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In this article we give the proof theoretical foundations of an extension of Prolog, to
be called mj-Prolog, for dealing with representations of recursive functions, as Pro-
log deals with terms. In opposition to other related systems, mj-Prolog remains in
the framework of first order intuitionistic logic, recursive functions are determined and
represented by equations that on one side have the usual interpretation in first order
logic and on the other side can be used as term reduction system for evaluating the
function. Section 1 deals with proof theoretical foundations of classical logic program-
ming, but emphasis is given only in the logical part that is common to mj-Prolog, not
in the search of unknown terms, because in it lies the main difference with mj-Prolog.
Section 2 deals with equations systems for specifying unknown recursive functions, the
solving of these systems in mj-Prolog corresponds to the unification in Prolog. Sec-
tion 3 brings the matter of sections 1 and 2 together, it shows how logic programming
can be used for stating systems of equations that specify recursive functions.

1 Foundations of Classical Logic Programming

In this section we deal with proof theoretical foundations of classical logic programming,
classical in the sense that we do not deal with search of other objects than terms, only
a short note at the end of §9 points to the use of unknowns for delaying the selection
of terms to be found later by unification, lifting in this classical context is not treated,
it may be found in [16]. From the logical point of view, we are dealing with the
hereditary Harrop formulae introduced to logic programming as a generalization of
horn clauses in [12], but we deal with it in the context of Gentzen’s calculus NJ and
Prawitz’ normal form, not in the context of L.J and the the uniform proofs of [12]. We
deal with intuitionistic predicate logic, but subsection 1.5 deals with a restriction of
hereditary Harrop formulae that suffices for expressing classical predicate logic with
the help of negation axioms, and subsection 1.6 deals with a further restriction in which
intuitionistic and classical logic coincide, the generalized horn clauses treated there and

*Lehrstuhl fur Mathematische Logik, Mathematisches Institut, Zimmer 417, Theresien-Str. 39,
80333-Munchen. readi@rz.mathematik.uni-muenchen.de



originally from [17] are a generalization of the horn clauses in the original Prolog. The
equality axioms in section 2 are generalized horn clauses.

1.1 Gentzen’s Natural Deduction

§1

Terms, formulae, sequents

We consider open formulae recursively built starting from open atomic formu-
lae with the following logical symbols: D for implication, A for conjunction, V for
disjunction, V for universal quantification, 3 for existential quantification. An open
atomic formula is built with an n-ary predicate symbol of the language, perhaps
O-ary, and n open terms. We have two infinite sets of auxiliary 0-ary function symbols
in the language: symbols for variables to be bound by quantifiers and symbols for
free variables denoting arbitrary constants. Open terms are recursively built with
variables, free variables and other function symbols of the language. A formula
is an open formula that does not contain any variable not bound by a quantifier. A
term is an open term not containing any variable. Free variables are allowed to occur
in formulae and terms. A sequent ¥ F « is a pair consisting of a (finite, perhaps
empty) list ¥ of formulae, its antecedent containing its assumptions, and a formula
v, its succedent. All symbols we are considering are from a set L, a language for the
predicate logic.

§2

The calculus NJ for negationless logic

The following calculus corresponds to Johanssons NM in [5] if we allow a 0-ary
predicate symbol O denoting contradiction. Although Gentzen’s intuitionistic calculus

NJ for natural deduction has three schemata more for the negation, we continue using
the name NJ.
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Conditions:

o The succedent « of the undersequent ¥ F « of GS should be a member of the
antecedent .

e The expressions ¥ U {a}, ¥ U {8} and ¥ U {¢[¢]} in the OB-, FE- and EB-
schemata represent the new antecedents obtained by appending the formulae «,

3, and respectively ¢[q] to ¥, these formulae are the assumptions discharged
by the OB-, FE- or EB-rule.

e ©[v]in AE, AB, EE and EB represents an open formula, ¢[s] represent a formula
obtained by substituting the variable v in ¢[v] by the term s, where s is ¢ or t.

e The ¢ in AE and EB represents a free variable called proper variable of the
rule, this free variable ¢ should appear neither in p[v] nor in a formula of the
undersequent of the rule.

e The expression ¢ in AB and EE represents a term.

e The proper variable ¢ of an AE- or EB-rule, or the term ¢ of an AB- or EE-rule
is the only auxiliary term of the rule, the other rules have no auxiliary term.

E (Einfiithrung) stays for the introduction rules, and B (Beseitigung) for the elim-
ination rules. F (folgt) stays for D, U (und) for A, O (oder) for V, A (all) for ¥V, E
(existiert) for 3. In Prawitz’ natural deduction [15], the English names D I, D F, &1,
&E, VI, VE, VI, VE, 31, AE are used instead of Gentzen’s German names FE, FB,
UE, UB, OE, OB, AE, AB, EE, EB.

The antecedent of an oversequent of a rule is either identical to the antecedent of
the undersequent or contains a formula more, the formula discharged by a OB-, FE- or
EB-rule. Gentzen [4] and Prawitz [15] consider natural deduction as derivations with
NJ, but writing down only the succedents, keeping track of the original assumptions
(in GS-rules) and of their discharging in the deduction process. In later work, Gentzen
considered NJ as a sequent calculus like his LJ.

§3

Unambiguous proper variables

An NJ-composition = has unambiguous proper variables if proper variables of
different rules in it are formally different and each proper variable appears at most in
sequents above the undersequent of its rule (of course excluding this undersequent).
Renaming the proper variables of such a NJ-composition with new (not appearing in
=) symbols for free variables, formally different proper variables with formally different
symbols, leads again to a NJ-composition with unambiguous proper variables.

If, for example, ¢ appears as proper variable of two rules and in the endsequent,
then a single renaming would replace ¢ by a ¢’ that would also appear in these three
places. In spite of it, following 3.10, page 198 in [4], one can find for every NJ-
composition = a similar NJ-composition =" with unambiguous proper variables and
with the same endsequent, so that each firstsequent of =’ is obtained by renaming the



symbols for free variables in a corresponding firstsequent of = (all occurrences of a ¢

" is found recursively on the

in the sequent with the same ¢'). The NJ-composition =
number of nodes in =; for the oversequents of the rule r in = whose undersequent is the
endsequent of = one has shorter NJ-compositions (subtrees of =), and hence one can
find NJ-compositions of them with unambiguous proper variables; since these proper
variables can be renamed, one can demand that proper variables appearing in different
compositions also be different and do not appear in the undersequent of r (endsequent
of =), these NJ-compositions together with r form the desired NJ-composition ='. The
=" obtained in this way is, independent of the symbols for free variables selected in the
process, unique up to renaming of proper variables.

Since we consider rules with different auxiliary terms as different, even if they are
formally equal, we also consider the occurrence of a proper variable in an auxiliary term
as an occurrence in the rule, even if the auxiliary term is not part of the oversequent
or undersequent of the rule. For example, this may happen with an EE- or AB-rule
whose oversequent coincide with its undersequent. Because of this, the renamings
on the above recursive procedure must be also done in the auxiliary terms of such
pathological rules.

§4

NJ-Validity structural rules

We say that a rule is NJ-valid, if from NJ-derivations of its oversequents one can
build an NJ-derivation of its undersequent. A schema is NJ-valid, if all its rules are
NJ-valid.

We consider now schemata of the form

xhE
S

where (1) ¥/ is obtained by inserting some formulae in ¥, (2) ¥’ is obtained by exchang-
ing the order of the formulae in ¥ and (3) ¥’ is obtained by deleting a formula of ¥
that is formally equal to another. In the first case the schema is called, according to [4],
Verdiunnung, in the second Vertauschung and in the third Zusammenziehung.
These are the three schemata for structure rules (in the antecedent)

Every structure rule is NJ-valid. A derivation of its oversequent X F ¢ is easily
transformed into a derivation of its undersequent ¥’ - ¢ by making some changes in
each sequent, from the endsequent to the leaves, so that each rule in the derivation is
transformed into a similar rule of the same schema. Only in the case of Verdiunnung,
it is necessary to first transform the NJ-derivation of ¥ - ¢ into one with unambiguous
proper variables and then to rename the proper variables, so that no one occurs in a
formula added to ¥ for obtaining 3.



1.2 Definite and Goal Formulae, Decomposition of Definite
Formulae

85

D- and G-Formulae, P-sequents

Using the concepts introduced in [15], pages 15 and 43, we define (open) D-formulae
as the (open) formulae not containing a (open) positive subformula whose principal
sign is 3 or V, and (open) G-formulae as the (open) formulae not containing a (open)
negative subformulae whose principal sign is 3 or V. An (open) A-formula is an
atomic one. An equivalent definition for defining open D- and G-formula can be given
as in [6] by simultaneous recursion:

D := ANvD|Dy A Do|G D D,
G = A|E|UG|\V/UG|G1 vV G2|G1 A G2|D D) G

An open formula is simultaneously an open D-formula and an open G-formula if and
only if it contains neither 4 nor V. A P-sequent is a sequent whose succedent is
a G-formula and whose assumptions are D-formulae. In these definitions introduced
in [6], D stays for “definite”, G for “goal” and P for “program”.

56

D-, G- and T-sequences

A partial D-sequence for a D-formula ¢ begins with ¢ and is recursively built
using the following rules for finding a successor for a formula:

e An atomic formula has no successor.

e A successor of Yuip[v]is a formula of the form [t], where ¢ is a selected auxiliary
term.

o A successor of Y1 Aty is Py or 1he; we say that the first or respectively that the
second subformula was selected.

e The successor of ¢; D 1, is 1y, the formula )1 is the eliminated formula.

Each step leads from a D-formula to a new D-formula, we will never reach a formula
having V or 3 as principal sign, we can hence continue until reaching an atomic formula.
A partial D-sequence ending with an atomic formula is a D-sequence. Each eliminated
formula is a G-formula, the sequence of them is the G-sequence of the (partial) D-
sequence. The sequence of selected auxiliary terms is its T-sequence.

Two D-sequences are equal if and only if they begin with the same formula and
were constructed following the same steps. Otherwise they are different, even if they
are formally equal, this may happen when there is a formula in the D-sequence of the
form Yovip[v] where 1[v] is not explicitly dependent on v or a formula of the form ¢ A .



§7

Unknowns for delaying the selection of the T-sequence

Two D-sequences are similar if they begin with the same formula and, with the only
possible exception of the selected auxiliary terms, were constructed following the same
steps. There are finitely many similarity classes of D-sequences for a .

If we admit in our signature infinitely many new auxiliary 0-ary functional symbols
to be called unknowns, we can construct D-sequences for ¢ by only selecting new
unknowns as auxiliary terms. Such D-sequences are most general. Every D-sequence
is obtained by substituting the unknowns used as auxiliary terms in a similar most
general D-sequence, and its G-sequence is obtained with the same substitution. Every
element of a similarity class can be obtained by such substitutions in a most general
representant.

1.3 The Calculus mj for P-sequents
68

The m-schema

Let = be a tree composed with a GS-rule and some FB-, AB- and UB-rules, so that
its firstsequents are the left oversequents of its FB-rules and the rest of its sequents
builds a thread beginning with the undersequent ¥ F ¢ of the GS-rule and ending
with a sequent having an atomic formula as succedent, the endsequent of the tree. Let
A be the list of succedents of the thread. Then, A is a D-sequence for £, the list of
succedents of the firstsequents of the tree is the G-sequence of A, all the sequents of
the tree have ¥ as antecedent. In this way we have a bijective correspondence between
such trees and the pairs (X, A) consisting of a list ¥ of formulae and a D-sequence A
for a D-formula ¢ in ¥. We can summarize the whole tree with a rule m(¥, A) all of
whose sequents have ¥ as antecedent, whose undersequent has the last formula of A as
succedent, the list of succedents of its oversequents is the G-sequence of A. The terms
in the T-sequence of A are the auxiliary terms of the rule m(X, A). For different ¥
or different A we consider the corresponding m(3, A) to be different m-rules, even in
the case of formal equality.

§9

The calculus mj

If ¥ consist of D-formulae, then an m(X, A) rule consists of P-sequents. If the
undersequent of an m-, FE-; UE-, OE-, AE- or EE-rule is a P-Sequent, then also are
its oversequents. The rules of the calculus mj are the m-, FE-, UE-, OE-, AE- and
EE-rules consisting of P-sequents. Only m-, AE- and EE-rules of mj have auxiliary
terms. It is a calculus for building deductions of P-sequents, to be applied backwards
to reduce the derivability of a P-sequent to the derivability of other P-sequents, its
correctness with respect to NJ is provided in the paragraph above.

The schema for a reduction is determined by the principal sign of the succedent of
the P-sequent: the m-schema is for atomic succedents, FE, UE, OE, AE and EE for



succedents with principal sign D, A, V, V or respectively 4. If the principal sign is
D or A, there is only one possible reduction with an FE- or UE-rule. If it is V, then
there are two possible reductions with OE-rules. If it is V, then there are infinitely
many reductions with AE-rules, but they are equivalent up to renaming the proper
variable. If it is 4, then there is one for each selected auxiliary term, but the selection
can be postponed using an unknown. If it is atomic, then there is one for each selected
D-sequence, but postponing the selection of the auxiliary terms in the T-sequence
by taking unknowns, there are first finitely many possibilities. This is the analytic
property of mj.

§10

The subformula property of mj, tracing symbols, proper variables of a sequent

The formulae o and § are immediate subformula of the larger formulae o A 3,
aV 3 and a D 3. The formula ¢(t), where ¢ is a term, is an immediate subformula
of the larger formulae Yvp(v) and Jup(v). The formula ¢ is a subformula of ¢,
if there is a sequence of formulae beginning with ¢ and ending with ¢, such that the
successor is an immediate subformula of the predecessor. — Every symbol appearing in
an oversequent of an mj-rule appears either in its undersequent or in an auxiliary term
of it. Every formula of an oversequent of an mj-rule is a subformula of its undersequent.
This is the subformula property of mj, it is shared with LJ, but not with NJ.

We have the concept of the proper variable of an mj-rule. The proper variables of
an mj-composition tree are the proper variables of its mj-rules. For defining the concept
of proper variables of a sequent in such a tree we need the concept of a thread. A thread
in an mj-composition is a sequence Ag, Ay, ... A, of sequents in it, such that every A,
is an oversequent of the rule of the mj-composition having A; as undersequent; these
rules are also considered part of the thread. There is exactly one thread beginning
with the endsequent of an mj-composition and ending with a given sequent S in it, the
subformula property implies that every symbol of the given sequent S can be traced
until an auxiliary term of a rule in this thread or until the endsequent; the list ) of
proper variables of AE-rules in this thread, in the order they appear in the thread, is
called the list of proper variables of 5; the symbols for free variables in this thread
that can be traced until the endsequent or until an auxiliary term of an EE- or m-rule
are called the proper arbitrary constants of S.

The definition and results in §3 holds also for mj. If an mj-composition has unam-
biguous proper variables, then the list of proper variables of a sequent in it consists of
formally different symbols.

1.4 The Calculus mj and Prawitz’ Normal Form
§11

Long normal form and mj-derivations

The segments of a normal deduction in the sense of [15] containing neither OB- (V
E) nor EB-rules (3 E) have only one formula. A derivation not containing these rules



and whose minimum segments in its paths are atomic is said to be in long normal
form.

Our mj can be seen as a calculus for representing deductions in long normal form of
P-sequents. A deduction in mj can be transformed into a deduction in long normal form
by substituting the m-rules with the corresponding combinations of GS (assumption),
FB (D E), UB (A E) and AB (V E). The E-parts of its paths correspond to the
threads by which the m(X, A)-rules have been substituted, the minimum segments in
its paths correspond to the atomic succedents of the undersequents of the m-rules.
The converse transformation is also possible, a deduction in long normal form of a
P-sequent can be recursively transformed into an mj-derivation: the E-part of each
path 7 containing the endsequent is a D-sequence to be substituted by an m-rule, the
smaller deductions above the minor premises of FB-rules (O E) whose major premises
are on 7 are substituted by corresponding deductions in mj (obtained by the recursive
process).

§12

Deductions of P-sequents in Prawitz’ normal form

A normal deduction of a G-formula from a set of D-formulae does not contain 3K
or VFE rules. Every assumption in such a deduction, discharged or not, is a D-formula.
Consequences of E-rules in the deduction are D-formulae, consequences of I-rules are
G-formulae. Minimum formulae of its paths are D- and G-formulae at the same time
(i. e. they contain neither 3 nor V). We prove this by induction on the size of such a
natural deduction II of a G-formula from a set I' of D-formulae. If the end-formula E of
IT is the conclusion of an E-rule, then a path 7 containing £ has no minor premise of an
dF or VFE rule; otherwise, as in the proof of corollary 6 of [15], the major premise M of
this rule would be a strictly positive subformula of a formula in I' (namely, of the first
formula of a path containing it, this first formula cannot be discharged in II because M
is in the E-part of the path and below M there is no D [ rule), but this cannot be the
case because the principal sign of M is dor V. Hence, 7 is the only path in II containing
the end-formula F, its first formula is in I' (as above, it cannot be discharged), every
formula in 7 is a D-formula because it is a strictly positive subformula of the first
formula, 7 contains neither minor nor major premises (the latter are not D-formulae)
of 3K or VE. We can now decompose Il in the path 7 and the subtrees of II above
minor premises of D F rules whose major premises are in m; these minor premises
are G-formulae (because the major premises are D-formulae) and the assumptions of
these subtrees are subsets of I'; by inductive hypothesis, the proposition holds for these
subtrees, and hence also for II. All that remains is to prove the proposition for the case
that the end-formula F of II is the conclusion of an I-rule. By deleting the end formula,
we get a smaller deduction, or two in the case where this formula is the conclusion of
NI, whose end-sequent is a G-formula and whose assumptions are D-formulae (the
assumptions are the same of II, except in the case that the end-sequent is D D G
where the D-formula D is added). Since for the smaller deductions the proposition
holds by inductive hypothesis, it also holds for II.



§13

Completeness of mj

For proving the completeness of mj with respect to NJ it is enough to find a deduction
in long normal form for each NJ-derivable P-sequent. Since for the NJ-derivable P-
sequent there is always a normal deduction, it is enough to prove that this deduction
can be transformed into a deduction in long normal form, and for this we use the results
of the paragraph above.

A normal deduction of a G-formula from a set of D-formulae can be transformed into
a normal deduction whose paths have atomic minimum formulae. For proving this, we
enlarge the paths of the original deduction as done in Lemma 6.5.3, page 154 of [18].
The minimum formula M of a path does not contain V or 3. If the minimum formula is
of the form Fy D F;, we can add Fj to the assumptions, enlarge the E-part by adding
Fy at its end and enlarge the I-part by deducing Fy D F; from F, discharging F}. If the
minimum formula is of the form Vv F, we can enlarge the E-part by deducing Fla/v]
with VE. where a is a new symbol for free variables, and enlarge the I-part by deducing
Yo F with VI. If the minimum formula is of the form F; A F;, we can duplicate the
subtree above this formula, in one of the copies enlarge the E-part by deducing F} with
AE, in the other copy enlarge it by deducing F,, and then we can paste both trees
by deducing Fy A Iy with Al. One can begin enlarging each path 7 containing the
end-formula, and continue with the paths of the subtrees above the minor premises of
D [ rules whose major premises are in m, the termination of this process is proved by
double induction, on the depth of the deduction and on the total amount of connectives
in the minimum formulae of the paths .

§14

mj-Derivations and LJ-derivations, Uniform Proofs

The introduction rules FE, UE, OE, AE and EE of mj are identical to the intro-
duction in succedent rules FES, UES, OES, AES and EES of Gentzen’s LJ. The rule
m(X, A) of mj, where A begins with £ € ¥ and ends with A, can be seen as a composi-
tion of a GS-rule, some rules for introduction in the antecedent FEA, UEA and AEA,
and a “Zusammenziehung” rule forming a thread, so that the active formulae of the
introduction rules in the antecedent forms a sequence corresponding to the reverse of
A, so that the “Zusammenziehung” rule contracts the last formula ¢ of this sequence
with a copy of it present from the beginning. Of course, some details should be fixed
by selecting an appropriate variant of L.J. This enables us to build a correspondence
between mj-derivations and a class of LJ-derivations similar to the correspondence be-
tween mj-derivations and deductions in long normal form introduced in §11. This class
of LJ-derivations corresponds to the uniform proofs in [6]. It should be no surprise,
since in the context of uniform proofs calculi similar to mj were stated, in [7] one for
a fragment of intuitionistic linear logic. Behind this correspondence is the well known
correspondence between normal NJ and normal LJ proofs, see for example [15] or [13]
for more details.



1.5 The {D.,V}-Segment
§15

Head and body

For a list V' of variables and an open formula ¢ we denote with V¢ the open formula
obtained by putting in front of £ a block of universal quantifiers with the variables of
V, in the same order they appear in V. For (possibly empty) lists V,, ..., Vi, V4 of
variables and a list &,, ..., &1, & of open formulae, we define the list 1, ..., 1, of open
formulae recursively, so that g is Vo€ and ngi1 is Vigr (Egr1 D ). With

Vilnde - &VI& D Vobo

we denote the last defined open formula n,. Of course, for n = 0 this open formula is
Volo-

An (open) {D,V}-formula is one not containing other logical signs than D and V, it is
an (open) D- and G-formula at the same time. It is not difficult to see that every open
{D, V}-formula ¢ can be expressed in a unique way as V,£,& - - &Vi& D Vo&o with an
atomic &y. In this case, the list &,, ..., & is denoted by body(¢{) and called body of ¢,
the open atomic formula &, is denoted by head(¢) and called head of £. The universal
quantifiers binding the variables in V,,, ..., V1, V; are the principal quantifiers of ¢;
they can be moved, perhaps after a renaming, to the left for obtaining an equivalent
open formula whose principal quantifiers build a block at front of it.

§16

Instantiation

A principal quantifier of a {D,V}-formula can be deleted and the variables bound
by it substituted by a term for obtaining a new formula implied by the original. For
a {D,V}-formula ¢ and a list T' of terms, one defines the instance T * ¢ of ¢ as the
{D, V}-formula obtained by deleting principal quantifiers in £, from left to right, and
substituting the variables bound by them by the terms of T', from left to right, until
all principal quantifiers are deleted or until there are no more terms in 1" for the rest
of the principal quantifiers. The instance T * £ can also be recursively defined by the
following equations:

[ +¢ = &

T A = A,
(R-S)6 = Sx(Rx6),
T'+(n>¢) = nD(Tx*(),
[t (Vo) = ¢,

where [| denotes the empty list, A an atomic formula, R -5 the concatenation of R and
S, [t] the list containing only ¢, and ("~ the formula obtained by substituting v by ¢.

The variables substituted by a term ¢ in this instantiation process correspond to the
elimination of a universal quantifier with the auxiliary term ¢ in the process of building
a D-sequence. The process of building a D-sequence A for a {D,V}-formula ¢ depends
only on the selected T-sequence T' that has as much elements as principal quantifiers in
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£, the last formula in A is head(T *¢), the corresponding G-sequence body (7T *¢). And
conversely, if T" has so much terms as principal quantifiers in &, then one can construct
a D-sequence A with T as T-sequence, so that head (7T * &) is the last element in A and
body (T * &) the corresponding G-sequence.

§17

m-, d- and g-rules

An {D, V}-sequent is one consisting of only {D, V}-rules. If the undersequent of an
mj-rule is a {D, V}-sequent, then also its oversequents. Hence, restricting mj-schemata
to {D, V}-sequents does not alter mj-derivability of {D, V}-sequents. FE-; AE- and m-
rules restricted to {D, V}-sequents are denoted by d(¥ F ¢), (X F ¢, q) and m(X, £, T),
where ¥ - ¢ is the undersequent of the FE- and AF-rules, ¢ the proper variable of the
AE-rule, ¢ and T' the first formula end the T-sequence of A in the m(X, A)-rule.

§18

Negation Axioms, classical predicate logic, an intuitionistic segment

Let O be a 0-ary predicated symbol representing contradiction. As usual, we can
paraphrase the negation —¢ of a formula ¢ with ¢ D O, and any usual connective of
classical logic using =, D and V. For each predicate symbol R let wji be a formula of
the form Yo(O D R(v)) and wkg a formula of the form Vo(((R(v) D 0O) D O) D R(v)).
Let wj be a list (the set) built with all the wj, and wk with wkg, these are the
sets of intuitionistic and classical negation axioms. Let X be the list of axioms of
a theory, of additional postulates in the sense of the calculus in [8], page 82 (or a
similar one). The formulae ¢ derivable in this calculus coincide with the ones such
that wk U X F ¢ 1s mj-derivable, or equivalently, NJ-derivable. The proof consists, as
expected, in checking that the rules of one calculus is valid in the other. A special role
plays the NJ-derivability of wk U X F ¢, where ¢ is a formula ((¢ D 0) D 0O) D ¢
of the schema (postulate) 8° of [8]. We see this by reducing the sequent with mj:
after d- and g-reductions it is sufficient to add (¢ D O) D O and every formula in
body(Q * &) to the antecedent and consider the succedent head(Q * &); the latter
formula is atomic with a predicate symbol R and a list of arguments T, after an m-
reduction considering T * wkpg = ((head(Q *¢) D 0O) D O) D head(Q * &) it is
sufficient to consider the succedent (head(Q * ) D 0O) D O; after a d-reduction it is
sufficient to add head(Q *¢&) D O to the antecedent and consider the succedent O; after
an m-reduction considering the first formula added to the antecedent it is sufficient
to consider the succedent ¢ D O; after a d-reduction it is sufficient to add ¢ to the
antecedent and consider the succedent O; after an m-reduction considering the formula
head(Q *£) D O in the antecedent it is sufficient to consider the succedent head(Q *¢);
after an m-reduction considering the formula ¢ in the antecedent it is sufficient to
consider succedents from body (@ *£); all these formulae are in the set of assumptions,
an m-reduction for each of them confirms their derivability.

Although similarly the mj-derivability of wj = O D ¢ holds, the above argument
does not hold for intuitionistic logic: not all usual logical symbols can be paraphrased
with =, D and V in intuitionistic logic. Using Prawitz’ Normal form (or Gentzen’s
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Hauptsatz), we can prove that a sequent ¥ F ¢ containing no other logical symbols
than =, D and V is intuitionistically derivable if and only if, after paraphrasing — with
O and D, wj U X F ¢ is mj-derivable.

§19

Restart as an alternative to contradiction axioms

Among all possible mj-reductions of a sequent ¥ F A with an atomic A and X
containing the axioms wk, there is always the one with the m-schema and the appro-
priate wkp leading to ¥ F (A D O) D 0O; this latter sequent can only be reduced
to XU {A D O} F O with the d-schema; this sequent should be reduced with the
m-schema, for this a £ € ¥ U {A D O} and an appropriate T', so that head (7T * &)
and O coincide, are necessary; the formula A D O is one of such formulae £, the set ¥
may contain other such formulae, especially the ones of the form B D O added to X in
reductions with the m-schema using a wkpg; now it is clear what the possible reductions
are, this leads to the following remark: adding the contradiction axioms wk is equiva-
lent to the introduction of the restart-rule, this rule allows to reduce sequents ¥ - A
whose succedent A is atomic to sequents ¥ = B, where B is either O or the atomic
succedent of an “ancestor” sequent Il F B of the proof process, of course, reductions
of ¥ F A with the m-schema remain possible. — Adding the axioms wj is equivalent
to the introduction of the similar rule that allows to replace an atomic succedent by O
in the sequent to be reduced.

The restart rule is implicit in traditional tableaux methods, it may be seen as a
consequence of the fact that succedents of sequents in LK-rules may contain more than
one formula. The use of a restart rule in intuitionistic tableaux methods is correct
until some extent: all LIK-schemata, with the exception of FES and NES, are valid in
intuitionistic logic (FES and NES also if succedents contain no more than one formula).
The restart-rule appears also in other proof procedures used today in logic programming
and automatic theorem proving.

1.6 Generalized Horn Sequents

§20

Generalized horn clauses and sequents

A generalized horn clause is, as defined in [17], a formula having all its princi-
pal quantifiers as a block at the beginning, such that head(§) is atomic and that all
formulae in body(¢) are universal quantified atomic open formulae. A generalized
horn sequent is a sequent ¥ = ¢ consisting only of generalized horn clauses, whose
antecedent X contains no free variable and whose succedent  is a universal quantified
atomic open formula. A generalized horn sequent X - ¢ can only be reduced with the
m- and g-schemata to generalized horn sequents having the same antecedent Y. From
this and the validity of the restart rule follows: if ¥ ¢ of this form is derivable in
classical logic, then either itself or ¥ = O is derivable in minimal logic. Furthermore,
if no formula in ¥ has O as head, then, as in the case of common SLD-Resolution and
as noted in [17], minimal, intuitionistic and classical derivability of ¥ - ¢ coincide.
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§21

Contradiction and contradictions

Let X be a list of generalized horn formulae containing no free variable. Let I' a list
of universal quantified atomic open formulae, to be called as O contradictions, and
I'g the list of generalized horn sequents obtained by substituting each v in I' by v D O.
If ¥ F ~ for avin 'U{O} is mj-derivable, then obviously also X UI'g - O. Conversely,
if ¥ U 'g F O is mj-derivable, then also ¥  ~ for a v in ['U {O}: the mj-derivation of
Y U'g F O contains only sequents whose antecedent is ¥ U I'g, either contains a rule
m(X U 'a,va,T) whose vg is in I'g or not, in the latter case we can delete I'g from
the antecedents of the sequents in the mj-derivation for obtaining an mj-derivation of
Y F O, in the former case we can find such an m-rule m(X U I'g,va,T), so that no
other is in the subtree over its oversequent ¥ U I'g F ~, this subtree can be converted
into an mj-derivation of X = ~ by deleting 'y in the antecedents of its sequents.

§22

Open m-rules and schemata

For a generalized horn clause ¢ of the form
Vo(V0,A,(0,0,)& - - - &V, 41(0,01) D Ap(v))

not containing free variables, where the A; are open atomic formulae, for a list of
open terms {(w) not containing free variables and whose variables are in @, and for
renamings o, ..., v; of the variables in the lists v,, ..., v; not containing variables
from w, we define the rule

A, (t(w),v)), ... Ar(t(w),v))

Y Un

Ao(t(w))

for deriving an atomic open formulae from atomic open formulae. We call the rules

won in this way from ¢ the open m-rules for (corresponding to) £, the schema for
building the rules the open m-schema.

If € isin a list X, then substituting the overformulae A;(¢(w),v}) of the introduced
open m-rule by the sequent ¥ F VawVo!A;({(w),v!) and the underformula Ag(¢(w))
by the sequent ¥ F VwAq(t(w)) yields an mj-valid rule, a composition of an m-rule
corresponding to £ with g-rules under its undersequent and with g-rules followed by AB-
rules (mj-valid) over its oversequents. This tells us, how to understand open m-rules:
variables occurring in an open atomic formula of the rule should be seen as universally
quantified in front of the formula, even if they are formally equal to variables in other
open formulae of the rule; the formula ¢ should be seen as a member of a list of axioms
Y, as in calculi like Hilbert’s one.

A generalized horn sequent ¥ - VwA(w) not containing free variables is mj-derivable
if and only if A(w) is derivable with open m-rules corresponding to formulae in ¥. The
above remark on the validity of the open m-rules confirms the contrapositive. In an
mj-deduction of a generalized horn sequent we can group each m-rule with the g-rules
that are immediately below its undersequent, we can transform the mj-derivation into
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a derivation with open m-rules recursively on the number of these groups, or of m-rules.
Let

S Vo, An (HG), 0n), . .. B F Yo, AL (H(q), 1)
¥ Ao(t(q))

be the last m-rule in such a deduction, corresponding to ¢ € ¥, obtained by substituting
the variables bound by the principal quantifiers by ¢(g). Below the undersequent ¥ F
Ao(t(q)) are applications of g-rules generalizing at least the free variables in ¢ that
explicitly appear in ¥ F Ag({(g)), we can add more g-rules in order that all free
variables in ¢ be substituted by variables w, this can be done because at the end we
will delete the quantifiers. In this m-rule we can delete the the antecedents X -, delete
the universal quantifiers Vv;, rename the v; with v/ not containing variables in w, and
substitute the ¢ by @ for obtaining an open m-rule with underformula Aq(¢(w)) and
overformulae A;(¢(w), v}), here it is important that the formula & does not contain free
variables, and hence no one in g. We search now for derivations of these overformulae
with open m-rules. We have smaller mj-derivations of each ¥ + Vv;4;(¢(q),v;), and
after deleting the last g-rules, mj-derivations of ¥ F A;(4(q), g ) for a new list of free
variables ¢; not containing elements of ¢, and after adding new g-rules, mj-derivations of

Y F VYo A;(t(w), v]). Since we only deleted and added g-rules, we have by inductive
hypothesis the desired derivations.

§23

Herbrand models for generalized horn clauses

In this paragraph, as an exception, we admit model-theoretical argumentation. Let
By, be the set of atomic formulae (in the language L) containing no free variable (and
as formulae, no variable). A herbrand model is a subset of By. After declaring some
elements of By, to be contradictions, we can say that a herbrand model is consistent
if it contains no contradiction. The set Ay of terms containing no free variable (and
no variable) is the universum of H. All herbrand models have the same universum,
unless we expand the considered language L. For a list of terms s from Ay we also
write 5 € Aj.

For a generalized horn clause ¢ of the form

Vo(V0,A,(0,0,)& - - - &V, 41(0,01) D Ap(v))

not containing free variables and a list ¢ of terms in Ay for v we define the a-rule

a(é,1) by

This rule a(¢, 1) has the underformula Ag(¢). The atomic formulae of the form Ax(¢, 5),
where 5 is a list of elements in Ay and Ay one of the open atomic formulae in body(¢),

are the overformulae of (¢, t). The rule may be infinitary, it may have infinite many
oversequents; but this is not the case when the v, are empty lists, namely, when ¢ is a
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horn formula. Open m-rules generate in a trivial way a-rules, all a-rules for a £ can be
obtained from the open m-rule whose open underformula is Ag(w).

For a herbrand model H and a set X of generalized horn clauses not containing
free variables, we say that H models X or that H is a model of Y, if for each rule
a(€, 1), where £ is in ¥ and the terms of ¢ in Ay, the herbrand model H contains the
underformula of a(¢,¢) if it contains the overformulae. In particular, Bz, models every
such . The intersection of arbitrary many models of a X is also a model of Y. The
smallest herbrand model of ¥ is the intersection Hy, of all models of X, it is a model
of ¥, consistent if ¥ has such one.

For a generalized horn sequent ¥ F ¢ not containing free variables, we say that
Y | ¢ holds, if every model of ¥ is also a model of {¢}. If ¥ I ¢ is mj-derivable, then
Y = ¢ holds. For proving this, let us call an instance of an atomic open formula «,
in which all variables were substituted by elements of Ay, an Aj-instance of a. It is
easy to see that, if all Ap-instances of each open overformula of an open m-rule for a
formula in ¥ are in a herbrand model H of ¥, then also all Aj-instances of the open
underformula. Hence, a model H of ¥ contains all Aj-instances of an open formula
a derived with the open m-rules for formulae in ¥. If ¥ F ¢ is mj-derivable, ¢ is the
closure of an open atomic formula « derivable with the open m-rules for formulae in X,
and the sentence above says that a model H of ¥ is also a model of {¢}: by definition,
H models {} if and only if it contains all Az-instances of a.

From the paragraph above, we can conclude that Hy contains all elements in By,
that are mj-derivable from Y. Contrary to the case for horn clauses, Hy may contain
elements that are not derivable from Y. Let L be a language, so that A, = {a,b}
and Br, = {p(a),p(b),0}. Let ¥ = {p(a), p(b), (Vop(v)) D O}. Then there are exactly
three a-rules, one for each element in ¥; and since Ay, is finite, they are even finitary.
Now, ¥ = O holds, Hy = By, but ¥ F O is nor mj- nor NK-derivable. After adding
a new O-ary ¢ to L and hence to Ay, a witness of the (non) validity of Vup(v), the
non-derivable element O disappears from Hy.

2 Equations Systems Specifying Functions

In this section we use equations to specify unknown recursive functions, as linear sys-
tems of equations specify unknown numbers. Systems of equations do not necessarily
completely specify its unknowns, neither in the case treated here nor in the case of lin-
ear equations: for example, some (dependent) unknowns could be put as functions of
other (independent) ones to be later further specified. Linear equations are solved with
GauBtriangulization algorithm, the term-unification algorithm [11] can also be seen as a
triangulization algorithm, we solve our systems of equations with a modification of the
term-unification algorithm, the cp-completion introduced in subsection 2.4. The cp-
completion algorithm can also be seen as a modification of Knuth-Bendix’ algorithm,
or as an algorithm for checking consistence of equations systems and finding term re-
duction systems as models for them: subsection 2.3 brings unification, completion and
consistence checking together. Subsection 2.2 puts Term Reduction Systems [9] in the
context of predicate logic. The relevance of dealing with these equations systems and of
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their solution lies in their immediate application to integrate logic and functional pro-
gramming: we can substitute term unification in logic programming by cp-completion,
as [6] does with higher order unification, but remaining in the framework of first or-
der logic. Subsection 2.5 puts Term Unification [11] in the context of our equations
systems.

2.1 Systems of Equations
§24

Terms and open terms

We consider in this section expressions denoting functionals. They are recursively
built with 0-ary symbols, also denoting functionals, and a 2-ary symbol denoting the
application operator. We distinguish three kinds of 0-ary symbols: (1) ground sym-
bols (normally small letters like a, b, ¢); (2) unknowns denoting functionals to be
determined by formulae and equations (normally capital letters like X, Y, Z, U); (3)
variables supposed to range over expressions denoting functionals (normally small
letters like u, v, w).

Our 0-ary symbols are open terms; if to and ¢; are open terms, then (fot;) is the
open term denoting the application of ¢y on ¢;. This is how every open term is built,
our 2-ary application symbol is given by the parenthesis. Open terms not containing
variables are also called terms.

As in [2], we may write (¢o) for an open term to, (fot1t2) for ((Zot1)t2), and recursively,
(to---tg—1ty) for ((to---tr—1)tx). Eventually we may write {o- - - t5_1ts, without blanks
and outer parenthesis, or to(ty,---,1;) for (to---tg-1tx). Every open term t can be
expressed in a unique way in the form (ft;---¢,), where f consists of only a 0O-ary
symbol called operator of ¢; the open terms ¢, ..., ¢, are then called arguments of
t, the number n is the number of arguments of ¢.

§25

Equations, instances of equations

Equations are open atomic formulae built with the 2-ary infix predicate symbol =,
they have the form s = ¢, where s and ¢ are open terms. Variables appearing in an
equation are to be seen as universal quantified in front of the equation. We call s the
left part of the equation s = ¢, ¢ its right part.

A closure of an equation s = t is a formula of the form Vws = ¢, where Vw is a block
of universal quantifiers binding all variables in s = . An instance of an equation is
the equation obtained by substituting all occurrences of some variables by open terms,
the same open term for each occurrence of the same variable in the equation.

A ground equation is one not containing variables; it is one of the form s = ¢, where
s and t are terms.
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§26

Equality axioms and systems of equations

We define the formulae ref, sym, trans, cons by

ref : Yov = v,

sym: VYuVou=v Dv=u,

trans : VuVoVwu=v D (v =w D u = w),

cons 1 Yu VuVoVosuy = uz O (v1 = vy D (ugv1) = (uz02));

the decomposition schema dec, ;(f) by
decn,i(f) . \V/UI ttt VunVUl cc \V/Un(ful e un) = (fvl .. Un) D u’i — Uh

where f is a term, n a positive natural number and ¢ between 1 and n (1 < ¢ < n);
and the similar separation schema

sep,, ;((wry---rp) = (wsy -+ 5,))

Yoy - - .vvm((vw(wrl SN rn) = (w51 e Sn)) D (an = Si)),

where (wry---r,) = (wsy---s,) represents an equation whose variables are in vy,
.oy Uy, w, Whose two parts have the same number of arguments and the variable w as
operator; thus, the r; and s; represent open terms eventually containing these variables.

The equality axioms are the formulae ref, sym, trans, cons, dec,;(f) for each
ground f and appropriate pair (n,7), and sep. A system of equations consists of
closures of some equations, called equations of the system, and the equality axioms.
We are interested on the mj-derivability of closures of equations from systems. All
formulae in a system are generalized horn formulae, more accurate: the last Vw in sep-
formulae should be moved to the front, all the rest are horn formulae. Hence, a closure
of an equation is mj-derivable from a system if and only if the equation is derivable
from instances of equations of the system with the following open m-schemata (see §22)
corresponding to the equality axioms:

ref : ===, sym:L==, trans:r:rs’:‘st:t,
.1 =51, 7T2 = 59
cons
(rira) = (s152)
. (frl...rn) — (fsl...sn) . (wrl...rn) — (wsl...sn)
dec : o= , sep: CEEE .
In dec, f is a ground symbol. In sep, w represents a variable, (r; = s;)**" is an

instance of r; = s; obtained by substituting the variable w by an open term t. We
allow variables to occur in the equations of these schemata: this is the reason why we
defined equations as open atomic formulae and not as their closure. The advantage
of considering derivation trees with these schemata is that it is easier to see how to
exchange the order of derivation rules.

Of course, we can take the same variable represented by w as ¢ in sep, this would
lead to a schema similar to dec, and the original sep would be a composition of this
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schema with the instantiation schema that produce the rules having an instance of
its overequation as underequation: since we want all instantiations at the leaves of the
deduction tree, we do not take the instantiation schema and keep our sep. Later, we will
introduce a rule that, as Robinsons resolution [1] and as SLD-Resolution [10], delays
instantiation, that instantiates with a most general unifier only when an instantiation
1S necessary.

We use systems of equations to specify its unknowns, to define the manifold of
solutions for the unknowns, as {:1;2 +yi+ 2 =lrty+z= 0} is used to define a
circle. We say that the system S; constrains the system S5, that S5 is more general
than S; and that 57 F S5 holds if each formula in S5 is derivable from S;. We say that
Sy and Sy are equivalent and that S; = 55 holds if S; - S; and S, F .57 hold.

2.2 Term Reduction Systems
§27

Derivability of r —, s

Compositions of n times the trans-schema are equivalent to the schema

80 = 81, 81 = 82, -+, Sp = Spa1
trans,4+1 : .
50 = Sn+1

We define transg as ref. If we compose the trans-schema with the cons-schema so that
the underequation of trans is an overequation of cons, then we can move down the trans-
schema for obtaining an equivalent composition (having endequation and first equations
formally equal to the ones of the original tree) of twice the cons-schema, the ref-schema
and the trans-schema, so that each overequation of trans is an underequation of cons,
and an overequation of one cons is the underequation of ref. A composition using only
ref-, trans- and cons-rules can be transformed into an equivalent one having the same
number n of trans-rules, but all together near the root, and then the trans-rules can
be substituted by a trans,;-rule whose underequation is the endequation.

A derivation of s — ¢ from a system S, where s and ¢ are open terms, is by
definition a derivation of a closure of s = ¢ from the formulae of S excluding sym-, dec-
and sep-formulae, or equivalently, a derivation of s = ¢t from instances of equations of
the system with the ref, trans and cons open m-schemata. Such a derivation containing
n — 1 trans-rules is a derivation of s —, ¢, and one containing only a ref rule (and
hence with equal s and t) is a derivation of s —¢ . Depending on the existence of
derivations we say that s — ¢ or s —, ¢ is derivable from S, and that S F s — ¢ or
Sk s—, tholds.

It is obvious that, if s’ = ¢’ is an instance of s = ¢ and s — t or s —,, t is derivable
from S, then also s — t' or respectively s’ —, 1’ is derivable from S. We have that
r —go r is derivable from any S. If r —,, s and s —, ¢ are derivable from S, then
r —man t also. If r —,, s is derivable from S, it also happens for any greater n. If
r —man T 1s derivable from S, then there is an s such that r —,, s and s —,, ¢ are
derivable. Furthermore, if r —, ¢ is derivable, then there are sg, sy, ...s, such that
each s; —1 s;11 is derivable, sg is r and s, is ?.
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§28

Bracket notation r[ry,...,rg] and TRS

We can say that r —; s is derivable from S if and only if we can obtain s by
substituting some occurrences of open subterms r; of r by s;, where each r; = s; is an
instance of an equation of S. And that r —, s or r — s is derivable if we can do this
recursively, n times in the first case. When we deal with derivation of these objects,
we say that S acts as a term reduction system [9]. The expression r[rq,...,r;] denotes
an open term t, each open term r; in this expression points to some occurrences of
an open subterm of ¢ formally equal to r;, the subterms pointed by different r; and
r; do not overlap. After substituting the open subterms pointed by each r; by copies
of s; we get the open term r[sy,...,sg]. Hence, we have r[ry,... rg] =1 r[s1,..., sk
is derivable from S if each r; = s; is an instance of an equation of S, every p —; ¢
derivable from S has this form.

2.3 Solvability, Consistence and Confluence

§29

Solvability and consistency

An equation s; = s, is reducible with a system 7' if there is an open term r such
that s; — r and sy — r are derivable from S, it is (m,n)-reducible with 7' if there
is an open term r such that s; —,, r and sy, —, r are derivable from S. The set of
equations that are (1, 1)-reducible with a system 7" contains T and is closed under the
instantiation, the ref, sym and cons schemata: this plays an important role.

An equation is called decomposable if its two parts have equal symbols as operators,
non of these being an unknown, and an equal number of arguments. Undecomposable
equations are divided in directed equations and contradictions. A directed equation is
one having an unknown as operator in one of its two parts: it is directed to the right
if its left part has an unknown as operator, it is directed to the left if its right part has
an unknown as operator, it is a bidirectional equation if both parts have unknowns
as operators, namely, if it is directed to the right and to the left at the same time.
Undecomposable, non directed equations are contradictions, they are divided into
operators clashes and arguments clashes. An operators clash is an equation whose
two parts have formally different symbols as operators, non of these being an unknown.
An arguments clash is an equation whose two parts have formally equal symbols as
operators, non of them being an unknown, but a different number of arguments.

A system is undecomposable if all its equations are undecomposable. For a system
S we define the equivalent, undecomposable system dec(S) recursively: we only need
to recursively replace every decomposable equation of the form fry---r, = fs;---s,
in S by the smaller, perhaps decomposable, equations r; = s;, this also means to delete
the equation when n = 0. The systems S and dec(.S) are equivalent: the equations of
dec(9) are obtained from the ones of S with the dec and sep schemata, the equations
of S are obtained from the ones of dec(.S) with ref and cons.

We are specially interested on systems containing only equations directed to the right
to be seen as term reduction systems for substituting unknowns. If p —,, r is derivable
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from such a system and if the operator f of p is not an unknown, then r has the same
operator and number of arguments as p; furthermore, if this p is of the form (fpy - - - pn ),
then r is of the form (fry---r,) so that each p; —, r; is derivable from the system.
A system is directed to the right if each of its equations is either a contradiction or
directed to the right. An orientation to the right of an undecomposable system is
obtained by replacing some of its equations s =t by ¢t = s in order to obtain a system
directed to the right. Since bidirectional equations and contradictions can be replaced
or not, an orientation to the right is not necessarily unique. The equivalence of the new
system to the original is provided by the open m-schema sym. If s = ¢ is in a system
S and 7' is an orientation to the right of dec(5), then s =t is (1, 1)-reducible with 7"
the set T of the equations that are (1,1)-reducible with T" contains T, is closed by
sym and hence contains dec(.S), is closed by ref and cons and hence contains S.

A system is inconsistent if a contradiction can be derived from it, consistent if
no contradiction can be derived from it. A system 7', seen as a term rewriting system,
is a solution of S, if all equations of T" are directed to the right and each equation
s =t derivable from S is reducible with T'. Note that T'F S holds: we call T' a most
general solution if also S = T holds. One can prove that S is consistent if and only if
there is a solution 7" of it. If S is consistent, then the set T' of all equations directed
to the right derivable from S is a most general solution: if s = ¢ is derivable from
S, then any orientation to the right of dec({s = t}) is, because it does not contain a
contradiction, contained in 7', and the (1, 1)-reducibility of s = ¢ with T' was proved in
the paragraph above. If s — r and ¢ — r are derivable from a solution T' of S, then
either s or ¢ has an unknown as operator or both, s and ¢, have the same operator and
the same number of arguments as r; in both cases s = ¢ cannot be a contradiction, and
this is the case for any equation derivable from 9.

Given a system S, we can enumerate the equations derivable from it, stop enumerat-
ing when a contradiction is found, or continue enumerating and collecting the equations
directed to the right. Our main problem is to decide if a contradiction is derivable or
to describe a most general solution without enumerating ad infinitum in cases where
it is possible. If we insist on enumerating, then at least not all equations that are
derivable, but a subset behaving in the same form: leading to a contradiction when
there is one or building an enumeration of an eventual most general solution, so that
the enumeration be easier, so that the eventual decision on the consistency be more
probable, for example by stopping when there is nothing more to enumerate, so that
the eventual description of the most general solution be simpler. Such an enumeration
may be a point of departure for a more sofisticated solving strategy.

§30

Confluence

A system T is confluent if for every pair ¢ — s; and ¢ — s5 derivable from T there
is an open term r such that also s; — r and s, — r are derivable from 7.

The set S of equations reducible with a given confluent system T" whose equations
are directed to the right contains the equations of the system 7" and is closed under
all open m-schemata; hence, an equation is reducible with such a 7" if and only if it is
derivable from it: The set S obviously contains T" and is closed by instantiation and
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the ref, sym and cons schemata, is closed by trans because of the confluence, is closed
by dec and sym because the equations of T' are directed to the right. Of course, the
use of the word “set” should be in this proof, as everywhere in this article, correctly
interpreted: we are giving a hint how to recursively find the corresponding r such that
s — 1 and t — r are derivable from T for every equation s = ¢ in a derivation tree.

If we allow that T' contain contradictions, namely, if we weaken the hypothesis that
all equations of T are directed to the right and only suppose that T' is oriented to the
right, then the process of of finding the r for each equation of a derivation tree may
fail at the underequation of a rule of the dec or sep schema: in the derivation of s; — r
from T, where s; is one of the parts of the overequation and r the corresponding r,
may occur a contradiction in 71" as firstequation. And this must be the case when there
is a contradiction in the derivation. We conclude: If a contradiction is derivable from a
confluent system oriented to the right, then a contradiction can be found in the system.

For solving a system, we could try to enumerate a confluent system oriented to the
right equivalent to it: If the system is inconsistent, we get in this way sooner or later a
contradiction; if the system is consistent, we are enumerating a most general solution.
The problems of deciding on consistency and of expressing a most general solution
remain.

§31

(m,n,1, j)-confluence

We continue with the parallelogram law for TRS. A system T'is (m, n, ¢, j)-confluent
if for every pair t —,, p and t —,, ¢ derivable from T there is an open term r such that
also p —; r and ¢ —; r are derivable from T'. Obviously (m,n,1,j)-confluence and
(n,m, j,i)-confluence are equivalent. Every T is obviously (0,n,n,0)- and (m,0,0,m)-
confluent for every n and m. An (1,1, 1,1)-confluent system is (m,n,n, m)-confluent
for every m and n, and hence confluent. For proving this, we see first that (1,n,n,1)-
and (m,n,n, m)-confluence implies (m + 1,n,n,m + 1)-confluence: if t —,,11 p and
t —, q are derivable, then there is a p’ such that ¢ —,, p’ and p’ —; p are derivable,
and due to the (m,n,n, m)-confluence an open term r’ such that p’ —, " and ¢ —,, r’
are derivable, and due to the (1,n,n,1)-confluence an r such that p —, r and ' —; r
are derivable; hence, p —,, r and ¢ —,,11 r are derivable. By induction on m, we have
that (1,n,n,1)-confluence implies (m, n,n, m)-confluence for each m. Symmetrically
to this, (m, 1,1, m)-confluence implies (m,n,n, m)-confluence for each n. From these
two last results follows our main result.

A system S'is (1,1, 1, 1)-confluent if and only if for each instance t = p of an equation
in S and each t —; ¢ derivable from S the equation ¢ = p is (1, 1)-reducible with 5.
This condition is trivially fulfilled when ¢ is formally equal to p or to t. This statement
is proved by induction on the size of two given derivations built of ref and cons-rules
and whose endequations are ¢ —; p and t —; ¢: if one of the endequations is an
instance of an equation in S, then we find the desired r by using the hypothesis; if one
of these endequations is the underequation of a ref-rule, then the desired r is the right
part of the other endequation; if both are underequations of cons-rules, then the result
follows trivially by the inductive hypothesis.
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Our first solving strategy is the use of a variant of Knuth-Bendix’ algorithm to
enumerate a (1,1, 1, 1)-confluent system oriented to the right. The above result plays
the essential réle, but for treating universal quantification we need something like a
lifting lemma, we need some remarks on classical term unification.

2.4 Knuth-Bendix’ Algorithm for Solving Equations

Subsection 2.5 is independent of this subsection and could serve as an introduction to
it.

§32

A note on term unification

We introduce now, independent of our treatment of term unification in 2.5, the result
we need for our algorithm for solving equations systems. We need term unification for
finding appropriate instances, for substituting variables with open terms: variables play
the réle of unknowns in 2.5, term unification is considered outside its logical context
introduced in 2.5.

With t* we denote here the open term obtained by substituting the variables of the
open term ¢ by the open terms given by the substitution a that associates open terms to
variables. An instance of an equation s = ¢ is always of the form s* = ¢®. Substituting
the variables in an open term t[rq, ..., r,] yields the new open term ¢t*[r{, ... 2], where
re points to its open subterms that are in the places originally pointed by r;; hence,
we can substitute each r{ in this open term by an open term ¢, for obtaining the open
term t*[q},...,q.]. If b* is of the form ¢[ry,...,7,], then each 7; points to subterms
of b” of the form r® being in the places of possibly formally different subterms r of b;
hence, we can write b in the form ¢[rq,---,r,], where n is not necessarily equal to m.

A unifier for reducing an instance of the open term t[rq,...,r,] with the equations
S1=q1, -+, $n = q is alist (o, 01, . .., ) of substitutions like above such that r and
57" be formally equal, the reduction of the instance t*[r{,...,r?] of this open term
with these equations and unifier is the open term t*[¢i",...,¢2"]. A most general
unifier is a unifier such that all other unifiers are of the form (av,a17v,...,a,7). The
results in [11] yields an algorithm for deciding if there is an unifier and for giving a most
general unifier when there is an unifier: we consider a unifier to be a list of substitutions
because we see occurrences of a variable in the context of different equations as different
variables that can be substituted by formally different open terms; the domains of
definition of a, ay, ..., «, are to be seen as pairwise disjoint, then we can see the
list (e, 01,...,0,) as a substitution acting on the union of the domains of definition;
a renaming of the variables in the equations so that variables in different equations
and in the original open term be pairwise disjoint must be done before applying the
traditional unification algorithm, v or v®¢ is different from v/ if v does not appear in
t[ry,- -+, r,) or respectively s; = ¢; because the substitutions contain the renaming.

If b —, q is derivable from S, then b can be expressed in the form ¢[ry,...,7,]
and ¢ in the form °[qy, ..., G.], so that each r/ = ¢ is an instance s/ = ¢ of an
equation s; = ¢; in S. In this case, (3, f1,...,0,) is a unifier for reducing the instance
I rP] of t[ry,...,r,], namely b7, into t%[qy, ..., q,], namely ¢, with the s; = ¢
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in S: each g is formally equal to ¢/*. A most general unifier (o, 01, ..., ) such that
(ay, 017, ..., a,7) be equal to (3, 51,...,3,) yields a reduction ¢ of the instance b of
b. Now, the original equation b —, ¢ is the instance b —; ¢" of b® —; ¢, and this
last equation is also derivable from S.

§33

cp-resolution

A cp-resolvent of a list of equations t[r,...,r,] = p, $1 = q1, ..., 85 = ¢, Is an
orientation to the right of dec({t*[¢i"",...,¢2"] = p*}), where (o, aq,...,a,) is a most
general unifier for reducing an instance of ¢[ry,---,r,] with s; = ¢, ..., 8, = g,. The
existence of the most general unifier is a condition for the existence of a cp-resolvent.
If each equation in the list is derivable from a system, then also each equation in a
cp-resolvent.

A system S is cp-closed if it is oriented to the right and for each list of equations
having a cp-resolvent there is a cp-resolvent each of its equations is (1, 1)-reducible with
S. A cp-closed system is (1,1,1,1)-confluent and hence also confluent: according to
the last result in §31, it is enough to see that ¢ = p” is (1, 1)-reducible for each instance
b? = p° of an equation b = p in S and each b’ —; g derivable from S; following the
last paragraph in §32, b is of the form ¢[ry,...,r,] and there is an instance b* of it
that can be reduced with some equations s; = ¢; of S and with a most general unifier
(o, 01,...,0,) into a ¢, so that ¢ be an instance ¢” of ¢ and 3 be av; a corresponding
cp-resolvent of the equations ¢[ry,...,r,] = p, s1 = q1, ... 8, = g, of S is an orientation
to the right of dec(q = p®); since there is a cp-resolvent all of its equations are (1,1)-
reducible, ¢ = p* and hence its instance ¢ = p” are also (1, 1)-reducible.

A cp-closed system is confluent and oriented to the right: it contains a contradiction
if it is inconsistent, it is a (most general) solution of itself and of any system equivalent
to it if it is consistent.

Given a system S, one can build a cp-closed system S* equivalent to S’ by recursively
adding to an orientation to the right of dec(.S) the equations of cp-resolvents of equa-
tions in it. We call this process cp-completion, during it we must find a contradiction
if S is inconsistent, or enumerate the equations of a most general solution of S if S is
consistent.

2.5 Term Unification

Since we want that solution of equations systems play the réle of term unification in
logic programming, we introduce term unification in the context of the concepts we
introduced for equations systems. This subsection is an appendix that can be skipped.

§34

Substitutions

A substitution « is a function that associates a term X< to each unknown X from a
finite set sup,. For each open term ¢, we define recursively the open term ¢*. If ¢ is an
unknown in sup,, then ¢* is given by the definition of «; if ¢ is other 0-ary symbol, ¢*
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coincides with ¢; if ¢ is of the form (¢1¢5), then t* is (£7t3). Two substitutions a and 3
are considered the same if X coincides with X” for each unknown X, or equivalently,
with each open term X, even if sup,, and supg does not coincide. For open terms s and
t, or for substitutions o and (3, we say that the identity s = ¢ holds, or respectively
that the identity o = ( holds, if right and left part of the identity coincide.

The identity t* = t holds if and only if for every unknown X in ¢ the identity X* = X
holds. We say that o moves an open term ¢, if t* is different from ¢: it moves ¢ to ¢*.
All unknowns moved by « are in sup,,.

The unity ¢ is the substitution for which X* coincides with X for each unknown X,
and hence also for each open term X. The associative product af of two substitutions
a and 3 is the only substitution for which X°# coincides with (X“)? for each unknown
X, and hence, also for each open term X. The set of all substitutions build together
with this product and with ¢ a monoid.

§35

Idempotent substitutions, ordering, equivalence

A substitution « is called idempotent if c«a = o holds. The substitution « is
idempotent if and only if for every X moved by « the unknowns in X* are not moved
by a. If we call the unknowns moved by « dependent and the rest independent, then
we can say that a express dependent unknowns in terms of independent ones.

For two substitutions a and 3, let the relation o < (8 hold if and only if o = fa
holds. The relation < is transitive: from o = fa and # = v/ the identity a = fa =
(vB)a = v(Ba) = ya follows. The relation o < « holds if and only if « is idempotent.
Let the relation a ~ § hold if and only if @ < [ and § < « holds. The relation
~ restricted to idempotent substitutions is an equivalence relation. If a ~ 3 holds,
then o and 8 are idempotent: aa = a(fa) = (aff)a = fa = «, the proof for [ is
symmetrical.

If & ~ (8 holds, then there is a substitution v such that vy = ¢, ay = and v = «
holds: « and [ are equal up to a renaming. For proving this, we note first that X is
an unknown if and only if X? is an unknown: if X is an unknown and X? of the form
(tity), then X = XP~ = (#945) is a contradiction; the proof for the other direction is
symmetrical. Let ' be the set of X such that X2, or equivalently such that X7, is an
unknown. This I' contains all unknowns outside sup,, N supg, perhaps contains some
in it. Let I'® and '’ be the sets of unknowns obtained by substituting each X in I
by X or respectively by X?. We can restrict 3 to a function ' from I'* to I'’ and
a to a function o from I'? to I'*, so that o' is the inverse function of 3" this follows
from the identities (X*)? = X” and (X?)* = X“. The functions 3" and « restricted
to the set I'* N I'? coincide with the identity: from X = Y” follows X% = Y#P, due
to the definition of ~ and to the idempotence of 3, also X” = Y, and with the first
equation X? = X<, namely, the restriction of 3 coincide with ¢; the proof for o' is
symmetrical. We define the function 4’ by joining the graphs of 3’ and o', and the
substitution v by restricting 4’ to the finite set (I'* U T¥) N (sup, U supg); the natural
extension of ¥ to unknowns in the domain I'* UT” of 4', but outside sup,, coincide with
~4": the function 4’ coincide with ¢ in the set I'* N '’ containing all elements outside
the finite set sup, U supg. The identity 4y = ¢ is obvious from the definition of 7.
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Since «a is idempotent, no unknown in X for an arbitrary unknown X is moved by
«, they are hence in I' and in I'*, and v assign to them the same unknown as 3 does:
(X°) = (X?) = X*¥ = XP. From this the identity ay = 3 follows, the proof of the
identity 0~ = « is symmetrical.

§36

Substitutions as systems

To each substitution a we associate an equations system S, whose equations are
the ones of the form X = X for which the unknown X does not coincide with X*°.
A system S whose equations are directed to the right, contain no variable and have
pairwise different unknowns in their left parts is of the form S, for a substitution a.
The identity o = 3 holds if and only if S, and Sz contain the same equations.

The system S, is oriented to the right and, according to §31, is (1,1, 1, 1)-confluent,
hence also confluent. Since all its equations are directed to the right, it contains
no contradiction as defined in §29, and hence no such is derivable, but later we will
introduce a new kind of contradictions that may be derivable from an S, whose « is
not idempotent.

The identity S, = t — t* holds for a substitution o and an open term ¢. This
follows by induction. It is obvious when ¢ is a 0-ary symbol. From S, F t; —; {7,
Sa Fty —1 13, the cons schema and the identity (¢112)* = (17t5) follows S, b (t1t2) —
(tit9)>.

§37

Unifiers

A substitution « unifies the equation s = ¢ if the identity s* = ¢* holds. It unifies
a system S if it unifies each of its equations. If o unifies S and S F s = ¢ holds, then
« unifies s = ¢: if a substitution unifies the overequations of an open m-rule, then also
the underequation. Two equivalent systems have the same unifiers.

If o unifies an equation or system, then also ay for any ~. A substitution [ unifies
S, if and only if 8 = af, namely 8 < «, holds: this is a direct consequence of the
definitions. In particular, o unifies S, if and only if o is idempotent. Joining the above
remarks: a substitution unifies S,, where « is idempotent, if and only if it is of the
form ay.

If @ unifies s = ¢, then S, F s = ¢ holds: this follows from the fact that S, F s —; s
and S, F ¢t —; t* hold. If « is idempotent, then S, F s = ¢ if and only if « unifies
s =1.

The task of the unification algorithm is to describe the unifiers 3 of a system 5, where
the # and S must satisfy some type constraints. We consider the task of transforming
S into an equivalent system S,, where « is idempotent. Then, the unifiers of S are
the substitutions of the form ay. This idempotent « is unique up to renaming: S,, =
Sa, implies ay ~ ay. We prove that this task is equivalent to the original one: the
transformation is possible if and only if there is a unifier, and this is decidable.

25



§38

Infinite loops, contradictions

No substitution unifies a contradiction: if s = ¢ is an operators or an arguments
clash, then s® = t* is a similar contradiction, its two parts cannot coincide.

An infinite loop is a directed equation of the form X = ¢ or { = X, in which
t is an open term of the form (¢;¢3) containing X. No substitution unifies such an
equation: t* contains X as subterm and other symbols, they cannot coincide. Slightly
diverging from the definitions in §29, we consider in this section infinite loops also
as contradictions. As in §29, a system is consistent if and only if no contradiction,
including infinite loops, is derivable.

Summarizing, no substitution unifies an inconsistent system. No substitution unifies
the consistent system containing the equation (Xa) = a, where X is an unknown and
a a ground symbol. We prove that, under certain conditions, a consistent system S
can be transformed into an equivalent system S, where « is idempotent and hence a

unifier of S, and S.

§39

Forbidding applications of unknowns, T-terms

An open T-term is constructed recursively: an open term consisting of only one
symbol is an open T-term; an open term of the form (#1t3), where ¢; is not an unknown
and both, t; and t3, are open T-terms, is also an open T-term. A T-term is an
open T-term not containing variables. A T-equation is one whose two parts are open
T-terms. A T-system is a system whose equations are T-equations.

A substitution « is a T-substitution if X is a T-term for each unknown X, namely,
if S, is a T-system. If ¢ is an open T-term, then also t*. If @ and (3 are T-substitutions,
then also af3.

Open terms were constructed with a signature, all symbols are 0-ary with exception
of the 2-ary application operator. With a second signature assigning a second arity to
each 0-ary symbol, one can construct open terms such that the number of arguments of
them are given by the second arity of their operators. If the second arity of all unknowns
is 0, then the open terms constructed are open T-terms: the T stays unproperly for
“typed”. Expressions constructed with a usual signature can be embedded in our
system with two signatures.

§40

Directed T-equations, directed contradictions

Undecomposable T-equations are either a directed equation of the form X = ¢ or
t = X, where t is an open T-term, or an operators clash or an arguments clash.

A directed contradiction is either an infinite loop or a directed T-equation con-
taining a variable. From an equation of the last kind one can derive an operators clash.
With sym and trans one can derive a T-equation ¢[v] = t[w] from it and an instance of
it, where ¢[v] is the part of the equation containing the variable v and w a new variable.
If ¢[v] contains more than one symbol, then its operator is not an unknown, and with
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dec or sep we can obtain a smaller equation '[v] = t'[w] of the same form. With some
applications of dec and sep, we obtain the contradiction v = w. We also speak about
contradictions directed to the right or left. In this section, contradictions are either
an operators clash, or an arguments clash, or a directed contradiction, or a loop.

§41

Unification algorithm as consistence checking

We consider now T-systems S whose equations are arranged in two lists: a list U
of undecomposable T-equations, each being either a contradiction or directed to the
right, and a list R of T-equations X = ¢ directed to the right so that ¢ contains no
variable and X appear neither in ¢ nor in other equation of 5. We denote this system
S with (R,U), the list R stays for “resolved” and U for “unsolved”. Eventually we
treat R and U also as systems.

If U contains a contradiction, then (R, U) is inconsistent. If U contains only equa-
tions of the form X = X, then the system (R,U) is clearly equivalent to one of the
form S, where « is idempotent, and hence consistent. For an arbitrary system S there
is always a system of the form ((, ) equivalent to it, U is built of an orientation to
the right of dec(5). Given a system (R,U) and a directed T-equation X = ¢ from U,
so that ¢ contains neither X nor a variable, we can transform (R, U) into an equivalent
system (R',U’): the equation X =t is deleted from the second list, each occurrence
of X (in the first or second list) is substituted by ¢, the equation X =t is added to
right end of the first list, each equation s; = sy in the second list is substituted by
the equations of an orientation to the right of dec({s; = s2}) (in some order). It is
not difficult to see that (R', U’) satisfy the required conditions; furthermore, the num-
ber of unknowns occurring in U’ is less than the number of the ones occurring in U.
The recursive application of such transformations to a system (R, U) with arbitrarily
selected equations X = ¢ must terminate. If a system (R, U) cannot be reduced, then
each equation of U is either of the form X = X or a directed contradiction or another
contradiction (clash): examining U we can decide if the system is consistent or not, if
there is a unifier or not, if the system is equivalent to an S, with an idempotent « or
not.

Summarizing, we can decide whether a T-system S is consistent or not. In the first
case, S can be transformed into an equivalent system S,, the symbols of its equations
being symbols from equations in S and « being idempotent. In the second case, we
can derive a contradictory T-equation from S whose symbols are in the equations of

S.

§42

Comb lemma

We call the following result the comb lemma for most general unifiers, it is necessary
in the last six lines of [16], in §29, for proving the lifting lemma in classical logic
programming. Let Xy, X7,...,X,, C X be pairwise disjoint sets of unknowns satisfying
X = UL, Xi; let S1,...,.5, be systems, so that the equations of an S; do not contain
any unknown of X; when j # 0 and j # ¢; let ¢ be a symbol not contained in X, and «;
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Qg

an unifier of 5; for each 7, so that ¢ does not occur in an % when = € Xy; then ¢ does
not appear in any =% when « is in Xy and « is a most general unifier for J7_, 5;. We
prove now this lemma. A system S is solved if it is of the form 5, with idempotent
n. For every S; let 3; be a unifier of 5;, so that Ss, be equivalent to S; and all symbols
of Sp, appear in 5;. Let B, :=={e=p € 53 12 € Xi}, K;:={a=¢p € Ss : 2 € Xo},
E:=U, E;, K :=U, K,. For every equation x = ¢ € Sg, we have, due to the choice
of B; and the hypotheses, that either x € Xy or € X, holds and that ¢ contains no
y € X; when 7 # 0 and 7 # #; hence, Sg, = E; U K; holds and F is a solved system;
furthermore, K" U E is equivalent to J; S;. Since a unifies |J; S; and hence the system
K U FE equivalent to it, one can find a unifier x of K, such that S, be equivalent to K
and contain only symbols from K’; the system S5, U E” is equivalent to S, U F and hence
also to K' U E and to |J; 5, it is a solved system and contain only symbols occurring in
U; Si; let 3 be a substitution satisfying Sz = S, U E”. Since 3; is a most general unifier
of S; and a; a solution of this same system, «; = [;c; holds; due to this equality and
the hypotheses, ¢ does not occur in % for z in Xy and arbitrary 4, also not in a Kj,
and hence also not in K; since symbols occurring in S, also occur in K, the symbol ¢
occurs in no z” = 2* with € Xy; since o is a most general unifier of J; S; and 3 a
unifier of the same system, the equality # = o holds, and hence ¢ cannot occur in an
% with = € Xj.

3 Logic Programming for Stating Equations

This section is devoted to restate the task of logic programming (subsection 3.2), so
that the concept of solution of equations systems introduced in section 2 play the réle
of term unification, and to prove the lifting lemma (subsection 3.4) that means the
completenes of an indeterministic search algorithm. Given a sequent ¥ = . the old
task of logic programming was to find a substitution « for the unknowns in the sequent,
so that ¥ F ©® be mj-derivable. We can say that the new task is to find a consistent
system of equations «, so that ¥ U a = ¢ be mj-derivable. Well, some technical details
should be make more precise in this definition. Having a substitution « gives us a
finite evaluation procedure of each unknown, with an equations system we do not have
such an evaluation procedure: this makes the proof of the lifting lemma much more
complicated than in classical logic programming.

3.1 Logic with Unknowns and Equality
§43

Open terms and formulae, sequents with infinite antecedents

We consider in this section open terms and formulae built on a language L for the
predicate logic. This language [ contains a 2-ary predicate symbol =, its functional
symbols are a 2-ary application operator and 0-ary functional symbols divided in un-
knowns and ground symbols, as auxiliary 0-ary symbols we have infinite many for
variables and for free variables.
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An equation in L is an atomic open formula with the predicate =, it may contain
symbols for free variables. A system of equations in L is defined as in 2.1, with
equality axioms as in 2.1, but its equations can now contain symbols for free variables.
For applying the results of section 2.1 to these systems, symbols for free variables are
to be seen as unknowns: axioms dec(f) are for ground terms f and the schema sep for
variables, not for free variables. Actually, symbols for free variables are to be used as
proper variables in the EB- and AE-rules defined in subsection 1.1, hence as auxiliary
terms for the construction of mj-compositions, they are the free variables in Gentzen [4]
or the parameters in Prawitz [15], they are unwelcome in the endsequent, they are
unwelcome in equations systems; but for stating our results, we need to consider the
possibility that they appear in equations systems. The equations we deal with in this
section are succedents of firstsequents of mj-compositions, some of the symbols for free
variables in them correspond to proper variables of AE-rules, these symbols are seen as
arbitrary constants, they are substituted later by variables for building systems with
the equations, only the remaining symbols for free variables are seen as unknowns.

We consider sequents X = ¢ with infinite antecedent X, such that there are infinitely
many symbols for free variables not occurring in . To be more precisely, sequents of
the form S U P ¢, where S is a system of equations (and hence not containing free
variables) arranged as a list in some way and P a (finite) list of formulae. NJ- and
mj-rules are defined exactly as before; furthermore, ¥ = ¢ is derivable if and only if a
sequent ' ¢ is derivable, where ¥/ is a finite list obtained by deleting formulae from

Y.

§44

Compatibility axioms

We define for an n-ary predicate symbol P the formula comp(P), called a compat-
ibility axiom, by

comp(P) :
YVuy - Vu, Vo - - Yoauy = 01& - &y, = v, O (Plug, .o un) D Plo, .. 0,)),

where & denotes the nested implications that can be substituted by conjunction for
obtaining an equivalent formula. Note that comp(=) is a consequence of sym and trans.
With comp; we denote the list of compatibility axioms comp(P) for each predicate
symbol P diferent from = of the language I we are considering.

3.2 New Statement of Logic Programming

§45
DE- and GE-Formulae, PE-sequents

We consider here mj-derivability of P-sequents S U Y = ¢, where S is an equations
system and X contains comp;. We want to restrict these P-sequents, so that the
derivability of S U X = ¢ implies the derivability of S F ¢ when ¢ is the closure of an
equation.
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An open AE-formula is an open A-formula not containing the predicate symbol
=. An open E-formula is an equation. By simultaneous recursion we define open

DE- and GE-formulae:

DE := AE|VoDE[DE, A DE,|GE > DE,
GE := E|AE|3vGEVoGE|GE; V GE,|GE; A GE,|DE © GE.

By induction we can prove that they are open D- and respectively G-formulae. AE-,
E-, DE- and GE-formulae are open AE-, E-, DE- and GE-formulae whose variables are
bound with quantifiers. All formulae in comp,, are DE-formulae (but not comp(=)). A
PE-sequent is one of the form comp; UP F ¢, where P is a list of DE-formulae called
proper assumptions of the PE-sequent and ¢ a GE-formula. If the undersequent
of a mj-rule is a PE-sequent, then also its oversequents are so. Since no D-sequence
beginning with a DE-formula ends with an E-formula, a PE-sequent ¥ F & whose
succedent ¢ is the closure of an equation cannot be the undersequent of an m-rule,
such sequents are not mj-derivable.

§46

Potential mj-derivations, PS-sequents, E-decomposition, resolvents, actualizations

A potential mj-derivation = is an mj-composition tree whose endsequent ¥ F ¢
is a PE-sequent and such that the succedents of its firstsequents are equations ey,
.., En, called the conditions of =Z. In a condition &; of = may occur a (symbol
for free variable formally equal to a) proper variable of = (as defined in §10), let &!
be an equation obtained by substituting these proper variables by variables, formally
different free variables by formally different variables: the system S whose equations
€], ..., & are obtained in this way from the conditions 1, ..., &, of = is the most
general resolvent of =, it is unique up to renaming of variables. By appending S to
the antecedents of the sequents in = and by putting an m-rule over each firstsequent
we can build an mj-derivation of S UX F ¢.

A PS-sequent is one of the form S U X F ¢, where S is an equations system, its
equations system, and ¥ F ¢ a PE-sequent, whose proper assumptions are also the
ones of the PS-sequent. If the undersequent of an mj-rule is a PS-sequent S U X F ¢,
then also its oversequents are PS-sequents with the same equations system S.

If the undersequent of an mj-rule is a PS-sequent whose succedent is the closure of an
equation, then its oversequents are of the same form and have the same antecedent (an
equation without variables is the closure of itself). In particular, the first formula in A
of such a rule m(S U X, A) must be from the equations system S of the undersequent,
because a D-sequent beginning with an DE-formula never ends with an E-formula. An
mj-derivation = of a PS-sequent S U X F e, where ¢ is the closure of an equation, can
be transformed into an mj-derivation of S F ¢ by deleting ¥ and leaving the equations
system S in every PS-sequent of the derivation.

An mj-derivation = of a PS-sequent S U X = ¢ can be transformed into a potential
mj-derivation = of the PE-sequent X F ¢ whose most general resolvent is more general
than the equations system S, namely, so that &’ is derivable from S if &’ is in the most
general resolvent of ='. This =’ is obtained by cutting off every branch of = from the
point at which an equation ¢ is found in the succedent, these equations ¢ will be the
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conditions of Z', and then by deleting the equations system S of each PS-sequent in
the tree: it remains an mj-composition tree because the D-sequence of an m-rule the
succedent of its undersequent is not an equation cannot begin with an equation of
S. From the above paragraph, the subtree of = whose endsequent S U X' F ¢ has a
condition ¢ of =/ as succedent, namely, the subtree of = built with the branches over
S UY F e cut off from =, can be converted into an mj-derivation of S F &; since S
contains no proper variable of =, and hence also no one of Z’', the equation &’ of the
resolvent of =Z' obtained from ¢ by substituting the proper variables of =/ occurring in
¢ by variables is also derivable from S. We call the potential mj-derivation =’ together
with the derivations of its firstsequents from S the E-decomposition of =.

A resolvent of a potential derivation = of a PE-sequent ¥ - o is an equations system
S in which no proper variable of = occur, so that the succedent of every firstsequent of
= is derivable from S, namely, so that the most general resolvent of = be more general
than S. By appending S to the antecedents of the sequents in = and by appending
some mj-derivations over each firstsequent of = one gets an mj-derivation =’ of the
PS-sequent S U X F ¢, called an actualization of = by S. By E-decomposition of =’
one recovers = and gets derivations of each equation in the most general resolvent of
= from S.

§47

The new task of logic programming

Given a PE-sequent ¥ I ¢, we want to find a consistent system 5, perhaps satisfying
some additional conditions, so that the PS-sequent S U ¥ = ¢ is mj-derivable. As in
classical logic programming [10], we want a systematic search strategy (like the tree
search with backtracking in Prolog) and, if an S is found, to take the most general S
found in the same way (lifting).

From §46, we know that such an S is the resolvent of a potential derivation, and
the most general resolvent of this potential derivation describes in some way all such
S. We need only to search potential derivations of the PE-sequent ¥ F ¢, but we
have the problem of selecting the auxiliary terms. As in classical logic programming,
we want to select unknowns representing auxiliary terms to be searched for, and to be
sure that solutions found in this way lead through specification of these unknowns to
every possible solution. This is the matter of the two following subsections.

3.3 Displacements

§48

S-displacements of open terms

Let S be a system of equations. We say that an open term t' is an S-displacement
of the open term ¢, if t = t' is an instance of an equation in S such that each variable
occurring in " also occurs in ¢. Hence, if ¢ is a term, then also . Obviously, S ¢ — ¢/

holds.
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§49

S-displacements of open formulae

Let r = v/ be an equation from 5, let s = s’ be an instance of r = ¢/ obtained by
substituting each variable in ' not occurring in r by a term (without variables), let vy,
... v, be some (perhaps all) variables in s = &', for each v; let ¢; be a term and ¢, an
S-displacement of it, let ¢ be the open term obtained by substituting all occurrences of
each variable v; in s by ¢; and ¢’ the open term obtained by substituting all occurrences
of each v; in &' by t.. It is easy to see that S - ¢ —5 ' holds. We say that the open
term t’ is a second order S-displacement of the open term t.

An S-displacement of an open atomic formula R(tq,...,%,) is an open atomic
formula R(#),...,t!), so that each t. be a second order S-displacement of ¢;. The
S-displacement of an arbitrary open formula is defined recursively: if ¢’ is an S-
displacement of ¢ and ¢’ an S-displacement of ¢, then ¢’ D ' is an S-displacement
of ¢ D, @' Ayp" an S-displacement of @ A, ¢ Vo' an S-displacement of ¢ V ¢, Yo'
an S-displacement of Yvp and Jve’ an S-displacement of Jvep.

If ¢" is an S-displacement of ¢ and a variable v occurs in ¢’ not bound by a quantifier,
then it also occurs in ¢ not bound by a quantifier; hence, ¢’ is a formula if  is a formula:
this is the case for second order S-displacements of open terms and for S-displacements
of open atomic formulae, the general case is seen by induction. In an analogous way
the following is proved: if ¢ is an S-displacement of the open formula ¢, if ¢’ is an S-
displacement of the term ¢, if ¢/’ is obtained by substituting each non-bound occurrence
of a variable v in ¢’ by ¢’ and ¢ by substituting each non-bound occurrence of v in ¢
by ¢, then ¢’ is an S-displacement of ).

§50

S-displacements of D-sequences

An S-displacement of a list L of terms or formulae is obtained by substituting each
member of the list L by an S-displacement of it. If the list L is seen as a D-sequence,
then its S-displacement L’ much fulfill some other conditions, the T-sequence of L’
will be a given S-displacement of the T-sequence of L, the G-sequence of L will be an
S-displacement of the G-sequence of L.

A D-sequence A is completely determined by giving its first formula and, for each
step, the selected auxiliary term (T-sequence) or position of the selected subformula
of the conjunction (first or second). An S-displacement A’ of the D-sequence A is
specified by giving an S-displacement of its first formula and an S-displacement of each
selected auxiliary term, A’ is a D-sequence obtained by substituting, from left to right,
each formula in A by an S-displacement of it: the first formula is substituted by the
given S-displacement of it; if the formula ¢ of A was substituted by its S-displacement
¢’ and 1 follows in A, then ¢’ has the same structure as ¢, 1 is substituted by a 1’
obtained from ¢’ with a similar step as the one with which ¢ was obtained from ¢, the
given S-displacement of the auxiliary term used in A is used if ¢ is universal, the first
or second subformula of ¢’ is selected if ¢ is a conjunction and the first or respectively
the second subformula was selected; the atomic last formula of A will be, as the other,
substituted by an S-displacement of it, and hence by an atomic formula. Obviously,

32



the T-sequence of A’ is obtained by substituting each term of the T-sequence of A by
the given S-displacement of it, and the G-sequence of A’ by substituting each formula
in the G-sequence of A by an appropriate S-displacement of it.

§51

S-displacements of mj-rules

An FE-, UE-, OFE;-, AE- or EE-rule is completely determined by giving its under-
sequent and its auxiliary terms, if it has any. A most precise name for these rules
would contain the undersequent and its auxiliary terms. Let r be a rule of one of
these schemata, an S-displacement of r is specified by giving an S-displacement of
its undersequent, not containing the proper variable of r if this is an AE-rule, and an
S-displacement of its auxiliary term if it is an EE-rule: it is the only rule of the same
schema whose undersequent is the given S-displacement of the one of r, whose proper
variable is the same as the one of r if this is an AE-rule, whose auxiliary term is the
given S-displacement of the one of r if this is an EE-rule. The oversequents of the
S-displacement of r correspond to S-displacements of the oversequents of r.

A similar definition for m-rules is given. An m-rule m(X,A) is completely deter-
mined by giving ¥ and A. By giving an S-displacement 3 of the antecedent ¥ of the
undersequent of m(X, A) and S-displacements of its auxiliary terms, namely, of the T
sequence of A, we can find the S-displacement A’ of A whose T-sequence is the given
S-displacement of the T-sequence of A and whose first formula is the formula in the
given S-displacement ¥/ of ¥ corresponding to the first formula of A (as element of ¥).
With the given ¥/ and this calculated A’ we can build the S-displacement m(¥’, A')
of the m-rule m(X, A). Hence, the S-displacement of an m-rule depends on a given
S-displacement of the antecedent of its undersequent and of the given S-displacements
of its auxiliary terms; one could give an S-displacement of the whole undersequent,
but nothing warranties that it will become the undersequent of the S-displacement
of the rule. The oversequents of an S-displacement of an m-rule correspond to S-
displacements of the oversequents of the original rule, as is the case with rules of other
schemata.

For recursively constructing S-displacements of composition trees, from the root to
the leaves, we would like that an S-displacement of a rule be determined by giving
an S-displacement of its undersequent and an S-displacement of its auxiliary terms.
As seen, this is not the case for m-rules. This forces us to introduce the concepts of
potential and actual mj-rules.

§52

Potential and actual mj-rules

A potential rule is a rule whose oversequents are divided in proper and non-
proper ones, the non-proper ones being of the form X = s = ¢, where the s = ¢ are
equations called conditions of the rule. A potential rule all of whose conditions are
of the form s = s is called an actual rule. In compositions, non-proper oversequents
are predestinated to be firstsequents.
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A potential mj-rule 7 is specified by giving an mj-rule r and, in the case this is
an m-rule, additionally an atomic formula whose predicate symbol coincide with the
one of the succedent of the undersequent of r. If r is an FE-, UE-, OE-, AE- or AE-
rule, then 7 coincide with r, it is called a potential FE-, UE-, OE-, AE- or AE-rule,
it does not have non-proper oversequents, it is also an actual FE-, UE-, OE-, AE- or
AE-rule. If r is an m-rule m(X, A) with undersequent ¥ - r(¢y,...,t,) and if the given
atomic formula is p(si,...,s,), then the non-proper oversequents of 7 are ¥ - #; = sy,
ooy, X Ft, = s,, they are followed by the proper oversequents that coincide with
the ones of r, its undersequent is ¥ F p(sy,...,s,). If the undersequent of r contains
comp; in the antecedent, this potential m-rule 7 is the composition of two m-rules: of
r with the m-rule whose oversequents are the non-proper oversequents of r followed by
Y F p(ty,...,t,) and whose undersequent is the one of 7, namely, the m-rule m(X, A),
where A is the D-sequence for comp(p) whose T-sequence is t1, ..., t,, $1, ...5,. The
potential m-rule 7 is an actual m-rule if and only if the selected atomic formula is
exactly the succedent of the undersequent of r.

Auxiliary terms, proper variable and D-sequence of a potential mj-rule r are by
definition the ones of the given mj-rule r.

§53

S-displacements of potential mj-rules

Given a potential mj-rule r, an S-displacement ¥/ F ¢ of its undersequent, not
containing the proper variable of r if this is a potential AE-rule, and S-displacements
of its auxiliary terms if r is an m- or EE-rule, we define a new potential mj-rule »/
called the S-displacement of r: it is a potential rule of the same schema as r, its
undersequent is the given S-displacement of the undersequent of r, its proper variable
is the same as the one of r if it is an AE-rule, its auxiliary term is the given S-
displacement of the one of r if it is an EE-rule, its D-sequence A’ is the S-displacement
of the D-sequence A of r whose first formula is the formula in 3 corresponding to the
first formula of A and whose T-sequence is obtained by substituting each element of
the T-sequence of A by the given S-displacement of it if  is an m-rule. By considering
each schema (FE, UE, OE;, AE, EE or m) for potential mj-rules, we easily see that
there is a unique potential mj-rule r’ with the demanded properties.

Furthermore, the S-displacement r’ of r is obtained by substituting the undersequent
of r by the given S-displacement of it, by substituting each oversequent by an appropri-
ate S-displacement of it, proper oversequents by proper oversequents, non-proper ones
by non-proper ones, by substituting each auxiliary term by the given S-displacement
of it, where the proper variable in an AE-rule is preserved. Fach symbol appearing in
an oversequent of r’ appears either in its undersequent or in the given S-displacement
of an auxiliary term of r’. These properties will allow us to define S-displacements of
mj-compositions, and hence of potential mj-derivations.
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§54

mj*-compositions, potential mj*-derivations

An mj*-composition is a composition with potential mj-rules, in which non-proper
oversequents are left free as firstsequents. Definitions and results in §3 and §10 can be
trivially extended to mj*-compositions.

There is a trivial one to one correspondence between actual mj-rules and mj-rules, the
image of an actual mj-rule r is the given r, it is recuperated by deleting the non-proper
oversequents. This correspondence can be extended to a one to one correspondence
between mj*-compositions built with actual mj-rules and mj-compositions, each actual
mj-rule 7 is substituted by its image r, the firstsequents corresponding to non-proper
oversequents (their succedents are of the form s = s) are deleted.

A potential mj-rule containing comp; in the antecedent of its undersequent can
always be seen as a composition of mj-rules. An mj*-composition whose endsequent
contains comp; in the antecedent is built only with such potential mj-rules; and by
substituting each potential mj-rule by the corresponding composition of mj-rules, one
gets an mj-composition containing the same endsequents and firstsequents.

A potential mj*-derivation is an mj*-composition whose endsequent is a PE-
sequent and whose firstsequents have equations as succedents. Between potential mj*-
derivations built with actual mj-rules and potential mj-derivations holds the trivial one
to one correspondence. Since all PE-sequences contain comp; in the antecedent, we
can substitute each potential mj-rule in a potential mj*-derivation by the corresponding
composition of mj-rules for obtaining a potential mj-derivation.

§55

S-displacements of mj*-compositions and potential mj*-derivations, S-equivalence

For an mj*-composition =, an S-displacement of its endsequent not containing proper
variables of AE-rules in =, and an S-displacement of each auxiliary term of a potential
m- or EE-rule in =, so that it does not contain the proper variable of an AE-rule of
= appearing over this m- or EE-rule, we define the S-displacement =’ of =, as the
unique mj*-composition tree obtained by substituting each rule r of = by an appropriate
S-displacement 1’ of it, so that the endsequent of = is the given S-displacement of the
endsequent of =, so that the S-displacements of the auxiliary terms of r used for
building the S-displacement r’ of r be the given ones. For building r" we need an S-
displacement of its undersequent, this is why =Z' must be constructed recursively from
the root to the leaves: we have an S-displacement of the undersequent of the rule r
whose undersequent is the endsequent of = (the given one), we can find r’ for this r, its
proper oversequents are S-displacements of the oversequents of r, these oversequents
are S-displacements of the endsequents of the subtrees of = over them, recursively we
can find the corresponding S-displacements of these smaller trees and mount them over
the proper oversequents of /. Although we did not demand that = have unambiguous
proper variables, this definition is mainly applied to such derivations.

Since S-displacements of equations are again equations, an S-displacement =’ of a
potential mj*-derivation = is also a potential mj*-derivation. If S does not contain any
proper variable of = or equivalently =’ and if R and R’ are the most general resolvents
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of = and =/, then S U R and S U R’ are equivalent; we say that R and R’ are S-
equivalent. To see this, let s’ = ¢’ be a condition of Z' corresponding to a condition
s =1tof Z, and let 5 =t and 5’ = ' be the equations obtained from s = ¢ and s’ = ¢’
by substituting in both the proper variables ¢y, ..., g, by some variables vy, ..., v,.
These last equations may be seen, up to variable renaming, as elements of R and R'.
Since s’ = t' is an S-displacement of s = ¢, then s —; s’ and t —3 t’ are derivable from
S. Since S does not contain the ¢; and the open m-schemata used for TRS are stable
under the substitutions of ¢; by v;, then also § —3 5" and { —, ¢’ are derivable from .
This implies the equivalence of SU{s =1t} and SU{s' = ¢'}.

3.4 Lifting
§56

Most general potential mj*-derivations

A potential mj*-derivation = is most general if (1) it has unambiguous proper
variables, (2) auxiliary terms of its potential EE- and m-rules are of form X¢; --- ¢y,
where X is an unknown and ¢ - - - g, is the list of proper variables of the undersequent
(and hence of the oversequent, see §10) of the rule, and (3) the operators of different
auxiliary terms of EE- or m-rules (of the same rule or of different rules) are formally
different unknowns not appearing in the endsequent.

A specification of an auxiliary term X¢, - - - ¢, of a potential EE- or m-rule r in the
most general potential mj*-derivation = is an equation of the form Xv;---v, = ¢, in
which ¢ does not contain other variable than the v;, nor an operator of another auxiliary
term, nor a ¢;, nor the proper variable of an AE-rule in =. A specification S of the
auxiliary terms of the most general potential derivation = is a system whose equations
are specifications for each auxiliary term. We call the S-displacement =’ of = that leaves
the endsequent unmoved and S-displaces each auxiliary term Xgq; - - g, to t[q, ..., q,]
the S-evaluation of =. One can prove by induction that =’ is obtained by taking each
Xuvy--v, = tlvy,...,v,] in S and substituting each occurrence of X¢; -+ ¢, in = by

t[(h, s 7(]71]

§57

Lifting

For a potential mj*-derivation =, we can find, according to §3, a similar potential
mj*-derivation =’ with the same endsequent and the same (up to variable renamings)
most general resolvent. For each auxiliary term ¢ of each EE- or m-rule r in =/ let X
be a new unknown, neither appearing in =’ nor selected for another auxiliary term,
let ¢ be the equation X¢;---q, = t, where ¢, ---¢q, is the list of proper variables of
the undersequent of r, and ¢’ be the equation Xv; ---v, =t/ obtained by substituting
the ¢; by different variables v; in . Let S be the system whose equations are the &
corresponding to each auxiliary term in =’ and S’ the system whose equations are the
symmetries ¢’ = Xwvy --- v, of the equations Xv,---v, =t in S. We build now an 5’-
displacement =" of Z': the S’-displacement of the endsequent is the same endsequent of
=" and =, the S’-displacement " of an auxiliary term ¢ is the corresponding Xgq; - ¢,
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obtained with ¢’ = Xwvy---v,. This = is a most general potential mj*-derivation and
S is a specification of its auxiliary terms, the pair (Z",5) is called a lifting of =,
from its construction we can easily see that it is unique up to renaming of proper
variables, renaming of the unknowns selected for the auxiliary terms and renaming of
the variables appearing in the equations of S. The S-evaluation of =" is exactly the
intermediate potential mj*-derivation =" with unambiguous proper variables.

The most general resolvent R of = coincides with the one of =" and is S-equivalent
with the most general resolvent R” of Z”. Hence, S U R and S U R” are equivalent.
In particular, for any resolvent T of = holds SUT S U R”; we say that R” is more
general than 7" modulo 5. — Since the operators of the left parts of equations in
S are different unknowns not appearing in R, since their arguments are variables and
since S is cp-closed, the union S U R* of S and a cp-closure R* of R is cp-closed, it is
a cp-closure of S'U R. Hence, S U R is consistent if and only R is consistent. And if R
is consistent, then also R” (as subset of S U R"). Because of this, we search only for
most general potential mj*-derivations whose most general resolvent is consistent.
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