢,/ (resp. ¢y) under S; (resp. S;). Our
assumptions on S; and S; show that the two ground subcontexts of ¢ with
main paths ¢, and @ coincide. On the other hand, by construction, the
fields ¢, and g of t represent the images of ¢, and ¢s under Idy. Hence
we have Idy (X ™) = Idy(X©®).

In the same way it follows that Idy (z(")) = Idy(z(®)) for all individual
bases (") and z(*) of the same type of T'. It follows that (¢, Idy) is in fact
a solution of T'. Obviously we have Idy(S;(n)) = Si(n) for all nodes n of T;
(1 <i<n). O

Definition 4.5 For i = 1,...,n, let T; = (N;, Lab;, CB;, Field;, IB;, Node;)
be a generalized context problem. Assume that each T; (1 < i < n) has
a solution of the form (¢,S;) where the S; assign the same ground context
(term) to context (individual) bases of the same type. The superposition
T of Ty,...,T, described in Part 3 of the previous proof will be called the
superposition given by the joint image of Ty1,..., T, in t under Si,..., S,
and S := Idy is the canonical solution of T extending Si,...,Sy.

14



The following translation lemma makes use of the fact that each con-
text term ¢ represents in a natural way a generalized context problem,
T := (Ny, Laby, CBy, Field,, IB;, Node;), where Ny (Laby) is the set of po-
sitions (resp. labeling function) of the term ¢, where CB; (res. IB;) is given
by the set of all occurrences of context (resp. individual) variables in ¢,
where Field;(X(®) has as its initial (resp. final) node the position of the
i-th occurrence of X in t (resp. the position of the head symbol of its ar-
gument term), and where Node(z(")) is the position of the i-th occurrence
of z in t. Note that (N, Lab;, CBy, Field, IBy, Node;) is trivially solvable
in the sense that each assignment of non-empty ground contexts (ground
terms) to the context variables (individual variables) in ¢ defines a solution
of (Nt, Labt, CBt, Fieldt, IBt, Nodet).

Lemma 4.6 (Transll) For each context equation E it is possible to com-
pute a finite set T of generalized context problems such that E has a solution
iff some T € T has a solution. If E has occurrences of k context variables
only, the same holds for the problems in T.

Proof. Consider a context equation £; = t9. As described above, each
of the context terms ¢; can be considered as a trivially solvable generalized
context problem T;. Let T denote the set of superpositons of T7 and T5.
If t; = 5 has a solution?, then T} and T, have solutions (¢,5;) and (¢, S)
that satisfy the conditions given in Lemma 4.4. The lemma shows that an
element of 7 has a solution. If some member T of 7 has a solution, then
it follows from Lemma 4.2 that T} and T, have solutions of the form (¢, S})
and (¢, S2) respectively where S and S, assign the same ground context to
context (resp. individual) variables of the same type. It follows that t; = ¢y
has a solution. O

5 Transparent generalized context problems

In this section we describe a simple translation that assigns to a given gen-
eralized context problem T a finite set of generalized context problems T’
where the branching points of bases are always labeled nodes. Given an un-
labeled branching point, we essentially just guess the label of the branching
point. Here it is essential that the given first-order signature ¥ is finite.

2Recall that with a solution of a context equation we always mean a positive solution.
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Definition 5.1 A generalized context problem T is transparent iff each
branching point of two bases of T is always labeled.

The following simple observation will be used in the correctness proof of
the final translation into word equations with linear constant restriction in
Section 7.

Lemma 5.2 Let T be a transparent generalized context problem. FEach un-
labeled inner node of T has exactly one child.

Proof. Let 1 be an unlabeled inner node of the transparent generalized
context problem 7. By transparency, n cannot be a branching point of two
bases of T'. Part 6 of Definition 3.1 shows that 1 has exactly one child. O

We may now give the translation procedure.

Definition 5.3 [Procedure (Transl2)] The input of this procedure is a
generalized context problem T'. If there exists a branching point 7 of two
bases of T' that is unlabeled, with children 7y, ..., n,, say, then

1. non-deterministically choose a function symbol f € 3., of arity n > m,
and label 5 with f,

2. introduce n new children in the left-to-right order 7},..., ..

3. Now each old child 7; is nondeterministically either identified with
some new child n}, or appended as the unique child of n}. In this step,
distinct new children n;- are used for distinct old children 7;, and the
left-to-right ordering is respected.

4. Each new child 779 that is not used in the previous step represents
a leaf. We introduce an individual base ib of new type and define
Node(ib) = 779. We always use distinct types z € X for individual
bases of distinct leaves.

5. Repeat Steps 1-4 until all branching nodes are labeled.
6. Update the field function accordingly.

The output of the procedure consists of the set 7 of all generalized context
problems that are reached by suitable choices in the nondeterministic steps.
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Definition 5.4 Let L = (n,7n') be a letter description of the generalized
context problem T with label f of arity n. The n — 1 children of i that are
different from n' are called the top side nodes of L. We write (n1,...,0p—1) =
tsn(L) if ny,...,n,—1 is the sequence of all top side nodes of L in the natural
left-to-right ordering. In this situation, n; is called the i-th top side node of
L. A node 7 is called a top side node of T if n is a top side node of a letter
description of T. With tsn(T') we denote the set of all top side nodes of T'.
If L and L' are two letter descriptions with the same label and direction,
and if n (resp. 7n') is the i-th top side node of L (resp. L'), then n and n’
are called corresponding top side nodes of L and L'.

Lemma 5.5 ((Transl2)) Assume that (Transl2) generates the output set
T, given the generalized context problem T as input. Then

1. T is (modulo renaming of new individual bases) finite,

2. each element of T is a transparent generalized context problem. If T
has only context bases of k types, then the same holds for the general-
ized context problems in T.

3. if T has a solution, then some T' € T has a solution,

4. if some T" € T has a solution, then T is solvable.

Proof. 1. Part 1 is obvious. 2. Let 7" € 7. In order to show that
T' is a generalized context problem we verify that 7" satisfies Condition 6
of Definition 3.1. All other conditions are trivially satisfied. Consider a
new child 7. If i represents an unlabeled node of the new problem, then
either n;- is identified with an unlabeled child 7, or n;- has exactly one child
that represents an old child 7;. In the first case it follows that 773 and its
children satisfy Condition 6 of Definition 3.1. In the second case note that
7;, as a child of the unlabeled node 7, is a non-initial node of some base of
T. Tt follows again that n}- and his unique child n; satisfy Condition 6 of
Definition 3.1. It follows from Part 3 of (Transl2) that the procedure does
not introduce new branching points. Hence T" is transparent. Obviously, if
T has only context bases of two types, then the same holds for the generalized
context problems in 7.

3. Let (¢,5) be a solution of T'. Consider a branching point 7 of two
bases of T' that is unlabeled. If 7; and n; are two distinct children of n, then
the largest common prefix of S(1;) and S(n;) in ¢t is MCP(S(n;), S(n;)) =
S(MCPr(ni,n;)) = S(n). If follows easily that for one of the problems 7’
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generated by (Transl2) there exists an embedding S’ such that (¢, S") solves
T

4. Part 4 follows from the fact that for each of the new problems T’
there exist an embedding of T in T”, using Lemma 4.2. O

6 Identification of letter descriptions

We now come to the most difficult translation step. The basic idea is very
simple. We want to guess which letter descriptions of a given transparent
generalized context problem 7" are mapped to the same ground letter under
a given (hypothetical) solution of T', and we want to identify these letter
descriptions. We shall proceed in an indirect way and guess (roughly) which
top side nodes of T are mapped to identical ground terms. The subtrees of
these top side nodes are replaced by a common superposition, which means
that each solution of the new problem will always map these subtrees to the
same ground term. If for given letter descriptions Ly and Ly of the new
problem each pair of corresponding top side nodes is identified in this sense,
this also means that L; and Ly are mapped to the same ground letter under
any solution.

Given this simple idea, there are essentially two complications. First,
a closer look at the technical details shows that we cannot simultaneously
treat all equivalence classes of top side nodes that we would like to identify.
The difficulty arises from the fact that a letter description may be part of
the side area of another letter description. We proceed in an iterative way,
identifying top side nodes in “top-down” manner.

Second, when we superimpose the subtrees of two given top side nodes
we may obtain new branching points of bases in the superposition, which
means that we may produce new letter descriptions and new top side nodes
at such a step. Aslong as we do not restrict the number of context variables
(i.e., the number of types of context bases), we see no way to guarantee
termination. For this reason we consider input problems that only have
context bases of two types. In this case, termination can be enforced.

The procedure will also identify the subtrees of all nodes that represent
the image of the same individual variable.

Before we can give the algorithm, several concepts are needed. The first
notion explains when two generalized context problems can be considered
to be essentially identical.
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Definition 6.1 For i = 1,2, let T; = (N;, Lab;, CB;, Field;, IB;, Node;) be
a generalized context problem. T} and T» are strictly isomorphic iff there
exists a bijection F': Ny — Ny such that F is an embedding (cf. Def. 4.1)
of Ty in Ty and F~' is an embedding of 75 in T7. Each pair of the form
(n, F(n)) (n € Ny) is called a pair of corresponding nodes of Ty and Th.

The following definition formalizes the concept of the subproblem of a
generalized context problem T given by a particular node of T'.

Definition 6.2 Let n be a node of the generalized context problem T =
(N, Lab, CB, Field, IB, Node). The subproblem of T' defined by n is the gen-
eralized context problem T = (N, Lab", CB", Field", IB", Node") with the
following components: N7 is the set of descendants of 7, together with 7.
Lab" is the restriction of Lab to N". Let cb be a context base of CB such
that |Field(cb) N N"| > 2. If Field(cb) C N", then cb is a context base
of CB" with the same field and type as in T. If Field(cb) € N" we intro-
duce a “placeholder” base cb’ with field Field"(cb’) := Field(cb) N N in
CB" that represents the suffix Field(cb) N N of cb. The context base cb’
receives a new context variable as its type. For each individual base ib of
T with Node(ib) € N the set IB" inherits a base ib of the same type with
Node'(ib) := Node(ib).

Definition 6.3 A transparent generalized context problem T is marked iff
for every atomic subfield ¢ of the field of a context base of T there exist a
context base cb of T such that Field(cbh) = .

The following lemma clarifies the role of markedness.

Lemma 6.4 Let n1 and 12 be two nodes of the generalized context problem
T with solution (t,S). If T is marked and if the problems T™ and T™ are
strictly isomorphic, then S’(n’l) = 5'(775) for each pair of corresponding nodes
(7). 15) of T™ and T™. In particular S(n) = S(n2).

Proof. Simple, cf. Lemma 4.2. O
Definition 6.5 Let L and L’ be two letter descriptions of the generalized
context problem T with the same label and direction. L and L' are strictly

isomorphic iff for all corresponding top side nodes  and i’ of L and L’ the
subproblems T and T" are strictly isomorphic.
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The next proposition is a simple consequence of Condition 6 of Defini-
tion 3.1.

Proposition 6.6 Let L; and Lo be strictly isomorphic letter descriptions of
the generalized context problem T. If (t,S) is a solution of T, then S(Ly) =

S(Ly).

Definition 6.7 Let T be a marked generalized context problem. A solu-
tion (t,S) of T is rigid iff it satisfies the following condition for all letter
descriptions Ly and Lo of T S’(Ll) = S’(Lg) iff Ly and Ly are strictly
isomorphic.

Rigid solutions are introduced since in the last translation step only rigid
solvability of a marked generalized context problem ensures solvability of its
translation (a system of word equations with linear constant restriction.)

Definition 6.8 Let T" = (N, Lab, CB, Field, IB, Node) be a transparent
generalized context problem. Given an individual variable z € X we say
that n € N is an z-node of T iff T has an individual base ib of type x with
Node(ib) = n. Let ) C X be a set of individual variables. The subset 7 of
N is called Y-closed iff, for each y € )Y the following condition holds: if 7
contains an y-node, then 7w contains each y-node of T

We may now give the translation algorithm. In the following procedure
we use two sets II; and A;. Intuitively, II; collects the equivalence classes
of all the nodes that have been identified already, and A; represents the set
of all nodes that are still subject to identification. In the sequel, let rel(T')
denote the set of all top side nodes and of all nodes of individual bases of T'.

Definition 6.9 [Procedure (Transl3)] The input is a transparent gener-
alized context problem T' = (Ny, Laby, CBy, Fieldy, IBy, Nodey) with context
bases of type X or Y only. Let Ay denote the set of all individual variables
z € X such that T has an z-node. In a first step, T is transformed into
the problem Ty = (Ny, Laby, CBy, Fieldy, IBy, Nodeg, [Ty, Ag) where I1j := ()
represents the empty partition and Ag := rel(Ty).

I. Assume that we have reached after 4 steps the problem

Ti == (Ni,Labi, CBZ',FI'ele',IBZ',NOdei,Hi,Ai>
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where II; = {m,...,m} is a partition of a subset of rel(T;) and where
A; = (rel(Ty) \ UTL;). If A; = 0, then go to IT, otherwise go to ITI.

II. If T; is yet not completely marked, then we add appropriate bases of
distinct type until a problem 7" is reached that is completely marked. Now
T’ represents an output problem of (Transl3).

ITI. Choose a non-empty subset 711 = {n1,...,nm} of A; that satisfies the
following conditions:

(a) w41 does not contain two labeled nodes with distinct label,

b) ;41 1s a set of maximal elements of A; in the sense that m; 11 does not
+ +
have any element that is a descendant of another node in A;,

(c) miy1 is X-closed.
If this is not possible, then fail. Otherwise

1. nondeterministically choose a superposition T of the problems
", ..., T;"™ defined by n1,...,7m.

2. If w31 does not have any z-node for some z € &), then we apply the
following Failure Condition: If T contains two context bases cb; and
cby such that cb; has a node that falls in the side area of cby, then
fail.

3. If the superposition 7% contains any pair of branching bases where
the branching node is unlabeled, then introduce a label using the same
procedure as in (Transl2). If at this step we introcude new individual
bases (cf. Step 4 of (Transl2)), then it is important to use a new type
z that is not in Aj). Repeat this until the superposition represents a
transparent problem 7.

4. With each atomic subfield of a context base of T associate a new
context base Z(©), using distinct base types Z for distinct fields. Let
T denote the resulting problem.

5. Replace each problem Tinj (1 < j < m) by a strictly isomorphic copy
T]-S of T9. If the (placeholder) base cb’ of T represents a (suffix
of a) base cb in T;”, then (the suffix of) cb and its corresponding
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(placeholder) base receive the same field in Tjs . For each context base
of the superposition T that is not a placeholder base, including the
new bases of the form Z(© introduced in Step 4, we use a new base
of the same type in T]-S , context bases that represent the same context
base of T receive corresponding fields in the problems Tjs . Similarly,
for each individual base of T° we use a new base of the same type
in Tjs, individual bases that represent the same individual base of T'°

receive corresponding nodes in the problems TjS .

Let
Ti+1 = (Niy1, Labiy1, CB;iyq, Field; 1, 1B, Nodej 1,111, Ajy 1)

denote the problem obtained in this way where 11,11 := II; U {m; 41} and
Ai—l—l = I‘e](’I‘i+1) \ UHi+1' Go to 1.

Note that if the input problem Tj is first order, then (Transl3) reduces to a
first order unification procedure where the failure condition before Step 1 of
Case III corresponds to the occur-check. For the following two lemmas we
always assume that we use as input for (Transl3) a transparent generalized
context problem T with bases of type X or Y. In the Appendix we prove
(cf. Lemma 9.4)

Lemma 6.10 The procedure (Transl3) terminates.

Also the rather technical proof of the following theorem will be given in
the Appendix (cf. Theorem 9.18).

Theorem 6.11 Let T denote the output set of (Transl3).
1. T is finite,
2. Each T' € T is a marked generalized context problem.

3. If T has a solution, then there exists a problem T' € T such that T’
has a rigid solution.

4. If in T" two individual bases iby and iby, with nodes n1 and 12, say,
have the same type, then the subproblems T'™ and T'™ are strictly
isomorphic.

5. If some T' € T has a solution, then T is solvable.
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7 Translation into word equations with linear con-
stant restriction

We come now to the final translation step. In this section we
fix a transparent and marked generalized context problem T =
(N, Lab, CB, Field, IB, Node) that satisfies the following condition (f): If in
T two individual bases ib; and ibs, with nodes n; and 72, say, have the same
type, then the subproblems T™ and T™? are strictly isomorphic. Recall that
the output problems of (Transl3) have this property, by Theorem 6.11. For
simplicity we also assume that for each field ¢ of T' there exists at most one
base cb of T' with field . It is simple to see that a given generalized context
problem can always be “normalized” in this sense without changing any of
the relevant properties and preserving (rigid) solvability in both directions.
In fact, whenever two bases cb; and cby of T, say, of type X and Y, have
the same field, we may erase cbs and afterwards assign the new type X to
all other bases of type Y.

We consider the equivalence relation on the set of all letter descriptions
of T that is given by strict isomorphism. To each equivalence class we
assign a letter C, using distinct letters for distinct classes. Each member L
of the class is said to have letter-type C, and L is called an occurrence of the
letter-type C in T. With C we denote the set of all letter-types of T'.

If S is a solution of T', then all occurrences L of the letter-type C € C
receive the same image S (L) under S, by Proposition 6.6. This letter is
denoted as S(C).

In the sequel, YV denotes the set of context variables (i.e., types of
context bases) occurring in T. We say that the letter-type C' occurs in
X € Vp if C has an occurrence L that is a letter description of a context
base X of T of type X. Conversely we say that X € Vr occurs in the side
area of C' € C if there exists a context base X of T of type X that is in
the side area of some occurrence L of C.

The translation of 7" will be a pair (Wr, <) where Wr is a system of word
equations and “<” is a linear constant restriction for Wy. Here Wr is the
result of a (deterministic) translation of context bases and letter descriptions
of T into word equations, to be described below. The choice of the linear
ordering “<” represents a non-deterministic step, details are given below.
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Step 1: Translation of context bases and letter descriptions

To each context base c¢b of T, say, of type X, with field (ng,...,n:), we
assign the word equation

X =20,..., 21

where Z; is the unique (see above) context variable such that (n;,7;11) is
the field of a base of type Z;, for i = 0,...,k — 1. To each letter description
L of T, say, of type C, with field (n,7’), we assign the word equation

C=Z

where Z is the unique context variable such that (n,7) is the field of a base
of type Z.

Let Wr denote the set of all word equations assigned to the context
bases and letter descriptions of T' in this way.

Step 2: Choice of linear constant restriction

Given X € Vr, a letter-type C € C, and nodes n,7' € N we define

C<1 X &= Coccursin X,

X <4 C :& X occurs in the side area of C,

n <1 X :& 7nisin the side area of an occurrence of X,
n <1 C :& nisin the side area of an occurrence of C,
X <1 n :& X occurs in the subtree of T' with root 7,
C <1 n := C(C occurs in the subtree of T' with root 7,
n<i1n :& nisa descendant of .

If “<4” contains any cycle, we stop with failure. In the other case, let Cy
be a new symbol. Nondeterministically choose a linear ordering “<” on
VrUCU{Cy} that extends the restriction of “<;” to Vr UC and has Cj as
its minimal element.

Output

The set of output problems of the translation procedure is the set of all pairs
of the form (Wr, <) described above. In each case Wy represents a system
of word equations over the alphabet of variables Vr and the set of constants
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C U {Cy}, and “<” represents a linear constant restriction for Wr 3. In
more detail, we demand that a solution of (Wp, <) does not instantiate any
variable X € Vr with the empty word.

Completeness and soundness of the translation

We first show completeness.

Lemma 7.1 If T has a rigid solution, then there exists an output problem
(Wr, <) that has a solution.

Proof. Let S be a rigid solution of T. Recall that S assigns the same
letter S(C) to all occurrences of a given letter-type C in T, while letters
S(Cy) and S(Cy) are distinct for ¢ # Cy. Similarly S assigns a unique
ground context (resp. ground term) to each base (resp. node) of T. For
X € Vp, C € C and nodes 7,71 of T define

C <1 X & S5(0)is a letter of §(X),

X <, C & 8§(X) is a proper subcontext of S(C),
n<1X & S(X) has a subterm S(n),

n<1C = S(C) has a subterm S(n),

X <11 = S(n) has a subcontext S(X),

C <1n = S(n) has a subcontext S(C),

n <11 = S(n)is a proper subterm of S(n').

Consider one of these relations x; <; k9 defined above. For i = 1,2, let
#55 (k1) denote the number of nodes of S(k;) that are labeled with a symbol
in Y. Ik =CeCandry =X € Vp, then #x8(k1) < #55(k2). In all
other cases it is easy to see that #25'(111) < #25'(162). It follows that <3
does not have any cycle. It is also clear that “<;” extends the relation
<1 defined in Step 2 above. Hence there exists a linear ordering “<” on

3 A word equation over the alphabet of constants C and the alphabet of variables V is an
expression of the form W; = W5 where Wi and W are words over the joint alphabet CU).
Let S be a mapping that assigns a word S(X) to each variable X in the equation. S is a
solution of Wi = W if both sides of the equation become identical when we replace each
occurrence of a variable X by the word S(X). A linear constant restriction is given by a
linear ordering “<” on the set of constants and variables occurring in the equation. The
solution S of Wi = W5 respects the linear constant restriction “<” if X < ¢ implies that
¢ does not occur in S(X), for each variable X and each constant ¢ occurring in Wy = Wo.
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VrUCU{Cy} that extends “<;” and represents a possible choice in Step 2.
We consider the output problem (Wr, <).

For X € Vr, let sx1,...,5xny denote the sequence of letters of the
ground context S(X). We replace each letter sx ; of the form S(C) for some
C € C by the constant C, and each of the remaining letters by Cy. By
rigidness of S, the replacement instance of each letter is welldefined. Let
S'(X) be the resulting word in the alphabet C U {Cp}.

To see that S’ is a solution of Wy we first consider a word equation of
W of the form X = Zy, ..., Z;_1. Since S is a solution of T" we have

S(X) =5(Z)...5(Z_).
It follows that
S'(X) = 8"(%Z)...S'(Zk1)

which shows that S’ solves the above equation. Consider now a word equa-
tion of Wr of the form C' = Z. Since S is a solution of T' we have

S(C) = 5(2).
It follows that
C=25(Z)

which shows that S’ solves the above equation. Summing up, we have seen
that S’ solves Wr.

To check validity of the linear constant restriction, assume that the letter
C € C occurs in S'(X). Then, by definition of S’, S(C) is a letter of S(X)
and we have C' <; X by our choice in Step 2. This shows that S’ satisfies
the linear constant restriction imposed by “<”. O

We may now show soundness.

Lemma 7.2 If an output problem (W, <) has a solution, then T has a
solution.

Proof. Assume that (W), <) has a solution S. It follows from the failure
condition of Step 2 that there exists a linear ordering “<s” on C U Vr U
N U{Cy} that extends “<” and has Cj as minimal element. Let #y, be an
arbitrary letter, and let b be a fixed constant in 3. We shall now construct,
by simultaneous induction on “<s”,

e a mapping S; that assigns a ground term S;(n) to each node n € N,
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e a mapping Sy that assigns letters (resp. ground contexts) to the ele-
ments of C U {Cy} (resp. Vr).

The idea behind the definition of S; is to use the terms assigned to the
children of a node n for constructing Si(n). As a matter of fact, if n; is a
child of n, then Si(n) may have various subterms of the form S;(7;), but
just exactly one of these occurrences has its origin in the use of Si(7;) in the
construction of Si(n). In order to distinguish this occurrence notationally,
we denote it in the form (),

Let n € N be a leaf. If 5 is labeled with a € X, then Si(n) := a. If n
is the node of an individual base, then we define S;(n) := b. In addition,
let So(Cp) := tp. Now assume that S; and S, have been defined, up to a
certain element of the linear ordering “<3”. We consider the first element «
of “<y” where S or Sy respectively is yet not defined.

1. if Kk = n is an inner node that is labeled with the n-ary function
symbol f, and if ny,...,n, are its children, then we define S;i(n) :=
f(S1(m),...,S1(n,)). Using the notational convention explained
above, this term will be written in the form ¢ = f(t(m) . ¢(m)),

2. if k = 7n is an unlabeled inner node, then n is a non-final node
of a base (cf. Def. 3.1, 6.), and n has exactly one child n' (cf.
Lemma 5.2). Moreover, (n,n') is the field of a unique base cb, say,
of type Z. Since Z <; n we have also Z <9 n and we may define

t" = Si(n) := S2(Z)(S1(n')) = S22)(t7).

3. if Kk = X is a context variable, let S(X) = Cx,1---Cxpn,. Since S
respects the linear constant restriction imposed by “<” the constants
Cx,; € CU{Cy} are smaller than X with respect to “<3”. Accord-
ingly, for each constant Cx ;, the letter S2(Cx ;) has been defined by
induction hypothesis. We define S3(X) := S3(Cx 1) -+ S2(Cx n).

4. if k = C is a letter-type, let L = (n,n') denote an occurrence
of C in T. Let f (resp. i) be the label (resp. direction) of L,
let (n1,...,m,) be the sequence of all children of 1. By assump-
tion, Si(n;) has been defined for 1 < j < n. We define S>(C) :=

F(S1m)s- -3 S1(0i=1), 2, S1(Mi1)y- -5 S1(ma))-

Now let T denote the root of T. We want to show that (¢77),8") is a
solution of T', where for all n € N the node S’(n) is given by the position of
the root of ¢,
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Since S assigns a non-empty word to each variable X € Vr a trivial
induction shows that S5(X) is always a non-empty ground context. From
this it follows immediately that S’ is an injective mapping from N to the
set of nodes of t"7). By construction S’ preserves root, Y-labels, children
of Y-labeled nodes, and preorder relations.

In order to show that S’ respects branching points it suffices to show that
whenever n; and 79 are two distinct children of a node n of T, then S’(n;)
and S'(n) are distinct children of S'(1) in 7). Since unlabeled nodes of
T never have two distinct children this follows from Step 1 above.

We now show that S’ assigns the same ground context to the fields of
bases of the same type X, for all X € Vp. This follows directly from the
following two claims, which will be proven by simultaneous induction on
“<2n .

Cl. if (n,7') is an occurrence of C € C in T, then §'(n,n') = S3(C),
C2. if X( is an occurrence of X € Vr in T, then §'(X®) = S5(X).

Assume that Claims 1 and 2 have been shown for all predecessors of k €
C U Vr with respect to “<s”.

First assume that k = C € C. Tt follows from the definition of Sy(C)
in Step 4 above that the occurrence (n,7') of C that has been used in this
step for defining S5(C) satisfies Condition C1. By induction hypothesis for
C2 we know that all occurrences of the same context variable X in the side
area of an occurrence of C' — which all are smaller than C with respect to
<y — are mapped to the same ground context Sy(X) under S'. Since all
occurrences of C' in T are strictly isomorphic it follows easily that all other
occurrences of C' in T are mapped to the same letter under S’ , which proves
Condition C1 for C.

Now assume that x = X € Vr. Let X be an occurrence of X € Vr
in T, and let Field(X®)) = (n;,...,n;). In each atomic subfield (n;,7,41) of
(i, -..,m4), node 7 is either labeled or unlabeled. For simplicity we assume
that (1;,...,n;) has the form (n;,7i41,7i+2) where n; is labeled and 7;41 is
unlabeled.

The field (n;,n;1+1) represents a letter description of X, say, of type C.
Note that C' <; X and hence C' <3 X. Let Z(") denote the unique base of
T with field (941, 742). It follows from the definition of Wr that S solves
the equation X = C'Z. Hence from the definition of Sy (Case 3 above) we
see that

S2(X) = $(C)S2(2).
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Moreover, since C' <o X we know by induction hypothesis C1 for C' that
S (niymis1) = S2(C). In addition it follows from Case 2 of the definition of
S that §"(Z() = S5(Z).

It follows now that S'(n;,mis1,Mis2), which is the composition of
S (niymis1) and S'(Mit1,mit2), has the form S5(C)S2(Z) = So(X), which
proves that §'(X () = S, (X).

By our special assumption () on individual variables it follows from
Lemma 6.4 that S assigns the same ground term to nodes 7; and 72 when-
ever there are two individual bases of the same type with nodes 7; and o

respectively. O

8 Summing up
We are now able to prove the Main Theorem (Theorem 1.1).

Theorem 8.1 It is decidable if a finite system of context equations with
two context variables and an arbitrary number of individual variables has a
solution.

Proof. We first treat the case where we just have one input equation.
Let s =t be a context equation with two context variables. Combining the
results of Lemma 4.6, Lemma 5.5, Lemma 6.10, Theorem 6.11, Lemma 7.1,
and Lemma 7.2 it follows that we may effectively compute a finite set M
of multi-word equations with linear constant restriction such that s = ¢
has a solution if and only if a multi-word equation with linear constant
restriction in M has a solution. The results in [25] on regular solutions of
word equations show that solvability of multi-word equations with linear
constant restriction is decidable. Hence the result follows.

Let us now consider the case where we have a finite system of context
equations, {s; = t1,...,8, = tp} as input. We show how to reduce it
to the first situation. We may assume that there is at least one function
symbol “f” of arity n > 1 in the signature ¥ (since otherwise we are in
the monadic case where context unification problems directly translate into
word equations). For simplicity we assume that “f” has arity 2 (if the
arity is greater than 2 we may use essentially the same encoding where
other arguments of f are filled with a fixed constant a € X). Obviously,
{s1 = t1,...,8, = ty} has a solution if and only if the context equation

f(s1, f(sa, f(..)) = f(t1, f(te, f(...))) has a solution. O
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9 Appendix
It remains to give the proofs for Lemma 6.10 and Theorem 6.11.

Lemma 9.1 Let z € X be an individual variable. Assume that Tj11 has
an z-node, but T; doesn’t. Then each z-node of T;y1 is a top side node of
T;11. Moreover, if n and n' are two z-nodes of Tji1, then w11 contains

nodes 11 and 1y such that T}, and Tﬁh are strictly isomorphic and have
corresponding and strictly isomorphic letter descriptions L and L' where n;
and n| are corresponding top side nodes of L and L'.

Proof. It is easy to see that an individual base of new type z can only
arise from Part 3 of the subprocedure of Case 111 where we apply Step 4 of
(Transl2). The nodes of the individual bases ib that are introduced at this
step are the children of the labeled branching point of two context bases,
which means that they are top side nodes of the superposition T°t. All the
new individual bases receive a new type. By construction, all the variants Tjs
of T® that are created in Step 5 of Case IIT are strictly isomorphic problems.
The lemma, follows easily. O

Lemma 9.2 Let n € JII; and ' € A;. Then 7 is not a descendant of .

Proof. We use induction. Assume that the statement holds for II; and
A;. Then Condition (b) for the choice of m; ;1 ensures that the condition
holds for TI;;1 and A;y1 as well since in the Steps 1-5 new relevant nodes
are only created below the nodes of m;11. O

Lemma 9.3 Fach 7 € I1; is X-closed.

Proof. This holds trivially for # = 0 where IIj is empty. Assume that the
statement is correct for T; and II;. First let € m; 41 be an z-node of T; .
Since in Step 3 of Case III always new individual variables are used it follows
easily that in this case ;1 also contains an z-node 1’ of the predecessor
problem T;. Hence m;11 contains all z-nodes of T;, by Condition (c). When
building T; 1, new z-nodes always belong to m; 41 (cf. Step 5). It follows
that m;;1 contains all z-nodes of Tj;.

Now let n € w € II; be an z-node of T;y;. When building T}, new
z-nodes (for some z € X) are only created below—or at—the nodes of ;1.
Assume that 7 is not an z-node of T;. Since 1 € ;4 this would mean that n
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is a descendant of an element 7’ of ;1. This is impossible, by Lemma 9.2.
We have seen that n is an z-node of T;. By induction hypothesis, 7 contains
all z-nodes of T;. Since, as we saw, no new z-nodes are created when building
T;11 it follows that m contains all z-nodes of Tjy;. O

We may now give the proof of Lemma 6.10:
Lemma 9.4 The procedure (Transl3) terminates.

Proof. We consider the measure y on Ty, T1,... that is given by the
lexicographic order with the following components:

(1) The number of individual variables x € X such that A;
has an z-node,

(2) the number of top side nodes 1 of A; where T} is not
first order,

(3) the total number of top side nodes in A;.

Clearly this measure is well-founded. We show that each call to Case III,
where we move from T; to T;41, reduces the measure.

Case 1. If mj 1 contains an z-node for some z € Ap, then, by Lemma 9.3,
m;+1 contains all z-nodes of T; 1. Hence, by Lemma 9.3, the first component
of p decreases.

Case 2. If ;11 does not contain any z-node of T; for z € Ay we apply
the Failure Condition of Step 2. The condition shows that in this case the
superposition 7% does not have any branching bases.

First consider the subcase where for some 7; € m; ;1 the subproblem Tinj
is not first order. Consider any new top side node n € tsn(Tj41) \ tsn(T5).
Clearly n is a descendant of a node 1’ € m; 1 and there exists a context
base cb with |Field;+1(cb) N Tﬁ;1| > 2 such that 7 is in the side area of
cb. But now the Failure Condition implies that the subproblem TZTZH is first
order. Hence we decreased the second component of i while leaving the first
component unchanged.

Now assume that all the subproblems Tinj for n; € m;41 are first order.
Obviously the superposition 7% does not have any top side node in this case.
Hence the total number of top side nodes in A; decreases and the first two
components of y are left unchanged. O

34



Definition 9.5 Let T be a transparent generalized context problem and let
X be a context variable where T has a base of type X. The set of context
bases of suffiz type X of T is recursively defined as follows:

1. each context base of type X is of suffix type X,

2. if ¢by and cbsy are context bases of T of the same type, if the context
base cbs of T has suffix type X and if Field(ch,) is a suffix of Field(chs),
then cby has suffix type X.

Obviously, if (¢,5) is a solution of T' and c¢b has suffix type X, then S(cb)
is a suffix of S(X).

The following property characterizes the context bases that are generated
in (Transl3), as we shall see below.

Definition 9.6 Let X and Y be two context variables. T is called X-Y -
binary iff every context base cb of T is a (proper or improper) subbase of a
context base of suffix type X or Y.

Lemma 9.7 Each of the problems T; generated by (Transl3) and each out-
put problem T' is X-Y -binary.

Proof. Obviously Ty is X-Y -binary. As an induction hypothesis, assume
that T; is X-Y -binary. Let cb be a context base of T;11. It may be

(1) a base of Tj,

(2) a copy of a base of T; (cf. Step 5 of Case IIT),

(3) a placeholder base of T; (construction of T}"),

(4) a copy of a placeholder base of T; (cf. Step 5 of Case III),

(5) a subbase Z(" of a base of type 1-4 (cf. Steps 4, 5 of Case III),

1. If ¢b has type (1), then by induction hypothesis cb is a subbase of a base
of suffix type X or Y of T;. Clearly the same property holds in T;,; as well.
2. If ¢b = cb; has type (2) and is the copy of the base cby of type (1), let
T;", and T;", denote the variants of T* that contain these bases. By 1, chy
is a subbase of a base of suffix type X or Y of T; ;1. Since szl and Tﬂfl are
strictly isomorphic the same holds for cb; as well.

3. If cb has type (3), assume that cb represent the suffix of the base cb’ of
T;. By 1, cb is a subbase of a base of suffix type X or Y of Tj,;. Since cb
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is in T}, a subbase of cb’ also cb is a subbase of a base of suffix type X or
Y of ,I'z'—l—l-
4. If ¢cb = cb; has type (4) and is the copy of the placeholder base cby
of type (3), let Tﬁh and T}, denote the variants of TS that contain these
bases. By 3, cby is a subbase of a base of suffix type X or Y of T;1¢. Since
T; Jﬁl and Tﬂfl are strictly isomorphic the same holds for cb; as well.
5. If ¢b has type (5), then it is a subbase of a base of T; 1 of one of the
types (1)-(4). It follows from the previous cases that cb is a subbase of a
base of suffix type X or Y of Tj4;.

We have seen that each of the problems T; generated by (Transl3) is
X-Y-binary. Obviously this implies that each output problem T" is X-Y-
binary. O

Definition 9.8 Let T be an X-Y-binary transparent generalized context
problem. A set A of top side nodes of T is called X-Y -stable iff for each
n € A and each context base cb of T such that |Field(cb) NT"| > 2 either

(1)  Field(cb) C T" and cb has type X or Y, or
(2)  Field(cb) € T and cb has suffix type X or Y, or
(3) cb is a subbase of a context base of type (1) or (2).

Lemma 9.9 For each of the problems T; generated by (Transl3) the set A;
1s X-Y -stable.

Proof. Obviously Ay is X-Y-stable. As an induction hypothesis, assume
that A; is X-Y-stable w.r.t. T;. Let n € A;4; and let cb be a context base
of Tj41 such that |Field;;(cb) NT | > 2.

First we assume that 7 is not a descendant of any node in m;y;.
Lemma 9.2 implies that  does not have a descendant in m;; ;. Both prop-
erties together imply that cb is a base of T; with Field;(cb) = Field;11(cb).
In addition it follows that n € A;. By induction hypothesis, either

(1) Field;(cb) C T;" and cb has type X or Y in T}, or
(2) Field;(cb) € T;" and cb has suffix type X or Y in T}, or
(3) cb is a subbase of a context base of type (1) or (2) of T;.

It follows that cb has in T4 the corresponding property as well.
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Now let 7 be a descendant of n; € m; 41 in T/ i11. As in the previous proof
we distinguish the cases where cb is

(1) a base of Tj,

(2) a copy of a base of T; (cf. Step 5 of Case IIT),
(3) a placeholder base of T; (construction of T}"),
(4)

(5)

a copy of a placeholder base of T; (cf. Step 5 of Case III),
a subbase Z(" of a base of type 1-4 (cf. Steps 4, 5 of Case III),

1. If ¢b has type (1), then |Field;(ch)NT;"| > 2. Since n; € A;, by induction
hypothesis, either

(1) Field;(cb) C T;" and cb has type X or Y in Tj, or
(2) Field;(cb) € T;" and cb has suffix type X or Y in Tj, or
(3) cb is a subbase of a context base of type (1) or (2) of T;.

But then, since 7 is a descendant of n; in T, it is easy to see that either

") Field;1(cb and cb has type X or Y in T;,q, or
+ +1 +
") Field;1(cb and cb has suffix type X or Y in T;. 1,
+ z—|—1 +
(3’) or cb is a subbase of a context base of type (1) or (2) of Tj ;.

2. If cb = cb; has type (2) and is the copy of the base cb’ of type (1), let
T;", denote the variant of T that contains cb’, and let ' denote the node
of T"’“1 that corresponds to 7. Since TT”“1 and T, +1 are strictly isomorphic

we know that |Field;y1(cb’) N T£H| > 2. It follows from the previous case
that either

(1) Field;1(cb’) C +1 and cb’ has type X or Y in T}, 1, or

(2’) Field;y1(cb') € T +1 and cb’ has suffix type X or Y in Tj, 1,
(3’) or cb is a subbase of a context base of type (1) or (2) of Tj 1.

Because of the strict isomorphism between TT”“1 and T. +1 the same holds for
cb and n as well.

3. If cb has type (3) and represents the suffix of the context base cb’, then
cb’ has type (1). It follows from Case 1 that cb’ has one of the possible
types in T;1;. Hence the suffix cb, which starts at the predecessor n; of 7,
has one of the possible types, too.
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4. If ¢cb = cb; has type (4) and is the copy of the placeholder base cb/
of type (3), let T;", denote the variant of T that contains cb’, and let 7’
denote the node of T"’“1 that corresponds to 7. Since TT”“1 and Tm1 are

strictly isomorphic we know that |Field;1(cb’) NT} +1| > 2. It follows from
the previous case that either

(1) Field; 1 (cb’) C TZTZH and cb’ has type X or Y in Tj;4, or
(2’) Field;y1(cb') € T +1 and cb’ has suffix type X or Y in Tj, 1,
(3’) or cb is a subbase of a context base of type (1) or (2) of Tj 1.

Because of the strict isomorphism between TT”“1 and T"] 11 the same holds for
cb and 7 as well.

5. If c¢b has type (5), then it is a subbase of a base cb’ of the form treated
in the previous cases. We have seen that cb’ has one of the three possible
types. It follows that its subbase cb has one of the three possible types. O

The following lemmas are needed for justifying the use of Condition 2
(Failure Condition) in Case III of (Transl3). First, some criteria for the
unsolvability of a generalized context problem are given that generalize the
occur-check in first-order syntactic unification.

Lemma 9.10 Let s; and sy be two suffizes of the same ground context s,
(1) )

and let sy and sy be occurrences of s1 and s rcspcctwely in the ground
term t. If 31 is completely contained in the side area of 32 , then s1 is a
proper suffiz of ss.

Proof. Otherwise s; would be a suffix of s;. This would mean that the
suffix ng) of sy properly contains an occurrence 351) of s1, which obviously
is impossible. O

Corollary 9.11 Let s1 and so be two suffizes of the ground context s, and
let sgl) and s( ) be occurrences of s1 and sy respectively in the ground term

(2)

t. Then the main paths of 31 ) and sy~ cannot represent branching fields.

Proof. Assume that the main paths of sgl) and 352) are branching at

point 1. Let rgl) and 7“52) denote the suffixes of sgl) and 352) with root 7,

and let tgl) and tg) denote the suffixes of rgl) and 7’%2) that start at the two
children of 1 on the main paths of these contexts. By the previous lemma,
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tgl) is a proper suffix of 7’52) and tg2) is a proper suffix of rgl). This implies

(1) (2)

that 71 = r9 and v}’ = ry”’, a contradiction. O

Definition 9.12 Let T be a transparent generalized context problem. Let
(t,S) be a solution of T. With “=¢” we denote the equivalence relation
on 1d(T) defined by L =g L' iff S(L) = S(L). With [L]s we denote the
equivalence class of L € 1d(T) with respect to “=g”. For n,n" € tsn(T)
we define n ~% 7' iff there exist letter descriptions L =g L' and an index
i such that n (resp. 7n') represents the i-th top side node of L (resp. L').
The equivalence relation “~g” generated by “Ng” is called the equivalence
relation on tsn(T') induced by S. With [n]g we denote the equivalence class
of n € tsn(T) with respect to “~g”.

Remark 9.13 In the situation of the previous definition we have n ~g 1/
iff there exists a sequence of pairs (L1,m1), ..., (Ly,ny) of letter descriptions
L; and top side nodes n; of L; in T, with n = n; and ' = n,, such that for

all consecutive pairs (L;,n;), (Ljt1,15+1) (1 < j <n—1) either

(a) Lj =g Lj+1 and n; and ;41 are corresponding top side nodes of L;
and Lj+1, or

(b) mj =njy1 and Lj # L1 belong to branching context bases where n;
is a child of the branching point.

Definition 9.14 Let T be an X-Y-binary transparent generalized context
problem. A context base cb of T is X-Y -normal for the top side node n of
T iff |Field(cb) N T"| > 2 and if either

(1)  Field(cb) C T and cb has type X or Y, or
(2)  Field(cb) € T and cb has suffix type X or Y.

Lemma 9.15 Let T be a generalized context problem with solution (t,S)
that is X-Y -binary. Let n be a top side node of the letter description L for
the base cb of suffiz type X. If the context base cb’ is X-Y -normal for n,
then cb’ has suffiz type Y.

Proof. Assume that cb’ has suffix type X. If Field(cb') C T", then cb’
has type X. Then Lemma 9.10 yields a contradiction. In the other case, cb
and cb’ are branching bases and Corollary 9.11 yields a contradiction. O
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Lemma 9.16 Let T be an X-Y -binary generalized context problem with
solution (t,S). Let Ly =g Lo be two letter descriptions of T, let n1 and 1o
be corresponding top side nodes of Ly and Lo. If the context bases cby and
cbe of T are X-Y-normal for n1 and ny respectively, then either both cby
and cby have suffix type X or both have suffix type Y .

Proof. Assume, to get a contradiction, that cb; = O(U) has suffix type Y

and cby = Xév) has type suffix X. Let L (resp. Lo) be a letter description
of the base cbs (resp. cby). Since T is X-Y-binary we may assume that chs
and cby have suffix type X or Y.

Ly Ly
cby cby
N1 N2
cby= YO(”) chy = XO(V)
(s-typeY) (s-type X)

Lemma 9.15 shows that cbs has suffix type X and cby has suffix type Y.
Let ¢bs = XY) and cby = Yl(s). We claim that the field of Yo(u) cannot
be completely contained in 7™ . Otherwise, since Yo(u) is X-Y-normal for

M, Yo(u) Yvould have type Y and S (Y) wopld be a proper subcontext of
S(L1) = S(L2) which is a subletter both of S(X) and S(Y) and we obtain a

contradiction. Likewise, the field of Xév) cannot be completely contained in
the side area of Ly. We conclude that the main node 7} of L; is the branching

point of Yo(u) and X fr), and the main node 75 of Ls is the branching point
of Xév) and Yl(s). We consider the following suffixes of the given bases:

the suffix X5 of X{r) starting at 7},
the suffix Y5 of Yo(u) starting at 7],
the suffix X3 of X[gv) starting at nj,

1

2

3

4.  the suffix Y3 of YI(S) starting at nj,

5. the suffix X} of X, starting at the respective child of ],
6

the suffix Y3 of Y3 starting at the respective child of 7).

We have the following situation.
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Obviously S(X5) and S(X3) are distinct. Hence either S(X5) is a proper
suffix of §(X3) or vice versa. Since S(L1) = $(Lz) Lemma 9.10 shows that
S(X3) is a proper suffix of $(X5) and, since 7} is labeled, a suffix of S(X}).
Symmetrically it follows that S(V3) is a suffix of S(Y7). The observations
show that have now the following chain, where the symbol “C” (resp. “C”)
denote proper (non-strict) subcontext relationship:

$(v3) € $(X3) € S(x3) € §(Ya) € S(¥3).

This yields a contradiction. O

Lemma 9.17 Let T be an X-Y -binary generalized context problem with
solution (t,S). Let ny ~g m2 be two top side nodes of T. If the context bases
cby and cby of T are X-Y -normal for n1 and ns respectively, then either
both cby and cby have suffiz type X or both have suffix type Y.

Proof. If there exist two letter descriptions Ly =g Lo such that n; and 7
are corresponding top side nodes of L and Lo, then we are in the situation
of Lemma 9.16 and we are done. We shall now show that the other situation
does not occur, which proves the lemma.

Assume that we are in the remaining case. For ¢ = 1,2, let n; be a
top side node of the letter description L;. Since 1y ~g 12, but L #g Lo,
Remark 9.13 shows that there exist two distinct letter descriptions L} and
L3 with Ly =g L such that the top side node 7} of L) that corresponds
to mp is also a top side node of Ls. L) and L3 have different direction and
L1 #s L.

Since T is X-Y -binary we may assume that L; is a letter description of
a base Xéu) of suffix type X. By Lemma 9.15, cb; = YO(U) has suffix type Y.
We distinguish two cases:

41



Case 1: LY is a letter description of a base X of suffix type X. In

this case, Ls is a letter description of a base Y1( ") of suffix type Y, by Corol-
lary 9.11. If Field(cby) C T™, then cby, which is X-Y-normal for 7, has
type Y and because of L; =g L} Lemma 9.10 yields a contradiction. Tt
follows that the main node of L; is in Field(chy).

Let Y5 denote the suffix of YO(U) starting at the main node of L;, and let

Y3 denote the suffix of YI(T) starting at the main node of L} (or L3). We
have the following picture:

Obviously 5(Y2) # S(Y3). If §(Y3) is a proper suffix of 5(Y3), then L =g L}
shows that S(Y3) has a subcontext of the form S(Y3) in its own side area,
which yields a contradiction. Conversely, if S(¥3) is a proper suffix of S(¥5),
then L, =g L} shows that $(¥3) has a subcontext of the form S(Y3) in its
own side area, which yields a contradiction. Hence thls case cannot occur.
Case 2: LY is a letter description of a base Y of suffiz type Y. If
Field(cby) C T”1 then cby, which is X-Y-normal for n;, has type Y and
because of L; =g L’1 Lemma 9.10 yields a contradiction. It follows that the
main node of L is in Field(cby). Let Y2 denote the suffix of YO(U) starting

at the main node of L1, and let Y3 denote the suffix of Yl(w) starting at the
main node of L}. Because of L; =g L' Lemma 9.10 shows that S(Y3) is a
proper suffix of 5(V3).

In addition we know in the present situation that L3 is a letter description
of a base Xfr) of suffix type X. Let X5 denote the suffix of X[gu) starting

at the main node of Lq, and let X3 denote the suffix of X{r) starting at
the main node of L}. Lemma 9.10 shows that S(X3) is a proper suffix of
S(X3). With X} (resp. Y{) we denote the suffixes of X (resp. Y3) starting
at the respective successor of the main node of Ly (resp. L}). We have the
following picture:
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Now S5(X3) is a proper subcontext of S(Y3) which is a suffix of 5(Y3). Fur-
thermore S(Y3) is a proper subcontext of S(X3) which is a suffix of S(X}).
Hence S(XJ}) has a proper subcontext of the form S(XJ}) which yields a

contradiction. Hence this case can also not occur. O

We now prove Theorem 6.11:

Theorem 9.18 Let T denote the output set of (Transl3), where we use
the transparent generalized context problem T with bases of type X or'Y as
input.

1. T is finite,
2. Each T' € T is a marked generalized context problem.

3. If T has a solution, then there exists a problem T' € T such that T’
has a rigid solution.

4. If in T" two individual bases iby and iby, with nodes n1 and 12, say,
have the same type, then the subproblems T'™ and T'™ are strictly
isomorphic.

5. If some T' € T has a solution, then T is solvable.

Proof. 1. Since, by Lemma 9.4, there are only a finite number of iter-
ations of the procedure described in Case III of (Transl3), it follows easily
from Part 1 of Lemma 4.4 that 7 is finite.

2. Clearly each output problem is a generalized context problem. By
assumption, the input problem Tj is transparent. A simple induction shows
that each problem T; reached by iterations of the procedure of Case III is
transparent (cf. Step 3 of (Transl3)). The procedure of Case II cannot
introduce branching points. Hence each output problem 7" is transparent.
But then, obviously the procedure that is applied in Case IT of (Transl3)
implies that 7" is marked.

3. Let (¢,S5) be a solution of T'. We have to describe possible choices in
the non-deterministic steps that lead to a generalized context problem that
has a rigid solution. Let us introduce the following definition: Let (¢, 5;) be
a solution of T;. A subset 7 of rel(T;) is called ~g,-closed if it satisfies that
following condition: if m contains the top side node 7, and if 71 ~g; 7o,
then 7 contains 7,
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As an induction hypothesis, assume that for some 7 > 0 we have found
a problem T; = (Nj;, Lab;, CB;, Field;, IB;, Node;, I1;, AA;) such that

(0) there exists an embedding of Ty in T},

(1) II; = {my,...,m} is a partition of a subset of rel(T;). If n; and 7y be-
long to the same class of IT;, then 7;"" and T} are strictly isomorphic.

2) If p and n' are distinct y-nodes of T} for some y ¢ Xj, then II; contains
n n
a set m with nodes 7y and 1} and strictly isomorphic letter descriptions

L and L' with corresponding positions in 7" and TZ71 such that n and
n' are corresponding top side nodes of L and L’.

(3) For each n € UII; and for each atomic subfield ¢ in T)": if ¢ is a
subfield of a context base, then there exists an atomic base cb with
field ¢ in T;.

We also assume that there exists a solution (¢, S;) of T; such that
(4) Each element 7 of II; is ~g,-closed and X-closed.

(5) forn € JI; and i’ € A; the ground term S;(n) is not a proper subterm
of Si(n').

Note that Ty vacuously satisfies these conditions since Il is empty and T
does not contain any y-node for y ¢ Ajp.

We first consider the situation where JII; = rel(T;), i.e., Case IT of
(Transl3). We want to show that (¢,.5;) is a rigid solution of T;. Let L;
and Lo be letter descriptions of T; and assume that ,§'i(L1) = ,§'i(L2). Let
n (resp. 72) be the j-th top side node of L; (resp. Lg). Since L =g, Lo
we have 71 ~g, n2. Condition (4) shows that 7, and 72 belong to the same
class of II;. Condition (1) shows that 7;" and T,” are strictly isomorphic.
It follows that L; and Lo are strictly isomorphic. We have seen that (¢,.5;)
is a rigid solution of T;. Condition (3) ensures that the letter descriptions
of T; are not affected by the final marking (cf. Case II). Hence (¢, S;) is also
a rigid solution of the output problem.

We now treat the situation where |JII; # rel(T;), i.e., Case III of
(Transl3).

Selection of m;y1. Consider a minimal ~g;-closed and Xj-closed set m C
rel(T;). By (4), either 1 C A; or 7 is a subset of an element of II;. Note also
that the nodes of a minimal ~g,-closed and Xj-closed set m are mapped to
identical ground terms under S;. Let us denote this ground term in the form
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Si(m). Among all minimal ~g,-closed and Xy-closed subsets of rel(T}) that
are subsets of A; we choose as m;,; one set where Sj(m;,1) is a maximal?
ground term. Given this choice of ;11 it is obvious that conditions (a) and
(b) are satisfied. By choice, m; 11 is Xp-closed. Let n and 7’ be two y-nodes
of T; for y & Xp. By (1), n and n’ are corresponding top side nodes of strictly
isomorphic letter descriptions L and L' of T;. It follows that n ~g, n’. This
shows that m;11 is X'-closed. Clearly, since T; is solvable, the selection of 7
cannot lead to failure before Step 1. By (5) and choice of m; 41 we have

(6)  Vn € mit1, T does not contain a node in JII;, and

Step 1, superposition. Let miy1 =: {n1,...,0m}. As T we choose the
superposition which is given by the joint embedding (cf. Def. 4.5) of the
problems T/"', ... T/ in S;(n;) under the restrictions of S; to T;"",..., T;"™
respectively. We have to show that the Failure Condition (Step 2 of Case
ITT) does not apply.

Assume that ;11 does not have any z-node for x € Xy. Let n;, nr € mi41.
Let cb; and chy, be two bases of T; such that |T;” N Field;(cb;)| > 2 and
|T"™ N Field;(cby)| > 2. By Lemma 9.7, ;41 C A; is X-Y-stable. Hence
cb; and cby, are subbases of (not necessarily distinct) context bases cb;- and
cbj, such that cb;- is X-Y-normal for n; and cbj, is X-Y-normal for 7. In
addition we know that 7; ~g, n; by (2) and choice of m;1 ;. By Lemma 9.17
we may assume without loss of generality that both cb;- and cbj, have suffix
type X.

Assume, to get a contradiction, that in the superposition 7°° the con-
text base cb;- (or its placeholder base) has a node in the side area of cbj,
(or its placeholder base) or vice versa. Then either cb} and cbj, (or their
placeholder bases) are branching in 7%, in which case Corollary 9.11 yields
a contradiction, or cb;-, which is normal for 7;, has type X, in which case
Lemma 9.10 yields a contradiction.

We have seen that in 7' neither cb;- (or its placeholder base) has a node
in the side area of cbj, (or its placeholder base) nor vice versa. It follows that
in 7% neither cb; (or its placeholder base) has a node in the side area of cby,
(or its placeholder base) nor vice versa. This shows that Failure Condition 2
of Case IIT does not apply. Let

Tit1 = (Niy1, Labit1, CBiy1, Field; 1, 1B 1, Nodej 1, i1, A1)

“maximal w.r.t other ground terms of the form S;(r) for minimal ~g,-closed and X,-
closed m C A;.
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be defined as described in Case III. We have to show that the above Condi-
tions (0)-(5) hold for Tj4.

(07)

Obviously there exists a canonical embedding of T; in T;;1. By (0)
there exists an embedding of Ty in Tj 4.

In the sequel, we do not distinguish between nodes of T; and their images
under the canonical embedding in T; .

(1)

Obviously ;11 = {m,...,m,m4+1} is a partition of a subset of
rel(T;11). Let n and 1’ belong to the same class of IT; 1. If n,n' € m;y1,
then by construction (cf. Steps 3 and 4 in Case III) T} | and TZL are
strictly isomorphic. If 5,7’ belong to the same class of II;, then by
assumption (1) 7, and Ti", are strictly isomorphic. Both 1 and 1’ do
not belong to m;11, and by (6), neither n nor n' is a descendant of a
node in ;4. Hence T, and Ti", are only modified if some descendant
of n or of ' is in ;1. If 9y € miyy falls in T}, say, and if 7} is the
corresponding node of Ti", , then it follows from the strict isomorphism
(see (1)) between T, and TZ."’ and from 7; € m;;; that either both n;
and n}- are top side nodes where 7; ~g, n;-, or both are z-nodes for
some z € Xjy. Hence by choice of m; 11 we have n;- € miy1. This ob-

servation shows that the subproblems 777 and Tinj of T, and Ti", are
replaced by the steps of Case III by strictly isomorphic subproblems.
It follows that TZZH and TZZH are strictly isomorphic.

Let n and n' be distinct y-nodes of T;,; for some y € Xy. If n and
n' are y-nodes of T;, then by assumption (2) there exists = € II; with
nodes 71 and 7} in 7w and strictly isomorphic letter descriptions L and

L with corresponding positions in 7" and T," such that 5 and 7’ are
corresponding top side nodes of L and L. By (1), T;" and Tin1 are
strictly isomorphic. As in (1) it follows that 7}, and Tﬁh are again
strictly isomorphic. Hence the images of L and L' in Tj,, are strictly
isomorphic and we are done.

In the other case T; does not have a y-node. In this case the statement
(2’) follows from Lemma 9.1.

Let n € UIIL;1; and let ¢ be an atomic subfield of Tﬂrl that is a subfield
of a context base. If n € m;11 then it follows from Steps 3 and 4 in
Case III that there exists an atomic base cb with field ¢ in T;. If
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n € UII; and if ¢ is a field of a subproblem Tinj for some n; € w41
then it follows again from Steps 3 and 4 in Case III that there exists
an atomic base c¢b with field ¢ in T;11. In the remaining case it follows
from the induction hypothesis that there exists an atomic base cb with
field ¢ in Tj4q.

Let Sjy1 denote the canonical extension of S; which is given by the joint
embedding of the problems T/", ..., T/" in S;(n;) (cf. Definition 4.5). This
means that () for L € Id(T;) (resp. n € tsn(T;)) we have S;(L) = Sip1 (L)
(resp. Si(n) = Siy1(n)))-

(4’) We first show that the sets in IT; ;1 are X-closed. Let 7w € II;. Since
by assumption (4) 7 is X-closed in T; it follows from (6) that = is
X-closed in T; 1. The set m;11 is X-closed by restriction (c) (cf. Case
IIT of (Transl3)). If m;11 contains an xz-node, then all z-nodes of Tj14
are in ;1. It remains to show that the sets in Il; ;| are ~g,  -closed,
ie., withn € m, € {m,...,mp} and  ~g,,, n' we have n € =y,
for all ' € tsn(T;y1). By Remark 9.13, since n ~g, , n' there exists
a sequence of pairs (L1,n1),...,(Ln,n,) of letter descriptions L; and
top side nodes n; of L; in Tj 1, with n = n; and ' = 7, such that for
all consecutive pairs (L;,n;), (Ljt1,1541) (1 < j <n—1) either

(a) Lj=s,,, Lj+1 and nj and n;1; are corresponding top side nodes
of Lj and Lj4q, or

(b) n; =nj4+1 and L; # Lj;1 belong to branching context bases.

We use a subinduction to show that for all 1 < 5 < n always L; is a
letter description of T, n; is a top side node of T; and 1y ~g; nj. This
shows that n ~g, 7' and, by (4) and choice of 711, that n' € m.

For j = 1 we only have to show that L; is in 7;. Otherwise there
would be an ancestor 79 of 1 that belongs to m;11. By choice of m;11
this would mean that 7 is in m; U... U ;. But then, by (x), S;(n) is a
proper subterm of S;(ng), which contradicts (5).

For the induction step, assume that L; (n;) is a letter description (top
side node) of T; and n; ~g, 1;. First assume (a) that L; =g, , L1
and n; and 7,41 are corresponding top side nodes of L; and L; . If
Ljq is not a letter description of Tj, or if ;4 is not a top side node
of T;, then there exists an ancestor 79 of n;11 that belongs to m;;.
Then, by induction hypothesis, Si11(71) = Sit1(nj+1) would be a
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proper subterm of Sj1(n). By (%), Si(n1) would be a proper subterm
of Si(np), which contradicts (5). In the second case (b) 7; = 7j41
and L; # Ljy1 belong to branching context bases. As above the
assumption that L;,; does not belong to T; leads to a contradiction.

Let n € U341 and ' € A;41. First assume that ' € tsn(T;). In
particular ' € A;. If n € UTI;, then by (5), Si(n) = Siy1(n) is

not a proper subterm of S;(n') = Sip1 (). If n € w4, the choice
of w41 guarantees that S;(n) = S;11(n) is not a proper subterm of
Si(n') = Sit1(n’). Now assume that n' & tsn(T;), which means that

n' is a new top side node of T;,1. Then 7’ is a descendant of a node
n; € mit1. Since, by (5), Si(n) = Si+1(n) is not a proper subterm of
Si(nj) = Ai+1(nj) it follows that S;.(n) is not a proper subterm of
Sit1(n').

4. Let T; be the last problem that is reached before we come to Case II. Let
n and 1’ be two xz-nodes of T;, for some x € X. Both are in rel(T;), hence
in JII;. Tt follows from (4) of the previous step that n and 1’ belong to the

same class of I;. By (1), the problems 7, and Tin’ are strictly isomorphic.
By (3), the final marking of Case II does not modify 7" and Ti",. Hence
the subproblems of the output 7" given by the nodes n and 7’ are strictly
isomorphic as well.

5. Let T" € T be solvable. In Part 3 above we have seen there exists an
embedding of T in T". By Lemma 4.2, T is solvable. O
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