Definability and Compression

Foto Afrati! and Hans Leif$? and Michel de Rougemont?

! University of Athens, Greece
2 Universitit Miinchen, CIS
D-80583 Miinchen, Germany
3 Université Paris-II & LRI Batiment 490,
F-91405 Orsay Cedex, France

October 1999

Abstract. We study the first-order definability on compressed structures of properties of strings
and images. Simple first-order properties of strings are presented which are not first-order de-
finable on strings compressed with the Lempel-Ziv compression schema. Conversely, there are
properties that are first-order definable on Lempel-Ziv compressed strings, but not on strings.

We show that all properties of strings that are first-order definable on strings are definable on
Lempel-Ziv compressed strings in an extension of first-order logic by a transitive closure operator.
We define a subclass C of the first-order properties of strings such that if L is defined by a property
in C, it is also first-order definable on the Lempel-Ziv compressed strings.

We also consider a naive compression schema where all first-order properties of strings are first-
order definable on compressed strings, but where this fails for 2-dimensional strings (images).

1 Introduction

A classical search problem on strings asks for the existence of a given substring and recent
papers study the same question on compressed strings. This problem can be approached from
two different points of view : the search for specific algorithms that solve the problem or the
search for specific expresssions in a given language that define the problem. The first efficient
algorithms to search for a substring in a compressed string were given in [Far91]. We follow the
second point of view and study the definability of various problems on classes of compressed
finite structures.

For the substring problem, a binary string w of length n is a finite structure S(w) of size n
with a unary predicate U and a linear order < (the predicate U(i) is true iff the i-th bit of w
is 1). There exists a first-oder formula, i.e. a logical expression in the language {U, <} using
logical connectives and first-order quantifiers, which defines the substring problem, i.e. which
is true on S(w) iff w contains s as a substring. Suppose w is given in a compressed form (as
a .gz file for example, i.e. generated by the classical Lempel-Ziv compression schema). The
compressed string LZ(w) is another finite structure £Z(w) which we will precisely define.
Given such a compressed string, we ask if there is another formula in the language of the
compressed structure which defines the existence of a substring s in w. More generally given
a property P on a class of finite structures and a compression schema, we ask if we can define
P on the class of compressed structures.

It is an essential feature to search in compressed structures for texts but also for images
and multimedia files. To find the relevant information without decompressing the files is a
fundamental requirement for computations based on multimedia information. In case of the

universal Lempel-Ziv compression schema, we will show that the substring problem is not
first-order definable on the compressed structures.

It is not surprising that other compression schemas such as coding common pairs of letters in
one byte [Man94] or omitting letters predictable using an antidictionary of the text [CMRS98]
are beeing investigated. They allow a good compression and the possibility to search for
substrings. In the case of video files, the definition of new compression formats (such as
MPEG 7) is principally motivated by indexing and search, but there is no proposal (at this
point) for a query language. We need a better understanding of the intricate links between
compression and definability on general structures.

In this paper we take the simplest possible example of strings and binary images compressed
by a naive or by the classical Lempel-Ziv [ZL77,Z1.78] compression schema and ask the general
question: given any first-order property on strings, can we define this property on the com-
pressed structure? We will answer this question negatively and show that natural properties
(like the existence of a particular substring or subimage) can not be defined by a first-order
formula on compressed strings or images. Our main results are:

1. for the naive compression schema, first-order properties on strings are also first-order
definable on compressed strings. This is not the case for 2-dimensional strings (images).

2. for the Lempel-Ziv compression schema, the first-order definability is not kept on com-
pressed strings. However, the first-order properties of strings can be defined by a FO(TC)
formula on compressed strings, i.e. a first-order formula with the Transitive Closure opera-
tor. Moreover, we define a class C of first-order formulas such that if a language is definable
by a formula in C, its compression is first-order definable on the compressed structure.

3. For both the naive and the Lempel-Ziv compression, the class of languages that are first-
order definable as compressed strings is not closed under concatenation.

In section 2, we describe how finite structures represent strings and images, strings compressed
by a naive compression schema and by Lempel-Ziv. In section 3, we study the definability on
strings and images compressed by the naive compression schema. In section 4, we study the
definability on strings compressed by the classical Lempel-Ziv compression schema.

2 Compression and finite structures

A structure over a finite domain D is a sequence D = (D, Ry,..., Ry, f1,..., fr), where each
R; is a relation over D and each f; is a function from D into D. The sequence of arities of
the R;’s and f;’s is the type of the structure. A query is a function from a class of structures
(of some fixed type) to relations of fixed arity over the same domain which is invariant under
isomorphism. The language of the structure is {Ry,..., Ry, fi,..., fx}-

2.1 Strings as finite structures

A string w of length n > 0 over an alphabet X = {ai,...,a;} is represented as a finite
structure

S(w) = (Dy,<,Uqy, ..., Uy)

where D,, = {0,1,...,n — 1}, < is the linear order on D,, inherited from IN, and U, C D,
is the unary predicate such that S(w) |= U,(7) iff the i + 1-st letter in w is a. (Note that the

logical axiom Vzyp — Jzy is only valid in S(w) because the empty string w is excluded.) For
a binary string over ¥ = {0, 1}, we simplify the notation (D,, <,U;,Up) to

(Dn7<7 U)’
where U = Uy and D,, — U = U,.

To write formulas in the first-order language {<,U,,,...,Uy}, we use some abbreviations
such as p(z + 1) := Jy(p(y) Az <y A —-3z(z < 2 Az <y)) . Similarly for p(z + k), p(z — k)
where k is fixed. By ¢(maz) we mean the formula saying ¢(x) holds at the last element; for
fixed k, bounded quantifiers like Yz < max — k can be rephrased without max, k, and —.
Moreover, we use Ugpe(2) := Ug(2) AUp(x 4+ 1) AU (2 + 2) and likewise Uy, () for other strings
w over Y.

A set or formal language L C X7 of strings is first-order definable, if there is a first-order
sentence ¢ in the language {<} U {U, | a € X'} such that L = {w € ¥t | S(w) = ¢}. L is
monadic-second-order definable, if the same holds for a sentence ¢ which may also have
quantifiers 3X and VX ranging over subsets and atomic formulas X (y) for membership in
subsets. A language L is *-star free (resp. regular), if it can be built from finite languages by
union, elementwise concatenation, and also complement (resp. closure under concatenation).

The basic facts on definable properties of strings are the following classical results:

Theorem 1 [Biic62,Elg61,MP71] Suppose L. C X*. Then

1. (McNaughton/Papert) L is star-free iff L is first-order definable.
2. (Biichi,Elgot) L is reqular iff L is monadic-second-order definable.

In particular, L™ := {w; - --wy, | n > 1,wy,...,w, € L} need not be first-order definable when
L is. Even for a single string s, s™ := {s}T is not first-order definable in general: if we
could define st for s = aa, we could define linear orders of even length, which is impossible
(cf.[EF91], Example 1.3.5). It follows that L' need not be first-order when L contains a
periodic word: simply, take L = {aa} U M where M is a language whose members do not
contain the letter a. If L were first-order definable by ¢, then ¢ A V5 U,(j) would define
{aa}™, contradicting the undefinability of evenness.

A string is called periodic, if it is of the form p* with p # € and k > 1, otherwise we call it
aperiodic. For example, abab is periodic and baab is aperiodic. The following fact about when
LT is first-order is worth noting.

Proposition 1 1. A string s is aperiodic iff s has only two occurrences in ss.
2. If a string s is aperiodic, then s* is first-order definable.
3. There are aperiodic words 1,59 such that {s1,s2}" is not first-order definable.

Proof: 1.) If s = p* is periodic, then clearly s has at least three occurrences in ss. Conversely,
if ss = usv for some non-empty u, v, then s = uv because u <,pefir 5,0 <gupiz s and |uv| = |s|;
hence ss = (uv)(uv) = u(uv)v, so uv = vu. If |u| = |v|, then we have s = p? for p = u = v. If
|u| < |v|, say, then v = uw for some w # €, and we get s = vu = vwu = v, SO vV = UW = WU.
By induction we get u = p*, w = p' for some k,I > 0 and hence s = p™ for some m > 0.

2.) Let Us(z) be the formula such that Us(j) is true in S(w) iff w has an occurrence of s
beginning at position j. A first-order definition for s* is the following induction principle,

Indy := Us(0) A Vj <maz —|s|" (Us(5) = Us(j + [s]); (1)

where |s|" means |s| — 1. If a string S(w) satisfies Inds, then w € s™: let k be the largest
number such that w = s*+lu for some u. Then |s**1| > maz — |s|. If |u| is not 0, then
j = |s*] < maz — |s|' is a position with Uy(j) A =Us(j + |s|), contradicting Ind,. If s is
aperiodic, then the only occurrences of s in s¥ € st are at positions j = |s?|, i < k, so s*
satisfies Ind,. (If s = p¥ is periodic, then s™*2 does not satisfy Ind,, because U,(z) holds at
max — |p|(k + 1), but not |s| positions to the right, at maz — |p|.)

3.) Suppose ¢ is a first-order definition of {s1,s2}" with s; = aba and sy = b. Then
P = o AUq(0) AUy (maz) A =3j(Uaa(4) V Up(4))

defines (s152)" = {abab}™. Since abab is periodic, we would get a first-order definition of
evenness again. O

2.2 Naive compression of strings

The naive compression, or N -compression, of a string codes the number of repetitive symbols
as an integer. Formally, it decomposes a string w € X into a sequence of subwords or blocks
B; € X% such that w = By -- By,_1. The first block By consists of the longest prefix of w
whose letters are all the same. If By,..., B, 1 are defined and w = By--- B, _jv for some
v € X, then B,, is the longest prefix of v whose letters are all the same. The N-compression
of w is the sequence pq - - - p,, 1 of pairs p, = (4,a) such that B, = a’.

For example, the naive block decomposition of w = aaaaaabbbbaa is aaaaaa.bbbb.aa and the
naive compression of w is N(w) = (6,a)(4,b)(2,a). A more familiar notation is w = aSb*a?.

We represent naively compressed strings N(w) as first-order structures
N(’U)) = (Dm7Dn7 <m7 <n7Ua17 e 7Ualaf)

where (Dy,, <m,Uq,,...,U,,) represents the string of second components of N(w), i.e. m is
the length of N(w), <, the natural order on D,,, and U, (%) iff N(w)(:) = (5 + 1,a) for some
j; further, n is the maximal block length, i.e. the maximal j such there are ¢ and a with
N(i) = (j,a); f: Dy — Dy, is the block length —1, i.e. f(i) = j iff N(w)(i) = (j + 1,a) for
some a; and <, is the natural order on D,,.

In the first-order language talking about A (w), variables must indicate if they range over D,
or D,,. For example, the formula 35 € D, Vi € D,,(f(i) = j) defines the set of compressed
strings of the form a/b/ i) - - ..

Notice that the naive coding can compress with an exponential gain. The string " is com-
pressed as (n,a) and requires logn bits. The LZ structure we present below requires /n bits,
but some more elaborate variations of Lempel-Ziv also achieve an exponential gain.

2.3 Lempel-Ziv compression of strings

The classical Lempel-Ziv compression is a family of algorithms with many variations. We
follow a simple version presented in [CT91]. The compressed string is a sequence of pairs
pn = (k,a) which represent subsequent blocks in the original string. The first component &
is either 0 or points to a previous pair pi_; that encodes the longest strict prefix By_y of
the substring B,, encoded by p,. The second component a is the letter of the alphabet which
makes B,, = Bi_1a.

More formally, the LZ-compression decomposes a word w € X7 into a sequence of subwords
or blocks B; € X T, so that w = Bg--- B,,,—1. The first block By consists of the first letter
of w. Suppose for some n > 0, we have constructed blocks By,..., B, 1 such that w =
By---B,_1v for some v € XT. Then B, is the shortest non-empty prefix of v that is not
among {By,...,By_1}, if this exists, otherwise By, is v. The LZ-compression LZ(w) of w is
the sequence py - - - py,—1 of pairs p, = (k, a) such that B, = By_ja (where B_; :=¢€) and w =
By -+ - By—1. The decompression is given by decode(pg . . . pm—1) = decode(pg) - - - decode(pp,—1)
where decode((0,a)) = a and decode((n + 1, a)) = decode(py,)a.

We insert dots in a string to show its decomposition into LZ-blocks. For example, the string
Wy = a.06.006.0000.00060
is encoded as LZ (wy) = (0,a)(1,a)(2,a)(3,a)(4,a). The string
wy = a.b.bb.aa.bba.bbab

is encoded as LZ(wy) = (0,a)(0,b)(2,b)(1,a)(3,a)(5,b).

We represent LZ-compressed strings LZ(w) = pg - - - pm—1 as first-order structures
LZ(w) = (D, <,Uqy,..., Uy E),

which are finite labelled ordered graphs. As in the naive compression, (Dy,, <,U,,,...,Uy,)
represents the string of second components of LZ(w), so m is the length of LZ(w), < the
natural order on D,,, and U,(7) is true iff the last letter of block 7 is a. The binary relation
E describes the reference to previous pairs: if p; = (k,a) for some a € X and k > 0, (i.e. the
k-th block By, is the longest strict prefix of B;), then there is an edge E(i,k — 1) from node
i to node k — 1.

For w = a.b.bb.aa.bba.bba. with LZ (w) = (0,a)(0,b)(2,b)(1,a)(3,a)(3,a), the graph LZ(w) is

In case of a compressed binary string LZ(w), we have a structure LZ(w) = (Dy,,<,U, E)
where U is the unary predicate U; and its complement is the predicate Uj.

Notice that the graphs are very special : if the string w is over an alphabet with d letters,
the in-degree of £LZ(w) is at most d + 1, the out-degree at most 1, and £LZ(w) has at most d
roots.

2.4 2-dimensional images and their compressions

We consider images as 2-dimensional arrays on a finite domain ' of colours. The image is a
function x : D, x D, — X which gives for each pixel (i1,i2) its colour x(i1,72). We represent
images as structures :

T =(Dy,<,Uyp,...,Uy),

where each U, is the binary predicate on D,, given by U,(i1,12) iff x(i1,i2) = a, and < the
ordering on D,,. We only use the binary value domain X' = {o, e}, so that images are bitmaps.

Compressed images are obtained by compressing the strings that arise from the concatena-
tion of all lines, i.e. x(0,0)---x(0,n —1) --- x(n —1,0)--- x(n — 1,n — 1). For Lempel-Ziv
compression of a bitmap, we obtain a structure

LZ(I) = (Dp,<,U, E)
as before. For the naive compression of a bitmap, we obtain a structure
N(I) = (Dma Dn27 <ms <p2y U7 f)

In the case of a blank image of size n x n, its naive compression is simply one block (n?,o),
i.e. N(Z) has m = 1, =U(0) and f(0) = n? — 1.

2.5 Two example problems for definability under compression

Suppose we have a scheme C' that maps strings w to compressed strings C'(w), and suppose we
represent C'(w) by a first-order structure C(w), i.e. we fix how to talk about the compressed
strings in first-order. We say L C X is first-order definable on C-compressed strings if there is
a first-order sentence ¢ in the language of C-structures such that L = {w € X7 | C(w) |= ¢}.
(We then also say ¢ is a first-order definition of C(L) := {C(w) | w € L}, ignoring the infinite
models of ¢.) To express properties of strings we can use either the language of strings or the
language of compressed strings.

We are interested in the question how the properties definable on strings are related to the
properties definable on compressed strings. As an example, we look at

The substring query The substring query for a fixed pattern string s asks whether a given
string w contains s as a substring. It is first-order definable on strings by 3z U, (). A more
general classical question is the problem of finding the occurrences of the pattern in the
given string, i.e. of computing {(w,7) | S(w) = Us(7)}.

We will show that the substring query is first-order definable on naively compressed strings,
but not on LZ-compressed strings. In fact, all first-order properties on strings are first-order
on N-compressed strings, and are definable on LZ-compressed strings in first-order extended
by a transitive closure operator. In both cases, we also treat formulas with free variables, so
we can answer with occurrence positions, which are represented by tuples of elements of the
compressed string. For images, we consider a similar subimage query and show that already
the subsquare query is not first-order on N-compressed images.

We are also interested in how the class of properties of strings that are definable on compressed
strings behaves. As an example, we consider

Closure under Concatenation The concatenation of two first-order definable languages is
a first-order definable language, by Theorem 1. Is the same true under compression, i.e.
if L1 and Lo are first-order definable on compressed strings, is their concatenation Lq Lo
also first-order on compressed strings?

We show that the answer is negative both for N-compression and for LZ-compression; it is
positive for N-compression when N -structures are equipped with additon.

3 Definability on naively compressed strings and images

We compare the properties of strings that are first-order definable on strings with those that
are first-order definable on naively compressed strings.

3.1 First-order on N-compressed strings need not be first-order on strings

Some properties of strings that are first-order on N-compressed strings are not first-order on
strings.

Example 1 The language L = {0™1" | 0 < n} is not reqular, hence by Biichi’s result it is not
even monadic-second-order on strings. But it is first-order on N -compressed strings, because

weL <= N(w)E-U@©)AU@maz)A f(0) = f(maz) A Iz € D,,Vy(U(y) < = < y).

3.2 First-order on strings is first-order on N-compressed strings

First-order queries on strings can be expressed as first-order queries on naively compressed
strings; in fact, this extends to first-order relations between positions in a string:

Theorem 2 For every first-order formula @(x1,...,2z,) on strings, there is a first-order
formula @™ (z1,y1,...,%Zn,yn) on naively compressed strings, such that for each w and all
Tyennyin ES(’U)),

S(w) [plir, .- yin) = N(w) |z @™ (h(ir),- .., h(in))- (2)

Here, h is the mapping from elements of S(w) to pairs of elements of N'(w) such that h(i) =
(k,7) iff position i is the j+ 1-st relative position in block By, i.e. i = Xy, (f(I")+1)+(j+1).

Proof: By induction on the formula o(z1,...,z,), we define o™ (z1,y1,..., Ty, y,) and verify
the property (2) for all iy,...,i, € S(w), writing h(i1) = (k1,71),--.,h(in) = (kn, jn)-

L. (Ua(z1))N == Uy(z1). If S(w) |= U,(i1), then position 4; lies in block By, and letter iy
of w is a, so N(w)(k1) = (j,a) for some j; < j < f(k1) and hence N'(w) = Uy(k1). The
converse is similar.

2. (71 = 22)V = (¥1 = 2 Ay1 = yo). Claim (2) just means i; = iy <= h(i1) = h(is),
which is true since h is injective.

3. (z1 < 22)N =21 < T2V (31 = 22 Ay1 <n y2). If S(w) |= i1 < ig, then either these
positions are in different blocks, so N'(w) = ki <, k2, or they are in the same block, so
N(w) = k1 = ka A j1 <p jo. The converse is also clear from the relation between i’s, k’s
and j’s given by h.

4. (=) := =(™) and (1 A p2)V := (] A). In these cases, (2) is clear by induction.

5. Gnpre (@1, 20))N i= 31 Inat [nr1 <n f(@nr1) A V(1,915 Tng1, Yngr)]
Suppose S(w) = (i1,...,int1) for some 4,11 € S(w). By induction, we have N (w) =
ON (K1, g1y s kntty jnst), and since j,41 is a position in block k1, we also have j, 11 <

f(kn+1)' CODVGI‘SGly, if N(’U)) |: jn+1 <n f(kn+1) A @N(klajla s 7kn+17jn+1)7 then from
the first conjunct we know that (kp41,7n+1) = h(ins1) for some ipyq1, whence S(w) =
©(i1,...,in41) follows by induction, so S(w) | Izpr10 (i1, -, in).

This completes the proof. O

Corollary 1 The substring query is first-order definable on N-compressed strings.

For example, the query 321 Uypa (1) can be stated on naively compressed strings by translating
its complete form,

Az13zoT23[Us(21) A Up(m2) AUg(3) A1 < 29 < 23 A =3myg(21 < 24 < T2V 29 < 24 < 23)],

which gives a somewhat complicated formula because of the translation of the last conjunct.
Corollary 2 FEvery *-free language L is first-order definable on N-compressed strings.

Proof: By McNaughton’s theorem, L is definable by a first-order sentence ¢ on strings, so its
translation ¢ defines the naive compression of L. (A sentence ¢ with L = {w | N'(w) | ¢}
can effectively be determined from a *-free extended regular expression r for L.) O

Theorem 2 implies that if Ly and Lo are first-order definable, then N (L L) is first-order. We
connot replace assuming that Ly is first-order by assuming that N (Ly) is first-order:

Proposition 2 Language concatenation is not first-order on N-compressed strings.

Proof: Both Ly = {0"1" | 0 < n} and Ly = {1™0™ | 0 < m} are first-order on N-compressed
strings, by Example 1. To define LiLs on N-compressed strings, we would need a first-order
formula expressing

max =2 A-U(0) ANU(1) A=U(2) A f(1) = f(0) + f(2),

but we don’t have addition on D,,. Suppose ¢ were a first-order sentence of quantifier rank &
that defined L Ly on N-compressed strings. Pick w; € L and wo € Lo such that |w;| > 4%.
One can show that N (wjws) and N (wjlwy) are k-elementarily equivalent, by defining a
winning strategy for the Duplicator in the k-round Ehrenfeucht-Fraisse-game between these
structures. Hence N (w1 lws) E ¢, because N (wiws) [¢, contradicting wylwy ¢ Ly1Ly. O

However, if we allow addition on D,, of N-structures, the class of languages that are first-order
under N-compression is closed under concatenation:

Proposition 3 Language concatenation is first-order definable on naively compressed strings,
if we represent naively compressed strings N(w) as first-order structures

N+('U)) = (DmaDn7<m7Ua17"'7Ua57f7+7071)

where +,0,1 are the partial addition on D, with zero and unit elements. That is, N1 (L1 Ls)
is the class of finite models of a first-order sentence, if No(L1), N1 (L) are.

Proof: Suppose that, for k = 1,2, 1, is a first-order definition of N (Lj). Note that N (w) €
N (LyLy) iff there are words wy,wy such that w = wiwy and Ny (wy) |= 1. If the last letter
of wy differs from the first of we, we obtain N (w) and N5 (wy) by splitting Ay (w) between
two points 4 and 4 + 1. In this case, to say that the parts satisfy ¢, we can use formulas
Yr[x,y], obtained from v by relativizing all quantified variables ranging over D,, to the
interval between = and y.

If the last letter of wy is the same as the first of we, we obtain A, (w;) and N (ws) by splitting
a point 7 € Ny (w) into two, i.e. by letting i be the last point of the first segment and also
the first of the second segment, and adjusting the multiplicity f(7) of the common symbol for
the two segments (i.e. we split block B;). To reinterpret f for the parts, we replace all atomic
expressions f(z) =y in (¢ A f(max) = p) by the formula

p1(z,y,p) = (& <maz A f(x) =y) V (z = maz Ay = p)

and in (12 A f(0) = g) by the formula

2(7,y,q) == (x=0Ay=q)V(0<zA f(z)=1y)

to obtain formulas v} (p) and 13 (q), before relativizing to the segments. The formula defining
N+(L1L2) then is

=3 € Dy, { (41[0,7] A ipoli + 1, maz]) V
Ip,q € Dn(f (i) = p+ q+ 1 AT (p)[0,d] A3 (q)[i, maz])}.

Note that the meaning of the pseudo-constants 0, max in 1 changes under relativisation. O

3.3 First-order on images need not be first-order on N-compressed images

For images, we now take a somewhat complex example which illustrates how the existence of
simple patterns can become very difficult even with simple compression schemas.

The subsquare query The (monochrome) subsquare query asks for the existence of a square
of four e symbols, i.e. the existence of two consecutive lines of the image where the pattern
e e occurs at the same horizontal position. We can define this query in first-order by

Psq 1= d313io [U.('il,’ig) A U.(’il + 1,’i2) A U.(’il,'ig + 1) A U.(’il + 1,29 + 1)],

where (i1,12) refers to the position of the bottom left corner of the square.
The goal of this section is to show:
Theorem 3 The subsquare query is not first-order on naively compressed images.

Before we go into technicalities we shall give an outline of our proof of Theorem 3. Suppose
the subsquare query were first-order definable on compressed images by a sentence @é\; of
quantifier rank k. We will construct two images, Z; without the square pattern, Zo with
the square pattern in the first two lines (and identical from the third line on) such that their
compressions N'(Z;) and N (Zy) are k-elementarily equivalent. This contradicts the assumption
that N (Zy) satisfies 2 and N(Z;) does not.

We will prove that N'(Z;) and N (Z;) are k-elementarily equivalent by showing that the Du-
plicator will win an Ehrenfeucht-Fraisse game of k rounds on N'(Z;) and N'(Zy). To do so,
we first construct from N(Z;) and N (Z3) two simpler structures £ and &, show that the
Duplicator has a winning strategy on these and then transfer the winning strategy to N (Z;)
and N (Zy). To construct & and &, we consider N'(Z;) and N (Z;) as sequences of regions
(intervals), each corresponding to a substring of the first or second line of the images Z; and

Ts; in addition, regions representing substrings in the first and second line of the images 7;
and 7y are related. The structures £ and & represent these relations as an ordering of tu-
pels. Thus, the £-structures allow to talk about the first two compressed lines of the images
simultaneously, which makes it easier to explain the Duplicator’s strategy.

Now for the formal proof of Theorem 3. We need to define the k-round Ehrenfeucht-Fraisse
game only for the subclass of N -structures where D,, = Dy, because the longest blocks in
the example images are of length 4. We call these structures N' = (D,,, D4, U, f, <m, <4) the
restricted N -structures:

Definition 1 The k-round Ehrenfeucht-Fraisse game is played between two players, the Spoiler
and the Duplicator, on two restricted N -structures N' and N'. At round r, the spoiler picks a
point p, in one of the domains of one of the structures; the duplicator responds by picking a
point q, in the corresponding domain of the other structure. For each r, let t,,t.. be the points
associated with N';, N respectively; so {t,,t.} = {pr,qr}. The duplicator wins the game if for
alli,7 <k and all a € X

ti =ty iff t; =15, f(t) = f(t), ti <tj iff t; <tj, and Ua(t:) iff Ua(t;)-
The well-known theory of Ehrenfeucht-Fraisse games (cf. [EF91]) gives the following result:

Theorem 4 Let Q be a property of restricted N -structures. The following are equivalent:

(a) Q is not expressible in first-order logic for restricted N -structures.
(b) For each k, there exist restricted N -structures N', N which differ with respect to Q such
that the spoiler wins the k-round Ehrenfeucht-Fraisse game on N, N.

The example images We will now construct the two image structures Z; and Z,. Each
image is a square matrix filled in with o’s and e’s. All lines of the matrix are filled with o’s
except for the first two, which look as follows, for suitable iy, 49, j1, jo to be fixed later:

AR o(oooo)il(oooo)i2 oooooooooooo(oooo)jl(oooo)j2oo

oo(oooo)il(oooo)i2oooooooooooo(oooo)jl(oooo)j2o
Is: o(oooo)il(oooo)hooooo eceoe ooo(oooo)jl(oooo)j2oo
oo(oooo)il(oooo)i2oooo(oooo)jlooo ee0e@ o(oooo)j2o

The first line of the two images is the same. In 77, the o’s are misaligned in the first two lines,
hence a subsquare of four e’s does not exist. In Z,, the subsquare occurs at the underlined
position, if 0 < j;.

Using the abbreviations a = (1,0),b = (2,0),d = (1,e),c = (3,8),e = (3,0),f = (4,0) and
i =11 + 12, = j1 + j2, the naive compressions are

N(Ty) : d(ad)? (bc)™ fcacac(be)b.c(be) beecac(be) a
N(Iy) : d(ad)? (bc)™ fcacac(be)b.c(be) I beecac(be)’? a

where, to improve readability, we inserted the . to mark the end of the first line.

! Therefore, the following also works when using A4 (w) rather than A (w) to represent N (w), because addition
on D4 can be replaced by <4.

10

In both structures, the first line consists of a segment of dada . .. dad followed by the pattern
bcbe . .. beb with a string of fcacac somewhere in the middle. The second line consist of the
pattern cbebe . . . bea interrupted (at different places in the two structures) by a string beecac.

In order for Duplicator to win a game with k£ rounds, we will later set the integers i1, 42, 71, Jo
large compared to k. Notice that the neighborhoods on an original image are 2-dimensional
as we have an order <y on the first coordinate and an order <5 on the second. On the naively
compressed image, the neighborhoods are 1-dimensional. In order to cope simultaneously
with the first two compressed lines, we first work on modifications of N'(Z;) and N (Z;) where
regions in the first two lines are coupled.

A simpler form of the compressed images Consider words over the alphabet X =
{A,...,G}, represented as labelled ordered structures

&= (Dm,<,UA,...,Ug).

We can write the compressed images N'(Z;) and N (Z3) as words & and & over {A,..., G},

using these letters as the codes

d ad bc fcacac bcbe bc

¢ bebebe ecac G ’
each of these letters represents two regions of blocks in a compressed image, the first region
having the upper component line of the letter as labels, the second the lower component line.

Reading the concatenation of these letters componentwise, we can view the first compressed
structure N (Z;) as :

& AB?%*"1 Ciz—i1+1ECi1—3DCj1+j2—i1 FilG
and the second compressed structure N (Z) as :
& ABQil Cj1+i2—i1+1ECi1—j1—3ch1+j2—i1 Fi1 G,

where 71,12, j2, jo are constrained so that all exponents are nonnegative. The only difference
between &£ and & is that letter E occurs in another position. For example, N'(Z;) with
i1 = 4,0y = 5,§1 = 1, jo = 4 can be written as £& = AB,C?ECDCF*G, or

dlad|ad|ad|ad|ad|ad|ad|ad|bc|bc|bebe|bel fecacac |be|be|be|be|belb
c|belbelbelbelbelbelbe|belbelbe|ecac |be|bebebelbe al’

In fact, we can a little bit further simplify the way we view &£ and & by letting p = i1 — 3,
q=12—1% +1and m = j + jo — i1; then we can re-write the two structures to:

& ABPH3)ciECcP DO PP,
&y : ABXPH) Citepor—i pOom P3G

where the constraints now are: ¢ is even and j << p << ¢ << m.
Lemma 1 & = &,.

11

Proof: The Duplicator has a classical winning strategy on labelled orderings: he always plays
points with same label as the last point played by the Spoiler, satisfying the same ordering
relations; moreover, if the Spoiler in round r plays at a distance k — r from a border point
or a point played earlier, the Duplication plays at the same distance from the corresponding
border point; otherwise, he plays at a distance > 2¢=" from all border and already played
points. This is possible for k£ rounds if the numbers 7y, ..., jo are large enough. O

We can now refine the Duplicator’s winning strategy on £; and & to obtain:
Lemma 2 N(Z;) =, N (Z).

Proof: Note that the word & decomposes the structure N'(Zy) into |&;| pairs of regions: for
example, point r of &, labelled by C' = (be, be), fixes two occurrences of be in the sequence
N(Z) € {a,...,f}", hence two regions of size 2 in the structure N'(Z;). Conversely, each
point 7 of the structure N'(Z;) corresponds to a point of £1, namely the one which contains r
in one of the regions it defines on N (Z;). The same holds for & and N (Z5).

Therefore, the Duplicator can use the following strategy: If the last point played by the
Spoiler belongs to the second domain Dy, the Duplicator just plays the same point in the
other structure.

If the last point played by the Spoiler belongs to D,,, the Duplicator first translates the
points played so far on the D,,-domains of structures N'(Z;) and N (Z3) into the corresponding
points on the structures £ and &£;. He then plays on the £-structures according to his winning
strategy of the proof of Lemma 1, translates the point of D, he has played into a pair of
regions in the N (Z)-structures, and then plays a point in one of the regions depending on the
Spoiler’s last move: if, for example, the spoiler played a point r; of N'(Z;) labelled b, whose
corresponding point ey in & is labelled C, and if r; is the first point of the second region
defined by e, then the point es of £ provided by the winning strategy is also labelled C', so
the Duplicator answers with 7o, the first point of the second region of N'(Z») defined by es.

It remains to be checked that at the end of the game, a partial isomorphism between N (Z;)
and N(Z,) is obtained. The corresponding points on the £-structures give a partial isomor-
phism between &£ and &3, by the strategy used for £-structures. The strategy used on the
N-structures refines this to a partial isomorphism between N (Z;) and N (Z,) as far as la-
belling and ordering are concerned, and for the points of the domains Dy, the correspondence
is the identity. O

By Lemma 2 and Lemma 1, N (Z;) and N (Z;) are k-elementarily equivalent. Since one of
71,T5 contains the subsquare but the other does not, the subsquare query cannot be defined
on the compressed images by a first-order sentence of quantifier depth k. This completes the
proof of Theorem 3.

4 Definability on Lempel-Ziv compressed strings

We can consider strings w as labelled finite orders S(w) or, when compressed using the Lempel-
Ziv compression, as labelled finite ordered graphs L£LZ(w). For each version, we have a first-
order language by which we can express properties of strings as definable classes of structures
S, or G, respectively. What is the relation between the properties definable in the two first-
order languages?

12

4.1 First-order on LZ-compressed strings need not be first-order on strings

First-order sentences on the class of compressed (binary) strings, i.e. sentences in the language
{U, E, <}, define properties of compressed strings £Z(w) and hence properties of strings w.
Are they definable in the language of strings, i.e. with only {U, <}? The following lemma
answers this question negatively.

Lemma 3 There exists a first-order property on the class of LZ-compressed strings which is
not first-order definable on the class of strings.

Proof: Consider the class of compressed strings defined by
e ==U0)ANUL)AVi>2(U@l) < U(i—2)) AN ViVi(E(i,j) < (i >2ANj=1i—2))

A graph of size 6 satisfying ¢ is

Note that
LZ(w) E ¢ < w=0.1.00.11.000.111.0”.17 for some p.

The set of these strings w is not a regular language. By the result of Biichi, it can not be
defined by a first-order formula in {<, U}, not even by a monadic second-order formula. O

4.2 First-order on strings need not be first-order on LZ-compressed strings

We now turn to the reverse question. First-order sentences in the language of strings, i.e. with
the unary predicates {U, | a € X'} and the order predicate <, define properties of strings. We
will show that, in general, they can not be expressed by sentences on LZ-compressed strings.

In particular, we show that the substring query is not first-order on LZ-compressed strings.
Thus, finding a substring is ‘difficult’ to do on LZ-compressed structures. The main reason
is that under LZ-compression of a string wswv, the compressed structure £Z(w) will directly
influence the compression of s in the string wsv. The LZ algorithm always looks at previous
prefixes and therefore the code of a substring occurrence depends on its left context.

Example 2 Consider the alphabet X = {0,1,a} and the language L = {0,1}* a 0*. We
call LZ (L) the corresponding set of compressed strings. Let LZ(wi) and LZ(ws) be the two
compressed strings represented by the graphs below.

A A A A AV A VAT

G

The compressed string £Z(w;) of length 11

Y

G

The compressed string £2Z(ws) of length 10

13

Notice that the parities of the graphs differ. By decompression, the corresponding strings are
wp : 0.1.00.10.000.100.0000.1000.00000.1000¢.000000 € L

and
wy : 0.1.00.10.000.100.0000.1000.0000¢.10000 ¢ L.

Lemma 4 There is a first-order property on strings which is not first-order definable on
LZ-compressed strings.

Proof: Consider the language L of example 2 which is first-order definable. Let us show that
the corresponding set LZ(L) of compressed strings is not first-order definable. Suppose LZ(L)
were first-order definable by a formula 15, of quantifier rank k. If £LZ(w;) and LZ(w3) are two
orders of length m and m — 1 where m > 2+ then £LZ(w1) =, LZ(wy). In a Ehrenfeucht-
Fraisse game of rank k, the Duplicator has a winning strategy : at stage 7 < k, he keeps the
intervals of size 2¥~% around the minimum, the maximum and the points played isomorphic.

As w1 € L,ws ¢ L and compression is injective, we have LZ(wy) € LZ (L) and LZ(ws) &

LZ(L). Because LZ(w1) = ¢ and LZ(w1) = LZ(w2), the graph LZ(ws) should also satisfy
1, a contradiction. O

Corollary 3 The substring query is not first-order definable on LZ-compressed strings.

Proof: Let s = a0 and consider example 2. The substring s occurs in wy but not in ws, yet the
compressed strings are k-elementarily equivalent. Hence no first-order formula of quantifier
rank k in the language of the compressed structures can define the substring query. O

Corollary 4 Language concatenation is not first-order definable on LZ-compressed strings.

Proof: We note that the compression of Ly = {0,1}" and of Ly = a{0}" are first-order
definable. By a slight modification of the above example, the compression of Ly Lo is not. O

4.3 First-order on strings is first-order in TC on LZ-compressed strings

We now show that we can define all first-order properties of strings in an extension of the
first-order formulas of LZ-structures. A formula is in the language FO(TC) if it can be built
when we add the following syntactic construction to those for first-order formulas : given a
binary formula (z,y) the expression T'C.4(z,y) is also a formula, with free variables z,y.
The meaning of TC.4(z,y) is the transitive closure of the graph defined by ¢ (z,y).

Let us see how T'C can be used to define a substring query on LZ-compressed strings.

Example 3 Consider occurrences of the substring s = 10 in binary strings. Since each prefix
of a block is (the content of) a previous block, it is sufficient to define occurrences of 10 with
block borders as in 10. or 1.0, and these can be defined by the formula

3,5 [(=U@GE) ANE(,7) ANU(3)) V (U@) ANTC.E(i +1,5) AYE=E(j, k) A=U(j))]

In the first case, we check the symbols O at the end of block i and 1 at the node obtained by
following one back-edge. In the second case we can check 1 at the end of block i, but to check
whether 0 is the first symbol of block i + 1 requires to follow the back-edges (using TC') from
node i + 1 all the way to find the block j containing the prefix of block i 4+ 1 with length 1.

14

The example suggests a general way to recover a position in the original string from a pair of
nodes in the LZ-compressed string. Namely, the positions in block By uniquely correspond to
the blocks containing the non-empty prefixes of By,. Hence the set of positions i € S(w) covered
by By is represented in LZ(w) by {(j,k) | LZ(w) = E*(k,j)}, where E* is the transitive
reflexive closure of E. Thus, if E*(k,j), we can view (k,j) as the end position of block j as a
prefix of block k.

For example, if w = a.aa.ab.aba.aa, the positions 5,6,7 contained in block 3 are represented by
(3,0),(3,2),(3,3), because the nonempty prefixes of B3 are a = By, ab = Bs, and aba = Bs.
The last position of the last block By = aa = By is represented by (4,4), not by (4, 1).

Theorem 5 For every first-order formula p(z1,...,x,) on strings, there is a FO(TC)-formula
O "% (1,1, ..., Tn,Yn) on LZ-graphs, such that for each S(w) and all iy,. .., i, € S(w),

S(w) = lit, ... in) = L2Z(w) E "2 (h(i1),. .., h(in)).

Here, h is the mapping from elements of S(w) to pairs of elements of LZ(w) such that
h(i) = (k, j) iff position i lies in block By, and Bj is the prefiz of By ending in position i.

We will only need T'C' to define E*, using © = y V TC.E(z,y). Since E is a deterministic
relation, the translation in fact will go to FO(DTC) C FO(TC).

Proof: By induction on the formula ¢(z1,...,z,).

L. If p(z) = Uy(z), let =% (z,y) be Uy(y): if S(w) E U,(i), and h(i) = (k,j), then B; is
the shortest prefix of By, that covers position 4; therefore, B; ends in the letter a, which is
then the label at node j of LZ(w), so LZ(w) = U, (7). Similarly for the converse.

2. If o(z1,22) = o1 < T2, let % (z1,y1, 2, 92) be (z1 < 32) V(11 = 32 Ay < y2). If iy <o,
then either 7; belong to an earlier block than 75 or they belong to the same block, but the
relative position of 7; is smaller than that of is.

Conversely, assume LZ(w) = @"? (h(i1), h(iz)) where h(iy) = (k1, j1) and h(is) = (k2, jo).
Since blocks do not overlap, k; < ko gives i1 < i9. If ky = ko and j; < jo, then since the
relative positions refer to the same block, the absolute positions satisfy i; < 5.2

3. Clearly, (01 V 92)"7 is (o7 V 57) and (=p)"7 is =(p"7).

4. If o(21,. ., 2p) = ITpi1., let @7 be Izn 1 Fyni1-(VP2 AN E*(Zni1, Yns1))- If S(w) =
@(i1y ... ,in), thereis iy 1 € S(w) such that, by induction, LZ(w) = %% (h(i1), ..., h(ini1))-
Let h(in+1) = (k,7). Then iy,4; is a position in block k, and by definition of h, E*(k, 7).
So LZ(w) = "% (h(i1), ..., h(in)).

Conversely, assume LZ(w) = ©%(h(i1),...,h(in)) and pick k,j € LZ(w) such that

LZ(w) E "7 (h(ir),. .., hlin), (k,5)) A E*(k,).

Nodes k and j represent blocks By, and B; of the LZ block decomposition of w. Since j
can be reached from k by an E-chain, block Bj is a prefix of block By. So, if i1 € S(w) is
the endposition of this prefix of block By, we have (k,j) = h(in+1) and thus, by induction,

S(’U)) |: Q[}(lna s 77:TL+1)' Hence S(w)): 3$n+1¢(7"17 s 77'TL)

2 We might take E*(zi, y2) AET (y2, y1) instead of y1 < y2, which also might be more efficient. But by definition
of h and since E™(j2,j1) = j1 < j2, this is not necessary.

15

(By Bj we sometimes mean just the word, not its occurrence fixed by the LZ-algorithm.) O

Since the substring query for an arbitrary string s is definable on strings by 3z Us(z), the
previous example generalizes to:

Corollary 5 The substring query is FO(TC) definable on LZ-compressed strings.

An m-ary relation R C D] on §(w) is recovered in the compressed structure £LZ(w) from the
2me-ary relation h(R), where h is the above mapping from S(w) to LZ(w) x LZ(w). Hence we
can also use LZ-compression on strings with some additional relations R. For example, we can
compress labelled graphs if we first impose a total linear order and then use LZ-compression
on the resulting string with the edge relation.

If we extend the above translation to second-order formulas using
AXM)7 = 3XCM P2 and X (@1, 2n) " = X (21,1, B),

we still have
S(w) = @lit, ... in) = LZ(w) E chZ(h(z'l),...,h(in))

for existential second-order formulas ¢(z1,...,z,) on strings. The converse fails since there
exist 2m-ary relations on LZ(w) that are not the f-image of m-ary relations on S(w).

4.4 When first-order on strings remains first-order on LZ-compressed strings

The class of languages that are first-order definable on compressed strings contains the finite
languages and is of course closed under the boolean operations of intersection, union and
complement. By Corollary 4, it is not closed under concatenation. We will below present a
class of first-order properties of strings which remain first-order on the compressed structures.
This class is closed under a limited use of iterated concatenation.

Recall that for definability on strings, sT is first-order for aperiodic strings s, by Proposition 1.
Likewise, a limited use of ™ can be first-order on LZ-compressed strings:

Example 4 The reqular language L = 00711 = {0™ 17 | m,p > 2} is defined by
Y= Fi<maz[l <i AVjli <j+<U®Y)))
The string s = 0%°1'3 € L,
0.00.000.0000.00000.000000.00001.1.11.111.1111.11,

has the following LZ-graph:

The compression LZ(L) of L can be defined by

P = Fiiin [(i < i <io) A(Y(U(G) i <G) VVUG) i <5)) A
ViVE(E(k,j) < (k=iANj=1i1)V(k=maz Nj=13)V
(k#O0ANk#iNkFZi+1ANkF#mazNj=k—1))]

16

With considerable effort, we will now show:
Lemma 5 If s € Xt is aperiodic, then s* is first-order definable on LZ-compressed strings.

The main observation is that for w € s* large enough, the ordered labelled graphs £Z(w) have
a repeated pattern, a sequence of isomorphic subgraphs, of which any two adjacent ones are
linked by back-edges in the same way. The existence of such a pattern, though not sufficient
for Lemma 5, is not straightforward. It is best shown by ignoring how LZ-compression behaves
at the end of w; therefore, we turn to the compression of the infinite string s*.

The LZ-graph of the infinite string s“ as a domino sequence. Let s¥ = sss--- be
the infinite word over X obtained by the concatenation of infinitely many copies of s. The
LZ-block decomposition of s¥ is the infinite sequence

By, B1, B2, B3 -, (3)

where ByB;--- = s* and B, € X" is the shortest nonempty prefix of B, B, 1--- that is
not among By, B1,...,Bn_1. Then (3) gives an infinite LZ-graph,

LZ(s”) = (Dy,<,Uqy, ..., Uy, E)

of order type w, whose label at node i € D,, is the last letter of block B;.

It is useful to think of LZ(s¥) as a sequence of dominoes, as follows. For a string ¢, let
U <prefiy t mean that ¢ = uv for some v € X, and v <gup, t that ¢t = uv for some v € .
We also use v <y, t for infinite words ¢. Note that s has only a finite suffiz-set, namely

{vs“ | v <gumw s}, where p; is the shortest p <j, 4, s such that pk = s for some k.
For example, if s = abaaba, the suffix-set of s* is {vs“ | v <gmy aba}, because baabas®” =

bas“,aabas® = as¥,abas” = s¥. If s is aperiodic, ps; = s.

Let ps = ugvg = ... = uyp,|v)p,| be all splittings of p, into prefix u; and suffix v;, where |v;| = i.
For each j there are unique® [,7 < |ps| such that B;Bj 1+ = vs¥ and Bjy -+ = v,5%; we
call the ordered pair C; = [I,r] the class of block Bj. Except for small j, we have B; = vsFu,
for some k.

Example 5 Consider the aperiodic string s = aba. The LZ-block decomposition of s“ gives a
sequence of blocks beginning as follows:

a.b .aa.ba.ab.aab.as. s .sa.baa . baab . asa . bas . sab . asab . as®. ---

The classes of these blocks are
[0,2]2,1][1, 2][2, 0][0, 1] [1, 1] [1, 0][0, 0][0, 2] [2,2] [2,1] [L,2] [2,0] [0,1] [L,1] [L,0]--- .

For example, block Biy = baab has class Cg = [2,1], because B1gBi1 -+ = bas® gives the first
component 2 = |ba| and By, --- = as¥ gives the second component 1 = |a].

% But the word B; may have different occurrences in ps (or concatenations of a suffix with a prefix of ps, as
aa in abaaca), which in turn define different suffix-pairs of s”. For example, with s = abaaba, the subword
a of s* has occurrences of class [0, 2] and occurrences of class [1, 0].

17

A domino (over py) is just an ordered pair [/, 7] of numbers [,r < |ps|; its first component is
its type. On {0,...,|ps| — 1}, let = :={(k+ 1,k) | k < |ps| — 1} U{(0, |ps| — 1)}. A sequence

C = [lo,ro][l1,71][l2, 2] - - -
of dominoes [l;,7;] over py is called a LZ-domino sequence, if it satisfies two conditions:

1. Domino rule: For all j € IN, l;1 =1y, i.e. [l,7][lj41,7j+1] match like dominoes,
2. LZ-rule: For all j € IN, if j' is the smallest index > j with [; = [;, then r; > ;.

The domino rule says that the LZ-block Bj is a prefix of the suffix of s* left by removing
its prefix By - -- B;. The LZ-rule expresses that when a prefix block Bj: is taken from v;s%, it
extends the last block B; taken from v;s* by a single letter.

Every LZ-domino sequence C = CyC} --- over p; with C; = [l;,r;] defines a labelled ordered
graph Go = (D), <,Uay,---, Uy, E), where U, (i) iff avy, <symz ps and E(i,5) iff j < 4,
l; = lj, rj > r; and there is no C}, with j < k <4 of type [;. This also works if C' has length w.

For example, if p, = aba and € = [0, 0][0, 2][2, 2][2, 1][1, 2J[2, 0]f0, 1][1, 1][1,0], we obtain

gC = a a a b a a b b a
0 1 2 3 4 5 6 7 8
C = [00] [02] [22] [21] [12] [201 [01] [11] [1,0]

In particular, the LZ-graph of s is completely determined by ps; and the sequence
C = CyCLCy---

of block classes C; of the Bj: one easily checks that Go = LZ(s“). This representation of
LZ(s¥) as an LZ-domino sequence C allows us to show the existence of a repeating subgraph
by showing that C is ultimately periodic.

Proposition 4 Let C' be an infinite LZ-domino sequence. If S is a subword of C' containing
each domino once, then C' =TS, where T'S is any prefiz of C ending in S.

Proof: Let d? be the number of dominoes, so |S| = d?. Let C,,, be the first domino in S and
Cpy = Cy, 1 g2 the domino following S in C. It is sufficient to show C,,,; = Cy,, because then
we likewise consider S" = Ciy, 41 -+ Cpyr. Let Cpy = [I',7']. Since each domino of type I occurs
once in S, these occur ordered like [I',7'],...,[I,r] where r = r'. Suppose Cy,, # [I',7']. Then
there are d + 1 dominoes of type I’ in SC,,, and their left neighbours are d + 1 dominoes
with second component !’, lying in S. But this is impossible, since there are only d different
dominoes with second component I’, and S contains no domino twice. So Cp, = Cy,. O

Lemma 6 For each infinite LZ-domino sequence C there are finite words S, T such that
C =TS8Y, where S contains each domino once.

Proof: Let d? be the number of dominoes. Since C is infinite, at least one domino is used

infinitely often. Pick one of these and let C,,, = C,,1, m < m+k, be two of its occurrences; we
may assume that S := Cp,11 - - - Cppk 18 the longest suffix of Cp - - - Cj, 4 containing no domino

18

twice, whence 1 < k < d?. If k = d?, the claim holds with T := Cj - - - C,,, by Proposition 4.
So assume k < d2. We show that there is m' > m and &’ > k such that S := Cyrpq -+ Crrpp
is the longest suffix of Cj - - - Cjr 1 containing no domino twice.

If Cppigr1 does not occur in Chypq -+ Crypg, put m' = myk' = k+ 1. If Cpyypy1 occurs in
Cmt1 - Cmak and Cryipr1 = Cpyp1, then Cryao - - - Chpyapaq is the longest suffix of Cp - - - Chya ka1
containing no domino twice, again of length k& < d?; by the LZ-rule this cannot occur k times
in a sequence.

So suppose C, 1,11 occurs in Cpyyq -+ - Cpy i k. In order to prove Cp, g1 = Cpyr1, we show that
a maximal sequence of pairwise different dominoes that obey the domino- and LZ-rules can
only be continued by its first element. Consider the case d = 3, then the domino components
are 4,5 — 1,7 — 2 (mod 3). Up to cyclic shifts, the maximal sequences of dominoes without
repetitions are:

[iyi][2,3 —][— 1,4][¢,3 — 2][1 — 2, 1]

[i,1][1,0 — 1][i — 1,4][d,4 — 2][i — 2,4 — 1][i — 1,4 — 1]} — 1,7 — 2][1 — 2,0 — 2][i — 2,1]
[i,i][2,0 — 1][i — 1,4][¢,3 — 2][1 — 2,4 — 2][1 — 2,4]

[i,4][1,0 — 1][i — 1,0 —][— 1,4 — 2]z — 2,4][1,7 — 2][— 2,7 — 1][z — 1, 1]

[iyi][,0 — 1)[i — 1,4 — 1][i — 1,4 — 2][i — 2,4 — 1][i — 1,4][s,7 — 2][i — 2,0 — 2][i — 2,]
[i,9][1,0 — 1)[i — 1,0 — 1][i — 1,4 — 2][1 — 2,4 — 2][i — 2,i][i,i — 2][t — 2,4 — 1][i — 1,4]
[iyi][2,3 — 1][i — 1,4 — 2][1 — 2,4][¢,% — 2][i — 2,7 — 1][i — 1,1]

[i,4][1,0 — 1][i — 1,4 — 2][s — 2,0 — 1][z — 1,4][s,4 — 2][— 2,7 — 2][s — 2, 1]

[i,i][¢,0 — 1)[i — 1,4 — 2][i — 2,4 — 2][i — 2,4][4,4 — 2][i — 2,4 — 1][i — 1,0 — 1][i — 1,4].

By inspection, the only domino that extends any of these according to the domino- and LZ-

rules is [¢,], the first one of each sequence. The same applies for d different from 3. It follows
that one has to run into the first case, where k < d? is increased. O

For a finite domino sequence C' there is an obvious first-order formula @¢(z) such that for
every ordered labelled graph G,
GEecli) <= Gl j+c-13= 9o

where G[(; iijc|-1y is the restriction of G to nodes j,...,5 + |C| — 1. This extends to the
graphs of order type w we are interested in:

Lemma 7 For every s € X7, there is a first-order formula prs.(x) such that for each ordered
labelled graph G = (w, <,Uq,, ..., Uy, E) of order type w,

G = prge(0) <= G~ LZ(s¥).

Proof: For the infinite LZ-graph of s*, we clearly have LZ(s¥) = Grgw, using the block class
sequence C' = T'S¥ of s“ in its representation by finite T, S according to Lemma 6. To define
Grse in first order, we can take

prse(z) = @rss(@) AVz >z + [T (pss(z) = pss(z + [S]))
Ay > o+ TS| V2 (Bly, 2) =y — 8] < # <).
It is clear that ¢rgg(z) implies @gs(z + |T|). Note that G |= pss(j) says that at nodes j
and j + |S| there are copies of Gg which are appropriately connected by backedges (dotted in

the following picture). The third conjunct excludes edges in G connecting nodes > |T'| of a
distance > |S]. O

19

Example 4 (Cont.) For s = aba as above, when picking |T| = 7 the initial segment Grgs
described by ors5(0) looks as follows:

a . b .a.ba.a .ab.a . s .sa.ba. bab.aa.bas .sab .asab.ass . ss. ssa. basa.basab. assa . bass . ssab . assab . asss.

The 9 blocks corresponding to the k — th occurrence of S in C are, by induction on k:

s¥ . ska . bastta . bas*"lab . asta . bas® . sFab . asFab . asttl. (4)

We now return to the finite. Since s™ is a set of finite prefixes of s*, our next goal is a first-
order description of a suitable set of initial segments of LZ(s¥) ~ Grgw, the graphs Grgn for
finite n. (Roughly, this is a first-order definition of the language T'S™ of domino-words.)

Corollary 6 Let s € X and C = T'S¥ be a representation of the LZ-block class sequence of
s¥ according to Lemma 6. There is a first-order formula prgg+(z,y) such that for each finite
ordered labelled graph G,

G = prgs+(0,maz) <= for somen >0, G~ Grggn.

Proof: To say that the segment from node x up to node y of an ordered labelled graph G is
isomorphic to Grggn for some n > 1, we impose an upper bound on Vz in the formula prge ()
of Lemma 6, obtaining

prss+(,y) = prss(@) AVz(z +|T| <z <y —|SS| A pss(2) = pss(z+15])) (5)
AVz1 > x4+ |TS|Vz (E(21,22) = 21 — |S| < 29 < 21).

Then if G = ¢rgg+(0, maz) is finite, clearly G ~ Grggn for some n > 0. However, in order to
see that Grgsn | prgg+ (0, maz), we must know that when Grgsn | pgg(j) with [T < j <
max — |SS|, then j < maz —|SSS|. In other words, we must ensure that in Gggg the formula
wgs(z) only holds for nodes 0 and |S|. This is done in Proposition 5 below. (Cf. the proof of
Proposition 1, claim 2., for strings.) O

We need to extend the notion of an aperiodic word to the case of LZ-graphs. To account for
the backedges between copies of Gg, the definition is restricted to graphs of the form Ggg. We
call a labelled ordered graph of the form Ggg periodic, if Gggg contains at least 3 segments
isomorphic to Ggg.

Proposition 5 Let s € Xt be a power of some aperiodic string ps. Let the LZ-block class
sequence of ¥ = p¥ be TSY where |S| = |ps|>. Then Gss is aperiodic.

Proof: Suppose Ggg is periodic, i.e. Gsss = wss(k) for some 0 < k < |S|. Then Ggw = pgu(k),
and n — n+k defines an embedding of Gs« to an isomorphic end segment. The minimal such
k divides |S|. On Ggw, E only relates nodes whose class are of the same domino type i < |ps|,
so E = |J{Ei|i<|ps|} is a union of graphs E; with disjoint fields. Note that n — n + k

20

preserves E, so that dominoes C), of the same type 7 are mapped to dominoes C), of the
same type 7 (i), for some bijection 7 : |ps| — |ps|.- Hence, by the domino rule, if in C' = S¥
we have C,, = [ln,ry], then Cpi = [7(ln), 7(rn)]. Moreover, 7 preserves the relation >, so
(i —1) = 7(i) — 1 (mod |ps|). Since 7 cannot be the identity, we have 7 (i) = i + k' (mod
Ips|) for some 0 < k' < |ps|.

Since n — n + k respects the labelling on Ggw, the labels at n and n + &k are the same; so the
last letter of uy, <prfir Ps equals the last letter of uy, , = ur(y,) = Up,+x. But this implies
that ps is periodic, contradicting the assumptions. O

Finally, it is convenient that we can find blocks containing given subwords of s¥:
Proposition 6 Let w be a subword of s* with |s| < |w| < w. There is j with B; = w.

Proof: Let B; be the LZ-blocks of s and C); the class of B;. Since s = p%, we may assume
that s is aperiodic. Pick I, m, r such that w = v;s™u,. We show that

Bji1Bjyo--- =s” for infinitely many j. (6)

Then if j + 1 is large enough, w = v;s™u, is a prefix of B; 1, and since the set of blocks is
closed under prefixes, w is the content of a block. To show (6), note that there is at least one
class [I',r'] such that C)j = [I',7'] for infinitely many j. So for each k € IN, there are k' > k
and j' with By = vps® u,. Since the set of blocks is closed under prefixes, vpsfu; = B; for
some j. Since s is aperiodic, Bjy1--- = v;s*. As j increases with k, (6) is shown. O

We can now combine the arguments to prove the announced
Lemma 5 If s € X1 is aperiodic, then sT is first-order definable on LZ-compressed strings.

Proof: The language s™ is a set of finite prefixes of s*. We distinguish the elements w € s
according to the class of the LZ-block of s¥ in which w ends. Roughly speaking, for each of
the subsets of s™ obtained this way we give a first-order definition of its LZ-compression.

Consider the sequence B = ByBj--- of LZ-blocks of s¥ and its associated sequence C =
CyC - - - of block classes. Let C = T'S“ as in Lemma 6. We may assume that S begins with
[0,0] and that Bjp| = wo € s*, by Proposition 6. Since s is aperiodic, |S| = |s|*. Because
subsequent blocks of the same class appear at a distance of |S| blocks, and the second extends
the first by |s| subsequent letters of s*, we have:

k+n

In particular, block Bjpgn| contains wgs™. Note that s is the union of the following 2|S| + 1
sublanguages, where P ranges over non-empty suffixes of S:

. k
Vn, kVi < |S| (Bipj4i = vis ur = Bip|qisn|s) = VIS

a’) {’LU € st | w Spreﬁz By--- B\TSS|}¢
b) {w e s™ |w= DBy Bjpggnp|-1 for some n > 0},
¢) {w € s | Bo--- Bipggnp|—1 <prefix W <prefic Bo - Bjrggnp) for some n > 0}).

It remains to be shown that each of these is first-order definable on LZ-compressed strings.

Proof of a): This is clear since we are dealing with a finite language.

21

Proof of b): If the last domino of P is not of the form [/, 0] for some [< |s|, the set is empty.
Otherwise, Grgsnp is the LZ-graph of By -+ Bipgsnp|—1 € st, for each n > 0. These graphs
are the finite models of

orgs+(0,max — |P|) A psp(maz — |SP| + 1), (8)

where @rgg+(z,y) is the formula of Corollary 6 and ¢gp(max — |SP| 4+ 1) forces an end
segment isomorphic to Ggp.

Proof of ¢): Note that if

m
Bo -+ Brgsnpi-1 <prefix 8" <prefic Bo--* Brssnpy,

then £Z(s™) is not an initial segment of LZ(s*) = Grgw; it extends Grgsnp, the LZ-graph
of By Bjrssnp|-1, by a maximal node that is labelled with the last letter of s and has
E(mazx, z) for a suitable node z of Grgsnp. We have to express the possible values of z.

Let P = Q[i,j] and let [j,r] be the class of block Bjpggnp. The blocks Bjpggnp|—1 and
Brssnp| contain viskuj and vjsk,ur, for some k > 0, where S and P determine whether
k' = k—1,k or k+ 1, independently of k by (7). The final block of LZ (s™) has class D = [3, 0]
and contains v;s’ for some [< K. Tt is related in £LZ(s™) by E to the block containing
the longest strict prefix of vjsl, which is a block among the first |T'| blocks, or a later block
containing v;s' tuy, which has class [4,1].

Let Jr be the numbers < |T| of blocks containing the longest strict prefix of some vjsl, and
js < | S| resp. jp < |P| the position of domino [7, 1] in S resp. P. Let

Yrop(z) = \| z=jr Vv 3ylesy) Az =y+js) V z2=maz—|P|+ 1+ jp,
Jr€Jr

The sublanguage c) of s is then defined in first-order on LZ-compressed strings by

go'TSS+(0,max —|P]) A psq(max —|SP|+1) A
3z (r,5,p(2) A Vy(ly = z <> E(maz,y)) N Us(maz)), (9)

where a is the last letter of s and ¢/.o ¢y (%,y) is formula (5) except that Vz; does not range
over max, to allow that z may be far away from maz. O

To define s* on strings, we needed s to be aperiodic because otherwise the induction formula
Ind; would not define s. To define s on LZ-compressed strings, we need s to be aperiodic
for a different reason. When s is periodic, say s = p’s“, the LZ-graphs of s* and pY are the
same, so that we can represent its block class sequence C as T'SY, where |S| = |ps|?, and
define LZ(py) as above. To define LZ(s™), we have to be more restrictive; for example, in
case ¢) we must not allow the back-edge from maz to go to an arbitrary block of class [7, 1].

Example 5 Consider the periodic word s = abab. The infinite string s has only two suffizes,
vy = s¥ and v = bs¥. We obtain the following sequence of blocks and block classes for s“:

Bl a b | ab |aba|b a |bab|abablabab a|bab a|bab abjab ababjabab aba|b abab a|bab abab|- - -
C||[0,1]{[1,0][0,0]{[0,1]|[1,1]|[1,0]| [0,0] | [0,1] | [1,1] | [1,0] | [0,0] (0,1] (1,1] (1,0]
n|| 0 1 2 3 4 5 6 7 8 9 10 11 12 13

22

We have C =TS* and |S| = |ps|> = |ab|?> = 4 with four different choices for S, for example
T.5 = 10,1]L,0][0,0].[0, 1][1, 1][1,0][0, 0] .

Indeed, Ggg is an aperiodic graph, since Gssg, i.e.

0 1 2 3 4 5 6 7 8 9 10 11
[0,] [1,1] [1,0] [0,0] [0,1] [1,4] [1,0] [0,0] [0,1] [1,1] [10] [0,0]

does not contain three copies of Gsg: the formula psg(x) holds at nodes 0 and 4 only; because
of the labels, it does not hold at node 2. In order to define LZ (s), we would need, for ezample,
the graphs Grsn extended by a final element max with label b and a back-pointer to the m-th
node of class [0,1] from the end, where m is odd (resp. even) if n is even (resp. odd). These
distinctions cannot be made in first order.

More simply, let s be the periodic word aa. Suppose ¢ has quantifier rank & and defines s* on
LZ-compressed strings. Choose w such that LZ(w) has length 2m 4+ 1 > 2¥ and E(maz,m).
Note that £LZ(w) and LZ(wa) only differ in that the latter has E(maz, m + 1). Clearly, the
duplicator has a winning strategy for the k-round Ehrenfeucht-Fraisse game between these
structures, so they are k-elementarily equivalent. But then both w and wa belong to (aa)™,

which is impossible. Hence, s* is not first-order on LZ-compressed strings.

Definition 2 Let C be the class of languages L C X built by union, intersection and com-
plement from finite languages and the languages ust, where u € X* and s € X is aperiodic.

By Theorem 1 and Proposition 1, C is a class of first-order definable languages.
Theorem 6 If L € C, then L is first-order definable on LZ-compressed strings.

Proof: by induction on the definition of L. The LZ-compression of a finite language is definable
since LZ(w) is definable for each word w € X*. For union, intersection and complement we
obtain straightforward formulas using the logical connectives.

Let u be a word and s be aperiodic. To show that u - s* is first-order on LZ-compressed
strings, we modify the proof of Lemma 5 and the previous reasoning. The representation of
the LZ-graph LZ(us*) by an LZ-domino sequence T'S“ has to be slightly changed by using
additional dominoes describing blocks that intersect with u. These are part of T" and influence
the repeating S, but do not affect the argumentation otherwise. We leave it to the reader to
check the details. O

Example 4, defining LZ(007117"), is not explicitly handled by Theorem 6. However, since
the two iterations 0T and 17 operate on words with disjoint alphabets, the example can be
reduced to the case of Theorem 6.

5 Conclusion

We have considered properties of strings that are definable on strings or on compressed strings,
using a naive and the Lempel-Ziv compression schema. First-order queries on strings can be

23

translated to first-order queries on naively compressed strings, and to queries definable in
first-order extended with transitive closure on Lempel-Ziv compressed strings. Since we treat
formulas, the translations cover the case of reporting occurrence positions of matches found.

We showed that the subsquare query is not first-order on naively compressed images, and the
substring query is not first-order on Lempel-Ziv compressed strings. Moreover, the class of
properties that are first-order on the compressed strings is not closed under concatenation
and contains properties that are non-regular, hence not monadic second-order on strings.

Similar questions as we have treated can be asked for other compression schemes. For example,
in the compression by omitting letters that can be predicted using an antidictionary [CMRS98]
of the string, the compressed word and the antidictionary are separate structures, and it is
not clear how to decompose properties of the string into properties of the compressed string
and properties of the antidictionary.

In many applications, for example in computational biology, it is not sufficient to view strings
as labelled orders as we have done here, but one needs to talk about distances between
patterns in a string. For such cases, strings would better be represented by structures S; (w) =
(Dpy+,Uqy s ..., Uy,), where the order < is replaced by the (partial) addition on D,,. It would
be an important extension of our investigation to relate first-order properties of strings with
addition with those that can be defined on the corresponding compressed strings.

A further direction for future research is the study of definability and compression for arbitrary
finite structures and more general logics.

References

[Biic62] J. R. Biichi. On a decision method in restricted second order arithmetic. In E. Nagel, editor,
International Congress on Logic, Information and the Philosophy of Science, volume 1. Stanford
University Press, 1962.

[CMRS98] M. Crochemore, F. Mignoni, A. Restive, and S. Salemi. Text compression using anti-
dictionaries. Technical report, Université de Marne-la-Vallée, Institut Gaspard-Monge, 1998.
www-igm.univ-mlv.fr/“mac/RAC/DCA.html.

[CTI1] T. Cover and J. Thomas. Elements of Information Theory. John Wiley, 1991.

[EF91] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1991.

[Elg61] C.C. Elgot. Decision problems of finite automata design and related arithmetics. Transactions of
the American Mathematical Society, 98:21-52, 1961.

[Far91] M. Farach. String matching in Lempel-Ziv compressed strings. In ACM Symposium on the Theory
of Computing, 1991.

[Man94] U. Manber. A text compression scheme that allows fast searching directly in the compressed file. In
Combinatorial Pattern Matching, volume 807 of Lecture Notes in Computer Science, pages 113—124.
Springer Verlag, 1994.

[MPT71] R. McNaughton and S. Papert. Counter-Free Automata. MIT-Press, Cambridge, Mass., 1971.

[ZL77) J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions
on Information Theory, pages 337-343, 1977.

[ZL78] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding. IEEE Trans-
actions on Information Theory, pages 530536, 1978.

24

