
mj-Prolog| 1. Proof Theoretical Foundations |Rodrigo Readi Nasser�Universit�at M�unchen09.11.1999In this article we give the proof theoretical foundations of an extension of Prolog, tobe called mj-Prolog, for dealing with representations of recursive functions, as Pro-log deals with terms. In opposition to other related systems, mj-Prolog remains inthe framework of �rst order intuitionistic logic, recursive functions are determined andrepresented by equations that on one side have the usual interpretation in �rst orderlogic and on the other side can be used as term reduction system for evaluating thefunction. Section 1 deals with proof theoretical foundations of classical logic program-ming, but emphasis is given only in the logical part that is common to mj-Prolog, notin the search of unknown terms, because in it lies the main di�erence with mj-Prolog.Section 2 deals with equations systems for specifying unknown recursive functions, thesolving of these systems in mj-Prolog corresponds to the uni�cation in Prolog. Sec-tion 3 brings the matter of sections 1 and 2 together, it shows how logic programmingcan be used for stating systems of equations that specify recursive functions.1 Foundations of Classical Logic ProgrammingIn this section we deal with proof theoretical foundations of classical logic programming,classical in the sense that we do not deal with search of other objects than terms, onlya short note at the end of x9 points to the use of unknowns for delaying the selectionof terms to be found later by uni�cation, lifting in this classical context is not treated,it may be found in [16]. From the logical point of view, we are dealing with thehereditary Harrop formulae introduced to logic programming as a generalization ofhorn clauses in [12], but we deal with it in the context of Gentzen's calculus NJ andPrawitz' normal form, not in the context of LJ and the the uniform proofs of [12]. Wedeal with intuitionistic predicate logic, but subsection 1.5 deals with a restriction ofhereditary Harrop formulae that su�ces for expressing classical predicate logic withthe help of negation axioms, and subsection 1.6 deals with a further restriction in whichintuitionistic and classical logic coincide, the generalized horn clauses treated there and�Lehrstuhl f�ur Mathematische Logik, Mathematisches Institut, Zimmer 417, Theresien-Str. 39,80333-M�unchen. readi@rz.mathematik.uni-muenchen.de1



originally from [17] are a generalization of the horn clauses in the original Prolog. Theequality axioms in section 2 are generalized horn clauses.1.1 Gentzen's Natural Deductionx1Terms, formulae, sequentsWe consider open formulae recursively built starting from open atomic formu-lae with the following logical symbols: � for implication, ^ for conjunction, _ fordisjunction, 8 for universal quanti�cation, 9 for existential quanti�cation. An openatomic formula is built with an n-ary predicate symbol of the language, perhaps0-ary, and n open terms. We have two in�nite sets of auxiliary 0-ary function symbolsin the language: symbols for variables to be bound by quanti�ers and symbols forfree variables denoting arbitrary constants. Open terms are recursively built withvariables, free variables and other function symbols of the language. A formulais an open formula that does not contain any variable not bound by a quanti�er. Aterm is an open term not containing any variable. Free variables are allowed to occurin formulae and terms. A sequent � ` � is a pair consisting of a (�nite, perhapsempty) list � of formulae, its antecedent containing its assumptions, and a formula�, its succedent. All symbols we are considering are from a set L, a language for thepredicate logic. x2The calculus NJ for negationless logicThe following calculus corresponds to Johanssons NM in [5] if we allow a 0-arypredicate symbol 2 denoting contradiction. Although Gentzen's intuitionistic calculusNJ for natural deduction has three schemata more for the negation, we continue usingthe name NJ.GS : � ` � ;FE : � [ f�g ` �� ` � � � ; FB : � ` �;� ` � � �� ` � ;UE : � ` �;� ` �� ` � ^ � ; UB1 : � ` � ^ �� ` � ;UB2 : � ` � ^ �� ` � ;OE1 : � ` �� ` � _ � ;OE2 : � ` �� ` � _ � ; OB : � ` � _ �;� [ f�g ` ;� [ f�g ` � `  ;AE : � ` '[q]� ` 8v'[v]; AB : � ` 8v'[v]� ` '[t] ;EE : � ` '[t]� ` 9v'[v]; EB : � ` 9v'[v];� [ f'[q]g ` � `  :2



Conditions:� The succedent � of the undersequent � ` � of GS should be a member of theantecedent �.� The expressions � [ f�g, � [ f�g and � [ f'[q]g in the OB-, FE- and EB-schemata represent the new antecedents obtained by appending the formulae �,�, and respectively '[q] to �, these formulae are the assumptions dischargedby the OB-, FE- or EB-rule.� '[v] in AE, AB, EE and EB represents an open formula, '[s] represent a formulaobtained by substituting the variable v in '[v] by the term s, where s is q or t.� The q in AE and EB represents a free variable called proper variable of therule, this free variable q should appear neither in '[v] nor in a formula of theundersequent of the rule.� The expression t in AB and EE represents a term.� The proper variable q of an AE- or EB-rule, or the term t of an AB- or EE-ruleis the only auxiliary term of the rule, the other rules have no auxiliary term.E (Einf�uhrung) stays for the introduction rules, and B (Beseitigung) for the elim-ination rules. F (folgt) stays for �, U (und) for ^, O (oder) for _, A (all) for 8, E(existiert) for 9. In Prawitz' natural deduction [15], the English names � I, � E, &I,&E, _I, _E, 8I, 8E, 9I, 9E are used instead of Gentzen's German names FE, FB,UE, UB, OE, OB, AE, AB, EE, EB.The antecedent of an oversequent of a rule is either identical to the antecedent ofthe undersequent or contains a formula more, the formula discharged by a OB-, FE- orEB-rule. Gentzen [4] and Prawitz [15] consider natural deduction as derivations withNJ, but writing down only the succedents, keeping track of the original assumptions(in GS-rules) and of their discharging in the deduction process. In later work, Gentzenconsidered NJ as a sequent calculus like his LJ.x3Unambiguous proper variablesAn NJ-composition � has unambiguous proper variables if proper variables ofdi�erent rules in it are formally di�erent and each proper variable appears at most insequents above the undersequent of its rule (of course excluding this undersequent).Renaming the proper variables of such a NJ-composition with new (not appearing in�) symbols for free variables, formally di�erent proper variables with formally di�erentsymbols, leads again to a NJ-composition with unambiguous proper variables.If, for example, q appears as proper variable of two rules and in the endsequent,then a single renaming would replace q by a q0 that would also appear in these threeplaces. In spite of it, following 3.10, page 198 in [4], one can �nd for every NJ-composition � a similar NJ-composition �0 with unambiguous proper variables andwith the same endsequent, so that each �rstsequent of �0 is obtained by renaming the3



symbols for free variables in a corresponding �rstsequent of � (all occurrences of a qin the sequent with the same q0). The NJ-composition �0 is found recursively on thenumber of nodes in �; for the oversequents of the rule r in � whose undersequent is theendsequent of � one has shorter NJ-compositions (subtrees of �), and hence one can�nd NJ-compositions of them with unambiguous proper variables; since these propervariables can be renamed, one can demand that proper variables appearing in di�erentcompositions also be di�erent and do not appear in the undersequent of r (endsequentof �), these NJ-compositions together with r form the desired NJ-composition �0. The�0 obtained in this way is, independent of the symbols for free variables selected in theprocess, unique up to renaming of proper variables.Since we consider rules with di�erent auxiliary terms as di�erent, even if they areformally equal, we also consider the occurrence of a proper variable in an auxiliary termas an occurrence in the rule, even if the auxiliary term is not part of the oversequentor undersequent of the rule. For example, this may happen with an EE- or AB-rulewhose oversequent coincide with its undersequent. Because of this, the renamingson the above recursive procedure must be also done in the auxiliary terms of suchpathological rules. x4NJ-Validity structural rulesWe say that a rule is NJ-valid, if from NJ-derivations of its oversequents one canbuild an NJ-derivation of its undersequent. A schema is NJ-valid, if all its rules areNJ-valid.We consider now schemata of the form� ` ��0 ` � ;where (1) �0 is obtained by inserting some formulae in �, (2) �0 is obtained by exchang-ing the order of the formulae in � and (3) �0 is obtained by deleting a formula of �that is formally equal to another. In the �rst case the schema is called, according to [4],Verd�unnung, in the second Vertauschung and in the third Zusammenziehung.These are the three schemata for structure rules (in the antecedent)Every structure rule is NJ-valid. A derivation of its oversequent � ` � is easilytransformed into a derivation of its undersequent �0 ` � by making some changes ineach sequent, from the endsequent to the leaves, so that each rule in the derivation istransformed into a similar rule of the same schema. Only in the case of Verd�unnung,it is necessary to �rst transform the NJ-derivation of � ` � into one with unambiguousproper variables and then to rename the proper variables, so that no one occurs in aformula added to � for obtaining �0. 4



1.2 De�nite and Goal Formulae, Decomposition of De�niteFormulae x5D- and G-Formulae, P-sequentsUsing the concepts introduced in [15], pages 15 and 43, we de�ne (open)D-formulaeas the (open) formulae not containing a (open) positive subformula whose principalsign is 9 or _, and (open) G-formulae as the (open) formulae not containing a (open)negative subformulae whose principal sign is 9 or _. An (open) A-formula is anatomic one. An equivalent de�nition for de�ning open D- and G-formula can be givenas in [6] by simultaneous recursion:D := Aj8vDjD1 ^D2jG � D;G := Aj9vGj8vGjG1 _ G2jG1 ^G2jD � G:An open formula is simultaneously an open D-formula and an open G-formula if andonly if it contains neither 9 nor _. A P-sequent is a sequent whose succedent isa G-formula and whose assumptions are D-formulae. In these de�nitions introducedin [6], D stays for \de�nite", G for \goal" and P for \program".x6D-, G- and T-sequencesA partial D-sequence for a D-formula ' begins with ' and is recursively builtusing the following rules for �nding a successor for a formula:� An atomic formula has no successor.� A successor of 8v [v] is a formula of the form  [t], where t is a selected auxiliaryterm.� A successor of  1 ^  2 is  1 or  2; we say that the �rst or respectively that thesecond subformula was selected.� The successor of  1 �  2 is  2, the formula  1 is the eliminated formula.Each step leads from a D-formula to a new D-formula, we will never reach a formulahaving _ or 9 as principal sign, we can hence continue until reaching an atomic formula.A partial D-sequence ending with an atomic formula is aD-sequence. Each eliminatedformula is a G-formula, the sequence of them is the G-sequence of the (partial) D-sequence. The sequence of selected auxiliary terms is its T-sequence.Two D-sequences are equal if and only if they begin with the same formula andwere constructed following the same steps. Otherwise they are di�erent, even if theyare formally equal, this may happen when there is a formula in the D-sequence of theform 8v [v] where  [v] is not explicitly dependent on v or a formula of the form  ^ .5



x7Unknowns for delaying the selection of the T-sequenceTwo D-sequences are similar if they begin with the same formula and, with the onlypossible exception of the selected auxiliary terms, were constructed following the samesteps. There are �nitely many similarity classes of D-sequences for a '.If we admit in our signature in�nitely many new auxiliary 0-ary functional symbolsto be called unknowns, we can construct D-sequences for ' by only selecting newunknowns as auxiliary terms. Such D-sequences aremost general. Every D-sequenceis obtained by substituting the unknowns used as auxiliary terms in a similar mostgeneral D-sequence, and its G-sequence is obtained with the same substitution. Everyelement of a similarity class can be obtained by such substitutions in a most generalrepresentant.1.3 The Calculus mj for P-sequentsx8The m-schemaLet � be a tree composed with a GS-rule and some FB-, AB- and UB-rules, so thatits �rstsequents are the left oversequents of its FB-rules and the rest of its sequentsbuilds a thread beginning with the undersequent � ` � of the GS-rule and endingwith a sequent having an atomic formula as succedent, the endsequent of the tree. Let� be the list of succedents of the thread. Then, � is a D-sequence for �, the list ofsuccedents of the �rstsequents of the tree is the G-sequence of �, all the sequents ofthe tree have � as antecedent. In this way we have a bijective correspondence betweensuch trees and the pairs (�;�) consisting of a list � of formulae and a D-sequence �for a D-formula � in �. We can summarize the whole tree with a rule m(�;�) all ofwhose sequents have � as antecedent, whose undersequent has the last formula of � assuccedent, the list of succedents of its oversequents is the G-sequence of �. The termsin the T-sequence of � are the auxiliary terms of the rule m(�;�). For di�erent �or di�erent � we consider the corresponding m(�;�) to be di�erent m-rules, even inthe case of formal equality. x9The calculus mjIf � consist of D-formulae, then an m(�;�) rule consists of P-sequents. If theundersequent of an m-, FE-, UE-, OE-, AE- or EE-rule is a P-Sequent, then also areits oversequents. The rules of the calculus mj are the m-, FE-, UE-, OE-, AE- andEE-rules consisting of P-sequents. Only m-, AE- and EE-rules of mj have auxiliaryterms. It is a calculus for building deductions of P-sequents, to be applied backwardsto reduce the derivability of a P-sequent to the derivability of other P-sequents, itscorrectness with respect to NJ is provided in the paragraph above.The schema for a reduction is determined by the principal sign of the succedent ofthe P-sequent: the m-schema is for atomic succedents, FE, UE, OE, AE and EE for6



succedents with principal sign �, ^, _, 8 or respectively 9. If the principal sign is� or ^, there is only one possible reduction with an FE- or UE-rule. If it is _, thenthere are two possible reductions with OE-rules. If it is 8, then there are in�nitelymany reductions with AE-rules, but they are equivalent up to renaming the propervariable. If it is 9, then there is one for each selected auxiliary term, but the selectioncan be postponed using an unknown. If it is atomic, then there is one for each selectedD-sequence, but postponing the selection of the auxiliary terms in the T-sequenceby taking unknowns, there are �rst �nitely many possibilities. This is the analyticproperty of mj. x10The subformula property of mj, tracing symbols, proper variables of a sequentThe formulae � and � are immediate subformula of the larger formulae � ^ �,� _ � and � � �. The formula '(t), where t is a term, is an immediate subformulaof the larger formulae 8v'(v) and 9v'(v). The formula  is a subformula of ',if there is a sequence of formulae beginning with ' and ending with  , such that thesuccessor is an immediate subformula of the predecessor. | Every symbol appearing inan oversequent of an mj-rule appears either in its undersequent or in an auxiliary termof it. Every formula of an oversequent of an mj-rule is a subformula of its undersequent.This is the subformula property of mj, it is shared with LJ, but not with NJ.We have the concept of the proper variable of an mj-rule. The proper variables ofan mj-composition tree are the proper variables of its mj-rules. For de�ning the conceptof proper variables of a sequent in such a tree we need the concept of a thread. A threadin an mj-composition is a sequence A0, A1, : : : An of sequents in it, such that everyAi+1is an oversequent of the rule of the mj-composition having Ai as undersequent; theserules are also considered part of the thread. There is exactly one thread beginningwith the endsequent of an mj-composition and ending with a given sequent S in it, thesubformula property implies that every symbol of the given sequent S can be traceduntil an auxiliary term of a rule in this thread or until the endsequent; the list Q ofproper variables of AE-rules in this thread, in the order they appear in the thread, iscalled the list of proper variables of S; the symbols for free variables in this threadthat can be traced until the endsequent or until an auxiliary term of an EE- or m-ruleare called the proper arbitrary constants of S.The de�nition and results in x3 holds also for mj. If an mj-composition has unam-biguous proper variables, then the list of proper variables of a sequent in it consists offormally di�erent symbols.1.4 The Calculus mj and Prawitz' Normal Formx11Long normal form and mj-derivationsThe segments of a normal deduction in the sense of [15] containing neither OB- (_E) nor EB-rules (9 E) have only one formula. A derivation not containing these rules7



and whose minimum segments in its paths are atomic is said to be in long normalform.Our mj can be seen as a calculus for representing deductions in long normal form ofP-sequents. A deduction in mj can be transformed into a deduction in long normal formby substituting the m-rules with the corresponding combinations of GS (assumption),FB (� E), UB (^ E) and AB (8 E). The E-parts of its paths correspond to thethreads by which the m(�;�)-rules have been substituted, the minimum segments inits paths correspond to the atomic succedents of the undersequents of the m-rules.The converse transformation is also possible, a deduction in long normal form of aP-sequent can be recursively transformed into an mj-derivation: the E-part of eachpath � containing the endsequent is a D-sequence to be substituted by an m-rule, thesmaller deductions above the minor premises of FB-rules (� E) whose major premisesare on � are substituted by corresponding deductions in mj (obtained by the recursiveprocess). x12Deductions of P-sequents in Prawitz' normal formA normal deduction of a G-formula from a set of D-formulae does not contain 9Eor _E rules. Every assumption in such a deduction, discharged or not, is a D-formula.Consequences of E-rules in the deduction are D-formulae, consequences of I-rules areG-formulae. Minimum formulae of its paths are D- and G-formulae at the same time(i. e. they contain neither 9 nor _). We prove this by induction on the size of such anatural deduction � of a G-formula from a set � of D-formulae. If the end-formula E of� is the conclusion of an E-rule, then a path � containing E has no minor premise of an9E or _E rule; otherwise, as in the proof of corollary 6 of [15], the major premiseM ofthis rule would be a strictly positive subformula of a formula in � (namely, of the �rstformula of a path containing it, this �rst formula cannot be discharged in � becauseMis in the E-part of the path and below M there is no � I rule), but this cannot be thecase because the principal sign ofM is 9 or _. Hence, � is the only path in � containingthe end-formula E, its �rst formula is in � (as above, it cannot be discharged), everyformula in � is a D-formula because it is a strictly positive subformula of the �rstformula, � contains neither minor nor major premises (the latter are not D-formulae)of 9E or _E. We can now decompose � in the path � and the subtrees of � aboveminor premises of � E rules whose major premises are in �; these minor premisesare G-formulae (because the major premises are D-formulae) and the assumptions ofthese subtrees are subsets of �; by inductive hypothesis, the proposition holds for thesesubtrees, and hence also for �. All that remains is to prove the proposition for the casethat the end-formula E of � is the conclusion of an I-rule. By deleting the end formula,we get a smaller deduction, or two in the case where this formula is the conclusion of^I, whose end-sequent is a G-formula and whose assumptions are D-formulae (theassumptions are the same of �, except in the case that the end-sequent is D � Gwhere the D-formula D is added). Since for the smaller deductions the propositionholds by inductive hypothesis, it also holds for �.8



x13Completeness of mjFor proving the completeness of mj with respect to NJ it is enough to �nd a deductionin long normal form for each NJ-derivable P-sequent. Since for the NJ-derivable P-sequent there is always a normal deduction, it is enough to prove that this deductioncan be transformed into a deduction in long normal form, and for this we use the resultsof the paragraph above.A normal deduction of a G-formula from a set of D-formulae can be transformed intoa normal deduction whose paths have atomic minimum formulae. For proving this, weenlarge the paths of the original deduction as done in Lemma 6.5.3, page 154 of [18].The minimum formulaM of a path does not contain _ or 9. If the minimum formula isof the form F1 � F2, we can add F1 to the assumptions, enlarge the E-part by addingF2 at its end and enlarge the I-part by deducing F1 � F2 from F2 discharging F1. If theminimum formula is of the form 8vF , we can enlarge the E-part by deducing F [a=v]with 8E, where a is a new symbol for free variables, and enlarge the I-part by deducing8vF with 8I. If the minimum formula is of the form F1 ^ F2, we can duplicate thesubtree above this formula, in one of the copies enlarge the E-part by deducing F1 with^E, in the other copy enlarge it by deducing F2, and then we can paste both treesby deducing F1 ^ F2 with ^I. One can begin enlarging each path � containing theend-formula, and continue with the paths of the subtrees above the minor premises of� I rules whose major premises are in �, the termination of this process is proved bydouble induction, on the depth of the deduction and on the total amount of connectivesin the minimum formulae of the paths �.x14mj-Derivations and LJ-derivations, Uniform ProofsThe introduction rules FE, UE, OE, AE and EE of mj are identical to the intro-duction in succedent rules FES, UES, OES, AES and EES of Gentzen's LJ. The rulem(�;�) of mj, where � begins with � 2 � and ends with A, can be seen as a composi-tion of a GS-rule, some rules for introduction in the antecedent FEA, UEA and AEA,and a \Zusammenziehung" rule forming a thread, so that the active formulae of theintroduction rules in the antecedent forms a sequence corresponding to the reverse of�, so that the \Zusammenziehung" rule contracts the last formula � of this sequencewith a copy of it present from the beginning. Of course, some details should be �xedby selecting an appropriate variant of LJ. This enables us to build a correspondencebetween mj-derivations and a class of LJ-derivations similar to the correspondence be-tween mj-derivations and deductions in long normal form introduced in x11. This classof LJ-derivations corresponds to the uniform proofs in [6]. It should be no surprise,since in the context of uniform proofs calculi similar to mj were stated, in [7] one fora fragment of intuitionistic linear logic. Behind this correspondence is the well knowncorrespondence between normal NJ and normal LJ proofs, see for example [15] or [13]for more details. 9



1.5 The f�;8g-Segment x15Head and bodyFor a list V of variables and an open formula � we denote with V � the open formulaobtained by putting in front of � a block of universal quanti�ers with the variables ofV , in the same order they appear in V . For (possibly empty) lists Vn, : : : , V1, V0 ofvariables and a list �n, : : : , �1, �0 of open formulae, we de�ne the list �0, : : : , �n of openformulae recursively, so that �0 is V0�0 and �k+1 is Vk+1(�k+1 � �k). WithVn�n& � � �&V1�1 � V0�0we denote the last de�ned open formula �n. Of course, for n = 0 this open formula isV0�0.An (open) f�;8g-formula is one not containing other logical signs than � and 8, it isan (open) D- and G-formula at the same time. It is not di�cult to see that every openf�;8g-formula � can be expressed in a unique way as Vn�n& � � �&V1�1 � V0�0 with anatomic �0. In this case, the list �n, : : : , �1 is denoted by body(�) and called body of �,the open atomic formula �0 is denoted by head(�) and called head of �. The universalquanti�ers binding the variables in Vn, : : : , V1, V0 are the principal quanti�ers of �;they can be moved, perhaps after a renaming, to the left for obtaining an equivalentopen formula whose principal quanti�ers build a block at front of it.x16InstantiationA principal quanti�er of a f�;8g-formula can be deleted and the variables boundby it substituted by a term for obtaining a new formula implied by the original. Fora f�;8g-formula � and a list T of terms, one de�nes the instance T � � of � as thef�;8g-formula obtained by deleting principal quanti�ers in �, from left to right, andsubstituting the variables bound by them by the terms of T , from left to right, untilall principal quanti�ers are deleted or until there are no more terms in T for the restof the principal quanti�ers. The instance T � � can also be recursively de�ned by thefollowing equations:[] � � = �;T �A = A;(R � S) � � = S � (R � �);T � (� � �) = � � (T � �);[t] � (8v�) = �v!t;where [] denotes the empty list, A an atomic formula, R �S the concatenation of R andS, [t] the list containing only t, and �v!t the formula obtained by substituting v by t.The variables substituted by a term t in this instantiation process correspond to theelimination of a universal quanti�er with the auxiliary term t in the process of buildinga D-sequence. The process of building a D-sequence � for a f�;8g-formula � dependsonly on the selected T-sequence T that has as much elements as principal quanti�ers in10



�, the last formula in � is head(T ��), the corresponding G-sequence body(T ��). Andconversely, if T has so much terms as principal quanti�ers in �, then one can constructa D-sequence � with T as T-sequence, so that head(T � �) is the last element in � andbody(T � �) the corresponding G-sequence.x17m-, d- and g-rulesAn f�;8g-sequent is one consisting of only f�;8g-rules. If the undersequent of anmj-rule is a f�;8g-sequent, then also its oversequents. Hence, restricting mj-schematato f�;8g-sequents does not alter mj-derivability of f�;8g-sequents. FE-, AE- and m-rules restricted to f�;8g-sequents are denoted by d(� ` '), g(� ` '; q) and m(�; �; T ),where � ` ' is the undersequent of the FE- and AE-rules, q the proper variable of theAE-rule, � and T the �rst formula end the T-sequence of � in the m(�;�)-rule.x18Negation Axioms, classical predicate logic, an intuitionistic segmentLet 2 be a 0-ary predicated symbol representing contradiction. As usual, we canparaphrase the negation :� of a formula � with � � 2, and any usual connective ofclassical logic using :, � and 8. For each predicate symbol R let wjR be a formula ofthe form 8�v(2 � R(�v)) and wkR a formula of the form 8�v(((R(�v) � 2) � 2) � R(�v)).Let wj be a list (the set) built with all the wjR and wk with wkR, these are thesets of intuitionistic and classical negation axioms. Let � be the list of axioms ofa theory, of additional postulates in the sense of the calculus in [8], page 82 (or asimilar one). The formulae ' derivable in this calculus coincide with the ones suchthat wk [ � ` ' is mj-derivable, or equivalently, NJ-derivable. The proof consists, asexpected, in checking that the rules of one calculus is valid in the other. A special rôleplays the NJ-derivability of wk [ � ` ', where ' is a formula ((� � 2) � 2) � �of the schema (postulate) 8� of [8]. We see this by reducing the sequent with mj:after d- and g-reductions it is su�cient to add (� � 2) � 2 and every formula inbody(Q � �) to the antecedent and consider the succedent head(Q � �); the latterformula is atomic with a predicate symbol R and a list of arguments T , after an m-reduction considering T � wkR;2 = ((head(Q � �) � 2) � 2) � head(Q � �) it issu�cient to consider the succedent (head(Q � �) � 2) � 2; after a d-reduction it issu�cient to add head(Q��) � 2 to the antecedent and consider the succedent 2; afteran m-reduction considering the �rst formula added to the antecedent it is su�cientto consider the succedent � � 2; after a d-reduction it is su�cient to add � to theantecedent and consider the succedent 2; after an m-reduction considering the formulahead(Q� �) � 2 in the antecedent it is su�cient to consider the succedent head(Q� �);after an m-reduction considering the formula � in the antecedent it is su�cient toconsider succedents from body(Q � �); all these formulae are in the set of assumptions,an m-reduction for each of them con�rms their derivability.Although similarly the mj-derivability of wj ` 2 � � holds, the above argumentdoes not hold for intuitionistic logic: not all usual logical symbols can be paraphrasedwith :, � and 8 in intuitionistic logic. Using Prawitz' Normal form (or Gentzen's11



Hauptsatz), we can prove that a sequent � ` ' containing no other logical symbolsthan :, � and 8 is intuitionistically derivable if and only if, after paraphrasing : with2 and �, wj [ � ` ' is mj-derivable. x19Restart as an alternative to contradiction axiomsAmong all possible mj-reductions of a sequent � ` A with an atomic A and �containing the axioms wk, there is always the one with the m-schema and the appro-priate wkR leading to � ` (A � 2) � 2; this latter sequent can only be reducedto � [ fA � 2g ` 2 with the d-schema; this sequent should be reduced with them-schema, for this a � 2 � [ fA � 2g and an appropriate T , so that head(T � �)and 2 coincide, are necessary; the formula A � 2 is one of such formulae �, the set �may contain other such formulae, especially the ones of the form B � 2 added to � inreductions with the m-schema using a wkR; now it is clear what the possible reductionsare, this leads to the following remark: adding the contradiction axioms wk is equiva-lent to the introduction of the restart-rule, this rule allows to reduce sequents � ` Awhose succedent A is atomic to sequents � ` B, where B is either 2 or the atomicsuccedent of an \ancestor" sequent � ` B of the proof process, of course, reductionsof � ` A with the m-schema remain possible. | Adding the axioms wj is equivalentto the introduction of the similar rule that allows to replace an atomic succedent by 2in the sequent to be reduced.The restart rule is implicit in traditional tableaux methods, it may be seen as aconsequence of the fact that succedents of sequents in LK-rules may contain more thanone formula. The use of a restart rule in intuitionistic tableaux methods is correctuntil some extent: all LK-schemata, with the exception of FES and NES, are valid inintuitionistic logic (FES and NES also if succedents contain no more than one formula).The restart-rule appears also in other proof procedures used today in logic programmingand automatic theorem proving.1.6 Generalized Horn Sequentsx20Generalized horn clauses and sequentsA generalized horn clause is, as de�ned in [17], a formula having all its princi-pal quanti�ers as a block at the beginning, such that head(�) is atomic and that allformulae in body(�) are universal quanti�ed atomic open formulae. A generalizedhorn sequent is a sequent � ` ' consisting only of generalized horn clauses, whoseantecedent � contains no free variable and whose succedent ' is a universal quanti�edatomic open formula. A generalized horn sequent � ` ' can only be reduced with them- and g-schemata to generalized horn sequents having the same antecedent �. Fromthis and the validity of the restart rule follows: if � ` ' of this form is derivable inclassical logic, then either itself or � ` 2 is derivable in minimal logic. Furthermore,if no formula in � has 2 as head, then, as in the case of common SLD-Resolution andas noted in [17], minimal, intuitionistic and classical derivability of � ` ' coincide.12



x21Contradiction and contradictionsLet � be a list of generalized horn formulae containing no free variable. Let � a listof universal quanti�ed atomic open formulae, to be called as 2 contradictions, and�2 the list of generalized horn sequents obtained by substituting each  in � by  � 2.If � `  for a  in �[f2g is mj-derivable, then obviously also �[�2 ` 2. Conversely,if � [ �2 ` 2 is mj-derivable, then also � `  for a  in � [ f2g: the mj-derivation of� [ �2 ` 2 contains only sequents whose antecedent is � [ �2, either contains a rulem(� [ �2; 2; T ) whose 2 is in �2 or not, in the latter case we can delete �2 fromthe antecedents of the sequents in the mj-derivation for obtaining an mj-derivation of� ` 2, in the former case we can �nd such an m-rule m(� [ �2; 2; T ), so that noother is in the subtree over its oversequent � [ �2 ` , this subtree can be convertedinto an mj-derivation of � `  by deleting �2 in the antecedents of its sequents.x22Open m-rules and schemataFor a generalized horn clause � of the form8�v(8�vnAn(�v; �vn)& � � �&8�v1A1(�v; �v1) � A0(�v))not containing free variables, where the Ai are open atomic formulae, for a list ofopen terms �t( �w) not containing free variables and whose variables are in �w, and forrenamings �v0n, : : : , �v01 of the variables in the lists �vn, : : : , �v1 not containing variablesfrom �w, we de�ne the ruleAn(�t( �w); �v0n); : : : A1(�t( �w); �v01)A0(�t( �w))for deriving an atomic open formulae from atomic open formulae. We call the ruleswon in this way from � the open m-rules for (corresponding to) �, the schema forbuilding the rules the open m-schema.If � is in a list �, then substituting the overformulae Ai(�t( �w); �v0i) of the introducedopen m-rule by the sequent � ` 8 �w8�v0iAi(�t( �w); �v0i) and the underformula A0(�t( �w))by the sequent � ` 8 �wA0(�t( �w)) yields an mj-valid rule, a composition of an m-rulecorresponding to � with g-rules under its undersequent and with g-rules followed by AB-rules (mj-valid) over its oversequents. This tells us, how to understand open m-rules:variables occurring in an open atomic formula of the rule should be seen as universallyquanti�ed in front of the formula, even if they are formally equal to variables in otheropen formulae of the rule; the formula � should be seen as a member of a list of axioms�, as in calculi like Hilbert's one.A generalized horn sequent � ` 8 �wA( �w) not containing free variables is mj-derivableif and only if A( �w) is derivable with open m-rules corresponding to formulae in �. Theabove remark on the validity of the open m-rules con�rms the contrapositive. In anmj-deduction of a generalized horn sequent we can group each m-rule with the g-rulesthat are immediately below its undersequent, we can transform the mj-derivation into13



a derivation with open m-rules recursively on the number of these groups, or of m-rules.Let � ` 8�vnAn(�t(�q); �vn); : : :� ` 8�v1A1(�t(�q); �v1)� ` A0(�t(�q))be the last m-rule in such a deduction, corresponding to � 2 �, obtained by substitutingthe variables bound by the principal quanti�ers by �t(�q). Below the undersequent � `A0(�t(�q)) are applications of g-rules generalizing at least the free variables in �q thatexplicitly appear in � ` A0(�t(�q)), we can add more g-rules in order that all freevariables in �q be substituted by variables �w, this can be done because at the end wewill delete the quanti�ers. In this m-rule we can delete the the antecedents � `, deletethe universal quanti�ers 8vi, rename the �vi with �v0i not containing variables in �w, andsubstitute the �q by �w for obtaining an open m-rule with underformula A0(�t( �w)) andoverformulae Ai(�t( �w); �v0i), here it is important that the formula � does not contain freevariables, and hence no one in �q. We search now for derivations of these overformulaewith open m-rules. We have smaller mj-derivations of each � ` 8�viAi(�t(�q); �vi), andafter deleting the last g-rules, mj-derivations of � ` Ai(�t(�q); �qi) for a new list of freevariables �qi not containing elements of �q, and after adding new g-rules, mj-derivations of� ` 8 �w8�viAi(�t( �w); �v0i). Since we only deleted and added g-rules, we have by inductivehypothesis the desired derivations. x23Herbrand models for generalized horn clausesIn this paragraph, as an exception, we admit model-theoretical argumentation. LetBL be the set of atomic formulae (in the language L) containing no free variable (andas formulae, no variable). A herbrand model is a subset of BL. After declaring someelements of BL to be contradictions, we can say that a herbrand model is consistentif it contains no contradiction. The set AL of terms containing no free variable (andno variable) is the universum of H. All herbrand models have the same universum,unless we expand the considered language L. For a list of terms �s from AL we alsowrite �s 2 AL.For a generalized horn clause � of the form8�v(8�vnAn(�v; �vn)& � � �&8�v1A1(�v; �v1) � A0(�v))not containing free variables and a list �t of terms in AL for �v we de�ne the a-rulea(�; �t) bya(�; �t) : Ak(�t; �s) : �s 2 AL; k = 1; : : : ; nA0(�t) :This rule a(�; �t) has the underformula A0(�t). The atomic formulae of the form Ak(�t; �s),where �s is a list of elements in AL and Ak one of the open atomic formulae in body(�),are the overformulae of a(�; �t). The rule may be in�nitary, it may have in�nite manyoversequents; but this is not the case when the �vk are empty lists, namely, when � is a14



horn formula. Open m-rules generate in a trivial way a-rules, all a-rules for a � can beobtained from the open m-rule whose open underformula is A0( �w).For a herbrand model H and a set � of generalized horn clauses not containingfree variables, we say that H models � or that H is a model of �, if for each rulea(�; �t), where � is in � and the terms of �t in AL, the herbrand model H contains theunderformula of a(�; �t) if it contains the overformulae. In particular, BL models everysuch �. The intersection of arbitrary many models of a � is also a model of �. Thesmallest herbrand model of � is the intersection H� of all models of �, it is a modelof �, consistent if � has such one.For a generalized horn sequent � ` ' not containing free variables, we say that� j= ' holds, if every model of � is also a model of f'g. If � ` ' is mj-derivable, then� j= ' holds. For proving this, let us call an instance of an atomic open formula �,in which all variables were substituted by elements of AL, an AL-instance of �. It iseasy to see that, if all AL-instances of each open overformula of an open m-rule for aformula in � are in a herbrand model H of �, then also all AL-instances of the openunderformula. Hence, a model H of � contains all AL-instances of an open formula� derived with the open m-rules for formulae in �. If � ` ' is mj-derivable, ' is theclosure of an open atomic formula � derivable with the open m-rules for formulae in �,and the sentence above says that a model H of � is also a model of f'g: by de�nition,H models f'g if and only if it contains all AL-instances of �.From the paragraph above, we can conclude that H� contains all elements in BLthat are mj-derivable from �. Contrary to the case for horn clauses, H� may containelements that are not derivable from �. Let L be a language, so that AL = fa; bgand BL = fp(a); p(b);2g. Let � = fp(a); p(b); (8vp(v)) � 2g. Then there are exactlythree a-rules, one for each element in �; and since AL is �nite, they are even �nitary.Now, � j= 2 holds, H� = BL, but � ` 2 is nor mj- nor NK-derivable. After addinga new 0-ary c to L and hence to AL, a witness of the (non) validity of 8vp(v), thenon-derivable element 2 disappears from H�.2 Equations Systems Specifying FunctionsIn this section we use equations to specify unknown recursive functions, as linear sys-tems of equations specify unknown numbers. Systems of equations do not necessarilycompletely specify its unknowns, neither in the case treated here nor in the case of lin-ear equations: for example, some (dependent) unknowns could be put as functions ofother (independent) ones to be later further speci�ed. Linear equations are solved withGau�triangulization algorithm, the term-uni�cation algorithm [11] can also be seen as atriangulization algorithm, we solve our systems of equations with a modi�cation of theterm-uni�cation algorithm, the cp-completion introduced in subsection 2.4. The cp-completion algorithm can also be seen as a modi�cation of Knuth-Bendix' algorithm,or as an algorithm for checking consistence of equations systems and �nding term re-duction systems as models for them: subsection 2.3 brings uni�cation, completion andconsistence checking together. Subsection 2.2 puts Term Reduction Systems [9] in thecontext of predicate logic. The relevance of dealing with these equations systems and of15



their solution lies in their immediate application to integrate logic and functional pro-gramming: we can substitute term uni�cation in logic programming by cp-completion,as [6] does with higher order uni�cation, but remaining in the framework of �rst or-der logic. Subsection 2.5 puts Term Uni�cation [11] in the context of our equationssystems.2.1 Systems of Equations x24Terms and open termsWe consider in this section expressions denoting functionals. They are recursivelybuilt with 0-ary symbols, also denoting functionals, and a 2-ary symbol denoting theapplication operator. We distinguish three kinds of 0-ary symbols: (1) ground sym-bols (normally small letters like a, b, c); (2) unknowns denoting functionals to bedetermined by formulae and equations (normally capital letters like X, Y , Z, U); (3)variables supposed to range over expressions denoting functionals (normally smallletters like u, v, w).Our 0-ary symbols are open terms; if t0 and t1 are open terms, then (t0t1) is theopen term denoting the application of t0 on t1. This is how every open term is built,our 2-ary application symbol is given by the parenthesis. Open terms not containingvariables are also called terms.As in [2], we may write (t0) for an open term t0, (t0t1t2) for ((t0t1)t2), and recursively,(t0 � � � tk�1tk) for ((t0 � � � tk�1)tk). Eventually we may write t0 � � � tk�1tk, without blanksand outer parenthesis, or t0(t1; � � � ; tk) for (t0 � � � tk�1tk). Every open term t can beexpressed in a unique way in the form (ft1 � � � tn), where f consists of only a 0-arysymbol called operator of t; the open terms t1, : : : , tn are then called arguments oft, the number n is the number of arguments of t.x25Equations, instances of equationsEquations are open atomic formulae built with the 2-ary in�x predicate symbol =,they have the form s = t, where s and t are open terms. Variables appearing in anequation are to be seen as universal quanti�ed in front of the equation. We call s theleft part of the equation s = t, t its right part.A closure of an equation s = t is a formula of the form 8 �ws = t, where 8 �w is a blockof universal quanti�ers binding all variables in s = t. An instance of an equation isthe equation obtained by substituting all occurrences of some variables by open terms,the same open term for each occurrence of the same variable in the equation.A ground equation is one not containing variables; it is one of the form s = t, wheres and t are terms. 16



x26Equality axioms and systems of equationsWe de�ne the formulae ref, sym, trans, cons byref : 8vv = v;sym : 8u8vu= v � v = u;trans : 8u8v8wu= v � (v = w � u = w);cons : 8u18u28v18v2u1 = u2 � (v1 = v2 � (u1v1) = (u2v2));the decomposition schema decn;i(f) bydecn;i(f) : 8u1 � � � 8un8v1 � � � 8vn(fu1 � � � un) = (fv1 � � � vn) � ui = vi;where f is a term, n a positive natural number and i between 1 and n (1 � i � n);and the similar separation schemasepn;i((wr1 � � � rn) = (ws1 � � � sn)) :8v1 � � � 8vm((8w(wr1 � � � rn) = (ws1 � � � sn)) � (8wri = si));where (wr1 � � � rn) = (ws1 � � � sn) represents an equation whose variables are in v1,: : : , vn, w, whose two parts have the same number of arguments and the variable w asoperator; thus, the ri and si represent open terms eventually containing these variables.The equality axioms are the formulae ref, sym, trans, cons, decn;i(f) for eachground f and appropriate pair (n; i), and sep. A system of equations consists ofclosures of some equations, called equations of the system, and the equality axioms.We are interested on the mj-derivability of closures of equations from systems. Allformulae in a system are generalized horn formulae, more accurate: the last 8w in sep-formulae should be moved to the front, all the rest are horn formulae. Hence, a closureof an equation is mj-derivable from a system if and only if the equation is derivablefrom instances of equations of the system with the following open m-schemata (see x22)corresponding to the equality axioms:ref : s = s; sym : r = ss = r ; trans : r = s, s = tr = t ;cons : r1 = s1, r2 = s2(r1r2) = (s1s2) ;dec : (fr1 � � � rn) = (fs1 � � � sn)ri = si ; sep : (wr1 � � � rn) = (ws1 � � � sn)(ri = si)w t :In dec, f is a ground symbol. In sep, w represents a variable, (ri = si)w t is aninstance of ri = si obtained by substituting the variable w by an open term t. Weallow variables to occur in the equations of these schemata: this is the reason why wede�ned equations as open atomic formulae and not as their closure. The advantageof considering derivation trees with these schemata is that it is easier to see how toexchange the order of derivation rules.Of course, we can take the same variable represented by w as t in sep, this wouldlead to a schema similar to dec, and the original sep would be a composition of this17



schema with the instantiation schema that produce the rules having an instance ofits overequation as underequation: since we want all instantiations at the leaves of thededuction tree, we do not take the instantiation schema and keep our sep. Later, we willintroduce a rule that, as Robinsons resolution [1] and as SLD-Resolution [10], delaysinstantiation, that instantiates with a most general uni�er only when an instantiationis necessary.We use systems of equations to specify its unknowns, to de�ne the manifold ofsolutions for the unknowns, as fx2 + y2 + z2 = 1; x + y + z = 0g is used to de�ne acircle. We say that the system S1 constrains the system S2, that S2 ismore generalthan S1 and that S1 ` S2 holds if each formula in S2 is derivable from S1. We say thatS1 and S2 are equivalent and that S1 � S2 holds if S1 ` S2 and S2 ` S1 hold.2.2 Term Reduction Systemsx27Derivability of r !n sCompositions of n times the trans-schema are equivalent to the schematransn+1 : s0 = s1, s1 = s2, : : : , sn = sn+1s0 = sn+1 :We de�ne trans0 as ref. If we compose the trans-schema with the cons-schema so thatthe underequation of trans is an overequation of cons, then we can move down the trans-schema for obtaining an equivalent composition (having endequation and �rst equationsformally equal to the ones of the original tree) of twice the cons-schema, the ref-schemaand the trans-schema, so that each overequation of trans is an underequation of cons,and an overequation of one cons is the underequation of ref. A composition using onlyref-, trans- and cons-rules can be transformed into an equivalent one having the samenumber n of trans-rules, but all together near the root, and then the trans-rules canbe substituted by a transn+1-rule whose underequation is the endequation.A derivation of s ! t from a system S, where s and t are open terms, is byde�nition a derivation of a closure of s = t from the formulae of S excluding sym-, dec-and sep-formulae, or equivalently, a derivation of s = t from instances of equations ofthe system with the ref, trans and cons open m-schemata. Such a derivation containingn � 1 trans-rules is a derivation of s !n t, and one containing only a ref rule (andhence with equal s and t) is a derivation of s !0 t. Depending on the existence ofderivations we say that s ! t or s !n t is derivable from S, and that S ` s ! t orS ` s!n t holds.It is obvious that, if s0 = t0 is an instance of s = t and s! t or s!n t is derivablefrom S, then also s0 ! t0 or respectively s0 !n t0 is derivable from S. We have thatr !0 r is derivable from any S. If r !m s and s !n t are derivable from S, thenr !m+n t also. If r !n s is derivable from S, it also happens for any greater n. Ifr !m+n t is derivable from S, then there is an s such that r !m s and s !n t arederivable. Furthermore, if r !n t is derivable, then there are s0, s1, : : : sn such thateach si !1 si+1 is derivable, s0 is r and sn is t.18



x28Bracket notation r[r1; : : : ; rk] and TRSWe can say that r !1 s is derivable from S if and only if we can obtain s bysubstituting some occurrences of open subterms ri of r by si, where each ri = si is aninstance of an equation of S. And that r !n s or r ! s is derivable if we can do thisrecursively, n times in the �rst case. When we deal with derivation of these objects,we say that S acts as a term reduction system [9]. The expression r[r1; : : : ; rk] denotesan open term t, each open term ri in this expression points to some occurrences ofan open subterm of t formally equal to ri, the subterms pointed by di�erent ri andrj do not overlap. After substituting the open subterms pointed by each ri by copiesof si we get the open term r[s1; : : : ; sk]. Hence, we have r[r1; : : : ; rk] !1 r[s1; : : : ; sk]is derivable from S if each ri = si is an instance of an equation of S, every p !1 qderivable from S has this form.2.3 Solvability, Consistence and Conuencex29Solvability and consistencyAn equation s1 = s2 is reducible with a system T if there is an open term r suchthat s1 ! r and s2 ! r are derivable from S, it is (m;n)-reducible with T if thereis an open term r such that s1 !m r and s2 !n r are derivable from S. The set ofequations that are (1; 1)-reducible with a system T contains T and is closed under theinstantiation, the ref, sym and cons schemata: this plays an important rôle.An equation is called decomposable if its two parts have equal symbols as operators,non of these being an unknown, and an equal number of arguments. Undecomposableequations are divided in directed equations and contradictions. A directed equation isone having an unknown as operator in one of its two parts: it is directed to the rightif its left part has an unknown as operator, it is directed to the left if its right part hasan unknown as operator, it is a bidirectional equation if both parts have unknownsas operators, namely, if it is directed to the right and to the left at the same time.Undecomposable, non directed equations are contradictions, they are divided intooperators clashes and arguments clashes. An operators clash is an equation whosetwo parts have formally di�erent symbols as operators, non of these being an unknown.An arguments clash is an equation whose two parts have formally equal symbols asoperators, non of them being an unknown, but a di�erent number of arguments.A system is undecomposable if all its equations are undecomposable. For a systemS we de�ne the equivalent, undecomposable system dec(S) recursively: we only needto recursively replace every decomposable equation of the form fr1 � � � rn = fs1 � � � snin S by the smaller, perhaps decomposable, equations ri = si, this also means to deletethe equation when n = 0. The systems S and dec(S) are equivalent: the equations ofdec(S) are obtained from the ones of S with the dec and sep schemata, the equationsof S are obtained from the ones of dec(S) with ref and cons.We are specially interested on systems containing only equations directed to the rightto be seen as term reduction systems for substituting unknowns. If p!n r is derivable19



from such a system and if the operator f of p is not an unknown, then r has the sameoperator and number of arguments as p; furthermore, if this p is of the form (fp1 � � � pm),then r is of the form (fr1 � � � rm) so that each pi !n ri is derivable from the system.A system is directed to the right if each of its equations is either a contradiction ordirected to the right. An orientation to the right of an undecomposable system isobtained by replacing some of its equations s = t by t = s in order to obtain a systemdirected to the right. Since bidirectional equations and contradictions can be replacedor not, an orientation to the right is not necessarily unique. The equivalence of the newsystem to the original is provided by the open m-schema sym. If s = t is in a systemS and T is an orientation to the right of dec(S), then s = t is (1; 1)-reducible with T :the set T � of the equations that are (1; 1)-reducible with T contains T , is closed bysym and hence contains dec(S), is closed by ref and cons and hence contains S.A system is inconsistent if a contradiction can be derived from it, consistent ifno contradiction can be derived from it. A system T , seen as a term rewriting system,is a solution of S, if all equations of T are directed to the right and each equations = t derivable from S is reducible with T . Note that T ` S holds: we call T a mostgeneral solution if also S ` T holds. One can prove that S is consistent if and only ifthere is a solution T of it. If S is consistent, then the set T of all equations directedto the right derivable from S is a most general solution: if s = t is derivable fromS, then any orientation to the right of dec(fs = tg) is, because it does not contain acontradiction, contained in T , and the (1; 1)-reducibility of s = t with T was proved inthe paragraph above. If s ! r and t ! r are derivable from a solution T of S, theneither s or t has an unknown as operator or both, s and t, have the same operator andthe same number of arguments as r; in both cases s = t cannot be a contradiction, andthis is the case for any equation derivable from S.Given a system S, we can enumerate the equations derivable from it, stop enumerat-ing when a contradiction is found, or continue enumerating and collecting the equationsdirected to the right. Our main problem is to decide if a contradiction is derivable orto describe a most general solution without enumerating ad in�nitum in cases whereit is possible. If we insist on enumerating, then at least not all equations that arederivable, but a subset behaving in the same form: leading to a contradiction whenthere is one or building an enumeration of an eventual most general solution, so thatthe enumeration be easier, so that the eventual decision on the consistency be moreprobable, for example by stopping when there is nothing more to enumerate, so thatthe eventual description of the most general solution be simpler. Such an enumerationmay be a point of departure for a more so�sticated solving strategy.x30ConuenceA system T is conuent if for every pair t! s1 and t! s2 derivable from T thereis an open term r such that also s1 ! r and s2 ! r are derivable from T .The set S of equations reducible with a given conuent system T whose equationsare directed to the right contains the equations of the system T and is closed underall open m-schemata; hence, an equation is reducible with such a T if and only if it isderivable from it: The set S obviously contains T and is closed by instantiation and20



the ref, sym and cons schemata, is closed by trans because of the conuence, is closedby dec and sym because the equations of T are directed to the right. Of course, theuse of the word \set" should be in this proof, as everywhere in this article, correctlyinterpreted: we are giving a hint how to recursively �nd the corresponding r such thats! r and t! r are derivable from T for every equation s = t in a derivation tree.If we allow that T contain contradictions, namely, if we weaken the hypothesis thatall equations of T are directed to the right and only suppose that T is oriented to theright, then the process of of �nding the r for each equation of a derivation tree mayfail at the underequation of a rule of the dec or sep schema: in the derivation of si ! rfrom T , where si is one of the parts of the overequation and r the corresponding r,may occur a contradiction in T as �rstequation. And this must be the case when thereis a contradiction in the derivation. We conclude: If a contradiction is derivable from aconuent system oriented to the right, then a contradiction can be found in the system.For solving a system, we could try to enumerate a conuent system oriented to theright equivalent to it: If the system is inconsistent, we get in this way sooner or later acontradiction; if the system is consistent, we are enumerating a most general solution.The problems of deciding on consistency and of expressing a most general solutionremain. x31(m;n; i; j)-conuenceWe continue with the parallelogram law for TRS. A system T is (m;n; i; j)-conuentif for every pair t!m p and t!n q derivable from T there is an open term r such thatalso p !i r and q !j r are derivable from T . Obviously (m;n; i; j)-conuence and(n;m; j; i)-conuence are equivalent. Every T is obviously (0; n; n; 0)- and (m; 0; 0;m)-conuent for every n and m. An (1; 1; 1; 1)-conuent system is (m;n; n;m)-conuentfor every m and n, and hence conuent. For proving this, we see �rst that (1; n; n; 1)-and (m;n; n;m)-conuence implies (m + 1; n; n;m + 1)-conuence: if t !m+1 p andt !n q are derivable, then there is a p0 such that t !m p0 and p0 !1 p are derivable,and due to the (m;n; n;m)-conuence an open term r0 such that p0 !n r0 and q !m r0are derivable, and due to the (1; n; n; 1)-conuence an r such that p!n r and r0 !1 rare derivable; hence, p !n r and q !m+1 r are derivable. By induction on m, we havethat (1; n; n; 1)-conuence implies (m;n; n;m)-conuence for each m. Symmetricallyto this, (m; 1; 1;m)-conuence implies (m;n; n;m)-conuence for each n. From thesetwo last results follows our main result.A system S is (1; 1; 1; 1)-conuent if and only if for each instance t = p of an equationin S and each t !1 q derivable from S the equation q = p is (1; 1)-reducible with S.This condition is trivially ful�lled when q is formally equal to p or to t. This statementis proved by induction on the size of two given derivations built of ref and cons-rulesand whose endequations are t !1 p and t !1 q: if one of the endequations is aninstance of an equation in S, then we �nd the desired r by using the hypothesis; if oneof these endequations is the underequation of a ref-rule, then the desired r is the rightpart of the other endequation; if both are underequations of cons-rules, then the resultfollows trivially by the inductive hypothesis.21



Our �rst solving strategy is the use of a variant of Knuth-Bendix' algorithm toenumerate a (1; 1; 1; 1)-conuent system oriented to the right. The above result playsthe essential rôle, but for treating universal quanti�cation we need something like alifting lemma, we need some remarks on classical term uni�cation.2.4 Knuth-Bendix' Algorithm for Solving EquationsSubsection 2.5 is independent of this subsection and could serve as an introduction toit. x32A note on term uni�cationWe introduce now, independent of our treatment of term uni�cation in 2.5, the resultwe need for our algorithm for solving equations systems. We need term uni�cation for�nding appropriate instances, for substituting variables with open terms: variables playthe rôle of unknowns in 2.5, term uni�cation is considered outside its logical contextintroduced in 2.5.With t� we denote here the open term obtained by substituting the variables of theopen term t by the open terms given by the substitution � that associates open terms tovariables. An instance of an equation s = q is always of the form s� = q�. Substitutingthe variables in an open term t[r1; : : : ; rn] yields the new open term t�[r�1 ; : : : ; r�n ], wherer�i points to its open subterms that are in the places originally pointed by ri; hence,we can substitute each r�i in this open term by an open term q0i for obtaining the openterm t�[q01; : : : ; q0n]. If b� is of the form �t[�r1; : : : ; �rm], then each �ri points to subtermsof b� of the form r� being in the places of possibly formally di�erent subterms r of b;hence, we can write b in the form t[r1; � � � ; rn], where n is not necessarily equal to m.A uni�er for reducing an instance of the open term t[r1; : : : ; rn] with the equationss1 = q1, : : : , sn = qn is a list (�;�1; : : : ; �n) of substitutions like above such that r�i ands�ii be formally equal, the reduction of the instance t�[r�1 ; : : : ; r�n ] of this open termwith these equations and uni�er is the open term t�[q�11 ; : : : ; q�nn ]. A most generaluni�er is a uni�er such that all other uni�ers are of the form (�; �1; : : : ; �n). Theresults in [11] yields an algorithm for deciding if there is an uni�er and for giving a mostgeneral uni�er when there is an uni�er: we consider a uni�er to be a list of substitutionsbecause we see occurrences of a variable in the context of di�erent equations as di�erentvariables that can be substituted by formally di�erent open terms; the domains ofde�nition of �, �1, : : : , �n are to be seen as pairwise disjoint, then we can see thelist (�;�1; : : : ; �n) as a substitution acting on the union of the domains of de�nition;a renaming of the variables in the equations so that variables in di�erent equationsand in the original open term be pairwise disjoint must be done before applying thetraditional uni�cation algorithm, v� or v�i is di�erent from v�j if v does not appear int[r1; � � � ; rn] or respectively si = qi because the substitutions contain the renaming.If b� !1 �q is derivable from S, then b can be expressed in the form t[r1; : : : ; rn]and �q in the form t�[�q1; : : : ; �qn], so that each r�i = �qi is an instance s�ii = q�ii of anequation si = qi in S. In this case, (�; �1; : : : ; �n) is a uni�er for reducing the instancet�[r�1 ; : : : ; r�n] of t[r1; : : : ; rn], namely b�, into t�[�q1; : : : ; �qn], namely �q, with the si = qi22



in S: each �qi is formally equal to q�ii . A most general uni�er (�;�1; : : : ; �n) such that(�; �1; : : : ; �n) be equal to (�; �1; : : : ; �n) yields a reduction q of the instance b� ofb. Now, the original equation b� !1 �q is the instance b� !1 q of b� !1 q, and thislast equation is also derivable from S. x33cp-resolutionA cp-resolvent of a list of equations t[r1; : : : ; rn] = p, s1 = q1, : : : , sn = qn is anorientation to the right of dec(ft�[q�11 ; : : : ; q�nn ] = p�g), where (�;�1; : : : ; �n) is a mostgeneral uni�er for reducing an instance of t[r1; � � � ; rn] with s1 = q1, : : : , sn = qn. Theexistence of the most general uni�er is a condition for the existence of a cp-resolvent.If each equation in the list is derivable from a system, then also each equation in acp-resolvent.A system S is cp-closed if it is oriented to the right and for each list of equationshaving a cp-resolvent there is a cp-resolvent each of its equations is (1; 1)-reducible withS. A cp-closed system is (1; 1; 1; 1)-conuent and hence also conuent: according tothe last result in x31, it is enough to see that �q = p� is (1; 1)-reducible for each instanceb� = p� of an equation b = p in S and each b� !1 �q derivable from S; following thelast paragraph in x32, b is of the form t[r1; : : : ; rn] and there is an instance b� of itthat can be reduced with some equations si = qi of S and with a most general uni�er(�;�1; : : : ; �n) into a q, so that �q be an instance q of q and � be �; a correspondingcp-resolvent of the equations t[r1; : : : ; rn] = p, s1 = q1, : : : sn = qn of S is an orientationto the right of dec(q = p�); since there is a cp-resolvent all of its equations are (1; 1)-reducible, q = p� and hence its instance �q = p� are also (1; 1)-reducible.A cp-closed system is conuent and oriented to the right: it contains a contradictionif it is inconsistent, it is a (most general) solution of itself and of any system equivalentto it if it is consistent.Given a system S, one can build a cp-closed system S� equivalent to S by recursivelyadding to an orientation to the right of dec(S) the equations of cp-resolvents of equa-tions in it. We call this process cp-completion, during it we must �nd a contradictionif S is inconsistent, or enumerate the equations of a most general solution of S if S isconsistent.2.5 Term Uni�cationSince we want that solution of equations systems play the rôle of term uni�cation inlogic programming, we introduce term uni�cation in the context of the concepts weintroduced for equations systems. This subsection is an appendix that can be skipped.x34SubstitutionsA substitution � is a function that associates a term X� to each unknown X from a�nite set sup�. For each open term t, we de�ne recursively the open term t�. If t is anunknown in sup�, then t� is given by the de�nition of �; if t is other 0-ary symbol, t�23



coincides with t; if t is of the form (t1t2), then t� is (t�1 t�2 ). Two substitutions � and �are considered the same if X� coincides with X� for each unknown X, or equivalently,with each open term X, even if sup� and sup� does not coincide. For open terms s andt, or for substitutions � and �, we say that the identity s � t holds, or respectivelythat the identity � � � holds, if right and left part of the identity coincide.The identity t� � t holds if and only if for every unknown X in t the identityX� � Xholds. We say that � moves an open term t, if t� is di�erent from t: it moves t to t�.All unknowns moved by � are in sup�.The unity � is the substitution for which X � coincides with X for each unknown X,and hence also for each open term X. The associative product �� of two substitutions� and � is the only substitution for which X�� coincides with (X�)� for each unknownX, and hence, also for each open term X. The set of all substitutions build togetherwith this product and with � a monoid. x35Idempotent substitutions, ordering, equivalenceA substitution � is called idempotent if �� � � holds. The substitution � isidempotent if and only if for every X moved by � the unknowns in X� are not movedby �. If we call the unknowns moved by � dependent and the rest independent, thenwe can say that � express dependent unknowns in terms of independent ones.For two substitutions � and �, let the relation � < � hold if and only if � � ��holds. The relation < is transitive: from � � �� and � � � the identity � � �� �(�)� � (��) � � follows. The relation � < � holds if and only if � is idempotent.Let the relation � � � hold if and only if � < � and � < � holds. The relation� restricted to idempotent substitutions is an equivalence relation. If � � � holds,then � and � are idempotent: �� � �(��) � (��)� � �� � �, the proof for � issymmetrical.If � � � holds, then there is a substitution  such that  � �, � � � and � � �holds: � and � are equal up to a renaming. For proving this, we note �rst that X� isan unknown if and only if X� is an unknown: if X� is an unknown and X� of the form(t1t2), then X� � X�� � (t�1 t�2 ) is a contradiction; the proof for the other direction issymmetrical. Let � be the set of X such that X�, or equivalently such that X�, is anunknown. This � contains all unknowns outside sup� \ sup�, perhaps contains somein it. Let �� and �� be the sets of unknowns obtained by substituting each X in �by X� or respectively by X�. We can restrict � to a function � 0 from �� to �� and� to a function �0 from �� to ��, so that �0 is the inverse function of � 0: this followsfrom the identities (X�)� � X� and (X�)� � X�. The functions � 0 and �0 restrictedto the set �� \ �� coincide with the identity: from X� � Y � follows X�� � Y ��, dueto the de�nition of � and to the idempotence of �, also X� � Y �, and with the �rstequation X� � X�, namely, the restriction of �0 coincide with �; the proof for �0 issymmetrical. We de�ne the function 0 by joining the graphs of �0 and �0, and thesubstitution  by restricting  0 to the �nite set (�� [ ��) \ (sup� [ sup�); the naturalextension of  to unknowns in the domain ��[�� of 0, but outside sup coincide with 0: the function  0 coincide with � in the set �� \ �� containing all elements outsidethe �nite set sup� [ sup�. The identity  � � is obvious from the de�nition of .24



Since � is idempotent, no unknown in X� for an arbitrary unknown X is moved by�, they are hence in � and in ��, and  assign to them the same unknown as � does:(X�) � (X�)� � X�� � X�. From this the identity � � � follows, the proof of theidentity � � � is symmetrical. x36Substitutions as systemsTo each substitution � we associate an equations system S� whose equations arethe ones of the form X = X� for which the unknown X does not coincide with X�.A system S whose equations are directed to the right, contain no variable and havepairwise di�erent unknowns in their left parts is of the form S� for a substitution �.The identity � � � holds if and only if S� and S� contain the same equations.The system S� is oriented to the right and, according to x31, is (1; 1; 1; 1)-conuent,hence also conuent. Since all its equations are directed to the right, it containsno contradiction as de�ned in x29, and hence no such is derivable, but later we willintroduce a new kind of contradictions that may be derivable from an S� whose � isnot idempotent.The identity S� ` t !1 t� holds for a substitution � and an open term t. Thisfollows by induction. It is obvious when t is a 0-ary symbol. From S� ` t1 !1 t�1 ,S� ` t2 !1 t�2 , the cons schema and the identity (t1t2)� � (t�1 t�2 ) follows S� ` (t1t2)!1(t1t2)�. x37Uni�ersA substitution � uni�es the equation s = t if the identity s� � t� holds. It uni�esa system S if it uni�es each of its equations. If � uni�es S and S ` s = t holds, then� uni�es s = t: if a substitution uni�es the overequations of an open m-rule, then alsothe underequation. Two equivalent systems have the same uni�ers.If � uni�es an equation or system, then also � for any . A substitution � uni�esS� if and only if � � ��, namely � < �, holds: this is a direct consequence of thede�nitions. In particular, � uni�es S� if and only if � is idempotent. Joining the aboveremarks: a substitution uni�es S�, where � is idempotent, if and only if it is of theform �.If � uni�es s = t, then S� ` s = t holds: this follows from the fact that S� ` s!1 s�and S� ` t !1 t� hold. If � is idempotent, then S� ` s = t if and only if � uni�ess = t.The task of the uni�cation algorithm is to describe the uni�ers � of a system S, wherethe � and S must satisfy some type constraints. We consider the task of transformingS into an equivalent system S�, where � is idempotent. Then, the uni�ers of S arethe substitutions of the form �. This idempotent � is unique up to renaming: S�1 �S�2 implies �1 � �2. We prove that this task is equivalent to the original one: thetransformation is possible if and only if there is a uni�er, and this is decidable.25



x38In�nite loops, contradictionsNo substitution uni�es a contradiction: if s = t is an operators or an argumentsclash, then s� = t� is a similar contradiction, its two parts cannot coincide.An in�nite loop is a directed equation of the form X = t or t = X, in whicht is an open term of the form (t1t2) containing X. No substitution uni�es such anequation: t� contains X� as subterm and other symbols, they cannot coincide. Slightlydiverging from the de�nitions in x29, we consider in this section in�nite loops alsoas contradictions. As in x29, a system is consistent if and only if no contradiction,including in�nite loops, is derivable.Summarizing, no substitution uni�es an inconsistent system. No substitution uni�esthe consistent system containing the equation (Xa) = a, where X is an unknown anda a ground symbol. We prove that, under certain conditions, a consistent system Scan be transformed into an equivalent system S�, where � is idempotent and hence auni�er of S� and S. x39Forbidding applications of unknowns, T-termsAn open T-term is constructed recursively: an open term consisting of only onesymbol is an open T-term; an open term of the form (t1t2), where t1 is not an unknownand both, t1 and t2, are open T-terms, is also an open T-term. A T-term is anopen T-term not containing variables. A T-equation is one whose two parts are openT-terms. A T-system is a system whose equations are T-equations.A substitution � is a T-substitution ifX� is a T-term for each unknownX, namely,if S� is a T-system. If t is an open T-term, then also t�. If � and � are T-substitutions,then also ��.Open terms were constructed with a signature, all symbols are 0-ary with exceptionof the 2-ary application operator. With a second signature assigning a second arity toeach 0-ary symbol, one can construct open terms such that the number of arguments ofthem are given by the second arity of their operators. If the second arity of all unknownsis 0, then the open terms constructed are open T-terms: the T stays unproperly for\typed". Expressions constructed with a usual signature can be embedded in oursystem with two signatures. x40Directed T-equations, directed contradictionsUndecomposable T-equations are either a directed equation of the form X = t ort = X, where t is an open T-term, or an operators clash or an arguments clash.A directed contradiction is either an in�nite loop or a directed T-equation con-taining a variable. From an equation of the last kind one can derive an operators clash.With sym and trans one can derive a T-equation t[v] = t[w] from it and an instance ofit, where t[v] is the part of the equation containing the variable v and w a new variable.If t[v] contains more than one symbol, then its operator is not an unknown, and with26



dec or sep we can obtain a smaller equation t0[v] = t0[w] of the same form. With someapplications of dec and sep, we obtain the contradiction v = w. We also speak aboutcontradictions directed to the right or left. In this section, contradictions are eitheran operators clash, or an arguments clash, or a directed contradiction, or a loop.x41Uni�cation algorithm as consistence checkingWe consider now T-systems S whose equations are arranged in two lists: a list Uof undecomposable T-equations, each being either a contradiction or directed to theright, and a list R of T-equations X = t directed to the right so that t contains novariable and X appear neither in t nor in other equation of S. We denote this systemS with (R;U), the list R stays for \resolved" and U for \unsolved". Eventually wetreat R and U also as systems.If U contains a contradiction, then (R;U) is inconsistent. If U contains only equa-tions of the form X = X, then the system (R;U) is clearly equivalent to one of theform S�, where � is idempotent, and hence consistent. For an arbitrary system S thereis always a system of the form (;; U) equivalent to it, U is built of an orientation tothe right of dec(S). Given a system (R;U) and a directed T-equation X = t from U ,so that t contains neither X nor a variable, we can transform (R;U) into an equivalentsystem (R0; U 0): the equation X = t is deleted from the second list, each occurrenceof X (in the �rst or second list) is substituted by t, the equation X = t is added toright end of the �rst list, each equation s1 = s2 in the second list is substituted bythe equations of an orientation to the right of dec(fs1 = s2g) (in some order). It isnot di�cult to see that (R0; U 0) satisfy the required conditions; furthermore, the num-ber of unknowns occurring in U 0 is less than the number of the ones occurring in U .The recursive application of such transformations to a system (R;U) with arbitrarilyselected equations X = t must terminate. If a system (R;U) cannot be reduced, theneach equation of U is either of the form X = X or a directed contradiction or anothercontradiction (clash): examining U we can decide if the system is consistent or not, ifthere is a uni�er or not, if the system is equivalent to an S� with an idempotent � ornot.Summarizing, we can decide whether a T-system S is consistent or not. In the �rstcase, S can be transformed into an equivalent system S�, the symbols of its equationsbeing symbols from equations in S and � being idempotent. In the second case, wecan derive a contradictory T-equation from S whose symbols are in the equations ofS. x42Comb lemmaWe call the following result the comb lemma for most general uni�ers, it is necessaryin the last six lines of [16], in x29, for proving the lifting lemma in classical logicprogramming. LetX0;X1; : : : ;Xn � X be pairwise disjoint sets of unknowns satisfyingX = Sni=0Xi; let S1; : : : ; Sn be systems, so that the equations of an Si do not containany unknown of Xj when j 6= 0 and j 6= i; let q be a symbol not contained in X, and �i27



an uni�er of Si for each i, so that q does not occur in an x�i when x 2 X0; then q doesnot appear in any x� when x is in X0 and � is a most general uni�er for Sni=1 Si. Weprove now this lemma. A system S is solved if it is of the form S� with idempotent�. For every Si let �i be a uni�er of Si, so that S�i be equivalent to Si and all symbolsof S�i appear in Si. Let Ei := fx = ' 2 S�i : x 2 Xig, Ki := fx = ' 2 S�i : x 2 X0g,E := Sni=1Ei, K := Sni=1Ki. For every equation x = ' 2 S�i we have, due to the choiceof �i and the hypotheses, that either x 2 X0 or x 2 Xi holds and that ' contains noy 2 Xj when j 6= 0 and j 6= i; hence, S�i = Ei [ Ki holds and E is a solved system;furthermore, K [ E is equivalent to Si Si. Since � uni�es Si Si and hence the systemK [ E equivalent to it, one can �nd a uni�er � of K, such that S� be equivalent to Kand contain only symbols fromK; the system S�[E� is equivalent to S�[E and hencealso to K [E and to Si Si, it is a solved system and contain only symbols occurring inSi Si; let � be a substitution satisfying S� = S� [E�. Since �i is a most general uni�erof Si and �i a solution of this same system, �i = �i�i holds; due to this equality andthe hypotheses, q does not occur in x�i for x in X0 and arbitrary i, also not in a Ki,and hence also not in K; since symbols occurring in S� also occur in K, the symbol qoccurs in no x� � x� with x 2 X0; since � is a most general uni�er of Si Si and � auni�er of the same system, the equality � � �� holds, and hence q cannot occur in anx� with x 2 X0.3 Logic Programming for Stating EquationsThis section is devoted to restate the task of logic programming (subsection 3.2), sothat the concept of solution of equations systems introduced in section 2 play the rôleof term uni�cation, and to prove the lifting lemma (subsection 3.4) that means thecompletenes of an indeterministic search algorithm. Given a sequent � ` ', the oldtask of logic programming was to �nd a substitution � for the unknowns in the sequent,so that �� ` '� be mj-derivable. We can say that the new task is to �nd a consistentsystem of equations �, so that �[ � ` ' be mj-derivable. Well, some technical detailsshould be make more precise in this de�nition. Having a substitution � gives us a�nite evaluation procedure of each unknown, with an equations system we do not havesuch an evaluation procedure: this makes the proof of the lifting lemma much morecomplicated than in classical logic programming.3.1 Logic with Unknowns and Equalityx43Open terms and formulae, sequents with in�nite antecedentsWe consider in this section open terms and formulae built on a language L for thepredicate logic. This language L contains a 2-ary predicate symbol =, its functionalsymbols are a 2-ary application operator and 0-ary functional symbols divided in un-knowns and ground symbols, as auxiliary 0-ary symbols we have in�nite many forvariables and for free variables. 28



An equation in L is an atomic open formula with the predicate =, it may containsymbols for free variables. A system of equations in L is de�ned as in 2.1, withequality axioms as in 2.1, but its equations can now contain symbols for free variables.For applying the results of section 2.1 to these systems, symbols for free variables areto be seen as unknowns: axioms dec(f) are for ground terms f and the schema sep forvariables, not for free variables. Actually, symbols for free variables are to be used asproper variables in the EB- and AE-rules de�ned in subsection 1.1, hence as auxiliaryterms for the construction of mj-compositions, they are the free variables in Gentzen [4]or the parameters in Prawitz [15], they are unwelcome in the endsequent, they areunwelcome in equations systems; but for stating our results, we need to consider thepossibility that they appear in equations systems. The equations we deal with in thissection are succedents of �rstsequents of mj-compositions, some of the symbols for freevariables in them correspond to proper variables of AE-rules, these symbols are seen asarbitrary constants, they are substituted later by variables for building systems withthe equations, only the remaining symbols for free variables are seen as unknowns.We consider sequents � ` ' with in�nite antecedent �, such that there are in�nitelymany symbols for free variables not occurring in �. To be more precisely, sequents ofthe form S [ P ` ', where S is a system of equations (and hence not containing freevariables) arranged as a list in some way and P a (�nite) list of formulae. NJ- andmj-rules are de�ned exactly as before; furthermore, � ` ' is derivable if and only if asequent �0 ` ' is derivable, where �0 is a �nite list obtained by deleting formulae from�. x44Compatibility axiomsWe de�ne for an n-ary predicate symbol P the formula comp(P ), called a compat-ibility axiom, bycomp(P ) :8u1 � � � 8un8v1 � � � 8vnu1 = v1& � � �&un = vn � (P (u1; : : : ; un) � P (v1; : : : ; vn));where & denotes the nested implications that can be substituted by conjunction forobtaining an equivalent formula. Note that comp(=) is a consequence of sym and trans.With compL we denote the list of compatibility axioms comp(P ) for each predicatesymbol P diferent from = of the language L we are considering.3.2 New Statement of Logic Programmingx45DE- and GE-Formulae, PE-sequentsWe consider here mj-derivability of P-sequents S [ � ` ', where S is an equationssystem and � contains compL. We want to restrict these P-sequents, so that thederivability of S [ � ` ' implies the derivability of S ` ' when ' is the closure of anequation. 29



An open AE-formula is an open A-formula not containing the predicate symbol=. An open E-formula is an equation. By simultaneous recursion we de�ne openDE- and GE-formulae:DE := AEj8vDEjDE1 ^DE2jGE � DE;GE := EjAEj9vGEj8vGEjGE1 _ GE2jGE1 ^GE2jDE � GE:By induction we can prove that they are open D- and respectively G-formulae. AE-,E-, DE- and GE-formulae are open AE-, E-, DE- and GE-formulae whose variables arebound with quanti�ers. All formulae in compL are DE-formulae (but not comp(=)). APE-sequent is one of the form compL[P ` ', where P is a list of DE-formulae calledproper assumptions of the PE-sequent and ' a GE-formula. If the undersequentof a mj-rule is a PE-sequent, then also its oversequents are so. Since no D-sequencebeginning with a DE-formula ends with an E-formula, a PE-sequent � ` " whosesuccedent " is the closure of an equation cannot be the undersequent of an m-rule,such sequents are not mj-derivable. x46Potential mj-derivations, PS-sequents, E-decomposition, resolvents, actualizationsA potential mj-derivation � is an mj-composition tree whose endsequent � ` 'is a PE-sequent and such that the succedents of its �rstsequents are equations "1,: : : , "n, called the conditions of �. In a condition "i of � may occur a (symbolfor free variable formally equal to a) proper variable of � (as de�ned in x10), let "0ibe an equation obtained by substituting these proper variables by variables, formallydi�erent free variables by formally di�erent variables: the system S whose equations"01, : : : , "0n are obtained in this way from the conditions "1, : : : , "n of � is the mostgeneral resolvent of �, it is unique up to renaming of variables. By appending S tothe antecedents of the sequents in � and by putting an m-rule over each �rstsequentwe can build an mj-derivation of S [ � ` '.A PS-sequent is one of the form S [ � ` ', where S is an equations system, itsequations system, and � ` ' a PE-sequent, whose proper assumptions are also theones of the PS-sequent. If the undersequent of an mj-rule is a PS-sequent S [ � ` ',then also its oversequents are PS-sequents with the same equations system S.If the undersequent of an mj-rule is a PS-sequent whose succedent is the closure of anequation, then its oversequents are of the same form and have the same antecedent (anequation without variables is the closure of itself). In particular, the �rst formula in �of such a rule m(S [ �;�) must be from the equations system S of the undersequent,because a D-sequent beginning with an DE-formula never ends with an E-formula. Anmj-derivation � of a PS-sequent S [ � ` ", where " is the closure of an equation, canbe transformed into an mj-derivation of S ` " by deleting � and leaving the equationssystem S in every PS-sequent of the derivation.An mj-derivation � of a PS-sequent S [ � ` ' can be transformed into a potentialmj-derivation �0 of the PE-sequent � ` ' whose most general resolvent is more generalthan the equations system S, namely, so that "0 is derivable from S if "0 is in the mostgeneral resolvent of �0. This �0 is obtained by cutting o� every branch of � from thepoint at which an equation " is found in the succedent, these equations " will be the30



conditions of �0, and then by deleting the equations system S of each PS-sequent inthe tree: it remains an mj-composition tree because the D-sequence of an m-rule thesuccedent of its undersequent is not an equation cannot begin with an equation ofS. From the above paragraph, the subtree of � whose endsequent S [ �0 ` " has acondition " of �0 as succedent, namely, the subtree of � built with the branches overS [ �0 ` " cut o� from �, can be converted into an mj-derivation of S ` "; since Scontains no proper variable of �, and hence also no one of �0, the equation "0 of theresolvent of �0 obtained from " by substituting the proper variables of �0 occurring in" by variables is also derivable from S. We call the potential mj-derivation �0 togetherwith the derivations of its �rstsequents from S the E-decomposition of �.A resolvent of a potential derivation � of a PE-sequent � ` ' is an equations systemS in which no proper variable of � occur, so that the succedent of every �rstsequent of� is derivable from S, namely, so that the most general resolvent of � be more generalthan S. By appending S to the antecedents of the sequents in � and by appendingsome mj-derivations over each �rstsequent of � one gets an mj-derivation �0 of thePS-sequent S [ � ` ', called an actualization of � by S. By E-decomposition of �0one recovers � and gets derivations of each equation in the most general resolvent of� from S. x47The new task of logic programmingGiven a PE-sequent � ` ', we want to �nd a consistent system S, perhaps satisfyingsome additional conditions, so that the PS-sequent S [ � ` ' is mj-derivable. As inclassical logic programming [10], we want a systematic search strategy (like the treesearch with backtracking in Prolog) and, if an S is found, to take the most general Sfound in the same way (lifting).From x46, we know that such an S is the resolvent of a potential derivation, andthe most general resolvent of this potential derivation describes in some way all suchS. We need only to search potential derivations of the PE-sequent � ` ', but wehave the problem of selecting the auxiliary terms. As in classical logic programming,we want to select unknowns representing auxiliary terms to be searched for, and to besure that solutions found in this way lead through speci�cation of these unknowns toevery possible solution. This is the matter of the two following subsections.3.3 Displacements x48S-displacements of open termsLet S be a system of equations. We say that an open term t0 is an S-displacementof the open term t, if t = t0 is an instance of an equation in S such that each variableoccurring in t0 also occurs in t. Hence, if t is a term, then also t0. Obviously, S ` t!1 t0holds. 31



x49S-displacements of open formulaeLet r = r0 be an equation from S, let s = s0 be an instance of r = r0 obtained bysubstituting each variable in r0 not occurring in r by a term (without variables), let v1,: : : vn be some (perhaps all) variables in s = s0, for each vi let ti be a term and t0i anS-displacement of it, let t be the open term obtained by substituting all occurrences ofeach variable vi in s by ti and t0 the open term obtained by substituting all occurrencesof each vi in s0 by t0i. It is easy to see that S ` t !2 t0 holds. We say that the openterm t0 is a second order S-displacement of the open term t.An S-displacement of an open atomic formula R(t1; : : : ; tn) is an open atomicformula R(t01; : : : ; t0n), so that each t0i be a second order S-displacement of ti. TheS-displacement of an arbitrary open formula is de�ned recursively: if '0 is an S-displacement of ' and  0 an S-displacement of  , then '0 �  0 is an S-displacementof ' �  , '0 ^ 0 an S-displacement of '^ , '0 _ 0 an S-displacement of '_ , 8v'0an S-displacement of 8v' and 9v'0 an S-displacement of 9v'.If '0 is an S-displacement of ' and a variable v occurs in '0 not bound by a quanti�er,then it also occurs in ' not bound by a quanti�er; hence, '0 is a formula if ' is a formula:this is the case for second order S-displacements of open terms and for S-displacementsof open atomic formulae, the general case is seen by induction. In an analogous waythe following is proved: if '0 is an S-displacement of the open formula ', if t0 is an S-displacement of the term t, if  0 is obtained by substituting each non-bound occurrenceof a variable v in '0 by t0 and  by substituting each non-bound occurrence of v in 'by t, then  0 is an S-displacement of  . x50S-displacements of D-sequencesAn S-displacement of a list L of terms or formulae is obtained by substituting eachmember of the list L by an S-displacement of it. If the list L is seen as a D-sequence,then its S-displacement L0 much ful�ll some other conditions, the T-sequence of L0will be a given S-displacement of the T-sequence of L, the G-sequence of L will be anS-displacement of the G-sequence of L.A D-sequence � is completely determined by giving its �rst formula and, for eachstep, the selected auxiliary term (T-sequence) or position of the selected subformulaof the conjunction (�rst or second). An S-displacement �0 of the D-sequence � isspeci�ed by giving an S-displacement of its �rst formula and an S-displacement of eachselected auxiliary term, �0 is a D-sequence obtained by substituting, from left to right,each formula in � by an S-displacement of it: the �rst formula is substituted by thegiven S-displacement of it; if the formula ' of � was substituted by its S-displacement'0 and  follows in �, then '0 has the same structure as ',  is substituted by a  0obtained from '0 with a similar step as the one with which  was obtained from ', thegiven S-displacement of the auxiliary term used in � is used if ' is universal, the �rstor second subformula of '0 is selected if ' is a conjunction and the �rst or respectivelythe second subformula was selected; the atomic last formula of � will be, as the other,substituted by an S-displacement of it, and hence by an atomic formula. Obviously,32



the T-sequence of �0 is obtained by substituting each term of the T-sequence of � bythe given S-displacement of it, and the G-sequence of �0 by substituting each formulain the G-sequence of � by an appropriate S-displacement of it.x51S-displacements of mj-rulesAn FE-, UE-, OEi-, AE- or EE-rule is completely determined by giving its under-sequent and its auxiliary terms, if it has any. A most precise name for these ruleswould contain the undersequent and its auxiliary terms. Let r be a rule of one ofthese schemata, an S-displacement of r is speci�ed by giving an S-displacement ofits undersequent, not containing the proper variable of r if this is an AE-rule, and anS-displacement of its auxiliary term if it is an EE-rule: it is the only rule of the sameschema whose undersequent is the given S-displacement of the one of r, whose propervariable is the same as the one of r if this is an AE-rule, whose auxiliary term is thegiven S-displacement of the one of r if this is an EE-rule. The oversequents of theS-displacement of r correspond to S-displacements of the oversequents of r.A similar de�nition for m-rules is given. An m-rule m(�;�) is completely deter-mined by giving � and �. By giving an S-displacement �0 of the antecedent � of theundersequent of m(�;�) and S-displacements of its auxiliary terms, namely, of the T -sequence of �, we can �nd the S-displacement �0 of � whose T-sequence is the givenS-displacement of the T-sequence of � and whose �rst formula is the formula in thegiven S-displacement �0 of � corresponding to the �rst formula of � (as element of �).With the given �0 and this calculated �0 we can build the S-displacementm(�0;�0)of the m-rule m(�;�). Hence, the S-displacement of an m-rule depends on a givenS-displacement of the antecedent of its undersequent and of the given S-displacementsof its auxiliary terms; one could give an S-displacement of the whole undersequent,but nothing warranties that it will become the undersequent of the S-displacementof the rule. The oversequents of an S-displacement of an m-rule correspond to S-displacements of the oversequents of the original rule, as is the case with rules of otherschemata.For recursively constructing S-displacements of composition trees, from the root tothe leaves, we would like that an S-displacement of a rule be determined by givingan S-displacement of its undersequent and an S-displacement of its auxiliary terms.As seen, this is not the case for m-rules. This forces us to introduce the concepts ofpotential and actual mj-rules. x52Potential and actual mj-rulesA potential rule is a rule whose oversequents are divided in proper and non-proper ones, the non-proper ones being of the form � ` s = t, where the s = t areequations called conditions of the rule. A potential rule all of whose conditions areof the form s = s is called an actual rule. In compositions, non-proper oversequentsare predestinated to be �rstsequents. 33



A potential mj-rule �r is speci�ed by giving an mj-rule r and, in the case this isan m-rule, additionally an atomic formula whose predicate symbol coincide with theone of the succedent of the undersequent of r. If r is an FE-, UE-, OE-, AE- or AE-rule, then �r coincide with r, it is called a potential FE-, UE-, OE-, AE- or AE-rule,it does not have non-proper oversequents, it is also an actual FE-, UE-, OE-, AE- orAE-rule. If r is an m-rulem(�;�) with undersequent � ` r(t1; : : : ; tn) and if the givenatomic formula is p(s1; : : : ; sn), then the non-proper oversequents of �r are � ` t1 = s1,: : : , � ` tn = sn, they are followed by the proper oversequents that coincide withthe ones of r, its undersequent is � ` p(s1; : : : ; sn). If the undersequent of r containscompL in the antecedent, this potential m-rule �r is the composition of two m-rules: ofr with the m-rule whose oversequents are the non-proper oversequents of �r followed by� ` p(t1; : : : ; tn) and whose undersequent is the one of �r, namely, the m-rule m(�;�),where � is the D-sequence for comp(p) whose T-sequence is t1, : : : , tn, s1, : : : sn. Thepotential m-rule �r is an actual m-rule if and only if the selected atomic formula isexactly the succedent of the undersequent of r.Auxiliary terms, proper variable and D-sequence of a potential mj-rule �r are byde�nition the ones of the given mj-rule r.x53S-displacements of potential mj-rulesGiven a potential mj-rule r, an S-displacement �0 ` �0 of its undersequent, notcontaining the proper variable of r if this is a potential AE-rule, and S-displacementsof its auxiliary terms if r is an m- or EE-rule, we de�ne a new potential mj-rule r0called the S-displacement of r: it is a potential rule of the same schema as r, itsundersequent is the given S-displacement of the undersequent of r, its proper variableis the same as the one of r if it is an AE-rule, its auxiliary term is the given S-displacement of the one of r if it is an EE-rule, its D-sequence �0 is the S-displacementof the D-sequence � of r whose �rst formula is the formula in �0 corresponding to the�rst formula of � and whose T-sequence is obtained by substituting each element ofthe T-sequence of � by the given S-displacement of it if r is an m-rule. By consideringeach schema (FE, UE, OEi, AE, EE or m) for potential mj-rules, we easily see thatthere is a unique potential mj-rule r0 with the demanded properties.Furthermore, the S-displacement r0 of r is obtained by substituting the undersequentof r by the given S-displacement of it, by substituting each oversequent by an appropri-ate S-displacement of it, proper oversequents by proper oversequents, non-proper onesby non-proper ones, by substituting each auxiliary term by the given S-displacementof it, where the proper variable in an AE-rule is preserved. Each symbol appearing inan oversequent of r0 appears either in its undersequent or in the given S-displacementof an auxiliary term of r0. These properties will allow us to de�ne S-displacements ofmj-compositions, and hence of potential mj-derivations.34



x54mj�-compositions, potential mj�-derivationsAnmj�-composition is a composition with potential mj-rules, in which non-properoversequents are left free as �rstsequents. De�nitions and results in x3 and x10 can betrivially extended to mj�-compositions.There is a trivial one to one correspondence between actual mj-rules and mj-rules, theimage of an actual mj-rule �r is the given r, it is recuperated by deleting the non-properoversequents. This correspondence can be extended to a one to one correspondencebetween mj�-compositions built with actual mj-rules and mj-compositions, each actualmj-rule �r is substituted by its image r, the �rstsequents corresponding to non-properoversequents (their succedents are of the form s = s) are deleted.A potential mj-rule containing compL in the antecedent of its undersequent canalways be seen as a composition of mj-rules. An mj�-composition whose endsequentcontains compL in the antecedent is built only with such potential mj-rules; and bysubstituting each potential mj-rule by the corresponding composition of mj-rules, onegets an mj-composition containing the same endsequents and �rstsequents.A potential mj�-derivation is an mj�-composition whose endsequent is a PE-sequent and whose �rstsequents have equations as succedents. Between potential mj�-derivations built with actual mj-rules and potential mj-derivations holds the trivial oneto one correspondence. Since all PE-sequences contain compL in the antecedent, wecan substitute each potential mj-rule in a potential mj�-derivation by the correspondingcomposition of mj-rules for obtaining a potential mj-derivation.x55S-displacements of mj�-compositions and potential mj�-derivations, S-equivalenceFor an mj�-composition �, an S-displacement of its endsequent not containing propervariables of AE-rules in �, and an S-displacement of each auxiliary term of a potentialm- or EE-rule in �, so that it does not contain the proper variable of an AE-rule of� appearing over this m- or EE-rule, we de�ne the S-displacement �0 of �, as theunique mj�-composition tree obtained by substituting each rule r of � by an appropriateS-displacement r0 of it, so that the endsequent of � is the given S-displacement of theendsequent of �, so that the S-displacements of the auxiliary terms of r used forbuilding the S-displacement r0 of r be the given ones. For building r0 we need an S-displacement of its undersequent, this is why �0 must be constructed recursively fromthe root to the leaves: we have an S-displacement of the undersequent of the rule rwhose undersequent is the endsequent of � (the given one), we can �nd r0 for this r, itsproper oversequents are S-displacements of the oversequents of r, these oversequentsare S-displacements of the endsequents of the subtrees of � over them, recursively wecan �nd the corresponding S-displacements of these smaller trees and mount them overthe proper oversequents of r0. Although we did not demand that � have unambiguousproper variables, this de�nition is mainly applied to such derivations.Since S-displacements of equations are again equations, an S-displacement �0 of apotential mj�-derivation � is also a potential mj�-derivation. If S does not contain anyproper variable of � or equivalently �0 and if R and R0 are the most general resolvents35



of � and �0, then S [ R and S [ R0 are equivalent; we say that R and R0 are S-equivalent. To see this, let s0 = t0 be a condition of �0 corresponding to a conditions = t of �, and let �s = �t and �s0 = �t0 be the equations obtained from s = t and s0 = t0by substituting in both the proper variables q1, : : : , qn by some variables v1, : : : , vn.These last equations may be seen, up to variable renaming, as elements of R and R0.Since s0 = t0 is an S-displacement of s = t, then s!2 s0 and t!2 t0 are derivable fromS. Since S does not contain the qi and the open m-schemata used for TRS are stableunder the substitutions of qi by vi, then also �s!2 �s0 and �t!2 �t0 are derivable from S.This implies the equivalence of S [ f�s = �tg and S [ f�s0 = �t0g.3.4 Lifting x56Most general potential mj�-derivationsA potential mj�-derivation � is most general if (1) it has unambiguous propervariables, (2) auxiliary terms of its potential EE- and m-rules are of form Xq1 � � � qn,where X is an unknown and q1 � � � qn is the list of proper variables of the undersequent(and hence of the oversequent, see x10) of the rule, and (3) the operators of di�erentauxiliary terms of EE- or m-rules (of the same rule or of di�erent rules) are formallydi�erent unknowns not appearing in the endsequent.A speci�cation of an auxiliary term Xq1 � � � qn of a potential EE- or m-rule r in themost general potential mj�-derivation � is an equation of the form Xv1 � � � vn = t, inwhich t does not contain other variable than the vi, nor an operator of another auxiliaryterm, nor a qi, nor the proper variable of an AE-rule in �. A speci�cation S of theauxiliary terms of the most general potential derivation � is a system whose equationsare speci�cations for each auxiliary term. We call the S-displacement �0 of � that leavesthe endsequent unmoved and S-displaces each auxiliary term Xq1 � � � qn to t[q1; : : : ; qn]the S-evaluation of �. One can prove by induction that �0 is obtained by taking eachXv1 � � � vn = t[v1; : : : ; vn] in S and substituting each occurrence of Xq1 � � � qn in � byt[q1; : : : ; qn]. x57LiftingFor a potential mj�-derivation �, we can �nd, according to x3, a similar potentialmj�-derivation �0 with the same endsequent and the same (up to variable renamings)most general resolvent. For each auxiliary term t of each EE- or m-rule r in �0 let Xbe a new unknown, neither appearing in �0 nor selected for another auxiliary term,let " be the equation Xq1 � � � qn = t, where q1 � � � qn is the list of proper variables ofthe undersequent of r, and �0 be the equation Xv1 � � � vn = t0 obtained by substitutingthe qi by di�erent variables vi in ". Let S be the system whose equations are the "0corresponding to each auxiliary term in �0 and S0 the system whose equations are thesymmetries t0 = Xv1 � � � vn of the equations Xv1 � � � vn = t0 in S. We build now an S 0-displacement �00 of �0: the S0-displacement of the endsequent is the same endsequent of�0 and �, the S0-displacement t00 of an auxiliary term t is the corresponding Xq1 � � � qn36
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