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Abstract

The Extensible Markup Language (XMLg extremely popular as a generic markup language
for text documents with an explicit hierarchical structufiehe different types of XML data
found in today’s document repositories, digital librariedranets and on the web range from
flat text with little meaningful structure to be queried, owily semistructured data with a
rich and often irregular structure, to rather rigidly sttwred documents with little text that
would also fit a relational database system (RDBS). Not s&ingly, various ways of storing
and retrieving XML data have been investigated, includiagive XML systems,relational
engines based on RDBSs, amybrid combinations thereof.

Over the years a number of native XML indexing techniquesteawerged, the most im-
portant ones beingtructure indicesandlabelling schemes Structure indices represent the
document schem@e., the hierarchy of nested tags that occur in the doctshéna compact
central data structure so that structural query consténg., path or tree patterns) can be ef-
ficiently matched without accessing the documents. Laigpichemes specify ways to assign
unique identifiers, olabels to the document nodes so that specific relations (e.g.npgandd)
between individual nodes can be inferred from their lab&laeain a decentralized manner,
again without accessing the documents themselves. Sirthestracture indices and labelling
schemes provide compact approximate views on the docurimaotige, we collectively refer
to them asstructural summaries

This work presents new structural summaries that enabldyhédficient and scalable XML
retrieval in native, relational and hybrid systems. The kewtribution of our approach is
threefold. (1) We introduc8I/RD, a very efficient and expressive labelling scheme for XML,
and theCADG, a combined text and structure index, and combine them asdwmplementary
building blocks of the same XML retrieval system. (2) We prep a purely relational variant
of BIRD and theCADG, calledRCADG, that is extremely fast and scales up to large document
collections. (3) We present theCADG Cache, a hybrid system that enhances READG
with incremental query evaluation based on cached restikadier queries. Th&@CADG
Cache exploits schema information in thRCADG to detect cached query results that can
supply some or all matches to a new query with little or no cotatonal and 1/0O effort. A
main-memory cache index ensures that reusable queryseseliguickly retrieved even in a
huge cache.

Our work shows that structural summaries significantly iowerthe efficiency and scal-
ability of XML retrieval systems in several ways. Formeraténal approaches have largely
ignored structural summaries. TREADG shows that these native indexing techniques are
equally effective for XML retrieval in RDBSsBIRD, unlike some other labelling schemes,
achieves high retrieval performance with a fairly modestage overhead. To the best of our
knowledge, th&RCADG Cache is the only approach to take advantage of structural sunesari
for effectively detecting query containment or overlap. ristover, no other XML cache we
know of exploits intermediate results that are producedlagproduct during the evaluation
from scratch. These are valuable cache contents that sectha effectiveness of the cache at
no extra computational cost.

Extensive experiments quantify the practical benefit ofoélthe proposed techniques,
which amounts to a performance gain of several orders of iatgcompared to various
other approaches.
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Zusammenfassung

Die Extensible Markup Language (XMIist eine weit verbreitete Auszeichnungssprache fur
hierarchisch strukturierte Textdokumente. Heutzutageefinsich in Dokumentensammlun-
gen, elektronischen Bibliotheken, im Intra- und Interreschiedenste Arten von XML-Doku-
menten: angefangen von Textdaten, deren flache Struktuikaiem fur die Anfrage eignet,
Uber semistrukturierte Dokumente im eigentlichen Siiieeine reiche und oft unregelmafgi-
ge Struktur aufweisen, bis hin zu eher einheitlich struktten Dokumenten mit wenig Text,
die ebenso gutin einer relationalen Datenbank gehaltetlemécdnnten. So ist es nicht Uiberra-
schend, wie viele unterschiedliche Arten es gibt, XML-Dwolante zu speichern, insbesondere
nativeSystemerelationaleSysteme unthybrideAnsatze, die beide kombinieren.

Im Laufe der Zeit sind eine ganze Reihe nativer Indizieruagahren fur XML entstan-
den, insbesondef@trukturindizesind Numerierungsschemat&trukturindizes reprasentieren
dasDokumentenschemd. h. die Hierarchie verschachelter XML-Etikettéags) in einer
einzigen zentralen Datenstruktur. Auf diese Weise korstarkturelle Anfragebedingungen,
etwa Pfad- oder Baummuster, effizient und ohne Zugriff aef@ibkumente ausgewertet wer-
den. Numerierungsschemata zeichnen die Dokumentknot@&imdeutigen Kennummern aus.
Aus diesen lassen sich bestimmte Beziehungen zwischen ndeteiK(z. B. die Eltern-Kind-
Beziehung) herleiten, wiederum ohne Zugriff auf die Dokaiteeoder auch nur eine zentra-
le Datenstruktur. Sowohl Strukturindizes als auch Nurmmarnigsschemata stellen eine nahe-
rungsweise Sicht auf die Dokumentstruktur dar. Daher lobpein wir beide alStrukturaus-
zug (structural summary)

Die vorliegende Arbeit stellt neuartige Strukturausziuge mit denen XML-Daten in na-
tiven, relationalen und hybriden Systemen auf hochstieffie und skalierbare Weise durch-
sucht werden konnen. Unser Ansatz zeichnet sich in diegfaklinsicht aus. (1) Wir fuhren
BIRD ein, ein sehr effizientes und ausdrucksstarkes Numerissechgma, sowie den Text-
und StrukturindexCADG, und verkntipfen beide Verfahren in einem XML-Anfragesyst
(2) Es wird eine rein relationale Variante v@iRD und demCADG namesRCADG vor-
gestellt, die selbst grol3e Dokumentensammlungen sehebahurchsucht. (3) Der hybride
RCADG Cache erweitert denRCADG um eine inkrementelle Anfragekomponente auf der
Grundlage von zwischengespeicherten Ergebnissen &iildarfragen. DelRCADG Cache
bedient sich der ilRCADG vorhandenen Schemainformationen, um diejenigen Anframgen
Zwischenspeicher zu finden, die alle oder zumindest einigéfelr fir eine gegebene neue
Anfrage mit wenig oder gar keinem Berechnungsaufwand oderifen auf die Peripherie
liefern kdnnen. Mit Hilfe eines Hauptspeicherindex aufrd&wischenspeicher werden sol-
che wiederverwendbaren Anfrageergebnisse selbst danelsgefunden, wenn bereits viele
Anfragen gespeichert worden sind.

Es zeigt sich, dal} XML-Anfragesysteme hinsichtlich ihréfiztenz und Skalierbarkeit er-
heblich von Strukturausziigen profitieren, und zwar in rfagter Hinsicht. Die bisher bekann-
ten relationalen Ansatze nutzen die Vorziige von Straktsziigen kaum aus. Am Beispiel des
RCADG wird deutlich, daR sich solche nativen Indizierungsvedatdurchaus auf die XML-
Suche in relationalen Datenbanken tUbertragen la&I&D ermoglicht eine schnelle Suche
bei nur magig erhohtem Speicherbedarf, anders als maridiigere Numerierungsschema.
Soweit bekannt, ist deRCADG Cache das einzige Verfahren, das mit Hilfe von Struktur-
ausziigen untersucht, welche Anfrageergebnisse einantt@lten oder Uberlappen. Daruiber
hinaus ist uns kein weiterer XML-Zwischenspeicher getjufier auch Zwischenergebnisse
enthalt, die wahrend der Anfrageauswertung ohnehinllanfaSolche Zwischenergebnisse
erhdhen den Wirkungsgrad des Verfahrens, ohne daf? dadéatziiche Rechenleistung erfor-
derlich ware.

Nach ausgiebigen Versuchsreihen laf3t sich der praktidateen der oben genannten Ver-
fahren auf einen Gewinn von mehreren Grof3enordnungen inglaéieh zu verschiedenen an-
deren Ansatzen beziffern.

\

Felix Weigel



Meinen Eltern,
denen ich so viel verdanke

For my parents,
to whom | owe so much

Structural Summaries as a Core Technology for Efficient X Mdtrieval VIl



Acknowledgements

During the three years of Ph. D. work and before, | have emjdlye support and encourage-
ment of many great people. First of all | would like to thank bsloved wife Marion, who
has helped me in so many different ways, as well as our fasraliel friends, in particular my
parents who made all this possible.

Among those who directly contributed to this work, my warbtdanks go to my supervi-
sor and mentor Klaus U. Schulz. For nine years | have benédfiadyour scientific expertise,
open-mindedness, objective judgement and patient gugdascwell as an admirable unify-
ing perspective from the broad vision down to the precisaitdetf ideas. Working with and
learning from you was a great pleasure. | am equally gratefaty supervisor and mentor
Francois Bry, who initially aroused my interest in XML, fais strong support and helpful
advice during the past five years. With your sense of goodsidea productive research,
you have provided me and many others with a stimulating wagylénvironment. | would
also like to thank Gerhard Weikum for serving as externaésuigor, as well as for judicious
comments and interesting discussions. Further thanks Has-Peter Kriegel, Hans Jiirgen
Ohlbach and Christian Bohm for reserving time for the oxareination.

This is also the place to express my gratitude and considargiven that so many col-
leagues and friends contributed good questions, inspidags and helpful criticism to my
work, both at the Centre for Information and Language Prsingsand at the Department of
Computer Science at LMU Munich. | have learned a lot from ygardhe years. My spe-
cial thanks go to Holger Meuss, Tim Furche and Dan Olteanisol thank Franz Guenthner,
Levin Brunner, Eduardo Torres-Schumann, Andreas HauseistGph Ringlstetter, Clemens
Marschner, Uli Reffle, Annette Gotscharek, Thomas Schafer Norbert Eisinger. | have
very much enjoyed the insightful discussions with Christéfmch and Georg Gottlob (then
Technical University of Vienna), Thomas Rolleke and Maubhalmas (Queen Mary College
London), Torsten Grust (Technical University of Munich)daRalf Schenkel (Max-Planck-
Institute for Computer Science Saarbriicken), who alseigeal me with his XML version
of thelnternet Movie Databaseollection. Wolfgang Lindner and Martin Sachenbacherr{the
MIT) shared their experience about postdoctoral studiésnk you all for your support. Of
course this work would not have been possible without thenfirzd support by the German
Science Foundation (DFG) through the research grants S@26/2-3,5. Other work dur-
ing my Ph.D. was partially funded by the European Union indbetext of the REWERSE
European Network of Excellence (IST 506779).

Felix Weigel
Munich, December 18, 2006

VIII Felix Weigel



CONTENTS




CONTENTS

K61 StorageConsumptlon. . . . . . . . ... ... 57
k6.2 FEfficiency of Decision and Reconstrudion. . . . . . . . ... ... ... ... 59
K63 FEfficiencvofQueryEvaluatibbn. . . . . . . . . .. . ... ... 61
W64 Updatabilily . ....... ... .. ... 63
W7 SummaryandDiscusslon . . . .. 64
K8 Optimizations and Open Probl@ms . . . . . . . . ..ot 66
llL_Index Structures for XML | 69
&__Index Structures for Structured Documents . . . . . ... L 71
EL Overviel . ... ... 71
B2 lnvertedFilds . ... ... ... ... .. 71
B3 AtomicPathindexilg . . . . . . ... ... ... 72
BE31 InvertedPathFiles . . ... ... .. ... ... ..., 73
B32 PathBitmaps . . . .. ... ... 73
B4 CompositionalPathindexing . . . . . . . ... ... ... 74
B41 DataGuidd ... ... .. ..., 75
B42 IndexFabrid . . . . . . .. .. 76
B.43 Signature File Hierarchd . . . . . . . . . . .. .. ... 76
B44 Tinded . ... .. 77
B5 Treeand Graphlindexing . . . . . . . .. .. .. ... 77
B6 SummaryandDiscusslon . . . .. .. 78
E__The Content-Aware DataGuide (CADG) . . . ... ..................... 81
Bl Overviel . ... ... . 81
6.2 Materialized Join of Contentand Struckure . . . . . . .. ... 81
6.3 Keyword-Driven Path Matchihg . . . . ... ... .. ... .. ... ......... 82
631 Signature CADG(SCADGY . . . . o v vt e 82
B32 Inverted File CADG(ICADGY . . . o o o o v e e e e 83
6.4 Experimental Evaluatibn . . . . . . . . . . . e, 84
6.5 _Summaryand Discusslon . . . ... 85
lv__Relational Storage of XML | 87
[z__XMI| Retrievalin Relational Database Systends . . . . . . . . . ... ... 89
B Querviel ... ... 89
[2.2_Classification of Storage Schelnes . . . . ... ... ... ... . .......... 89
23 Nodelndexidg . ... ....... .. ... 90
Eal Eded . ... 90
32 XPath Accelerato] . . . . . . . 91
233 STORED . . . . . . o e 91
4 Pathindexidg . . . ... ... ... . ... 91
41 _AomicPalhindexing WitRel . . . . . . o oo 92
242 Compositional Path IndexingwiBiAY . . ... .. ............... 93
5 SummaryandDiscusdlon . . . ... 94
E_TheRelational CADG (RCADG] . . . - -« o o oo e 97
Bl Overviel .. ... ... 97
B2 TheRCADGStorageSchethe . . . . . . . . . . . .. . . .................. 97
B2_RIRD Revisited: Reconstruction and Decision in the RPBS 99
B4 QueryFvaluationwiththBCADA . . . . . . ... ... ... .. 101
B.41 Schema-levelQuery ReWrting . . . . . . . v vt vt e e e 102

Felix Weigel



CONTENTS

B42 Schema-levelMatching . . ... ... ... ... ... ... 105
B43 Document-levelQueryRewritlng . . . . .. ... ... ... . ........ 107
B44 QueryPlannifg . . . . . . . . .o 108
B.45 Document-levelMatchihg . . . . . . . . . . . .. . e 112
B46 Computingthe FinalQueryRebult . . . ... ... ... ... ......... 116
B5 ExperimentalFvaluatbn . . . ... ... ... ... . ... ... .. ... . ..., 118
B51 TestSystels . . . . . .., 119
B52 RuntimePerformadce . . ... ... ... ... ... .. ... 120
B.5.3 _Impact of Query Planning and Optimizakion 123
BS54 StorageRequiremdnts . . . ... ... ... ... ... e .. 124
B.6 SummaryandDiscusslon . . . .. ... 124
B7 Optimizationsand Open Probl@ms . . . . . . . . . ...t 126
IV__Caching Techniques for XML/ 127
[0 Caching Techniques for Incremental XML Retrieval . . . . . ... ... .......... 129
BT Querviel . ..., 129
2 XMI Query ContainmentandQvedap . . . . ... ... ... ... ... 130
.3 Complexity of XMI Query Containmednt . . . . . . . . ...ttt 132
B4 XMl QueryandResult Caching . . . . . . . o oot v it 132
B41 IncompleteTrales . . . . . o 132
042 HiCached. . .. ... . .. ... 133
043 Prefix-Based Containmlent . . . . . . ... e 134
Baa ACEXQ ... ... 135
.45 Caching Based on Access Frequehcies 136
B46 Asod . . .., 136
b5 SummaryandDiscusdlon . ... 136
(10 TheRCADG Cache for XMI QueriesandResultd . . . .. ... .. ............ 139
EOT Overviel . . . . . . 139
102 Schema Information in tFRCADG Cachd .« .« v v v v v v e e 140
021 ASimpleExamdle . . ... ... ... ... ... . ... .. .. ... . ... 141
022 TheGeneralCdse . . . . . . ... ... . . . . . . .. ... ... 142
[10.3 Intermediate Query Results in tREADG Cachd . . . . . . . ... ... ... .. .... 144
[L0.4_Exploiting Containment and Qverlap with READG Cachd . . . . ... ... ... .. 146
[L0.5 Incremental Query Evaluation with tREADG Cachd . . . . . ... ... ... ... .. 146
051 Storing Queries intHRCADG Cachd . . . . . . . . . oo v v i 148
1052 Retrieving Cache Contdnts . . . . . . .. ... ... ... .. ... .. 148
[10.5.3 Deciding Schema-Hit Containndent . . . . . ... ... .. .cocee oo ... 150
054 RemainderQueryPlanding. . . ... ... ... ... . ... .......... 157
006 Experimental Evaluatbn . . . ... .. ... .. . . e 159
[L0.6.1 Cost and Benefit of Evaluating Queries withREeADG Cachd . . . . . . . . . . 160
062 Small-Scale Experimbnt . . .. ... ... ... ................ 160
063 large-ScaleExperimbnt . . . . . ... ... ... ... . ... 161
10.7 Summary and DISCUSIFON . . . . . o v e e e 164
108 Optimizations and Open Probl&ms . . . . . . . . . . ..o v v o 165
IvI__Conclusiod 169
L1 Summary and DISCUSSIAN. . . . . . o o o o 171
Structural Summaries as a Core Technology for Efficient X Mdtrieval XI



%ﬂaﬂk .................................... 175
Nt 175
122 Eurther Applications of Structural SUMMANES . . . . oo e v o e e e 176
221 RelevanceRanking . . . . . . . . . . . .. . ... ... 176

(222 Userlnteractibn. . . . . o o oo 177

Il Appendix| 179
3 Experimental SEt-UP . . . . . o v o e 181
[31 Hardwareand Softwhre . . . . . . . . . 181
E32 Document Collections .« .« « o« o o o e e 181
[14_Comparative Performance Evaluation of Five | abelling Shemek . . . ... ... ... .. 183
Backmattel 186
Mded . . . . 187
Bhlographd . . . . . . . oo 193
LsiofEigured . . . . oo 203
LSofTabled . . . . . o o 205
Listof Algorithmsl . . . . . .. . .. 207
Listof Definitiond . . . . . . . . . . 209
Osoflemmatd . . . . . o o o 211
[Bhoutthe Authad . . . . . . . . 213



Part |

Introduction






CHAPTER
ONE

XML Retrieval

1.1 Motivation

The Extensible Markup Language (XMIXML] has by now become widely accepted as the standard
markup language for modelling, querying, exchanging andrgj a broad range of semistructured data
with different characteristics. At the one end of the speutrthere are text-centric documents with only
little explicit structure that is worth querying, such asbagages, Wikis, Blogs, news feeds, e-mail and
FAQ archives. At the other end of the spectrum, we have ratitabase-like XML content with a far more
rigid and meaningful structure and little text, such as piidcatalogues, tax payer’s data submitted via
electronic forms, bibliography servers, address books, segvice descriptions and even scientific sensor
data. In between those two extremes, XML is perhaps most aoriynused for a wide variety of data
which is truly semistructured, having a more or less compladt irregular structure that adds significant
information to the rich textual content. Examples are doent® in digital libraries or in the database
of a publishing house, articles in electronic encyclopgdam-line manuals, technical documentation in
corporate intranets, linguistic databases containinggghfragments of natural language, and scientific
taxonomies or ontologies that formalize domain knowledge $tructured way.

While generic markup languages for semistructured dath asaheStandard Generalized Markup
Language (SGMUEGMI] have been used already for a long time, most notab#pitcument management
and publishing, it was only the adoption of XML for the WoNuide Web that has made the semistructured
data model so popular for all kinds of businesses and apijolita Given a steadily growing entourage of
complementary specifications, standards and tools thegrftse creation, retrieval and manipulation of
large amounts of XML data, the community has long since abaed the often-cited toy collections of
the early dayd[[BosakT9P9] that contained a few kilobytemahually marked-up poetry, facing today
the many gigabytes of real-world XML data in productive syss. In other words, now that such a large
number of people using such a large amount of data are cawithat XML is a good choice for their
purposes, efficient and scalable retrieval techniques teeleel developed in order to prove them right.

1.2 Approaches to Efficient and Scalable XML Retrieval

Trying to tackle new problems with existing solutions is btntommon and sometimes even the best strat-
egy. Moreover, given that XML is partly used for content whis close to either flat text or completely
structured data, it seems natural to find out how far one camg@é&VL retrieval using traditional Infor-
mation Retrieval (IR) engines or relational database sys{@&DBSs). On the one hand, these two options
have the advantage of relying on rather mature technologjiiding very efficient data structures and
algorithms. On the other hand, both approaches suffer fremherent dichotomy between text and struc-
ture that is characteristic of XML, incapable of supportthg two simultaneously to the extent needed.
Neither the highly structured relational model nor the wrdtired flat-text data model can fully capture
a rich XML hierarchy. In order to fit the relational model, thierarchical, irregular structure of XML
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1.2. APPROACHES TO EFFICIENT AND SCALABLE XML RETRIEVAL

data must first be broken down to tuples with a suitable schamé then efficiently restored from sets
of tuples at runtime. Even simple queries involving nestiednents, possibly with interwoven text, are
not fully grasped by SQL'’s string matching capabilities egular expressions. Analogously, IR systems
need a more expressive data model than linear full-textpe e@dth the hierarchical nature of XML. Early
IR-inspired approaches to structured text retrieval, @agRAT expressiond[Salminen and Tompa 1992]
or theRegion AlgebrdlConsens and Mo 1994], only partially overlap with todaguery languages like
XQuery[RQuery] andXPath[XPaif].

Therefore the development of dedicated XML retrieval systdas received much attention. They are
most commonly referred to amative(i.e., structured-preserving) systems, as opposed tdyprglational
approaches anbybrid systems that combine the former two. Native XML retrievagiees are built
on top of a tree or graph data model such asRieeument Object Model (DOMBOM] or the Object
Exchange Model (OEMPapakonstaniinou et al. 1995]. Native XML systems aregesi to capture the
nature of the data as closely as possible, unlike relatidatbases or flat-text IR engines where on the
contrary the XML data must be adapted to the nature of theesysiA wealth of tree- or graph-specific
data structures and algorithms have been devised to thisTéed fall into three categories:

1. structure indices index structures for retrieving instances of specific @@$ag patterns in the
document$, partly inspired by earlier work on query optimization injedt-
oriented database systeins

2. labelling schemes methods of assigning XML elements unique identifiers thratoele certain
structural relations (e.g., nesting or document ordesybeh these elemefits

3. structural joins join algorithms that operate on sets of XML elements to finstances of
more or less complex tree or path patterns, such as twigseiddcumenfs

Structure indices are often callstructural summarie# the literature. In this work we deliberately
generalize this term to subsume not only structure indlmgtsalso labelling schemes. This is to emphasize
that both benefit XML retrieval by providing a reference tastural properties of XML elements, which
therefore need not be looked up in the documents. More @igcige view structure indices agntralized
structural summariesi.e., global data structures where path patterns in theyoeen be matched, and
labelling schemes agecentralized structural summarijeshich allow to infer relationships between ele-
ments from information that is local to these elements. &many contributions in the distinct categories
are largely complementary, synergies arise from combistngcture indices, labellings schemes and join
algorithms for XML. In fact, most structural joins have badesigned with a specific labelling scheme in
mind.

Structural summaries in the above sense are not to be cahfvite so-calledschemaspecifications,
i.e., formal definitions of the document structure such asT® r XML Schema[XSDIl]. These are
grammar formalisms for specifying structural constrathtt must be satisfied by all documents of a spe-
cific type. Although structural summaries also represeatdthcument schema, their purpose is to reflect
structural patterns or properties that are currently esg@e in the documents. As a consequence, struc-
tural summaries may change in response to modificationseofiticument collection that introduce new
structural patterns. By contrast, when adding documerastilection that conforms to a specific DTD or
XML Schema, structural patterns that are not reflected thezalismissed for being invalid with respect
to the (fixed) document schema. In this sense the DTD and XMie®a formalisms arprescriptive
whereas the structural summaries we deal with heréeseriptive

INative XML retrieval systems include, e.g., those [by McHegal [ 199¥],[Naughton et al. [20p [ LT and Moon [2901],
oz eral 20 [ Fiehiy T al [0 JAGA0RT eV, and Paparzos e L 2003]

2Structure indices for XML have been proposed, among otheyGoldman and widom 11997 [_Mio and Suciu [1999],
[Cooper etar 2001 [ Kaushik et al. [2042p[, Jiang et alogi[Schenkel et al. [2094] afid Qun et ar. [2p03]. Chetereys some

of these approaches.

SIndex structures for object-oriented databases have bednfgward, among others, bJ_Berino and Kim [1989],
[Remper and Moerkotte [TOp [ Nestorov et a [1p97] as wek

4An overview of labelling schemes for XML is given in Chadi®r 3

SStructural join algorithms have been presented, e.g [ TBnget al. [2000L] [T and Moon [20p [ A-Rhalta et ar 12402
[Brtno eTar T200p [Chien etar [Z0pf], Jiang et al [AofEfust etal. 2008 Tam etal [20p§T. Chen et al. [2qopaetar T200%]
and{ T eTaL T700F).
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CHAPTER 1. XML RETRIEVAL

1.3 Goal and Scope of the Thesis

It is true that building a native XML retrieval system fronratch allows one to take full advantage of the
aforementioned native data structures and techniquesettawnow that scalability and retrieval efficiency
are major concerns, storing and querying XML data in an RDBarticularly tempting because (1) effi-
cient access methods and highly scalable storage methordsdtional data have been developed in over
thirty years; (2) query planning and optimization in theat&lnal algebra is well-understood; (3) RDBSs
are already widely deployed and offer key features for tlwlpctive use, e.g., concurrency, transactions
and safety. Replicating this functionality in a home-gravative XML database requires much work. On
the other hand, so far the benefits of native XML techniquesh @s structural summaries, seem hard to
reconcile with the rigid and flat relational data model. Intfalmost all approaches to XML retrieval in
RDBSs are more or less oblivious of the most efficient indgxnd labelling techniques for XML that
have been developed over the years.

The goal of this work is to show how innovative use of struatsummaries can contribute to very
efficient XML retrieval in native, relational and hybrid sgms:

e New native structural summaries are proposed whose pieparke especially valuable for efficient
and scalable XML retrieval.

e These structural summaries are shown to be easily combiitedtier structural summaries. We
jointly integrate them into a hybrid retrieval system, wlagserformance is thereby significantly
improved.

e The same combination of structural summaries is used inelyrelational retrieval system. It turns
out that the cost of migrating the native XML retrieval teijues to the RDBS is low, whereas the
benefit in terms of retrieval speed can amount to severareafenagnitude.

e We show that structural summaries are also a very effecte@ ®to locate reusable data in a cache
of XML query results. Adding cache functionality based omstural summaries to our relational
retrieval system again improves the performance by ordersagnitude.

The successful use of structural summaries for differenpgaes in different retrieval contexts illustrates
that structural summaries are much more versatile thaniwleatnmonly perceived. Especially the benefit
of centralized structural summaries for detecting quent@ioment and overlap in XML caching has been
largely ignored so far, as it goes far beyound their candni®a as mere structure indices. Also, the tight
integration of structural summaries with the relationaéiguengine that we achieve in our system is a
novum. It contributes to bridging the apparent gap betwegiveand relational XML retrieval.

Besides the aforementioned applications, structural sames are also very useful in two other re-
spects, which are only covered in a cursory way by this wogk Gectiofl2 in PALV1). The first applica-
tion concerns IR-based XML retrieval systems, which faegtvofold burden of adapting their storage and
relevance-ranking models to documents with a hierarcisicatture. Here structural summaries not only
help to increase the retrieval efficiency, but also provas fccess to different kinds of structure-specific
ranking parameters, like path frequencies etc., that aedetefor XML relevance ranking. Earlier work
[WeigeT et al. 20094; WeigeT et al. 200Q4b] has studied theebeof our structural summaries for both tasks
in combination with a variety of ranking models from XML Infoation Retrieval.

Second, it has been repeatedly pointed out in the literdiatein addition to being efficient and scal-
able, XML retrieval systems should also guide human usetdir quest for specific parts of the docu-
ments, whose structure they may not know a-priori. Thislehgk is clearly specific to structured docu-
ment retrieval, and not faced by flat-text IR or current welrske engines_Goldman and Widom [TP97]
recognized early that centralized structural summarieg)@bal representations of the document schema,
play an important role in making users acquainted with thecstire of the documents they are querying.
They proposed a graphical representation of the documbkatsz and selected samples of element content
that users could browse before starting to formulate qaei#sewhere[JWeigel 20P6] we argue that this
separate schema browsing can be tightly integrated with¢heal retrieval process and extended to cover
both the structure and the contents of the documents. THésgogorovide users with a highly interactive
and intuitive retrieval experience, where the borders betwschema browsing, query formulation, query
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1.4. STRUCTURE OF THE THESIS

evaluation and result inspection are largely blurred. Enaging users to interact with the system in such
a way of course makes sense only with a very responsivevatiémgine. Actually this was the initial
motivation behind our studies of XML caching techniquesichtallow to recognize previously computed
query results that can be immediately presented to the ngesponse to a new query. Since structural
summaries also play a role in this task (see above), theyalcgupport intuitive XML retrieval in two
respects: on the one hand, by providing users with a grajiejsgesentation of the document schema, and
on the other hand, by enabling a smooth continuous feedhgttielsystem during the integrated query and
browsing process that has just been sketched. Keeping id atéo the third benefit (namely, the support
for relevance ranking), one should indeed regard strukctunr@maries as a core technology for various
aspects of XML retrieval.

Finally, a few words on the limitations of this work are in erdFirst, our techniques are based on a tree
data model thatignores cross-references in XML documeihiish may be specified using eithEl/IDREF
attributes or XLink [XIInH] and XPointer[[XPainikr] constets. Especially the labelling schemes we
present make the assumption that every node in the docureer(eixcept the root) has exactly one parent
node. Second, as others before we deliberately employ aafagoery model instead of using XPath
or XQuery directly. However, our formalism covers the coeattires of most XML query languages,
including all thirteen XPath axes. Third, while updateste tlocument collection are discussed at various
occasions throughout this work, we assume that all data tqueeied is simultaneously stored in the
retrieval system at any point in time. In particular, thi€lexles distributed settings and the retrieval of
streamed XML data. Finally, several general databasessbiae also apply to XML retrieval systems are
ignored here. These include, e.g., concurrency and regaeress control and privacy, and versioning of
XML data.

1.4 Structure of the Thesis

As mentioned before, this work focuses on the role of stma¢summaries for improving the efficiency
of XML retrieval systems. The following parts of the thes@ver different aspects of this topic. PEIt Il
(pagelIV) presents various labelling schemes for XML, wisiehmarize the document structure in a
decentralized way. PafdIl (padel71) reviews differenteindtructures that all belong to the class of
centralized structural summaries. Fad IV (pigk 89) shows $tructural summaries can be used for
XML retrieval in relational database systems. Bart V ({2g8) Heals with caching techniques for XML,
including a novel approach to detect query containment &edap with the help of centralized structural
summaries. At the end of the thesis, Balt VI (dagd 171) suimesathe contributions made and concludes
with a brief outlook on other useful aspects of structurahmaries, namely, for enhancing XML relevance
ranking and the user interaction in XML retrieval systemigsally, a short appendix lists further details of
the experiments that were carried out as part of this work.

Each of the parts just mentioned comprises two chaptersfolloe/ing second chapter of the introduc-
tion compiles important preliminaries, including the datel query model to be used throughout this work
as well as th&@ hree-Level Model of XML Retrievtiat illustrates the use of structural summaries from an
abstract point of view. In Pafid Il [@V, the first chapter @ns a compact survey of contributions to the re-
spective aspect of XML retrieval that are representativéifat part of the literature. The second chapter in
each part then proposes a new approach to the same problemewAtontributions are explained in detalil
and evaluated empirically in extensive comparative expenits. We also highlight specific weakspots of
prior approaches that are addressed by the new solutiorelbasiopen questions that remain to be solved.
The two chapters in PII}/I contain a short summary and okitile® mentioned above. The appendix also
consists of two chapters, one listing technical parameteise experimental set-up and another supplying
a detailed analysis of our experiments with different labglschemes.
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CHAPTER
TWO

Querying XML Documents using Structural Summaries

2.1 XML Data Model

As a basis for the XML retrieval techniques to be presentéaldé is convenient and common practice
to abstract from the XML serializatioRXML] and introducerre formal data model instead. Throughout
this work, we regard any (collection of) XML documents atogument tre¢disregarding cross-references
specified withID/IDREF attributes), which is defined as follows:

Definition 2.1 (Document tree) Let T be a finite alphabet of tag names.décument treés a finite or-
dered node-labelled rooted tree-B(V,r, Child, NextSibtag where V is the finite and non-empty set of
document nodes (elemertts) € V is the root of DChild C V x V is a binary relation such thaw, r, Child)

is an unordered tree with root NextSibC V x V is thesibling orderrelating a child to its immediate right
sibling (if any), andtlag: V — T assigns to each nodeaV atagtagv) € T. O

FigurelZ1 on the following page illustrates a single doconb®th in XML syntax i) and as a doc-
ument treeD ([@). For convenience, each nodelhis given a uniquenode label(the number inside
each node; ignore the precise labelling scheme for the mgmEmkeep the data model simple, multiple
documents in a collection are modelled as one largelreensisting of a newly created rootand the
individual document trees whose roots are childrem.®fIn the sequeln = V| denotes the cardinality
of V. The Child relation is assumed to exclude self-edges of the form) and multiple edges between
any pair of nodes iv. The sibling ordeiNextSibmust respect the XML document ordELTXIL]. For any
v,w eV, let distancév,w) be the number of edges on the unique path conneetangdw. Furthermore,
levelv) = distancér,v) denotes the vertical position efin D (and also the number ofs ancestors),
whereadip = maxcy {levelv)} is the height oD. Finally, letsizgv) be the number of descendantsvof
(i.e., nodes in the subtree rootedvirexcludingy itself), and letprg(v) (postv)) denote the rank of in a
left-to-right preorder (postorder) traverdaf D. Note thatprecoincides with the XML document order.

BesidesChildandNextSih there are a number of other binary tree relations relevarXfL retrieval.
The relations listed in Tab[eZ.1 on pdge 9 (first column) camemportant fragment of the XPath language
[XBai], similar toCore XPathas defined by Gotflob et al. [2006]. In particular, all thémeXPath axes can
be expressed in our data model. Ehild, NextSih Followingand their inverse relation®&rentPrevSib
andPrecedingrespectively), the closest XPath axes are given in thenstoolumn of TablEZ]1. Similarly,

1For simplicity, we treat the termdgocument nodandelementas interchangeable in the sequel. XML attributes and naavesp
nodes are treated analogously to elements, as shown later.

2This is common practice in the literature. Alternativelgcdment identifiers may be introduced to ensure that anyezienan
be mapped to the unique containing document, if needed.

3Throughout this work we assume that in any depth-first (aeompostorder, inorder) or breadth-first tree traversathenode
is visited exactly once. A different definition of depth-fiteaversal is sometimes encountered in the literaturee bBach node is
visited twice, once before and once after its descendariis.rdsulting two ranks of equal the token positions of its opening and
closing tags in the XML serialization. In the sequel, we reéethis double-visit depth-first variant as thembined pre-/postorder
traversalof the document tree.
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<?xml version="1.0" 7>
<people>

<person>
<name>Jeff Smith</name>
<profile> name gender
<edu>MSc</edu> "Jeff Smith" "Sue Lee" "female”
<sex>male</sex> "MSo"
</profile>
</person>

<person>
<name> Jill Lee</name>
<profile>
<edu>PhD</edu>
<sex>female</sex>
</profile>
</person>

<person> c. schema tre&for D
<name>Mae Lee</name>
<profile> 4G %0 4,
<sex>female</sex> w JTH #
</profile> é%gs %{i},ﬁ
</person>
d. x9 and its matches iD e. xQ and its matches i

<person>
<name>Sue Lee</name> a,

a() s
<gender>female</gender> w ﬂ &
</person> éﬁl#s =
</people>

a. XML serialization f. X?n and its matches ib g. XZQn and its matches ib

Figure 2.1: Different representations of a sample XML doentfg-R) and its structural summangy.
In e four schema hits for the queries in Figlirel2.2 on dade 10 anershalong with their respective

matches irD: ] matches t&@’ (Fig.[ZZal); 1 matches t@ (Fig.Z20); fHgy matches t@Q" (Fig.LZZC)).

Selfcorresponds to theelf axis in XPath.Siblingrelates all pairs of children of a given node, regardless
of the sibling order. This corresponds to the union of XPgiheceding-sibling,following-sibling
andself axes. Finally, given two nodesw € V, NextEl{v,w) (PrevEl{v,w)) holds iff w occurs after
(before)v in document order.

We also consider proximity variants 6hild, NextSih NextEltand their inverse relations. For any such
relationR, let Rl = << R' whereR' denotes thé-fold compositionRo- --oR of R. ThusRis equivalent
to R}. For convenience, the symbok™acts as a “don't care” upper bourfdAs shorthands, we write
R* for R andR™ for R;. For instanceChild* corresponds to the XPath axiescendant-or-self
and Child* to descendant. Furthermore, leR' be a shorthand foR!. Thus Child' (v,w) holds true
iff wis a descendant exactilyevels below, i.e., iff Child™ (v,w) anddistancév,w) =i. SinceFollowing
andPrecedingre already closed under composition, there is no natueaiaretation of similar proximity
variants for these relations. Instead, we defitle-Followingv,w) to capture the semantics of the XPath
expressionfollowing: : *[i], relatingv to thei-th membemw of the Following-image ofv (in document
order). The reverse counterpéith-Precedings defined analogously (in reverse document order).

The remaining XPath axes (namefttribute andnamespace) are modelled as combinations of

4For instance, one may assume thétrepresents any fixed value greater than the total numioédocument nodes.
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name description / XPath axis proximity variant o
transitive closure
Child(v,w) child Child' (v,w) Child™ (v, w)
Parentv, w) parent Parent(v,w) Parent (v,w)
NextSiHv, w) following-sibling NextSib (v, w) NextSib" (v,w)
PrevSiljv,w) preceding-sibling PrevSib(v,w) PrevSib™ (v,w)
Following(v,w) | following i-th-Following(v, w) n/a
Precedinfv,w) | preceding i-th-Precedingy, w) n/a
Selflv,w) self n/a n/a
Sibling(v,w) unordered sibling relation n/a n/a
NextEl{v,w) document order NextEIt (v, w) NextElt™ (v,w)
PrevEIl{v,w) reverse document order PrevElt(v,w) PrevEIt"(v,w)

Table 2.1: Decidable relations in the document tree.

the binaryChild relation and a seT = { ElementsAttributes Namespaceasof unary relations indicating
the type of any node € V (element, attribute and namespace node, respectively)cdrvenience, let
Root= {r} be the singleton relation containing only the readf D. Furthermore, as a counterpart to
the level function introduced before, we defii@vel C V as the relation containing all nodes on levels
i <I<j, with Levef} = Root Similarly, as a counterpart to titagfunction introduced before, we define
for each tag € T a relationTag C V containing exactly the nodes with tag These two relations are
needed for specifying queries against the document tregisenext section).

Finally, to model the textual contents of XML documents, veéirtk relationsContaing, Governg C V
for eachk in the setK of keywords occurring in the documeritsGiven a nodev € V, v € Governg
(“v governsk”) iff there is a textual occurrence & somewhere between the opening and the closing
tad of v. By contrasty € Containg (“v containsk”) iff there is a textual occurrence df somewhere
between the opening and the closing®tag v which is outside the pairs of opening and the closing tags
of all descendants of. Note that in the case of element nodes, government is a sagdsut insufficient
condition for containment. By contrast, for non-elemende® (which are leaves @ by definition) the
two relations coincide. For instance, consider the samptaichent tree in FigurE2Hl on the facing
page: here the node 25 contains the keyw@tD” . As a consequence, hode 25 and all its ancestdps in
(i.e., 24, 18 and 0) also govern that keyword. As a matter cif fae root node 0 in Figule2h governs
a couple of distinct keywords, but contains none. Note, vawehat any node is allowed to have both
children and textual content. In other words, the data misdixible enough to capture documents with
mixed content.

The type, level, tag, keyword and root relations togethekeng the sefR; of unary relations irD.
The relations listed in Tab[g2.1 constitute theXBebf binary relations irD.

2.2 XML Query Model

Based on the data model introduced in the previous sectiemomw define a concise query formalism that
captures the core features query languages for XML databaseh as XPath.Contrary to the XPath
semantics, the following definition permits queries withltiple result nodes. It also slightly extends the
concept ofconjunctive querieffGofflob et al. 200b] with tag and keyword disjunctions.

Definition 2.2 (Query) A queryQ is a triple (Qy, Qc, Q) where Q is a finite and non-empty set gliery
nodesQr C Qu is a non-empty set aesult nodesand Q is a finite and non-empty set gfiery constraints
of the formR;(q) or R»(q,qd’) such that all of the following conditions are satisfied:

5The rich data model underlying the XML Schema specificafGBIPd] defines a variety of data types for element content. For
simplicity, we ignore non-textual data types such as imeg#ates, etc. in this work.

80r opening and closing quotes yifs an attribute or namespace node.

“Advanced features of XPath and XQuefy TXOqery], such agtitem, functions and data types, are less tightly related to
structural summaries and therefore beyond the scope ofvtiris. Conversely, the query model introduced here sligbttiends the
text search capabilities of these languages.

Structural Summaries as a Core Technology for Efficient X Mdtrieval 9
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person
Parent,

Child

name edu sex name gend"ervse;,x
"female” Lee female
a. query@ b. queryQ c. queryQ"

Figure 2.2: Sample queries against the document tree orfhag# query nodes are regarded as result
nodes. Ifllandm keyword constraints denote containmenigrthe nodey] specifies a tag disjunction.

1. 69 €Qy;

2. Ry € Ry is a unary tree relation;

3. Ry € Ry is a binary tree relation;

4. the resulting query graptQy, Qc) is connected (but not necessarily acyclic).

Multiple keyword constraints on the same query node are ethds either conjunctive or disjunctive.
Multiple tag constraints on the same query node are impjicitarked as disjunctive. O

FigureZ2 illustrates three sample queries against thardent tree in FigurE2H] on pagdB. The
following two definitions specify which parts of the docunhrreD are relevant to a given query agaibst

Definition 2.3 (Matching) A matchingof a query Q= (Qy,Qc, Q) against D is a mappingig: Qu — V
such that all of the following conditions are satisfied:

1. () € Ry for each unary constrain®(q) € Qc;
2. (Uo(q), Mo(d)) € Ry for all binary constraintsRz(q,q) € Qc.

We also writeu instead ofug without ambiguity when Q is clear from the context. For a giweatchingu,
the u-image of Q is called amatchto Q in D. O

Definition 2.4 (Query result) Theresultor answerangQ) in D for a query Q= (Qy,Qc, Qr) is the set of
matches gi-images of Q) induced by all matchingg of Q in D, restricted to Q. O

Unless stated otherwise, we assu@e= Q, for any queryQ in the sequel. The answer @" in
FigurelZZX] e.g., consists of th@erson, name, sex and gender nodes in the subtrees, as, a4 of D
in FigurelZ0l (pagd®). The results of all three quer@s Q andQ" in FigurelZ2ZalHg are illustrated on
the right-hand side of Figur&€S 2l E1andf]Hmgy respectively.

2.3 Structural Summaries

While earlier XML test corpora comprised only a few docunsesitseveral kilobytes eachi JBoSak 1P98;
BasakT99P], nowadays XML databases must scale up to dolecbf many gigabytes which cannot
be expected to fit main memory. One way to ensure fast quelyai@n in such cases is to develop
efficient access methods and paging strategies for the dagostorage where the documents reside. For
instance[ Kanne and Moerkotie [2900] dnd Fiebig et al. [0@2e gone in this direction. Alternatively,
certain query constraints may be matched in the first plaaeagan approximation, aummary of the
document tree that is much smaller and can therefore besertasore efficiently (e.g., in main memory).
In a second step, the remaining query constraints are nwttihectly against those selected parts of the
document tree which were recognized as relevant in the fept s

This work investigates the use of various summaries of trmid@nt structure, oschemafor fast
query evaluation. The following general definition o$tauctural summangubsumes labellings schemes,
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some of which are presented in Chapfdrs 3[@nd 4, as well atslndices for XML, to be discussed
in Chapter§b anfl 6. We shall see later that combining diffesuctural summaries with each other and
with text indices enables highly efficient XML retrieval.

Definition 2.5 (Structural summary) Astructural summargfa documenttree D is a compact data struc-
ture from which specific structural properties of D can beeinéd without access to D itself. Structural
summaries can beentralizedor decentralized A typical centralized summary of D is a tree containing
information about the set T of tags occurring in D, the lewdlsodes with these tags, and the way they are
nested. Typical decentralized summaries include lalzeithemes that identify an individual node and its
tree relations in D using a limited amount of information tielocal to that node. O

One particular centralized structural summary, which Werr asschema tre¢hroughout this work,
is fundamental to many XML index structures. It was introelll@sDataGuide by[Goldman and WIdO
in[[A9]. As a preliminary notion, let thag pathof any noder € V be the sequencgag(vo)/ - - - /tag(v;) of
tags of all nodes = vp, ..., V; = von the path from the rostdown to nodev (i.e., whereChild(v, vi1) for
all0 < <j). LetP be the set of distinct tag pathsin Then the functiomr:V — P maps any nodecV
to its unique tag path iB. For instance, in Figule2H] 11(25) = /people/person/profile/edu.

Definition 2.6 (Schema tree) Theschema treéor a document tree D is the finite rooted unordered node-
labelled tree S= (P, 1(r), Child’, tag’) whose nodess€hema nod¢sre the tag paths in D and whose root
is the tag path of the root r in D. The functidag : P — T maps a tag path g Ptothe lasttagtc T

in p. For any two tag pathsipp; € P, (p1,p2) € Child’ C P x P iff there exists a tag € T such that

p2 = p1/t. If Child'(p1,p2), thenSibling’ C P x P relates p to all other children of p, if any (recall that S

is unordered). Finally, the function oc® — B(V ) maps a node p in S to the set ggrC V of nodes

in D with the corresponding tag path (itccurrences D). O

Figure[ZIc] on pagdB shows the schema tree Ebin Bl Duplicate tag paths i (such as, e.g.,
/people/person/profile) are represented only once & Every schema node is given a unique label
(number preceded by “#”), in this case simply its preordekren S. Since each distinct tag path
corresponds to exactly one nodeSnwe treat both as interchangeable in the sequel. For instahe
tag path /people/person/profile and the node labelled #3 Bare identical. The level of a schema
nodep is defined as the level of any of its occurrenceBinit is easily verified that this is unambiguous,
given that all document nodes with the same tag path resitfteeatame level iD. By contrast, since an
XML element may have both a child element and an attributh thie same name, there may be multiple
document nodes with identical tag paths but different types distinguish such nodes B we assign
each schema node a type from the 3et { ElementsAttributes Namespacésintroduced above. Any
document nodg is then represented by the unique schema node with the sgrpattaand type as

DefinitionEZ® mirrors some of the tree relations introdubetbre, but on the s&t of tag paths rather
than on the se¥ of document nodes as in Sectibnl2.1. TiTisld" corresponds taChild and Parent
to Parentand likewise forSibling’, Self and the unary constraints. Note that given a paiv, € V of
nodes inD, Child'(mi(v1), T1(v2)) is a necessary, but insufficient condition 8hild(v1,v,). For instance,
although #3 is a child of #1 i® (see Figur§ZZE]), not all person and profile nodes inD are par-
ent/child pairs (see FiguleZQ)). This results from the approximative nature of the streaitaummary.
Similarly, document order is not captured by the schema Wktching these relations against the schema
tree can only filter out some parts of the document tree whietgaaranteed not to match a given query,
while other parts need to be examined by accesBimirectly. The following key definitions distinguish
guery constraints that can be matched against the scheafaften those which must be checked against
the document treP (or a suitable representationDj:

Definition 2.7 (S-constraint) The set of onstraintdo be matched against the schema tree comprises
1. Parentand Child’
2. Sibling
3. Self

Structural Summaries as a Core Technology for Efficient X Mdtrieval 11
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4. type, level, tag and root constraints
5. Containg andGoverng  (approximate keyword constraints, see Chafler 6)

where i<j € IN. O

Definition 2.8 (D-constraint) The set of Bconstraintdo be matched against the document tree comprises
1. Parenteind Child
. PrevSib NextSiband Sibling
. PrevEltand NextElt

2
3
4. Precedingnd Following
5. Self

6

. Containg and Governg

where i<j € N and ke K. O

For matchingS-constraints against the schema tree, we defigeQ, — P analogously tqu (see
DefinitionZ3 on pagEZ0), and call the-images ofQ its schema hits For instance, the quei@" in
FigureZZZ]l on pagd has two schema hix§n andXZQn, shown in Figurep ZTHg (left-hand sides).
The first one,x?n, consists of the schema nodes #1, #2 and #5 which match ting mpeesqy, g5 andqs,

respectively. The second schema ,n, consists of the schema nodes #1, #2 and #6. In the example,
Q" has two schema hits because of the tag disjunction on the qeieq3. But even with unambigu-
ous tags, a query involving proximity bounds as irChild; might have multiple matchings iS. As an
example, assume that a nevditedBy node is added as a child of every document node below the root
in FigureZ70] on pagdB. Then each of the schema nodes #1-#6 in HIguod&alld have an addi-
tional editedBy child. Now if g3 specified the single tag constraieditedBy instead of the disjunction
gender V sex, Q" would have six distinct schema hits (whefewould be matched in turn by each of the
six new schema nodes).

Figure{ZTHm also illustrate how each matehe angQ") corresponds to exactly one schema hit
of Q" (namely, the one consisting of the tag patha)inGiven any schema hj for a queryQ, letansy(x)
denote the subset ahq Q) corresponding tg (its matchegor Q). We drop the subscript @answhenQ is
clear from the context. For instancans(xfn) = {ap, a3} (without the profile nodes) anahns(xgn) =
{as}, as shown in Figurds Zi}Hg] Note that some schema hits of a qu€rynay have no matches .

For example, a (hypothetical) schema hit consisting of thaess #1, #3 and #6 in FiguleZElwould have
no matches since there is ne@rson node inD with both aprofile and agender child.

2.4 The Three-Level Model of XML Retrieval

The following Three-Level Model of XML Retrievabmmarizes the role and the benefit of the document
schema in XML retrieval, based on the data and query modeddated before. Queries, schema hits
and documents can be viewed as residing on three distirgisle¥ abstraction which differ both in their
relation to the actual XML data and in their physical repreagon. This is illustrated in Figufe22.3 on
the next page. The topmost level (ifpeery levelis populated by query expressions as purely intensfonal
descriptions of some parts of the data (namely, those a siseterested in). FiguleZ.3 depicts the three
sample queries from FiguEE.2 on péigk 10; obviously theygeeel contains an infinite number of other
possible expressions, too. Queries are created and mataduh main memory (although they may of
course be stored on disk, e.g., in a query cache as describ@dapteZl0). On the bottom level (the
document levg] we have the extensiohsf these queries, i.e., their matches in the document tree. A

8By intensionwe mean an abstract description of data (e.g., query r¢sultsrms of desired properties (such as the structure
and keyword constraints specified by a query), whiteensiordenotes some representation of the existing data with sugegies.

12 Felix Weigel



CHAPTER 2. QUERYING XML DOCUMENTS USING STRUCTURAL SUMMAHRIS

person person Qn person
Child] profile Child Parent] Child;

name gendervsex
"Lee” "female”

VATRNENT =N

Figure 2.3: TheThree-Level Model of XML Retrievatlates queries (top level) to their matches in the
document tree (bottom level) and the corresponding hithédchema tree (intermediate level). The
sample queries shown here are taken from Fifie 2.2 on[phgenedocument matches and the schema
hits are the same as in FiguleSEHgyon pagdB.

mentioned before, the documents are held in secondarygstor@inally, the schema tree resides on an
intermediate level (thechema levglbetween the queries and the documents. It is typically lsemalugh
to be kept in main memory, but may also be kept on disk (e.geywvgored in a relational database system,
as explained in ChaptEl 8).

With this Three-Level Model of XML Retrieval and the definitis above in mind, the idea of XML
guery processing with structural summaries can be repthi@séllows. Given a quer® on the top level
in FigurelZB, we are looking for all matchingsmapping the query nodes @ to relevant nodes in the
document tre®d. However, matching query constraints directly on the buttevel means accessing a
large amount of data in secondary storage, which entailsresipe I/O and possibly joins. By contrast,
given the schema treé®we can match some query constraints @eonstraints) very efficiently in a first
step échema matching The resulting matchinggs select a number of schema hits on the intermediate
schema level as a preliminary extensiorQpfEach such schema hjtrepresents a seing x) of potential
matches, ocandidatesfor Q (recall that the schema tree is only an approximate sumnidmngaocument
structure). In a second stegacument matchingthe set of candidates is narrowed down to those which
also satisfy the remaining query constraintSQJr(the D-constraints). In this way we finally obtain the
actual query extensiceng Q).

Parts[dl andTll of this work elaborate on the details of thiegedure. Among other things, it is
shown how labellings schemes, the second type of structuramary, facilitate document matching on
the bottom level and thus complement schema matching omtieriediate level. In PV, the schema

Structural Summaries as a Core Technology for Efficient X Mdtrieval 13



2.4. THE THREE-LEVEL MODEL OF XML RETRIEVAL

level is migrated to the relational data model so that botheflower two layers reside on disk. In Fatt V
the schema-level information is used together with the yjirgensions on the top level in order to detect
containment and overlap of query results on the documest.lelinally, at the end of this work, we
will come back to the Three-Level Model of XML Retrieval onagain, when discussing the benefits of
structural summaries for result ranking and user intevadti Par{\].

14 Felix Weigel
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CHAPTER
THREE

Labelling Schemes for XML and Tree Databases

3.1 Overview

The previous chapter has introduced the notion of strucBinammaries as a compact representation of
selected properties of the document tBeeOne instance of particular interest is the schema treestimat
marizes all tag paths occurring D in a single central data structure. This chapter deals wittiferent
kind of structural summary that captures tree relationgvbenh document nodes. These structural sum-
maries are commonly referred tolabelling scheme$ Labelling schemes are decentralized summaries in
the sense of DefinitidiA.5 on pdgd 11. In other words, thennétion about tree relations between specific
nodes inD is not stored in a global data structure such as the schemabtrepart of the representation of
these nodes. The following definition stresses the dedesdenature of labelling schemes:

Definition 3.1 (Labelling scheme)A labelling scheméor tree encodingfor a document tree D is a de-
centralized structural summary of a specific set of treetietes in D. Each node in D is assigned a
(typically uniquenode labeko that any of these relations between nodes in D can be @tférom their
labels, without access to remote parts of D or to a global espntation of the entire document tree.[]

As an example of a most basic labelling scheme, considerstfigranent of consecutive integer labels
in a preorder traversal of the document tree. FifiurédBoh the following page (right-hand side) depicts
the preorder labelling for a small XML document shown in FeJdIal (left-hand side). It is easy to see
that the node labels (i.e., preorder ranks) encode two dféleerelations introduced in Sectionl?.1, namely,
PrevEltand NextElt(document order). In the following, Igirg(v) denote the preorder rank of a document
nodev. Given two nodes andw in D, we haveNextEIt] (v,w) iff preiv) < pre(w) and NextEIL (v, w) iff
i < (prew)— prgv)) <j, and likewise forPrevElt

With these formulae, a binary constraidextElfq,q’) in a query againsb can be matched through
some simple arithmetic calculations on the labels of pdssitatches to the query nodgsandg’. The
next subsection compares different ways to match queryti@nts by inferring tree relations through
the manipulation of node labels. In any case, to take adgaméa particular labelling scheme for the
evaluation of XML queries, several conditions must be §atis

e The labelling scheme in question must support the efficiaatthing of at least some of the allowed
guery constraints.

e Atindexing time, node labels must be created and storedspengly for all document nodes.
e During query evaluation, there must be a way to retrieve tteelabels of matches to query nodes.

e In dynamic settings where the document contents changediowerthe node labels must be kept up
to date.

1Synonyms for the terrrabelling scheméncludenaming schemenode identification schemeumbering schem@or a numeric
representation of tree relations), anele encodingon tree documents only).
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3.1. OVERVIEW

<?xml version="1.0" 7>
<book>
<title>XML</title>
<chapter>
<section>database</section>
<section>XML </section>
</chapter> "ML"
<chapter>

<section> _ _ section section” section] section’
<figure>/nformation Retrieval</figure> "database”  "XML" "index"
</section>
</chapter> figure Q)7
<appendix> ) "Information” "Retrieval"”
<section>index</section>
</appendix>
</book>
a. XML serialization b. document tre® with preorder labels

Figure 3.1: Preorder labelling of a sample document tree.

These conditions can be more or less easy to fulfill in a gietrieval system. Choosing a suitable
labelling scheme depends on a number of factors:

1. query language Which structural constraints are allowed? How is textwaaitent retrieved?

2. nature of the data  How large is the document collection? Are the documentgketerogeneous
in structure? Do they change often? If so, is the documenttsire affected
or mainly their textual content?

3. storage How are documents represented? Is it a native, hybrid latioaal system?
How much storage space is available?

4. retrieval How are document nodes retrieved? Which index structugeagailable?
Does the system use a centralized structural summary?

Labelling schemes differ greatly in how well they fit a givaregy language and document collection in the
presence of specific storage requirements or retrievalradeking techniques. The following list includes
the most salient properties of labelling schemes that reebd teconciled with the demands and constraints
of the retrieval system:

1. expressivity Which tree relations can be inferred from the node labeld,ia which way?
2. efficiency How fast is the manipulation of node labels during queryeigon?
3. storage How much space is occupied by the node labels on disk and mang

What is the average and the maximal label size?

4. robustness How are the node labels updated when documents changet&@lchanges
affect a large number of labels?

SectioZZP below rephrases the question of expressivigyritore precise way, introducing two dis-
tinct ways of matching non-unary query constraints thaf@mdamental not only in the context of labelling
schemes, but also for all following contributions presdritethis work. The rest of this chapter reviews a
number of different labelling schemes from the literaturd aompares them in terms of their expressivity,
efficiency for query evaluation, storage demands, and tabss against changes to the document collec-
tion. We explain representative approaches from threandistlasses of labelling schemes in detail (see
Section§313 th=35). The classification is based on fundgahgrinciples underlying the different labelling
procedures. The final comparison in Secfion 3.6 also higtdigome open problems and possible optimiza-
tions. To illustrate the great diversity of labelling schesithat have been developed over more than twenty
years, we explicitly include references to many approattesare not reviewed here. A more exhaustive
survey of labelling schemes for XML and tree database iseatily under way[[Weigeland Schulz 2907].
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CHAPTER 3. LABELLING SCHEMES FOR XML AND TREE DATABASES

3.2 Reconstruction and Decision of Query Constraints

It has been mentioned before that the core functionalityusrg languages for XML databases, when

abstracting from language-specific details, is typicaliptared by unary predicates (e.g., node tests in
XPath) and binary tree relations. Accordingly, the datagunely models introduced in Chaplgr 2 comprise

a set of unary and binary tree relations that are used tofgp@ry constraints to be matched against nodes
in the document tree. Algorithms for evaluating XML queridésuch kind can choose from a spectrum of

different strategies, with the following two extreme pasis?

1. We may use the unary query constraints to fetch a set ofdaiedmage nodes for every single query
node. In a second step, pairs of candidates from distinstaset combined using structural joins,
which amounts to solving a decision problem for the treetiaiaspecified by the corresponding
binary query constraint.

2. Since candidate sets for unselective unary constraambe very large, we may alternatively fetch
only the candidate sets for more restrictive query nodes, @uery leaves with selective keywords).
Given the matches to these nodes, candidates for other qudgs are computed from their labels
in memory, without further I/O taking place. This requirbe tise of a suitable labelling scheme.

The latter option is particularly interesting for binaryaonsR that arefunctional i.e., where the se&®(v)

of R-successors of any given document ngdentains at most one node. Examples of functional relations
include ParentPrevSiband NextSih as well as any composition of these. The same applies tiboomredaR

that are selective in the sense that database nodes tygieakt only a small set of possibfesuccessors.
These are, e.g., the transitive or reflexive-transitiveutes ofParent PrevSibandNextSib Given a query
containing a constrain®(q,q’) on two query nodes, d for such a relatiorR, if we already have a small
candidate set fog, then the second option permits to compute all relevantidates forq' efficiently.
Especially when the unary constraints@rare weak, obtaining a consistent candidate seqfamdq’ via
decision instead might be costly.

In this section we extend the query model presented in S€2Ibwith some additional constraints in
order to capture the aforementioned differences in how tatiing is realized. For each tree relatign
in TablelZZ) on padd 9, 16B%: V x V — {0, 1} be a binary Boolean function such that for any pair
of document noded 2%¢(v,w) = 1 iff R(v,w) holds true. To computé2®(v,w) one obviously needs to
know the labels of botk andw. In addition, for each functional tree relatiét(e.g.,Parenbr Parent) let
fReC: vV — V be a unary node-valued function that computes exactly tiguerR-successor of a given

document node. ThusRee .(v) returns the only elememt for which Parenf(v,w) holds, namely, theth

ancestor of/ (if it exists). Note that for computingR¢Cit suffices to know a single node label, rather than
two labels as needed f6peC.

In the sequel we refer to the computationf&FC as thereconstructionof R and to the computation
of F2e¢ as thedecisionof R. Among the many labelling schemes described in the liteeatlecision is a
much more common feature than reconstruction. In fact, @setfthat is able to reconstruct a particular tree
relationR (by computingf 39 can also decid® (sincef 2¢¢(v,w) = 1 iff fR®{v) = w). Clearly the inverse
is not true. Therefore the most expressive labelling sclseanethose with reconstruction capabilities (see
SectiorZZB). Later it will be shown that labelling schemapable of reconstructing some tree relations
indeed tend to expedite the whole evaluation process, cadpaschemes that only support decision. The
reason is that deciding a tree relation involves the fetghind joining of a second set of nodes (possibly
including false positives).

Table[Z lists additional query constraints symbolizihg teconstruction of different tree relations.
The counterparts ofarent, PrevSit and NextSib from Table[ZJL on padd 9 aymarent, prevSiB and
nextSiB, respectively. For instance, the functiparent is equivalent tof ,Fjaefen-!. Note that these are partial
functions because not every document node has an ancesibting at distancé. Furthermore, we con-
sider some functions which do not correspond to any of tharlgirelations in TablEZ211, but nevertheless

JVIcCHUgh et al. [T99B] discuss a number of different query @atibn strategies which are more or less close to either
of the two extremes. The strategies proposed By LTand Mooodp, [Zhang et al- [2091Grust [29o[_Bruno et al. [7P02],
PRAEITE Tal [2003], and CRERETar120p2] rely enfireon decision, whereds Bremer and Gerz [4004[ or Pal 67aDd] em-

ploy reconstruction.
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3.2. RECONSTRUCTION AND DECISION OF QUERY CONSTRAINTS

name description domain / range
parent(v) i-th ancestor of v (reverse document order) vV — V
prevSiB(v) i-th sibling left of v (reverse document order) vV — V
nextSiB(v) i-th sibling right of v (document order) V. — V
i-th-child(v) i-th child of v (document order) vV — V
i-th-cdv,w) i-th common ancestor of u and v (reverse document order) | VxV — V
Ica(v,w) lowest common ancestor of U and v VxV — V
sepLevelv,w) level of the lowest common ancestor of U and v VxV — N
distancév,w) number of edges on the path from u to v VxV — N

Table 3.1: Reconstructible relations in the document tree.

have come up in the literature. Théh child (from left to right) of an elementis computed by the function
i-th-child(v). Two binary functions reconstruct common ancestors of ergpair of elements. The first one,
Ica(v,w), returns the lowest common ancestovaidw (i.e., the last node in document order that is an an-
cestor of bottv andw). The second functiom;th-cgv, w), reconstructs a common ancestor of bogmdw

at a specific distande Note that since any two elements are descendants of thersiodtuootr, the func-
tion Ica always reconstructs an existing ancestor whereas the wéluth-camay be undefined for some
pairs of elements and a given paramétdihe level of the lowest common ancestov@indw is computed

by the functionsepLevelv,w) (for separation levelfPelegq 200p]), andlistancév, w) returns their distance
as defined in Sectidn3.1. Itis easy to see thistancév,w) = levelv) + levelw) — 2- sepLevel, w).

0. \parent!

a. tree relations to be decided b. tree relations to be reconstructed

Figure 3.2: Tree relations involving the nod¢hat are to be decided or reconstructed.

Figure[Z2 illustrates tree relations that might be decidedeconstructed for a fixed nodein the
document treed from Figure[37D] on pagdB. In Figule=3&) (left-hand side), each rectangular area
contains theR-image ofu for a particular relatiorR to be decided (i.e., all document nodes standing in
relation R with u). For instance, the root d is part of theParent -image ofu. Note how the images of
more general relations contain images of more specific dffass the root node is also partw$ PrevEIt"-
image, which contains th@arent -image and thé’recedingmage ofu. Such containment of tree relations
is interesting when analyzing the expressivity of labellsthemes. From the observation just mentioned,
e.g., one can conclude that a labelling that decPment andPrevElt" also decide®receding

Figure[Z20] (right-hand side) indicates which nodesDncan be reached by reconstructing selected
tree relations using the label of For instance, if a labelling scheme is capable of recoositrgparent,
then the label O of the parent ofcan be obtained from's label 5 without access . As observed above
for decision, support for reconstructing certain relasiamplies the capability for reconstructing others.
For instance, schemes that reconstpatent(v) also reconstrudca(v,w) andi-th-cgv,w), by iterating
the ancestor reconstruction of either node and interggttimresulting node sets.
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CHAPTER 3. LABELLING SCHEMES FOR XML AND TREE DATABASES

3.3 Subtree Encodings

The simplest labelling schemes (apart from ordinary pregpastorder) assign every nogen D a label
representing the subtr&, belowyv, as captured by the following general definition:

Definition 3.2 (Subtree encoding)The class oubtree encodingaubsumes those schemes where the la-
bel of a given document node v in D encodes the position arektkeat of the subtree [»f D that is rooted

in v, by means of offsets in the sequence of nodes resultingtfaversing (at least part of) the document
tree in a specific order. O

The most common way to obtain this node sequence is a preargestorder or combined pre-/postorder
traversat of the entire document tree, but not all approaches in tlaisscfollow that pattern. While the
exact representation of the subtrees varies accordinglgi¥en nodes,w in D Child™ (v,w) is always
decided by testing wheth&, containsD,.

The labelling schemes in this class all decide more or less#ime set of tree relations, but do not
support the reconstruction of the node neighbourhood (ab&[lZP on pageB9). The subtree encodings
reviewed below fall into three subclassesterval (or range) encodinggsee Sectiol=3.3.1) label every
nodev with the interval spanned by the smallest and largest pezaahks inD,. The second approach
(see Sectioi33.2) uses both pre- and postorder ranks teseay the subtree of a given node. In both
cases, only elements are labelled while keyword occurseaceignored. By contrast, a number of sim-
ilar encodings for structured text documents (see SeEl@@Bmodel subtrees as nestedionsin the
sequence of opening tags, closing tags and keywords forthnend ML serialization of the document tree
(see Figur&3 &l on pagdB). A fourth class that is omitted here contiEatencodingswhich resemble
interval-based schemes to some extgnt [Weigel and Sch0if] 20

3.3.1 Interval Encoding

Among the earliest labelling schemes that appeared in thatiure,interval encodingsvere originally
proposed for accelerating the routing in communicatiowoéeits. Especially the often-cited work by
[Bantoro and Khatib [19$5] has inspired a number of simplifi@dants for structured documents. In Fig-
ure[Z3 on pagER4 a couple of interval encodings are apmlittetsample document tree in Figlire Bl 1
on pagdIB.

Pre/Max. The scheme in Figule3d is sometimes calledre/Max. Here each node is labelled
with the intervall, = [prgv), maxv)] wheremaxv) = max{prgw)|w e Dy}. As shown in the figure,
Iy contain the labels of all descendantswfwhich allows to decide the&hild* relation as follows:
we haveChild* (v,w) iff prew) € 1.4 Furthermore, verify thaFollowing(v,w) iff prew) > maxv);
NextElt™ (v,w) iff prew) > pre(v); and likewise for inverse and proximity varianfS__Kannaalef1992]
sketch this scheme using postorder ranks.

Order/Size. Note, however, that when inserting new nodes into the doatitmeth the lower and the
upper bound of certain interval labels will need to be updaféherefore, nodes are often labelled with
their preorder rank and subtree size, from which the intetgfined above is easily inferred. This saves
the updating of the upper interval bound. The resulting swehedescribed b LTand Moon [2J01], is
commonly referred to a®rder/Size encoding in the literature. As can be seen in FigUréBod pagd2W,
for a given nodev with the label(prgVv), sizgv)), we havemaxv)=pregv)+sizgv) and thereford, =
[pre(v), pre(v) + sizgv)). [Chien et al- [2002] usBrder/Size in a stack-based structural join algorithm.

Extended Preorder. [Crand Moon]Z200]] also put forward a more robust variant o @rder/Size
scheme, calledExtended Preorder, which strives to reduce the impact of node insertions bgrmeasg
certain labels for future use. Others refer to this schemdussble node numberinfChien et al 2001;

3The combined pre-/postorder tree traversal is explaindédamote[} on pagh 7.
4ConceptuallyChild* (v,w) is decided by testing the interval inclusitg C 1y, but prew) € Iy (or, alternatively,maxw) € ly)
can be checked more efficiently and is equivalent when asgppnoperly nested interval bounds, as in well-formed XMculments.
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3.3. SUBTREE ENCODINGS

YU efal 200b]. The idea is simply to leave certain preordeks in theOrder/Size scheme unassigned
during indexing, which may then be used later for nodes némdgrted at the resulting gap positions.
Each noder in a tree encoded usirtéxtended Preorder is labelled with a paiforde(v), offsetv)) where
offsefv) > sizgVv). If offsefv) = siz€lv) thenordefv) = prgv) andExtended Preorder coincides with the
Order/Size scheme in FiguleE3 Greater offset values make the encoding nsparse which means that
more labels are available for subsequent node insertiomstelis no definitive algorithm in the literature
specifying which labels should be reserved for future ughigway. Clearly this depends on the nature of
both the documents and the updating workload. Fifurelds pag&2H illustratextended Preorder with
uniform gaps of size = 5 between any two (opening or closing) tags in the XML sex&ion (symbolized
by triangular subtrees). In this example, each ngda the complete sequenes,...,v,_1 of nodes in
document order is labelled with a pair of integkfs= (orde(v;), offsefv;)) such that

0 ifi=0
ordefvi) =< ordefvi_1)+s+1 if Parenfvi,vi_1)
ordefvi_1) + offsefvi_1) +s+1 otherwise

offsetvi) S if sizgvi) =0
7| ordefvj_1) + offsetfvj_1) + s— ordefv;) otherwise

wherej = max{l | Child(vi,v)} is the index of the rightmost chilg of v;.

SPaR. Due to its simplicity and (limited) robustnedsstended Preorder has been adopted in a number
of systems.[Chien et (T2 ZOAZ_2D06] apply the schemaltiversion document management.
Their Sparse Preorder and Range (SPaR) labels are pairédnr(v), rangév)) consisting of adurable node
numberand arange which are exactly therderand offsetcomponents described above.

3.3.2 Pre-/Postorder Encoding

The Pre/Post labelling scheme, proposed first py Dietz [TP82] and latefTBgkalidis [T98H], exploits
the characteristic nesting of XML elements to decide thesatr/descendant relation. Recall that enu-
merating all nodes in the order of their opening tags is exjeiv to a (left-to-right) preorder traversal
of the document tree, whereas visiting the nodes in the asfi¢heir closing tags yields a postorder
traversal. As shown in Figule=3d on pagd2l, thé’re/Post scheme labels every nodein D with

the pair(prgv), postv)) of its pre- and postorder ranks i It is easy to see thathild™* (v,w) holds iff
pre(w) > prglv) A postw) < postv). Intuitively, this is because in the (well-formed) XML salization,
elements nested withinare opened after the opening tagvaind closed before the closing tagvot

XPath Accelerator. [Z00P[2004] arranges the node labels in a two-dinseaspre postplane
spanned by the pre- and postorder rank®in Figure[ZZa] on pagdX¥ shows therdpostplane that
corresponds to the sample tiBén FigurelZ:d] on pag&2W. The root node Bf labelled with the smallest
preorder rank and the greatest postorder rari,ialways resides in the upper left corner of the plane. As
shown in Figur§34l Child ", Followingand NextElt™ as well as their inverse relations each correspond
to a particular area relative to the context nadé-or instance, the descendants/ef (6,5) all lie in the
shaded rectangle whose upper left corner representsmpare this to the formal containment test above.
Similarly, thePre/Post scheme decides the other relations as follogowing(v, w) iff prew) > postv);
NextElt™ (v,w) iff prew) > pre(v); and analogously for the inverse relations.

TheXPath Accelerator engine developed By Grust el 4L ZD027 A004] extdhds Post with level and
other information in order to decide all remaining XPathssiech aattribute Or preceding-sibling.
The R-Tree inde{IGuiiman T8 Bohm ef al. A000] is usechdex the points in the resulting multidi-
mensional pland_Crilst also explains how to derive a lowendonprew) and an upper bound gros{w)

5Note that the interval containment test for interval enngdiisnot applicable to thePre/Post scheme: as can be seen in
Figure[323] there may be inner nodegor which pre(v) > postv), such as the shaded nodwith the label(6,5). Deciding Child*™
based on the resulting empty interjatgv), postv)] would not reflect the fact thatdoes have descendants.
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CHAPTER 3. LABELLING SCHEMES FOR XML AND TREE DATABASES

for decidingChild™ (v, w), which restricts the search space spanned by the inegstdtsment above. This
optimization, callegshrink-wrapping exploits an interesting property of tifee /Post encodingf

Lemma 3.3 Pre/Post level/size dependency)or any node v in the document trgergv) — postv) +
sizgv) = levelv). O

Proof. Letay,dy,py denote the number of ancestor, descendant, and precedieg oév in D, respec-
tively. Note that the number of ancestors/a$ equal to its level, i.ea, = levelv). Similarly, dy = sizgv)
(see Sectiol211). Then we have

prev) = [{V|prev) <prev)}l = a+py
posty) = |{V'|postv’) < postv)}| = dy+py

FigurelZ2al on pagd2D0 illustrates the last equality in both lines. Wiih above observations develv)
andsizgv), it follows that

pre(v) — postv) + sizev) = ay+py— (dv+py) + SizeV)

= ay—dy+sizdv)
= levelv) — sizgv) + sizgV)
= levelv)

For all leaf node¥’, sizgV') = 0 and therefore Lemn{a’}.3 becomes
prelV') — postv') = levelV') < hp (1)

The final inequality follows from the definition of the heidi of the document treB (see Sectiofr211).
To obtain upper and lower bounds on the pre- and postordé&srahany descendamt of v, consider
the leftmost and rightmost leaveg, w; in the subtree rooted ia. (Of course, if no such leaves exist,
Childy (w) fails for any nodew € V.) Given the position ofy, andw;, the following facts are obvious:

postwr) < postv) (2) pre(wi) > pre(v) (3)

From ), [2) and1)d3), respectivelly, Giust infers thikofeing upper bound oprew; ) and lower bound
onpostw, ). Note that sincey has the smallest postorder rank andhe greatest preorder rank among all
descendants of, these bounds also apply to all other descendauatsyv:

prew) < prew) < postv)+hp (4)
postw) > postw) > prev)—hp (5)

Thus with shrink-wrapping, the decision 6hild™ is modified as follows:
Child™ (v,w) iff prew) € [prev), postv)+hp] A postw) € [prelv) —hp, postv)]

using [@) andb). To illustrate the benefit of this optimiaat FigurdcZZa]lon pag€=¥h depicts the restricted
area of theprdpostplane to be searched for descendants of the nedé6,5). Note that while shrink-
wrapping also applies to thehild, attribute anddescendant-or-self axes, there is no analogue
for the ancestor axis: for all nodess such thatParent (v,u), the lower bound opregu) and the upper
bound onpostu) are fixed by the document root which, by definition, has thellesizpreorder rank and
the greatest postorder rankn

While originally the XPath Accelerator engine was based dPre/Post encoding, subsequent work
by [Grustetar- 120g4] adopted a common variant of region dmgp(introduced astart/End encoding
below) which is more favourable to'BTree indexing and at the same time less sensitive agaim& no
insertions. Recently, they adopted tBeder/Size scheme[[Boncz efal. 2005a] and combined it with a
paging strategy[Boncz et al. 2005b] for further reducing tlost of updates. Besides shrink-wrapping,
Crustetal. [ZO0d 2008 20D4] discuss SBircase Joirand various other optimizations for the efficient
decision of tree relations in the two-dimensional node @Javhich aim to reduce the range of index scans.

6The proof is omitted in thEZ20D2 afd2ZW04 paperEDyBrust.
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3.3. SUBTREE ENCODINGS

v (4

[3,3] [4.4] [6,7] [9,9] {3,0» 4,0> <6,1>
[7.7] 7,0

a. Pre/Max b. Order/Size

v
3,0 42> €6,5

{7,4>

C. Extended Preorder d. Pre/Post

[1,3] [20,24]

"XML"
[2.2]

"database"  "XML" "index"
[6,6] [9.9] [22,22]

[14,17]

"Information" "Retrieval"
[15,15] [16,16]

e. Start/End

Figure 3.3: Selected subtree encodings applied to the decutree in Figur€3Il on pagdB. I3
shaded triangles symbolize subtrees of “virtual” nodes.
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3.3.3 Region Encoding

The third class of subtree encodings subsumes schemeséhatoviginally designed for structured text
databases. Modelling elements and text phrases as regianstiings) in the serialized document, these
schemes are most commonly referred toeggon encodingsUnlike thePre/Post scheme or the different
interval encodings described above, which assign labet$tb elements (rather than tags or text strings)
in a depth-first traversal of the document ti2eregion encodings are not tied to the notion of a document
tree whose nodes cover the whole textual extent of the dostundes a matter of fact, early approaches
like the PAT algebra by Salminen and Tompa [1P92] or Region Algebraby [Consens and MId 1994,
[[393{199B] abstract from the various ways to mark up stredtdocuments, assuming the set of (possibly
overlapping) regions to be somehow known at indexing tintes Takes them amenable also to structured
text documents with little or no explicit markup, such asgreon source code, Wiki documentapB=xX
files, or plain text that complies with specific formattingweentions.

The text-centric character of region encodings has two ichate consequences. First, since not only
elements but also occurrences of keywords (or phrasesabedidd, the encodings are sensitive against
changes to the textual contents of the documents. On the laéimel, proximity constraints on keyword
occurrences (which are a common feature of query languagéesxt databases) can be checked against
the labels. Note, however, that region encodings do notrattormation about the element distancelin
unlike the tree-based encodings discussed above.

Second, with their notion of independent regions which isengeneral than the tree model underlying
other subtree schemes, region encodings also captureppert) elements which do not contain one an-
other. Prohibited in well-formed XML, this “improper” néisy is common, e.g., in SGML documents and
multi-hierarchical corpora. However, it is easy to verifyat both thePre/Post and the interval encodings
described above can be applied to documents with overlgpgdaments (although this is typically not
considered in the post-SGML literature). This observasaronsistent with the fact that all three encoding
variants are essentially alternative representationseoposition and size of a node’s subtree.

Start/End. A number of region encodings have been developed over this,tha main difference lying
in the representation of regions and the correspondingegiire for deciding region containment (i.e.,
Child™ in our data model). One particularly common scheme, whiclhereceforth refer to aStart/End
encoding, labels every nodewith the intervall, = [star{v), endv)] spanned by the first and last visit
to v in the combined pre-/postorder traversal of the documeset tNote that each keyword occurrence is
now modelled as &xt noden its own right/ More formally, for each node in the complete sequence
Vo, ...,Vn_1 Of structure and text nodes in document order,

startv) = 0 if v; is the root
Y71 endviig)+1 otherwise

endvi) = startvi) if v; is a text node
Y startvi) + size(vi) + 2- siza(vi) + 1 otherwise

wheresizg(vi) andsize(v;) respectively denote the number of text nodes and struchaess below;.

The resulting labels are illustrated in Figlire&8n pagd2l. According to the first case in the definition
of endv;) above, each keyword occurrence has identical start and @sitiqms, whereas for a structural
leaf nodev denoting an empty element, we hasrdv) = star{v) + 1. (Occasionally structural leaves
are assigned identical start and end positions, [[oo [Habreet al 2003 Chen et al. 2005b].) The sec-
ond case covers structure nodes without children, and torsasf either text or structure nodes or both.
This is a straightforward generalization of definitions le titerature [Grusteial 20p4] which typically
do not consider mixed content. If nodes never have both teatséructure nodes as descendants, then

starfv;) if vi is a text node
endvi) = { startv) + sizdvi) + 1 if vi has text children
startv) + 2- sizév;) + 1 otherwise

“Contrast this with similar data models suchz&M and Infoset [[QfQS€El], where a text node may contain multiple
keyword tokens.
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Figure[ZZn] on pagdb depicts the two-dimensios#hriendplane for the document tree in Fig-
ure[Z=E] on pagdH. Note how all text nodedie on the diagonal wherstarfw) = endw). Below this
line the plane is empty sincgtarfv) < endv) for every nodev. The effect is the same fdtre/Max in
FigurelZ4dl on pagd b, where the diagonal borderline is marked by thetstal leaves (since there are
no text nodes in this encoding). Compare this togi@postand prd'sizeplanes on the left-hand side of
FigurdlZ g andg respectively), where the whole space is populated. Thisidewf Child™, Following
andNextElt"™ described for th€re/Max encoding above also applies to $tart/End scheme by analogy.
Thus we haveChild™ (v,w) iff startw) € Iy (or, alternativelyendw) € Iy), and so on.

3.4 Path Encodings

The largest and most diverse class of labelling schemesiosrdll approaches that create node labels from
the paths leading to the nodes they designate, rather tharsttbtrees as in the previous section:

Definition 3.4 (Path encoding) The class opath encodingéor prefix encodingssubsumes those schemes
where the label of a given node v encodes (at least some afipiies on the path from the document root
down to v, as a sequence sibling codesach uniquely denoting an ancestor of v on that path. [

We choose the termsibling codeto emphasize that for each step on the path leading downttee label
must specify in which subtree (i.e., below which of the silnodes lying ahead) the nodés located.
The full top-down sequence of sibling codes then uniqueadyidiesv. Due to their hierarchical nature, the
labels of any path encoding respect document order iff tletiying sibling codes do. This is true, e.g., if
siblings are simply assigned ascending integers fromdefght as withDewey encoding in FigurE3.8]
on pagd3lL. By contrast, schemes that use tag-specificgsitiites cannot decidéextElt™ (see below).
Creating node labels from paths has consequences regapding consumption, robustness, expressiv-
ity and runtime performance that differentiate path enegslifrom the subtree encodings described above.
First, the size of each label grows with the length of the éledath (®n) in the worst case). Therefore
path encodings typically take up more space than subtrexlergs, whose label size is in(@@gn). Some
approaches come with binary encodings of the “raw” siblindeesequences that reduce the label size in
practice, even though the asymptotic behaviour is not inguto Second, since a node’s label does not
reflect the size of its subtree, path encodings are inhgremitust against insertions in certain positions
(such as adding children to leaf nodes). Third, from the path nodev we can tell both the ancestors
and the descendants wf as follows. Since the root path to an ancestaf v is always a prefix of the
root path leading tw, Child*(u,v) holds iff the sequence of sibling codes that form the label & a
prefix of the sequence of sibling codesva label. The same is true for the binary-encoded node labels
provided the codes for any set of siblings are prefix&reEhus the decision o€hild* boils down to a
comparison of bit strings. Furthermore, by removing a sudfia specific length from the (raw or binary)
label ofv, we obtain the label of any ancestonofFor instance, deleting the last sibling code in the label
of v produces the label ofs parent node. This way path encodings support the reagsiiin of parent,
unlike all subtree encodings. As shown later, this makesddmental difference in query performance.
Path encodings fall into two subclasses. In contrastiiopath encodinggsee the next subsection)
where all ancestors of a node contribute to its lapektial path encodinggover only fragments of a
node’s root path (see Sectibn314.2). This reduces the &l but in most cases also the reconstruction
capabilities compared to full path encodings.

3.4.1 Full Path Encodings

Dewey. The most well-known path labelling scheme is certaiflgwey encoding, which is used in
the Dewey Decimal ClassificatioR JDIPC] for libraries and vedso adopted by the early hypertext search
engineHyTime [KIMDer 1993]. Dewey labels are assigned as follows. First all children of a giwede

8A set of binary codes iprefix-freeprefix-freéf none of the codes is a prefix of another code in the set.
9The labelling of nodes in a hierarchy with sequences of &rgsimilar to the section numbers in this paper, is cdlledey
encoding after the American librarian Melvil Dewey (185231), who used a restricted variant of this scheme for hisdyedecimal

Classification[DDT].
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LEVEL O LEVEL 1 BITS

15
1261 a.

'0000 0001 0000 0000 0000 0101"| 24|
'0000 0001|0000 0001 0000 O101'| 24

'0000 0001 | 0000 O101' 16| ¢
'0000 0001 | 0000 0001 0000 0O101'| 24

7 bits 7 bits

'0000 0001|0000 0101" 16| d.
'0000 0001 .0 0010 00 0101'| 24

= 7 bits =4 5 bits [~ 6 bits

=3 0 bits =3 2 bits
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! 111 0110 1° 15
Obits 8 bits

Figure 3.5: Different representations of tbewey labels, “1.5” and “1.261”, and their impact on deciding
NextElt™ (document order) g In the decimal form, document order cannot be checked iniadgraphi-
cal string comparison, but only numerically after levefjalinent. Rl With a fixed number of bits per level,
the labels compare lexicographically, but may occupy resstépace. Thus the second sibling code of the
first label has been left-padded with a zero-byte (8 leftrbiston level 1). ggLevels with a variable num-
ber of bits must be aligned (using separators) and left-pa#dth O’s (first label, level 1) for comparison at
runtime. @ UTF-8 byte prefixes (shaded) specify the length and valuge afithe following suffix (0’:

7 bits, valueg0..127); €110°+¢10°’: 5+6 bits, valueg0..2047 where[0..127] is unused). The prefixes of
the second byte in each label permit lexicographical corpamwithout alignment. Prefixes also indicate
level boundaries for reconstructiong1 The ORDPATH encoding is similar, but more compact for small
sibling codes {(01°: 0 bits,[1..1]; €10°: 1 bit, [2..3]; “110°: 2 bits,[4..7]; 11110°: 8bits,[24..279).

are given consecutive sibling codes in ascending order fedinto right, starting from 1, as illustrated in
Figure[Z@l on pagd3l. Th®ewey label of a noder is then simply the top-down concatenation of all
sibling codes on the root path ¥with a dot as separator between every pair of sibling codes.

Notice that this guarantees unique node labels and alsesatlo decide document-order constraints,
provided the labels are not compared as strings (where 11 \@6uld incorrectly occur before “1.5”) but
numerically and level-wise (see FigUledkh As[Tatarinov et al. [20(2] point out, this can be achieved
through two distinct types of binary label encoding: (1)o&ihting a fixed number of bits for each level
eliminates the need for separators, but may result in exedsbel size since the greatest sibling code on a
given level causes bits to be wasted in all labels with smailding codes on that level (see FiglreBl6
(2) The same level may occupy a variable number of bits inndislabels, depending on the corresponding
sibling codes in these labels (see Figlredd.5Two given labels for which the number of bits per level
is known can be split into corresponding sibling codes todrmagared numerically (by dynamically left-
padding the shorter sibling code witfs, if applicable).

[[atarmov et al. [2042] adopt this second option, using BT&s the variable-size label encoditfy.
Here sibling codes in the range..127 occupy one byte whereas larger sibling codes are resened tw
bytes. As shown in Figufe23d the sibling code boundaries in the binary label string cariniferred
from the leading bits in each byte, which are prefix-free. ¢tem query constraimiextElt™ (v, w) could be
decided by first cutting the binary labelswandw into sibling codes and then comparing them pairwise,
with left-padding where necessary. But since a one-byte-8TBde (which always begins with@ is
lexicographically smaller than any two-byte code (whos# bit is fixed to1), labels can even be compared
without aligning and padding sibling codes, in a simple senor bytewise) left-to-right comparison. This
speeds up structural joins of large node sets, where dodwmder tends to be checked very frequently.

10yTF-8 is the byte-oriented encoding form of the Unicode abtar encoding (Se@w.unicode . org).
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By contrast, deciding and reconstructing tree relatioheiothanNextElt™ (u,v) requires individual
sibling codes to be manipulated, which must therefore batéatin the (raw or binary) label strings first.
For reconstructingarent(v), the last sibling codes are removed from the labelofbviously one must
know the sibling code boundaries in the binary label to cHbthe right bit-string suffix. Foi-th-child(v),

a new sibling codé is appended to the label. Note, however, that while thidgi¢he label reserved for
thei-th child ofv, the existence of this child is not guaranteed. The sameaespal thei-th right sibling

of v, whose label results from incrementing the last siblingecod/’s label byi. Similarly, a decrement
produces the label girevSiB(v) (if the last sibling code was 1, tharhas no left sibling). The labels of
ancestors common to two given nodes (e.g.,/cau,v)) are obtained by reconstructing and comparing
the root paths ofi andv. The separation level af,v (see Sectiol21) is equal to the number of sibling
codes in the label of their lowest common ancedtau, v). Finally, distancéu,v) can be computed from
the level information that is inherent to the labels (sedi6erE3).

Deciding query constraints witBewey labels is done as follows.Child* (u,v) constraints can be
matched by reconstructing the ancestorsiahdv and testing for equality, or alternatively, by checking
whetheru's label is a prefix of/’s label such that the end of the former coincides with a l&eeindary in
the latter. Child' (u,v) is decided by comparing to the result of reconstructingarent(v). Sibling(u,v)
holds true iffu andv differ only in their last sibling code. FaNextSib" (u,v) Vs last sibling code must
be greater thamrs; for NextSib(u,v) the difference must be exactly Following(u,v) holds true iff
NextElt" (u,v) A -~Child* (u,v). Deciding the proximity relationsth-Followingu,v) and NextEIf (u,Vv)
would requiresizgu) to be known, which cannot be reconstructed fridewey labels (see above).

ORDPATH. The ORDPATH scheme bff O'NeIl et al. [2094] enhandeswey in two respects. First, the
binary label strings are created using a Huffman chde THAffmA5P] designed to reduce the (average and
maximum) label length. Note that sin@ewey assigns ascending sibling codes from left to right, small
sibling codes close to the minimum value, 1, occur much marquently than greater ones, at least in
typical documents where the average node fan-out is lowbiirey encoding proposed By O Nel effal.
reduces the number of bits used for small sibling codes,eatfpense of longer labels for nodes with
large sibling codes on their path. Figire Bl®n pagd3l depicts a sample tree with raw and encoded
ORDPATH labels. Each sibling code (separated BY is preceded by a length component (terminated by
“") indicating the number of bits used for the following siiui code valué? Values up to 7 take up less
space than with UTF-8 (see the value ranges in the captionfaturdZ3Ielon the preceding page); e.g.,
only 2 bits are needed for the most frequent value 1, compgar@its with UTF-8. For values beyond 24,
ORDPATH mostly requires more bits than UTF-8.

ORDPATH also comes with an update method, calédeting-inby [@NeIletall, which allows for
(theoretically) unlimited node or subtree insertions at position in the document tree, without affecting
existing labels. To this end, for a newly labelled documes# bnly odd sibling codes are used, as shown
in Figure[3] whereas even codes are reserved for future insertionsllas$. There are three cases of
insertion to be handled: (1) A nodes inserted as the only child of a former laaf Thenv's label is the
label ofu after appending an additional odd sibling code “1”. Foramste, a child to be inserted below
node “1.3.1" in Figurd=3.68] would be labelled “1.3.1.1". (2) A node s inserted as the new leftmost
(rightmost) child of an inner node Thenv's label is the label of the former leftmost (rightmost) chiv
of u after decrementing (incrementing) the last sibling code/slabel by 2. Note that this may create
negative sibling codes, which are also covered by the bieacpding. For instance, a newly inserted left
sibling of node “1.3.1" would be labelled “1.3.-1". (3) A ned is inserted between two adjacent childven
andw of u. Thenv's label is the label ofi after appending the even sibling codaiel) that falls between
w andw/, followed by a new odd code “1”. For instance, two new sibdimg,w” between “1.3.1" and
“1.3.3" would be labelled “1.3.2.1” and “1.3.2.3", respeety. Repeated insertions on the same path may
create labels with multiple consecutive carets, such &2R2.1" for another sibling betwesv’ andw”’.
Note, however, thaDRDPATH labels always end in an odd sibling code.

n fact, [@Neleral present two alternative encodingstifojzing large or small node fan-out), both of which are skew
toward reducing the length of smaller sibling codes. Dewiven here, in FigulEZ3& on the preceding page, and in the experimental
evaluation in Chaptdd4 apply to the second encoding.

12The bit-string separators™and “|” are used for illustration purposes only and are not preisephysical storage.
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It is easy to see that carets do not affect the decisioNeoftElt" (u,v) and Child* (u,v) (and hence,
Following(u,v), see above). Thus a bitwise comparison of the children aitideu = “1.3”in the previous
example correctly reflects the document order “1.31".3.2.1" < “1.3.2.2.1"< “1.3.2.3" < “1.3.3".
Also, all these labels are recognized as belonging to désees ofu, having “1.3” as a common pre-
fix. By contrast, when solving the vertical proximity probis Child' (u,v) or parent(v) (and similarly,
i-th-cdu,v) or Ica(u,v)) carets must be treated as zero-depth components that ddaod the proximity
counti. Similarly, Sibling(u, v) holds true iffu andv differ only in a suffix consisting of zero or more carets
followed by the last (odd) sibling code; fotextSib* (u,v) v's suffix must be bitwise greater thars.

Unlike Dewey, ORDPATH cannot decidé/extSib (u,v) because careting-in blurs the distance between
siblings. For the same reasd@RDPATH does not support the reconstructionmevSib(v), nextSib (v)
andi-th-childv). Note, however, that this decrease in expressivity is caosged for by much greater
robustness: witbRDPATH, a nodev can be inserted at any position in constant time, whereddYeivey
all following siblings ofv and their descendants must be relabelfed@his also outweighs the increased
storage consumption ARDPATH due to the sparse encoding. The overhead compar&iey is
not measured by the authors but turns out not to be dramataiirown experiments (see Chapligr 4).
briefly outline how careting-in can also be d@pglto a subtree encoding similarfee/Max.

Extended Dewey. While ORDPATH skips certain sibling codes to accommodate future nodetioss,

the Extended Dewey scheme by Tu et al- J20P5] uses sparse sibling codes that &dldetermine all tags
on the root path of a nodein D from its label. More precisely, every sibling codevis label is mapped
to the corresponding tag by a global data structure comigitiie necessary tag information frdn(see
below). In particular, for any tagoccurring inD we need to know itghild tags i.e., the seto, ... ,tg_1
containing allc; distinct tags of nodes iD whose parent has the tagFor instance, the root tagook of

the sample document in Figule_gJon the next page has the child tagstle, chapter, appendix,
henceCpoox = 3, Whereas chapter = Csection = Cappenaix = 1. Each set of child tags is assumed to be
ordered in some arbitrary way (a possible order is indichiethe tag subscripts in Figule_Lh.

Given an inner node in D with tagt and child tagdo,...,tq—1 (¢t > 0), sibling codes are assigned
to all children ofu from left to right (i.e., in document order), as follows. Ankild v of u with tagt;
(0<i < @) is assigned the smallest free sibling cede 0 such thas modc; = i. For instance, leti be the
root of the document tree shown in FigliteBl6én the facing page. Besides, tet book, tg = title,
andt; = chapter, tp = appendix. Thenthetitle child of u receives the sibling code= 0 in order
to meet the conditiosmod 3=0 for title children of abook node. The sibling codes for the two
chapter children of the root are not consecutive because both mtistysamod 3= 1. Therefore the
first chapter node has code 1 and the second has code 4 (the snsalielssuch thas mod 3= 1). The
sibling code for theappendix child happens to be the next free integer, 5 (for a secontle child it
would be 6 instead). As can be seen in Fidurec}.6xt nodes are also labelled, using the fixed sibling
code—1. The root label is the empty woed

For decodingExtended Dewey labels[TIIefal. use a Finite-State Transducer (FST), asrshoFig-
ure[Z7al on pagd=3 for the sample documénin Figure[ZX] on the facing page. The FST reads a
sequence of sibling codes and outputs the correspondirgetagence. There is one state for each distinct
label inD, plus one extra state representing textual cont®@eDATA in Figure[Z&). The inital state,
book, represents the root label . For each inner-node tagwith child tagsty,...,t;—1, there is a
transition fromt to t; (0 <i < ¢;) which accepts all sibling codessuch thas modc; = i, and outputs;.
Furthermore, from every state representing a tag thereranaition to thePCDATA state which accepts
the sibling code-1 and outputsPCDATA . To keep Figur€3Zd] simple, these are shown for theitle,
section and figure tags only. As an example, the label “4.0” of nodie FigurdlZ&]on the next page
enters the initial state, outputtinigpok , then passes through thithapter state because 4 mod=31, and
finally reaches thesection state since 0 modZ 0. The data needed to create the FSTOds obtained
from a DTD or other schema, if available, or else collected first pass through the documents, before
creating the node labels.

13Even thoughtORDPATH supports unlimited node insertions without invalidatingsting labels[O'Nel et al. [2004] suggest a
periodical relabelling at least for highly dynamic docurnesllections, in order to avoid long chains of even siblimgles caused by
repeated careting-in at the same position in the documeat tr
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Figure 3.6: Selected path encodings applied to the docutmesnin Figuré3.b] on pagdB.
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Path-Based scheme. The sibling codes used by tliewey-based approaches above set up a total order
among the children of any node. Therefore they cannot hamaidapping siblings to be found, e.g., in
SGML documents. By contrast, tliath-Based labelling scheme by Sacks-Davis et al. [IP97] establishes
a partial sibling order by assigning consecutive leftight sibling codes to all childrewith the same tag
name!* As shown in Figur€Z8l on the preceding page, siblings with different tag namesh(ss the
title and appendix nodes) may have the same sibling code (“1”) and hence idgtaicels (“1.1").

The consequences of using tag-specific sibling codes ageftid. First, thePath-Based scheme
supports overlapping siblings as long as they are diststgad by their tag name. Second, the labels do not
reflect document order, because of the partial sibling orBer instance, in Figule23@ the appendix
node has a smaller label than its left sibling. Only nodeé e same sequence of tags on their root
path can be compared. Third, since the numerical labelgaom not unique (see above), the tags of all
ancestors of a given node must be compared when decftfiig™ or Sibling Child* (u,w) holds true
iff u's sequence of sibling codes is a prefixwsé sequence and's tag path is a prefix oi's tag path.

For instance, let be the firstchapter in Figure[Z4d] on the previous page and Mtbe the section
labelled “1.1.2”, which is directly below. Without the second condition concerning the tag pathsef th
two nodesw could be mistaken for a descendant of thiet1e node or theappendix node because both
have the same label asnamely, “1.1".

To make sure that all necessary information for decidifigd* is available during query evaluation,
[Racks-Daviserdl. keep the tag paths together with the raddés in an inverted index. In each posting for
a given keyword (sayXML" ), the labels of nodes containing that keyword are groupetthély tag path
which is stored once for each group. For instance, #ML" posting for Figurd-3d] on the preceding
page would contain two singleton groups, one for the paihok/title (containing the label “1.1.1")
and another for the pathibook/chapter/section (containing the label “1.1.2.1"). Mind the redundant
storage of the path prefixbook , which can be avoided with other data structures (see thesusec-
tion). Also note that unlike elements, text nodes (eachesgnting a single keyword occurrence) have
consecutive sibling codes, in order to support text distaneeries. Thus the occurrence'Betrieval” in
Figure[3d] has the sibling code 2 for being the second keyword occugranthe figure node, not 1
for being the first occurrence tiRetrieval” in that node.

3.4.2 Partial Path Encodings

The uPID scheme by Bremer and Geriz [206] relies on tag-specifiingiltodes like thePath-Based
encoding above, and also has the same expressivity. Hoyienses several compression techniques and
a binary encoding for reducing the storage consumptiomlésafs. Given a tag patp in D, let thearity
of p be the maximum number of siblings with pathin D. First,[Bremerand Geltz observe that when
assigning tag-specific sibling codes0, all nodes with a tag path whose arity is 1 have the fixed code 0
For instance, consider the tag path- /book/chapter/section/figure that occurs only once in the
documenttre® in FigurdlZtelon the previous page. Since there are never two siblingshétpathp, the
arity of pis 1. For convenience, in FiguteEsERhe arity of any tag path is indicated as a subscript to the las
tag in that path (thusigure has the subscript 1). In fact, nodes whose tag path is ejtbesk /chapter
or /book/chapter/section are the only nodes ib whose subscriptis greater than 1 (i.e., whose sibling
codes are not fixed). All other sibling codes can be omittechfthe labels without loss of information
(see below), provided that (1) we record during the labgltime tag paths with an arity 1 and (2) we
know the tag path of every node. Recall from the descriptiothe Path-Based scheme above that tag
path information is required anyway with tag-specific sijlicodes, both for ensuring node uniqueness
and for decidingChild™ constraints. The following paragraphs explain howiR¢D scheme realizes the
two requirements that enable a very efficient label comjmass

In order to avoid the redundant storage of duplicate tag pagfixes, as with th@ath-Based scheme,
Bremerand Gerlz separate the node labels from the tag iat@mand keep the latter in a centralized
structural summary (in this casePataGuide). The summary for the sample documeénin Figure[3&l
on the preceding page is shown in Figirel@an the next page. EvefyataGuide node has two properties:
the arity of the tag path it represents (subscripts in Fiflif@l), and a unique path label (in this case,

14This tag-specific sibling coding is call&@hme-Sibling Order Encodirty [Tafannov et ar- 12042].
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Figure 3.7: Global data structures used by selected lagedichemes in Figule_3.6 on pdgd 34 The
Finite-State Transducer (FST) for tiketended Dewey scheme, applied to the document ti2en Fig-
ure[Z&] The input is a sequence of sibling codedimetermining a unique path in the transducer. The
output is the sequence of states (tags) along this pElStructural summary{ataGuide) for thepPID-
encoded tre® in FigurelZXe] DataGuide nodes have preorder labels. Tag subscripts specify thenmuaxi
number of siblings with a specific tag pathbin

preorder labels are used, although the particular lalgefiaheme does not matter). The label of a tag path
in the DataGuide is referenced by all document nodes with that tag path:ufi® label of a document
nodevin D is a pair(1(v), pogV)) where the first componentis the path label of the unigaiGuide node
representing the tag pathwafWith upward pointers in thBataGuide, the tags and arities along the entire
root path of any document node are thus available withoutnrddnt storage. The second label component,
pogv), is theposition pathof v, i.e., the sequence of non-fixed sibling codes’smoot path. For instance,
the nodev with the pPID label (#3,(1,0)) in Figure[3&] on pagd3L has the position path0) and
references thBataGuide node #3. Note that the corresponding tag path gfbook/chapter/section,
comprises three steps whergexv) contains only two sibling codes. This is because one of tkestors

of v has a fixed sibling code that has been omitted during lalggiirorder to save space. Obviously, we
need to know which code was dropped when usisdabel in decision or reconstruction operations. For
instance, we cannot compytarent(v) if we ignore whether the second sibling codepiogp) belongs

to v (in which case it has to be removed) onde parent (in which case it must be kept).

To align pogv) with the tag path represented lagfv), the arities ofDataGuide nodes are used as
follows. Fromri(v) = #3 and its ancestors in tii#ataGuide we can tell that the sibling code fols book
ancestor has been omitted: as indicated by the tag sub&ddptook in Figure[3A] the arity of the tag
path /book is 1, therefore thebook node inD has the fixed sibling code “0”. In other words, the original
position path ofv before the compression w8, 1,0) (compare this to th€ath-Based label (1,2,1) of
the same node in Figure[Z&] on pagdCAL}°> Given this information, the (compressa®ID label of
V's parent is easily reconstructed parent (v) = (#2, (1)), where #2 is the parent of #3 in tiataGuide
and(1) results from deleting the sibling code “0” @fin pogv) = (1,0).

The wayuPID decidesChild™ constraints is quite close to thath-Based scheme. Given thgPID
labels of two nodes andv, Child* (u,v) holds iff pogu) is a prefix ofpogv) and Child’ *(mt(u), rr(v))
holds true in théDataGuide. Note that the prefix test is applied to the compressed positaths, without
the need to restore omitted sibling codes. As a matter offtid labels are not even manipulated as raw
sequences, but as packed bit strings consisting of fixegtHdrinary sibling codes. No level separators are
used since the number of bits needed for the sibling codepaftaular tag patlp is fixed to the base 2
logarithm of the arity ofp, which is stored in th@®ataGuide. If Child’*(r(u), rr(v)) holds true, then the
sibling codes irpogu) andpogv) are prefix-free and the twoPID labels can be compared in their binary
form. Otherwiseu does not contaiv anyway. Moreover, given the lengths of sibling codes spetifi

15Note that the sibling code “0” in the last stepmigV) is not fixed — e.g., thesection node left ofv has code “1” — and hence
cannot be omitted.

Structural Summaries as a Core Technology for Efficient X Mdtrieval 33



3.5. MULTIPLICATIVE ENCODINGS

by the DataGuide nodes, the binary label of any noslecan be decomposed for reconstruction without
extra bits for length components or padding, as in Fifbo8.pagd2B. To sum up_Bremerand QJertz
show how the use of a centralized structural summary foirgfaglobal document information permits
effective compression and fast manipulation of node lahethe same time. In practigePID labels are
very compact (see the experimental results in Chdjpter thow@dh the worst-case label size is st 1D,

as for all path encodings.

3.5 Multiplicative Encodings

Finally, we would like to mention two labelling schemes wlacision or reconstruction capabilities are
based on arithmetic properties of node labels in trees whilgtaly regular structure, such as binary trees or
completek-ary trees. In such a regular tree, labels can be assignéasspecific relations between nodes
can be inferred from their labels alone, by simple numericutations. The idea is to find a mapping
from a given irregularly structured document ti2e¢o a regular tred®, such that some of the arithmetic
properties irD, carry over toD:

Definition 3.5 (Multiplicative encoding) The class oimultiplicative encodingsubsumes schemes where
the label of a given document node v in D numerically encoddsin tree relations involving v, without
direct reference to nodes in the neighbourhood of v. To thistee document tree D is (not necessarily
physically) mapped to an internal representatiop With certain structural regularities that generally do
not hold in D, such as fixed node fan-outs or subtree sizesseTiggularities entail arithmetic (typically
multiplicative) invariants on the labels of nodes i hat are in a specific tree relation. The mapping
from D to D, is such that tree relations between nodes in D can be decideztonstructed by exploiting
the invariants of their counterparts in O

Labelling with multiplicative encodings conceptually aives three consecutive steps. First, the doc-
ument treeD to be labelled is analyzed in order to determine a suitatitgnial representatioD, of D.
In the second step, labels are created for the nodBg irFinally, each node i is assigned the label of
its unique counterpart iD,. Note, however, that the labelling B, andD might happen simultaneously,
i.e., steps two and three may be merged. In fact, the muiéifie approaches reviewed below do not even
fully represenD, physically in memory or on disk. Once a suitable mapgrigom nodes irD to nodes
in D,y is found, they simple traverde and assign every node the label that it would havejn

It has been mentioned above that every multiplicative eimgpetlies on specific structural regularities
in D, to decide or reconstruct tree relationsin Since in most realistic casé® is not as regularly
structured a®,, however, not all desirable properties of the label®jncarry over toD. Therefore the
first of two major challenges in devising a good multipligatiabelling scheme is to find a way of mapping
anygiven document treb to an internal representati@y such that the desired expressivity of the scheme
is guaranteed. The second challenge concerns the storagerspeded for the resulting label®inAs will
become apparent in the rest of this section, the structagallarity ofD, typically cause$, to contain
many nodes that have no counterparDir(so-calledvirtual nodes a term coined bj Lee etal. [1T996]).
In more formal terms, the mapping from nodes inD to nodes inD, is generally not surjectivé® In
practice this means that a potentially large portion of #rege of possible labels is not used in the labelling
of D, being reserved for virtual nodes. Conversely, a much tar@ege of label values may be needed
for indexing a given document tré2than when using a less sparse encoding such asQedgr,/Size or
Pre/Post (see Sectiorls33.1 aRd3]3.2, respectively). On the otred,lihese labelling schemes are also
far less expressive than some multiplicative encoding® tfdde-off between expressivity and label size
is further discussed in SectifnB.6.

Virtual Nodes. The earliest multiplicative labelling scheme we know of haen proposed iy Tee eflal.
in[[398. We refer to it as th¥irtual Nodes scheme in the remainder of this work. As a very expressive
but also very space-hungry approach, it is a good examplbéoaforementioned trade-off faced by some
multiplicative encoding. Besides, the arithmetics beliitisl scheme is interesting in its own right.

16By contrast, the mapping clearly is injective because otherwise the node label3 would not be unique, unless they contain
extra components besides the labels fidp
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Figure 3.8: The multiplicative encodingrtual Nodes applied to the document in Figure-hlion pagdTB.
Shaded circles reached by dashed lines symbolize “virtuadies. Note the breadth-first label order.

When labelling a given document tr&using theVirtual Nodes scheme, the shape of the internal
representatiod, of D depends on thenaximal fan-outin D, i.e., the greatest number of children of
any node irD. In the sequel, lelip denote the maximal fan-out D. Once the value dfp is determined
(usually, in a first traversal of the document tré2)s mapped to &p-ary treeD,, as shown in Figule3-8.
Intuitively, D, is obtained by adding virtual nodes i for eachv in D, p(v) =v; if v does not comply
with the definition of akp-ary tree, the missing nodes are added as rightmost virhilren tov. The
example illustrates that the number of virtual node®jmay be exponential in the height Bfin the
worst case.

The nodes in thép-ary treeD, (including virtual nodes) are labelled with consecutiveeger num-
bers> 1 in a left-to-right breadth-first traversal 8f,. As shown in Figur&3]8, the nine nodesDrare
given labels in the rangl..54], which illustrates the sparseness of Wietual Nodes scheme. On the
other hand, a number of tree relations can be decided andseuooted using these labels. The following
lemmata explain the reconstructionieth-childandparent (the proofs have been omitted By Lee gt al. in
the[I93b paper):

Lemma 3.6 (Virtual Nodes child reconstruction) Let D be a document tree with maximal fan-ogt k
and let D, be the lp-ary tree that is used for labelling D with theirtual Nodes scheme. Besides, let v be
a node in D and lebrdefv) be the label of v in [p. If v has at least i children in P (i > 0), then the i-th
child w of v in D, has the labebrdefw) = kp - (ordefv) —1) + i + 1. O

Proof. Forany nodeiin Dy, letpy denote the number of nodes precedirig a left-to-right breadth-first
traversal oD,. First of all, from the wayVirtual Nodes labels are assigned, beginning with the label 1, it
follows thatordefu) = py+ 1 for any nodeu in D,. In particular, this is true for the desired child nogle
of v. So it remains to be shown thay = kp - (ordefv) — 1) + i.

Obviouslypw = pi, + p{, wherep(, is the number of left siblings of, which are children ofv's parentv,
andp/, denotes the number of nodes precedinthat are not children of. Given thatw is thei-th child
of v, there are — 1 left siblings ofw, i.e.,p, = i — 1. The numbepy, is determined as follows. Since node
labels are assigned consecutively in a left-to-right bifedidst traversal oD, all nodes preceding that
are not children of are either predecessorswbr children of predecessors af We know that there are
ordefv) — 1 predecessors afin D, (see above) and that each of them kashildren (none of them is
a leaf, otherwiser could not have a child node by definition ofD, as akp-ary tree). Hence there are
kp - (ordefv) — 1) children of predecessorswin D,. However, the only predecessonathat is not also a
child of a predecessor ofis the root ofD,. It follows thatp|, = kp - (ordefv) — 1) + 1. We conclude that

Pw = PutPy
= kp-(ordefv)—1)+1+i—-1
= kp-(ordefv)—1) + i 0

1By ak-ary tree we mean a tree in which every node is either a leaf or an inoeée with exactlyk children, and where no inner
node is visited after a leaf node in the left-to-right brésafiitst traversal of the tree.
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The formula in LemmEB3316 can be used to reconstrtistchild(v) for any nodev in D, with an impor-
tant restriction: the result is correct only for nodes tinatgled have at leasthildren inD. Notice that this
condition is even stricter than the one fy that is mentioned in the lemma. After all, even if ik child
of vin D, exists, we ignore whether it has a counterpaijri.e., it might be a virtual node. In this case
the formula computes the label that is reserved foii ttiechild of vin D, should it ever exist.

LemmalZY shows how to reconstryerent (v) for any nodev in D except the root (which is easily
recognized by its fixed label 1). Higher ancestors are obthiny repeated parent reconstruction. Note that
there is no additional restriction arhere because of the way hdwis mapped td, (see Figurg318): one
can show that for any nodein D,, if v belongs tdD then so do all its ancestors.

Lemma 3.7 (Virtual Nodes parent reconstruction) Let D be a document tree with maximal fan-ogt k
and D, the lp-ary tree that is used for labelling D with théirtual Nodes scheme. Besides, let v be a node
in D and letordefv) be the label of v in 3. If v is not the root of [3, then the parent u of v in Phas the

label ordefu) = L%WJ +1. O

Proof. As in the proof of LemmE3]6, we defipg as the number of nodes precedinin a left-to-right
breadth-first traversal @, and similarly fop, andv. Recall thabrdefu) = py+ 1, hencep, = %Q’)’ZJ

remains to be shown. First, assume thét the leftmost child of its parent. Then the number of pre-
decessors of that are not children afi is ordefv) — 1. By the same argument as in the proof above, the
parents of these nodes are exactly phgredecessors af in D,. Among theordefv) — 1 predecessors
of v, the root ofD,, is the only node that does not have a pareiidjn so we are looking for thp, parents
of ordefv) — 2 nodes. Given that exactky children share the same parent, there mugibe %2
parents.

In general, ifv is thei-th child of u (1 <i < kp), then the number of predecessorsvothat are

not children ofu is ordefv) —1— (i — 1), and accordinglyp, = %ﬁ’(i’”. However, this is equal
to {%J since(i —1) <kp — 1. O

PBiTree. Unlike Virtual Nodes, which is fairly expressive, thBerfect Binary Tree (PBiTree) encoding
by[Wang et al. [2003a] only decidé%arent constraints. The document trBeis mapped (“binarized”) to
a complete binary tre@p18 using an injective homomorphismsuch that for any paiun, v of document
nodesParent (v,u) in D iff Parent (v,,u,) in Dp. As with other multiplicative schemes, this may entail
the creation of numerous virtual nodes needed to nizkeomplete. (Again, the binarization need not
take place physically.)

The label of a node in D is the inorder rank op(v) in D,. In the binary tree with its highly regular
structure, ancestor reconstruction is possible. The &mrceta nodep(v) at heighth in D, is computed

asandp(v),h) = 2". {%J +2". The ancestor reconstruction By, allows to decideParent in D, as

follows: Parent (v,u) holds true for nodes,v in D iff p(u) = andp(v),h) for someh. By contrast,
decidingParent(v,u) for a specific proximityi is impossible because the binarization does not preserve
the node levels and distances in the original fteeTo check whetheu andv are at a specific distance

in D, we would need to know the height pfu) in the binarized tree p—but there is no way to infeh
fromi. By the same argumerRBiTree does not support the reconstructiorpafrent in D.

3.6 Summary and Discussion

Labelling schemes are structural summaries that can nixobnstraints on individual document nodes
in a decentralized fashion, without accessing larger pafrthe data. As such they are a fundamental
building block for many different structural joins algdmnihs and a valuable complement to centralized
structural summaries like the schema tree introduced iticdZ33. This section has provided an overview
of selected representative labelling schemes for XML damts1 As mentioned before, there is a wealth

188y acomplete k-ary treave mean a tree in which every node is either a leaf or an inmge with exactlyk children, and where
all leaf nodes are at the same level.
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of contributions that have been made in more than twentysy®dth a particular raise of activity during
the last five to six years. An exhaustive survey is still nmgsin the literature but currently under way
[Weigeland Schulz 2097]. It applies an extended versioheftassification above to about thirty distinct
labelling schemes (see TalIgl3.2 on page 39).

To compare and evaluate the various approaches, four ¢caastic properties and possible optimiza-
tion goals have been suggested. Bipressivityof a labelling scheme indicates whi€hconstraints can
be matched using that scheme, and in which way. In this comtexhave proposed the terrdecision
andreconstructiorto denote two very different matching techniques that aeégpable in distinct retrieval
situations. The impact on the matching performance is dfieshtn SectioZ and Secti@B.5. Besides,
theruntime performancef alternative labelling schemes varies for a given denisioreconstruction op-
eration, which can affect the performance of the query msoe too. Thepace consumptioon disk and
in memory depends on the average and maximal label sizeslly-updatability(or robustnesgdeals with
how well a given scheme can reflect structural or textual fications of the underlying documents. Node
insertions are particularly difficult to handle for certalasses of labelling scheme (see below).

As often, these major characteristics turn out to representlicting optimization goals. The rest of
this chapter briefly compares the selected approaches almogach of the four fields, in an attempt to
highlight the different priorities of the individual labiglg schemes (and also classes of schemes) in the
trade-off between space consumption, expressivity, effmy, and robustness.

Space consumption. In the literature on labelling schemes, storage issuesoanetimes regarded either
from a more theoretical or from a more practical point of vie@pending on the intended application
scenario and also the community that a particular approactes from. On the one hand, it is important
to explore the asymptotic worst-case bounds on the labe) aizd much work has been devoted to ob-
taining ever tighter upper bounds, mostly by experts in tale fof Discrete Mathematics (among others,
[PeTeg [200p][ Raplan and Milo [20p([_Abiteboul et al. [2eN.JAIStrup et al. [200R]). However, some of
these labelling schemes are rather complicated and therafdikely to be widely deployed. Also the
significance of theoretical bounds for practical use istiai thus some of the highly space-optimized
schemes have been reported to perform worse than simplsifidaplan et al. 2042], because the worst-
case bounds tend to overestimate the space that is actoaymed when labelling real-world documents.

On the practical side, many techniques for reducing theespagsumption have been developed, even
though they may not improve the asymptotic behaviour. Theskeniques target either the average size
or the maximal size of the labels that are created for a givemhent collection, depending on whether
individual labels are stored using a variable or a fixed nurobkits, respectively. For path encodings with
their worst-case label size of(@), various binary encodings have been put forward, includlmgskew
Huffman codes used b RDPATH that reserve shorter bit strings for the most frequentrgiptiodes.
Even for the less specialized UTF-8 encoding applie®éaey and Extended Dewey, [Cu et al: [200p]
report space savings of up to 50% compared to raw labels.k&Jtitiese approaches, th€1D scheme
does not encode the number of bits used for each sibling cottesilabels, but stores this information
in a centralized structural summary once for all nodes withdame tag path. This way the label size is
reduced considerably. Some more space is saved by omittites®f singleton siblings in the labels, which
effectively compresses the labels. ComparedR®PATH, uPID encoding reduces the space consumption
by up to 50% with variable-size labels, and even more for fisizé labels (see Sectifa¥.6 in the next
chapter). In some cases the average and occasionally evenakimum size ofiPID labels is smaller
than for preorder rankEJBremer and Geriz A406; Weigel exGu5d].

Extended Dewey, Path-Based anduPID also exemplify alternative approaches to combining node la
bels with element tags using some sort of global data streictutside the labels. THeath-Based scheme
keeps all distinct tag paths together with the node labedsimverted index, which causes redundant stor-
age but saves pointers. By contrdsttended Dewey anduPID labels reference the corresponding tag paths
in a centralized structural summary (FSTDxtaGuide, respectively). WhilgP1D uses explicit pointers to
DataGuide nodesExtended Dewey chooses sparse sibling codes representing FST statesh @fipcoach
takes up less space depends on the structure of the docunteftects both the size of thBataGuide
(hence the length of the pointers) and the sparseness abtimgsodes. In general the FST has the same
number of edges but fewer nodes thanfeaGuide. On the other hand, whilExtended Dewey supports
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recursive DTDs, it cannot handle tags that occur below iffetag paths in the documents, unlikelD.
A modified FST with states representing tag paths rathershagieton tags would grow to the same size
as theDataGuide.

Although subtree encodings enjoy a modest upper label simadof (logn), there are differences
to observe. For instancg_Grust et al. [004] point out thith @ fixed label size, region encodings like
Start/End can represent only half as many nodesPas/Post. Intuitively, this is because node labels
[starfv),endv)] with star{v) > endv) are prohibited (see the unused lower part of the two-dinoersi
label space in Figule=3E1 on pagd?h). On the other hand, tBeder/Size scheme is no sparser than
Pre/Post (compare FigureE32l and) but more robust against changes of the document tree (see th
paragraph on updatability below).

Expressivity. Table[Z2 on the facing page summarizes the expressivitheofabelling schemes dis-
cussed in this chapter. Roughly speaking, one can obseoveltisters in the table: one the one hand, there
are very expressive schemes like most multiplicative eimgsdand the path encodings closeliewey
(upper half of Tablg312). On the other hand, many other aggves are much more focused on specific
decision or reconstruction problems. In particular, sed&ncodings (lower part of Tallle13.2) only decide
Parent and NextElt" constraints, but ignore sibling decision as well as anymstaction besides sub-
tree size. Combined with the fact that they are concise,ifad¢cision problems and easy to implement,
this makes them a good choice for the set-at-a-time ideatific of ancestor/descendant pairs in structural
joins.

The group of path encodings (middle part of TdhId 3.2) faite three subgroups each with a different
expressivity profile. The most expressive approaches vwathdecision and reconstruction capabilities are
those based on some form@éwey encoding (rows down to and includitgtended Dewey in Table[ZP).

A second cluster subsumes a number of path encodings thatoar@ompatible with document order,
which prevents the decision and reconstruction of mostzbatal tree relations. These includes schemes
with tag-specific sibling codes, like theath-Based andpuPID labellings, as well as so-callddyered
encodings (marked with ar/™ in Table[32). Layering is discussed in Sectlan4.5.2 beldvike the
layered schemes, the remaining path encodings mostly stamthe graph theory and network routing
communities and are mainly designed to minimize the lalzd and derive tight asymptotic bounds, at
the expense of even more restricted expressivity. Whileapieeing a better worst-case label size, they
tend to be far too complicated for productive use and areetbes primarily of theoretical interest. Note
that due to their top-down approach to node labelling (seti&d3.3), all path encodings ignore the size
of specific subtrees in the documents (last column in TaRlg Jhe only exception, theCA scheme by
[Peleq [200p)], is in fact a combined path and subtree encoding

Finally, the first two of the multiplicative encodings (upg®art of TabldZ3R) are highly expressive
owing to the strong tree regularities they exploit (seei8eELR). Note that th¥irtual Nodes scheme does
not recognize document order because is assigns node ialzelsreadth-first traversal of the document
tree. TheBIRD scheme is presented in the next chapter. In contrast to HubsgnesPBiTree encoding
supports only the decision &farent because of the lossy mapping into its internal tree reptatien (see
Sectior33b). Like path encodings, the multiplicative snhe are incapable of reconstructisige due to
their sparseness.

Runtime performance. Labelling schemes not only differ with respect to the chateree relations
that they decide or reconstruct, but also in how fast thi®ised For instance, ancestor reconstruction with
Virtual Nodes or Dewey-based schemes may take time linear in the length of the dbed (depending

on the binary label encoding), wheraelD andBIRD compute the ancestor labels at any height in quasi-
constanttime. The asymptotic behaviour of these labedialgemes when faced with various reconstruction
and decision problems is analyzed in earlier wprk JWeigelez005k].

Note, however, that assessing the efficiency of a labellpr@ach is complex, and hardly possible
when taking only theoretical properties into account, bseanany factors can have a more or less tangible
influence on the runtime performance of the query engine sThu experiments in the next chapter (see
Section§ 2612 arddZ.®.3) show that in practice, using i=oaction rather than decision has a huge impact
while the difference between distinct reconstruction rodthis often negligible.
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Table 3.2: Expressivity of different labelling schemesi®pls in the individual columns indicate whether
a specific tree relation is decided or reconstructed by acpéat labelling scheme (see the key below the
table for the meaning of the symbols). Shaded columns lgghiiee relations that are of special interest for
XPath or XQuery processors. The table includes many appesawot discussed in this work. For a detailed
analysis and comparison of all labelling schemes, see tplete survey[[Weigel and schulz 2907].
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3.6. SUMMARY AND DISCUSSION

Updatability. Modifying a document collection that has been indexed uaisgecific labelling scheme
may affect the existing labels assigned to individual doentmodes. The impact of a document update
typically depends on any combination of (1) the labellingesoe used (e.g., path versus subtree encoding
with or without text labelling), (2) the kind of update (imen versus removal of a document, element, or
text passage), (3) the location of the update (e.g., in aledé of the document tree), and (4) the extent of
the update (e.g., how many nodes are added at a given p@sititiiie the removal of documents, elements
or text passages is often handled simply by leaving labedssigned, adding new content is more critical.

In some scenarios, updates occur either rarely (like incafatabases containing, e.g., medical, juridi-
cal, geographical or historical information), or new data first collected and then added to the database
in a bulk update once in a while (e.g., in digital archivesgliistic corpora, encyclopedias and dictionar-
ies, product catalogues, or digital libraries). Under soicbumstances, robustness is a minor concern,
whereas storage demands and runtime performance are muehmportant. A straightforward solution
is to reindex the entire document collection from time todin©n the other hand, in dynamic databases
whose contents change frequently, like news repositaaigsijon servers, or flight booking services, such
a strategy is clearly infeasible. Here node insertions hestonencrementallyi.e., without affecting too
many of the existing node labels.

The class boundaries between subtree encodings, pathiegsahd multiplicative encodings also
mark fundamental differences with respect to updatabitis/observed by Yu et al. [20P5], subtree encod-
ings propagate topological changes bottom-up throughdhbardent tre® because the label (i.e., interval
or region) of any document node is contained in the labellafsaancestors iD. For instance, if a newly
inserted node causes the parent interval to overflow, thismityht propagate up to the root B The
situation is even worse for multiplicative encodings, vehan overflow might propagate to disparate re-
gions inD or even the entire tree (e.g., considértual Nodes labelling when the maximal fan-out &f
increases).

By contrast, path encodings propagate label updates tay+-tioall descendants, which inherit a prefix
of the path label from their ancestor. As a consequence,gratbdings can more easily accommodate an
unknown number of future node insertions. Thdswvey encoding naturally supports the adding of new
rightmost siblings (in other words, unordered insertiomghout the need for reassigning existing labels,
provided labels can occupy a variable number of bits. Othér pncodings use placeholder labels, either
one below each node (for unordered insertions, as sugglegfiédplan et al. [20J2]) or one between any
two siblings (for ordered insertions at arbitrary positdn D, as suggested Jy_O'Nell et al. [27q04] for
ORDPATH).

With fixed-size subtree or multiplicative encodings, theiest way to prepare for a limited number of
node insertions to come is to leave a certain number of lab®lssigned during indexing. This technique
was proposed Hy Tirand Moon [2001] fBxtended Preorder, among others. Note, however, that the size of
the gaps must be fixed at indexing time, unlike the placehsldsed with path encodings. If variable-size
labels are admissible, floating-point rather than integenibers may be used as interval bounds in order
to make subtree encodings more robust. This idea was alteathd at b Santoro and Khatib [1385] and
was later adopted y Chien et al. [2P01] §nd Jagadish etGi]|2too.

Alternatively, theRelative Region scheme by Kha et al. [20P1] encodes the interval bounds of any
nodev in D relative to the interval bounds of the parendf v. Similar encodings have been described by
[Tatarinov etal. 120042] [ocal Order) and[Sacks-Davis etal. [TI97P4th-Based). However, this means
thatParent (v,u) can no longer be decided from the labels ahdu alone, which spoils the local character
of the labelling and may entail extra I/O during the querylgaton.

RKhaefal also suggest defining the interval bounds in terfiyte offsets rather than preorder node
ranks. The same idea is pursued by Yoshikawa et al. ]200XE that this not only reduces the robustness
of the labelling, but also prevents proximity matching imts of the token distance. In the literature on
structural joins for XML retrieval, where region encodirggtbeen most influential (see above), the original
representation using token positions is predominant.

40 Felix Weigel



CHAPTER
FOUR

TheBIRD Labelling Scheme

4.1 Overview

To assess the cost and benefit of labelling schemes for XMLptaceding chapter has surveyed a choice
of approaches with different features and weaknesses. Wepnesent a new labelling scheme called
BIRD (the acronym ofBalanced Index-based numbering scheme for Reconstruction and Decision) that
combines great expressivity and efficiency with modestagfemeeds and reasonable robustn&sRD

is the first in a sequence of interrelated contributions tpfesented throughout this work. Together with
the CADG index (Parfdl), it serves as a building block to tR€ADG retrieval engine (PalflV), whose
evaluation algorithm draws much of its power from the retamsion capabilities of th&IRD scheme.
The benefits oBIRD also carry over to incremental query evaluation withR&ADG Cache (PariM).

Before explaining3IRD in detall, let us briefly recapitulate on the role of labadlischemes for XML
retrieval. Given more and more large collections of XML domnts, efficiency and scalability are a
major concerns. Matching query constraints directly indbeuments is prohibitively expensive especially
when using general-purpose storage infrastructure, ssiah DBS or a standard file system. Centralized
structural summaries like the schema tree introduced ipter@ partially shift the burden to the schema
level, where weaker query conditions (so-caldonstraintscan be processed very fast. However, while
this typically rules out some false positives, the resuitte schema-matching stage must be checked once
more on the document level against the exact query constréhre D-constrainty. Labelling schemes
as decentralized structural summaries can assist in tlgisndent-matching stage, supplying information
about the tree relations between individual document ntidtesigh their labels. Rephrasing Definitlanl3.1
on pagdl7 a little more precisely, one can say that labedlaigemes specify conventions for assigning
unique labels to the nodes in the document tree that allovetide or reconstruct specifiz-constraints
efficiently without access to the entire document tree, Wwk&ves 1/0 and possibly join operations.

Following the terminology introduced in the previous cleapBIRD belongs to the small class of
multiplicative encodings (see Sectibnl3.5). Recall fronfiliton B3 on pagg34 that unlike subtree or
path encodings which derive the label of an element respgtirom its descendants or ancestors, mul-
tiplicative labelling schemes exploit certain regulastin the document structure to encode tree relations
numerically in the labels. In the case BIRD, each document node is given a fixedightat indexing
time, and labels are assigned in such a way that the labelesy éode is a multiple of its weight. As
shown later, this allows to reconstruct the ancestorsingjpland children of any given document node
and to decide almost all tree relations in our data model.sBiRD is among the few most expressive
labelling schemes known to the literature (see TEQle 3.2age@EP). In particulaBIRD labels respect the
document order, which greatly facilitates sort, join andgeeoperations on node sets (see Sefidh 4.6). Of
course using only labels that are multiples of specific wisitgdaves many possible label values unused. As
other multiplicative labelling schemeB|RD is in fact a rather sparse encoding that reserves many labels
to so-called “virtual” nodes, i.e., additional documentlas that do not exist physically (and hence cannot
be queried), but are assigned node labels nonethelesst éiigtience is assumed solely for the sake of
establishing structural regularities that are not manifethe original document tree.
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4.1. OVERVIEW

figure | #4] 1

a. document tre® b. schema tre&
Figure 4.1: The multiplicative encodirg/RD applied to the document in Figure_hllon pagdl8.

For illustration, consider the document tree shown in Fe{iIal Each noder is annotated with its
BIRD label 3(v) (in bold face) and with its weighb(v) (in parentheses). For instance, the shaded mode
in the figure has the lab@(v) = 20 and the weighto(v) = 2. Weights are not stored with the labels, but
in a centralized structural summary such as the schemantféigrdlZ_] All nodes ingg with the same
tag path av have the same weight, which is attached to the corresposdimgma noder(v) in [0l (large
numbers). Decision problems for any XPath axis can be sddasdd on the following observations. First,
given two nodes andw in the document treay is a descendant ofiff (v) < B(w) < B(v) + w(v). Thus
node 21 is a descendantwbecause 2& 21 < 20+ 2. To decideNextSib™ (v, w), we test if3(v) < B(w)
and the two nodeg w have the same parent node (parents are reconstructed |seg. fellowing(v, w)
holds true iff 3(w) > B(v) + w(v). For instance, node 25 followssince 25> 20+ 2. Furthermore, given
the BIRD label 3(v) of a nodev and the weighto(u) of any ancestou of v (say, its parent node), we
can reconstruct thBIRD label ofu, which isB(u) = B(v) — (B(v) modw(u)).! The parent ok in Fig-
urefZIa] e.g., has the weight 6, hence the label reconstructiody20— (20 mod § = 20— 2= 18. This
briefly illustrates how th&IRD labelling is used to decide the tree relations in our dataeghfod two given
document nodes and to reconstruct part of the tree neighbodr(here, the root path) of a single given
document node. The decision and reconstruction of otherrélations is discussed below.

We shall see that thRIRD scheme supports the decisioratif XPath axes, as well as the reconstruction
of all functional XPath axes (i.e., those containing at noo& node by definition, such as therent axis).
Involving only trivial arithmetic calculations such as #eosshown above, the decision and reconstruction is
very efficient, provided that fast access to BI&D weights is available. To this end, the weights are stored
in a centralized structural summary (e.g., the schemamteeduced in Chaptdll 1) that is typically small
enough to reside in main memory. Matters of storage consomate discussed below, where we introduce
various variants oBIRD labelling schemes that offer distinct compromises betwiberexpressivity of
the scheme and the size of the resultBIRD labels. The storage requirements are also influenced by
the choice of the structural summary (see Sediioh 4.8). imsénseBIRD labelling actually defines a
family of possible schemes. Our experimental evaluatiee GectiofLZl6) shows thBtRD outperforms
various other tree labelling schemes in terms of runtiméoperance and expressivity, and that its storage
behaviour and updatability are competitive on documeriectibns up to the gigabyte range.

The next section explains how to cre®&ERD labels and weights for a given document tree to be la-
belled. The algorithms described there cover differeniavis of BIRD encoding. Sectiofi 4.3 presents a
series of lemmata that show how to reconstruct tree relatimm BIRD labels and weights. The deci-
sion of query constraints is covered by Secliol 4.4. Thesestutions formally prove the expressivity of
the BIRD scheme that was claimed earlier (see TERQIE 3.2 on[pdge 39)dliHg document updates with
BIRD is discussed in Sectidn 3.5, featuring two variants of tiheste that promises increased robustness.
SectioZb reports on the outcome of our experimental atialu and comparison of a number of differ-
ent labelling schemes for XML data. Sectionl4.7 summaribescontributions made by the competing
schemes. We conclude in Sectlan]4.8 with an outlook on fudp&mizations and open questions.

IFor integers,j (j # 0), leti modj denote the unique integee= i moduloj such that < | < j.
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CHAPTER 4. THEBIRD LABELLING SCHEME

4.2 The Family of BIRD Labelling Schemes

This section deals with how to cred¢RD labels and weights at indexing time. Runtime operationgfer
decision and reconstruction of query constraints are ealierthe next two sections. As mentioned above,
a centralized structural summary is used for providing kjaiccess t&IRD weights during query evalua-
tion. In the sequel, we assume that the weights are storéeischema tree, as shown in Figiird 4.1 on the
facing page. For a discussion of other structural summérsscan be used witBIRD, see Sectiol 4l 8.

Let D be a document tree to be labelled, andSdte its schema tree. As illustrated in the examples
above, we have to make sure that for any given noiteeD, the weights o/ and all its ancestors iD can
be obtained frons. Also, it has already been mentioned that for any noikeD, theBIRD label3(v) of v
must be a multiple of its weighib(v). We thus enforce the following two invariants during thedting:

1. Weight invariant All document nodes with the same tag path have the $8lRB weight. For
any nodev in D, its weightw(V) is stored in the noda(v) in S.

2. Label invariant During the labelling oD, the BIRD label 3(v) of any nodev in D is deter-
mined to be the smallest unassigned multiples¢¥) in document order.

Let w(p) denote theBIRD weight stored in a given a schema nqu S. The first invariant states that
for every document node w(v) = w(m(v)). Intuitively, the weight ofv must be large enough to subsume
the interval spanned by aBIRD labels in the subtree dd that is rooted inv. Note that in general this
interval is larger than the numbesizgv) of nodes in that subtree becaw&edescendants are subject to the
label invariant above. Also note that distinct documenta®dith the same tag path may have different
intervals. To comply with the weight invariant, we theref@hoosev(m(v)) to be the largest interval for
any document node with the same tag patlv.aghis idea is expressed formally in the weight definition
below (see the next subsection).

Labelling a document tre@ with BIRD is done in three phases. FirBtjs traversed once to determine
for each document nodethe number of children of, which is later used to determine the aforementioned
subtree interval of. In the second phase, the schema 8égtraversed bottom-up to compute and store
the weightw(m) of every schema nodein S. Finally, in the third phasP is traversed again in document
order to assigiBIRD weights to all document nodesh based on the weights B

4.2.1 CreatingBIRD Weights

To facilitate the labelling process, we only consitelancedvariants of theBIRD scheme. Here the
weights for schema nodes are unified among all children @mdaychildren, etc.) of a given schema node
in S2 The degree of balancing is controlled by the parameter

Let p denote a node %, and letb > 1. By theb-step ancestoof p, we mean the unique ancestor
of p in Sthat is reached frorp in exactlyb parent steps. As a matter of fact, thestep ancestor gf is
defined if and only iflevelp) > b. Since the weightu,(p) of p in ab-balancedBIRD scheme is based on
the maximal interval size among the siblings, cousins,dgansins, etc. gb in S, depending on the value
of b, the following definition ofb-equivalent nodeis needed. Intuitively, two nodes are 1-equivalent iff
they are siblings (i.e., share the same parent), 2-equiviife¢hey are siblings or cousins (i.e., share the
same grandparent), and so on.

Definition 4.1 (b-equivalence) Let S be a schema tree with set of nodes P. The equivalentiensla
(b > 1) on the set P of nodes in S are inductively defined as follows:

1. forall p,p’ € P, p~q p' iff the 1-step ancestors (i.e., parents) of p aridape defined and coincide.

2. Letb> 1. Forall p,p’ € P, p~p.1 P iff p~p P, or the b+ 1-step ancestors of p and are defined
and coincide.

If p~p P/, we say that p and’@re b-equivalent By [p], we mean the equivalence class of the node p with
respect to~p,. O

2There also exists an unbalanced variant that producesesmaights and labels, but has disadvantages in terms céssipity
and memory consumption during label creation (see SelcIi@n 4
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4.2. THE FAMILY OF BIRD LABELLING SCHEMES

The following two definitions are key to the bottom-up creatof balancedIRD weights inS;

Definition 4.2 (Child count) Let D be a document tree with set of nodes V, and letW be a node
in D. Thechild countchildCountv) of v is the number of children of v in D, i.echildCounfv) =
H{weV | Child(v,w)}|. O

Definition 4.3 (BalancedBIRD weight) Let D be a document tree with set of nodes V, and let S be the
schema tree for D with set of nodes P. Besides, letlb The bbalance®IRD pre-weightcw;, (p) and the
b-balance®BIRD weightwy(p) of a schema node @ P are recursively defined as follows:

() wp(p') - maxey {childCountv) +1 | n(v) = p} iff p has a child p,
b(P 1 otherwise
wo(p) = mayep{wy(p) | P ~b P}
Finally, for every ve V, the bbalancedIRD weightof v is defined as, (V) := wp(11(V)). O

Note that the maximum operation in the definitioncaf leads to unified weights for ali-equivalent
schema nodes i8 (balancing). It also guarantees the well-definedness ofveightswy, since any two
childrenp’,p” of a schema nodp have the samb-balanced weightso,(p') = wp(p”). The final clause
conforms to the weight invariant on pdgd 43.

1-balanced weights are also callgtild-balancedwveights. Ifb equals the heightp of the document
treeD, thencwyp(p) is called thetotally balanced weightf the schema node. In the remainder of this
chapterS, denotes the variant of the schema tBaghere theb-balanced weight,(p) is attached to each
schema nodp, as illustrated fob = 1 in FigurdlZP on the next page.

Example: Child-balanced BIRD weights. Consider the document tré& shown in FigurdeZZ] and
the corresponding schema tr8gin Figure[Z2h] on the facing page, to which the child-baland&D
has been applied (i.e.,£2 1). Each node in S; is annotated with its child-balanced weight(p) and,
for convenience, the pre-weight, (p) (in parenthesis). 1p has children, then FigufezZ@Ralso depicts
the number mayxy {childCountv)+1 | m(v) = p} thatis used in DefinitioRZ} 3 above (written above the
line next top). Note that only the weighte, are stored physically in the schema tree.

To understand how the depicted pre-weights and weigl8same computed, consider the leftmost path
in FigurdZ2D] The weighting procedure runs bottom-up and begins witheéhed9; = /r/a/c/b/c and
p2= /r/a/c/b/b, which respectively represent the document nodes 115 ahioh Dl (larger number&in
FigurdZZa). Their pre-weightis fixed to) (p1) = wj(p2) = 1 according to the first part of Definiti@n3.3.
To compute the final weigh; (p1) of p1, we must determine the greatest pre-weight of all schemasiod
that are 1-equivalent tp;. Since[pi]1 = [p2]1 = {P1,p2}, we obtainwi(p1) = wi(p2) = 1 (second part
of Definition[Z3). We next consider the parent ngele= /r/a/c/b of p; andpy, which represents the
documentnodes 111, 114 and 28DinThe nodes 111 and 282 have no children,dhildCoun(114) = 2
(see Figur§ZAD. Therefore in the calculation ab(ps), the child weightwi(p;) is multiplied by a
factor 2+ 1 = 3 according to the first part of Definitid3.3. The resultingweight ofps is w; (p3) = 3.

In the next step, the final weighi; (p3) is computed: The bottom-up algorithm has already comptited t
pre-weight of the siblingps = /r/a/c/c andps= /r/a/c/d of p3, which is 1 because they are leaves.
The weight of each of the three siblingg ps andps is the maximum of their pre-weights, i.eo;(p3) =
w1(pa) = wi(ps) = 3 according to the second part of Definitibnl4.3. On the hidéeels, pre-weights
and weights are computed in exactly the same way until wenrsgcroot /r of S;. Its 1-balance®IRD
weight is 450.

4.2.2 CreatingBIRD Labels

We now describe thb-balancedB/RD schemewhich assigns an integf,(v) to each node in D, given
the schema treg for D that containd-balanced weights as described above (see Defifidn 43nel
special case where= 1, the scheme is called tlwhild-balancedB/RD schemellf b = hp represents the
height of the document tree, we refer to it astibially balancedB/RD scheme

3For convenience, the example refers to document nodes inyBHD labels, although the label computation is only explained
later (see the next subsection).
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Figure 4.2: Child-balanceBIRD labelling o=1). EA sample document treB. For any document
nodev shown in the figure, the large number denotes the child-ba#BIRD label 31(v) of v, whereas
the small number in parentheses denotes the upper bouxd stibtree interval, i.e.1(v) + wi(v).
The 1-balanced schema tr& for D in gg For any schema node shown in the figure, the large
number denotes the child-balancBtRD weight w;(p) of p, whereas the small number in parenthe-
ses denotes the corresponding pre-weightp) of p. For each non-leaf nodp in S, the number
max.ey { childCountv) + 1 | m(v) = p} is indicated (see Definitidi 4.3 on the preceding page). Nate
only BIRD labels and weights (i.e., large numbergiandh) are stored physically.
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4.2. THE FAMILY OF BIRD LABELLING SCHEMES

child weight
balancing

name gender : :
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MSc" 1 edu[#4]sex[#5] 1
a. document tre® with child-balancedBIRD labels b. schema treeS; for D

Figure 4.3: Child-balanceBIRD labelling applied to the sample document in Fiduré 2.1 orefhg

Definition 4.4 (BalancedBIRD label) Let D be a document tree with root r, and lgj Be the schema
tree for D with b-balanced weights as defined above, for a fixedl. The bbalancedIRD label B(v)
of a given document node v in D is recursively defined as fellolivv = r, then By(v) is any multiple
of wy(71(r)) (e.g9.,Bp(v) := 0). Otherwise let u denote the parent of v in D, anddgtu) be the b-balanced
BIRD label of u. If v is the leftmost child of u, th@g(v) is the smallest multiple @by, (71(v)) that is greater
thanBp(u). Otherwise let w be the immediate left sibling of vin D, angBigw) be the b-balance®/RD
label of w. TherBp(v) := Bp(W) + wp(1T(V)). O

The recursive definition of thBIRD labels above translates naturally into a labelling algonithat
traverse®d in pre-left order (i.e., document order) during the thirdlté aforementioned labelling phases.
This ensures that the label invariant on page 43 is obseseed emmBZ]6 below). Note that Definitlonl4.4
does not distinguish between specific values of the balgngarameteb. Instead theb-balancing is
implied by the weights its. Therefore exactly the same labelling algorithm is usecfeating the labels
of anyb-balance®IRD scheme.

Example: Child-balancedBIRD labels. In FigurelZZa]on the preceding page, each document node
is annotated with its 1-balanc&IRD label31(v) (large number). The labelling starts with O for the root
node, and traverses the document tree top-down left-tt; 1&g described above. Note that for dny 1
the BIRD labels and weights are defined in such a way that all labelseirstibtree rooted in a document
nodev are contained in the interv@B,(v), By(V) + wp(v) [. This important relation between labels and
weights is established by Lemfia4.5 below. For convenigheeypper bound of the subtree interval is
depicted as the small number in parentheses next to eachimbitgirdlZ2a] Note that only the labels are
stored physically, whereas the intervals are calculatea the labels and weights at runtime.

Example: Totally balanced BIRD labels. FigurdZZalon the next page shows the same document tree
as Figur§ZAlon the preceding page, but wiiRD labels computed for a balancing parametel ef 4.
Note that sinceD has heightip = 4, the labelling shown in FiguleZZa] is the totally balance®IRD
scheme foD. Each database nodds annotated with its labgd4(v) (large number) and with the upper
boundpa4(Vv) + wa(v) of its subtree interval. The 4-balancBtRD weights for the nodes ib are given as
annotations to the corresponding nodes in the schem&tiesee Figur&ZA)).

Example: Document tree and schema tree from Chaptefl2. Figure[Z3B shows the document trbe
and child-balanced schema tregsfor the XML fragment in FigurdZZ@&] on pagdB. The document
tree in FigurdZ3] differ from the one in FigurEZZHlin that preorder labels have been replaced with
child-balancedIRD labels. The schema tree in Figlte Bl3 the same as in FiguleZXl except that
child-balancedBIRD weights have been added to the nodes.

The following two lemmata show th&iRD weights define subtree intervals for the labels of document
nodes and their descendantddn This observation is important because it guarantees tlpieness of
the node labels iD. In addition, it shows that the labelling functighis compatible with the document
orderNextElt" in D, in the sense thatextElt" (v,w) implies 3(v) < B(w) for any two nodes,win D.
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Figure 4.4: Totally balance®IRD labelling b=hp =4). E A sample document treB. For any
document node shown in the figure, the large number denotes the totallyriceldBIRD label 34(v)

of v, whereas the small number in parentheses denotes the upped lof v's subtree interval, i.e.,
Ba(v) + wa(v). The 4-balanced schema tr& for D in g For any schema node shown in the
figure, the large number denotes the totally balarB&D weightwa(p) of p, whereas the small number
in parentheses denotes the corresponding pre-weiglp) of p. For each non-leaf nodein S, the number
maxev {childCountv) + 1 | m(v) = p} is indicated (see Definitiddi4.3 on pdgd 44). Note that &iRD
labels and weights (i.e., large numbergiandh]) are stored physically.
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4.3. RECONSTRUCTION OF TREE RELATIONS WITBIRD

Lemma 4.5 BIRD label order) Let D be a document tree with set of nodes V, and lethb Besides,
let v be a node in D, and lety.. ., vy denote the sequence of all children of v in document orderlf,
let w:= wp(7(v1)) = -+ = Wp(T(Vm)). Then we have

Bo(V) < Bovi) < -+ < Bo(vm) < Bo(vm)+@ < Bo(V) + wp(V) O

Proof. Clearly w > 1 (see DefinitiodZ13 on padel44). Hence the inequalligy) < Bp(v1) < -+ <
Bo(Vm) < Bb(vm) + w follow from Definition[Z34 on pagE36, and only the final inetityaBy (Vi) + @ <
Bo(V) + wp(v) remains to be proved.

Letp:= m(v) and letp’ := m(v1) = - -- = 1(Vim). Obviouslyw = wy(p’). Since according to Defini-
tionEEA By (Vi+1) = Bo(Vi) + wforall 1 <i < m, we haveBp(Vm) + w < Bp(V) + w- (m+ 1). Furthermore,
sincevy, ...,y are child nodes of, w- (m+ 1) < w- maxyev {childCountw) + 1 | m(w) = p}. With
the first part of Definitiol4]3, it follows thab - (m+ 1) < wy(p), which in turn is no larger thawy(p),
according to the second part of Definitionl4.3. Putting it@dlether, we have proved that

Bovm)+ @ < Bp(V)+w-(M+1) < Bp(V)+wp(P) < Bo(v)+wp(p)
The final inequality in LemmB4.5 follows directly fromy(p) = wy(V). O

Lemma 4.6 BIRD labelling function) Let D be a document tree with set of nodes V and root r, and
let b> 1. Regardless of the initial assignment@y(r), both of the following statements are true:

1. ForallveV, By(v) modwy(m(v)) = 0.

2. The labelling functioiBy, is injective and compatible with the document order in D. O
Proof. The statemerfil1 follows immediately from Definitionl4.4 atatesmenER from Lemma4.5. O

The final lemma in this subsection shows how the growth of daldels is limited by the height and
branching degree of the document tree:

Lemma 4.7 BIRD label size) Let D be a document tree with height,hmaximal fan-out k, set of
nodes V and root r. Besides, lethl. Suppose that r is assigned the b-balan&RD label By(r) := 0.
ThenpBp(v) < (kp+ 1) forallv e V. O

Proof. Let S, be the schema tree f@ with b-balancedIRD weights as defined above. Besides, for
any schema nodein S, let heigh{p) denote the height g in S,, defined in the obvious way. A simple
induction starting from leaves of the schema tree showsfhail p in S,, wp(p) < (ko + 1)"€9MP). Since
heightm(r)) = hp, we havewy (71(r)) < (kp 4+ 1)™. The result follows from Lemmal@3.5 afd¥.6. [

4.3 Reconstruction of Tree Relations withBIRD

We now examine the runtime manipulationrBIRD labels during query evaluation. This section deals with
the reconstruction of various tree relations fr&MRD labels and weights that are stored in a centralized
structural summary. Solving decision problems WBlIRD is discussed in the next section.

In the sequel, leD be a document tree, and I8 be the schema tree f@ with b-balancedBIRD
weights, for a fixed > 1. Besides, letr be the mapping from document node$ito schema nodes i&,,
as defined in Chapt€l 2.

Lemma 4.8 BIRD ancestor reconstruction) Suppose that for some document node v in D we are given
its BIRD label By(v) and the schema node$ m(v) in S,. Leti> 1. Then using the weights i, /e can
solve the following tasks without access to D:

e Decide if there exists an ancestor u of v that is reached frawtivexactly (at least) i parent steps.

¢ In the affirmative case, get ti®/RD label B(u) and the schema nodgu) corresponding to u. [
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Proof. Obviously,v has an ancestarthat can be reached with exactlyarent steps ifp has such an
ancestorp’, in S,. By traversing the root path @fin S, upwards, we may decide this question, findpig
in the affirmative case. By Lemnlia}.6 on the facing pa#ygy) is a multiple ofw,(p'). It follows from
LemmaZb thaBy(u) is the greatest multiple ab,(p’) that is smaller thaB,(v). As mentioned before,
the BIRD label ofu can be calculated g3 (u) = Bp(v) — (Bp(v) mod wy(p)). O

Lemma 4.9 BIRD child reconstruction) Suppose that for some document node v we are givé&iRB
label Bp(v) and the schema node g m(v) in §,. Leti> 1. Then using the weights in, 8/e can compute
the BIRD label B(vi) of the i-th child y of v, assuming that this child exists, without access to D. [

Proof. From §, we fetch the uniform weighto := wy(p’) of any childp’ of p. By Definition[Z3 on
pagddp, ifi = 1 thenfBy(v;) is the smallest multiple ofo that is larger tha8,(v), and fori > 1 we have

Bo(Vi) = Bo(v1) + w- (i—1). O

Note that in general, we cannot directly compute the schewd@ ri(v;) that corresponds to thieth
child v; of v, unless we have further information (e.g., in the schemaSgeve would need the tag of).
In any case, however, that we know the weighwpo$inceb > 1, i.e., we use a child-balanced labelling
scheme.

Lemma 4.10 BIRD left-sibling reconstruction) Suppose that for some document node v we are given
its BIRD label By(v) and the schema nodep m(v) in S,. Leti> 1. Then using the weights in, 8/e can
solve the following tasks without access to D:

e Decide if v has exactly (at least) i siblings that precede gacument order.

e If v has at least i preceding siblings, get the numBg({v;) of the i-th preceding siblingivofv. O

Proof. We may assume thahas a parent node(otherwiser has no siblings). LeBy(u) denote itBIRD
label, calculated as described in Lemind 4.8 on the facing.pBgsides, leto := wy(p). By LemmdZb
on the preceding page has at leasit preceding siblings iff3,(u) < Bp(v) —i - w. From DefinitioZ¥ on
pagddb, it follows that has exactly preceding siblings ifBp(v) — (i + 1) - @ < Bp(u) < Bp(V) —i- w. If
thei-th preceding sibling; of v exists, it has th&IRD label B, (vi) = Bp(v) —i - w. O

As for thei-th child (see above), we cannot directly compute the scheada corresponding to thieh
left siblingv; of v, unless we have further information. The nodesndv have the same weight sinbe> 1.

Lemma 4.11 BIRD right-sibling reconstruction) Suppose that for some document node v we are given
its BIRD label By(v) and the schema node$ m(v) in S,. Leti> 1. Then using the weights i, /e can
compute the numbedy(vi) of the i-th right sibling y of v, assuming that it exists, without access to D.

Proof. Similar to Lemmd4Z0 above. O

Note that while we can decide whether a given document ndaes a specific ancestor or left sibling
(see LemmatE4 8 alldZ110, respectively), the same is rfdrwchildren and right siblings (see Lem-
matdZP anl[Z1 1, respectively). Intuitively, this is hesmthe only way to find out about the existence of
such a node is to reconstruct tB&RD label that it would have if it existed, and then to check weethe
assumption that this label is indeed assigned to the nodedstipn causes a conflict, e.g., because there is
no corresponding schema node or because there is overlapheisubtree interval of nodes whose label
is already known. However, since the labelling is done inuhoent order, these cases are easy to detect
for nodes on reverse axes but much harder for nodes on foravas(in the XPath terminology). As far
as LemmatBiZ]9 addZ]11 are concerned, we can only checkdhtlueor right sibling to be reconstructed
would fit into the subtree interv@Bp(v), Bu(V) + wp(V) [ of the assumed parent nodeBut it is impossible
to decide whether it actually exists or whether it is only @ual node.

The following lemma summarizes the reconstruction cafiggsilof balancedBIRD schemes, which
are also listed in the first row of Tad[EB.2 on phgE 39.
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parent(v) We proceed as in Lemnia}.8 on p&gk 48.
parent

i-th-child(v) We proceed as in Lemnia®.9 on the previous page.
child

prevSib(v) We proceed as in LemniaZ]10 on the preceding page.
preceding-sibling

nextSib (v) We proceed as in LemniaZl11 on the previous page.
following-sibling

i-th-cdv,w) Starting fromv, we visit all nodes on the root path afbottom-up. An-

cestors ofv are reconstructed iteratively using the procedure desdrib
Lemma[ZB on padel8. For each naden V's root path (includingy it-
self), we decide ifChild* (u,w) holds true (see LemniaZ]14 in Secfionl 4.4
below), until either thed-th decision test succeeds or the rootlbfs re-
constructed. In the first case, the last reconstructed torcekv equals
i-th-cqv,w). Otherwise the value afth-cqv,w) is undefined.

Ica(v,w) The value ofica(v,w) is computed a&th-cqv,w) for i = 1 (see above).

sepLevelv,w) Let u:= Ica(v,w), computed as described above, anddlet= ri(u) be the
schema node correspondinguolt is easy to see that eithpf=porp’ is
obtained during the ancestor reconstruction as describedrmmdZB on
pagdZB. The separation lexsdpLevelv, w) of v andw is the level ofp’ in
the schema tree.

distancév,w) Let levelv) and/eve[w) be the levels off andw in D, respectively. Fur-
thermore, letsepLevdlv,w) be the separation level efandw, which is
computed as described above. Thi#stancév,w) = levelv) + levelw) —
2-sepLevelv,w).

Table 4.1: Relations reconstructible using dnlpalancedBIRD scheme wheré > 1. Given theBIRD
label Bp(v) of a document node as well as the schema noge= r1(v) holding the weight corresponding
tov, all binary functional relations are reconstructible witih access to the document level. Analogously,
given By (Vv), p and theBIRD label B,(w) of a second document nodg all ternary functional relations are
reconstructible without accessio For distancethe level ofw must be known, too. For each reconstruc-
tion problemf (v) or f (v,w), the reconstruction procedure is sketched as part of thaf pfd.emmdZTIP,
and the corresponding XPath axis is given, if applicabléhwias context node. For examplegrent(v)
denotes thé-th ancestor of node which is on theparent axis.

Lemma 4.12 BIRD reconstruction) Let D be a document tree, and lgf Be the schema tree for D that
contains the b-balanced weights of the nodes in D, for a fixedlb Suppose we are given ti&RD
label By (v) of the document node v in D and the schema noderpjv) in S, that corresponds to v. Lét
be any of the following functional relationparent, i-th-child, prevSiB, nextSiB. Then, using the weights
in §, we can reconstruct the value bfv) without access to D.

Furthermore, assume that in addition fi(v) and p we are also given thB/RD label B,(w) of a
second document node w in D. Now Rebe any of the following relations:-th-cg Ica sepLevel Then,
using the weights ingSve can reconstruct the value bfv) without access to D.

Finally, assume that in addition tf(v), Bp(w) and p we are also given the levidvelw) of w
in D (e.g., becauser(w) is known, too). Then, using the weights inv can reconstruct the distance
distancév,w) of v and w in D without access to D. O

Proof. See TablgZl1. O

The remainder of this subsection discusses some propgpgesic to totally balanceBIRD labelling.
An attractive feature of totally balanc&IRD labelling is the following.
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a. reconstruction with single node labels b. reconstruction with pairs of node labels
Figure 4.5: Reconstruction of nodes in a document Beaf heighthp that is labelled with the totally
balancedBIRD scheme. g The part ofD that can be reconstructed given the lajgl (v) and the

weight wn, (v) of the nodev in D. The part ofD that can be reconstructed fromusing pairs of
BIRD labels (preorder and inverse postorder).

Lemma 4.13 BIRD totally balanced reconstruction) Let D be a document tree of height.hBesides,
let p be a schema node in Swith a child g. Thenwy, (p) is @ multiple ofwn, (p').

Furthermore, lefB, (v) be theBIRD label of some document node v in D with childran.v. v, in
document order, and leb := wh, (V1) = - -- = wn, (Vm) be the balanced weight of the children of v. Then
we haveBn, (Vi) = Bhy (V) +i-wforallv; (1 <i<m). O

Proof. The first statement is simply a consequence of the fact thatla¢ma nodes at the same level of
the schema tree are assigned the same weighi gy By Definition[ZZ, each balanced pre-weigbﬁD
on the parent level is a multiple of this weight. Hence theeawids for the maximum of the pre-weights,
which produces the weight on the parent level. The secomehsént follows easily. O

Note that LemmBZ]3 generally does not apply to labellifgstes that are not totally balanced, i.e.,
whereb < hp. FigurdZP on padels illustrates this foe= 1 andhp = 4. As a counterexample for the first
statement in the lemma, consider the schema nade in FigurdZ20] whose weight 75 is not a multiple
of the weight 4 of its children itg;. In the document treB shown in Figur§Z.Z] the leftmost child 375
of the root and its four children illustrate that the secotadesnent in LemmBZ1 3 does not apply.

The following is a simple consequence of Lenimak.13. Givendewn with the totally balance@&IRD
label B, (v), the labeB, (w) of any descendamt of v, specified in the formw is thei-th child of the. .. of
thej-th child of v, can be computed without accesspusing the totally balance®IRD weights stored
in Sy,. Note, again, that fob < hp) we cannot guarantee the existence of this node withoutsaiwgD.

From the totally balanceBIRD labelB, (v) of a nodevin D we can reconstruct the weigtvh, (11(v)),
given the list of the uniform weights of all levels of the sofetreeS, ;. In fact wn, (71(v)) is the largest
weightw stored in our list such tha8n, (v) modw = 0. (As a by-product, the level of is also obtained
this way.) Hence, fob = hp Lemmatd{ZH 219 arfldZ1 0 can be refined in the sense that wat deed to
know the schema nogecorresponding te.

The higher the balancing degrbethe fewer nodes in the structural summary are needed fongto
weights. Fotb = hp, anhp-tuple of weights suffices for the reconstruction of nodeslabin special cases,
however, it might be convenient to store the weights redotigan all nodes of the summary. This is
true, e.g., when using the schema tree which serves bothightiedex and as path index during query
evaluation.

The results obtained for the totally balanced enumeratibrer®e are summarized in FigUre_als
Given theBIRD label Bn, (v) of a document node, we immediately know how many ancestarsf v
there are, and we can compute the lalfsis(u) of all these ancestors without accessing the document
level. Furthermore we can deduce the number of precedihgildingsw for each of these nodes as well
as their label$n, (w). In the remaining regions of the tree (indicated by smalbdotFigurdZa) we
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know the label reserved for each node, yet we cannot decidehvidibels correspond to existing nodes
and which ones are unassigned. This picture can be gerestdlirough the use of a symmetric second
labelling based on aimverse postorder traversalf the document tree. The inverse postorder behaves like
a “right-to-left preorder”. If each document node is assigjia pair of labels according to a preorder)(

and a “right-to-left preorder’«-) traversal ofD, then for a given node with the labels(B;,  (v), By, (v))

we can compute the number of preceding and following silslioity as well as their respective label pairs.

4.4 Decision of Tree Relations wit BIRD

In this section we explain how to decide specific tree refetiwithout access to the document level, using
the BIRD labelling scheme. In the sequel we assume thiatbalancedBIRD scheme is applied to the
document tre®, whereb > 1. As before, le§, denote the schema tree forthat contains thé-balanced
BIRD weights, and lett be the mapping from document nodedinio schema nodes i§,, as defined in
ChaptefP.

The first row in Tabl€=3]2 on pad€l39 lists the set of tree @hatihat can be decided using balanced
BIRD labelling. Comparing this to Tab[EZ2.1 on pdde 9 revealsdHatge subset of the relations in our
data model is covered. In fact, the only relations that cabealecided byBIRD (besidesSelf which is
trivial to decide) ard-th-Followingand NextElt as well as their reverse counterparts. Unlike the other
proximity relations (e.g.Parent or NextSib), deciding any of these requires knowledge about the size of
specific subtrees dd, which is spoilt by the sparseness of tBHRD labels (as for all multiplicative and
most path encodings, by the way).

In the following we constructively prove that all other tregations can be decided usiB¢RD. The fol-
lowing sixteen relatiorfsare mentioned explicitlyChild, Child*, Child*, NextSih NextSib", NextSib',
Following, the respective inverse relatior&ipling, and Self For any such relatiof® and two document
nodesv,w in D, we writeD = R(v,w) iff in D the relationR holds between andw i.e., if f2¢¢(v,w) = 1.

For instanceD = Child(v,w) iff wis a child ofvin D.

The following lemma shows that using any balan@&D scheme, a superset of all XPath axes
decidable without any 1/0 operation. The XPath axes comedimg to the aforementioned relations are
given in TabldZR on the facing page.

Lemma 4.14 BIRD decision) Let D be a document tree, and lgfl$ the schema tree for D that contains
the b-balanced weights of the nodes in D, for a fixeeh Suppose we are given

e the BIRD label B(v) of the document node v in D,
e the schema node$ n(v) in S, that corresponds to v,
e the BIRD label By(w) of a second document node w in D.

Let R be any of the following relations:Child, Child*, Child*, Parent Parent, Parent, NextSih
NextSib™, NextSib*, PrevSih PrevSib, PrevSili, Sibling, Following, PrecedingSelf Then, using the
weights in § we can decide if = R(v,w) (or if D = R(w,V)) without access to D. O

Proof. See Tabl€Z]2 on the next page. O

4.5 Handling Document Updates withBIRD

In this section we sketch two different update strategielustrate that theBIRD scheme is not only
appropriate for static document collections, but capabladapt to different kinds of dynamic data. The
second strategy below is also interesting from a theoilgtiziat of view since it generalizes the update
technique of path encodings (see Sediiah 3.4).

4Further proximity variants such ﬁﬂrenk are handled similarly. They are also included in an altéregiresentation dBIRD’s
decision and reconstruction capabilities, to be introduoeChapte[B.
5We do not consider thettribute andnamespace axes here, which can be treated similarly to¢he1d axis, see Sectidid. 1.
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D = Child(v,w)
child

We check ifp has any child, sayy, usingS,. In the negative case,
w is not a child ofv. In the positive case lab := w,(p'). ThenD =
Child(v,w) iff Bp(w) is a multiple ofc andBp (V) < Bp(w) < Bp(V) +
wp(p). The weightaw,(p') andwy(p) are obtained frong,.

D |= Child* (v,w)

descendant

We retrievewp(p) usingS,. ThenD | Child ™ (v,w) iff Bp(v) <
Bo(w) < (V) + wp(p).

D E Child* (v,w)

descendant-or-self

The relation holds ifD = Child™ (v,w) or Bp(V) = Bp(w).

D |= Parenv, w)

We proceed as in Lemnia®}.8 on pge 48, withl, and compare thé¢

parent resultingBIRD label to B (w).
D |= Parent (v,w) We iterate the procedure in Leminal4.8ifer 1 until reaching eithew
ancestor (positive result) or a nodewherefp(u) < By(w) (negative result).

D E Parent(v,w)
ancestor-or-self

The relation holds ifD = Parent (w, V) or By(V) = Bp(W).

D |= NextSilv, w)

We obtain wy(p) and p's parentp’ from S, and compute the lat
bel By(u) of the parenu of v in D (see Lemm&Z11 on pafel49
D = NextSikv,w) holds iff By(w) = Bp(v) + wp(p) and Bp(w) <
Bo(u) + wp(p').

~

D = NextSib* (v,w)
following-sibling

We obtainwy(p), p’ and Bp(u) as above (se® = NextSikv,w)).
D = NextSib™ (v, w) holds iff Bp(w) — Bp(V) is positive and a multiple
of wy(p) and if Bp(w) < Bo(u) + wu(p).

D E NextSib*(v,w)

The relation holds ifD = NextSib™ (v, w) or Bp(v) = Bp(w).

D E PrevSiljv,w)

We proceed as in LemniaZ]10 on pBAgE 49, Wwithl, and compare th¢
resultingBIRD label toB,(w).

D E PrevSib™ (v,w)

preceding-sibling

We obtain wy(p) and p's parentp’ from S, and compute the lat
bel By(u) of the parentu of v in D (see Lemm48 on pafel4§
D = PrevSib(v,w) holds iff By(v) — Bp(w) is positive and a multi-
ple of wy(p) and if By (u) < Bp(w).

~

D = PrevSib (v, w)

The relation holds ifD = PrevSib™ (v,w) or By(V) = Bp(w).

D E Sibling(v,w)

The relation holds ifD |= PrevSib"(v,w) or D = NextSib" (v,w) or
D = Selfv,w) (see below).

D = Following(v, w)
following

The relation holds iffBp(V) + wu(p) < Bp(w), by LemmalZb on
pagedB and Lemnia3.6 on pdga 48. The weighp) is obtained
from S,.

D E Precedingv,w)

The relation holds iff Bp(w) < Bp(v) and w is not an ancestof

preceding of v. The latter problem is decided as described above [sée
Parent (v,w)/ancestor).
D E Selflv,w) The relation holds iff3p(v) = Bp(w).
self

Table 4.2: Relations decidable using dmpalancedBIRD scheme where > 1. Given theBIRD labels
Bo(v) and By(w) of two document nodes,w as well as the schema noge= m(v) holding the weight
corresponding to, all relations are decidable without access to the docureset. For each decision
problemR(v,w), the decision procedure is sketched as part of the proof winha[Z_TH on the preceding
page, and the corresponding XPath axis is given widls context node. For exampl&hild(v,w) means
w is a child ofv and therefore on thehild axis.
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45.1 SparseBIRD Labelling

It has been mentioned before that as a multiplicative emep@ilRD labels virtual nodes, causing certain
labels to be left unassigned. This amount of unused labpisaly grows with the balancing facttr For
instance, reconsider the document tree in Fifurk 4.2 onEf@dleat is labelled using the child-balanced
BIRD schemelf = 1). Here 75 labels are reserved for the subtree rooted atatthe with the label 150
(the second child of the root, in document order) althoughghbtree contains only two nodes. This is
because the node 150 inherits the weight 75 via child batgnftom its left sibling, 75, whose subtree
is much larger. When inserting nodes in the subtree belove 18@, the odds are that the corresponding
labels are still unassigned such that no relabelling is se0g. In other words, the sparse encoding makes
BIRD inherently robust against a certain amount of node ingestio specific positions. The same phe-
nomenon is exploited by Tiand Moon [2(01] for thé&ixtended Preorder labelling, and also applies to
other approaches such as region encodings (see SECfion 3.3)

Of course, inserting a node in a subtree whose label spagbasisted causes an overflow. As a result,
the weights not only of the overflowing node, but also of itdisgs in the schema tree change (again due
to child balancing). This update may propagate up througtstthema tree and thus spoil the weights of
all other document nodes in the worst case. Because overtiauge a periodical relabelling of the entire
document collection, the update strategy just describappsicable only when the data is known to remain
reasonably homogeneous over time, with only little differe in the size of subtrees below the same tag
path. To reduce the overflow risk further, one may also deditedy leave some extra labels unassigned, as
suggested by TTand Mobn, at the expense of an increasedlidabel size (see below).

In many applications node insertions do not occur at amyipasitions in the document tree, but only at
the end of the collection (i.e., after the last node in doaotroeder). This further reduces the overflow risk.
As a special case, consider collections of bibliographte tike DBLP [DBLH] or the largeinternet Movie
Database(IMDb) [[MDE] (see also Sectiofi.I3 2 in the appendix), where thi lodi insertions happen
when adding entire documents (e.g., in the casiM@ib, new files describing movies, actors, directors,
or producers). This does not alter the nodes in existing mecits (unless the new document changes
the weights of one or more tag paths due to balancing, in wtésle the labels of at least all nodes with
that path throughout the database are affected). Henceid¢bredllections of more or less homogeneous
documents with updates at the document level only, incréahepdates are not mandatory. Secfiod 4.6
below provides experimental evidence for this.

4.5.2 Layered BIRD Labelling

We now sketch a second strategy for decoupling existingddbmm labels assigned to newly added nodes.
This strategy is henceforth referred to lagering® The idea is to partition the document tree into a
hierarchy of horizontal regions, tayers which are then labelled independently. The complitgeted
label of a given document nodeon layer¢; (i > 0) is then composed ofs label on layer/; as well as
the labels of selected ancestorsvain higher layers in the hierarchy. As an extreme case, cenaghin
the path encodings presented in Secfial 3.4 that label acyndent nodes with a sequence of sibling
codes each representing the position of an ancestoonfa specific document level. Path encodings such
asDewey can be regarded as special layered schemes where each dagesponds to one level in the
document tree, so that each component in the layered labelsofust the sibling code of the ancestor
of v on the corresponding document level. It has been obseredebihat when using path encoding,
the label ofv stays the same no matter how many nodes are inserted intalitree rooted irv. This is
precisely because all layers (i.e., document levels indhge) are labelled separately. The same idea can
be generalized so that multiple levels of the document treesabsumed by the same layer and therefore
represented by the same component of a layered node lalielloass.

Figure[Z3a] on the next page depicts the same document Bress Figurd.ZAl on pagdb, but
with two layersfy and/; that cover the five levels db. Consequently, the layerd®lRD labels consist
of two components. The upper layép, covers the three topmost levelsh Nodes on these levels

6A formal unified definiton of what we callayering is given in the aforementioned survey of labelling schemes
[Veiger and Schulz 2097]. There we also show that many vaniatof the same technique have been proposed indepenteftie,
mostly for reducing the maximal node label size.
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Figure 4.6: Child-balancddyered BIRD labelling with two layers{g (top) and¢; (bottom). gaA sample
document tred. For any document nodeon the upper layefy, the layered label is simply the child-
balancedIRD label 31(v) of v that results from labelling only the upper part®f Nodes on the lower
layer/s inherit the label of their lowest ancestor on layg(first label component, beforé™. In addition,
subtrees on the lower layés are labelled independently, again with the child-balanB&D scheme
(second label component, aftet): Bl The 1-balanced schema tr8gfor D ingg For any schema node

in S that represents document nodes on layér € {0,1}), the child-balance®IRD weightw; (p) of p

is shown that results from labelling only subtreedDobn layer/;. Note that schema nodes representing
leaves on either layer iD have the minimal weight, 1 (according to Definitinl4.3 on@Egd), even if
they are not leaves i§;.
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have as first label component ordinary child-balanBHD labels and as an implicit second component 0
(omitted in the figure). By contrast, document nodes on thetdayer,/1, inherit the first label component
from their lowest ancestor on the upper le¥glwhile the second component results from independently
labelling their respective subtree 61) again with the child-balanceé&lRD scheme. For instance, consider
the node 7 on the upper layer in Figlre&l§left-hand side). All descendants of node 7 reside on the
lower layer, and therefore have 7 as their first label compbnEhe second component of their labels is
independent of the upper-layer component, which allowsitalte node insertions gracefully. For instance,
any number of children may be added below the node 7 (withréaykabels “712”, “7|15”, ..., according

to the child-balance®IRD scheme orf1) without affecting the labels of any nodes €y or any of their
descendants on the lower layer. In fact, overflows may ontpuomside a document subtree on a given
layer (e.g., if a right sibling of node 171" has to be added). But since any number of subtrees isedlow
on any layer, théayered BIRD scheme still supports arbitrary many insertions (thougtahall positions

in the document tree).

The BIRD weights on each layer are easy to determine using the batfprocedure described in
SectionZZI1. A new layer is introduced in the scheme as ssoa suitable position for future node
insertions is reached (e.g., right above thevie level in thelMDDb collection). Theoretically any number
of layers may be created, up to the extreme case where eaamdatlevel is on a different layer, and
theLayered BIRD scheme coincides witBewey. Layering also helps to prevent individual weights from
growing too large: when the desired upper bound is reaclhedcurrent layer is closed, and weighting
restarts with a leaf value of 1. In fact, any layer may evemspdy part of a level in the document tree, and
different tag paths may cross a different number of layehsisTthe labels of two document nodesndw
on the same level iD need not even consist of the same number of componentsvengy be part of a
much richer subtree requiring more layers tanThe exact number and position of the layer boundaries
in the schema tree determines both the size of the resultipged BIRD labels and the positions D
where unlimited insertions are supported. Like path enugslitheLayered BIRD scheme likely benefits
from a suitable binary encoding of the node labels (see @dBIZ]) for storing the variable-sized layered
labels in a compact form.

Finally, all decision and reconstruction operations oniraady BIRD labels are easily adapted to the
layered variant. As a matter of fact, in each such operatioy one component of hayered BIRD label
needs to be manipulated as in the unlayered case, wheredbhealcomponents are either removed from
the label or simply ignored. For instance, in order to retroms thei-th ancestou := parent(v) of a
document node in D, one first goes uplevels in the schema tree, starting fror{v), to determine the
weight of u. Whenever a layer boundary is crossed during the bottomrayefsal, the corresponding
component in the layered label ofis removed. The label af on the target layer is computed from the
corresponding component s label as usual, for the remaining numbet i of levels covered by that
layer. All higher-layer label components remain unchanged

Assume, e.g., thatis the node “710” in Figure[Z&l on the previous page. If= 1, then no layer
boundary is traversed, and the label of the pawvesftv is “7|9”, becausg¢10— (10 mod 3) = 9. Fori = 2,
the boundary fron?; to ¢y is crossed. Hence the second component in the layered 12de)™ of v
is removed. The label of nodeon layer/y is “7” since 7— (7 mod 1 = 7, according to the ordinary
BIRD reconstruction orfg. (Note that herai is the lowest ancestor afon the upper layer, whose label
is inherited.) Similarly, all higher ancestors wfare reconstructedparent(“7|10”) = “5” because 7-

(7 mod 5 = 5, andparent(“7|10”) = “0” because 7- (7 mod 3Q = 0. Verify in Figure[Zal that the
nodes on the root path of=“7|10" in D are indeed “@”, “7”, “5” and “0".

For decidingChild* (u,v), we check whether the relation holds for the label companefiti andv
on u's layer and whether all preceding components are equal tin lagered labels. Comparing nodes
according to the document order is done component-wisghttavn direction, as with path encodings.

4.6 Experimental Evaluation

This section reports on our experimental evaluation andpasison of the following four labelling schemes:
BIRD (non-layered child-balanced, i.éa,= 1), ORDPATH by [O'Nell et al. [2700}/] (see Sectidn 3}.1),
uPID by[Bremer and Geriz [20P6] (see Sectlon 3.4.2) ®indual Nodes by [CEE et al. [1996] (see Sec-
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tion[Z3). We applied each scheme to the three documenttolesCities DBLP andXMark 1100(see
SectiorZIZP in the appendix), which differ considerablgiite and structural complexity (in terms of the
number and length of the tag paths occurring in the docurpeklite implemented the four schemes to
be compared as described in the original literature. InWita the analysis of labelling schemes in the
previous chapter, the following optimization goals arersixeed: storage consumption (see Sediion#.6.1);
runtime performance, both for individual reconstruction @ecision operations (see Secfiond.6.2) and for
entire queries (see Sectibn216.3), and updatability (seS[ZEH). Differences in the expressivity of
all schemes are discussed in Seciolh 4.7.

As testbed we use the native XML databace[[Menss el al 2009 Meuss et al 2003 Meuss P000].
X2 is implemented in Java and uses a RDBS back-PostfireSQ). where the XML documents are stored
in relational form (details are explained in Chajiler 6). iDgthe query evaluationX 2 manipulates trees in
main memory, which are restored from sets of document nadelsé¢d from the RDBS. All tests are carried
out sequentially on the same machine, whose performancaatheistics are listed in SectifnIB.1 of the
appendix (Test Environment A). The database cache of theSRiBRlisabled. Apart from the processes
for X2 and the RDBS, the test computer is idle during the experisment

4.6.1 Storage Consumption

The storage consumption of the four labelling schemes otestldocument collections are given in Ta-
bledZ R}z on pagddB. The first three columns after the scheme namertmanminimum, maximum,
and average number of bits used for a single node label, cegply. The remaining columns list the
storage needed for all labels together, both as an absdiite in MB (kB for Cities) in columns five
and seven, and relative to the corresponding result olatdaregpreorder labelling (columns six and eight),
which is the baseline in our experiments. The relative \v@e computed on bit counts, whereas the
absolute values are rounded to the nearest MB (KECftes).

We apply two different methods to compute the total storagesomed by a given labelling scheme.
On the one hand, we sum up the exact bit counts needed forltbks l@assuming that labels can be stored
with variable size. This produces the absolute (relatiaes in the fifth (sixth) column, which follow
the average label sizes in column four. On the other hanslpérhaps more realistic to assume that when
stored in the database, all labels assigned to nodes inrtiedacument collection take up the same space.
The total storage taken up by such fixed-size labels is théystoof the maximum label size, as given
in column three, and the total number of nodes in the cobbadtsee Sectioi13.2). The resulting values
appear in columns seven (absolute) and eight (again relatithe values obtained for preorder labelling).

We found that thésIRD scheme almost always takes up considerably less spac®®RRRATH and
especiallyVirtual Nodes, the two schemes which are closesBt&D in terms of expressivity (see Talllel3.2
on pagd3P). When assigning fixed-size lad&RD reduces the space consumption by nearly a factor 2
for ORDPATH and between 2 and 45 for Virtual Nodes. The reason is that foBIRD the maximum
label size is much closer to the average size tha@RIDPATH andVirtual Nodes, which therefore incur
a significant storage overhead for fixed-size labels. Foakibe-size labels this factor decreases,BilRD
labels still are clearly smaller than those of other schemes

As the only approach (except preorder) with smaller labeds BIRD, the uPID scheme optimizes
storage at the expense of expressivity, as shown in TallerB8p2agg"I. RemarkablyPID occupies less
space than the preorder scheme in our experiments, at lbastagsuming variable-size labels. In the un-
derlying trade-off between expressivity and space consiemghepPID scheme chooses an intermediate
position between schemes with high expressivity and seocagsumption, such a&rtual Nodes, on the
one hand and schemes with low expressivity and storage ogign, such as the subtree encodings in
SectiorZIB, on the other hand.

In further experiments with more deeply nested, text-agedrocument collections, such as th&=X
benchmark corpu§TINHX] that consists of extremely hetermpus and layout-polluted research papers,
we observed that on avera@RD labels grow larger tha@RDPATH labels (97 versus 60 bit§/irtual
Nodes 78 bits), whereas their maximum size is still smaller thaat tif ORDPATH (98 versus 135 bits;
Virtual Nodes 217 bits). One reason is that with a maximum path length oti& multiplicative effect
on the label size (see Lemfak.7 on phge 48) becomes more alumifthat is worse, in heterogeneous
collections such aBNEX the child-balancing blows up the weights of tag paths thed I® subtrees which
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ID size (bits) total storage (kB)
scheme min. | max.| avg variable ID size fixed ID size
’ ’ " | absolute | % pre | absolute | % pre
BIRD 1 24 22 104 161 113 150
ORDPATH 2 49 33 151 232 223 305
—w/o careting-in 2 41 27 123 189 186 255
Virtual Nodes 1 58 37 168 261 264 363
wPID 1 14 11 50 78 64 88
preorder 1 16 14 65 100 73 100
a. Cities
ID size (bits) total storage (MB)
scheme min. | max.| avg variable ID size fixed ID size
’ ’ " | absolute | % pre | absolute | % pre
BIRD 1 37 36 25 170 25 161
ORDPATH 2 53 37 26 186 36 240
—w /o careting-in 2 52 36 25 179 35 233
Virtual Nodes 1 95 37 25 174 64 413
KnPID 1 28 21 14 99 19 122
preorder 1 23 21 14 100 15 100
b. DBLP
ID size (bits) total storage (MB)
scheme min. | max.| avg variable ID size fixed ID size
: : " | absolute | % pre | absolute | % pre
BIRD 1 44 43 113 188 113 177
ORDPATH 2 86 48 124 207 221 345
—w/o careting-in 2 77 43 111 185 198 309
Virtual Nodes 1 198 81 210 350 508 794
KwPID 1 29 20 54 90 74 116
preorder 1 25 23 60 100 64 100

c. XMark 1100

Table 4.3: Storage consumption of different labelling seas on the three document collectidDisies
DBLP andXMark 1100(see SectioR I3 2 in the appendix for details).

greatly vary in size, thus causing many labels to be resefwedirtual nodes. Obviously, this could
be avoided if equal weights were assigned to nodes with dasimumber of descendants, rather than
with equal tag paths. The corresponding structural sumrhalging the weights clearly would differ
significantly from the schema tree. But as mentioned in 8effi1,BIRD can be combined with other
index structures providing efficient access to the weighsslong as specific requirements are met (see
SectioTZB below).

Preliminary experiments show that for tiéEX collection, the maximum label size may thus be re-
duced to 64 bits, i.e., below the performance-critical ltang discussed in the next section, although the
resulting weight index is huge. The exact size of the labelsell as of the structural summary serving as
weight index depends on which document nodes share the saigbtyi.e., are regarded as equivalent in
terms of their subtree sizes. The finer the underlying edgiez relation, the better the weights reflect the
actual subtree sizes, but the more nodes are needed indlctsti summary to represent those weights.
Methods to optimize this trade-off between label size anidjlsteéndex size remain to be developed.
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Figure 4.7: Efficiency of ancestor reconstructiaas o] Reconstruction oparent from different leveld,
for fixed proximityi. &3, @ Reconstruction oparent from a fixed level, for different proximities.

4.6.2 Efficiency of Decision and Reconstruction

The first set of runtime experiments measure the efficienajecfsion and reconstruction with different
labelling schemes. Figur€sh.7 dndl4.8 plot the computditiod needed for various reconstruction and
decision problems on thBBLP and theXMark 1100collection. Results foCities are not shown, but
reveal similar tendencies. All four schemes (excludingopder, for obvious reasons) were tested with
the same set of synthetically generated problems. Sincepbed of individual operations cannot be
measured with sufficient confidence, the figures represerachumulated time (in milliseconds) needed
for 50,000 repetitions of each decision or reconstructidote that this subsumes all necessary operations
including, e.g., access to the schema treI&D or uPID and label comparison during decision.

Reconstruction. FiguredZ Al [b] show the time needed to reconstruct the parents of nodefferedi
levels (abscissa). FABLP @) and XMark 1100(R), wPID is almost as fast aBIRD, whereasORD-
PATH andVirtual Nodes are slower by at least a factor 4. GiMark 110Q the difference betweeBIRD
andORDPATH is up to one order of magnitude. Clearly the performance ti BORD andpPID is in-
dependent of the level of the source node. BRDPATH, the computation time grows with the depth of
the source node. The reason is tB&DPATH bit strings must be parsed top-down (i.e., from left to rjght
down to the level of the source node. The deeper the soureeistmtated in the document tree, the longer
the parsing takes. We observe the same effecVfanal Nodes on DBLP and XMark 1100although in
theory its ancestor reconstruction works in constant tisee (below). Presumably the representation of
numbers of arbitrary size, needed #dirtual Nodes here because of the sheer length of the node labels,
creates an overhead for arithmetic operations on labeksal&ince breadth-first labels grow larger on
deeper levels, this explains why the performanc¥iefual Nodes degradates in Figur€sZaland The
effect is not observed for th@ities collection where th&irtual Nodes labels take up at most 64 bits (not
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Figure 4.8: Efficiency of ancestor decisiong ] Decision of Parent from different leveld, for fixed
proximity i. &3] Decision ofParen't from a fixed level, for different proximitied.

shown in the figure).

FiguredZ£] andd] on pagd illustrate the orthogonal situation: heaeent is reconstructed from
source nodes at a fixed level in the tree (level TH&LP, level 13 forXMark 1100, with varying distancée
(abscissa). As in Figur€sZalandhl] BIRD anduPID are significantly faster tha@RDPATH andVirtual
Nodes (nearly one order of magnitude; mind the different scalgg andd]) and reveal no dependency on
the number of levels to be traversed. Both schemes climb wgihaip the schema tree and then directly
reconstruct the desired node label, which takes pragficalhstant time. By contrast, tAértual Nodes
scheme reconstructs all ancestors iteratively and theredoffers from a linear degradation for bigger
distances. ORDPATH's bit shift operations are indifferent to proximity.

Decision. The plots in FigurgZl8 are based on a similar setting as timB&ure[ZY on the previous

page, but this time for the decision of ti@hild' relation. We observe the same dependencies on the level
of the source node and the distance to the target node astiadbiestruction test8IRD is as fast as for
reconstruction (3 ms for 50,000 iterations), whengB#D is one order of magnitude slower. @BLP,
BIRD outperformsORDPATH andVirtual Nodes by a factor 30 and 40, respectively (up to 100¥itual
Nodes with a level difference of 7). OXMark 110Q the difference is nearly two orders of magnitude (up
to 400 forVirtual Nodes with a level difference of 13).

The complete reporf TWeIgeT et al. 2095c] on our experimentgers a more detailed analysis of the
asymptotic behaviour of different labelling schemes,udahg the ones evaluated here, when faced with
specific reconstruction and decision problems.
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PATH JOIN STRATEGY PATH JOIN STRATEGY
el lela s ALWAYS FIRST NEVER L] e ALWAYS FIRST NEVER
BIRD 4353 4107 7913 BIRD 617 597 4817
ORDPATH 4759 4170 8176 ORDPATH 1534 1535 12343
Q0 pPID 4817 4415 8557 Q0 [uPID 662 577 5320
\Virtual Nodes 9244| 19829| 33120 \Virtual Nodes 1723 5760 295084
Preorder 122235 4015 7892 Preorder 23925 7569 20613
BIRD 125 249 138 BIRD 2634 2591 6745
ORDPATH 158 270 162 ORDPATH 6248 6293 20068
Q1 [uPID 139 268 156 Q1 [uPID 2908 2855 8231
\Virtual Nodes 260 4324 6472 \Virtual Nodes 6913 636649| 4749424
Preorder 4559 4587 6288 Preorder 92430 97455| 188456
BIRD 4337 4241 11693 BIRD 14385 14072 19529
ORDPATH 4625 4431 12249 ORDPATH 37149 36355 49827
Q2 [uPID 4773 4625 12902 Q2 |uPID 14919 14978 20668
\Virtual Nodes 9074 10232| 320639 \Virtual Nodes 36854 65589 82331
Preorder 114915 5871 16156 Preorder 567524 13799 18282
BIRD 170 150 174 BIRD 30 37 9957
ORDPATH 270 171 191 ORDPATH 98 86| 25733
Q3 pPID 266 147 191 Q3 [uPID 36 42 11102
\Virtual Nodes 483 331 10154 \Virtual Nodes 86 89| 228493
Preorder 4398 4239 8244 Preorder 1047 1057 14521
a. DBLP b. XMark 1100

Table 4.4: Efficiency of query evaluation with differenté&ling schemes on the two document collections
DBLP andXMark 1100(see SectioRZI3.2 in the appendix).

4.6.3 Efficiency of Query Evaluation

Experimental set-up. To quantify to what extent the differences in decision artbnstruction speed
observed in SectidnZ.8.2 affect the overall performanceiitire queries, we evaluated a couple of sam-
ple tree queries using the same labelling schemes as in ¢@ps section, both against tRBLP and

the XMark 1100collection. The four test queries run against each cothactire shown in TabldsTZal
andIZn] on pagd T34 in the appendix, respectively. To avoid artefdice to file system cache effects,
the best and the worst result of six consecutive iteratidesach query were discarded. The remaining four
iterations of the same query (occasionally fewer for sonmgdunning queries) were then averaged. Ta-
bledZZ]andhllist the total evaluation times (without profiling). A seabset of runs of the same queries
was carried out to measure the contribution of individuargstages. ChaptErll4 in the appendix contains
a detailed analysis of this additional experiment, inalgthe complete profiling results (see Tafles"E4.2
andIZZBhlon pagdId5).

Due to the restricted tree query language supported by theva systemX?, the test queries only
involve the decision o€hild' and the reconstruction giarent. Note that all query nodes are result nodes,
i.e., an answer to a query comprises the matches to all nodes query tree, not just one focussed node as
in XPath. The same evaluation algorithm is used for all latggschemes; just the reconstruction, decision,
and comparison operations vary. The only exception is tttermes which do not preserve preorder (i.e.,
pwPID andVirtual Nodes) cannot benefit from certain optimizations (see below). Amseline, we use
preorder labels with brute-force reconstruction and degisreconstructing théth ancestor of a node
requiresi look-ups in a parent/child table in the RDBS that maps thener label of any node to the
preorder label of its parent node.

In order to estimate the benefits of reconstruction oparat{which are not supported by all labelling
schemes, see above), we implemented and tested the@#thgein strategies ALWAYBIRST, andNEVER
which differ in their use of reconstruction gfarent. Details about the strategies are given elsewhere
[WeigeT et al. 2004c]. In shorALWAY Smeans that the matches of any branching node in the query tree
are joined with those of its child nodes by reconstructing dincestors of the child matches and testing
whether they are contained in the branching node’s set aflmeat Since our retrieval engiXe evaluates
queries bottom-up, the first child of any branching queryenddes not undergo the path join (which
would fail for the empty set of parent matches), but simplygargates its matches up to the parent node
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by reconstruction. The same is true for the second stra#B% T, which treats only subsequent children
differently. Here the path join decides for each pair of ratto the branching node and its child node
whether theChild™ relation holds. No test for set containment is needed, amelses respecting document
order may benefit from optimizations saving the decisiorstone pairs of nodes, using common structural
join algorithms. The third strategildEVER does not take advantage of reconstruction at all, not even f
the first child of a given branching node. Instead of propagahatches upward in the query tree, all nodes
in the documents with a path matching the path of the bragahdate are retrieved and then joined with
the matches of its first child query node by decid®gild*. Subsequent children are handled as described
for the FIRSTstrategy.

Summary. The following key results sum up the outcome of our experiméagain, see Chapier14 in
the appendix for additional details of the analysis):

Result 1 TheBIRD labelling scheme performs best for virtually all querieslgrath join strategies, both
on the DBLP and the XMark 1100 collection. O

The overall performance in all tests against BLP and XMark 1100collections is given in Ta-
bles[ZZa] andld] on pagd@l. Each of the three rightmost columns correspandsé of the three path
join strategies explained abovBIRD almost always outperforms the other schemes, beaten ong/lmn
pPID (DBLP: Q3FIRST, XMark 1100 QO FIRST) and twice by preordedBLP: QO FIRSTandNEVER
XMark 1100 Q2 FIRSTandNEVER. The most efficient schemes compare®t&D areuPID (DBLP:
factor< 1.6; XMark 1100 factor< 1.2) andORDPATH (DBLP: factor< 1.6; XMark 1100 factor< 3.3).

In terms of absolute numbers, the greatest difference leetidkD andu.PID is 1.2 seconds oBBLP and

1.5 seconds oXMark 1100 ORDPATH is onDBLP up to 0.6 seconds slower and ®Mark 1100up to

30 seconds. The distance\Martual Nodes is considerableldBLP: factor < 58; XMark 1100 factor< 704
compared tdBIRD). In extreme case¥irtual Nodes is one order of magnitude slower than the baseline,
preorder, and even more compared to the other schemesjadlypeben reconstruction is disabled (e.qg.,
Q1 NEVERIn Table[ZZ1)). The exact performance differences vary dramatically e time spent on
label comparisons (see also the following results). In teahabsolute numbers, the greatest difference
betweerBIRD andVirtual Nodes is more than one hour. As could be expected, brute-forcenstiaaction
and decision with preorder labels is usually very slow, esgly when other schemes benefit from exten-
sive use of in-memory reconstruction. Evaluation with pdeo labels takes up to 40 times or 10 minutes
longer than withBIRD labels.

Result 2 The efficiency of label comparisons has a greater impact emterall performance than recon-
struction and decision, and can be affected by the label size O

A detailed profiling of different evaluation ingredienteésChaptei14) proves that most of the query
evaluation time is spent on comparing node labels, bothnduiliecision and, most prominently, when
manipulating the sets of potential matches fetched or €tcocted before. While decision and reconstruc-
tion contribute up to one second to the total evaluation tilaeel comparison easily takes two orders of
magnitude longer. Accordingly, the time spent on recomrsion and decision differs by one second or
less among the schemes (ignoring cases wkieteal Nodes must perform far more decision operations
than the other schemes, see Rddult 4), whereas the effi@éladyel comparison can make a difference of
20 seconds and more. As the difference betwéetual Nodes and the other schemes @BLP shows,
the size of the labels can have a huge impact on the perfoeadrad! label operations (most notably, the
frequent comparisons): as the only scheme whose labelstdi tiee native 64-bit data types provided
by most high-level programming languag®#;tual Nodes suffers from a considerable overhead even for
the strategyALWAY Sa second handicap &firtual Nodes for the other two strategies is subsumed under
Resul{3).ORDPATH is subject to the same effect tMark 1100where its labels grow larger than 64 bits,
too. While the impact of the label size depends on the unihgrlyomputer architecture as well as the data
structures used, schemes exceeding a certain label sizalwélys incur some runtime overhead, not to
speak of the disk space they occupy.
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Result 3 Reconstruction is of paramount importance to efficient guwealuation because it saves label
fetching and comparison. O

The comparison of the three path join stratedi&8VAYSFIRSTandNEVERalso clearly shows that
reconstruction is key to efficient query evaluation. Parfance decreases dramatically for all schemes and
almost all queries when reconstruction is disabled (gi§el¥EVER as opposed t6IRSTand ALWAY $.

The fact that the huge overhead incurredNEyVERIs mainly due to label comparisons rather than node
fetching illustrates that our results do not only apply téivearetrieval systems lik&?2 but also, perhaps
to a lesser extent, to other engines where fetching is cnéapeh as purely relational system&IRD,
ORDPATH anduPID preferFIRSTwith its mixture of reconstruction and decision, owing teittefficient
decision techniquesVirtual Nodes, by contrast, suffers from a massive join overhead for threstegy,
caused by the breadth-first order of its labels (see REbulwiih its different join algorithm ALWAYS
bringsVirtual Nodes a little closer to the other three schemes.

Result 4 Labelling schemes preserving document order benefit gréath path join optimizations. [

The path join strategies involving decision, i.EIRSTandNEVER locate ancestor/descendant pairs
in sets of matches to two given query nodes. Processing khlesksets in document order has the advan-
tage that not all possible label pairs (i.e., the full Caaegproduct) need to be checked, which may save
many decision (and, consequently, comparison) operatamexplained in the complete report on the ex-
periments[[WeigeT et al. 200bc]. Obviously schemes BkRD, ORDPATH and preorder benefit from this
optimization wherea¥irtual Nodes, whose labels are assigned in a breadth-first traversaéafdhument
tree, typically must decide ancestorship for many morel ladies. The resulting overhead explains why for
FIRSTandNEVER Virtual Nodes is far less competitive than fé\LWAYSThepPID scheme, although
violating the document order between arbitrary nodes,se8 amenable to the optimization provided that
only sets of nodes with the same tag path are joined (becawsegthese nodes, the document order is
preserved). Since our test syst&ifalways retrieves and joins nodes belonging to the same schede,
this condition is satisfied andPID can be handled as if it were fully compatible with documeatieor

4.6.4 Updatability

In SectiollZR]l an update scenario is outlined where mattemare documents are successively added
to a collection that was originally labelled with a delibiig sparseBIRD scheme. The question is how
often an overflow of some of the weights established durirgldist indexing occurs, which triggers a
relabelling of the entire collection (recall that no layeriis available in this setting). To answer this
guestion empirically for a large collection of real-worldtéd, we carry out the following experiment.

An XML version of thelnternet Movie Database (IMDKB.4 GB on disk, see Secti@IB.2 for details)
is labelled with two variants of the child-balancBtRD scheme that differ in their degree of sparseness.
Nearly 2,000,000 documents are indexed consecutively imich of 1,000 documents (about 4-6 MB
per chunk). Figur&4l9 on the following page shd&D’s overflow behaviour and space consumption
as more and more documents are added. In a first experimefuture insertions are anticipated, i.e.,
the weight of a given tag path is always just as large as it lnegb accommodate the greatest known
subtree below that pathBIRD” in Figure[Z3al and[Z0)). We then label the collection once again, this
time reserving extra labels for 100 potential child nodeitisns below any overflowing node during the
weight computation BIRD + 100" in FigurdZ @] andZD)).

Each point in the plot in FiguleZa] (left-hand side) illustrates how many times at least oneyhiei
in the schema tree must be changed while adding anotherd@@dtuments, thus causing a relabelling
of the collection. The two large peaks at the beginning iaichat the ordinar3IRD weights become
reasonably stable only after indexing the first 400,000 deens, or 20% of the data. Up to that point, a
large number of overflows occur in the first experiment (dddime). However, this improves significantly
when applying the extra-sparse encoding (solid line). Nwaein these early stages of the evolution of the
collection, relabelling is much cheaper than later on raftany documents have been added. In the sequel,
the need for relabelling dwindles rather quickly, espégifar BIRD + 100 which triggers only one more
weight update before adding 1,300,000 documents withgubeaerflow.
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documents ot the collection.

In Figure[ZZh] we observe an early saturation of the label sizes (the marimeas mostly reached
after indexing less than 20% of the documents) and a very lsvadl space consumption f&IRD (at
most 45 bits per label, for a collection of more than 83,000,0odes). Obviously reserving extra labels
to increase the robustness of the scheme is not expensigeniis bf storage: the greatddRD label in
the extra-sparse encodingBfRD + 100", at most 54 bits per label) still occupies far less tbdrbits, a
critical boundary in our runtime experiments (see Sedii@@¥above). Although with a height of five
the document tree for thidDb collection is fairly shallow,ORDPATH labels grow rapidly beyond the
64-bit line (maximum label size 73 bit). This is true even éovariant ofORDPATH with smaller labels
(“ORDPATH wi/o caret” in FigurdZB®l maximum label size 68 bit). Here the sparse encodiageting-
in) for future updates is disabled, at the expense of limitethtgbility. The resultin@ RDPATH variant is
similar toDewey, but enjoys binarfDRDPATH encoding. However, the labels are still considerably large
than with either variant of thBIRD scheme.

4.7 Summary and Discussion

This chapter has introduced tlal/anced Index-based numbering scheme for Reconstruction and Deci-
sion (BIRD). BIRD is a multiplicative labelling scheme optimized towards fgsery evaluation through
efficient reconstruction and decision of query constrairEgperiments show tha&IRD scales up well
to large collections containing gigabytes of XML documeimsterms of both the runtime performance
and the space occupied by the node labels. We have also slleteteral variants &IRD labelling that
target distinct optimization goals. ThbsbalancedB/RD with b > 1 extends the reconstruction capability
beyondi-th-child to descendants on deeper levels. As an extreme casetallg balancedabelling re-
constructs large parts of the document tree while miningizie number of distinct weights to be stored in
a structural summary. On the other hand, increasing thebialg parametel causes the node labels and
weights to grow larger unless the structure of the docunism@stremely homogeneous.

A decrease in space efficiency is also the price to pay fortgregpdatability. We have sketched two
ways to maké3IRD more robust against node insertions: a sparse variantigrait ofExtended Preorder
[[CandMoon 2001 ] that deliberately reserves labels foufatnodes to be added; and th&ered BIRD
labelling which replaces singleton labels with top-dowbelasequences, similar to path encoding. The
sparseBIRD scheme performs quite well on the lai®#Db collection, preventing many weight overflows
with only a very modest storage overhead. However, deesiedeand heterogeneous collections such as
INEX are still much of a challenge to the scalabilityBiRD.
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Figure 4.10: Visualization of the positions that differ&tielling schemes occupy in the trade-off between
expressivity, runtime efficiency, storage consumptiord apdatability. Each of the first three criteria
is represented by a distinct dimension in the three-dinoerasitrade-off space shown. Updatability is
symbolized by the colours of the points in the plot: darkdoucs indicate a more robust labelling scheme.
Time and space efficiency reflect our experimental resutisthe theoretical worst-case complexity.

Comparison of labelling schemes. FigurdZID presents a tentative visualization of the ti@ftlbetween

the different optimization goals mentioned before. Theaiiteto positiorBIRD and its competitors in the
form of a ranking along distinct axes that respectively espnt expressivity (vertical), space efficiency
(left) and runtime performance (right). Intuitively spakene can see that the various approaches head in
different directions to solve the problem of “good” XML ldbieg. Let us briefly highlight the characteris-
tics of each labelling scheme, symbolized by its positiothetrade-off space. Preorder labelling (white)
is at the lower end of the expressivity and performance dsioeris, but of course very space-efficielt-
tended Preorder (red, see Sectidi3.3.1) gains a little expressivity (amthbgeruntime efficiency) through
the use of a second label component, which doubles the lagel Gompared to preorder aifisttended
Preorder, wPID (blue, see Sectidi33.2) adds important reconstructipatufities but lacks support for
deciding document order; still we assume that the benetiteofdrmer outweighs the downside of the latter
(see below for a short discussion on how to rank the diffeetgria). In terms of time and space efficiency,
the performance qfPID is unsurpassed in our experimer@RDPATH (brown, see Sectidi3.3.1) is more
expressive thapPID (most notably because it respects document order), butitessand space-efficient.
Finally, Virtual Nodes (yellow, see Sectioid.5) arRIRD (green) are the most expressive schemes tested.
While BIRD is as fast agPID and has smaller labels th@RDPATH, Virtual Nodes is fairly inefficient

in both respects.

However, notice that the above representation of tradetwdf the following limitations. First, the
important criterion of updatability is not represented igesometric fashion, unlike the other three opti-
mization goals just mentioned. Instead, darker coloursigure[ZID indicate a more robust approach.
Obviously,ORDPATH is most advanced in terms of updatability. Second, the tbheensional trade-off
space shown in FiguleZ]10 is topological, but not metricothrer words, the relative position of two ap-
proaches to each other indicates which one is better in tef@specific criterion, but it does not indicate
how much. Finally, the topology in the two horizontal dimiems (i.e., time and space efficiency) is based
on our experimental results (see SectibnsHET14.6.L&0d 4bove), not on the theoretical complexity
of the underlying problems. OtherwisglRD would be close td/irtual Nodes in the storage dimension
because the labels of both schemes grow exponentially indigt of the document treé (the base being
the maximal fan-out iD, see LemmBZ17 on pafiel48). Similagy?ID would be close t®©RDPATH in
the storage dimension because despite the good compreatsoachieved byPID, its worst-case label
size is still linear in the number of nodesin
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Weighting comparison criteria.  As the discussion above illustrates, the decision whicélledy scheme
to use for a particular application depends on a number &éréifit criteria and factors to be weighted
against each other. Most prominently, the importance afisbiess depends on whether the document col-
lection to be labelled is frequently updated and if so, inckhivay (see Sectidn3.6). Similar constraints
and preferences may apply to the storage available, th@mergerformance e.g. on large collections,
and the support for handling specific tree relations. Faraimse, the fact that in genenaPID and Vir-
tual Nodes labels do not reflect the document order can be an importaatidantage especially for the
evaluation of XPath and XQuery, whose semantics strongld lom node sets being sorted in document
order. Lack of support for document order deeply affectstreduation algorithm and seriously limits the
use of most common structural join algorithms. However i§ iguaranteed that at any time during the
query evaluation only labels are compared that belong toetes with the same tag path, then gD
scheme may actually be a good choice, becaidb labels of such nodes do respect document order (see
SectiorTZZDY.

Further criteria to be taken into account when choosingtalsigi labelling scheme include the indexing
performance (e.g., how many traversals of the documentaneaeeded for labelling), specific mappings
to physical storagdJBremerand Geriz A006] or other labglichemeqdTWang et al. Z0p3a], or whether

global data structures such as the schema tree or an FST naadjgSavoille and Peleg 24¢3; Peleg 1999].
Also, manipulating node labels in a restricted environn{enth as standard SQL without user-defined

extensions) may be an issue (see Chdpter 7). For instamae aaproaches require full regular expressions
[Yashikawa et al 2001] or bitwise parsirlgIONel et al. Z0which may or may not be supported by the
runtime environment.

As a general finding, however, the experiments in Sefidskof that the ability of a labelling scheme
to reconstruct certain query constraints (most notgiyent) is key to efficient XML query evaluation.
This is confirmed in different settings py ChristophidesleEEA0]] and by Tu et al- [20Q5]. Consequently,
while the subtree encodings reviewed in Secligh 3.3 prodowdl node labels that can be used in struc-
tural joins to decideChild* constraints, they are usually outperformed by schemesIiR® that exploit
the power of reconstruction. We empirically support thaml in further experiments to be presented later
(see Chaptdd8), whei®IRD competes with th@€re/Post labelling (see Sectidi=33.2) in a relational en-
vironment. The same effect can be expected for other scheitteseconstruction support, e.dewey or
ORDPATH. As the use 0ORDPATH in a commercial RDBYJONell et al. 20P4] shows, these apphes
are of great practical interest. The plddawey scheme is easy to implement and fairly robust, but needs
of course a binary label encoding to prevent excess label GRDPATH is particularly attractive due to
its support for unlimited updates, which in a highly dynasetting will outweigh by far the loss of a little
expressivity and space efficiency.

4.8 Optimizations and Open Problems

Layered BIRD and unbalancedBIRD labelling. The comparison and experimental evaluation of mul-
tiple labelling schemes above has shown that the childAoald, non-layereB8IRD scheme is highly ef-
ficient and expressive. The practical performance and hasfafie Layered BIRD labelling outlined in
SectiolZEP remains to be evaluated. As a matter of face tisealso arunbalancedvariant of BIRD
labelling, which emerges naturally when fixing a balanciactér ofb = 0. Additional work omitted here
shows that the unbalanced labelling scheme creates laimbisgights that are smaller and less likely to be
affected by node insertions. Intuitively, this is explair®y the fact that without balancing fewer document
nodes are forced to have the same weight and hence labetr¢haultiples of a specific number. While
a weight overflow in any balanc&®iRD scheme invalidates the weights and labels of all documedeg$io
that are represented by a sibling, cousin, ... of the schem@ causing the overflow, the unbalan&gD
labelling restricts this to those elements with exactlygshme schema node.

However, without balancing certain tree relations suchtaschildor nextSiB can no longer be recon-
structed. Furthermore, the creation of unbalanced labgts but to be more complex than in the balanced
case. In particular, the memory consumption during labglis probably prohibitively high because for

7In fact we exploit this feature, to the benefit|oPID, in our experiments with th&?2 system, whose query kernel processes
node sets that were fetched for specific tag paths.
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each element visited in the first pass through the documeat tihe sequence of tags of its children must
be recorded, rather than only the number of children as indhent labelling procedure. This issue would
need to be solved before the unbalanB8D scheme might become a more space-efficient and robust
alternative to the balanc&IRD labelling described above.

Structural summaries of document subtrees. By contrast, there are other ways how BIRD scheme
could be optimized to obtain labels that are smaller and madyest against modifications of the document
tree (most notable, node insertions at arbitrary posijioAs suggested by the position BIRD in the
trade-off space in FigulEZ10 on pdge 65, these are the otetienges faced by our approach. A possible
technique for reducing the size BfRD labels and weights has been hinted at in Sedflonl4.6.1. Where
sketched an alternative structural summary which is difiefrom the schema tree that we used as weight
index throughout this chapter. Currently all document sogith the same tag path are assigned the same
weight, as stated by the first invariant on pigk 43. Obviotietymay cause many labels to be reserved
for virtual nodes, namely, when some document nodes witkiengiath have a large subtree (and hence, a
large weight) while other document nodes with the same t#gwauld only need a much smaller weight.
The sample document in Figure@aPBon pagdZk illustrates this effect: although the node wighBtHRD
label 36 (the rightmost child of the document root) has owly thildren, which would require BIRD of 3

(see SectioiZA.1), the actual weight of the node 36 is 9r&4son is that other document nodes with the
same tag path as node 36 (hamely, its three siblings 9, 18 @rallhave larger subtrees which do not fit
a weight of 3.

It therefore seems promising to decouple the weights frantal paths by using a structural summary
in which every node represents element with a similar selsize, rather than elements with the same tag
path. As a matter of facBIRD can be used with a variety of structural summaries coverdadfipitionZZ%
on pagddll. The only restriction is that tBild relation on document nodes must be preserved by the
structural summary in the obvious sense, so that ancesightsere available when reconstructarent.
Clearly this is true for the schema tree: recall from SedHghthat given two document nodasandv
with respective tag paths(u) and ri(v), if we have aD-constraintChild(u,v) in the document tree then
the corresponding-constraintChild’(rt(u), 7(v)) holds true in the schema tree. An open question is
which other structural summaries could be used that satiiefyabove condition and at the same time
treat elements as equivalent that have subtrees of a sisikior structure. Note that this could not only
help to decrease labels and weights, but also nBdR® labelling more robust: after all, weight changes
caused by overflows would no longer propagate to all documedés with the same tag path, regardless
of their subtree size. Instead only nodes with a specific aosubtree would be affected. Depending
on how heterogeneous the document structure is, this mag thaamany node labels that are currently
invalidated for no reason remain unchanged.
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CHAPTER
FIVE

Index Structures for Structured Documents

5.1 Overview

This chapter surveys existing techniques for indexing Ila¢hstructure and the textual contents of XML
documents. The various table- or tree-shaped data stesquesented here are all instancesenftralized
structural summarieésee DefinitiolZ]5 on padgll1). As such they could in primdi@ complemented by
decentralized summaries as those discussed before (spee@ibanfll4). From the wealth of centralized
approaches to capturing the structure of XML documentg; arfiéw representative indexing schemes can
be reviewed in the scope of this thesis. For a more detaileceguthe reader is referred to earlier work
[Weigel 200%].

5.2 Inverted Files

The most basic document indices aneerted files(also calledinverted list3. These table-like index
structures are standard in Information Retrieval on “flastdments (i.e., documents without markup) but
have also been used for semistructured data like XML doctsneither stand-alone or in combination
with more complex structure indices (see below).

A typical inverted file is shown in FiguleXhdl on the following page. It indexes the textual contents
of the document treB in FigurelZIDb] on pagdB, as follows: each row in the table ostingin the file)
maps a unique keywolde K (left column) to the places whekeccurs in the documents (right column)—
much in the same way as the keyword index in the backmattéisftiesis. In the example, each keyword
occurrence is given as the unigue node label of the contailiement; multiple occurrences kin the
same element are not distinguished. However, dependifgamiderlying data and query model, the index
could be either coarser (identifying only the documentsnelkeoccurs, as in flat-text retrieval) or more
fine-grained (indicating the exact positionk’s occurrences in a given element, as needed when evaluating
gueries with text distance constraints). In addition, thggical organization of the postings may vary;
e.g., the table shown in FiguteZalcould also be in first normal form. In Information Retrievgpically
not all distinct keywords are indexed, the most frequensdse-calledstop worddike conjunctions and
prepositions) being left out to keep the index smaller. lyn&eywords are often normalized (e.g., by
stemming and conversion to lower-case) in order to map atphmlogical and orthographical variants of
a term to the same set of occurrences.

Inverted files are also used to index tag occurrences intstest documents. FigufeEZ9l on the
following page depicts such a tag index for the documentirée Figure[lZb] on pagdB. Each distinct
tagt € T is mapped to the set of nodes with taig D. Note that the two inverted files in Figules 2Dl
together support simple queries agaiDst-or instance, to select alame nodes containing the keyword
“Lee”, one would look uglee” in the first table andname in the second one, and then intersect the
two resulting node sets. This produces the query rgQ1lt30, 39} which is correct, as can be verified in

FigureZ0]
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INDEXING

"female"” | 26,34,42 /people 0

"Jeff" 12 /people/person 9,18,27,36
"Jill" 21 /people/person/name 12,21,30,39
"Lee" 21,30,39 /people/person/profile 15,24,33
"Mae" 30 Ipeople/person/profile/edu] 16,25
"male" 17 /people/person/profile/sex| 17,26,34
"MSc” 16 Ipeople/person/gender 42

"PhD" 25

"Smith” 12 c. inverted path file

"Sue" 39

a. inverted text file "female” | Ipeople/person/profile/sex

10/18/24/26
10/127/33/34
edu 16,25 Ipeople/person/gender
| gender | 42 = - /0/3?/4;2 -
"Jeff" eople/person/name

;:om;e (1)2,21,30,39 plOlgmzp

person | 9,18,27.36 "Jill" Ipeople/person/name
profile | 15,24,33 [0/18/21

sex 17,26,34 : :

b. inverted tag file d. inverted text/path file

Figure 5.1: Inverted files for the document tree in Fiuré®dn pagdB.

By contrast, locating the occurrences of an entire tag path/to/ - - - /tj (wherej > 0) in D with an
inverted tag file is cumbersome and often inefficient. Alstiag0 <1 <j) in p must be looked up separately
in the index, which producest 1 node sets. For eaght 1-tuple (v, ...,V;) in the look-up result one
must then check whetheZhild(vi,vi11) holds true for all 0< | < j. Tuples for which this fails do not
represent element pathslin For instance, lep be the tag pathypeople/person/name in Figure[ZD]
on pagdB. Looking up the three tagsople, person and name in the table in FigurEXIil produces
the tuples(0,9,12) and(0,9,21), among many others. Thehild test reveals that the first tuple is indeed
an occurrence gf in D, whereas the second is not a valid element path (becausen@iaschild of 9).

The Childtest is a special case of a so-cal&dictural join[Zhang et al. 2001 ALKRalia et al 20D?2;
Brino e al 200 TChien et al. 2002], where two node sets angpared to find all pairs of nodes in a
particular tree relation (most commonlghild or Child*). Many relations can be decided efficiently
for a given node pair when a suitable labelling scheme islabai (see Chaptefd 3 aiiHl 4). But even if
sophisticated algorithms are used, joining large nodersasbe expensive in terms of runtime. In this
case the size of the node sets to be joined depends on howtb&endividual tags in the path occur
in the documents. Consider the tag patheople/person/name again, and assume there are only few
person names in the data, but mamyme nodes occur below other tags, such gs:ople/group/name
or /people/relation/name and so on. Then th€hild join will involve a large set ofname nodes,
most of which are not part of the query result (for not beingdran of person nodes). This is because
the tag index fails to capture information about the nesbifiggs.

A second drawback of indexing singleton tags rather thapa#igs is that the number of structural joins
needed to rule out invalid tuples grows with the length ofgbery path—even when the matches to most
query nodes are not needed to answer the query. In the exaimple, unless thgeeople and person
nodes have been explicitly marked as result nodes, theediesitswer is just a list ohame nodes (which
of course must have person and apeople ancestor, but we do not need to know their node labels). An
index locating all nodes reached by a specific tag path wittmuiching the ancestors of these nodes can
save many structural joins. Such path index structuresraepted in the next two sections.

5.3 Atomic Path Indexing

To reduce the number of structural joins needed for matdlaiggaths, index structures have been proposed
that map an entire tag path to the set of noDesith that path. Each tag path is represented as a single
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Figure 5.2: Two-dimensional path bitmap for the documesd tn FiguréZZ Bl on pagdB.

text string (like those used for illustration throughousttext) that contains all the tags on that path in top-
down order. Note that prefixes shared by distinct tag pathd@plicated in their respective strings: e.g., the
common prefix of /people/person/name and /people/person/profile is stored redundantly. We
refer to this agtomic path indexingince tag paths are treated as monolithic objects (rathardbquences
of tags, as with theompositionapath representation described below).

5.3.1 Inverted Path Files

A simple way to index tag paths is to put them in an inverted éither as keys or as values. Figlred 1

on the facing page depicts a table similar to the ol ibut with entire tag paths in the first column. Given
such an index, query paths involving or@Ghild steps can be easily matched. In fact, the paths could be
represented physically as a Blree or a Trie[[ETedkin 19%0] to accelerate the look-up. Bygteast, query
paths withChild™ or Child* steps or missing tag constraints require special stringsmreg techniques
that allow to ignore steps in the indexed tag paths. Detaflgaven in Sectiof 22211 foXRel, an atomic
path index b{ Yoshikawa et al. [2001].

To match both tag paths and keyword constraints withoutrigato intersect node sets looked up in
separate text and path indices (such as those in Fifjiresd &antic), [Sacks-Davis et al. [19P7] combine
both into a single table, shown in Figdfe &l his inverted text/path file differs from the original inved
text file in two respects. First, the occurrences in the secofumn are no longer singleton node labels, but
sequences of labels representing element paths in the @mtsinfor instance, while the posting fée-
male” in Figuredl®Jal contains the node label 26, among others, the correspopdsting in Figur& o]
contains the element patld/18/24/26 instead. Second, the occurrences in a given posting auped by
distinct tag paths, which are stored with each group. Inf6BiId] the“female” posting comprises two
groups: the first one contains two occurrences of the tag ppélople /person/profile/sex (namely,
the element paths leading to nodes 26 and 34), whereas thedsgooup contains only one occurrence
of another tag path/people/person/gender. Again, special string-matching techniques are needed to
handle query paths with descendant steps or tag wildcasaseationed above.

5.3.2 Path Bitmaps

In flat-text Boolean Information Retrieval, keyword ocances in documents are traditionally indexed
using a two-dimensional bitmap called tdecument/term matrixmagine the bitmap as a table with one
column for each document and one row for each distinct kegiviterm) occurring in these documents.
Given any combination of a keywoidand a documerd, the bitmap valugk,d) in the corresponding
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Figure 5.3: Different operations on a three-dimension#i p&map BitCube).

table cell indicates whether or nlbbccurs ind (valuesi ando, respectively).

The same idea can be applied to structured documents byirgsarsingle column for each distinct tag
path, rather than each document. Fidiré 5.2 on the precedipg depicts the resulting two-dimensional
bitmap for the document tré2in Figurd2ZIb]on pag€&B. Note that since all combinations of keywords and
tag paths are materialized, the bitmap is generally sp&manstance, in the two leftmost columns no bit is
set because theeople and person nodes inD do not contain text. By contrast, from the third column
we can tell that six distinct keyword occur iname nodes. Bit vector operations such as conjunction
and disjunction permit to test simple Boolean keyword ca@ists against tag paths: e.g., the only tag
path leading to occurrences of bdfemale” and“male” is /people/person/profile/sex (bitwise
conjunction of thefemale” and“male” rows in FigurddeR). However, there is no way to determinenfro
the bitmap whether there is any single noddithat contains these two keywords together, because no
pointers to individual occurrences of keywords and/or tathg are given. In terms of the Three-Level
Model of XML Retrieval introduced in Sectidn 2.4, the twadinsional bitmap only indexes information
on the schema level, but not the document level.

It seems natural to add a third dimension to the bitmap whagtwres information on the document
level. TheBitCube proposed by Yoon etal. [20P1] is such a three-dimensionaidp, consisting of a
keyword axis, a document axis and an element (or elemen} gaith As with the document/term matrix
above, we substitute tag paths to documents in order to havieill schema information reflected in the
index structure. Thus for any triplg, p,v) consisting of a keywor#, a tag pattp and a document node
a bitmap value of indicates that nodewith pathp contains an occurrence kfLike the two-dimensional
path bitmap, th&3itCube may be extremely sparse. For instance, a bitmap val@ei®btored for every
tuple (K, p,v) consisting ofp andv and any keywordt’ that doesiotoccur inv.

Figurel@B illustrates different ways to look up informatio theBitCube. Ingg, a vertical slice of the
cube is read which contains all valuésp, V) for a fixed tag pathp. This basically produces a tag path-
specific inverted text file (compare this to Figlire&lbn pagdR). Analogously, a horizontal slice of the
BitCube, as shown in FiguleRId corresponds to a keyword-specific inverted path file (sgareia IC),
or a single posting in the combined text/path fildhy SackerPar all (see Figuleadl). Finally, a com-
bination of both operations produces a vector containihglements (or, alternatively, element paths) that
have a specific tag path and contain a specific keyword, astédpn Figurd5gl

5.4 Compositional Path Indexing

A variety of path indices have been proposed which are molessrclose to the schema tree introduced in
the previous chapter (see Definitianl2.6 on dage 11). Atifitesd in Figur€&ZElon pagdB, each distinct
tag path occurring in the document trBeis materialized as a sequence of nodes in the schem&tree
rather than an atomic string valiéhe most obvious advantage of titismpositionapath representation
is that prefixes shared by multiple tag paths are stored amg.o For instance, the sanmgople and

1n fact, given the alphabék of tag symbols, the schema tr&can be viewed as a TriEJEredkin 1960] created from a set of
words overT that represent all distinct tag paths.
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person nodes inSare part of the tag pathgpeople /person/name and /people/person/profile,
among others. For highly heterogeneous collections wheresthema tree grows large, this decrease in
redundancy — compared to atomic path indexing — can save spate. Another benefit of compositional
path indexing for query evaluation against a recursivesehis discussed later (see Seclionl.4.1).

Note that since the schema tree does not capture docunvehiriéormation (recall the Three-Level
Model of XML Retrieval illustrated in FigurEZ.3 on palgd 18jiditional pointers are needed to locate the
occurrences of tag paths in the data. Besides, in order tchrkayword constraints, the textual contents of
the documents need to be indexed, too. In the sequel we remiuple of alternative ways to realize this.

5.4.1 DataGuide

The perhaps best-known compositional path index for sencisired data is th®ataGuide, developed

in bylGaoldman and Widdm for tHepre retrieval system[JMcHugh etal. 1997]. For tree data, the
DataGuide looks exactly like the schema tr&shown in FigurdZZE] on pagdB. As mentioned before,
in all but very few artificial caseSis small enough to fit main memofyThus schema matching in the
DataGuide is done by following paths in a memory-resident tree stmggttypically starting from the root
node. Query paths with unspecific tags or with steps invgh@hild* or Child* cause backtracking i8
since multiple matches might be found. For instance, thettKXBaery /people/person/profile/*
matches two tag paths B represented by the nodes #4 and #5 in Figureloh pagdB, respectively.

To locate occurrences of tag paths in the docum€&niS_GOIGMARVIGorh combine th®ataGuide
with an inverted path file similar to the one shown in FidutE@on paggZlR. The only difference is that in
the left column of the table, the tag paths are representgleoyumbers of the correspondibgtaGuide
nodes, rather than strings. Thus the first row maps the tég#fetio element 0, the second row maps #1 to
elements 9, 18, 27, 36, and so on (the tag path numbers conggpDataGuide nodes in FigurE2Z&lon
pagd®). Together the two index structures allow to matchmygo@ths where only the leaf node is a result
node, as in the XPath expressigpeople/person/name which returns onlyname nodes. Note that the
DataGuide does not provide matches to higher nodes on the query path tfge correspondingerson
nodes).

Combining theDataGuide with an inverted text file like the one shown in Figire 8lbn pagd 7P
permits to match path queries with keyword constraints.iff&ance, to obtain all elementslinthat have
the tag path/people/person/name and contain the keywortlee” , one would proceed in four steps:

1. Search the given tag path in tBataGuide in FigureEZZIC] on pagdB. This selects the schema
node #2 (in this case, a singleton node since the query patprises onlyChild steps with no tag
wildcards).

2. Look up the schema node #2 in the inverted path file (see¢liglIc] on pagd—7R). This produces
the element sef12,21, 30,39} as matches to the structure part of the query.

3. Look up the given keyword in the inverted text file in Figlg&al on pagd—R. This produces the
element sef21,30,39} as matches to the text part of the query.

4. Compute the intersection of both element sets (if the keghwonstraint specified government rather
than containment, a structural join of the two sets woulddeded instead). This yield21,30,39}
as the query result.

Note that stepEl2 arld 3 are independent of each other and thaukfore be executed in reverse order.
Sted3 can be expensive for large node sets, especially wtencaural join is required (see above).

A number of other compositional path indices for XML have i@eoposed, most of which resemble
the DataGuide to some extent. The remainder of this section briefly reviawiew characteristic ap-
proaches. For a more detailed survey and comparison] saggV2@02]. Further XML index structures
have been proposed py Chung et al. [J0PZ], Kaushik et al Ag0f&hin et al. [T998[, Wang et al. [20Q3b]
as well a§ Rao and Moon [2704], among others.

2In theory the schema tré@can grow as large as the document tBeebut only if no tag path occurs twice . Typically
even highly heterogeneous tree collections suchresbanKIeebank] ofNEX [[NEX] contain considerable structural redundancy.
Examples of graph documents where BtaGuide has exponential size are given in previous WTKJWeigel p002
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5.4.2 IndexFabric

The IndexFabric by[Cooper et al. J[20Q1] aims to eliminate si@p 4 above, wheeesults of two separate
index look-ups for a tag path and a keyword are joined to predbe final query answer. To this end,
the inverted path and keyword files are combined with thersehigeeS into one large disk-based tree
structure, théndexFabric, as follows. For a given tag pafhin the documents, lé€, be the set of distinct
keywords occurring in any element with paghlf Ky is not empty, then new branches are added bglow
in Swhich represent the keywords i}, as a Trie[Eredkin T980]. The nodes in these additional brasic
represent sets of elements with patthat contain a particular keyword K. This way not only the query
path, but also the keyword constraints can be matched bywisl paths in théndexFabric.

For instance, for the tag pafh= /people/person/name in the document tre® (see FiguréZIn]
on pagdB), we havk, = {“jeff” ,4ill" ,“lee” ,“mae”,“smith” ,“sue” }. The IndexFabric for D would
therefore contain (among others) a patteople/person/name/l/e/e representing the elements 21, 30
and 39 (which have the tag patfpeople/person/name and contain the keywortlee” , see above).
Similarly, /people/person/name/s/m/i/t/h would represent 12, andpeople/person/name/s/u/e
would represent 39. Note that these two paths inrtdexFabric would share a prefix of four steps, includ-
ing thes node: like tag paths, keywords below the same tag path aveesesented in a compositional
fashion (namely, as a Trie) to reduce redundancy.

In terms of the Three-Level Model of XML Retrieval (see FiglZ3 on pagEl3), tHadexFabric com-
bines information from both the schema level (the tag pathd)the document level (the path and keyword
occurrences). Clearly the resulting index structure islémge to be held in main memorfy._Cooper gt al.
therefore propose a paging strategy for partitioningltiiexFabric on disk in order to restrict the num-
ber of page faults during index look-ups. Besides, to sask sbace all non-branching parts of paths in
the IndexFabric are contracted, which reduces the number of nodes in the lt@sever, the compressed
IndexFabric only indexes leaf nodes iD or nodes which contain keywords, and therefore fails to @nsw
certain path queries.

5.4.3 Signature File Hierarchy

The Signature File Hierarchy by [Chen and AberbE[TOPE_TA99] pursues a different strategyleviate

the burden of joining path and keyword occurrences in[Bteseé pagEl5). Recall that since query paths
with Child* or Child* steps and/or unspecified labels may have more than one matohschema tres,
entire subtrees d must be searched in a backtracking procedure. In the cofitbéssearch, multiple
schema nodes may be selected, all of which undergo the ecmgrtook-up in the inverted path file (si@p 2).
However, it might happen that some schema rpdees not contribute any occurrences to the query result,
because no element with the tag pptbontains the query keyword. In this case the occurrencesaoé

in vain fetched from the inverted path file in sfdp 2 and irgetad with element sets from the inverted text
file in sted3.

In order to rule out such false positives early during theamiaig [Chen and Abefler use a well-known
Information Retrieval technique to give approximate hiadgo which tag paths i8 have occurrences that
contain a specific query keyword, as follows. Assume that &agwordk € K occurring in the documents
is mapped to a bit string with a fixed length and a fixed numbdyitsfset. This bit string is called the
keyword signaturef k. For any noder in the document tre®, let K, be the set of distinct keywords
occurring inv. A keyword signature for the nodeis then created by superimposing the signatures of all
keywords inKy by bitwise disjunction. Note that given the keyword sigmatofv and the signature of any
keywordk € K, the following implication holds: i’ containg, then all bits set in the signatureloére also
set inv's keyword signature (we also say that the signature gdialifiesfor the signature ok). However,
the inverse is in general not true: even's signature qualifies fd's signaturey may not contairk, since
the bit patterns in the signatures of distinct keywords am@d byv may happen to overlap and together
cover all bits that are set in the signature<of

These observations can help to avoid needless look-up®arsdn stepEl2 anld 4. From the contrapo-
sition of the implication above, it follows that given thgsatures of a set of document nodes and a query
keywordk, we may recognize for some (though perhaps not all) nodegtbg surely danot containk
(namely, those whose signatures contain unset bits thaeaiek’s signature). To exploit this during path
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matching[Chen and Abefer creatSignature File Hierarchy by annotating the schema tree with keyword
signatures and information from the inverted path file, #levics. First, every keyworét € K to be indexed

or queried is mapped to a fixed-length signature (usuallgéinee signature will be recreated frémwhen-
ever needed, so that the mapping need not be stored physiéach schema nogein Sholds asignature

file listing all elementss with the tag patlp, along with their keyword signatures. These are created by
merging the signatures of the keywords they contain, agitestin the previous paragraph.

A signature file serves two purposes: on the one hand, itdsdie elements with a particular tag
path, thus replacing the inverted path file. On the other hiupdovides an approximate summary of the
keywords contained in these elements. Given the signafuihe guery keywordk and the signature file of
a schema nodevisited during path matching i& we may recognize that no element listeghimsignature
file containsk—by examining the signature file, without access to any kegvirndex. This would save
us from joiningp’s occurrences with other element sets in vain in Elep 4. Matethis method is inexact
in the sense that occurrencesmWith the right bits set in their signature might still be falgositives.
Hence the subset g@fs occurrences whose signatures look promisingkfoannot be used as-is, but must
be joined with the look-up result fd¢, as before. However, occurrences whose signature doesialifyq
can be safely ignored, without altering the query result.

The path occurrences in the signature files add documealtildormation to the schema tree, which
is therefore unlikely to reside in main memory. For instaragplied to thdMDb collection comprising
more than 80 million document nodes (see Chdpikr 13), thintmof all signature files together would
easily take up some 640 MB (assuming 32-bit signatures aruit3ement node labels). As a remedy,
[Chen and Aberer [T999] suggest storing the keyword sigeatiar each tag path in a Trie rather than a flat
list, which avoids the redundant storage of shared bit peef{but of course requires some extra space for
the Trie structures).

54.4 T-Index

With the T-Index, [Milo_and Suciu [199P] have introduced a family of index stures for tree- or graph-
shaped documents, that are all tailored to tag paths of afispstcucture, described by path template
(hence the nameé-Index). The template, to be fixed by the database administratoréefeating the index,
specifies which tag paths (or fragments thereof) are indarddvhich ones are ignored. Depending on the
given path template, &-Index may capture more or less of the document structure thaDshaGuide.
Textual contents of the documents can be indexed with amteav&eyword file, as with thBataGuide.
discuss two particular variants of thendex that are of general interest. THe/ndex
covers all tag paths starting from the document root. Whetingwith tree documents, thelndex looks
exactly like theDataGuide. The 2-Index locates all pairs of ancestor and descendant elementsréhat a
linked by a specific sequence of tags. For instance, givkimadex for the document tree in FiguEeZ2hl
on pagdB, it would be possible to look up all pairs of nofes) where there exists a third noskesuch
that Child(u,w), Child(w,v), tagw) = profile andtagv) = edu. In the example, these are the node
pairs(9,16) and(18,25). Note that the2-Index allows to retrieve paths and path fragments anywhere in
the documents, not necessarily starting at the root. Thisssthe search and backtracking needed with the
DataGuide or 1-Index when matching query paths whose first step involves the ddsce axis, such as
//profile/edu.

Of course, th@-Index incurs a heavy storage penalty, being quadratic in the $itee@ocument tree in
the worst case. More selective path templates may redudedér size by ignoring less frequently queried
paths. Thus a restrictedIndex might cover only path fragments of a specific length or witadfic tags.
However, tuning th& -Index in this way requires a thorough knowledge of both the schemdalze query
workload.

5.5 Tree and Graph Indexing

The data model introduced in Sectfdnl2.1 regards XML docusentrees, deliberately restricting them to
the nesting structure their elements. However, index &iras have been proposed that take into account
cross-links, which can be specified using either XMIISIDREF attributes or external mechanisms such
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as XLink [XTInK or XPointer [XPainidr]. For instance, thidopi index by[Schenkel et R TPODE_2005]
supports path queries with descendant steps and tag wiklegainst arbitrary graphs. TBhataGuide

andT-Index presented above are also applicable to documents with-tinkss

The key problem here is how elements that are reached bypteudtistinct tag paths should be repre-
sented in the schema tree. One solution, adopted by-tiheex, is to treat all elements having the same set
of tag paths as occurrences of the same schema node. Thyselvema node represents a set of tag paths,
rather than a single path as in the tree case. This presémwemique mapping from elements to schema
nodes and ensures that théndex on graph documents grows lineary with the number of documeaé¢s.
However, the schema tree may now contain path duplicatemusedhe sets of tag paths represented by
distinct schema nodes are not necessarily disjoint. Thisesbacktracking during path matching even for
queries without tag wildcards ar@hild™ or Child* steps.

An alternative approach, taken by tBataGuide, is to let each schema node represent exactly one tag
path as before, which means that elements reached by reutiglpaths are indexed redundantly. On the
one hand, this avoids the extra backtracking incurred byTthedex. On the other hand, thBataGuide
may grow exponentially in the worst case, due to the redutiddexing of elements. However, document
collections which cause exponential growth tend to be extig artificial and are unlikely to occur in
practice [Weiger20q2].

A graph document model also entails important difficultiesthe use of decentralized structural sum-
maries such as the labelling schemes discussed in CHdpt&in8e any document node may be related
to any other regardless of the hierarchical nesting of ehdspét is much harder to encode specific tree
relationships such aShild or Child™ in a local fashion. The most powerful labelling schemes filLX
are therefore restricted to tree documents.

[EchenkelT2004] argues that a judicious choice of how toxredgiven document collection depends on
a number of parameters including, e.g., the collection, siequery workload and, for graph documents,
the structure of the cross-links. For instance, some pétteaollection may be entirely tree-shaped while
others are heavily connected through cross-referenceszIibh framework byrSchenKel provides methods
to partition a heterogeneous collection of cross-linkecdutieents, based on different parameters, in order
to let each part of the collection benefit from the most appad@indexing technique. This could be a step
towards the semi-automatic selection of structural suniesdboth centralized and decentralized) based
on the monitoring of data and query statistics, as offereddmie commercial relational database systems
(e.g., IBM'sDB2).

5.6 Summary and Discussion

For any index structure in whichever data model, there aleast three possible (and often conflicting)
optimization goals:

1. runtime performanceTo what extent does the index accelerate query evaluation?
2. storage consumptionHow much space does the index structure take up on disk oemary?
3. robustness How do changes to the indexed data affect the index?

Besides these general questions, there are additionakispecific to the XML data model. The survey of
centralized structural summaries in this chapter, alb@ifland by no means exhaustive, has highlighted
some of the key problems to be taken into account when indexiviL data:

4. path representatian Are tag paths atomic or compositional?
5. content and structureHow does the index combine keyword and path occurrences?
6. backtracking How are unspecific query paths matched?

The following is a short discussion of these issues witheesi the different approaches presented above.
The runtime performance of XML query evaluation with a givedex structure depends not only on
how fast it locates elements that satisfy some part of theyeeg., a tag, tag path, or keyword constraint),
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but also on how many separate index look-ups and joins aidedde compute the whole query result. As
mentioned before, the flat inverted files discussed in Sefd support only look-ups for individual tag
or keyword constraints. Each conjunction of two consteaaritails the intersection or structural join of
(possibly large) sets of elements. Hence the overhead ftatimg complex queries with branching paths
can be considerable. Different algorithms have been peaptisexpedite joining; in particular, so-called
holistic twig joins[Bruno et al. 200pP] strive to reduce the size of intermediasailts by matching multiple
tag or keyword constraints simultaneously. However, singerted files only cover simple constraints, the
initial node sets to be joined may still be large.

This problem is addressed by various path indexing teclesigehich allow to match the leaf of an en-
tire query path including multiple tag constraints at onveighout structural joins. Matches to nodes higher
on the path are either materialized in the index, as with tiverted text/path file bf_Sacks-Davis et al.,
or reconstructed on-the-fly with a suitable labelling scheisee Chaptefd 3 alill 4). Major differences
exist concerning the representation of tag paths in thexindéomic path indices like the inverted path
or text/path files presented in Sectlonl5.3 store tag patlstriags, thereby duplicating shared path pre-
fixes. This redundancy not only increases the index sizealsot makes it harder to handle changes to
the path structure (e.g., when a subtree in a document is dhov@ompositional path indices like the
DataGuide and its variants avoid this redundancy by organizing tapgat a tree structure, similar to
a Trie [EredKin 1900][Goldman and Widom [1997] show how talate theDataGuide incrementally in
time linear in the number of nodes changed.

In any case, matching unspecific query paths that may haugpheuhatches in the schema requires an
additional effort: for atomic path indexing, substring etdhg or regular expressions are needed, whereas
compositional indices must be searched with backtrackiMgreover, multiple schema matches entalil
additional look-ups in the inverted files as well as add#iojins. TheSignature File Hierarchy uses
keyword signatures as a heuristic means to avoid needlass jéiowever, the space overhead in the
schema tree can be considerable. Exact methods that nfiageeiatire tree relations (e.gChild™ as with
the 2-Index) are unlikely to scale up to tens of gigabytes. Here an atema are labelling schemes that
encode such tree relations locally. However, this intreduadditional caveats concerning updates (see
ChapteEB).

Another important question is how to combine path and kegvirmdexing in order to enable fast look-
ups of both without blowing up the index size. The straigivfard approach sketched for tBataGuide
— i.e., separately look up structure and contents, thentf@results — again entails the manipulation of
potentially large node sets. Keeping both tag and elemardgssingle table like the inverted text/path file
optimizes combined look-ups, at the expense of a largexiste because the same tag path is indexed
repeatedly for distinct keywords. This could be problemati least for atomic path indices, where the
entire path string is literally duplicated. Path bitmape ItheBitCube further aggravate the problem by
materializing all possible combinations of tag paths angnakagds, rather than only those which actually
occur in the documents. Compressing the resulting spatseps could recuperate wasted space, but
would also introduce a runtime overhead for decompressioing the index look-up.

One viable approach is taken by thelexFabric, which materializes all existing keyword/tag path
combinations in a large Trie on disk and creates additioreihrmemory structures for fast access to
the right disk pages. However, this involves compressichrigues that prevent thedexFabric from
answering all queries. The next chapter presents a diffeuation with full support for the XML query
model above: it is an enhanc@dtaGuide that features (1) combined structure and keyword indexing o
disk, (2) a compositional schema representation in mainongrand (3) efficient keyword-driven pruning
during path matching.
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CHAPTER
SIX

The Content-Aware DataGuide (CADG)

6.1 Overview

This chapter presents ti@ntent-Aware DataGuide (CADG), a compositional centralized structural sum-
mary based on thBataGuide, which is optimized for the efficient evaluation of querieshacombined
path and keyword constraints. The attribute “content-aivermeant to emphasize that unlike pure path
indices like the originaDataGuide, the CADG combines content and structure matching during all steps
of the retrieval process. In particular, it allows to prumarithes of the schema tree which are irrelevant
with respect to a given set of query keywords, in order to gvaedless path look-ups and backtracking
during path matching. Moreover, the join of elements witlpecific tag path and keyword occurrence is
materialized on disk, which significantly reduces the nexddins of large element sets at runtime.
Together with theBIRD labelling scheme (see P&k I1), tliADG is the basis for the two other main
contributions of this work, namely, the relational querplesation with theRCADG index (see PafflVv)
and the incremental query processing with READG Cache (see Paifly). Besides, tHADG has also
been combined with ranking techniques for structured dente{WeigeTl et al. 200ba] (see PaA VI). In
the following, some technical details that are not relevarthis work are omitted for simplicity. A more
exhaustive presentation and evaluation of @&DG can be found in earlier worf TWeigeT et al. 20p4a;

[ETGET 200,

6.2 Materialized Join of Content and Structure

The previous chapter has highlighted several ways to coarthie content and the structure of XML doc-
uments to be indexed. This problem is indeed of paramounbiitapce for the efficient evaluation of
combined tag path and keyword queries. In this respect, @ie orawback of théDataGuide setting
described above is that content and structure informatiemigorously separated into two different data
structures (namely, the inverted keyword and tag path filElsis way keywords and tag paths taken from
the same query must be looked up independently, as if all teeiurrences were equally relevant to the
query. Only in the last step of the retrieval process (seel@@y content and structure are brought together
again, in a join of potentially large element sets that is poted at runtime.

The experiments with thBataGuide and the inverted files below show that the content/strugtimes
often a bottleneck during the query evaluation. TG avoids this by materializing this join at indexing
time: the inverted keyword and tag path files are replaceld a/gingleelement tableontaining all triples
(p,k,v) where a document nodewith the tag patlp contains the keywort. Figure[GJl on the following
page depicts the element table for the documentraeFigureZblon pagdB. Tag paths, keywords and
elements are stored in tipéd, keyandeid columns, respectively. Note how the labels of schema nades i
FigurelZIC]on pagdB act as foreign keys to thiel column in the element table in FigUte®p.1. In general
the element table is larger than the sum of the two inverted,ffior two reasons. First, while every pair
(p,v) of a tag pathp and one of its occurrencesis stored once in the inverted path file, the same pair
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%g key’ eid [ pid|key _ |eid | [ pid|key _ |eid | [ pid|key  |eid |
" 0 H H H H H H H H H H H H
# " 9 #21"" 39 #2|"Sue” 9 o 7
ey O 8 #2 | "Jef p B 5 w 26
| 27 #2 | "Jill" 21 #3" 24 " 34
W 3¢ 2 ["Lee” 21 3" 3 "female” | 26
21" 7 2 |"Lee” 23 6 "female” | 34
ST ; 2 |"Lee” 39 EA 25 "male” 17
2 30 2 | "Mae" 30 | #4 | "MSc” 16 " 42
2 | "Smith" 12 t4 | "PhD" 25 "female” | 42

Figure 6.1: TheCADG element table for the document tree in Figiireldn pagdB.

(p,V) occurs repeatedly in the element table, once for each disdteyword thatv contains. Besides, it is
convenient to store an additional entgy,v,”” ) for each pairp,v) and the empty keywortl’ such that
occurrences of tag paths can be efficiently looked up withaytspecific keyword in mind.

For instance, given the tag paph= /people/person/sex represented by the schema node #5 in
FigurdlZIclon pagdB, the element table in Figlird 6.1 locates eithecallroences of (entries(#5,“” ,v)
foranyv,i.e., 17, 26 and 34) or only the subset of occurrencegloét contain the keywortnale” (entries
(#5,"“male” ,v) for anyv, i.e., only 17), whatever is need for answering the querghénsecond case, the
use of the element table saves one look-up in the invertedileand one content/structure join, compared
to theDataGuide evaluation procedure sketched on pEde 75.

6.3 Keyword-Driven Path Matching

Another problem faced by path indices is that unselectiegypaths involvingChild ™ steps or missing tag
constraints can have multiple matches in the index (seéd®EEH above for an example). In compositional
path indices like théDataGuide, these matches are found through backtracking in the schesea In
the worst case, the whole schema tree must be scanned inahisEven though this does not entail I/O
operations since the schema tree is memory-resident, icanazse some overhead in the case of structurally
diverse document collections likereebanKreebank] onNEX [INEX], whose DataGuide contains tens

of thousands of nodes. More importantly, however, everestehnode selected during path matching
causes a separate look-up in the inverted path file, whialrimrhay produce a set of elements to be joined
with look-up results from the inverted text file. Reconsitter sequence of steps for query evaluation with
the DataGuide (see pagE15): only during the join in sldp 4 it becomes cléaclwelements satisfy both
the structural and the textual query constraints—aftetalll/O for the table look-ups is done.

Unlike the DataGuide (or IndexFabric or T-Index), the CADG allows to skip during path matching
branches of the schema tree that represent parts of the @ntsinvhere the query keyword does not
occur, and that therefore cannot contribute to the quenjtrasyway. As an example, consider the XPath
query //person//*[contains(.,"male")] and the schema tree in Figirte Z1bn pagdB. To answer
this query with theDataGuide procedure, we would first look up all schema nodes below #i ftrson
node) in the inverted path file. The following intersectidmiee resulting five element sets with the inverted
text file posting for'male” would reveal that only node 17 satisfies the query. By cohtwath the CADG
the path matching could be restricted to the schema nodegiibaivay, so that only a single element set
would be fetched from the path file in stp 2 and intersectetérast step. This of course requires some
keyword-specific information to be available on the scheewall In terms of the data model introduced
in ChaptellP, theCADG allows to match approximate keyword constrai@sntaing and Governg for
keywordsk € K during path matching (see Sectianl2.3). In the following wéioe two alternative ways
to do this (for details seg TWeigel et al. 20pfa; Weigel 2003]

6.3.1 TheSignature CADG (SCADG)

The first possibility to realize a keyword-driven, or cortamware, path matching is inspired by thigna-
ture File Hierarchy. Recall from Sectiol’2.4 3 that here each schema node kesggrszures file containing
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the elements it represents, and for each element a keywgmetsire that indicates its textual contents in
an approximate manner. The problem is that for tag pathshwiicur frequently in the documents, the
list of occurrences to be scanned and signatures to be cenhjzlong. Besides, all information from the
inverted path file must be held in memory. Thignature CADG (SCADG) remedies this by merging all
keyword signatures in the same signature file into a tag pdtificcontainment signaturenuch in the
same way as the signature for a single element is createdtfresignatures of the keywords it contains.
Thus each node in the schema tf®stores only one signature instead of a whole signature fiteghw
reduces the index size and the number of signatures to beazethguring path matching.

The path matching procedure for containment constrairgsigar to the one sketched for tl¥égna-
ture File Hierarchy before. During stefl1, each schema npdeatching a query node with a containment
constraint for a keywor# is examined to check whether its containment signaturefegsafor the signa-
ture ofk. If this is not the case is ignored, i.e., its occurrences are not looked up and déaketpart in
subsequent joins. Of course merging multiple keyword dignes into a single containment signature (by
bitwise disjunction) may render the content representagigen less precise than with tBegnature File
Hierarchy. However, this only affects the number of false positivest thight be overlooked during path
matching, whereas the final query result is exact (as witlsigy@ature File Hierarchy).

A second signature attached to each schema pau8&indicates which keywords are governed by the
elements with the tag path Thisgovernment signaturis created by merging the containment signatures
of all descendants gf in S. Obviously, if the government signature pfdoes not qualify for any key-
word signature in the query, then there is no point in seagebs subtree inSfor nodes with promising
containment signatures. Thus government signatures &il@nune entire subtrees of the schema tree and
to ignore their nodes during the look-up and join steps. &pislies even very early during stBp 1, when
matching nodes higher on the query path which perhaps dopeaifg keyword constraints themselves
(such as theperson node in the sample query above).

6.3.2 Thelnverted-File CADG (ICADG)

A second variant of th€ADG pursues the same goals as #ADG, but with different means. Unlike the
SCADG, theInverted-File CADG (ICADG) does not annotate the schema tree in order to lift some conten
information up to the schema level. Instead, all tag pathslé#ad to elements containing query keywords
are looked up in the element table before the path matchigmbelmagine these keyword-relevant tag
paths as highlighted in the schema tree, indicating whictsud the document schema must be examined
(from a keyword-only point of view) and which ones can be lsafgnored. In fact, since only the leaves of
the paths are stored in the element table, we need to defidierly for any schema node visited during
path matching whether it is an ancestor of such a keywor+elt leaf. To this end, tHere/Max labelling
schemes introduced in Chap@r 3 is applied to the schemaltistag this interval labelling, ancestorship
can be decided in constant time for any two schema nodes.

For instance, reconsider the sample quérperson//*[contains(.,"male")] and the schema
tree Sin FigureZICl on pagdB. A quick look-up fotmale” in the element table identifies #5 as the
only keyword-relevant schema node. Thus the path leadimm #0 to #5 inS should be highlighted,
indicating that the other branches leading to #2, #4 and #tbedgnored. This is achieved by comparing
thePre/Max labels of the schema nodes visited during path matchiggarthe labels of keyword-relevant
nodes fetched beforehand. In the example, the relevantechede has the labg#5,#5] (being a leaf of
the schema tree). Starting from the rooSofiith the interval#0,#6|, we proceed sincg#s, #5) C [#0,#6].
Similarly, [#5,#5] C [#1,#6] for the child of the root. However, in the following the inteis [#2 #2],
[#4,#4] and [#6,#6] do not contairn#5,#5]. Therefore the only keyword-relevant pathSreads from #1
via #3 to #5.

A minor technical issue concerns the robustness of@A®G against modifications of the document
structure. It has been noted above that the labels of schedesnnS act as foreign keys to the element
table. However, when a new tag path appears in the documbettoon, the schema node labels may
need to be reassigned according tofihe/ Max scheme. Since changing foreign keys to the large element
table could entail massive disk 1/0O, every schema node isngan extra identifier that is used as foreign
key instead of the preorder rank of the node. This artificigl kalue remains constant over time and thus
preserves the foreign key relation regardless of the custeape of the schema tree.
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Figure 6.2: Runtime performance gain of iIiedDG andSCADG, compared to th®ataGuide.

6.4 Experimental Evaluation

The following summarizes the most salient results of theaestive experiments that were carried out for
the original work on th&€ADG [WeigeT2003]. The experimental set-up is as follows. Thififerent index
structures have been implemented and integrated witK firetrieval system for XM LI[MelUss e al2005;
[Meuss er al 2Z00F Meuss 2000]: on the one handS@&DG andICADG as main-memory tree structures
backed by the element table on disk, and on the other hand)4dteGuide in main memory with the
inverted text and tag path files as tables on disk. All threéetaare kept in a relational database system,
with the following columns indexed: the element table has Bh-Tree on the path and keyword columns
and another B-Tree on the keyword column alone. The inverted text file deied by a B-Tree on the
keyword column. The inverted tag path file is indexed by'aBee on the path column. TI&ADG uses
64-bit signatures.

With this setting, three different document collectionséndeen indexed, whose characteristics are
summarized in the appendix (see Seclionll 3esis very small, with a fairly homogeneous and non-
recursive structure, wherexdlark 29 a synthetically generated corpiSTXMhrk], is structyralightly
more diverse and contains recursive paths (epgrlist elements may contain othgsarlist ele-
ments). The highly recursive and heterogengeBsollection comprises half a gigabyte of syntactically
analyzed German noun phrasgs JOesterle and Maier-Meye}.18ath manually written and automati-
cally generated query sets have been evaluated againktrégecbllections, resulting in the following four
test suites:CitiesM contains 90 hand-crafted queries against@itees collection. CitiesA (639 queries),
XMarkA(192 queries) anblpA (571 queries) consist of synthetic queries againsCities XMark 29 and
NP collections, respectively. All test suites contain bottis§@ble and unsatisfiable queries (50% each).
Detailed properties and a classification of the queriesraaog to various selectivity measures are given
in [WeigeT et al. 2004af Weigel 20P3]. Only path queries haeen processed in this experiment so as
to minimize dependencies on the underlying evaluatioriesisaand join algorithms employed by th&
system.

All tests have been carried out sequentially on the same atenposting bothX? and the RDBS
back-end (technical details are listed in the appendixTeseEnvironment B in SectidaI3.1). To prevent
artefacts due to the file system cache, each query has besgspeal once without taking the results into
account. The following three iterations of the same queryewtben averaged. FiguEEh.2 shows the
performance results for three selected subsets of theaguigrieach test suite: while plgl covers all
evaluated queries, plflin the middle narrows down to unselective queries with nyoStild ™ steps and
few tag constraints. Finally, plgl covers all satisfiable queries. Each plot depicts, on a ithgaic scale,
the average speedupf the SCADG andICADG over theDataGuide, i.e., the proportion of th€ ADG’s
evaluation time to th®ataGuide’s evaluation time.

In a nutshell, the experiments show that (1) @%DG is considerable faster than tBataGuide espe-
cially on large collections and (2) tHEADG always performs a little better than te€ADG. ThelCADG
beats theDataGuide by a factor 5 to 200 on average, depending on the documermictioth. Not sur-
prisingly, the speedup increases for poorly structuredigadsee FigurEGR), where the potential for
subtree pruning is higher. THREADG evaluates structurally unspecific queries against the ldRjcollec-
tion 479 times faster than tH2ataGuide on average. Further statistics show that in this settingoenef
two queries are evaluated by two orders of magnitude fasaerwith theDataGuide [FVEIgeT et al. 2004a).
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Figure 6.3: Storage consumption of #&ADG, SCADG andDataGuide, relative to the collection size.

For queries with more selective keywords, the speedup ageieases by 10-20% on average, and up to
30% for thel CADG. Yet the content awareness pays off even for unselectiverdeels. Summing up, the
CADG performs best on queries with selective keywords and Ktilecture constraints. In practice this is
an important class of queries, given that most users aresawmoed to web search engines and therefore
tend to focus on keyword constraints, especially when theyat familiar with the document schema.

The chart in the FigulEG& on the facing page focuses on the subset of satisfiable glirm@ach test
suite, which makes up about 50%. While tR&DG’s average speedup still reaches 4-7 for the smaller test
suites (versus 5-12 for all queriesan) and two orders of magnitude fdNpA the SCADG performs only
twice as good as thBataGuide on theCitiesandXMark 29collections. Or\P it beats theDataGuide by
one order of magnitude (average speedup 28). The reasorheB¢ADG performs worse in Figule6d]
is that this experiment does not include the queries thaS@RDG answers particularly fast: obviously
it excels at filtering out unsatisfiable queries, especiaibse with non-existing keywords which it rejects
immediately during path matching. In practice this mightebealuable feature, as users are unwilling to
accept long response times when there is no result in theTdre CADG is a little slower here because it
recognizes non-existing keywords only after a look-up mefement table.

Figure[E3 plots the storage consumption of lBADG, SCADG and DataGuide, respectively. The
chart shows that again boADGs are most effective for large corpora such asMrecollection. The
ICADG grows to 87% (2.4 MB) and theCADG to 168% (4.6 MB) of the size of th€ities collection in
the databaseDataGuide 1.6 MB). However, this storage overhead is reduced coreidiefor XMark 29
and completely amortized fodP (ICADG 3% (21 MB),SCADG 6% (36 MB), DataGuide 3% (15 MB)).
Note that the size measures of $€ADG include an extra table containing the signatures for atiruis
keywords in the collection. Without this table, the overdheampared to thECADG is negligible. Further
experiments including stop words and unstemmed morphcdbgeyword variants have not substantially
changed the results.

6.5 Summary and Discussion

The experiments above clearly show the benefit of GA®G’s materialized content/structure join and
keyword-driven path matching, which come at a relatively lwost in terms of storage. Note that the
results reported here only apply to a hybrid setting, whieeestructural summary is kept in memory and
the rest and the rest of the index structure resides in dortdtdatabase system. Chapfdrs 7@nd 8 explore
a different situation where the index is stored entirely mk dnd the whole evaluation process takes place
inside the RDBS.
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CHAPTER
SEVEN

XML Retrieval in Relational Database Systems

7.1 Overview

The indexing approaches presented in Chajillers $Jand 6 ntasit native or hybrid retrieval systems
where at least some part of the index structure is held in mm@mory (typically, a centralized struc-
tural summary such as the schema tree). However, faced with large document collections where
scalability and retrieval efficiency are major concernsriay and querying XML data entirely inside a re-
lational database system (RDBS) seems particularly pingiizecause (1) highly efficient access methods
for relational data have been developed for over thirty yeard (2) query planning and optimization in
the relational algebra is well-understood. Besides, naewadhere is a great choice of mature relational
databases, some of them freely available, that are alre@®fyndeployed and offer many features which
are favourable to a productive use. These include, e.gcuroency, transactions, safety and recovery, as
well as sophisticated index structures and algorithms é@rygplanning and optimization.

Consequently, a variety of relational storage schemes fblc Kave emerged, which are either generic
in nature or rely on a fixed schema (e.g., a given DTD or XML $cadXSD1]). All these approaches
have in common that they “shred” the hierarchical XML data ituples to be stored in the flat data model
of the RDBS. One the one hand, possibly expensive joins aressary to restore part of the original node
hierarchy at query time. On the other hand, the resultingegatan be efficiently indexed and searched
with the common operators of the relational algebra. Thaptér reviews several alternative approaches
to XML retrieval in an RDBS, highlighting their respectivieengths and weaknesses for different kinds of
documents and queries. One particularly interesting gpreBere is in how far existing native XML index-
ing techniques, like the ones described in the precedingtehs can be adapted for use in the relational
setting.

7.2 Classification of Storage Schemes

A recent survey by Krishnamurthy et al. T2003] provides a poghensive overview, terminology and clas-
sification of a large number of research contributions dgakiith XML and RDBSs. Firststorage schemes
are contrasted witpublishing techniquesvhose aim is not to store XML in the relational data model but
to make relational data accessible as if it were XML. (Theelaare not tightly related to this work and
therefore ignored in the sequel.) Relational storage sekdor XML are further differentiated according
to the database schema they use for shredding XML data. Appes in the first class derive a suitable
relational schema for each document collection from a gib@iD or other prescriptive XML schema,
and are therefore callesthema-basedly [Rrishnamurthy et gt. (Yoshikawa et al. [20Q1] refer to them as
structure-mapping approachgsFor instance_Schmidt et al. [2400] suggest storing aiingints with the

lSchema based approaches include work{D Ea 1, [Harding et al- [20p0o[_Schmidt et al- [2p00],
[Bohannon etal.12092], [[Runapongsa and Pate POOZ]I_CIM] Balmin and Papakonstantmou [2p05]  and
[CTeb00kG LAl 120051,
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same tag path together in a separate table. The number estabkded thus depends on the structural
diversity of the documents. The second classcisema-oblivioum the sense that all sorts of XML docu-
ments, whatever their structure may be, are stored in the saiof tables, designed to fit the XML data
model as closely as possible while allowing for efficient yuevaluatior? (These storage schemes are
therefore callednodel-mapping approachéyYoshikawa et dl.)

Note that schema-oblivious storage schemes may well intestructure of the documents (in fact,
we will come to know such schemes in this chapter and the mext But the document schema does not
affect the number of tables and columns used. On the one li@adneans that all elements are stored
in a predefined set of tables, which may therefore become kand need appropriate indexing. Besides,
keeping all data in a small number of tables might slow dowen hrallel access by multiple threads.
On the other hand, schema-oblivious storage has a numbevahtages: (1) No prescriptive schema is
needed to index a new collection of XML documents. If desigedtructural summary can be created on
the fly while indexing the documents. (2) During query evérg only a small fixed number of tables is
accessed. There is no need to compute the union of resuls/est from distinct tables. (3) The storage
scheme is robust against schema evolution. For instan@ditional table is needed when a new tag path
appears in the documents. These issues advocate a schévimislapproach in the course of this work.
The following brief review of some existing storage schertiesefore covers mainly schema-oblivious
works.

7.3 Node Indexing

An obvious way to shred an XML document trBénto relations is to represent each document nod2 in
as a tuple in mode tablewith enough information to restore specific tree relatitmeugh selfjoins of the
node table. For instance, if the tuple representing a dontim@lev contains the unique node labelsvof
and its parent ifD, then all parent/child pairs in the documents can be obdaim@ugh an equijoin of the
node table on the two label columns. Textual contents dneihcluded in the node table or stored in one
or more additional tables. We refer to this kind of relatiokilL storage asnode indexinggchemes in the
sequel. Three such schemes are outlined in this section.

7.3.1 TheEdge Scheme

The Edge scheme by Florescu and Kossmann [1999] uses a node tabléiwgittolumns that essentially
materialized thé?arentelation. Each document nodés represented as a quintuple containing the unique
node label of, the node label of's parenty's tag name, the position afamong its siblings (if any) and

a flag indicating whether or nathas textual contents. The actual content values are storadéparate
content tablenapping node labels to stringsWhile matchingChild steps in a query path is easy with
the Edge scheme — a simple equijoin of the node table as sketched ahdeamdlingChild™ steps is only
possible through recursive SQL querifs JRrishnamurthy.éiG03]. Keyword containment constraints
entail joins of the node table with the content table. Foregowment constraints again recursive SQL
gueries would be needed.

[Elorescu andKossmann also describe two variants oEtlge scheme that aim to expedite access
to relevant tuples in the node table and avoid joins with thetent table. First, the node table may be
partitioned into a separate table for all nodes with the s@meSecond, further columns may be added to
the node table in order to store the attributes of an elenrehtleeir text values. This is known adining.
However, since not all elements have the same attributesetulting node table may contain matui 1
values. Both the partitioning and the inlining turn the age scheme into a schema-based approach, with
the pros and cons listed above.

2Schema-oblivious approaches have been proposed, amormys,otby [DEMSch eral TOP9_Yoshikawa etal [4001],
[GIustTZ00P], [Jiang et ar- 120p2], Tatarinov et al- [2P02[_eH&an et al- [2043], [[Harding et al- [2403][_Chen et al- [3004]
[PA0KOWSK [Z00F] anfl Chen e A [20p5al.

3Actually theEdge scheme is a little more involved, capturing different dgizes in distinct type-specific content tables.
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Figure 7.1: Node table of théPath Accelerator scheme for the document tree in FiglireR &n pagdB.

7.3.2 TheXPath Accelerator Scheme

The XPath Accelerator scheme blLGIusi et BL T2 2004] also materializePdnentelation, but adds
information for handlingChild* steps and type constraints. Each document noiderepresented as a
quintuple in the node table which contains the pre- and pdstaganks of/, the preorder rank ofs parent
as well as/s tag name and node type. Figlltel 7.1 shows the node tablegfoicicument tree in Figufe2l
on pagdB.Child steps are matched through an equijoin of the node table,thshéEdge scheme. For
handling Child™ steps[Grustet#l. takes advantage of Bne/Post labelling scheme (see Chapfdr 3).
Recall from Sectiof3:3.2 that given two elementandv, Child* (u,v) holds iff pre(u) < pre(v) and
postv) < postu). This decision procedure translates directly into a pr@idor a selfjoin of the node
table. Thus th&XPath Accelerator efficiently matche<Child™ steps without recursive SQL queries.
[Crusieral. show that all XPath axes can be decided throtighyjdth different predicates on the node
table columns. In terms of the query model specified in Se@i@, any query withm query nodes is
matched in arm-fold selfjoin of the node table. To expedite the joins, sal@ptimization have been
proposed, including th&taircase JoirlGrUsLetal 2003], a new join operator to be integrated thi
RDBS kernel, anghrink-wrapping a method to decid€hild* steps with a more restrictive predicate.

7.3.3 TheSTORED Scheme

[Deuisch et al. [T999] describe a mixed semistructuredioglal storage scheme that is at the boundary
between schema-based and schema-oblivious approachesakés use of data mining techniques for
semistructured datf TWang and Liu 1p98] in order to deviselational schema that captures the most
regularly structured part of the documents. The remainatg & collected in a so-calleerflow graph
that is not stored in the RDBS, but in a separate databasesfoisguctured data. The creation of the
overflow graph may benefit from a prescriptive schema, bus do¢depend on it. If a document changes,
newly inserted data that does not conform to the relaticctedma is added to the overflow graph.

Queries against the original data in the documents arelatadsinto separate queries to be evaluated
by the RDBS and the semistructured database, respectiRefjular path expressions are allowed, but the
translation into SQL expressions is non-trivial. Besidhs, mediation between the two database systems
may cause performance issues. Although in principle angt &irsemistructured data can be handled by
theSTORED scheme, it clearly targets documents with a rather regtriactsire.

7.4 Path Indexing

Above we raised the question whether path indexing teclaesitpr native XML retrieval could be exploited
in a relational retrieval setting as well. Chagdi¥r 5 has ligited two advantages of indexing entire tag
paths rather than only individual elements:
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1. Path indices allow to match simple query path expressidgthsfewer joins.

2. Matching tag paths rather than singleton tags provide® s@lective search conditions, which sim-
plifies index look-ups and reduces the size of intermedgsgalts to be joined.

A third plus is especially relevant to query planning ané@vahce ranking:

3. Path-specific information (e.g., the node type or staistbout the keyword distribution) need not
be stored redundantly for all elements with a given tag gathpnly once in the path index.

These observations apply to native or hybrid retrievalesystjust as well as to XML retrieval in RDBSs.
However, among the many relational storage schemes cimcafew preserve information about entire
tag paths or at least fragments thereof. The remainder®§#ution reviews two such schemes. Similar to
the native approaches presented before, they represquattageither in atomic or compositional form.

7.4.1 Atomic Path Indexing with XRel

The XRel scheme by Yoshikawa et al. [2q01] resemb¥d3ath Accelerator to some extent (see Sec-
tion[Z32), but extends the database schema in order toresgithema-level information, as followéRel
consists of three tables that index tag paths, elementseatuht contents, respectivélyEach distinct tag
path is represented as a string which is given a unique intdgatifier calledpath ID. A path tablewith

two columnspathexpandpathid, materializes the mapping from path strings to path IDs. Fdté ID is a
foreign key to the other two tables containing document s@iel their contents, respectively. Document
nodes are labelled using region encoding (see Selciion) 3a8l8belling scheme similar tBre/Post that
can efficiently decide th€hild* relation. Each document nodds represented in the node table as the
guadruple consisting ofs start and end position (according to the region encodisgyell as the path ID
of v's tag path and an integer indicating the positiorv@imong its siblings, if any. Similarly, the textual
contents of any elemenmtare represented as a tuple in the content table — recallahmir encoding treats
every text value as a node in its own right — that consistsast ahd end positions, the path IDwénd the
text value to be indexed.

Path queries without keyword constraints are processejbin af the path and node tables, as follows:
relevant tag paths are looked up in the path table (usinggsiniatching, see below), and the selected path
IDs act as foreign keys to retrieve their occurrences in tiertable. As explained in Chapl@r 5 for native
path indices, this means that matching a whole query patnafthm (more precisely, retrieving matches
to its leaf node) requires just one join of the path and noldiesain contrast with ther-fold selfjoin of the
node table needed with the node indexing schemes abovee tfuéry specifies a keyword containment
constraint, the path table is joined with the content tabs&dad. However, this way only the position of
the matching text value is retrieved, not the containingnelet itself (this would require another join with
the node table).

Tree queries are first divided into path expressions wh@segeare result nodes or branching nodes or
leaf nodes in the tree pattern. For instance, the XPath q@g#ry /people//person[name] //edu is di-
vided into the query pathgpeople//person, /people//person/name and /people//person//edu.
Then the occurrences of these query paths are retrievedtaggscribed, through multiple joins with the
node table. Matches to the entire tree pattern are filtereduring the join by extra predicates that decide
the Child™ relation for the individual occurrences of distinct queatis, using their region-encoded node
labels. In the case ds, e.g., this might rule outhame children of person nodes for which noedu
descendant could be found.

To understand the look-up of query path expressions in ttietphle, assume the table contains, among
others, the three distinct tag pafhs= /people/person/name, pp = /people/person/profile/name
andps = /people/person/lastname as strings in th@athexpcolumn. A path query without tag wild-
cards andChild™ steps could be matched simply by an equality predicate opaltigexpcolumn in the
path table. For instance, a suitable predicate for the qQery: /people/person/name in SQL syn-
tax would bepathexp= ¢/people/person/name’, which would correctly selegt; but notp, andps.

4The presentation of théRel scheme here is slightly simplified in order to fit the XML datadel from Sectiof2]1.
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Now consider another quel®, = /people/person//name that involves aChild™ step. A naive se-
lection predicate on the path table would pathexplike ¢/people/person/Yname’, using SQL'S
wildcard %, for matching any (possibly empty) sequence of characteesstring. However, this would
not only matchp; andp, but alsops, which is wrong. This is because usiffg, one cannot distinguish
between tag names and their delimiters. Note {hathexplike ‘/people/person’/name’ would be
incorrect too, selecting other tag paths such as, éggrople/personnel /name. Finally, pathexplike

¢ /people/person/%/name’ would correctly rule oups, but fail to selecp;.

To handle queries lik€),, [Yoshikawa et dl. replace each delimitef ™ in a tag path with the two-
character sequence 7#. This way the beginning and end of tags in a query path candr&ed up inde-
pendently. For instanc&, is matched using the predicat¢people#/person#y,/name . Itis easy to ver-
ify that this matchep; = #/people#/person#/name andp, = #/people#/person#/profile#/name,
but excludegs; = #/people#/person#/lastname, as desired. However, more complex path queries
such as/people/*/name Of /people//*/name require regular expressions.

The atomic indexing of tag paths as stringsdRel’s path table has a number of disadvantages. First,
string matching on a large path table can be slow when thetgaiepredicate is a regular expression
or a suffix pattern beginning with th& wildcard. Second, the path table contains many duplicates o
path prefixes because every tag path is stored in its entifreiyn root to leaf. However, query for-
malisms like XQuery, XPath or the one introduced in Sediidhsbecify path expressions in fragments
rather than as root-to-leaf patterns. For instance, thelX§aeryQsz; above contains three path fragments
(namely, /people//person, name and edu ) from which theXRel processor must first restore the query
paths /people//person, /people//person/name and /people//person//edu to be looked up in
the path table. Third, matching tree queries I®g with XRel sometimes produces many false hits on
the schema level that are only discarded during the join Wighnode table. For instance, when look-
ing up the above query paths fQg in XRel's path table, there is no way to select only those tag paths
which refer to the sameerson node: /people/faculty/person, /people/staff/person/name
and /people/students/person/edu are all valid matches to the three query paths, although deey
not belong to the same schema hit. Needlessly retrievinga@nihg their respective occurrences from
the node table sometimes slows down the query evaluatiosidemably (see the experiments in the next
chapter). For recursive document collections, this cam évad to false query results. A sample query
illustrating this issue and the corresponding SQL codelfeXiRel scheme are given in the next chapter.

7.4.2 Compositional Path Indexing withBLAS

The Bi-Labelling Based System (BLAS) by[Chen et al: [2044] is so far the only relational storagesuh
for XML we are aware of that represents (suffixes of) tag patha compositional manner. The name
of the approach alludes to the fact that there are two diffekinds of labelsD-labelsfor elements and
P-labelsfor tag paths, which are used to match structural query caings on the document and schema
levels, respectively. D-labels are simply integer inté&svfallowing region encoding, as with théRel
scheme above. P-labels are generated on the fly during mglexid query evaluation for any tag path
suffix encountered in a document or query. A P-label is argernténterval denoting the set of all possible
tag paths which share a specific suffix. For instance, thé&-far the tag path suffix/person/name
represents all possible tag patfis . /person/name . In particular, each root-to-leaf tag pait{a special
case of a path suffix) is assigned a P-label that is storedaaith occurrence @fin the node table, similar
to the path ID used b}Rel above.

The idea is to choose P-labels in such a way that given théé&Haof any tag path suffix in the
query, one can easily retrieve all elements with that tady gaffix by inspecting their P-labels in the
node table. To this end, the labelling ensures that for amytag path suffixes ands' with P-labelsPg
and Py, respectively,Ps containsPy (as an interval) iffs is a suffix ofs. OtherwisePs and Py are
disjoint. For instance, the P-label for the sufffxame contains the P-label forperson/name which
in turn contains the P-label fofpeople/person/name. Thus a query pate= //person/name can be
matched by selecting all tuples in the node table whose €Hslontained ifPs. This would include, e.g.,
elements reached bypeople/person/name, but not those below/people/person/profile/name

SRegular expressions are not part of the SQL-92 stanfardgp®ut included in SQL:1994TS0}3].
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(whose P-label is disjoint witRs).

P-labels, D-labels and textual contents of elements astatbd together, i.e., there is no separate path
table as withXRel. [Chen ef d. suggest using a separate node table for all eteméh the same tag name,
similar to theEdge scheme above. Each elemeris represented as a tuple consisting/efD-label (i.e.,
its start and end positions in the documents), the P-labekdfg path as well as the level gfand its
textual content, if any. The P-labels are created on-théflall tag paths encountered during indexing,
based on schema statistics like the total number of distags and the height of the document tree. (In
this sens&BLAS uses a schema-based storage scheme.)

Similarly, when a queryQ comes in, P-labels are created for all tag path suffixe3.imhe tag path
suffixes inQ are obtained by extracting all sequences of consecutiveoramchingChild steps from the
query path expressions. For instance, the tree qQary: /people//person[name] //edu is cut into
four path suffixes, namely/people, /person, /name and /edu. Both the “//” symbol denoting a
Child* step and XPath predicates indicating a branch act as bred&por dividing path expressions into
suffixes. These suffixes are looked up as P-labels in the raddiest The resulting four sets g@kople,
person, name and edu nodes are then combined through structural joins on thdateis, in order to
filter out those quadruples which indeed form a subtree bigérspecified structure.

The example above illustrates that path suffixes witt@uild ™ steps are generally less selective than
the original query paths (e.g., compare the four suffixes Bh#S extracts fromQs to the three rooted
query paths used byRel above). To obtain more selective look-up predicdies._Chaf eropose two
optimizations. First, longer path suffixes can be createcifiddren of a branching query node: @,
e.g., we can us@person/name instead of /name because theerson and name nodes are connected
through aChild step. This might reduce the number ndme nodes participating in the structural joins.
However, the technique does not apply to teéu node inQz, because of the descendant step. Thus
BLAS still tolerates even more false hits on the schema level XR«d, despite its compositional path
representation. Since only patbffixesare matched in the first place, there is no way to select exly
nodes below a specifiperson node in the schema tree, or even below gyrson at all, let alone to
rule out combinations operson, name and edu nodes that do not belong to the same schema hit.

The second optimization makes use of schema informationD¥ @ (if available) tounfold (i.e.,
instantiate) path expressions likpeople//person//edu in Qs into a set of root-to-leaf paths without
Child* steps and tag wildcards. This way few look-ups for unselegiath suffixes in the node table are
replaced with many look-ups for very selective rooted tatpgan a sort of query expansion. Note that
the idea is similar to the path matching tbé&Rel performs through string matching in the path table and
that native systems realize by traversing the schema treaetr, with prescriptive schema information
as specified by DTDs, the query expansion proposeld by Chahietlikely to produce many tag paths
that do not occur in the documents. For recursive DTDs theldinfg does not even terminate unless a
maximum length for the resulting tag paths is fixed. Finalg unfolding withBLAS seems to happen
outside the RDBS, and it is not explained how this could b¢ th@se in the relational model.

7.5 Summary and Discussion

Given that today’s relational database technology is efficiscalable, mature and widely deployed, the
prospect of seamlessly integrating XML retrieval with RBBIS particularly tempting. The literature
abounds with different ways to store and query XML data asesip While many approaches depend
on DTDs or other specifications of the document structurehtmose a database schema, and some use
labelling schemes as decentralized structural summafigeerelations between individual tuples, very
few relational storage schemes leverage the benefit of indeschema information with a centralized
structural summary. Systems that only index singleton ef@mwith their tags, but not paths (as with
the Edge scheme) must often join large node sets to find out that omlycBndidates are actually part of
the query result. Sophisticated join algorithms have beseldped as a compensation (like thaircase
Join by[Grust et al. [20Q3] foXPath Accelerator). But still experimental results such as the ones reported
by[Chen et al- [20Q4] or those presented in the next chapter #hat path indexing can speed up query
evaluation in RDBSs just as much as in a native or hybrid envirent.

However, it makes a difference how exactly the schema inddion is represented. Most observations
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made in Chaptdid5 for native path indexing also apply to imtal systems. On the one hand, atomic path
indices likeXRel do prevent irrelevant elements from being retrieved antejdiin certain cases, but their
string representation of tag paths is redundant, awkwardatch and of limited use for branching path
expressions and recursive document collections. By stpgrdocument-level and schema-level infor-
mation into two distinct tables{Rel can match schema constraints without accessing the fulirdent
data, but the resulting path information is often not pre@sough to pick exactly the relevant elements
in the node table. On the other hand, the compositional ggtfesentation dBLAS is quite compact, but
produces even more false positives on the schema levelRahand also requires query preprocessing
outside the RDBS (for creating P-labels and unfolding queits). MoreoveBLAS stores and compares
both schema-level and document-level information in nadhets, which means larger index scans during
schema matching and more 1/0O needed for updates when thendotstructure changes.

The next chapter shows how to avoid these shortcomings te neddtional XML retrieval benefit even
more from path indexing with a centralized structural summahe Relational CADG (RCADG) presented
below is based on a compositional path representation whistmpler and more precise th&wLAS. It
builds on the interval labelling of schema nodes describedhie| CADG [[Weigel'2003] in Sectiol 53 2.
As a matter of fact, this approach is dualBaAS in the following sense. In th&CADG, the interval
label of a schema node represents all rooted tag paths witimanon prefix. The interval of a longer
tag path is contained in the intervals of shorter ones withstame prefix. For instance, the interval for
/people/person contains the one foypeople/person/name. By contrast, the P-labels used BAS
represent sets of tag path suffixes. For the purpose of analwy may be regarded as interval-labelled
nodes of a modified schema tree containingralerse(i.e., leaf-to-root) tag paths or path suffixes in the
documents. The examples above illustrate how indexing jpagfixes rather than suffixes can reduce the
number and size of intermediate results to be joined. The cleapter explains how thRCADG takes
advantage of this observation.
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CHAPTER
EIGHT

TheRelational CADG (RCADG)

8.1 Overview

This chapter introduces ttRelational CADG (RCADG), a new time- and space-efficient approach to XML
retrieval in relational database systems. The aim of thiskvi®to bring together sophisticated XML
indexing techniques and the mature and highly optimizeaticaial technology in order to get the best
from both worlds. Th&RCADG builds on much of the work presented so far, most prominetiiBIRD
labelling scheme explained in Chapigr 4, a decentralizedtsiral summary with powerful decision and
reconstruction capabilities, and tAADG index presented in Chap@@r 6, a centralized structural sumym
that combines the schema tree in main memory with a matatializof the content/structure join on disk.
The main contributions of thRCADG are (1) a relational storage scheme for DG and (2) query
planning, translation and evaluation algorithms that toge

1. leverage the full schema matching precision of@A®G in an RDBS,
2. preserve its compositional path representation to ruienany false schema hits early,

3. exploit the power oBIRD reconstruction to avoid needless disk I/O and joins of lantgrmediate
results,

4. enable query planning and optimization based on path eyaded selectivity statistics and an ana-
lysis of reconstructible relations in the query, and

5. exploit standard relational techniques as much as gessib

The rest of this chapter discusses these issues in moré. d&te next section explains the relational
storage scheme used by tREADG and outlines the query evaluation process from an intufiviat of
view. Sectior 81 briefly reviews the child-baland®®D encoding introduced in Chapf@r 4, focusing on
how to realize decision and reconstruction in the RDBS. Basghese preliminaries, Sectionl8.4 describes
the nuts and bolts of XML retrieval with thRCADG, including query planning and rewriting as well as
the generation of SQL code for query matching on the schemaaocument levels. SectidnB.5 reports
the results of comparing our implementations of READG, XPath Accelerator andXRel schemes with
the original CADG. Sectiod8b provides a quick wrap-up of tREADG’s contributions compared to the
related work reviewed in the previous chapter. The lasi@echentions some remaining issues and open
guestions.

8.2 TheRCADG Storage Scheme

This section describes a relational database scheme forgstbe Content-Aware DataGuide (CADG) in
an RDBS. As described in Chapfdr 6, tBADG consists of two data structures, the schema tree and the
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i arid_|maxid|tag type level _|weight|
#0 #6 people|Element 0 45
#1 £0 #6 person| Elemen

2 1 #2 name |Element 2

3 1 5 profile |Element 2

4 3 4 edu Element 3 1
5 3 5 sex Element 1
6 1 6 gender | Element 2 3

Figure 8.1: TheRCADG path table for the schema tree in Figlire& an pagdB.

element table. Since the latter is ready to be stored in anR@Bhout further modification, only the
schema tree must be migrated to the relational data modeleBerve the compositional representation of
tag paths in th€ ADG, the schema tree should not be stored as a list of path steisggth theXRel scheme
(see Section’Z4.1). Moreover, schema-level and docutaeetinformation should be kept separate rather
than in one large table, as the one used byBhAS scheme (see Sectibn 71.2).

A straightforward relational representation of the schémeaSis the path table shown in FigueB.1.
The idea is to “shredSinto tuples each representing a single schema node. Toedibe@hild andChild™
relations inSefficiently, each schema node is labelled according t®Pte¢éMax encoding (see Chapf@r 3).
The result is similar to applying one of the node indexingesuhs mentioned in Sectibnl’.3 to the schema
tree (rather than the document tree as proposed there).sSEaema nodp in Sis stored as a tuple

(pid, parid, maxid tag, type level weight . ..)

that consists of at least the seven fields listed in TEhle 8.1:

field description

pid the preorder rank of p in S (assuming an arbitrary sibling order)

parid the preorder rank of p's parent node in S (null for the root of S)
maxid | the greatest preorder rank of any node in the subtree of Srooted in p

tag the tag name of p in S(the last tag in the tag path corresponding to p)
type the node type of pin S
level the level of pin S

weight | the BIRD weight of p (see Section B3 below)

Table 8.1: Mandatory fields in tHeCADG path table for a given nodein the schema tre8.

Further fields may be added to store tag-path specific infoomgae.g., statistics for query planning and
result ranking or keyword signatures for keyword-drivehesna matching (see Sectibnbl4.3). Examples
for such optional fields are given in TallIel8.2:

field description

csig the containment signature of p in the SCADG (see Section B3TI)

gsig the government signature of p in the SCADG (see Section B3I)

elts the number of elements with the tag path p

keys the number of distinct keywords contained in elements with the tag path p

Table 8.2: Selected optional fields in tREADG path table for a given nodein the schema tre8.

For reasons of clarity, the descriptions in this chaptenmsgsthree minor simplifications of the actual
path table as it is implemented in oRCADG-based XML database. First, we henceforth consider an
RCADG path table consisting only of the mandatory fields in TERR: Bnless stated otherwise. Second,
the string values in theag andtypecolumns of Figur€8l1 are given only for illustration purpssin fact
this information is encoded numerically, using a unique pirag from tag names or node types to integer
values. Finally, the actual path table has an additional fiehtaining update-robust foreign keys to the
element table, as explained for tHEADG (see Sectioh653.2).
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For XML retrieval with theRCADG, the path table on disk replaces the schema tree in main mem-
ory, which is no longer needed. The element table is the sanferahe CADG (see Sectiofi®l2). The
RCADG-based retrieval system evaluates a given XML qu@ryy (1) translatingQ into a sequence of
SQL statements involving joins of the path and element &l{) running these queries in the RDBS to
obtain the query result as a set of element tuples (matciied)3) returning the answer in a suitable form
(e.g., by extracting the XML representation of the queryahas from the original documents or gener-
ating it on the fly). In a first phase, schema matching takesepiarough amm-fold selfjoin of the path
table, wheranis the number of query nodes @ This produces a preliminary result table containing all
schema hits fo® (schema hits are introduced in Sectiad 2.3). Schema-lestding takes advantage of
the Pre/Max labels in the path table to decide the ancestorship of scimeties. In the second phase the
schema hits are matched on the document level in repeateddgbihe most recent intermediate result with
the element table. Successively partial matches to schémark either completed or discarded, until all
guery constraints have been processed and the last rdgelttantains the final query result. Document-
level matching benefits specifically froBiRD reconstruction and decision. The following sections expla
all steps of this procedure in detail.

8.3 BIRD Revisited: Reconstruction and Decision in the RDBS

In Chaptell¥ is has been shown how the reconstruction andidediapabilities of thé8IRD labelling
scheme can accelerate the query evaluatiBiRD decides and reconstructs many tree relations in the
document tree using simple arithmetic computations on migreeement labels and tag path weights. To
take advantage d3IRD for the RCADG, these computations must be performed inside the RDBS glurin
guery matching on the document level (the second of the abermtoned retrieval phases). More precisely,
reconstruction and decision formulae are part of the joinstermediate result tables with the element
table, in the form of either join predicates or projectioaudes (th&HERE andFROM parts of a SQL query,
respectively) or both.

Figured8P anf 83 on the following page list rules to deduudtable join predicates and projection
clauses for matching binary query constraints on the doatiteeel with child-balance®IRD labels. In
the remainder of this chapter we refer to these rulekasment matching rules contrast to several other
types of rule to be introduced later. In each rule, the upper @presents “input” or preconditions, i.e.,
constraints that are either given in the query or have bedaai through query rewriting (see below) or
by applying other rules. The lower part represents “outpufostconditions, i.e., deduced conditions on
BIRD labels and weights to be used in the joins, or further coimigrto be processed. The join expressions
are given in a formal notation as for the relational algefnanslations of sample expressions into SQL
can be found in the next section. Suffice it to say here thateébenstruction and decision formulae in
Figured8P an8 3 on the next page are all simple enough ¢apressed in plain SQETSQ]-2] without
user-defined functions. They involve only comparison ofmesa<, <=, =), arithmetic operators+( -, the
multiplication* and themodulooperator}) as well as Boolean operatorsip, OR).

FigurdB2 on the following page summari&&D's decision capabilities in eleven rules of the above-
mentioned form. In each such rule with a binary constr&fi,v1) in the upper part, the lower part
specifies predicates for selecting elemeats a join with the element table such thatvy, v1) is satisfied
for a given elementy. Both v and theBIRD weight of its tag path(vp) are assumed to be known. For
instance, consider the first rule E@ﬁﬁda, which states that the nodes in the subtree rooted in a pkatic
elementyy are exactly those elements whd3ikD label is greater than or equal ¥g's label but smaller
thanvg’s label plus its weight. Applied to elemewg = 24 in FigurdZ&] on pagdb, whose tag path
(Vo) = #3 has the weight 3 (see FigUre Bldn pagd?b), the rule D@ﬁdg selects asp’s descendants
(includingvo) all elements/; where 24< v;.eid < 24+ 3, i.e., the elements 24, 25 and 26 in Figiirea].3
This mirrors exacthBIRD’s decision procedure fo€hildg that is described in Chapi@r 4.

In the same way most other binary relations listed in TRREEdh pagd® can be decided (except
i-th-Following NextEIt‘i and their inverses, which are not supported®RD), using the corresponding
rules in FigurdBR. Note that constraints of the foRarent(vo,v) or Child!(vo,v1) are rewritten into
Childy(vo,v1) and Pareng(vo,v1) earlier during the evaluation, after matching their progynbounds on
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Childé(Vo,Vl) ( Dec )
vi.eid>vp.eid A vy.eid < vp.eid+ 1(vp).weight Childg

Pareng(vo,v1)
vi.eid<vp.eid A vj.eid> vp.eid— m(vy).weight

( E:ﬁeng )

NextSib; (vo,v1) 3vy : Parenfvo,Vz)

DMDec -
vi.eid>vp.eid A vi.eid<vp.eid+ m(vp).weight A vp.eid mod7i(vo).weight= 0 (PMRexsis;)
NextSid (Vo, V1) Dec
NextSib(vo,vi) A 80l o T vieiiwped | (DM fextsid)
0, ¥1 mi(vo) weight — m(vp).weight =)
PrevSilf (vo, V1) v, 1 Parenfvo, Vo) (DMBEC )
vi.eid<vp.eid A vieid>wvy.eid A vi.eidmodr(vp).weight=0 PrevSit}
PrevSil%(vo,vl) (DMDee )
: Vp.eid—v; .eid P Vp.eid—v; .eid : PrevSi
PrEVSIq(VO’V1> A n(vo).weight =1 A n(vo).weight <] E{
Following(vo, v1) (DMBEe ) NextElt; (o, V1) (DMPeS_ )
vy.eid > vo.eid+ rm(vp).weight * Following vy.eid > vp.eid NextElty
Precedingvo,v1) (DMBee PrevElt (vo, V1) (DMBEC )
vy.eid < vp.eid— m(v;).weight - Frecedin vi.eid < vp.eid PrevEly
Selfvp, V1) Dec
(DM se)

vi.eid = vp.eid

Figure 8.2:BIRD document matching rules for deciding binary tree relati®gs/, vz € V).

Pareng(vo,v1) (DMES )
vy.eid = vg.eid — (vo.eid mod 7(vy ).weight Pareng

PrevSiB(Vo, V1) vy : Parenfvo,Vv2) A Vop.eid—i- 11(vp).weight> vy.eid
vi.eid = vp.eid—i - ri(vp).weight

Rec
( DM Prevsid )

NextSid(vo,vl) vy : Parenfvo,v2) A Vop.eid+i - 11(vp).weight< v.eid+ m(vo).weight
vi.eid = vp.eid+i - 1(vp).weight

R
(DM Ng(:tsid )

Selfivo,v1)

2 (DMES
vl.eld:vo.eld( s

Figure 8.3:BIRD document matching rules for reconstructing binary treati@hs {/p,v1,v2 €V, i € IN).
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the schema level (see Sectland4.2). Therefore no furtives for these relations are needed at this stage.

The four decision rules foNextSiband PrevSibin Figure[BP expect as input tH&RD label and
weight not only ofvp, but also of its parent,. Similarly, the rule DI\@f’e‘ged,-ngcan only be applied when
given the weight of the elemenis to be selected. The evaluation procedure presented in #is@etion
makes sure that (1) during schema-level matching all requiveights are extracted from the path table
and (2) during document-level matching only rules for coaiatsR(vp, v1) are applied for whiclvg (and
possiblyv,) is known, either from previous joins with the element tatniéhrough reconstruction (see the
next paragraph).

Figure[BB on the facing page lists the most important recocison rules for theBIRD scheme. For
any constrainR(vp, v1) in the upper part of a reconstruction rule, the singlé®&mage ofvy can be com-
puted from theBIRD label and weight ofyy as specified in the lower part of that rule. Like in the decisio
case, some reconstruction rules require as additionat iineulabel and weight of’s parentv, or the
weight of the element; to be reconstructed, which are retrieved earlier duringetladuation process. For
instance, to match a query constraidrent, which is rewritten toPareny after schema-level matching,

the rule D aefeng can only be applied when both and the corresponding parent weigtit; ). weightare

given. Forvg = 24 in FigurdZ=&l on pagédh, e.g., we know from schema-level matching#hsatag path
m(v1) = #1 has the weight 9 (see Figire BI®n pagd?6). Thus thBIRD label ofv; is reconstructed as

vi.eid= 24— (24 mod 9 = 18 according to the rule D ,Cené. Note that apart from the trivial reconstruc-
tion of the Selfrelation (rule DMES¢in Figure[EB), only ancestors and preceding siblings atrbitrary,
but fixed distancécan be reconstructed with tiRCADG. Other reconstructible relations (see T4DI& 3.1 on

pagd2D) are not considered here.

8.4 Query Evaluation with the RCADG

1 // evaluateQueryRCADG query evaluation from scratch
2 // — Q: the query to be evaluated

3 procedure evaluateQueryQ: query)

4 // schema-level matching

> 5 call rewriteSchemalLevéR) // see Section B2l
L 6  call matchSchemalevD) // see Section BEZ2
7 // document-level matching
- 8 call rewriteDocLeve(Q) // see Section BZ3
9 P := call createPlanQy,Qc) // see Section
10  forall stepsse Pdo
11 call matchDocLeveQ, s) // see Section BEZH
L 12 endfor

13 // projection to result nodes
14 call createResultQ) // see Section BZ4

15 end procedure

Algorithm 8.1: RCADG query evaluation from scratch. The input is a qu@ry (Qy, Qc, Q) to be evalu-
ated, wher&), is the set of query node®, the set of query edges a@ the set of result nodes @.

The top-level evaluation procedure for tREADG is given in AlgorithmB1. As mentioned before,
query evaluation is divided into two phases. In phase 1, tlegygconstraints are processed on the schema
level (linestd tdF), typically at a negligible join cost stnthe path table is rather small. Initially some
rewriting attempts to minimize the query and prepares itefealuation with theRCADG (line[H). The
remaining query constraints are then translated to a sBQle statement expressing a selfjoin of the path
table (linel®). This produces a first intermediate resultr@nschema level consisting of tuples of schema
nodes that together form a matching to the entire query gftiyglschema hitsas defined in Sectido2.3).
The schema hits are stored as rows in a temporary table wittmos for the labelspid) and weights
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sid| p1 | p2 | p3 | p4 |wl|w2|w3]|ws
el ##2|#a|#5] 9] 21111

a. intermediate resul@_s; after phase 1

sid| p1 | p2 | p3 | p4 |wi|w2|w3|ws|ed]|el
| #|#2 | #4#5] 9] 21111 [26]18
W ##2 | #4a#5] 9f 211 |1 [34]27

b. intermediate resul)_s; after steps; in phase 2

D

sid| p1 | p2 | p3 | p4 |wi|w2|w3|ws|ed]|el]|ez
Ol #|#2 | #4#5] 9] 211 11 [26]18 21
] #l#2 #41#5] 9] 211 [ 1 [34]27]30

c. intermediate resul®_s, after steps, in phase 2

sid| p1 | p2 | p3|p4|wi|lw2|w3|wd|led|el]|e2]el
el #l#2|#4#5] 9] 2] 111 [26]18]21]25

d. intermediate resulp_s; after stepsz in phase 2

[18 [21[25]26 |

e.final resultang Q) after phase 2

Figure 8.4:RCADG result tables for the que in FigurdlZZh] on pag&D. The SQL code for computing
the results comprises five statements, given in Figiirdd8I& and 817 (see pades05]113 117,
respectively). Four intermediate result tables are cteatee in phase Hf) and three in phase BId).
These tables may be stored persistently to build up a qusttieache (see Chapfeld 10). The final answer
to Q () is extracted from the result tablef@ It is visualized as subtres in FigurelZIe] on pagdB.

(weigh) of all schema nodes in a tuple. Such a result table is showigire[8Zalfor the sample quer§)
in FigurelZZ0] on pagdD.

In the second evaluation phase (lifigs &b 12 in Algorihd), §urther rewriting removes query con-
straints that have been fully catered for on the schema (émelld). Then the query is matched on the
document level, based on the intermediate schema-leudt fesm phase 1. Step by step occurrences of
tag paths in the schema hits are retrieved from the elembl&, tehecked against the query constraints,
and possibly added to the next intermediate result tabke Ragure§8BHA). Where applicable, recon-
struction is used to avoid expensive joins with the elemablet First a query plan is created (lide 9 in
Algorithm[B) that specifies which binary constraints kbal reconstructed and in which order the oth-
ers shall be decided. This also determines which occursemreeobtained through joins with the element
table, and in which order. Each step in the constraint-aglyilan comprises a number of joins of the
most recent result table with the element table, togethtr sgiconstructions and decisions, and produces
another table with the updated intermediate results. A fingjection of the last intermediate table onto all
distinct matches to the result nodes in the query [[lde 1dlpces the final answer (see Figlreg)4The
rest of this section explains all evaluation stages in Hetai

8.4.1 Schema-Level Query Rewriting

Before the actual matching takes place, the query is pregsad in order to eliminate unneeded query
nodes and redundant constraints. Note that the underlyiagygewriting is designed for tieRCADG and
BIRD and by no means exhaustive. However, the rules below araigemal hence applicable to other
retrieval scenarios, too. We only sketch a couple of basigitiag rules here. A thorough analysis of
minimization techniques for XML queries is beyond the scopthis thesist

IXML query rewriting and optimization in different appliégah scenarios has been studied, among others, by
MCHUGh and Widom [1997], [ Amer-vahia etal. [2]01]_Zhanglgt 2001, [200P], [Ramanan [20p2][Ofteanu etar.T002],
[ETar 12003 [Crust et ar- [209J[ Flesca and Furtaro [40a3d[Jagadish et al. [20P4].

102 Felix Weigel



CHAPTER 8. THERELATIONAL CADG (RCADG)

It has already been mentioned that query rewriting is trigdéwice during the evaluation procedure,
namely, once before schema-level matching (phase 1) anel again before document-level matching
(phase 2). The different rules that rea applicable in eigfherse are described here and in Sediloni8.4.3,
respectively. It is not hard to prove that all these ruleseree the query semantics. Note that during
the rewriting, any binary query constraiRt(g,q') and its inverséR~1)! (¢, q) are treated as interchange-
able. In the sequel, 1€Rpox = {ParentChild, NextSih PrevSihNextEIt PrevEI} be the set of binary
proximity relations (see SectidiP.1). The following queeyvriting rules are used by the procedure
rewriteSchemalLevel the beginning of retrieval phase 1 (see Algorifhnh 8.1 ayefEll):

Adding query edges. The source and target node of aRgevSibor NextSibedge (with or without prox-
imity bounds) are linked to the same parent node in the quaptg If exactly one of the two sibling nodes
has an outbounﬂ’areni edge (or inbound:hild% edge), then anothé?areni edge is added that links the
other sibling to the same parent. Otherwise, if both silsiage connected to different nodes Warent
(or Child}) edges, then these two nodes are linked ISe# constraint. If neither sibling is involved in a
parent/child constraint, twBarent edges to a single new parent node are created.

For instance, consider the query in Figlire@ 6n the following page that contains two binary query
constraintsNextSi{gs, 0s) and Paren(gs,qs4), among others. Since every matchdgis necessarily a
sibling of a match togs and therefore has the same parent node, we can safely add eonstraint
Parentgs,qs) (see FigurE&8BD. Without theParenfgs,qs) edge in the original query &g, a new query
nodeq; would be created with two edgé€&aren(gs, q7) and Paren(gs,qz). Conversely, ifgs were linked
to an exiting query nodeg; by a Parenedge, then a new eddelfqz,qs) would be added instead.

The purpose of this treatment of sibling nodes is twofoldrstriit allows to infer further selection
predicates from the newly addefelfedges. Moreover, making implicit parent/child relatioxpleit
through additionalParentedges allows to take these relations into account duringyqol@nning (see
Sectio8ZM). In particular, the query planner might aptrhatching the expliciParentconstraint at a
certain point during phase 2 in order to apply one of @D document matching rules for deciding or
reconstructing the sibling relation afterwards. Recalhirthe previous section that these rules require the

respective parent nodes to be known (see rulegﬁMq, DMEZC‘/SI, it DMBg‘)ftsmi, DMEEE{S’, ' in Figurd[ZP
ec Rec H H
and rules Dl\&revsiﬂ’ DMNextSid in Figure[EB on padeIho0).

Merging query nodes. All (new or existing) binary query constraints are analytethergequery nodes
which must have the same set of matches. For instance, glilmairrs reached from a given query node by
Paren}tedges i(€ IN) are merged. The same applies to all other functional quangtcaints, i.e.l,\lextSid,
NextElt, PrevSii, PrevEI}, and Self The unary constraints involving two nodes to be merged rbest
compared in order to reconcile their tag names, node types|d and keywords. If this is impossible
(e.g., when a query node representing only elements antiemguiery node representing only attributes
are linked via aSelfedge), the query is rejected as unsatisfiable.

proximity first second result
lower Ri" (do,G1) | R/ (do,d1) | Rianyiiny(do,Ga)
R (d0.90) | R (90.q0) | R™" " (cp.n)
upper R (go,a1) | R* (qo,a1) | R (0o, q1)
R’ (do,q1) | R%. (do,q1) | R (9o, 1)

Table 8.3: Adjustment of proximity bounds when merging ofid&pping binary query constraintsi( > 0:
lower boundsj,j’ > 0: upper boundst: unspecified upper bound). Two query edges of tRe Rprox
from qop to q; (first, second) are replaced with a single query edge of typ&rom qp to g1 (result).

Merging overlapping query edges. Each pair of edges of typR € Rpiox thatoverlap i.e., share the
same source and target node, is replaced with a single ediypeoR. The upper and lower proximity
bounds of this new edge are determined as specified in [ERI&-8r instance, when two edgParent,
Parent, with different lower proximity bounds,i’ connect the same pair of query nodes, the resulting
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Q2 |watches profile q4 Q2 |watches profile q4
\ . 4 @open_
Parent; Parent Parent] auction
@ @) (o)
@open_ NextSib gender @open_ NextSib gender PrevSib gender
auction "female” auction "female” "female”
a. original query b. rewriting in phase 1 c. rewriting in phase 2

Figure 8.5:RCADG query rewriting.eaA sample query against tiéMarkbenchmark collectiod[XMatk].
Result nodes are shadedd] The query ingg after the first rewriting for matching on the schema level
(phase 1). &aThe query irmafter the second rewriting for matching on the document lgpfease 2).

merged edge inherits the stricter condition (i.e., the grelawer bound), as specified in the first row in
Table[E3B. Note that this rule applies regardless of the wppends of the two edges (symbolized by the
ellipsis “..."), which are covered by one of the other threkes.

Collapsing transitive query edges. Unselective query nodes cause many tuples in the elemdatttab
be selected and joined, and should therefore be eliminatethever possible. In particular, queries may
specify unselective nodes which are neither part of the ansar needed for path joining. To eliminate
such useless parts of the query, we remove all intermedatesnbetween two edges of tyfec Rprox

in the same direction from the query and replace the two edgbsa single direct connection of typge
unless the intermediate node satisfies any of the followorgditions: (1) it has unary constraints to be
matched; (2) it is also reached by other than the two edgeséstmpn; or (3) it is a result node. In all
remaining cases the node contributes neither selectiatigates nor join predicates nor projection clauses
to the SQL queries to be created.

For instance, consider the sample query in Figur&B.g9he query node, has two inbound edges,
Child(qy,q2) andParent(ds,d2). The Child edge is equivalent to the inverse constrétaten(fop, d1), as
mentioned above. Thup is an intermediate node betweerRarentdges in the same direction. However,
it cannot be removed because of its tag constraint, whickdergial to the query semantics. Without the
tag constraintg, would be removed and the two query edgegi@ndqgs would be replaced by a single
edge linkinggs to g; directly. TabldBH summarizes the rules tmilapsingtwo edges in this way, i.e.,
replacing them with a single transitive one that links therse of the inbound edge directly to the target
of the outbound edge. As shown in the table, lower and uppeximity bounds add up, if specified
(otherwise “don’t care” symbols prevail). Again the eligs...” is a placeholder for ignored bounds to
which appropriate rules in TadlEB.4 apply in turn.

proximity inbound outbound result
lower | Ri"(G0,q1) | Ri7 (01,G2) Riir (%.%)
R. (90,0 | R.(q1,0) [ R (do, @)
upper  |_R- (G0, Q) | R (th, ) )
R (90,01) | R (d1, %) R (%)
R™. (9,01) | R™ (d1,92)

Table 8.4: Adjustment of proximity bounds when collapsiransitive binary query constraintsi( > 0:
lower boundsj,j’ > 0: upper boundst: unspecified upper bound). Two query edges of tRe Rprox
from qg to g1 (inbound) and fromq; to g, (outbound) are replaced with a single query edge of tyRe
from qg to g (result).
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CREATE
TABLE Q_sO AS
SELECT
createSchemaHitlD AS sid,
PT1.pid AS p1, PT2.pid AS p2,
PT3.pid AS p3, PT4.pid AS p4,
PT1.weight AS w1, PT2.weight AS w2,
PT3.weight AS w3, PT4.weight AS w4
FROM
PathTable PT, PathTable PP, PathTable PB, PathTable PR
WHERE
PT1i.tag = ‘person’ AND PT2.tag = ‘name’ AND
PT3.tag = ‘edu’ AND PT4.tag = ‘sex’ AND
PT1.type = ‘Element’ AND PT2.type = ‘Element’ AND
PT3.type = ‘Element’ AND PT4.type = ‘Element’ AND
PT2.parid = PT1.pid AND
PT3.pid > PT1.pid AND PT3.pid <= PT1i.maxid AND
PT1.pid < PT4.pid AND PT1i.maxid >= PT4.pid

Figure 8.6: SQL code for evaluating the qué€ryn FiguredlZZhlon pagdl0 on the schema level (phase 1).
A selfjoin of the path table produces the first intermediatitt table containing a single schema hit (see
Figure[8Zal on pagdId2). The table has fields for a schema-hit identtidy ¢reated on the fly by the
functioncreateSchemaHitID) as well as for the schema node labglsgndBIRD weights (v) of all nodes

in the schema hit. Each pair of colummsandw; corresponds to the query nogen Q.

8.4.2 Schema-Level Matching

After the initial rewriting, all S-constraints in the query are matched on the schema leval m-fold
selfjoin of the path table, whemais the number of nodes in the rewritten query. The outcomhbisfjbin

is a first intermediate result table containing all schentafoir the query, which will later be joined with
the element table (see Sectlon84.5). Figurea®oh pagd T2 shows the schema-matching result for the
queryQ in FigurelZZ0] on pagdlD. The sample query has only one schemg®itwhich is shown as a
tree in Figur€ZZE]on pagdB. This schema hit occupies one row in the result,taftlea unique identifier
created on the fly (columsid in Figurel8.Za). The remaining fields are the labels and weights of all nodes
in the schema hit (columnsandw in Figure[8:Zal which correspond to thgid andweightfields from

the path table in Figuled.1 on pdgd 98). For query planniagjistcal information about the schema node
may be taken from the path table, too (omitted in FidUread.4

Generating SQL code. The procedurenatchSchemalevedhlled in lind® of AlgorithnEB1L on padeTi01
is responsible for generating and executing the SQL codectkates the first result table during phase 1.
The sample code corresponding to the table in FifjuraBstgiven in Figurdd8l6. TheREATE, SELECT
andFROM clauses are easily derived from the given qu@ry be evaluated, as follows. The result table is
calledQ_s; (denoting step 0 of the evaluation®@j. SinceQ has four nodes (see FigureBldn pagelo),
four instances of the path table (calledthTablehere) are joined, and the result is projected onto the path
labels and weights as described above. The calidateSchemaHitlD in theSELECT part is a placeholder
for generating fresh identifiers for rows in the result taldich are needed when reusing cached query
results (see ChaptEr]10). It can be realized using, e.gstarsyspecific autocounter function.

To generate th@HERE part of the statement in FiguEEB.6, one must (1) choose thmrsstraints irQ
that shall be matched on the schema level and (2) translase ttonstraints to suitable join conditions.
These two tasks are guided bghema adaptation rulemdschema matching rulesespectively.

Adapting query constraints to the schema level. The schema adaptation rules for R€ADG are listed

in Figurd &Y (for unary constraints) and Figlird 8.8 on tiiefang page (for binary constraints). Rule $A
in Figure[BY states that the tag, root, level and type caimsr on any query node apply directly to the
schema nodes that match this query node (because theSecanstraints, as defined on pdgd 11). By
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R(dqo) Re R1\{Containg, Governg} R(qp) Re€ {Containg, Governg}

R(m(v0)) (%) RI(mvo)) (SA)

Figure 8.7:RCADG schema adaptation rules for unary query constrafpts){ € Qy; Vo,V1 € V; v; denotes
a document node matchimyg).

R(qo,01) R e {ParentChild, Self}
R'(71(vo), 11(v1))

R(do,q1) R € {NextSihPrevSibSibling}

Sibling' (1(vo), 1t(v1)) A ~RoofT(v1)) (543)

(SAz)

R(qo,01) R € {Following, PrecedingNextEIt}
—Root m(v1))

(SA4)

Figure 8.8:RCADG schema adaptation rules for binary query constraggsyf € Qv; Vo,v1 € V; v; de-
notes a document node matchigy Proximity bounds are preserved.

Tag,(p) -+ Tag,(p) to,...,tmeT R(p) ReT
ptag=ty V ---Vp.tag= tm (SMrag) p.type= R (SMrype)
Level (p) | Level (p) | Roolp)
p.level=i ( Leve’i) p.level>i A p.level<]j ( Le"e'}> Level(p) (SMgood
Containg (p) --- Containg (p) | Ko,...,kme K (SM. )
—(0(ko) 8-+-6 (km)) U p.csig=T Containg
Governg (p) --- Governg (p) | Ko,...,kme€ K (Mo )
—(0(ko) 8---8 (km)) L p.gsig=T ek

Figure 8.9:RCADG schema matching rules for unary query constraipts P; i < j € IN). In the last two
rules, o is the signature creation functiori; denotes a keyword signature with all bits setj |, — are

bit string operators for bitwise conjunction, disjunctiand inversion, respectively; arfl= L or 6 =
depending on whether the keyword constraintpane marked as conjunctive or disjunctive, respectively.

Child' (po, p1) Child' 5(po, p1)

——————— (SMiqr SMepirg +
p1-parid = po.pid (SMetue ) p1.pid > po.pid A py.pid < po.maxid (SMeiar ;)
Child'} (po, p1) Child'}(po. p1)
- SM_ . i A SM_
Ch’/dlé(pmpl) A ( Chl/d/i) Chl/d/é(po,pl) A ( Chlld’li)
p1.level= pg.level+i pi.level> po.level+i A pi.level< po.level+j
Slbllng,(pOapl) ( Mo ) Self,(p&pl) ( )
p.parid = po.parid Sibling! p1.pid = po.pid self

Figure 8.10RCADG schema matching rules for binary query constraipgspy € P; i <j € IN). The rules
SMe,ents SMParemé, SMParemE and SM arent are omitted for simplicity. They are symmetric to the rules

P,
SMChiId" SMcnild/g’ SMcm’/d'} and SMCh,,d,{v

of schema nodes. For a lower proximity of 1, replaggid > po.pid with p;.pid > po.pid (SMChna/;)-

respectively. Note how SMmd’(*) exploits thePre/Max labels
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contrast, keyword constraints can only by matched appratdty on the schema level (rule $Aand only

if the path table contains keyword signatures (thiggandgsigfields mentioned in Sectidn$.2). Similarly,
Parent Child and Selfconstraints in the query translateRarent, Child’ and Self constraints on schema
nodes, according to rule SAn Figure[&38. Rule SAspecifies that the only the unordered sibling relation
can be matched in the schema tree and that the root node dbkawsosiblings. The other binary tree
relations cannot be matched on the schema level at all, besisttwe can infer fronfrollowing, Preceding
andNextEltconstraints in the query that the schema root cannot magihttivget node (rule SA. This

is because its only occurrence, the document root, is thenfide in document order (and hence not in the
Following or NextEltimage of any other element) as well as the ancestor of adfr@lements (and hence
not in theirPrecedingmage).

Matching query constraints on the schema level. The schema matching rules in Figufed 8.9[andl8.10 on
the preceding page determine how to translate unary andytioastraints on schema nodes (as produced
by the schema adaptation rules) to join conditions on thk tatle. The first two rules in FigufeZ$.9
simply match tag and type constraints againsttégeandtypecolumns in the path table. Likewise, level
constraints with fixed proximity bounds translate to an diuaheck on thelevel column, while level
ranges translate to a range check (ruIesLeSVQﬁl and SMeverJi' respectively). Rule S, is justified by

the fact that the root is the only node at level 0. Keyword t@msts are handled by rules %ijtaini
and Slvbovemi’ if applicable, which respectively check containment andegnment signatures in the path

table. The bit string manipulation in the lower parts of batkes reflects the way keyword signatures
are compared (see Sectibm B4 3Yranslating these conditions involves the SQL operatorbiivise
conjunction (%"), disjunction (“|”) and inversion (*”). Thus the keyword-driven schema matching with
keyword signatures, as described in Sedilon.3.1 fos@%DG, can be mimicked in the path table of the
RCADG.

Finally, the rules in FigurlE8 0 translate binary consiiedn schema nodes that result from the schema
adaptation rules in FiguleZ3.8. The parent/child relatiequires a mere equality comparison on i
andparid fields of the schema nodes (rule g\j,). The SMepir s rule exploits thePre/Max labels in
the pid andmaxid columns of the path table to decide ancestorship betweerstivema nodes, like the
ICADG described in Sectidi©3.2. The proximity variantséM,= and SM,, i additionally check the
level difference of the two schema nodes. Ruleggly), states that two schema nodes are siblings if they
have the same parent$ The Self relation on schema nodes is checked through a simple cosopaof
their unique labels in thpid column (rule SM,,).

8.4.3 Document-Level Query Rewriting

As shown in AlgorithnT81 on pade 101, the second retrievalsphbegins with another round of query
rewriting. This time the goal is to eliminate parts of the guthat contribute onlys-constraints, which
are not matched on the document level. The following quewyritiag rules are used by the procedure
rewriteDoclLevetalled in line[® of AlgorithnB11:

Removing query nodes. In phase 2, after a-constraints have been fully processed on the schema level,
some query nodes are no longer needed. As in phase 1, thissfophodes that contribute neither selection
predicates nor join predicates nor projection clausese¢dSIL queries to be created for document-level
matching. In particular, we remove every query node whicisfeas all of the following conditions: (1) it
is not a result node; (2) it has no keyword constraint; andt (8)connected to the rest of the query graph
by a singleSelfor inboundParenbr outboundChild edge (with any proximity bounds, if applicable).

It is easy to verify that this preserves all information whis needed the match the query on the
document level. For instance, consider the qugrin FigurdZZalon pag€0. Assuming that the nagle
is not a result node, it can be safely ignored during docustesel matching because it contributes only
tag (and perhaps level) constraints, which have already pemessed on the schema level (see the next

2Earlier work on thesCADG [[VEIGET et ar- 2004a] explains the choice of the bit stringraypor6 for keyword conjunctions and
disjunctions in FigurEZ]9 on the facing page.
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section). As a matter of fact, in the schema hits retrievathdyphase 1 all tag paths matchiggare of
the form //person//profile/sex. Therefore there is no need to matghon the document level. Of
course, ifg, were reached by, say,extSibor NextEltedge rather than Barenedge, the rule would not
apply since sibling constraints are not fully matched onsttteema level.

Collapsing transitive query edges. A similar argument concerns intermediate nodes in a chatwof
transitive Parentor Child edges in the query. The two edges can be collapsed and thmé@tmte node
removed unless it is a result node or has keyword constralitis collapsing rule for phase 2 differs in
two respects from the one described in SedilonB.4.1 forgphaen the one hand, it applies onlyRarent
and Child edges; on the other hand, it covers even intermediate noitlesag, type or level constraints
because foParentind Child these have been fully catered for on the schema level.

For instance, consider the query shown in Fidureaddn pagdl4 again. In phase 1, the two edges
Parent(qs,qz) and Child(a1,92) (which is equivalent tdParen(dy,d:1)) could not be collapsed (see Fig-
ure[B30] on pagdId4) because the intermediate nggdéas a tag constraint. In phase 2, however,
the tag constraint o, has become dispensable since all matchegstbave a tag path of the form
//person/watches//open_auction anyway. Hence, is removed from the query and the two adja-
cent edges are replaced with a single effgeent(qgs,01) (see Figur€BE]). Note the lower proximity
bound 2 resulting from the adjustment rules in T4RId 8.4 ayefddl.

8.4.4 Query Planning

As mentioned before, the document-level matching is peréalr stepwise according to a query plan cre-
ated immediately after the second query rewriting. The yjpéan determines in which order the query
nodes are matched, either through joins with the elemelte tabthrough recontruction of binary query
constraints. The planning goals are (1) to avoid as man jwith the element table as possible by ex-
ploiting the full power ofBIRD reconstruction, and (2) to minimize the number of tuplesierimediate
results by probing the element table with the most seledbrestraints first (e.g., rare query keywords).
Obviously conflicts may arise between these two goals (sleevheTo simplify the understanding of the
main idea, this section describes an algorithm that proslacingle query plan for a given query, based on
and a naive but effective optimization strategy. The naksection explains how exactly to realize joins,
reconstruction and decision in the RDBS. For now we are oohcerned with methods to arrange these
steps for efficiently evaluating a given query.

Query plans. A query plan Pis a sequence advaluation stepsEach evaluation stepis a triples =
(Joins,Reg,Dec) whereJoins is a set of query nodes to be matched in seprough joins with the
element table, anBeg andDeg are sets of binary constraints to be reconstructed and eaidsteps,
respectively. FigurEEB 1 on the next page depicts two sauupdry plans involving joins, reconstruction
and decision. As illustrated in FiguleEgall the planP® in Bl matches the quer§ from FiguredZZlon
pagdD in three steps. In the first ste%,Joinl = {04} means that matches to query nagere retrieved
by joining the schema-matching result from phase 1 (Fifif&Bon pagdId2) with the element table
(Figurd®] on padeB2). Given tB¢RD weights in the intermediate result, the ancestors of thieseents
that matchg; can be reconstructed on the fly, without the need for anotleenent-table join. This is
indicated by the red edge in FigUleBdll and specified aReq = {Paren{(ds,01)} in Figure[E11]
By contrast,Deg = {} since the twoChild constraints inQ cannot be reconstructed wiBIRD. The
intermediate result table produced by s@ps shown in Figur&&Blon pagdTd2.

Inthe next stepsg, this table is joined with the element table to obtain theahes tagy (Joinp = {g2}).
Now the Child(qz,02) edge inQ can be decideddec = {Child(qi1,q2)}), which yields the intermediate
result in FigurdZ8&] on pagd1d2. Similarly, stesg joins gz and decide<Child;(a1,qg). This produces
the result table in FigufeZBdl which contains all matchings tQ (since all query constraints have been
matched in the three evaluation steps). The query Pfathus specifies a way to answ@rusing three
look-ups in the element table, compared to four look-upsiadevithout structural summaries (e.g., see
Section{Z311 anldZB.2). The second query in FigLred.llistrates a case where the benefit of the
RCADG is even greater. As shown in the query plan in Figure @J1this five-node query can be matched
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1

1
name iedu ! sex

! "female”

,,,,,,,,,,,,,, FERA L L

a. the queryQ from
F- PrevSib gender
igurelZZh] on pagdD "female” |

e o 2 TETE

c. the query from FigurEEB&l on pagdId4
plan P2 = (7, 57, &)

steps? = <JOir1:|_7 Req, DeC]_> plan P = <Sl’ SQ>
Joig = {au} steps; = (Joim, Req, Deaq)
Req = {Parent(q o)} Joig = {os}
Dec, = {} Req = {

Q _ .
ste = (Joinp, Re@, Dec [ 1
ps; (Joiny ¢ %) Paren{(q4,q ),

Joip = {qp} PrevSilias, ge)
Ree = {} }

De = {Child(qi,q)} Deay = {Parenfqs,qs)}

Stepng = (Joing, Reg, Deg) steps; = (Join, Ree, Dew)

Joig = {03} Joi, = {qs}

Reg = {} Ree = {}

Deg = {Childj(o1,03) } Dee, = {Parent(qs.ci)}
b. plan for the quen@ inE d. plan for the query ima

Figure 8.11:RCADG query plans for the queries in FigureZBkon pagdIIogHR) and Figurde8 8] on
pageIW3d). Ingzandg blue colour indicates query nodes matched through joitis thie element
table, red colour stands for nodes and edges matched threaghstruction, and green colour highlights
qguery edges matched through decision.

in two steps with only two look-ups in the element table. Canagl to the schema-less approaches men-
tioned aboveBIRD reconstruction saves three index look-ups and possibhhrtiGcin this example. The
positive effect of such query planning on the runtime perfance in also reflected in the experimental
results (see Sectidn3.5).

Planning algorithm. The two query plans in Figule8I11 are produced by the praesnieatePlarthat

is called in lind® of AlgorithnB]1 on padel01. The pseudeciod createPlanis given in AlgorithnT8P

on the following page. The procedure accepts as input Kgef query nodes to be matched and another
setMc of query edges between these nodes. When evaluating frattlgarreatePlanis called for all
query nodes and edges in a given quéxyi.e.,My = Q, andM. = Q.2 First an empty query plaR is
created (lin€d7). The sé4, initialized in line[d keeps track of all query nodes that ameched during the
execution of the plan, either by element-table joins or lpnstruction.

The outermostor loop (linedIPEZAB) otreatePlanexamines each of the given query nodesinto
determine which ones shall be matched through a join wittetbment table and which ones can then be
reconstructed on the fly. For each nage M, to be joined, a new evaluation stefs added td® andJoing
is initialized withq (line[Id). Then théor loop in lineIZDEI6 examines nodgsand edges in a breadth-
first traversal of the subgraph Qfthat is reachable from, using a queu®l,,.. Inbound edge&(q’,q) may
be replaced with their equivalent outbound invefBe?)(q,q'), as during query rewriting. Edges that are

3Different parameters may be givendreatePlanwhen a query cache is used, see Chdpikr 10.
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1 // createPlan RCADG query planning

2 // — My: the set of query nodes to be matched
3 // — Mgc: the set of query edges to be matched
4 // « the query plan to be devised

5 procedure createPlan(My, Mc)

6 // create an empty query plan
7 P :=a new empty query plan

8 //remember “known” nodes that have been matched meanwhile (Ky C My)

9 KV::O

10  // for all nodes in My, reconstruct as many edges in Mc as possible
11 // start with nodes that are selective and support much reconstruction
12 for all g € My in a suitable ordedo

13 // join q in a new step S unless it is already known
14 if g € Ky then nextin loop end if
15 Kv :=KyU{q}
16 s:=anew empty evaluation step
— 17 Joins := {q}
18 P:=Pu{s}
19 // starting from q, follow all reconstructible edges in M
p 20 for M}, := {q} while M}, # 0 do
21 q :=call removeFirs{M))
22 for all edgesc leavingq' do
23 if ¢ ¢ Mc then nextin loop end if
24 o := the target node af
25 if gt was reconstructed frompthen
26 next in loop
27 end if
28 if g € Ky or gt ¢ My then
— 29 DeG := DegU{c}
30 else ifcis reconstructiblehen
— 31 Reg := RegU{c}
32 M =M, U{a}
33 Kv:=KyU{a}
34 end if
35 end for
L 36 end for
37 // use extra steps to match keywords of nodes reconstructed in step s
P 38 if Reg # 0 then
39 for all ce Reg do
40 o := the target node af
41 if g¢ has keyword constraintien
42 s:= a new empty evaluation step
43 Joins := JoinsU {q }
44 P:=PU{s}
45 end if
46 end for
L 47 end if
48 end for

49  // return the query plan
50 return P

51 end procedure

Algorithm 8.2: Query planning with thRCADG. The input consists of two seli,, M. of nodes and edges
in a query to be matched. The output is a suitable queryplam evaluating the given query constraints.
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notin the given setl. of edges to be matched are ignored (IO 23; this does noemaphen evaluating®

from scratch). Edges to nodes that have been matched betodeeided (Iin€=19) since in this case the
current intermediate result contains already pairs of hetd¢o both endpoints of the edge. Edges to yet
unmatched nodes i, that can be reconstructed are adde®és; (line[31). Each target nod of such

an edge is appended to the quég so that in the end all chains of reconstructible edges fjdmnodes

in M, are reconstructed in the current seeprhe check in lin€Zd5 makes sure that each edge is matched
only once. Non-reconstructible edges to nodddjrare ignored at this stage. Note, however, that they will
be either decided or reconstructed later, when their tawgex is visited as nodgin a subsequent iteration

of the outermostor loop. The time and space needed for query planning erggatePlanis linear in the

size of the given sd¥l; of query edges.

For instance, reconsider the query shown in Fiqure 8bh pagdId9. In the first iteration of the
outermost loop ircreatePlan a new steps; is created forg = gs, thereforeJoing = {qgs} (line @3 in
AlgorithmB3). In linef2DEJ6, the nodegs, g4 andg; in My are visited and the corresponding edges are
added toReq (line21). Only the edge fromg to g4 is decided because these two nodes have just been
matched through reconstruction (lifid 29). The effgeent(qs, 1) cannot be reconstructed froma and
is therefore ignored in the first step. However, siages My, one of the subsequent iterations will start
from g, and match this edge—through decision, becayiseas already been matched in sgggline23).

All other nodes inV, (g1, q4 andgg in Figurel8TE] are immediately skipped in the outer loop (04 14).

As shown in the next subsection, keyword constraints ariéydsndled when matching a query node
through a join with the element table. However, a little exireatment is needed when the matches to
a query node with keyword constraints are obtained throegbmnstruction rather than an element-table
join. For example, if the query nodp in FigurelB Tl had a keyword constrai@ontaing(gs) for some
keywordk € K, then the plan in FigufeZ8l would be incorrect because matchesgji@re never looked
up in the element table to see whether they really containcanroence ok. Therefore in line§E 34237
of Algorithm [B3, all query nodes matched through recomsion in the current evaluation stepare
examined once again. Those with keyword constraints aredsdéd for an extra join with the element
table in subsequent steps (lilRd 43). In the above examplayoudd have to add a third steg to the
query plan in FigurEBIdl with Joing = {q4}, Reg = {} andDecg; = {}. Note that although the benefit
of reconstruction on the runtime performance is reducediah €ases, this plan is still preferable to one
whereq, is matched through a join right from the start, for two reasoRirst, reconstructing, allows
to reconstructy; in the first step, too, which saves one join (siggaloes not have a keyword constraint).
Second, looking upy, in the element table requires only an equality conditionfeeid column because
the matches to be checked are already known from the presiepsBy contrast, deciding tifarenedge
from gs to g4 involves a range condition, which is less efficient.

Planning strategies. Note that the number of possible reconstructions often migperucially on the
choice of the next query node to be joined. For instance, t@nnaltive query plan for the query in Fig-
ure[@TIC] that matchesy; through a join in the first step cannot reconstruct®aent(qas,q;) edge and
therefore needs more than two element-table joins to anh&equery. One method to reduce the number
of joins in a query plan is to sort the given 9¢{ of query nodes in such a way that nodes which allow
more edges to be reconstructed are processed first. To thiseoompute for each nodes M, its recon-
struction counti.e., the total length of all reconstructible paths leawin(not shown Algorithni812). The
nodes inM, are then sorted in the order of descending reconstructiontsdefore the actual planning be-
gins. As a consequence, the outernfostioop in Algorithm[B22 on the facing page (linE9 123 48) cdlec
reconstructible edges in a greedy manner, which is perhatpsptimal but certainly an efficient and quite
effective strategy (see the experiments Sedfigh 8.5).0Milgh the reconstruction counts could probably be
computed in time linear in the number of query edgellineven a simple repeated traversal of the query
graph with distinct start nodes runs sufficiently fast, dtesips quadratic time complexity iMc.

However, there are more possible planning goals besidemiming the number of element-table joins.
Most importantly, the size of intermediate results to bagai can be reduced by matching first those query
nodes that have selective constraints such as, e.g., ugntgeywords or tag paths or rare combinations of
both. To take advantage of the most selective query congtraiatistical information about the distribution
of tag paths and keywords in the documents is needed. SECHdvas introduced the optiorgtsandkeys
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columns in the path table as basic selectivity estimategs@ltan easily be integrated with the planning
algorithm, similar to the reconstruction count above. Msophisticated planning could also use cardinality
estimates for combined structure and keyword constra¥etsthis is outside the scope of this work.

Of course, when pursuing multiple planning goals at oncdlict®may arise, e.g., when highly selec-
tive query nodes have a low reconstruction count and vicgaverhe following preliminary solution to this
problem reconciles both reconstruction and selectivitynoigation while giving keyword constraints the
priority. Currently we simply distinguish query nodes\iy with any keyword constraint from those with-
out, and sort the two resulting subsetd\f separately in the order of descending reconstruction spunt
as described above. Any node with a keyword constraint is tisited before all nodes without keyword
constraints as nodgin the outermostor loop of createPlan(linesII2-EZB in Algorithni812). This suffices
to produce query plans like the ones illustrated in Figl&3&] andg, for example.

Intermediate results. The procedurereatePlarin Algorithm[B2 on pagEZI10 produces query plans with
only a single element-table join per evaluation step. Ireothiords, in any given query pla®we have

Vs € P:|Joing| = 1. However, the planning algorithm is easily adapted tovaflor multiple joins in the
same step, which reduces the number of steps and hencerofi@diate result tables to be created. Since
subsequent intermediate results for the same query usmadlyap considerably (e.g., consider the tables
in Figured8.4Hd] on pagdId2), permitting multiple joins per evaluation stefps to save storage in the
RDBS. However, intermediate results play an important fotehe incremental query evaluation based
on cached queries, as explained in Chajpidr 10. In a cachéamaso, it makes sense to evaluate queries
in small steps with many intermediate results, becauseattts/s to compare and reuse the answers to
previous queries at a fine granularity.

Both approaches have been successfully applied in the temasios. The experiments with query
evaluation from scratch in Secti@qB.5 are based on a glightidified version otreatePlanthat allows
multiple joins in each evaluation step. By contrast, forith@emental evaluation in Chap{ed 10 we will
assume one join per step, which increases the effectiveri¢lse query cache at the expense of a higher
space consumption. For simplicity, the following desédptof the query matching on the document level
adopts the single-join approach, too.

8.4.5 Document-Level Matching

Once a query plaR has been devised for the quépyto be answered, the evaluation stgpsP (i > 1)
are translated and matched on the document level one by ach.des produces a new intermediate re-
sult tableQ_s by joining the previous result tab@_s _; with the element table (recall from Sectikan8l4.2
that Q_sp denotes the schema-matching result computed during phaséglire[8H on padeID2 depicts
the sequence of result tables produced during the evatuafiqueryQ in FigurelZZZb] on pagddlD. The
document-level matching discussed here comprises the thibées in FigurdSBEHd] which correspond
directly to the three evaluation steps in the query §&rshown in Figur€E 1l on pagdZIdo.

The first step irPQ, s‘f, adds matches to the query nodgsndg; (columnsp, andp; in Figure[8. 20}
respectively) by joiningls and reconstructing the ed@arent (ds,q1) in Q. Note that there are two distinct
pairs matching the two query nodeg & 26, q; = 18 versusy, = 34, q; = 27). In the document trel®
in FigurelZ=38] on pagddb, these are the pairspafrson and sex nodes in the subtre@s andaz of D,
respectively. As a consequence, the result tghls contains two rows each representing a distinct partial
matching of the quer® (partial, because nodeg andqgz are ignored at this stage). The second step of
the query pIansg, matches the query nodp through another join with the element table and decides
the Child(q1,02) edge. Since there is a correspondimgne child below theperson element in botla,
andag, each of the two partial matchings can be expanded with ahratg, (the p, values 21 and 30
in Figure[BZ] respectively). The last stepg, joins gz and decides th€hild;(g1,q3) edge. While the
person node ina; has a matchingedu descendant that is added to the result table (element 28 iash
column in Figurde8 ), there is no such descendantasn Hence the second partial matching from the
previous resul@_s; (last row in Figur§8.£)) is discarded. Thus at the end of phase 2, the result @ldg
in Figure[8d] contains all possible matchings to the entire qu@ijn this case, a single document-level
match for the only schema hit° retrieved in phase 1).
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CREATE

TABLE Q_s1 AS -- create new result table
SELECT

sid, p1, p2, p3, p4, wi, w2, w3, w4, -- copy schema hits

ET4.eid AS e4, -- add matches to (4

ET4.eid - (ET4.eid % wi1) AS el -- reconstruct Parent(ds,d)
FROM

Q_s0, ElementTable EZ -- join previous result table with element table
WHERE

ET4.pid = p4 AND -- match unary constraints on Oy

ET4.key = ‘female’
a. steps; of document-level matching (phase 2)

CREATE

TABLE Q_s2 AS -- create new result table
SELECT

sid, p1, p2, p3, p4, wi, w2, w3, w4, -- copy schema hits

el, e, -- copy matches from previous steps

ET2.eid AS €2 -- add matches to (U
FROM

Q_st, ElementTable ET -- join previous result table with element table
WHERE

ET2.pid = p2 AND -- match unary constraints on O

ET2.key = ¢’ AND

ET2.eid > el AND ET2.eid < el + w1 -- decide Childj(0,02)

b. steps, of document-level matching (phase 2)

CREATE

TABLE Q_S3 AS -- create new result table
SELECT

sid, p1, p2, p3, p4d, wi, w2, w3, w4, -- copy schema hits

el, e2, &4, -- copy matches from previous steps

ET3.eid AS e3 —-- add matches to (3
FROM

Q_s2, ElementTable EF -- join previous result table with element table
WHERE

ET3.pid = p3 AND -- match unary constraints on (O3

ET3.key = ¢’ AND

ET3.eid > el AND ET3.eid < el + w1 -- decide Child](q1,03)

c. stepss of document-level matching (phase 2)

Figure 8.12: SQL code for evaluating the qu&yin FigureZZ0] on pagdD on the document level
(phase 2). The document-level matchindXif divided into three steps;—ss, according to the query plan
in Figure[BI0l on pagdI09. As before, blue, red and green colour highlighde related to element-
table joins, reconstruction and decision, respectiv@ySteps;: The query node, is matched through a
join of the element table (see Figlirel6.1 on dage 82) with¢herma-matching result (see Figlre&l4n
pagdI0P). Matches tm are obtained by reconstructing tRarenf(qas,0:1) edge. This produces the result
table in Figurd8. 3] on pagd 2.l Steps,: The query node, is matched through a join of the element
table with the intermediate result from step The Child(qi,02) constraint is adapted tGhild; (01, 02)
(see Figur&84) and then decided. The result table is shoRigurdB.Zc] on pagd€Td2..3 Stepss: The
query nodays is matched through a join of the element table with the intatiate result from steg, and
the Child; (g1, 0s) constraint is decided. This produces the result table inre[@Zd] on pagd102.
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R(qo) Re€ {Containg, Governg}
R(Vo)

(DAo)

Figure 8.13:RCADG document adaptation rules for unary query constramts (Qy; Vo € V; vi denotes a
document node matchirgg).

Rl(do.q1) R € {ParentChild}
R§(Vo, V1)

Rl(go,q1) R € R, \ { ParentChild}
le (Vo, Vl)

(DA1) (DA3)

R (do.q1) Re€ {ParentChildy
Ry(Vo,va)

Ri(go,q1) RE R\ {ParentChild}
RI* (VO,V]-)

(DA2) (DAy)

Figure 8.14: RCADG document adaptation rules for binary query constraiggse € Qu; Vo,v1 €V;
i <j € IN; v denotes a document node matchény

Generating SQL code. The SQL code for creating the three intermediate resules®ls;, Q_s, and
Q_sz in Figured8AHdl is given in FigurdZ8J12 on the preceding page. Three SQLreti&s are gen-
erated and executed by the procednr&chDocLevelhich is called once for each evaluation step (see
line[IJ in AlgorithmZ1 on padeID1). The rest of this subsaatxplains hownatchDoclLevetxpresses
guery constraints as SQL statements that are then handetbdlie RDBS.

For instance, consider the first join with the element tabktéps;, expressed by the SQL statement in
Figure[8TZAlon the preceding page. Some parts of the code are either fixie @ template to be filled
in with the query node idoim, whereas others are inferred from the query constrairgs irsing a set of
document-level rules (see below). A fixed code block is thaggation of schema-level information (first
line of theSELECT clause): it simply copies the schema hits retrieved in piasdong with theirBIRD
weights which may be needed for reconstruction and decisiea SectioRi813). Sincwing = {qgs}, the
schema matching resu@_s is joined with an instanc&T, of the element tableFR0OM clause), and the
matches taj in theeid column ofET,4 are added to the new result taldes; (SELECT clause). The result
table names to be used in thREATE andFROM parts follow directly from the current evaluation step (in
this casegs;). Furthermore, a first join condition selects those tuptethe element table with a tag path
matchinggy (first row in theWHERE clause). These code templates apply analogoushpio= {q,} in
Figurel8T&]andJoin= {qz} in FigureB 1]

The remaining code fragments in Figite3.12 are derived dohesteps from unary keyword con-
straints on the join node idoin and from the binary constraints Re¢ andDeg. As during phase 1, two
distinct sets of rules specify how to translate these quengiraints to SQLdocument adaptation rules
select the constraints to be matched on the document leveleabdocument matching rulegenerate
appropriate selection and projection expressions foetiesastraints.

Adapting query constraints to the document level. The documentadaptation rules for unary and binary
constraints are given in Figules8 13 &ndB.14, respegtiVek rule DA, in Figurd 8B states that keyword
constraints are the only unary constraints to be matchetieddacument level (recall from Sectibn8l4.2
that tag, type, root and level constraints are handled duynfrase 1). The adaptation rules Paénd DA, on

the left-hand side in FigulEB114 suppress proximity bowfdBarentand Child constraints, because they
have already been translated to level predicates durirgnsatmatching (see rules %r\;/,'rd/} and SMChiId’j
in FigurdBID on pade’ID6). Binary constraints other tharenandChild are matched unmodified on'the
document level, as specified by rules Pand DA, on the right-hand side of FiguEe8]14.

Matching binary query constraints on the document level. After applying the document adaptation
rules, the resulting unary and binary constraints on elésreme translated to join conditions and projection
clauses using a set of document matching rules. These ratefiehexactly théd-constraints listed in
DefinitionZ3 on pagE2. We first discuss the matching of fyifxconstraints withBIRD. Keyword
matching is explained below.
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Containg,(vo) 6 --- 6 Containg,(vo) Ko,...,kme€ K
Vo.key=kg 0 --- 0 vp.key=kn,

(D M Containg )

Governg (Vo) VvV --- VvV  Governg,(vo) Ko,...,kme K (DM )
JweV: Childi(vo,w) A (Containg(w) V --- vV Containg,(w)) Governg

Figure 8.15:RCADG document matching rules for unary query constraiggs<(Qy; Vo € V; v denotes

a document node matchirgg). In the first rule for keyword containmen, = A or 8 = v depending
on whether the keyword constraints gg are marked as conjunctive or disjunctive, respectivelye Th
second rule translates a disjunction of government cansdranto a single condition. By contrast, given
a conjunction of government constraints the rule appliesach constraint separately (treating it as a
singleton disjunction).

The binary constraints to be matched on the document lestelde Child, NextSih NextElt Following
and their inverses as well &ibling and Self All of them can be decided using tteIRD document
matching rules in Figufe8.2 on pdgel]l00. AlternativBlgrentPrevSibh NextSiband Selfconstraints may
be reconstructed with the rules in Figlirel 8.3 on dagé 100.edewy no ambiguitites arise since the query
plan for a given query specifies which constraints to deckvehich to reconstruct, as described above.

For instance, reconsider the query pRfAin Figure[EThl on pagdId9 and the corresponding SQL
statements in Figuleg112 on p4gell13. In the first stephe constrainParent(qs,q:) shall be matched
through reconstruction. The adaptation rule DA Figure[8IH on the facing page replaces query nodes
with elements and modifies the lower proximity bound in oribeprepare the application of a suitable
document matching rule. This yields the adapted constRanen}(va, v1) wherev, stands for any match
to the query nodey, and likewise fowv;. The unique reconstruction rule that is relevant to thisst@int
is DM,Fifjfen6 in Figurel&3B on padeIDO. Applied to the paig,vi) (which is called(vp,v1) in Figure[Z3),
the lower part of the rule states that for any maitgho g4, the element label of the corresponding ancestor
matchingg; can be computed ag = v4 — (v4 mod r1(v;).weighy wherer(vy).weightis theBIRD weight
of the tag path of/;. Now compare this to the SQL code fer in Figure[BIZAl on pagdIl3. Here
the reconstruction formula for th@arent(da,01) edge inQ is expressed as the projection clause that is
highlighted red. Th&IRD weightr(v1).weightof v; is available in the columw1 of the result tabl€_so0
from phase 1 (see Sectibn8l4.2). The matcheg tre taken from theid column of the instancET4 of
the element table, heneg become€T4. eid. Finally, the matches tq; to be reconstructed are given the
aliaset. Thusvy = v4 — (v4 mod rt(vy).weight translates t&€T4 . eid - (ET4.eid% w1) AS el in SQL.

As in the example above, the lower part of any reconstructitsis added to th8ELECT part of the

SQL statement to be created. More complex rules Iikeﬁ%l/\élid or DM',flg)ftsl.d in Figure[&3B also have

preconditions concerning the parenif the element,y whose sibling/; shall be reconstructed. Note that
when applying such a rule to a sibling constraintgrandv;, matches ta, are guaranteed to be already
known because (1) the schema-level rewriting of the quesps thatyy andv, are connected with a
Parentdge and (2) this parent edge is reconstructed no later tieasitiling constraint ok, according
to the query planning algorithm in Sectibn8l4.4. The prektion onvg andv, in the upper part of rules

Rec ec i H
DMPrevsl'q' and Dl\/ﬁexts’d is added to th&HERE clause of the SQL statement to be created. This way

the node label of; is computed for any tuple containing elemewgsaindv;, that satisfy the precondition.
Other tuples are silently dropped.

The following steps in the query plaf in Figure[8-] on pagdId9 involve the decision of binary
constraints. Here the document matching rules in Fijile®8 2agd_I00 are applied to create suitable join
predicates for the SQL statement. For instance, in stéfpe constrainChild; (g1, 02) is decided. As de-
scribed before, it is adapted &hildj(v1,v2) by rule DA, in Figurel83 on padeID6. The first decision rule
in Figurd P, Dl\)gﬁﬁdé, produces the join predicate.eid > v;.eid A vy.eid < vi.eid+ (v ).weightwhich
is translated to the SQL expressiBii2.eid> el AND ET2.eid< el +w1, as shown in th&HERE part of
Figure[8I2] on pagd X3 (highlighted green). T#ild;(aq1,q3) edge in steps is treated analogously.
As in the reconstruction case, some decision rules Iike,c\’,gﬁ\g,bI and DI\/f,EE;‘,S,bI in Figure[8P assume
parent matches to be known, which is safe with the query tigrand planning introduced above.
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Matching keyword constraints on the document level. According to DefinitiolZZB on pa§ell 2, the only
unary constraints to be matched on the document level argdeelyconstraints. Like binar®-constraints,
they are first adapted to the document level (using rulg DAFigure[8IB on padeTlL4) and then trans-
lated by applying document-matching rules (BMaing @nd DMg,yerme in Figure[EIb on the previous
page). For instance, consider again the query plarfor the queryQ in Figure[EIXl on pagd1009.
The query nodey, to be matched through an element-table join in the first sfepas a keyword con-
straint Containgemale’ (da). According to the adaptation rule Ahis constraint must be enforced on
the elements matchingy, which are contained in the instangEd@4 of the element table in FigulE 8 a2

on pagdIl3. The matching rule R, in FigurelE.Ib specifies the appropriate join predicate for a
conjunction or disjunction of keywordg 6 --- B km (6 € {A,V}). The resulting predicate for the single-
ton keyword‘female” in the keyword column oET4 is shown in the last line of code in FigUle 8aP
ET4.key= ‘female’. The same mechanism applies to the join nodes of the subsesfepss, andss

(02 andqgs, respectively). Since these do not have query keywordsptatonent constraint for the empty
keyword is assumed by default. Recall from Secfialh 6.2 thadxdra row is added to the element table
for each element and the empty keyword. This way matchesdoyqmodes without keyword constraints
can be looked up efficiently with a precise equality predididde ET2.key= ¢’ or ET3.key= ¢’ in Fig-
ured8 Tl andBIX] respectively.

The join predicate for government constraints is a littlereniavolved, due to the fact that the element
table only indexes contained keywords explicitly. The datadel in Sectiof2]1 defines the keywords
governed by an elementas thos& € K that are contained either inor in any of its descendants. This
definition also captures conjunctions and disjunctionsovegnment constraints, as follows. An element
governs a disjunctiokp V - - - V km, of keywords if eithewv or any of its descendants contains at least one
of these keywords. The matching rule A, in Figure[EIb on the preceding page reflects exactly
this definition, replacing the government constraints orivargelement/ with containment constraints
on another element that is eithervg itself or one of its descendants (i.&Child§(vo,w)). Similarly,

Vv governs a conjunctiokg A - - - A ky, of keywords if each of these keywords is contained in any rinde
the subtree rooted im. Note, however, that not all keywords are necessarily éoetain the same node
in the subtree. Simply substituting\* to “ V" in DA g, Would therefore be too restrictive. Instead the
rule DAg,yerng is applied separately to each government consti@outerng (v) (0 < i < m), so that the
keyword disjunction in the upper part of the rule consistly of k;. This way distinct descendantswére
accepted for distinct keywords.

As an example, consider a variant of the quéryn Figure[BT7a]l whereq, has two government
constraintsGovernsemale” (Q4) and Governgnp (44), instead of the containment constraint. If the two
government constraints are marked as disjunctive, thefjothepredicateET4 . key= ‘female’ in Fig-
ure[BIZA] is replaced with the code listed in FigUre_8dlén the next page. Here a single subquery
checks whether any descendant of a matcfytoontains eithetfemale” or “PhD” . By contrast, a con-
junction of independent subqueries for all keywords is eeeadhen the two government constraints are
marked as conjunctive (see Figlire 80)6

8.4.6 Computing the Final Query Result

The last intermediate result table created during phasetis allquery matchingas defined before
(see Definitiof 213 on padel10). Recall from Seclioh 2.2 tmafinalquery answer an®) is obtained by
restricting these matchings to the §gtof result nodes given as part of the query specification. Alse
result tables contain the schema hits and weights correlépgto each matching, which are not part of the
qguery answer. Therefore a final query is needed to extractlaitant data from the last intermediate result
table and return it as the final resalt§ Q) to the user. This is done by the procedaoreateResultalled
in lineI4 of AlgorithmB on padeID1.

The SQL code for creating the final result of the quéyn Figure[8I7al on pagdIdO is given in
Figure[BIV on the next page. It consists of a single statethahsimply projects the last intermediate
result tableQ_s3 in Figure[B 4l on pagdId2, onto those colum@svhich contain the matches to result
qguery nodesi. In the example we assume that all nodeQiare results nodes, i.€), = Q,. Note the
use of the keywor@ISTINCT to remove duplicate results from the final output. In facpliext duplicate
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Ce -— CREATE, SELECT, FROM as before
WHERE

ET4.pid = p4 AND -- select matches V to Q4
ET4.key = ¢’ AND
EXISTS ( -- match Governsdisjunction using a single descendant W of V
SELECT eid
FROM ElementTable EZdesc
WHERE
ET4desc.eid >= ET4.eid AND ET4desc.eid < ET4.eid + w4 AND -- match Childy(v,w)
(ET4desc.key = ‘female’ OR ET4desc.key = ‘PhD’) -- match Containsdisjunction on W
)
a. disjunction of government constraints on nagén queryQ
Ce -— CREATE, SELECT, FROM as before
WHERE
ET4.pid = p4 AND -- select matches V to Q4
ET4.key = ¢’ AND
EXISTS ( -- match Governstemae(d4) using a descendant W of V
SELECT eid
FROM ElementTable EZdesc
WHERE
ET4desc.eid >= ET4.eid AND ET4desc.eid < ET4.eid + w4 AND -- match Childj(v,w)
ET4desc.key = ‘female’ -- match Contains temale (W)
) AND
EXISTS ( -- match Governsppp (Q4) using another descendant W of V
SELECT eid
FROM ElementTable EZdesc
WHERE
ET4desc.eid >= ET4.eid AND ET4desc.eid < ET4.eid + w4 AND -- match Childy(v,w)
ET4desc.key = ‘PhD’ -- match Containsppp (W)

b. conjunction of government constraints on nagén queryQ

Figure 8.16: SQL code for matching keyword government cairss. The code is generated for a variant
of queryQ in FigurdBITalon pag€Il9 where the containment constr@mttaingemale’ (d4) 0N nodegy
has been replaced with two government constra@aserngemale” (d4) and Governsnp- (04). The two
government constraints are either disjuncti@p ¢r conjunctive®)). Each of the two statements is meant
to replace the code for the first evaluation ssejn the query plarP? in Figure[8-Thl on pagdId9. The
CREATE, SELECT andFROM clauses remain unchanged (see Fiqure 81t pagd_Tl3). Only theHERE

is modified according to the document matching rulegA,,. in Figure[ETb on padeIlL5, as follows.
Let v be a match to the query nodg. E1A disjunction of the two government constraints is traredat
into a single subquery selecting any descendanf v that contains either keywordl] A conjunction

of the two government constraints translates to a conjonaf two separate subqueries. Each subquery
independently selects a descendauof v that contains a specific keyword.

SELECT

DISTINCT el, e2, €3, e —-- copy matches to result nodes
FROM

Q_s3 -— retrieve answer from the last intermediate result
ORDER BY

el, e2, e3, e4 -— order result as needed

Figure 8.17: SQL code for computing the final result of thergu@ in Figure[EI1al on pagd_Id9. The
last intermediate result from phase 2 (see FifurelBos pagdId?) is projected onto matches to the result
nodes (in this case, all query nodes). This produces theyguewer shown in FigufeB&lon pagd Q2.
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elimination is only needed when some match columns are éagpe., wherQ, C Qy. TheORDER BY
clause serves to return the query answer in some specific dndbis case, it is sorted so that all matches
to the query node; appear in document ordef._(Tafarinov et al. [J002] mentifferént output modes to
be applied analogously.)

The output of the SQL query in FiguEe8l17 is shown in Fidu#eBon pagd1d2. HerangQ)
consists of the tupld18 21 25,26) of node labels that denotes exactly the document subtreietedp
in FigureZZE] on pagd®B (the corresponding node labels are given in FIgiE&lén pagdb). Of
course a different result presentation may be chosen fouske For instance, given the original XML
representation of the documents and a mapping from nodéslabthe corresponding byte offsets in the
XML code, the query answer could be presented as XML fragsng@uissibly rendered using stylesheets).
Alternatively, XML code might be generated on the fly. Howgtieese presentation details are beyond the
scope of this work.

8.5 Experimental Evaluation

To evaluate the practical use of XML indexing with tREADG, we created path and element tables for
different document collections in an RDBS and implementeddvaluation procedusyaluateQuerysee
Algorithm[B on pagEID1) in a retrieval engine callzocument eXplore(DoX). DoX evaluates XML
gueries like those used throughout this work by translatiegn into SQL statements against the path and
element tables, as described above. The system is compa(gjithe native XML enginé&? that was
already used for the experiments with tBADG in Sectior[&H; (2) the relational node indexing scheme
XPath Accelerator by [Grusietal. [Z0JA2004] (see Sectlon4.3.2); and (3) étetional path indexing
schemeXRel by[Yoshikawa et al. [20Q1] (see Sectlon714.1). All queryirag have been implemented (or
reimplemented, in the case ¥Path Accelerator andXRel) in Java. Details of the hardware and software
set-up are given in the appendix (see Test Environment A atiG¥EL3]).

We ran a number of queries against the four document callesifiDb, XMark 1100 INEX andDBLP
listed in SectiolZI3]2 of the appendix. Timernet Movie Databas@MDb) comprises more than 8 GB of
XML documents describing movies and actors from a commieng site [[MDH], whereaMark 1100
consists of 1 GB recursive XML synthetically generated byeadhmarking tool[[XMaik]. The highly
heterogeneoudNEX benchmarkI[INEX] contains scientific articles in full-texpBLP [DBLH] is an on-
line collection of bibliographic data from computer sciencThe key results of the evaluation are the
following:

1. TheRCADG outperforms both the native and the relational baselingesys by two orders of mag-
nitude and more in terms of retrieval speed. Complex queritsslarge results causing the baseline
systems to break down are answered within seconds bR@&G. Querying XML in a relational
database system benefits greatly from native XML indexichna&ues (see Sectidn 8F.2 below).
To a certain extent this also confirms previous findings regboy[Chen et al: [2094] for thBLAS
storage scheme (see Seclion4.4.2).

2. TheRCADG easily scales up to collections of multiple gigabytes botterms of retrieval speed and
storage demands. The path table is typically several oafersagnitude smaller than the original
data (see Sectid08¥.4).

3. Query planning has a significant impact on the performahte RCADG. While very encouraging
results were obtained with the planning strategies desdi@ébove, in some cases inappropriate plan-
ning may prevent a performance gain. Also, enhancing tlaioelal optimizer with tree statistics
seems promising (see Sect[an g 5.3).

4. Keyword-driven schema matching using signatures in tith fable does not entail a significant
performance gain in our experiments. The overhead for sigaaomparison lies between 100 ms
and 300 ms, whereas the time needed for creating signatunegligible.

Table[B3) on the next page summarizes the performancesésutheRCADG (averaged after remov-
ing the best and worst of five runs). Sample queries are gisaheair closest XPath equivalents. The
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result processing
Corpus| QID size closest XPath query time (s)
IMDb 13 6507 | //*[title="love"]/production_year 1.27
14 118,150 | //moviel.//genre="documentary”]//actor 8.77
X4 2 | /site/open_auctions/open_auction| 0.44
bidder[personref/@person="“person20"]/following-sibling::
bidder[personref/@person="person17290"]] /reserve
XMark | X15 1890 | /site/closed_auctions/closed_auction/annotation/description/ 0.52
1100 parlist/listitem /parlist/listitem /text /emph /keyword
X14 9461 | /site//item[contains(description, “gold”)]/name 3.34
X13 | 22,000 | /site/regions/australia/item[name and description] 0.88
X2 597,777 | /site/open_auctions/open_auction/bidder/increase 17.54

Table 8.5:RCADG query performance, in seconds. The original queries arengnere as their closest
XPath equivalentXMark 1100queries are adapted from the XQuery benchmatk[XlMark]. @mégches
to XPath result nodes were computed (unlike TERIE 8.6 onal@afing page).

XMark 1100queries X2, X4, X13, X14 and X15 as well as X1 (in Talald 8.6 anftillowing page) capture

the XPath portion in the corresponding queries from the X@benchmarklIXMark]. As can be seen in
Table[EF, theRCADG scales well with both the size of the document collection tuedhumber of query

results. The rest of this section discusses more resuttsTeee§BIH 817 alld3.8) in greater detail.

8.5.1 Test Systems

The DoX system consists of (1) an indexer for creating R&ADG tables andBIRD labels, (2) a system
kernel including modules for query rewriting, planning @@L code generation, and (3) a runtime for
creating XML queries, triggering the kernel operations aedding the resulting SQL statements to the
RDBS. The twoRCADG tables are indexed using'BTrees, as follows. The path table has a cluster index
on the(pid, maxid tag) fields and an additional index on tteg field. The element table has a cluster index
on the(pid, key eid) fields and an additional index on tljkey eid) fields. In the RDBS, only standard
relational operators are used,; in particular, no strutfaiafor sets of XML elements is available.

Our native XML baseline databaseX$ [MeELSS eLal 2005], which combines the origi@aDG index
(see Chaptdll6) and ti#RD labelling scheme (see Chaplikr 4). At system start-up; &#12G schema tree
is loaded into main memory. During query evaluatiff, fetches sets of elements from the relational
back-end and combines them into query matchings in memadeynént sets are joined using a variant of
the TwigStackstructural join by Bruno et al. [20P2]. The query planningaithm is similar to the one
used byDoX (see Sectiol84.4 above). In particulé?, benefits fronBIRD reconstruction, too. Note that
X2 always computes matches to all query nodes,Qe= Qy by default.

As a baseline for relational query evaluation without a sthéndex we implemented th€Path Ac-
celerator storage scheme Iy Grustel AL 202 004] (see SeCiiol)7Bach query is translated into an
m-fold join of the node table whenm is the number of nodes in the query. Any element is labelledsby
pre- and postorder ranks in the document tree, which alse $eidecide binary query constraints. Recon-
struction is not supported, and no schema-level index igadla. The node table is indexed using separate
B*-Trees on the preorder, postorder, parent label, tag ane type fields, as described py Grust[2002].
Textual contents are kept in a separate table indexed botheopreorder and keyword fields. We also
applied theshrink-wrappingoptimization proposed Hy Grust[2402]. By contrast, naamdard relational
operators like thé&taircase JoirfGIUSIeial 20083] are not available. Query planning for tloele-table
join happens entirely in the realm of the RDBS.

A second relational baseline system is our implementatfoxRel [Yoshikawa e al. 2001] (see Sec-
tion[ZZ]). XRel indexes tag paths as strings in a path table and performmseleel matching through
string search in the path table. A foreign key connects eaghpath to its occurrence in a node table.
Each XML query is translated into a single SQL statementijgthe path and node tables. Again, query
planning is done by the RDBS kernel. Likdath Accelerator, XRel uses a subtree labelling scheme (see
SectiorZ3B) to decide binary query constraints on the decitevel. Reconstruction is not supported.
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result processing time (s)
Corpus| QID size closest XPath query RCADG | CADG | XPACe
I1a 12 | //person[name= "mastroianni” 0.10| 12.72 0.04
and born/@place]/biography/movie
11b 3 | //person[name= “felix" 0.11| 12.60 0.50
and born/@place]/biography/movie
l1c 24 | //person[name= "“cooper” 0.15| 12.84| 215.83
IMDb and born/@place]/biography/movie
I1d 72 | //person[name= “steve” 0.52| 12.85| > 600
and born/@place]/biography/movie
2 6507 | //title[ = Tove’] 037] 030 >600
13 6507 | //*[title="love"]/production_year 152 | 26.07| > 600
14 118,150 | //moviel.//genre="documentary”]//actor 34.68 4 | >600
X1 1 | /site/people/person[@id="“person0’]/name 0.09 6.85 0.02
X21 13 | //site//europe//item].//description// 0.32| 21.80| >600
keyword[.="abandon” and .//bold]
and .//name
XMark and (.//category or .//*[@category])
1100 and .//mail[.//date and .//from and .//to]]
X13 | 22,000 | /site/regions/australia/item| 2.35 2.79 | 61.46
name and description]
X2 597,777 | /site/open_auctions/open_auction/ 122.43 4 | 292.14
bidder/increase

Table 8.6: Query performance comparisonR&ADG, CADG (CADG) andXPath Accelerator (XPAcc),
in seconds. The original queries are given here as theieslo§Path equivaleniXMark 1100queries are
adapted from the XQuery benchmdiK[XMhrk]. Unlike TalflE3&ndEB, matches #il query nodes were
computed. The symbol™ indicates that a specific query was not answered properly.

8.5.2 Runtime Performance

RCADG versusCADG. A first set of experiments measures the performance gaiR@A® G achieves
over native XML retrieval withX? (see the RCADG and CADG columns in TaRI&18.6). To avoid a reapdi
for the X2 system, which always matches the entire query graph, theragstreated all query nodes as
result nodes. For thRCADG, the runtime performance therefore differs from the resintTabld8Fb on
the preceding page.

Queries Il1a to 11d retrieve the place of birth and the moviedifferent people mentioned in the
movie databaseMDb. Note how the performance of both tREADG and theCADG remains stable as
the selectivity of the query keyword decreases: while thenoed “mastroianni” is contained only in
406 elements, the frequency Gélix” is almost ten times highefcooper” occurs in 10,398 elements
and“steve” in 38,983 elements. THRCADG's performance gain is two orders of magnitude for the most
selective keyword (I1a) and still more than a factor 20 far thost frequent keyword (11d). As queries 12
and I3 illustrate, the overhead incurred by 8&DG is mainly due to “output” nodes likeplace and
movie which are not subject to keyword constraints. While @DG is highly competitive for queries
without such unselective nodes, such as 12, th@eduction_year node in I3 slows down the native
system by two orders of magnitude. Unlike tREADG, the CADG retrieves matches to theitle and
production_year nodes in the element table and transfers them into main mefaodeciding their
binary query constraint (thenhild step)? By contrast, theRCADG translates binary constraints into join
conditions supported by relational indices on the elenmadniet and therefore faces no such overhead for
loading large element sets.

Query 14 illustrates another potential weak-spot in nateteieval systems which compose matches
to tree queries in main memory: processing large internedesult sets containing tens or hundreds of
thousands of tuples easily exceeds the hardware capaéltiemg the evaluation of 142 quickly ran out

4The huge overhead for I3 compared to 12 might not be faced tiyensystems which do not compose path occurrences in this
way but retrieve entire tree fragments instead, likeNla&iX system|[[May et al. 2004 Fiebig et al. 2902].
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result size processing time (s

Corpus| QID closest XPath query RCADG YRel RCADG | XRel
INEX Nla | //p 609 609 <0.01 0.09
N1b | //p[sub]/b 27 | 3,485,916 0.01 | 515.22

Table 8.7: Query performance comparisonRG/ADG andXRel on the schema level, in seconds. Process-
ing times and intermediate result sizes are measured ahthefg@ohase 1. The original queries are given
here as their closest XPath equivalent.

of memory; allocating more than 800 MB on our 1-GB machind@de® a crash but resulted in swapping.
TheRCADG, however, copes well with large result sets.

Query X21 against th&¥Mark 1100collection examines how the systems cope with tasks whase co
plexity is in the query structure, not the result size. READG invests 85% of a total of 321 ms in
generating extremely efficient SQL code that involves tl@mnstruction of fourParentconstraints. By
constrastX ? is again trapped in too many decision operations. The X1 and X2 in TablgB]6 con-
firm the earlier observations for I3 and 14, respectivelyté\that when returning only matches to the XPath
result nodes, th& CADG answers the same queries again up to 7 times faster (seeB pleetrieving
more than half a million matches in less than 20 seconds.

RCADG versusXPath Accelerator. It has been mentioned before théRath Accelerator decides all
binary constraints via selfjoins on the node table, lackiath reconstruction capabilities and schema-level
information. Consequently, in our test with different keynd selectivities (queries I1a to 11d in TabIE]8.6
on the preceding page), the evaluation time rapidly growh thie size of intermediate results, reaching
820 seconds for 11d compared to only 0.52 seconds witlRtEBDG. Less selective queries like 12 to 14
also take longer than ten minutes to evaluate. Only for lpigklective queries like 11a or XXXPath
Accelerator is slightly faster than th&CADG, possibly because the latter issues multiple SQL queries
rather than only a single one. The impact of a complex queaplgtike X21 is much higher foKPath
Accelerator than for the native or relation@lADGs. SinceXPath Accelerator selects tuples in the element
table based only on singleton tags rather than tag pathas itchjoin large intermediate results.

The most unselective query in our test suite, X2, has a munplsri structure (no branches and no
descendant steps). Hex@ath Accelerator is faster than for X21, but still takes more than twice as long
as theRCADG. Query X2 is reported as critical py Grust et al. [2P04], thiote that when retrieving only
matches to the leaf of the path, in XPath style, READG outperformsXPath Accelerator by one order
of magnitude (22 seconds versus 220 seconds). As queryWssK®ath Accelerator does not scale well
to unselective queries with many descendant steps, whichvie range conditions in the selfjoin of the
node table. Here thRCADG is two orders of magnitude faster. Note that even the speslational index
structures and join operators employed by Grust [P002]clviare reported to recover up to one order of
magnitude of processing time, are unlikely to remedy thisdigap completely. Obviously thRCADG
takes considerable advantage fr&tRD reconstruction when answering query 14, using the keyword-
restrictedgenre node as a starting point in the query plan.

Summing up, the experiments prove that the native XML indgxechniques underlying tiRCADG
entail a decisive performance gain in the relational domain

RCADG versusXRel. As explained in SectidiZ3.XRel's atomic representation of tag paths as strings
has a number of disadvantages, compared to the composipiatarepresentation of tlRCADG. First,
string matching tends to be slower than the comparison ofemiemode labels, especially for query paths
starting with a descendant step. The following experimaatdjfies this overhead using queries against the
INEX collection. Tabl€817 compares how f&EADG andXRel match a query graph on the schema level
(phase 1) and how many matches they retain for documenitaeatehing (phase 2). For N1a both systems
retrieve 609 matches, but tRECADG is slightly faster. Secon&Rel produces many partial matches to be
discarded later in phase 2: for N1b its intermediate resuive orders of magnitude larger than that of the
RCADG. As explained in Sectiddi 7.4.XRel's atomic path representation is not precise enough to idisca
combinations ofsub and b elements that do not belong to the samearent.
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result size processing time (s
Corpus| QID closest XPath query RCADG YRel RCADG | XRel
DBLP Dla | //article[author="codd"]/title 34 34 0.12 9.18
D1b | /dblp/article[author="codd”]/title 34 34 0.12 9.14
X1 /site/people/person[@id="person0”]/name 1 1 0.09 3.96
X22 | //parlist|.//text[.="zenelophon”]]/ 133 | 4 183 0.14 | 27.95
listitem /text
XMark X14 | /site//item[contains(description, “gold”)]/name 9461 9461 3.34| >600
1100 X13 | /site/regions/australia/ 22,000 | 22,000 0.88 | > 600
item[name and description]
X23 | //regions|[contains(., "zyda@ask™ )] // keyword 416,175 416,175 32.21| 310.03
X2 /site/open_auctions/open_auction/ 597,777 | 597,777 17.54 6.12
bidder/increase

Table 8.8: Query performance comparisonR&/ADG andXRel, in seconds (phases 1 and 2). The original
gueries are given here as their closest XPath equivalety.matches to XPath result nodes were computed
(unlike TabldEJP on padeIR0). The symbgt indicates that a specific query was not answered properly.

This also slows down the subsequent document-level magchsshown in TablEd.8. Here the pro-
cessing time subsumes the entire query evaluation propgkaségs 1 and 2), and the result size only counts
only elements that are part of the final answer to the querth®DBLP collection theRCADG is almost
two orders of magnitude faster thiiRel (D1a), even for an absolute query path (D1b). XMark 1100
the difference is between one and three orders of magnitd&e! outperforms theRCADG only for a
single unselective query without branching nodes and aelsoe steps (X2). For such queries matching
exactly one path in the schema, tREADG’s compositional path representation has no extra benefit, b
rather entails a small overhead compared to exact stringhmag without wildcards.

By contrast, for proper tree queries with descendant s¥e,not only takes more processing time but
may also produce wrong final results on recursive collestlixe XMark 1100 For instance, in the case of
query X22 XRel is two orders of magnitude slower than fREADG and retrieves 50 false hits. By contrast,
the query evaluation with tHieCADG is fast and correct, owing to its compositional path repnes@n and
BIRD reconstruction. This phenomenon is explained as folloves.ilfustration, reconsider the query in
Figure[Balon pagdId4. ThRCADG answers this query with only two element-table joins, asifiee
by the corresponding query plan in Figlite 8@l bn pagd_Id9. The SQL code generated to answer the
same query withXRel is given in Figurd8I8 on the next page. Here we ignore theyquedegs and the
NextSibedge becaus¥Rel does not support sibling constraints. For the resultingyjgeaph comprising
the five query nodegq; to gs, XRel combines a five-fold join of the path table with another fiaddfjoin
of the node and content tables (see Ha@M clause in Figur§8.18). As described in SecllonT.4.1, tag
path patterns are created from the query and matched agfasithexpcolumn in the path table (black
part of theWHERE clause in Figur&818). The path IDs retrieved this way adbesign keys to the node
and content tables (blue part of tHEERE clause in FigurE818). Finally, all binary query consttaiare
decided on the document level, using region encoding (gpeenof thewHERE clause in Figur§818).
Note how matches to distinct tag paths are first retrievedpeddently and then combined through the join
predicates on the node and content tables. This causesdeardermediate result after phase 1 for N1b
in TableEY.

Compared tXRel, theRCADG (1) replaces suffix and infix string matching involving nuioes wild-
cards with efficient numeric equality predicates in thejsglfof the path table, (2) saves three out of five
expensive joins with the element table throl®JRD reconstruction, (3) looks up fewer schema hits in the
element table in cases where the individual query paths tisparate partial matches in the documents
(as in query N1b above), and (4) correctly discards parteticires from the final result in presence of a
recursive schema. For instance, assume that the samplefoprarFigurdBalis run against a document
collection containing nestederson elements. Then the code in Figlited.18 on the facing pageghyron
accepts thosgerson elements which lack a suitableatches child, butinstead have gaerson descen-
dant with such awatches child. The reason is thaRel loses track of the commoperson ancestors
of matches to nodey (watches) andqs (profile), which are treated simply as matches to two dis-
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SELECT

NT3.start, NT3.end, NT4.start, NT4.end -- add matches to (3 and Q4
FROM

PathTable PT, PathTable PP, PathTable PB, -- join path, node and content tables

PathTable P®, PathTable PB,
NodeTable NI, NodeTable N2, NodeTable NB, NodeTable NZ,
ContentTable C%
WHERE
PT1.pathexpLIKE ‘#J/person’ AND -- match tag paths
PT2.pathexpLIKE ‘#%/person#/watches’ AND
PT3.pathexpLIKE ‘#%/person#/watches#}/open_auction’ AND
PT4.pathexpLIKE ‘#J,/person#),/profile’ AND
PT5.pathexpLIKE ‘#%/person#}/profile#/gender’ AND
NT1.pathid = PT1.pathid AND -- match unary constraints
NT2.pathid = PT2.pathid AND
NT3.pathid = PT3.pathid AND
NT4.pathid = PT4.pathid AND
CT5.pathid = PT5.pathid AND
CTs5.value = ‘XML’ AND

NT1.start < NT2.start AND NT1.end > NT2.end AND -- decide Child(qy,0p)

NT2.start < NT3.start AND NT2.end > NT3.end AND -- decide Pareni(qsz,0?)

NT1.start < NT4.start AND NT1i.end > NT4.end AND -- decide Parent(qs,qs1)

NT4.start < CT5.start AND NT4.end > CT5.end -- decide Parenfds,qs)
ORDER BY

NT3.start, NT3.end, NT4.start, NT4.end -- order result as needed

Figure 8.18: SQL code for query evaluation wiiRel (see SectioiZZ4.1). Blue colour highlights code
related to joins with the node or content table, whereasngoedour is used for the decision of binary
query constraints. The query being evaluated is a variatiteofuery in FigurE83&] on pagdId4 where
the nodegs and the binary constrainextSif{gs,0s) have been removed (siné&el does not support
sibling constraints).

tinct path patterns #%/person#/watches and #%/person#),/profile in the WHERE part of the SQL
statement). By contrast, tiRCADG keeps tuples of matches to all nodes in the query graph asnete
diate results and hence never mixes up distigetson ancestors. Faced with two nested parpakson
matches as just described (one satisfying only the conssnalated taj, and the other tgy), theRCADG
rejects both during phase 2 at the latest, but possibly eadieeduring schema matching. In the same
way, it discards nestedarlist elements that only partially match the root of query X22 ib[€fE3.

8.5.3 Impact of Query Planning and Optimization

TheRCADG offers a considerable potential for query optimizatiornrs&ithe path table neatly accommo-
dates certain statistical information about the documres &nd its textual content, as sketched in Sec-
tion[B3. The need to enhance relational query optimizetis siich tree-specific data was pointed out by
[Knshnamurihy et al. [20093]. Second, query evaluation nmexydfit greatly from logical query planning and
rewriting. For instance, query X4 from théMark benchmark (see Table®B.6 on p&g€el120) originally en-
forces only aVextEltconstraint between the twpersonref nodes. Replacing this with a more restrictive
NextSibconstraint between theidder nodesreduces the processing time withRAADG from 5287 ms

to 508 ms, if matches to all query nodes are to be computedlyftbe reserve node is regarded as a
result node, the rewriting techniques described in Seffldd remove thesite, open_auctions and
personref nodes after schema matching, which again saves 68 ms,ngsualt total processing time of
440 ms as shown in TaH[EB.5 on p&gel119. Processing the skepndrd constraint earlier in the query
plan would probably further accelerate the evaluation.
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8.5.4 Storage Requirements

Maintaining schema information besides the actual elerdatat, as with th& CADG or CADG, comes at
only little extra cost in terms of storage. In our experinsetiie path table occupies merely between 48 kB
(DBLP) and 120 kB XMark 110Q on disk, including the various B Trees and optional fields mentioned
before. TheCADG schema tree in memory occupies 2 MB in both cases (with keywignatures and
statistical information attached to the schema nodes, ssribed before). Only for the heterogeneous
INEX corpus the path table is nearly 2 MB on disk and the schem2&&4B in memory.

By contrast, the element table of tREADG grows to 17 GB forxXMark 1100and 34 GB forilMDb
(again including all relational index structures). In partar, the materialized join of elements and the
keywords they contain introduces considerable redundartggh on the other hand speeds up query eval-
uation. For instance, to support efficient keyword searitferént keywords occurring in the same element
are stored in distinct rows of the element table, rather thansingle tuple containing the full textual ele-
ment content as a string (this has been proposed, e [q-, 5§ &ral. [2000] foiXPath Accelerator). While
our approach is certainly less compact (because there mayuligle tuples for the same element/tag
path pair), it permits to solve keyword constraints with@éfint equality conditions instead of substring
matching. We applied the same technique toXRath Accelerator storage scheme to make both systems
comparable.

Note that in the experiments, tiath Accelerator node and content tables together are only a little
smaller than theRCADG's element tableXMark1100 3 GB + 11 GB;IMDb: 12 GB + 19 GB). By
contrast, the&CADG originally stores elements with the same tag path and keywogether as a list in the
same tuple (non-first normal form), rather than in sepa@te s with theRCADG. Therefore its element
table is considerably smaller (4.5 GB ¥iMark 1100 5.2 GB onIMDDb). For theRCADG, storing elements
in non-first normal form is infeasible because it preventieinconditions on individual elements, as used
by theBIRD rules in FigureE8]2 arld3.3.

To sum up, our experiments show that fREADG scales up to multiple gigabytes and is far from
the quadratic space needed by highly redundant technideeea fully materializedParent relation, as
proposed b Jiang et al. [2402]. The nat&DG is more storage-efficient than the two relational schemes.
Yet we believe that from a user’s perspective, and giventtredy advances of storage technology, retrieval
speed should be given a higher priority than space consampti

8.6 Summary and Discussion

The Relational CADG (RCADG) presented in this chapter exploits native XML indexinghtgiques for
the efficient evaluation of XML queries a relational databsgstem. In particular, it has been shown how
a centralized structural summary (t6ADG) and a decentralized structural summary @RD labelling
scheme) can be migrated to the relational data model, andhitable query planning and rewriting exploit
these summaries to reduce the number and size of elemeit etgoined in the RDBS.

The benefit of path indexing in RDBSs has been discussed iprévéous chapter for storage schemes
like XRel, which stores tag paths as strings in a path table,BA&S, which represents tag path suffixes
as numeric intervals. Like thRCADG, these schemes match simple path expressions with fewes joi
than those without a path indgxTKrishnamurihy et al. 2008}, the XPath Accelerator or Edge schemes.
As described in Sectidi1.4, path-based approaches ee&lements based on more restrictive selection
predicates, which simplifies index scans and reduces teeo§intermediate results to be joined. Besides,
path-specific information like the node type is no longeresiaredundantly for all elements with a given
tag path, but only once in the corresponding path table entry

Contributions of the RCADG. The RCADG further enhances relational path indexing in several re-
spects, addressing several open problems mentioned iitetitadtire. The key contribution of our approach
compared to previous work is therecise compositional representation of tag patfs the best of our
knowledge theRCADG is the only relational storage scheme to represent everpd#y prefix as a se-
guence of nodes (i.e., tuples in the path table). This haswbauof advantages, also compared to the
abovementioned string-based or suffix-based approaches:
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CHAPTER 8. THERELATIONAL CADG (RCADG)

e The entire query graph structure is matched against thetlalihbefore accessing the large element
table. Unsatisfiable schema constraints are detectedhetydast during retrieval phase 1. Ac-
cess to the element table are restricted to paths satisiyitgyconstraints. In particular, branching
path expressions are matched already on the schema leveldiSbards partial schema hits during
phase 1 that cannot be detected by less precise path initieéRel andBLAS.

e Schema-level matching receives excellent indexing sughosugh B -Trees on the numerical in-
terval labels for schema nodes. This is more efficient tkRel’s substring matching, especially for
paths with leading descendant steps. Matching tag pathredmts through a selfjoin of the small
path table is cheap and happens entirely in the realm of thgaeal query optimizer.

e Representing the schema as a tree in the RDBS allowR@#ADG to take advantage dBIRD
reconstruction, which avoids expensive joins with the elrttable.

e The RCADG efficiently evaluates queries involving any XPath axis afié steps, which string-

based approaches as propose{l by Yoshikawa et al][200[Jangiel al. [Z00R] support only with
more complex regular expressions. Furthermgee steps do not entail extra selfjoins of the element
table as withXRel.

e Existential XPath predicates are handled correctly evenefoursive collections without a massive

join overhead, which is considered an open problefn by Kastunthy et al. [2093]. False positives
in the final query result as witkRel are avoided.

e Prefixes shared by multiple tag paths are not stored redtigdenwith XRel. No string operations
are needed to concatenate query path fragments, aXWRithor BLAS.

e Unlike the P-labels used LAS, the tag-path references in tREADG’s element table are robust
against changes to the schema tree.

Fast tree matching in large recursive document collections XRel’s incorrect handling of certain queries
against recursive collections was hinted af by Krishnahyet al. [200B], who concluded that “the general
problem of translation of path expressions with predictdethe path-based schema-oblivious schemes is
still open”. Node-indexing approaches like ti€ath Accelerator or Edge schemes answer such queries
by triggering a selfjoin of the node table for each step in argypath, which is costly. With the exception
of BLAS, theRCADG is the only path-indexing approach we know of that correlsipdles these queries.
BLAS achieves this by checking additional level constraintslements, a technique which might also fix
XRel's defective evaluation of such queries. TREADG does the same already on the schema level and
therefore needs much fewer comparison operations. BesiteRCADG benefits from the reconstruction
capabilities of theBIRD tree encoding to avoid expensive joins with the elemengetalé shown in Chap-
terld, this feature is paramount to efficient large-scaleg@ssing of XML queries. While the experimental
results reported Hy Chen eflal. 8L AS are in line with our findings concerning path- versus nodieiing
schemes, they are insufficient to judge the scalability eirthpproach up to tens of gigabytes.

Tree-aware query planning. The query planning and rewriting techniques presented ig1c¢hapter
strive to optimize the generation of SQL code for evaluatieg queries in an RDBS. However, the way
a relational query kernel processes this code could alsefibdrom techniques specific to the tree data
model. [Tatarinov et al. [20P2] point out that “relationaltiopizers need to understand the hierarchical
structure of XML". With theRCADG, statistical information kept in the path table enablesevamcurate
guery planning based on properties of the document treenfaatly the set of tuples stored in the element
table), such as the number of elements with a given tag patrearumber of distinct keywords contained
or governed by these elements. While in our experimentsiegaging results were obtained without such a
“tree-aware” RDBS kernel, we expect that physical plansreging access costs based on XML statistics
will further speed up the query evaluation.
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8.7. OPTIMIZATIONS AND OPEN PROBLEMS

Indexing textual element contents. It has been mentioned before thé®Path Accelerator (and many
other relational storage schemes) keep elements and ¢xéirat contents in separate node and content
tables, unlike th&@CADG which combines both in a single element table. As a matteacif theRCADG'’s
element table is a materialized join of the node and conédalés used by node-indexing storage schemes,
augmented with schema-level information in the form of refiees to the path tablE_Grust et al. [004]
argue that separate node and content tables allow to matatitstl constraints on the document level
without accessing textual contents in the first place. Thani advantage when given unselective keyword
constraints. In particular, queries without any keywordsteaint may run faster against a node table that
is clustered, say, in document orderJGrustetal P004].

Of course, keyword constraints are often selective andrblgsto reduce the size of intermediate result
to be joined. With separate node and content tables, sucieguaee also easily processed through a simple
join on the document node labels. Here the RDBS query keutehaatically figures out whether to start
the join with the structure or keyword constraints. Howepetentially selective schema constraints (such
as a specific combination of tag paths in the query) are netitako account.

Therefore theRCADG combines tag paths, keywords and elements in a single etemaf@a which
is clustered by tag paths, keywords and elements, in thar.ofgor queries with selective schema and
keyword constraints, this reduces the I/O during the elérwmk-up. However, unselective constraints
may cause more disk pages to be accessed than with the sepads and content tables, due to the
clustering. Thus schemes lik&Path Accelerator and theRCADG are optimized towards distinct kinds of
qguery. However, while the difference between separataugazsmbined indexing of content and structure
is crucial in native XML retrieval (see Chapidr 6), the impiacthe relational scenario is probably lower.

The way element contents are indexed also has an impact oncholbtain an XML serialization of
the query result{_Grust et al. [27004] sketch a method taenesIL fragments on the fly by sequentially
scanning the node table in document order. Sinc®b&DG's element table is clustered by tag paths and
keywords rather than elements, this could result in muctoendisk I/O. Therefore we keep the original
documents and the byte offsets for all elements instead. dltuws to retrieve the original serialization of
any result element from the documents in time linear in the of the XML fragment, not the overall size
of all documents.

8.7 Optimizations and Open Problems

The most obvious way to enhance query evaluation witlPRBADG further is more sophisticated query

planning based on selectivity estimates of keywords, tdlgspand combinations of both. An interesting

guestion in this context is how much of the planning can béze@doutside the RDBS and at which point

the relational optimizer must be modified. As shown befoueryg planning is also tightly related to query

rewriting, where more advanced rules might be developefhdin much work has been done in the field of
XML query optimization so far, which is largely complemenytéo our approach. For references to related
work, see Sectioli8.4.3 above.

Another obvious enhancement of tREADG is the use of a structural join algorithm in the RDBS.
However, at the time of this writing such XML-specific furaniality is not available in most off-the-shelf
database systems. Realizing structural joins as useredfiimctions might be considered in the future.

We have also outlined how tHRCADG seamlessly integrates keyword signatures, a heuristinigae
from Information Retrieval, in order to detect keyword maches early during schema matching. How-
ever, in a small-scale experiment this technique did noeditp the query evaluation. A more thorough
analysis is needed to understand whether this observadsiohalds for other queries on different document
collections.

Finally, it should be mentioned that tR&EADG could in principle be combined with labelling schemes
other thanBIRD, although this would require parts of the query rewritinarming and matching to be
revised. Chaptdll 3 has presented a small number of altegralielling schemes with similar expressivity.
In particular, an approach with better update support, sissDRDPATH [ONel efal. 2004, could be
attractive at least for certain applications with highlyndynic document collections. However, SirRi&D
offers high query performance combined with reasonableespansumption and integrates well with re-
lational query evaluation, we believe that it is a good cadar possible future work on tHiRCADG.
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CHAPTER
NINE

Caching Techniques for Incremental XML Retrieval

9.1 Overview

The preceding chapters have introduced different corttabs to making the evaluation of XML queries
more efficient. So far it has been assumed that each querglisadgdirom scratchi.e., regardless of any
previously computed search results for the same or othetegueHowever, in a typical query workload
there may be numerous queries whose results overlap atgedstlly. This applies in particular to an
iterative retrieval process as discussed in Seflgh 1.8revthe user is encouraged to modify and run a
given query repeatedly in order to improve the retrievalitss This chapter reviews different ways to
store available query results irgaery cachafter evaluation so that new queries might be answered based
on these cached results. Such reuse of query results isl gadieemental query evaluatioin the sequel
because parts of the answers to future queries emerge gyatluréng the retrieval process. In the literature
the termsemantic cachings also very common. The main challenge in incremental gpesgessing is to
detect and exploit containment or overlap of query resduilis @anly a small overhead for the cache look-up.
Later a new query cache will be presented that allows to donture efficiently than with the approaches
discussed in this chapter. Experiments will also show thatrncremental evaluation of a given query is
often much more efficient than its evaluation from scratch.

Since cached query results can be regarded as views on {péneariginal document data, incre-
mental query processing is an instance of the problem ofygaeswering in the presence of views.
[Calvanese et al. TZ0P3] distinguish the following two vatgaof the problem: irview-based query con-
tainment queries and view definitions are compared on the intenkienal only, i.e., without accessing
the actual data. By contrast,wiew-based query answeritige results of a given query are computed from
both the view definitions and extensions. Notice that thipiires the views to be materialized. Query
answering with views is notorious for being inherently cdexpn the relational data model, and the same
is true for semistructured data (see below). Despite thie thigoretical complexity, however, many differ-
ent approaches have been proposed that strive to push tttearafficiency of incremental XML query
processing to its limits. They build on a variety of diffet@omputational and data models and retrieval
techniques such as, e.g., native XQuery englnesTChen andarsiemer 2005, Shah and Chirkova 4003]
or XQL engines[[Quan et al. 2000], two-way finite state autenf&alvanese efal 2002], tree automata

Chen el al. 2002] okightweight Directory Access ProtocilDAP) servers[[Marron andTausen 2002].

This chapter reviews a selection of representative appesato the incremental evaluation of XML
gueries using some sort of query cache. A thorough compagasd survey of the topic seems to be
missing as of the time of this writing. Besides the undedyitata model and the expressiveness of the
query language, there are other potential criteria for amispn and classification. For instance, one could
start out by distinguishingchema-awar@and schema-obliviouapproaches, as for the relational storage
schemes in Chapt&l 7. However, most systems reviewed bélbar éggnore the document schema or
consider it only for query evaluation from scratch, but rmtdaching purposes. As a tentative guideline
to this overview — but also for future work in the field —, théldaving questions highlight the most salient
issues that can serve as marks of distinction when compxiigcaching techniques.
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9.2. XML QUERY CONTAINMENT AND OVERLAP

1. query representatian Which query language and features are supported? If quaidg be partially
answered using uncached data, which query engine is uséthtquurpose?

2. cache representationHow are cache contents represented? Is the representagosional or ex-
tensional? Is the cache held in main memory, or secondarggstoor both?

3. cache usage Does the cache exploit or require a DTD or other schema fsgetgdn? Can
results of distinct cached queries be combined to answeres giew query?
How to choose the best among alternative reusable quetties @ache? Does
the system support a combined evaluation from the cacherandscratch?

4. query comparison How are cached and new queries compared? Does the systertantage
of result overlap, result containment, or only the repeateuation of the
same query? What is the time complexity for detecting quentainment or
overlap?

5. scalability: How does the system avoid cache overflows? Is there a capleeeent
strategy? Does the overhead for cache look-ups grow withabke size?

6. practical benefit Has the system been evaluated experimentally to quahgfgtactical benefit
of incremental query evaluation compared to the evaludtiom scratch?
How effective and efficient is the cache look-up?

9.2 XML Query Containment and Overlap

Before reviewing a couple of methods for processing XML égpgeincrementally, a formal description of
the underlying decision problems is in order. The fundamemdtion ofquery containmentas already
been mentioned. It is often understood in a fairly abstrente with no regard to the actual representation
of queries and their results, and sometimes even used wispegifying its formal semantics. Intuitively,

a queryQt is said to contain another que® iff the answer toQ° subsumes all matches@'. Typically,

this intuition implies that ifQ° containsQ" and the result o€° is available in the cache, thepl' can be
answered from the cache only, without accessing the ofligm@uments or any representation thereof.

However, after taking a closer look it turns out that whetharess to data outside the cache is needed
to evaluateQ" depends on the exact representatiolQ86 answer in the cache. In fact, the conclusion
just mentioned silently assumes that each node in the dauumeeD that is part of some match Q°
is cached together with its entire subtreeDn For instance, supposg® = //person/name andQ" =
//person/name[.="Lee"], whereQ" restrictsQ® with an additional keyword constraint. Obviously
the set of matches tQ" is a subset of the set of matches@5, henceQ® containsQ" in the above
sense. However, to proce®8 incrementally, we must have access to the full textual atrdéthe name
elements iMQ%s answer. If matches tQ° are only represented as sets of unique element labels imthe c
(asin the result tables produced by RE€ADG evaluation that was presented in the previous chapter), the
answeringQ" requires access to data outside the cache. Thereforessdisguhe question of access to
data inside or outside the cache generally makes sense dhlthe& concrete data representation of a given
caching approach in mind.

A second notion that is fundamental to incremental XML eatai isquery overlapor partial query
containment The overlapping of two XML queries that do not fully contaach other is ignored by
almost all caching techniques we know of, and therefordyratefined in the literature. In fact, there are
multiple ways how queries can overlap or partially containteother, some of which are easier to exploit
than others. FigurEd.1 on the next page contrasts diffe@s#s of overlap/partial containmegt-c)
with full query containmentd). The following definitions capture these differenéesn this context,
recall from DefinitioZZB on pad€&ll0 that each match to a qQeis/essentially a set of document nodes
that together match the query node§InGiven such a match, letv(a) be the set of document nodesan

IHere we assume a fixed document collectibmgainst which the queries are executed, as before. Not¢henalefinitions in
this chapter are easily generalized to capture query contit and overlap without a fixed document collection.
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cached new cached new
person person person person
name edu  sex name profile name edu  sex name L. 5ex
female
O Sex D
"female”
a. overlap (DefinitiorT21) b. node-containment (Definitidid.2)
cached new cached new
person person person person
name sex name profile | name sex name sex
"female”
Dm sex 3’
"female”
¢. match-containment (Definitidid.3) d. (full) containment (Definitiofi.314)

Figure 9.1: Query containment and overlap. Each of the fobfigures depicts a cached query and a new
query to be evaluated incrementally, together with theteesions (matches) in the document tierom
FigurelZD] on pagdB. Note that subfigusld] show different pairs of queries and results with a vary-
ing degree of similarity. Four decision problems are pres&rroughly speaking, in order of decreasing
hardness for most caching systeregOverlapping queries only share individual elements inrtresults.
Missing elements or entire matches must be retrieved froatalt [b] If the new query is node-contained
in a cached query, some of its matches are entirely prestr rache while others must be computed from
scratch. g3 A cached query that match-contains the new query providésaat some elements for each
match of the new quend] Full query containment guarantees that the cached quepyrisane restrictive
than the new query, and that all elements in the query resup@sent in the cache. However, note that
the cached query result may need to be purged of false maidtieespect to the new query.

Definition 9.1 (Query overlap) Let @F and Q' be two queries. We say that Qverlaps withQ", Q° = Q",
iff for at least one match'ac angQ") there exists a match@angQ°) suchthatya") Nv(a) # 0. O

Definition 9.2 (Node-containment) Let @F and Q' be two queries. Besides, let Be the subset of matches
to Q" that share nodes with matches t6,Qe., A' = {a" € andQ") | Ja € angQ°) : v(a") N v(a) # 0}.
Finally, let Vign = Uaean V(8) and Ve = Uacangqe) V(@). We say that Qnode-contain®", Q° Dy Q" iff
Q¢ T Q" and e D V. O

Definition 9.3 (Match-containment) Let F and @' be two queries. We say thaf @atch-contain€",
Q€ Dm Q" iff for each match & ang Q") there exists a match@ angQ°) such that ya") N v(a) # 0.0

Definition 9.4 (Query containment) Let F and Q' be two queries. We say thaf (fully) containsQ",
Q° > Q", iff Q¢ match-contains ®and & node-contains Q O
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9.3. COMPLEXITY OF XML QUERY CONTAINMENT

schema constraints query constraints complexity proved by
/, 0, /7, * ExXPTIME-complete | Nesanl Schwenrck 700 VG 200
with DTD /. [ CONP-complete INeven and Schwentick 2003 ENead 200
/1, PTiME Neven and Schwenticl D003
/.0, /7, = CONP-complete
without DTD /, .,/ PTIME Amer-Yahia ot al D001
/, 0, * PTIME

Table 9.1: Complexity of XPath query containment with seld@query and schema constraints.

9.3 Complexity of XML Query Containment

As mentioned before, the incremental evaluation of XML éegebased on cached results depends on
methods to detect containment or overlap between querig®inache and a new query to be answered.
Many papers have studied the theoretical complexity of yjeentainment on semistructured data for
different query languages which are mostly based on reguatir expressions. There are a number of
parameters to the query containment problem that have édswable impact on its theoretical complexity.
These parameters include: (1) the query language used tessxiiie cached queries or views and the new
query; (2) the input alphabet (i.e., set of symbols in the XtMicuments) which may be either finite or
infinite; (3) whether we are interested in containment ohegit fixed set of documents or any document
collection or all documents that are valid with respect taveiy schema specification (e.g., a DTD); and,
most prominently, (4) particular features and restrictiofn the query language, schema (if any) and the
concrete queries to be compared.

Tabld@] summarizes some important complexity results@ming the containment of XPath queries
with various constraints on the queries and the documeiinsah The complexity of XPath containment
depends mainly on the allowed features of the language, (@lich axes are used) and on the avail-
ability of schema constraints (e.g., in the form of a DTD). s$#lauthors have studied different com-
binations of XPath features such as predicateB] (*), wildcard node-test (%) and thechild and
descendant axes (“*/ ", “ // ). They found that unless#” and “ // " are both allowed, XPath contain-
ment can be decided in polynomial tirle TAmer-Yahia et al. p @@Wood 200l [MiK[au and Suciu 2002].
MKIauand Sucili also describe an algorithm for decidingamment in polynomial time that is sound, but
not complete. The situation is different in the presencechéma constraints, however. 8 Wood [2003]
points out, child or sibling constraints inferrable from & permit to detect some cases of containment
that are not visible from the query intension alone. Yet stanfistraints also increase the complexity of the
qguery comparisonf_Neven and SchweniickJ4003] show thabas as predicates are allowed, deciding
XPath containment in the presence of a DTD requires exp@id¢inte.

Various other query and schema constraints have been eoediih the literature to obtain a more
precise picture of the complexity of the problem. For insswNeven and schwenflck extended the XPath
language with existential variable bindings and disjwnctlidoad inquired into child, sibling and func-
tional constraints in DTDs as well as certain restrictiohtag repetitions in DTDs and queries. Before,
[Deutsch and Tannen [2001] observed the impact of integatstraints on XPath queries in the presence
of DTDs. Others have dealt with different query languages:. ifstance[ Calvanese el 4L [Zh{0.A002;
Z003] considered both conjunctive queries over relatioi@l’s and regular path queries over semistruc-
tured views of the documents, stressing the impact of whetteequeries are expressed in terms of the
original or the view alphabet. They proved that decidingtaorment of regular path queries (with or
without inverse axes) needs exponential time in any cag@agh the tight complexity bounds vary.

9.4 XML Query and Result Caching

9.4.1 Incomplete Trees

In general a query cache can be expected to contain only piiwe information needed to answer a given
query.[Abiteboul et al. [200] b] therefore represent cachesty results in a data structure that also speci-
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fies which information is missing in the cache. To this endj&avork by[Tmielinski and Lipski [1984] on
incompleteness in relational databases is applied to dsisemistructured data and query model. Unlike
most other author§_ADbiiebouleflal. regard the XML data ¢peiached as unordered. They describe the
document structure using a structural summary that is @fedg a simplified variant of a DTD. The struc-
tural summary is mainly used for formulating queries. Anyeuis a prefix of the structural summary,
i.e., a subtree of the summary tree that includes its roggtteer with optional keyword constraints and tag
negation predicates. Queries may contain branchings dfpteutoot-to-leaf path patterns. More advanced
features such as XPath's tag wildcardk(") and the descendant axis { ) are not supported.

[Bhieboulefal. propose thincomplete Treeas a main-memory cache data structure that comprises
both extensional and intensional parts. The extensiondlgiahe Incomplete Tree is a prefix of the
documenttre®, i.e., a copy of the upper part &f (including the root oD) that gradually becomes larger
as more and more query results are being added to the cacing detrieval? To indicate which data
are missing from the cache, the logical complements of @hed queries are intensionally represented
by extra nodes in the Incomplete Tree that have keyword caing$ or DTD-style multiplicity predicates
attached. For instance, an intensional node below a ppéple/person/name in the Incomplete Tree
might specify that the occurrences aéme elements in the cache exclude elements whichat@ontain
the keyword‘Lee” . This information is inferred by negating queries whosaelltssare to be cached (in
the example, a query involving the paflpeople /person/name combined with a containment constraint
for “Lee”). Using the incompleteness information, non-redundemainder queriesan be created in
polynomial time, i.e., queries extracting precisely thpsets of the desired data that is missing in the
cache [ADIebouletdl. even claim that so-callechl queries which are evaluated with cached elements
as context nodes, retrieve exactly the missing elements fine documents. However, it remains unclear
how document subtrees which have never been cached (dumsrasmatch with all prior queries) can
be reached when using cached elements as context nodesovdprine authors concede that generating
non-redundant remainder queries does not guaranteeqadaefiiciency. No experimental evaluation is
provided in the literature.

A second issue concerns the size of the cache. Note thaf\@pgenissing information through query
negation may result in an exponential growth of the caEhafeBbuletal. point out that this is a general
lower bound for representing the complement of a sequenge@ies in the cache. They also describe
several workarounds which guarantee a maximum cache sitastipolynomial in the total size of all
cached queries and their results. However, these techs&jtieer make the cache look-up more complex
(in some cases, NP-hard) or further restrict the query laggu

An alternative way to bound the cache size has been deve IStidis and Petropoulps [M2002.
Their XCacher system builds on the work Hy_Abitebouleflal. and comes withpsut for a subset of
XQuery. Simplified XQuery expressions (no query nestinguthoent order, oLET clauses) are first trans-
lated into expressions of the same prefix-selection queryuage that has been usedDy Abifeboulkt al.
(see above). The main differenceXEacher compared to previous work lies in its central data strugture
the Modified Incomplete Tree (MITYhe extensional part of the MIT is similar to the originattmplete
Tree. Unlike the latter, however, the MIT intensionally ciélses the data currently cached, rather than the
data missing from the cache. Thus there is no need to compety gegations when adding results to the
cache. Combined with a partitioning of the possible elencentent into a limited number of predefined
domain ranges (e.g., fixed intervals for numeric data in tteichents), this avoids the exponential growth
of the incomplete tree. Notice that although both system®stll elements on root-to-leaf paths to query
matches in the cache, they still assume that the extengianadf the cache tree can be held in main mem-
ory. To cope with obviously resulting space limits and awadhe overflow$, Hristidis and Pefropojilos opt
for expelling selected cache contents, and also sketch@esiplacement strateghe@st-recently used

9.4.2 HLCaches

HL Caches by [Marron and Lausen [20P2] is a cache for XPath queries. Hbh@aches system uses an
LDAP server as its storage back-endDAP (short forLightweight Directory Access Protogdk a net-

2Since queries do not contain descendant steps, querysresuttprise all nodes on a root-to-leaf path in the documest tr
Adding such a result to the Incomplete Tree is thereforeapiaed to preserve its prefix property.
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working protocol for accessing TCP/IP-based directoryises [[DAR]. TheLDAP server provides a
query interface for simple navigation in the directory tréflCaches uses theDAP infrastructure and
qguery engine for storing and retrieving the contents of XMicdments, as follows. Each XML element or
text node is stored as a node in tHeAP directory tree. Th&DAP server also maintains metadata includ-
ing the distinct kinds of directory nodes and their nestimlgich resembles the schema tree for XML data
introduced before. This schema information is used foruatilg queries from scratch, but not for query
comparison. An XPath query to be evaluated is first split sutbqueries each of which entails a separate
guery against theDAP directory. During the creation dfDAP queries, XPath navigation patterns in the
XML document tree translate to navigation patterns inltBAP directory tree. Note, however, that the
LDAP query language describedby Marron and Lalisen does nobeghpXPath axes. In facHL Caches
seems to be restricted to XPath queries involving onlydh#ld anddescendant axes as well as their
inverse relations.

SpecialLDAP nodes are reserved for caching processed queries and ékaltst The query cache
contains for each evaluated subquery the correspondinthy@Raression (represented both as a string and
a hash code) as well as the set of elements matching thategbdiach result element is stored together
with its context node. This allows for the following combihimtensional and extensional query compari-
son. A new XPath query is decomposed into subqueries whaseduales are looked up in the cache part
of the LDAP hierarchy. Subqueries are normalized before the look-uwapture XPath-specific syntactic
variants such as inverse axes, etc. For each cached subgoesg intension (i.e., XPath expression) is
equivalent to a new subquery, the sets of their context natiesompared to determine whether the two
subqueries are equivalent or overlapping. In particuldhg cached set of context nodes includes the set
of context nodes of the new subquery, then the latter candleaed entirely from cache contents.

Notice that query containment detection is limited to theslkequeries that have been processed in the
same form before (modulo syntactic variation). By confreathed subqueries that are strictly more gen-
eral than a given new subquery are not recognized as reuddtidemight seriously limit the effectiveness
of the cache (no experimental results FrCaches are given in the paper). Moreover, Marron and T alisen
do not explain how to combine cached queries that only plgrtantain the new query with other over-
lapping cache contents or with fresh results retrievedctlirédrom the documents. In particular, the related
issues of duplicate elimination and integration with thalegtion from scratch are not covered. Finally,
no strategy is given for decomposing new or cached queries tooked up or stored in the cache.

9.4.3 Prefix-Based Containment

Another XPath cache with a string-based look-up procedasewoposed Hy Mandhani and Sticiliin 4005.
Their approach covers a subset of tree-shaped XPath qyeriearticular, onlychild anddescendant
steps are allowed, and value joins are prohibited). Theesyséquires a hybrid storage back-end to com-
bine relational data and XML fragments representing thédeaontents. The cache consists of a number
of tables containing both the query intensions (as stringd)query extensions (as XML fragments). Sim-
ilar to HLCaches, any new quer@" is split into subqueries which are then normalized and sspred as
slightly modified XPath strings. These strings are lookethithe cache in order to find a cached quéfy
that contain®". The main difference télLCaches lies in the way queries are decomposed and compared.
In particular, the technique put forward by Mandhani andiddoes not only retrieve identical subqueries
in the cache, but also benefits from certain cached querstk strictly more general than the query to
be evaluated. Note, however, that while the system offenisdd support for checking the containment of
numeric value predicates in queries, keyword constraiatmot be compared during the cache look-up.
Besides, partial containment in cached queries is not @egloany given query can reuse results from
at most one query in the cache, and there is no way to complete cached results with other results
computed from scratch.

Mandhani and Sudiu focus on a special case of full query aomtant that we refer to arefix-Based
Containmentn the sequel. Given any tree-shaped XPath q@ret thequery axisof Q be the path from
the root of the query tree down to the unique XPath result odg A query prefixof Q is obtained by
choosing any node on the query axig<p#s asplit nodeand removing all nodes below it. Obviously there
are as many distinct prefixes Qfas there are query axis nodes. The unique prefQ tifat is obtained by
choosingQ's result node as split node is said toraximalbecause it includes the whole query axigof
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The following sufficient condition for the containment of aw queryQ" in a cached quer®‘ is
proved by[Mandhaniand Suti@® containsQ" if a split nodeq" on the query axis o®" can be chosen
such that (1) the resulting prefix 6" is equivalent to the maximal prefix €3¢, and (2) each predicate
below the result node d®° is mirrored inQ", by a predicate below" that is either equivalent or more
selective. Intuitively, this means th@F andQ" are equivalent down to the level of the split naflén Q",
andQ° is no more restrictive tha@" in the remaining query parts. The main problems are to chaose
suitable split node iQ" such that there are cached queries satisfying the first tongdand then to check
efficiently whether they also fulfill the second condition.

The tables used for storing any cached qu@fyinclude columns for the maximal prefix €° and
for the set of predicates below the result nod&f These subqueries 6° are stored as strings, after
some normalization intended to unify XPath-specific sytita@riations. An index on the prefix column
enables the fast selection of cached queries with a paatiouiximal prefix. When a new que® arrives,
first its maximal prefix is looked up in the cache (i.e., theutesode ofQ" is chosen as split nodg' in
the beginning). Every cached query with the same maximdixpf@ter normalization) is then examined
to determine whether each of the predicates below its resale has a counterpart @" that is either
equivalent or more selective. To avoid the expensive coatjout of tree pattern embeddings between
predicates iMQ° and Q", [Mandhanrand Sudiu suggest creating certain generalimbf the predicates
belowq" in Q" as soon as the split node is chosen. With this sort of quergresipn, the above condition
on Q%s predicates is easy to check: each of the result-nodegatedi inQ® must appear in the expanded
set of predicates belog" in Q". Note that for effiency reasons only a limited number of geliezd
predicates can be created, which might cause reusableeguethe cache to be overlooked. Also there is
no index on the cache table for supporting the predicatekchec

The first cached query that is proven to cont@lhin this way is used for answerin@" incrementally.
If the predicates ilQ" are strictly more selective than thoseQf, then the cached result QF is restricted
accordingly. By contrast, if no reusable query could be tbimthe cache, the next higher node on the
query axis ofQ" is chosen as split node, and the query expansion and loo&egpmence. This bottom-
up iteration throughQ™s axis nodes stops when either a containing query is fourtiéncache or the
query comparison eventually fails for the root@f (in which caseQ"™ must be evaluated from scratch).
The search for a good split node @ is performed bottom-up because a greater speedup is edpecte
whenQC andQ" share a longer prefix, since fewer predicate®1meed to be evaluated on a smaller cached
result. In the experiments an average speedup factor of @6obtained compared to the evaluation from
scratch, for a large query workload including many queriik l@cality (which a favourable to incremental
processing). As a small caveal, Mandhani and Juciu mertadrilie results also reflect the locality of disk
pages fetched before the actual experiments, when the @acheated. This could mean that for systems
with a persistent cache, where no disk pages are fetchedgdstart-up, the absolute response times are
longer and hence the speedup factor is smaller.

9.4.4 ACE-XQ

The ACE-XQ system by Chen et hC[Z00P— 2003 2P0ZA005] (formeftache [CREm el al 2002]) an-

swers XQuery expressions using materialized viewsoAtainment mappinig established between the
variables in a new XQuery expression and a cached one. Tertdisqueries to be cached are normalized
and then described in terms of the variables occurring iRET®RN clause or elsewhere in the query, the
path expression connecting them and conditions such asdrdyveonstraints. To benefit from cached re-
sults, variables in the new query may only involve strictenditions on structure or content than their
counterparts in the cached query. In other words, only fulrg containment is exploited (although
Chen and Rundensteih€r 205 2D02] report on experimessalts for overlapping queries, which are
not explained). Recent work [py Chen and Rundensieiner J28laborates on XQuery containment in the
presence ofiierarchical multi-valued dependenciasiong variables, which can define different groupings
of the same data. Cache replacement strategies have bdmusithd 200 paper iy Chen el al. However,
the problem of how to choose the best cached query for con&ihmapping remains open.
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9.4.5 Caching Based on Access Frequencies

[Bhah and Chirkova [20p3] address the materialization of XNéws on relational data accessed through
an XQuery interface. Unlike all other approaches mentiauefdr, they assume a constgoery workload
i.e., a fixed set of queries repeatedly evaluated by thersystde results of the most frequent queries are
stored as XML text fragments in a cache relation. To this emdess countensecord which tuples are
used most often in query processing. From time to time, dedthier frequently used tuples is added to the
materialized XML fragments, provided they are related ® ¢hche contents in some way (e.g., because
they contain the same keywords). The authors claim that #te td be cached is chosen by a learning
algorithm, although the choice is made primarily based envlue of the access counters, and there
are no adaptive parameters that change over time like, ssghtg in neural networks or other machine
learning paradigms. Also there is no training phase in tlitnary sense, where some sort of feedback
loop leads to a stepwise self-adjustment of the adaptivieisyparameters. The only adaptive parameter
is the threshold for selecting data that is access suffigieften to be cached. However, the value of this
threshold is determined once empirically and then stays fixe

The caching scheme proposedhy Shah and Chifkova has a nofritisadvantages. First, the cache
creation and maintenance requires much manual intervehyidhe database administrator. In particular,
the choices to be made by the administrator include a valuéhtoaccess count threshold, queries for
testing it, the relations to be monitored, and a suitableszhfor the cached data. Furthermore, since
query results are cached as strings representing XML fratgnthey cannot benefit from XML indexing
techniques nor can they serve as partial results to neweag)dhnieir structure being invisible to the relational
guery processor. This makes it hard to exploit query contaimt and overlap in many cases. In fact, the
experiments reported by the authors mostly show that vétigeXML results materialized after a previous
run of the same query takes less time than computing the amgae from scratch, which is trivial.

9.4.6 Argos

The Argos system by Quan et al. [20P0] addresses incremental quelyatican from a different point

of view. Targeting view maintenance for dynamic resourdéeassumes a fixed query workload known
in advance that is evaluated repeatedly against documdrith whange over time. Contrast this to the
approaches described before, which are designed to hamdiepsly unseen queries against a static docu-
ment collection. Covering a fragment of tree-shaped XQLriggeArgos retrieves cached results to queries
that have been processed before. During an initializatlmase, all queries are evaluated once with their
keywords removed in order to produce materialized viewshencurrent structural matches in the docu-
ments. Those matches that also satisfy the keyword conditice flagged using truth values. The flags
guide the both the cache look-up and the insertion of new id&iahe collection. Whenever the textual
document content changes, the flags for all affected stralatuatches are updated accordingly. However,
to cope with changes to the structure of the documents quaitist be reevaluated. Note that query overlap
and partial query evaluation using materialized views ateeramined. Besidefs_Quan €} al. only evaluate
the proposed update algorithm, while the look-up efficieisdgnored in their experiments.

9.5 Summary and Discussion

The goal of this chapter was to provide an informative, d@lben-exhaustive, overview of different caching
techniques for the incremental evaluation of XML queridse Various contributions reviewed above differ
in their way of representing queries, documents (possittjuding the document schema) and cached
results; looking up reusable query results in the cacheutiirqquery comparison; handling previously
unseen queries and partially relevant cached results; ioamglhcache contents with each other and with
data retrieved directly from the documents; maintainingj@eaning up the cache over time; and evaluating
the practical benefit of the system on a real-world scale. rékeof this section highlights problems and
potential optimizations that have been largely ignorecasoSome of these issues will be reconsidered and
addressed in the next chapter where we present a novel apgmthe efficient incremental processing of
XML queries, based on the contributions introduced in presiparts of this work.
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Extensional cache look-up and query comparison. Most of the caching approaches described above
either completely ignore the document schema or considetiyt for query evaluation from scratch, but
not for retrieving relevant cache contents. A given pair ohehed and a new query is typically compared
on a purely intensional basis. However, the question to wkgint the results of two queries in a given
document collection actually overlap or even contain onettzar often cannot be answered from their
intensions alone. In such cases purely intensional appesatailing to recognize valuable cache contents,
needlessly repeat the (possibly expensive) evaluatian fcratch. In terms of the Three-Level Model of
XML Retrieval (see FigurEZ13 on pafid 13), it may be beneftoi@bmpare queries not only on the query
level, but also on the schema level as an approximate vielweofjtiery extension that can be accessed
efficiently.

As mentioned before, some authors have investigated thefuS&Ds for inferring structural con-
straints underlying the documents, which allow to detebenwise invisible query overlap or contain-
ment. However, query comparison in the presence of DTDs bas mostly addressed from a theoret-
ical point of view in order to derive complexity bounds, wehipractical issues regarding efficient data
structures and algorithms are often ignored. The Incorapleces used bi_ADiiebouleflal. as well as
[Aristidis and Petropoulps (see Sectlond.4.1) go in thisdtiion, but lack indexing support for instanta-
neous access to relevant parts of the DTD tree. Besidegrjpdge schema specifications such as DTDs
are usually designed to capture a larger class of documé&he&zefore they tend to be more general than
descriptive schemata like tHeADG, which mirror the current structure of the documents moosely
and thus may reveal additional constraints to be exploitetlé comparison. In the next chapter we show
how to make use o€ADG-based schema information and a suitable index structurguick access to
potentially reusable query results in the cache.

Reuse of overlapping query results. The systems reviewed above exploit query containment toyang
extent. While some only benefit from the cache when exacgéime query is evaluated repeatedly, others
take advantage of cached queries that are strictly moreraletian the current query to be answered.
For instanceHLCaches makes use of cached queries containing only a subquery ofetivequery to be
evaluated, by looking up subqueries independently andréegricting their results to satisfy the remaining
constraints. However, while full containment can be hatdkés way, cached queries that deliver only
part of the final answer cannot be exploited. In fact only fgstems take advantage from partial query
containment or overlap. The Incomplete Tree approach sézsnerate suitable remainder queries for
completing partial query results retrieved from matchtaoring queries in the cache, at the expense of a
potential cache blow-up. By contrast, it remains uncleagtivér the proposed solution with so-called local
queries can really add previously unseen matches to the gesult, which is mandatory for exploiting
cached queries that indeed overlap with the new query, babtimatch-contain it.

One problem that most systems would need to solve befordihgrsilich queries is the need for an
integrated query evaluation from cache and from scrafchit€houl et al. [Z007b] regard this as a kind of
mediation between the domain of the cache and the domaireadribinal documents.) The next chapter
presents a way to reuse cached query results that (perhejalypacover some matches to a given new
query, and to compute all missing matches (and missing paitsomplete matches) from scratch in an
integrated retrieval process.

Reuse of intermediate query results. All caching techniques discussed so far assume that onlly fina
query results are stored in the cache. However, XML quenesaply those with branching path pat-
terns) are typically evaluated not in a single operatiort,rather stepwise by composing multiple inter-
mediate results that have been obtained for smaller sutegudfor instance, to answer the XPath query
Q1 = //person[name="Lee"] //edu, some systems would first retrieve two node sets, namelyse¢he
of person elements whosename child contains an occurrence of the keywdtae” and the set of

all edu nodes with aperson ancestor. In a second step a structural join of the two setddyaro-
duce the final XPath result, i.e., thoselu nodes that satisfy all query constraints. Let us assume that
the final query result is cached by any of the aforementiogstems, while the two intermediate result
sets are discarded. Now suppose that the system is givendwajneries for incremental evaluation:
Q2 = //person[name="Lee"] andQs = //person//edu. Obviously neither of these queries is con-
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tained in the cached query. In fact, the result€Qafand Q, are disjoint (assuming XPath result node

semantics), while there is overlap betwe&gnandQs. In any case, a system that only exploits query con-
tainment fails to answer the new queries from the cachegadth their results were readily available to the

system during the evaluation of the cached query.

Two conclusions can be drawn from the phenomenon just destriFirst, by examining the inter-
mediate results produced during the evaluation of a cached/gne may discover query containment or
overlap with new queries, even though the final result in #iehe is too restrictive to answer these queries.
Consequently, caching intermediate results can incréaseftectiveness of the cache, allowing to exploit
guery containment or overlap that exists only up to a cedp during the evaluation of the cached query.

Second, the benefit of caching intermediate query resujtsru#s not only on the query workload, but
also on the planning strategies that were in effect wheruatialg the queries that are now in the cache. For
instance, an alternative evaluation plan for the sampleyo@geabove would be to retrieve three node sets
in the first place, namelyperson nodes,name nodes containing the keywoftlee”, and edu nodes.
Two structural joins would then be needed to produce the &éinalver to be cached. If the three node sets
were cached as intermediate results, H@thand Q3 above could be answered from the cache, although
some extra effort would be needed to match tlerson constraint. By contrast, the result of joining the
person and name node sets during the evaluation @f could also be kept in the cache, which would
immediately answe@s.

We are not aware of any systems that store both final and ietfiate results in the cache. Conse-
qguently, the impact of query planning on the cache contesdsbleen completely ignored so far. The next
chapter presents a new approach to caching both interreetidtfinal results, as well as an experimental
guantification of the resulting impact on the effectivenefsthe cache. There we will also discuss related
issues such as the question which intermediate resultsteca

Choice of cache contents to be reused.There are only few approaches where all query results to be
cached are merged into a single data structure, such ascihjrete Tree used py Abiteboul et al. [20P1b]
(see Sectiol@4.1). Most other systems store the resutlistrict queries separately in the cache. If the
look-up for a new quen@" retrieves multiple cached queries that are not equivate@"tbut can be
reused, these systems face the question which cached quelnpdse in order to minimize the compu-
tation and I/O required to answé€)" incrementally. This problem of choosing the best among rsgve
reusable queries in the cache is frequently ignored in tieeature. The simple strategy proposed by
[Mandhani and Suciu [20p5] for Prefix-Based Containment &aetior[3.41) is based on a purely inten-
sional comparison of the queries, ignoring extensionatetspsuch as the selectivity of query constraints
in Q" that remain to be processed. However, just like the exteasicomparison of queries based on
schema information can help to detect query containmenterlap (see above), the choice of cached
results to be reused can benefit from access to query extesnsom. The next chapter explains a way to
combine intensional and extensional information in ordentike a good choice.

Choice of query results to be cached. A general problem related to incremental query processitigg
guestion which query results should go into the cache or l@ved from it at a given point in time. In
fact this question splits up into several subproblems tleabmly mention here briefly. The first question is
how to decide whether a given query is worth caching. Foamst, a very unselective query with a huge
result might be a bad candidate because it occupies muck gp#te cache while hardly facilitating the
incremental evaluation of more specific queries to come.ocif we assume a fixed size limit of the
cache, the problem of a cache overflow arises. Here the quéastwhich queries to keep in the cache and
which to discard (if any). An imminent cache overflow may affect the selection criteria for new queries
to be cached, thus relating back to the first problem. Fipfdlysome applications it might be useful to set
up a functional cache at system start-up, rather than tonbweigh an empty cache. Here the problem is to
generate appropriate cache contents before the actua¢sgeme in.
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CHAPTER
TEN

TheRCADG Cache for XML Queries and Results

10.1 Overview

With the work onBIRD, CADG and RCADG that has been presented before, we have developed and
combined different contributions to making XML retrievabne efficient. An underlying assumption was
that each query to be answered would be evaluated “fromcécrate., regardless of the answers to other
gueries processed earlier, although such previous resigts contain some or even all matches to the new
query being processed. In this chapter we presenR#DG Cache, an XML query cache that allows for
efficient and scalable incremental query processing WaRBADG.

The benefit of caching query results for future use was reicedriong before the advent of XML.
Experience with view-based query answering on relatioatd fHalevy 2001] shows that the incremental
evaluation based on cached query results can substartgdhpve the performance of RDBSs compared
to the evaluation from scratch. In fact, the main problentestee to caching are similar both for relational
and XML data: (1) to determine which cache entries contaamt(pf) the desired data, and (2) to choose
those cache entries from which the final result can be oldawith the smallest computational and 1/0
effort. Yet for accelerating XML search it is not enough tgpBptechniques developed for view-based
qguery answering in RDBSs to XML data stored as tuples. Anieixpepresentation of the hierarchical
structure of the data is needed to decide if and how some dagrery results can contribute to answering
a given new query (except in the trivial case where the sameyds asked repeatedly).

The preceding chapter has reviewed a number of cachingitpemdesigned specifically for the incre-
mental retrieval in XML documents. Among these approacthese are few RDBS-based systems. Prior
work on XML query caching has focussed mostly on native oriaytetrieval engines. Therefore the idea
of extending th&RCADG — which owes much of its efficiency and scalability to its egl§i relational nature
—to incremental query processing was a particularly iistarg challenge in its own right. But besides that,
the RCADG Cache also addresses some of the other issues mentioned befoeathar approaches have
left open.

Most notably, we present a way to take advantage of schermenation provided by structural sum-
maries for finding reusable queries in the cache that wouttVbdooked by purely intensional approaches,
and for retrieving cache contents that overlap with therddsanswer. More precisely, tisehema hitshat
we compute when evaluating queries with B @ADG also help to detect query containment and overlap
efficiently in a combined intensional and extensional corspa procedure. Here we exploit the fact that
even when two queries cannot be compared directly, the&msehhits can.The schema hits of a cached
qgueryQ are held in a main-memory index structure for fast cache-igod without access to the actual
query results on disk. Comparing the schema hit®bandQ may reveal that while the matches to some
schema hits t@Q" must be computed from scratch, others are (perhaps pg@rti@htained in the match
set of a schema hit tQ; in other wordsQ overlaps withQ". Similarly, if the matches to all schema hits
of Q" are fully contained irQ’s match sets, the@ containsQ". After the query look-up and comparison,
an integrated evaluation process retrieves part of therfasallt ofQ" from one or more cached queries, if
possible, and the rest from scratch.
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The different notions of query containment and overlap Haaen formally defined in the preceding
chapter (see Sectiqn®.2). Recall that while results of aedgueryQ containing a new quer@"™ may
only need to be purged of false positives with respe@toexploiting query overlap or partial containment
is more challenging because it allows only for an incompéstuation ofQ" to be finished in following
steps, perhaps by accessing the full data set. As shown inefIalHz on pagdI31, the result of an
overlapping quer®) may be incomplete in two ways: not necessarily all par®bére matched iQ, and
also entire hits can be missing (which might be obtained fotimer cached queries, though). Unlike prior
work addressing only query containment, where all desiegd i subsumed by the result of a single cached
query, we consider the more general overlap problem be¢aysempleting partial and retrieving missing
matches is usually still faster than answer@yfrom scratch; (2) the cached part of the result is quickly
available while the evaluation of the missing part is goingrothe background; (3) when performing tép-
search, those matches retrieved in the cache may even dofficiill the request. These advantages can
be particularly rewarding in the interactive retrievalisago that motivated this work (see Chaiiker 1).

TheRCADG Cache also addresses the open question of how to benefit from ietéiate results com-
puted during the evaluation of queries to be cached. We Hasereed that all incremental approaches we
know of restrict themselves to caching merely final queryltssdespite the fact that even when the final
result to a cached quefy is too restricted and hence useless for answe@hga partial evaluation o®
may yield full or partial matches tQ". As a matter of fact, intermediate results are sometimesymare
likely to overlap with subsequent queries (for an exampéeSectiof 1013 below). Therefore tREADG
Cache also stores intermediate results obtained during the atialuof cached queries. The intermediate
results tables produced by tREADG (see Chaptdd8) conveniently provide the query processhrmiil-
tiple “snapshots” of a query result as it evolved during ttepwise evaluation process. The information
which snapshots (i.e., intermediate or final results) aedlale for a particular query in the cache is de-
rived from the query plan that was used to compute them. Bethout the underlying query plan are kept
as annotations to the schema hits in the main-memory pahteotache. One problem besides efficient
cache look-ups is to avoid a cache blow-up in space, due tdaghénformation about query intensions,
extensions and plans in the cache.

Finally, we consider a preliminary strategy for choosing ttiest among several reusable queries in the
cache. Based on the query plans for the candidate queltes)ative plans are deduced for incrementally
answering the current query from the respective resulteéncche. These plans are then compared in
terms of their execution cost, in order to exploit possibly most useful cache contents.

Before explaining the nuts and bolts of incremental XML guerocessing with th&@CADG Cache,
the next two sections present a couple of examples thatraliesthe general ideas behind our approach.
SectioIOW then explains to what extent READG Cache takes advantage of query containment and
overlap. In SectiofZI05 all essential data structures &yatithms of the cache are presented in detail.
Sectior IOk reports on our experimental evaluation oR6ADG Cache. The rest of the chapter high-
lights differences to other approaches as well as opendssugpossible optimizations.

10.2 Schema Information in theRCADG Cache

Schema information is useful for incremental query proogsbecause it helps to detect query overlap
or partial containment for queries that are hard to compara purely intensional basis. For instance,
consider the three queries in Figure I18Hg on pagdI43 which represent the intensional viewpoint,
depicting exactly the information that is visible on the guievel. For the sake of the example, assume
that the final results of the queri€¥ andQ @) have already been retrieved and stored in the query
cache (ignoring its exact structure for the moment). Notie the third quen@" (@) cannot be proved

to be contained in any of the cached queries from the intessitone: the keyword constrairitee” and
“female” makeQ" more restrictive tha® andQ’, but at the same time the tag disjunctigender V sex

is less restrictive. Thus we cannot decide whether the ttes@t sets overlap, nor retrieve exactly the
intersection ofQ" with Q or @', unless we compare the actual results in the documentse 8irecwould
requireQ" to be evaluated from scratch, the cache contents seemsialasswering". However, below
we show how to translate the intensions of all three queoiextensional constraints on the schema level,
which are then compared in order to obtain part of the answv&tfrom the cache at low computational
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and I/O cost.

In many situations the schema information is indispensiinlexploiting cache contents. For a cached
queryQ° and a new quer®" whose intensions tell nothing about containment or overdapema hits
may show whethe®® nevertheless contair@", or else which parts odngQ") are missing inangQ°)
and would need to be retrieved from other cached result®or fhe documents. Typical cases include the
following:

e Q° has aParentonstraint wher@" allows Parent (similar for Child and/or different proximity)
e QF has a specific tag, type or level constraint that is missin@"in

e QF has specific tag constraints wher€dsaccepts the disjunction of a superset of these tags
e any combination of the above

As mentioned above, descriptive schemata, as up-to-datenaties of the current document structure,
often allow to detect more of the reusable cache contents fihescriptive schemata, which tend to be
too general. A key concept in comparing queries on the schewehareS-constraints and-constraints
(see Definition§2]7 arld2.8 on pdga 12). Recall from Chiptieatda given quer®" is evaluated (from
scratch) with th&RCADG in two phases: during schema matching, we matcl$tbenstraints irQ" against
the schema tree, which produces a set of schema hits. Thamgdiacument matching we successively
retrieve the occurrences of these schema hits while maj@flis D-constraints in an interleaved process.
To rephrase the caching problem, we would like to reuse (magtial) matches to (at least some) schema
hits from cached queries with constraints similarQ, and match only the missing constraintsQf
against themS-constraints play an important role in efficiently findingisable queries in the cache. In
the sequel we assume that every query has at least one ShHcanstraint (caching queries withoBarent
and Child edges with th&k CADG Cache is discussed in Sectiqn ID.8).

10.2.1 A Simple Example

First consider a cached que® that has exactly the same structureisin Figure[TOX] on pagd143,
but lacks the keyword constraints. Clea@y andQ" have identicaB-constraints and hence the same two
schema hitg(; - X?n andx. - Xgn (see Figuref 21 ggon pagdB), but possibly different result sets.
To decide whethe®°® overlaps withQ", we obviously need to compare thd3econstraints in both queries
that correspond to each other. In this simple example theespondence is easy to spot beca@Se
and Q" are isomorphic. More involved cases are discussed below gBmeral idea is to compare the
(extensional) schema hits matching both queries alongtivéh (intensional) query constraints. In what
we call schematizationall unary and binanp-constraints in a query are applied to those nodes of a
particular schema hit which match the query nodes involvetthése constraints. Intuitively, each query
node is “replaced” with the corresponding node in the schkinaln the sequel, leQ | xQ denote the
schematization of a given ques, with one of its schema hitg?. For instance, Figur depict
Q”ix?n andQ”len, i.e., the schematizations " with an andXZQn, respectively. Fop(f , e.g., the
schematize®-constraints ar€ontaing ee (#2), Containgemale” (#5), Paren(#2,#1) andParent (#5,#1)
(the inversion of the binary constraints is explained lat8chematizing® with XSC yields the same result,
except that the keyword constraints are missing.

The schematization of D-constraints tells us which part®band ¢ must be reconciled: andQ"
overlap with respect tq?n and XSC if the schematize®-constraints that we get f&@° are no more re-
strictive than those obtained f@' on the same schema nodes. For the binary constrai@tsandQ", this
is trivial since they are equaP@ren(#2,#1) and Parenf(#5,#1) in either query). However, the condition
would also be satisfied, say, if we had a bin&@sconstraintNextElt; (#2,#5) in Q°| Xfc and a corre-
spondingD-constraintNextSib; (#2,#5) or PrevSil§(#5,#2) in Q" | an (now shown in FigurEId1). In
our example, the overlap test also succeeds for the unamstreants in both queries because the empty
keyword constraint attached to node #ZJh| Xfc is obviously less restrictive than the keyword constraint
Containg ge» (#2) in Q“lx?n, and likewise for node #5. The test would fail, e.g.QHixfc specified a

single keyword other thatiLee” for node #2 or an additional binary constraint not mirroned)i‘lx?n.
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Note that even if the test fails, the answer€XoandQ" might happen to overlap or even be exactly equal
for the particular document collection in question. Howesgeach coincidental overlap cannot be detected
without access to the document level. Hence our approacécisssarily incomplete, just like the purely
intensional techniques developed earlier.

In our simple example, thB-constraints iMQ° arenecessary conditiorfer any match taQ" because
Q> Q" i.e.,Q° containsQ" as defined in the preceding chapter (see Defin[figh 9.4 on[E&Re In fact,
we can even make stronger statements with respect to thedndl schema hits o®° andQ", namely,
ans()(fc) D ans(x?n) and ans(x?c) > ans(Xan). Note that such containment between the matches to
particular schema hits may hold even when the two querieotifully contain one another. For instance,
imagine thaQ® is modified so as to accept only elements with t&gx as matches tqj, but not those with
tag gender . Clearly there is no full containme@® > Q" under these circumstances: wh@& indeed
node-containg", as required in Definitiol®d 4 on paflg1 31, the matchem'ﬂnxgn) are not mirrored in
angQ°), i.e.,Q° does not match-contai@". But still we haveans(xfc) D ans(xfn), so that at least a part
of Qs result can be retrieved in the cache. Thus the schemiatizabmetimes permits to reuse cache
contents (in this case, the cached matcheﬁ_qc() that would otherwise be ignored.

Given thatans(xfc) D ans(xfn), the sufficient conditionseeded to retrieve exactans(xfn) follow
from the comparison of the schematiZ@econstraints irQ"l)(?C andQ" fon. The goal is to createra-

mainder quenfAristidis and Petropoulos 20P2] that returzms(x?n) based orans(xfc) that is stored in

the cache, without repeating work that was done for beforensdvaluating)®. Here the remainder query
n C

for computingang X? ) fromang X? ) consists simply of the keyword constraif@entaing ¢e” (#2) and

Containgemale” (#5). In other words, the matches xfn are obtained by selecting those matchexsﬁf)in
the cache wheré.ee” occursinthename elementandfemale” occursinthesex element. If the cached
elements are stored with their textual contents, we saeaat two accesses to the documents compared to
evaluatingQ" from scratch. But even when the keyword constraints arekelteagainst the documents (as
it is the case for th& CADG Cache, see below), starting from a limited set of cached matchetsateady
satisfy a certain number of query constraints (e.g., alhbjirtonstraints irQ°) typically substantially re-
duces the evaluation cost in terms of CPU time and I/O opmratiThis is where the benefit of incremental
guery processing comes from.

In fact we do not requir€® to node-contaifQ" in order to take advantage of cached matche;(s_?cco
as in the example above. Inste@t may well have some extra nodes not mirrore@hwhose matches
can be fetched from the documents during the evaluationeofémainder query. While this does cause
joins and possibly 1/0, at least the cached matche)sﬁcotell us exactly where to find the missing data
in the documents. For instance, supp&¥ealso included aParentconstraint to a fourth query node
with tag profile, similar to Q in Figure[IOa] on the next page. Retrieving the missipgofile
element for every match tQ° in the cache could be done very efficiently with fREADG, given the set
of these matches as a starting point. Supporting overlgpgireries in this way makes the cache much
more effective than other approaches that are restrictedltguery containment or even equivalence (see
Chaptef®). The definition afchema-hit containmertitelow formally describes the degree of overlap
supported by th& CADG Cache.

10.2.2 The General Case

The simple example above illustrates how the schematizati®-constraints reveals which constraints
in Q" andQ° correspond and must be compared in their restrictivenessle\lr isomorphic queries this
is trivial, the real benefit of schematization shows wiErandQ°® are structurally different. Two problems
must be solved here. First, we would like to be able to idgmtiferlapping queries fo®" in a (possibly
large) number of queries in the cache, and second, we neey @wampare)™s schema hits and cached
schema hits that are not isomorphic.

To tackle the first problem, we also schematizeStmnstraints in all queries to be cached or evaluated
incrementally. The schematization of S-constraints helps in locating eddjueries that are potentially
useful for evaluating @ Note that while this look-up technique turns out to be vefgetive and efficient,
it cannot guarantee to produce only relevant candidatesuseceven finding cached queries that overlap

142 Felix Weigel



CHAPTER 10. THERCADG CACHE FOR XML QUERIES AND RESULTS
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Figure 10.1: Schematization of three sample queries

"female”

against the document tree in FiguteRllon pagelB.
ez query intensions. dHg) queries after schematiza-
tion with the schema hits in FigurESZIHg) Note that

Q” has distinct scher_natizatig@m for the two schema Name Mo

hits 2, X', respectively. Binary constraints have been n
172 . . Q

normalized, tag constraints are shown for convenience. 9. Q'Ix;

with Q" would require access to the document level, let alone thebntairQ". For efficiency reasons,
we simply look up all cached queries that share an edge witm#w query after the schematization of
S-constraints. For instance, consider the qu@®yin Figure[IO Xl again. Schematizing the two binary
S-constraints ifQ", Child'(q7,93) andChild';(q7,93), as before yield€hild' (#1,#2), Child'; (#1,#5) for
the schema hix®" and Child’ (#1,#2), Child'% (#1,#6) for x$'. Any schematized query with one of these
edges in the cache is regarded as a candidate for the compafid-constraints, as described above.
However, there may be even more equally relevant queridseirtache that also include one of the
S-constraints above, albeit in a syntactically differentywdor instance Child’; (#1,#5) is of course
equivalent toParent; (#5#1). Moreover, after schematization we can even tfeatent; (#5,#1) and
Paren’t‘i (#5,#1) as interchangeable for anmyj because the vertical distance between the schema nodes
#5 and #1 is fixed, so that it does not matter which proximityrints were specified in the original quéry.
Therefore the schematizé&constraints in any query being added to or looked up in tlebhearenor-
malized as follows: (1) everyChild’ constraint is replaced with its unique equival&atrent constraint;
(2) all proximity bounds forParent edges are replaced with the™symbol; (3) Parent becomesParent
to prepare the subsequent comparisoeafonstraints; (4) tag, type and level constraints are dikezh
being unambiguous for schema nodes. In the ca&¥ @D(?n, this yieldsParent (#2,#1), Parent (#5,#1)

(see FigurE IO, whereas foQ" | x2' we haveParent (#2,#1), Parent (#6,#1) (see Figurf T04).

Now assume that these constraints@rare looked up in a cache that contains the results of the two
queriesQ’ andQ shown in FigureEZIO Al andhl respectively. As mentioned earlier (see FigreSR B
on pagdB)Q andQ each have one schema hit} andx®, respectively). The outcome of schematizing
Q with x?, @ | x?, andQ with x?, Q| x<, is shown in FigureEZIOdl andg respectively. The six
binary S-constraints depicted there make up the schema-leveltsniéthe cache (we ignore the cached
query answers on the document level for the moment). LookmBarent (#2,#1), Parent (#5,#1) and
Parent (#6,#1) for Q" in the cache, we retrieve bo® | x? andQ| x? (each sharing two binary con-
straints withQ”l)(fn and one withQ”len, see Figur@Idl1). Now that we have found candidates for
the incremental evaluation 6", we need to check whether there is actually query contaihoresverlap
of Q" and@ or Q. This is done by comparing the schematif2aonstraints. The following definition

INote that proximity bounds may only be ignored when schezimatithe vertical tree relationShild and Parent
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captures a sufficient condition for query overlap that islex@d by theRCADG Cache:

Definition 10.1 (Schema-hit containment)Let D be a document collection and let S be the schema tree
for D. Besides, Ie}(Qc and)(Qn respectively be schema hits in S for a cached quérgr@ a new query ®
against D. We say tha(Qc containsXQn, )(Qc Ds XQ”, iff all of the following conditions are satisfied:

1. QﬂXQC either is a subgraph of @ XQn, or else contains no additional binary constraints that
introduce a proper restriction of am;ch) inD.

2. Given any D-constraintin € x<° that has a corresponding D-constraint if'Qx <", the former is
at most as restrictive as the latter. |

The first condition in Definitiol IOl 1 explicitly states thwartain additional constraints @° which are
not mirrored inQ" may be ignored. For instance, the schematizatio® ofith XQ’ produces the binary
constraintParent (#5,#3) (highlighted green in FiguleZI0dl on the previous page) which is missing in
Q"ix?n (see Figur§ TOM). However, removing this constraint fro@ would not alterangQ’) because
the ancestors of the schema node #5 are unambiguously fixettetthis additional constraint @ can
be ignored. Since the second condition in Definiflonl0.1de aatisfied, we ha\/}eQ Ds X?n.

By contrast, the other cached que@, contains a binary constraint that must not be ignored. The
Parent (#4,#1) edge highlighted red in FiguleZIE) which is not mirrored in Figurf_I01} indeed
makesQ more restrictive: compare FigurESZI] on pagdB to verify that the mateh in ans(x?n) is
not part ofang(x?), because of this edge. Heng€ does not contaiw?n in the sense of Definitiop1d.1.
Likewise, since theParent (#5,#1) constraint inQ’ | x? andQ | x? (see FigureEZIUdl g is missing
in Q”i)(ZQn (see Figur§ T0.G), the second schema b(fn for Q" is not contained in any cached schema

hit. Thereforeans(xgn) cannot be computed incrementally with tREADG Cache. In this way we
examine all schematized constraints in a cached query teata mirrored inQ" to decide whether the
query can still contribute matches @'. By contrast, extra constraints in the new qu@yare simply
added to the remainder query (see above). The second amidibDefinitio IO is checked by comparing
D-constraints as described befdre.

Through schematization we learn that part of the answe@te- namely, the matches to the first
schema hip(?n — can be obtained incrementally fra@i by matching the keyword constraints ftiree”
and“female” agains'ans(XQ/) in the cache. By contrast, the rest of the answ&te- namely, the matches

to the second schema b(ifn — must be retrieved from scratch. Again, this distinctioruldde impossible
on the intensional level and even if a DTD were given.

10.3 Intermediate Query Results in theRCADG Cache

The examples above assumed that only the final results ofithgquerieQ andQ’ are stored in the cache.
However, theRCADG evaluation algorithm matché3-constraints step-wise, not all at once. Recall from
ChapteB that the result of every step in a query plan is dtiora separate table in the RDBS. Caching
these intermediate results can further increase the m#eess of the cache when partial matches to a
cached query happen to coincide with results for the newyoQer

For instance, assume that tBeconstraints in the quer§ from Figure[I0 D] on the previous page
have been matched according to the query Bi@rshown in FigureEE1a] Bl on pagdId9. Recall that
PQ comprises three steps: in the first two steﬁsandsg , theD-constraintChild(d_, 1), Paren{(da,d1)
and Containgemale’ (da) are matched, producing as an intermediate result the twohesé,,as. This
intermediate result after stﬁ is symbolized by the blue ellipse in FigUreZl0.2 on the fagiage. Only
in the third stepsg, the edu nodeqs is matched, causings to be discarded from the final answer@o

(grey ellipse in FigurEZId 2). Thus befax% all matches t(x?n (namely,a; andag) can be obtained from

2Note that when looking up a new schematized qu@ty XQ” in the cache, every schematized un‘yL)(Qc that is retrieved
shares some bina§constraints (i.e.Parent or Child" edges) withQ" | XQ". For the corresponding binaB-constraints (i.e.Parent
and Child edges) irQ¢ | x<°, the second condition in Definitid@ID.1 is trivially fulél. This means that in fact this condition need
only be checked for additional constraintsQI‘U)(QC that are not mirrored iQ" LXQ".
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"female"” "Lee” "female”

VATRNENT =N

Figure 10.2: Containment and overlap of intermediate aral §inery results. An intermediate result for
the queryQ shown on top (center) contains two document matcageandas (blue ellipse on the bottom
level). In the last step of the evaluation @f the matchag is discarded from the final answer @(grey
ellipse). Thus only the intermediate result @icontains all matches to the first schema)ﬁ?? of Q" (left
half of the green area on the bottom level), whei@adinal answer is too restrictive fap".

the intermediate result @ in the cache. (Observe that in Figlite210.2 the blue ellipsoiiieg ans x ?)
and the left part of the green area denotimg;(x?n) contain the same set of matches, namelyandas).
This makesQ a competitor ol in the contribution of cached query results for evaluat@ig Moreover,
Q's matches already satisfy the keyword constr@lontaingemale” (#5) that also appears i@", but notQ'.
Thus the intermediate result f@ in the cache even permits to answ@t more efficiently than when
using@. The query planner described in Sectlon 10.5 below theegfoefersQ to @', thus saving an
access to the document level.

The example illustrates how the caching of intermediateltesan improve both the effectiveness of
the cache and the efficiency of the evaluation of remainderigs. Of course, this benefit comes at the
expense of higher storage demands (see Selciioh 10.6 forirmepeal results). In order to keep track of
the intermediate results available for the quérin the cache, we annotate each schemat-@wbnstraint
in Q with the unique step in the underlying query pR® in which that constraint was matched during
the evaluation ofQ. This allows to determine the latest evaluation stefP®after which the cached
schema hity@ can be reused for answering the new quéfy Let [[XQﬂsg denote the part o) after

schematization withyQ that has been matched before or in ssgpi.e., everything but the highlighted
portion of FiguredCIO &l on pagdT43. In our example, we haams(x?n) = ans([[xQ]]sg), hence the

intermediate result fo® obtained in the stepg can be used for answering part@f.
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10.4 Exploiting Containment and Overlap with the RCADG Cache

The preceding sections have sketched how to take advaritageides in the(RCADG Cache that overlap
with or even contain a quei@" to be evaluated incrementally. However, not all cached hest¢o such
gueries can be exploited in that way. In fact, our technigueses the sets of matches to cached schema
hits that contain all matches to a given schemgfit of Q", as defined above. In other Wordms(xQn)
cannot be obtained by combining sets of matches to multghiersa hits in the cache. Note, however, that
matches to distinct schema hits @f may well be obtained from different schema hits or even thff¢
queries in the cache. The following definition formally sifies which part of the answer Q" can be
taken from the cache:

Definition 10.2 RCADG Cache overlap) Let D be a document collection, let S be the schema tree for D,
and let C be anRCADG Cache built from queries against D. Besides, lef Qe a query against D to be
evaluated incrementally using the contents of C. Furtheemfor any query Q against D letXbe the
set of schema hits of Q in S, and let % Ugeec X< be the set of all schema hits stored in the cache C.
Finally, let X = {xQ" € X?¥"|3xC € XC : x© 55 x?"} be the set of schema hits of @at are contained in
any cached schema hit (see Definifian1 0.1 on jkagk 144).

TheRCADG Cache overlapang(Q") for Q"in C is defined as aa$Q") = Uyocx angx?"). O

TheRCADG Cache overlapang(Q"), ang(Q") C angQ"), denotes exactly the subset of document
matches taQ" that is taken from the cache (and possibly completed with ttam theRCADG element
table through remainder queries, as explained in the nexibsg@. Note that we can compute the union
in the definition ofang(Q") without checking for duplicate matches since the sets othest to distinct
schema hits of the same query are always disjoint, as olibar&ectiofZB.

As can be seen from DefinitidoID &ns(Q") subsumes all matches to those schema hitQfahat
are contained in any cached schema hit. In other words, seiiroontainment is necessary for detecting
and exploiting query overlap with tfrRCADG Cache. On the other hand, remember that schema-hit con-
tainment is only a sufficient condition for query overlap, ithere may be partial or even full containment
between queries whose schema hits violate either conditi@efinition[I0 on pagEZI}4. This is be-
cause query overlap and containment are defined in termg afdbument matches to the queries, but the
schema-level view provided by the schema hits is only an@agpration of the actual query extension on
the document level. Hence the method to detect query ovéripve propose is necessarily incomplete
with respect to the definitions on pdgell31. However, it isglete in the sense that a cache look-up for a
given schematization d" retrieves all schematizations of cached queries wSosadD-constraints are
equivalent or more general.

10.5 Incremental Query Evaluation with the RCADG Cache

This section presents the data structures and algorithmisdiemental query evaluation with tiRCADG
Cache. The cache stores the queries, query plans and query r@soitsintermediate and final) obtained
in the RCADG evaluation procedure that is described in Chégter 8. Itistmsf (1) a main-memory index
structureC containing the intensions, schema-level extensions aald&tion plans of the cached queries,
and (2) the document-level matches to all cached queridshwéside in result tables in the RDBS.

Each query to be cached is normalized and schematized asbéesabove (see Secti@n1D.2). The
resulting graph is decomposed intosthema edggshe binary constraints between schema nodes in Fig-
uredT0Hmon pag&Ia3), which are then store@inThe same decomposition, applied to a schematized
new queryQ", produces the schema edges to be looked @ imhe look-up result is a mappirlg?n be-
tween schema edges created @rand schema edges belonging to some cached queries, togsther
information about the query plans that were used to matclattes.

The schema edges retrieved in the cache tell us which caclextbg and schema hits are candidates
for (partially) answerind". Every pair of schematizations of a cached query @hdhat have a schema
edge in common (Iik€ | x° andQ" len in FigureIOE] F)) must be tested for schema-hit containment,
as sketched before (see Secf@iId.2.2). This way we corapseeHQ" of cache hitsspecifying (1) all
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Figure 10.3: Integrated query evaluation with R€ADG andRCADG Cache.

cached schema hits that contain a schema hiQfbfsee SectioRId.2), (2) the evaluation steps providing
the right “snapshots” of their sets of matches in the cache Sectioi.I013), and (3) the remainder queries
for restricting and/or completing these cached resulfgsedding on the additional constraintsQA. Once

the cache hits are available, a query plan is created for rgchinder query, telling us how to obtain the
desired matches Q" based on the data specified by the corresponding cache hitesihdps the full data
set in the element table. Since the same subséf'sfanswer may be obtained from distinct cache hits,
we propose a cost measure that indicates which of seveeahative plans to execute in order to exploit
the best-fitting cache hit. Owing to schema information, aplitates need to be eliminated when merging
results from distinct query plans.

Figure[IOB illustrates the integrated query evaluatioth hie RCADG andRCADG Cache. Every
query to be evaluated incrementally is first matched on thersa level. The resulting schematizations
are then decomposed into schema edges, which are looked thp imain-memory part of the cache.
Those schematizations for which no relevant cache contents be retrieved are evaluated from scratch,
as explained in Chapt€l 8. The others enter the query cosgpmaghase, where query constraints are
examined in order to decide for which schema hits matcheavaitable in the cache. Again some schema
hits may be scheduled for the evaluation from scratch. Qpkmning is essentially the same for both
evaluation threads, except that for the incremental etialuanly remainder query plans are devised,
not full evaluation plans. The aforementioned cost esionatelects the most promising among multiple
alternative plans for matching a given schema hit from tloleaThe routines for translating and executing
guery plans are identical. The disjoint union of all restdisdistinct schema hits yields the final result.
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schema edge cache edges

Parent (#5,#1) +— { (Parent(qs, &), s, {X?}) ,
( Parent(cf. o), ST, {x?}) }

Parent(#2#1) — { (Parent(dz, q), s3. {x°})
( Parent(dy, o), 3. {x%}) }

Parent(#5#3) — { (Parent(q}, o), 7. {(x}) }

Parent (#4#1) — { ( Parent(qs, qy), s?, (x91) }

Figure 10.4: TheRCADG Cache Cq o) containing the schematized quer'@SiXQ’ andQ| x° from
FiguresTIO 0l E1 on pagdI43. Every distingichema edge.e., a binary constraint from any of the
schematized queries (left-hand side), is mapped to a ssabfe edgefor different queries in the cache
(right-hand side). Each such cache edge specifies (1) thespamding query edge before schematization,
(2) the evaluation step in which the constraint was matched,(3) the set of schema hits that produced
the contraint during schematization. In our example, tla@econly singleton sets of schema hits because
bothQ' andQ each have only one schema hit.

10.5.1 Storing Queries in theRCADG Cache

The main-memory paf of theRCADG Cache is a mapping from schema edges to sets of so-calietie
edgeghat indicate which queries and schema hits in the cacheupsabla particular schema edge during
schematization. FiguleZID.4 depi@safter adding the querie® andQ from Figure[IOJL on padeIK¥3,
assuming the schema hits and query plans discussed aboveféM this particular cache 83y o -

For instance, consider the first entry@ny q;, Which maps the schema edge= Parent (#5,#1) to

two distinct cache edges. The first cache edfarent(qa, ql),s(f, {x9}), indicates that schematizing the
binary constrainParent(ds,q1) in Q with the schema hix®? produced the schema edgg and that this
constraint was matched on the document level in s?eqiuring the evaluation d®. Likewise, the second
cache edge associated within C;y o, states that the same schema edge is also p@’t@(’Q’. Note that
the two cached queri€gandQ’ bind the same schema node #5 to query nodes with diff&r@unstraints:
as shown in FigurdsZIOdl, g1on pagdI43, the query nodgin Q has a keyword constraint féfemale”
whereas the query noag has no keyword constraint. When retrieving the two cacheeediyring the
look-up for a new quer®)”, whose schematization also contaigsthe differentD-constraints attached to
g4 anda; will need to be compared to thiz-constraints irQ" (see SectioRI0.3.3 below).

In Figure[IO} each cache edge covers exactly one schetimtinha query in the cache. For instance,
the cache edge in the first row represents a binary constra@t x©@ and the cache edge in the second
row represents one i/ lx . Note, however, that in general multiple schema hits forshme cached
guery may produce the same schema edge. An example is gl\Fegureslm,mon pagdI43 where
the schema edgRarent (#2,#1) is part of bothQ”l)(l andQ“lX . Therefore each cache edge stands
for a set of schema this, as indicated by the curly bracesnargl andXQ' in Figure[TO}. It is easy to
see that all schema hits in a given cache edge coincide orothesponding query edge, i.e., they map
its source and target nodes to the same pair of schema notdesndte that a cache edge for a particular
evaluation step has no other (but maybe fewer) schema hitsathy cache edge an earlier step in the same
query plan because schema hits may be discarded, but nat dddrg the evaluation (see Chafikr 8).

As more queries are added to the cache, new cache edges fidtenti binary constraints, eval-
uation steps and schema hits are associated with new oingxsthema edges i6. HenceC is a
one-to-many mapping from schema edges to cache edges.

10.5.2 Retrieving Cache Contents

Every new query to be evaluated incrementally first undestjoe same schema-level rewriting and match-
ing procedures that were described for the evaluation fromtsh (see SectioflSBH.1 d0dq.4.2). In the
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schema evaluation match edges

hit step new edge cache edge

XX = {2 = { (Parent(d}, o). (Parent(da,cn),sZ. {X°})) } .
S~ { (Parent(q). df), (Parent(ap, q), 3, {(x°})) } .
£~ { (Parent(dd, df), (Parent(dy, ), s2, {x9})) }
S { (Parent(d).d}), (Parent(dh, dy). S5, {(x?1)) } }

X3~ { = { (Parent(d}, df). (Parent(cp, ), 3. {X°})) } .
S { (Parent(d).df), (Parent(dh, d}). S5, {(x?1)) } }

Figure 10.5: The resull?g, o of looking up cache edges @y o, (see Figurg_IQl4 on the preceding

page) for the schematized binary constraint®1r an andQ" lXZQn (see Figuref 107 gon pagd1d3).
The look-up result is a nested mapping with the followingisture. Each of the two schema hits @
(left column) is mapped to a nested mapping that groups thieved cache edges by evaluation steps.
Every distinct evaluation step from any of the retrievedheaedges (middle column) is mapped to a set of
match edgegach representing the matching of a relevant binary cansisdich happened in that step.
A match edge simply binds a cache edge to the correspondary g@dge inQ", and thus indicates which
D-constraints in a cached query and3h must be compared.

case of our sample quefy’, this yields the two schema hi}@Qn andxgn. Next, the query is normalized
and schematized with each of these schema hits, as showgure§iT0-1} ggon pag&Id3. The resulting
schema edges are then looked up in the main-memory part ®&GA®G Cache. In our example, three
distinct schema edges are looked up, nanfedyent (#5,#1), Parent (#2,#1) and Parent (#6,#1). In the
cacheCyq o, four cache edges are retrieved for the first two schema dtlgesour rows in Figur€&I0l4
on the facing page) whereas there is no hit for the third one.

The look-up result forQ" is rearranged in a nested maB" (see FigurdI0l5), as follows. Each
cache edge; retrieved for a schema edgg is bound to the binary constraigtin Q" that createdts.
For instance, looking up the schema edge- Parent(#5,#1) that was created from the binary con-
straintc = Parent(q3,q7) in Q", we retrieve the cache edge= <Parenj((q4,q1),s?,{xQ}> in Cio.q)-
Thereforec andc. are associated in the first entry o®" in Figure[TOb. Henceforth we refer to such a
pair (c,c;) of a query edge in Q" and a cache edg® retrieved forc as amatch edge Match edges
specify whichD-constraints in a cached and a new query must be reconcitetfiema-hit containment
to hold true. In this case, the first match edge in Fidrel 10ekifies that the second condition in Defini-
tion[I0] on pagE_T34 must be checked forfheonstraints attached to two pairs of query nodes, namely,
03,04 andq],q:. The differences and relations between schema edges, edgles and match edges is
summarized in TabEEZIT.1 on the following page.

As can be seen in FiguEeID.5, the look-up@3rin C(,q) produces six match edges (right-hand side,
one match edge in each row). The nested structuté&ofmerges when grouping these match edges by
(1) by the schema hit fd@" for which the cache edges were retrieved (left column) ahdy2he evaluation
steps in the cache edges (middle column), in that order.nstaumce, the first four match edgeif?? were
retrieve forQ" ixfn and the last two foQQ" lxgn. Note that since" ixfn andQ" lxgn share the same
schema edgParent (#2,#1) (see Figuref T01 ggon pagdIa3), the match edges jé?n in the last two

rows of FigurdZITJ are duplicates of the match edges(fbrin rows two and four. This redundancy
will allow us to obtain matches to distinct schema hits @rindependently, which is a characteristic of
the notion ofRCADG Cache overlap introduced before (see Definite@10.2 on fage 14ekact, LY is
usually not materialized in its entirety at any given pomtime. Instead we successively and separately
create, then process and finally discard each of the digtipelevel entries for all schema hits @f (see
below).

As indicated by the curly braces in FigdfeZ10.5, each nestivgl in L is a one-to-many mapping.
On the lower level (right-hand side), there may be multiglele edges representing binary constraints in
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edge type description
query edge C Specifies a binary query constraint on the intensional level. These are the edges in
(Fig. ITaHD) the query graph. There are query edges for expressing all XPath axes.
schema edge Cs| Represents a schema-level match to a query edge for a specific schema hit. Schema
(Fig. (LTdHEY) edges are created by schematizing queries to be cached or to be looked up in the
cache. They serve as keys in the main-memory part of the cache, allowing to
retrieve cached candidate queries for a new query to be evaluated incrementally.
cache edge Cc | Indicates which query edge in a cached query corresponds to a particular schema
(Fig. A edge, and which schema hits produced that schema edge during the schematization
of that query. Cache edges serve to collect all schema hits to a cached query that
are relevant to a specific schema edge being looked up in the cache. Each cache
edge also specifies in which evaluation step the query edge in question was matched
on document level.
match edge Cy | Binds a cache edge to a query edge that belongs a new query being looked up in
(Fig. D) the cache. Match edges specify which D-constraints in a cached query correspond
to which D-constraints in the new query. This is essential for deciding schema-hit
containment and creating remainder queries that return the RCADG Cache overlap.

Table 10.1: Different representations of binary query t@ists (“edges”) during the incremental evalua-
tion process. Only query edges (first row) are part of theyjmerdel (see SectidaA.2). All other types of
edge are needed for retrieving and comparing queries teatared in thd&RCADG Cache.

a specific cached query that were matched in the same ewalsép (although this is not the case for
our sample querie® andQ in the cache). The upper level of’ (left-hand side of FigurEZId.5) is a
one-to-many mapping, too, since for the same schema hit efvequery, cache edges for different queries
and evaluation steps may be retrieved in the cache, as sinae figure.

Finally, note that the look-up resulR®” for Q" only covers the first two steps in the evaluation of the
cached querie® andQ. In particular, the cache entries@q o for the schema edge2arent (#5,#3)
andParent (#4,#1) (last two rows in FigurEZI0l4 on pafe148) are not retrievedibge these are not part
of any schematization &@" (see Figur€Il1 on pafe143). Provided that the mappinglyimdeC;y o)
is implemented so as to avoid a sequential scan of the meresigent cache part (e.g., using suitable hash
functions), such irrelevant cache contents are typicadlyen touched during the look-up. This means that
even as the cache grows, the promising candidate queriesteeved very efficiently. In Sectidi_I0.6 we
experimentally confirm the scalability of tiReCADG Cache.

10.5.3 Deciding Schema-Hit Containment

This subsection presents an algorithm for computingREADG Cache overlap (see DefinitioRZId.2 on
pageIZb) for a new que®” to be evaluated incrementally, given the cache look-upltré&i. At the
heart of the algorithm is the decision procedure for schéiheentainment. For each cached schemghit
in LQ" that was retrieved for a schema jf®" of Q", we check whethex Ss x<" as defined on page_l44.
If the test succeeds, we create a cache hit saying(tl:mﬁt)(Qn to the seH?" of cache hits foQ". Before
explaining the containment test and the creation of cactse let us take a brief look at the set of cache
hits that are eventually produced for the qufyin Figure[I0I on padeTk3, assuming the cathg gy
that containg)’ andQ, as before. .

Figure[IQP on the next page depibt%q}, i.e., the set of cache hits obtained @' in the example

above. Two cache hits have been created from the look-ujtt lle%b} in Figure[TOP on the preceding
page. Each cache hit specifies in the three leftmost colummgdiobtain the matches to a specific schema
hit for Q" (in the examplexfn) from the matches to a particular schema hit in the cagReof XQ’) using

a fixed snapshot (stepg andsgl, respectively). For instance, the cachexhih the first row in Figur€ITl6
tells us thalans(x?n) is a subset oans([[XQ]}Sg). Furthermore, from the pairs of corresponding edges in
the querie®)" andQ (middle), we see that the matches to the query rifjde Q" are taken from the set of
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cache final schema corresponding edges in constraints in
hit step hits new and cached queries remainder query
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Figure 10.6: The séﬂ%,‘Q} of cache hits foQ", constructed frorﬂ?&Q} in FigurdlIOb on padeIh9. The

two cache hitsc andk’ both obtainans(x?n) from the cache, Whereamns(XZQn) must be computed from
scratch. The cache hit in the first row, reuses the intermediate result that was cached after tomde
step in the evaluation of the que®y with one keyword constraint as remainder query. The caittie the
second rowk’, needs two keyword constraints against the final answeetquleryQ’ in the cache.

= (8. (g 2ax¥ { (
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) )
) )
) )
) )
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matches tay; in the mentioned subset, and likewise @grq. as well as)3, q4. Finally, the remainder query
in the rightmost column indicates which subset of the cadgkedlts is relevant t@Q". In the case ok,
a single keyword constraint narromsns([[XQ]]sg) down to those tuples where the elements matchfhg

(i.e., g2) contain the keywordLee” . Alternatively, the second cache hit shows how to compute the
same se'ans(x? ) from ans([[XQ']}Sg/). Note that in this case, the remainder query has two keyword

restrictions instead of one as wikh becausey; in Q' does not enforce the constraiBbntaingemaler that
is required byoj (see Figur€I0.dlon pagdId3), unlike the nodg in Q that is used by.

Creating cache hits. Algorithm IO on the following page lists pseudocode fargassing a schema
hit XQn of Q", given the cache look-up resw®” and an initially empty satlQ" of cache hits to be created
for XQn. The procedurereateCacheHitsuccessively visits all sets of match edgeS)tQF and distinct
evaluation steps ihQ". Evaluation steps belonging to the same query plan are ggede®ne after the other,
in the order defined by the plan. Remember that the match ddgesspecific evaluation step indicate
which pairs of query nodes and edgesgdfhand a cached query might correspond. The ofatetoop in
Algorithm[IT] (line§BEA1) finds all consistent combinati®f match edges in each s®glinesZT-E3D),
and tests for which of these combinations there is a cacheehsa hity such thafx]s Ds XQn. In line
with Definition[[0J on pagE_TH4, the containment test ingslthe comparison of keyword constraints
attached to corresponding query nodes (ID84Th—-25) asawelf the binanpD-constraints that have been
matched up to steg (linesI32-E4D). These two issues are elaborated below.

Each combination of match edges is represented as a caotenldining the corresponding pairs of
new and cached query edges as well as the remaining comsira@'. Cache hits that were successful in
steps are added to the skl of currently active cache hits. If there is another itenafior steps, 1, these
cache hits are extended with additional match edges fronstép to find out whethéix s, Os XQn holds
true, too. Successful cache hits for stgphat fail in steps. 1 are removed fronic,, and are collected
in Holg instead. They remember as the last reusable snapshot of the results they représgrtp not
participate in any further iterations. The other cachedniter yet another round of containment tests until
there are either no more steps in the current plan, or ondstejssing inL?" (linesC@-EIPR). A missing
step indicates that none of the constraints matched in tisis mirrored inQ" lXQ”. As a consequence,
all subsequent snapshots of the cached query result adtenigsing step cannot be reusedx@P.

In the end, all cache hits that were successful for any steymynplan are added to the result Bt
(IineleZI;—E:B).HQn collects the cache hits for all schema hits@¥, which are computed in successive
calls tocreateCacheHits Cache hits that represent the same combination of comegpp query edges
for the same evaluation step are merged. Thus a single citdheH?" may specify multiple schema-hit
containment pairs for different schema hitsgf(hence the curly braces in the third column in Fiurel 0.6).
This way each cache hit for a stgpcan be translated into a single remainder query plan opegrati the
matches to multiple schema hits at once, which are all stortite result table fog (and maybe those of
its successors). Query planning ff is explained in SectiddIT0.3.4.
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1 // createCacheHitscreation of cache hits for a new schema hit
2 // —x': a schema hit for a new query Q"

3 // —LQ": the cache look-up result for Q"

4 // = HQ': the set of cache hits to be created

5 procedure createCacheHitéxQ": schema hitL.Q": map,H?Q": set of cache hits)
6  group the steps with ke),(Qn inLQ" by the plan they belong to

7 Heur := 0; Hgig := 0 for each new plan being processed
g  forall stepss in a given plan, in the order of their executido

9 // only results obtained in successive evaluation steps can be used
p 10 if i > 1 and the step befor® was skippedthen
11 break loop
L 12 end if
13 // find cached and new query edges whose D-constraints can be reconciled
14 M:=0
p 15 for all match edgesm, associated witls; in LQ" do
16 c" :=the query edge fror®" in ¢y,
17 c := the query edge from the cache edgein
18 q?, g := the source and target nodesoBf
19 Os, G :=the source and target nodescof
— 20 Ks := call checkKeyword&yl, gs)
— 21 Kt := call checkkeyword&yf', ¢ )
22 if Ks # nil and Kt # nil then
23 M :=MU{(c", ¢, KsUK¢)}
24 end if
L 25 end for
26 // update the set of cache hits with new pairs of corresponding query edges
p 27 H :=the cache hits itlg that are inconsistent with any subset of edge paiid in
28 Heur := Heur \H; Hoig := Hoig UH
29 H := all consistent cache hits created fréfgyr using any subset of edge pairshh
L 30 Heur := Heur UH
31 // keep only cache hits contributing a schema hit that contains XQ”
p 32 for all cache hitx € Hgyr do
— 33 X := call checkSnapshdk, s, LQ")
34 if X =0then
35 Heur := Heur \ {K}; Hoid := Holg U {k}
36 else
37 for an arbitraryy € X, add[x]s DOs X< to k (replacing any existing statement fpR")
38 replace the step ik with 5
39 end if
L 40 end for
41 end for

42 // collect and possibly merge successful cache hits for all steps and plans
¢ 43  forall cache hitx € Heur UHgg with a schema-hit containment men do

44 if 3k’ € HQ":k, k' have the same corresponding query edges andistep
45 addk’s schema-hit containment fr<" to k’
46 else
47 HQ" :=HQ U {k}
L 48 end if
49 end for

50 end procedure

Algorithm 10.1: Creation of cache hits with tiRCADG Cache. The input is a schema hitQ" for the
new queryQ" to be evaluated, the resul®" of looking upQ" in the RCADG Cache, and a seH?" for
collecting the cache hits to be created. A sample outputds/stin FigurdZIJJ on the previous page.
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Checking unary D-constraints. The only unanD-constraints to be compared in the containment test are
keyword constraint$.The procedurereateCacheHitin Algorithm[IIZ] on the facing page compares the
keyword constraints of every pair of query nodes that aresthugce or target nodes of two query edges in
the same match edge (lifed [5}-25). Only edges whose sourtargat node constraints can be reconciled
pairwise are added to the 9dt(lineZ3) that is used to create new cache hits (I[D8427—30).

The actual comparison of keyword constraints is triggerecatls tocheckKeywordi linesIZh an@A1
of Algorithm[I0. The pseudocode foheckKeywordss given in AlgorithmZIOP. The procedure com-
pares the keyword constraints of two query nogéandq belonging to the new querl®" and a cached
queryQ, respectively. It returns the subsetgdfs keyword constraints that remain to be checked against
the cached matches tp or nil if g's keyword constraints are too strict fqf. The empty set is returned
(lineBD) if g" andq specify the same keywords with essentially the same Boglezstor (conjunction
or disjunction) and scope (containment or government)nly g has keyword constraintsjl is returned
(linel&3). If onthe contrary only" has keyword constraints, all these constraints must benmd{tindGh).

In all remaining cases the keyword constraintsgbfand g must be compared more thoroughly, as
shown in Figurd_IOl7 on pafed55. The right-hand side of thedi¢coloured) comprises sixteen areas
of eight squares each, most of them containing a relatiomabsl, which are arranged in pairs (a grey
square on the left and a coloured or white square on the riglah of the sixteen areas corresponds to a
particular combination of the following four parametgrsictor(q), scopéq) (horizontal) andunctor(q"),
scopéq") (vertical). The upper left area, e.g., applies if both noslescify a disjunction of containment
constraints.

The four pairs of relation symbols in each area are to be reddlaws: “=", “C”, “>" and “ "
denote the equality, containment (in either direction) aod-empty intersection (overlap) of sets, respec-
tively. Any pair (6,6’) of a grey and a coloured symbol indicates that if the two skiepwords used
in the constraints off andq" are in relationf (grey square), then the two sets of elements that satisfy
these constraints are in relatiéh (coloured square). For instance, consider the upper laft{(ga=) in
Figure[IOY. It says that ifj andq" both specify a disjunction of containment constraints far same
set of keywords, then they will be matched by the same setesh@hts (as far as keyword constraints
are concerned, i.e., ignoring all other query constraimi$d andg” may be involved in). This obvious
fact is captured by the first conditional branch of the pracedheckKeywordi Algorithm[IO2 on the
following page, along with the other fogs=, =) pairs (highlighted grey and red).

The other pairs in FigufeZI0.7 deal with less obvious cas#igadrs with a “>” symbol on the right-
hand side (highlighted yellow) indicate th@s keyword constraints are no more restrictive than those
of g, which is exploited in lineE34 addl77 of AlgoritHmID.2.dfndq" both specify a conjunction of
such constraints with the same scope (the two yellowSymbols directly below the two lower-right red
“=" symbols in Figurd_IQl7), then only the constraintginthat are missing i need to be part of the
remainder query (linEZ¥4). For instance, given two sets astaintsContaing,(q) A Containg, (q) and
Containg,(q") A Containg, (q") A Containg, (q") for g andq", respectively, onlyContaing, (q") must be
checked against the matchesctin the cache. In all other cases where the keyword constraam be
reconciled (remaining pairs with yellow>" symbols in FigurdZIQ]7), the remainder query includes the
entire set of keyword constraints gf.

For all but the yellow and red pairs in FiguteJ0.7 (symbeis ‘and “>”, respectively), either the
set of elements matchingjs keyword constraints is known to be a subseq®f set of matches (blue
“C” symbols), or no specific relation between the match setdeanferred (white squares with no sym-
bol). For these junctor/scope/keyword combinations, tfee@durecheckKeywordseturnsnil (line €9
in Algorithm [I2 on the next page), which causes the comedimg match edge to be discarded from
cache-hit creation (lineE23 in AlgorithiID.1 on the faciragp).

Checking binary D-constraints. The notion of schema-hit containment in Definiti@n10.1 ogeldZ3

implies that the schematized cached query does not comgiDaonstraints which make its extension
too restrictive with respect to the schematized new q@&ryFor every binanD-constraints in the cached
query, this means that if the constraint has a counterpa®'jrthey must be reconciled, and if not, the

SRecall from DefinitiodZF on padedll that the other unary yjwenstraints specifying tag, type and level conditions are
S-constraints. Being fully captured by schema nodes, theg met be matched on the document level.
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51 // checkKeywordscomparison of keyword constraints

52 // —q": a query node in the new query Q"

53 // —Q: a query node in a cached query Q

54 // « a set of keyword constraints for the remainder query, or nil

55 procedure checkKeyword&": query nodegq: query node)

56
57
58
59
— 60

61
62
— 63

64
65
— 66

67
68
— 69

70
71
72
73
— 74

75
76
— 77
78

// d" and q have similar constraints for the same keywords
if keyword$q") = keywords$q) and
(junctor(g™) = junctor(q) or |keyword$q")| < 2) and
( scopeq™) = scopéq) or |keyword$g™)| = 0) then
return 0

// only q has keyword constraints
else ifkeywordsq") = 0 then
return nil

// only " has keyword constraints
else ifkeyword$q) = 0 then
return the constraints fokeywordsq")

// Q's keyword constraints are too restrictive
else if(g,q") does not have a yellow>” in the “matches” column in FigulEZIdthen
return nil

// some keyword constraints in Q" are already subsumed by q
else ifjunctor(q”) = “A” and
junctor(q") = junctor(q) and

scopéq") = scopéq) then
return the constraints fokeywordsq") \ keywordsgq)

// all keyword constraints in Q" must be matched
else

return the constraints fokeywordsq")
end if

79 end procedure

Algorithm 10.2: Comparison of keyword constraints with READG Cache. This procedure is needed
for verifying the second condition in Definitidi_ID.1 on pf@&. The input is a query node in the new
query Q" to be evaluated and a query node from a qu@rin the RCADG Cache. The output is the
(possibly empty) subset of the keyword constraintg'bthat need to be matched as part of the remainder
query forQ". A return valuenil indicates that the keyword constraintgffandq cannot be reconciled. For

a given query nods, junctor(q) is the Boolean operator

or government.

or “ V"), andscopé€q) is either containment
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Figure 10.7: Comparison of the keyword constraints of a ropifea cached query and a nodéfrom a
new query to be evaluated incrementally. Each cell in thietedpresents a specific relation between the
two sets of keywords used in the constraints (left half ofslg highlighted grey) and the resulting relation
between the two sets of elements that satisfy these camstiaight half of the cell, white or coloured).
The pairs of relations vary with the nature of the keywordstaaints inq andq". For instance, if both
nodes specify a disjunction of containment constraintsr(fgpper-left pairs) and has more keywords in
the disjunction tham" (third pair, symbol 5" highlighted grey), then it may also have a superset of the
matches tay" (symbol “>” highlighted yellow). By contrast, if both query nodes feat a conjunction of
government constraints (four lower-right pairs) apdas again more keywords thah, then it may only
have a subset of the matchegffo(third pair, symbol =" highlighted blue).

constraint must not introduce a proper restriction. Thigisfied by the procedureheckSnapshdisted in
Algorithm[IQ3 on the following page. The procedure is ahiiepeatedly bgreateCacheHits line[33 of
Algorithm[ITQ1 on pageId2 for a (preliminary) cachexhéind an evaluation stepof a particular quer)

in the cache. At this point in time; contains a set of corresponding query edges f@bandQ" as well as

a set of remainder query constraints @}, as illustrated in FigurEZId.6 on pagell51. The pairs of query
edges ink indicate which binary constraints i@ have which counterparts iQ" after schematization.
Q" is schematized with a specific schemax® given as a parameter tweateCacheHit§see above).
The schema hits fo that produced the pairs of query edgeximare available from the corresponding
cache edges fox?" ands in the look-up result Q" (see FigurdI5 on pafe149). ¢ be the set
of these schema hits. Now the task is to check whether thexelésist onegy € X5 such that the binary
D-constraints inQ| x and Q“i)(Qn comply with DefinitionCION (the unarfp-constraints were already
compared before was created, see above).

Note that to confirnfx]s 25 X" we only need to examine those binddyconstraints of) that were
matched in ste, because constraints in earlier steps of the same plan egre dhecked in previous
iterations of the outermogor loop in createCacheHitgline[d in Algorithm[ITQ1). As observed in Sec-
tion[[B1, this is true for all schema hits in theXgf which is contained in the set of schema hits retrieved
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80 // checkSnapshotdecision of schema-hit containment

81 // — K: a preliminary cache hit for a schema hit )(QH of the new query Q"
82 // —S: a step in the evaluation plan of a cached query Q

83 // — LY the cache look-up result for Q"

84 // < a set of schema hits for Q that contain xQ" in step s

g5 procedure checkSnapshgk: cache hits: evaluation sted,Q": map)
86 X:=nil

87  // all edges of Q decided or reconstructed in § must be mirrored in Q" 1 x<
» 88  forall query edges € Deg UReg do

89 if cis not among the edges from cached queries then

90 return 0

91 end if

92 Xc := the schema hits from the cache edgex6f, s andcin LY
93 if X = nil then

94 X=X

95 else

96 X :=XNXe

97 end if

L 98  end for

99  // all query nodes of Q joined in S must be mirrored in Q" 1 x<
;100  for all query nodes € Joiny do

101 if qis not among the nodes from cached queries then
102 return 0
103 end if

L104  endfor
105  return X

106 end procedure

Algorithm 10.3: Decision of schema-hit containment witle RCADG Cache (slightly simplified). This
procedure is needed for verifying the first condition in Digifam [[0] on pagE34. The input is a cache
hit k created for a schema P)(P" of the new query" to be evaluated, an evaluation stgfior a cached
queryQ that supplies the cached edgesinand the cache look-up result f@f. The output is the set of
schema hits fof) that containy@” in steps. A return value 0 indicates thatassociates edges from both
queries in such a way that the containment test fails, becsaise binary constraints in the schematized
queryQ that were decided or reconstructed in s¢e@re not mirrored irQ" le”.

for any predecessor &f. The procedureheckSnapshaeturns the subset C X of all schema hits for
which the containment test succeededX is non-emptyk’s evaluation step and schema-hit containment
for Q" are updated accordingly (inESIEZ] 38 in AlgoritEm10.1 ogelARP). Note that since all schema
hits in X coincide on the query edges represented lisee Sectiol I0.3.1), only one statement of the form
[X]s 2sx¥" is added ta in line[32, for any schema hj € X.

The procedureheckSnapshadh Algorithm [IO3 tests whether any binary constraint wasidied or
reconstructed i lacks a counterpart iQ”LXQn (lineBY). If so, the containment test fails ferands,
and the empty set is returned. Otherwise we fetch for eactycpagec € Deg U Reg the corresponding
set of schema hits ihQ", which is contained in the cache fgR", s andc (see FigurEI5 on pafie149).
The setX eventually contains the intersection of all these setsloéisa hits (lineE34=397).

To understand why query edges that were decided or recotestring must have a counterpart @"
for schema-hit containment to hold, consider a query edgeR(qs, o) in Deg U Reg that is not mirrored
in Q”lXQ". If both gs andq; have counterparts i@“ixQ”, then matching may have caused tuples in
the intermediate result tQ to be discarded in step. For instance, it = PrevSiliqgs, ¢ ), then all tuples
whereqs is matched by a leftmost sibling are droppedsinHowever, these tuples might well be part of
the answer t®@", which accepts matches t¢g andg; for which the relationrR does not hold.

Now assume thajs has no counterpart iQ”LXQn. From the query planning algorithm presented in

156 Felix Weigel



CHAPTER 10. THERCADG CACHE FOR XML QUERIES AND RESULTS

Sectio8ZH, it is obvious that matchegtanust have been obtained in stgr earlier: either by a join
with the element table which may have caused match€¥ to be discarded from the intermediate result
of Q in steps_1, or by reconstructing another query constraint whose targée isqs. However, since
there are no cycles in the deeg of reconstructed edges (see ChapIerB.4.4), the matchipgnatfist have
involved an element-table join at some point of the evatugteither directly or indirectly, which violates
the first condition in Definitiof IOl 1 on pafe’44.

If gs € Deg, then the same argument applies in cases whehas no counterpart i@”len. Now
assume thatjs € Reg. In general the reconstruction ofmay have caused tuples to be discarded that
would have been matches@ (again, consider the case where: PrevSiligs, ;) andgs is matched by a
leftmost sibling). Therefore query constraintfiag andReg are treated alike in lineE38 acheckSnapshot
However, in fact we can show that under certain circumstgnmezonstructed query edges whose target
node is not mirrored Q" are admissible. The argument behind this is sketched indsEHLS.

As mentioned before, every join with the element table ip Sfamay eliminate tuples from the in-
termediate result of produced in that step. This might prevent the incrementaluation ofQ" based
on this snapshot d®'s answer, unless the join conditions are also impliedd3y Therefore we need to
check whether all query nodes@that are matched through an element-table join in stépve a coun-
terpart inQ“ixQ”. Nodes inJoin typically have at least one adjacent edgeDieg or Reg. If such a
node is not mirrored Q" | x<", this edge does not satisfy the condition in 89 of AlguriIT3 on
the facing page, so that the containment test fails, asdenHowever, the query planning algorithm in
Sectio 8.2 may also produce evaluation steps that coqury nodes fron® to be joined, but no query
edges to be decided or reconstructed. As a simple solutieexplicitly verify that each node idoin; has
a counterpart iQ" | xQ" (linesCIOMEIM in AlgorithiiZI@ 3), which ensures that tharyrconstraints of
the two nodes were compared before. Again, possible optinizs are discussed in Sect[gn10.8.

To sum up, throughout this subsection we have seen five reagloy the containment test for two
schema hits(Qn of Q" andx of Q may fail in a particular query step:

1. No match edges were retrieved for another evaluationgtgedings in the same query plan (see
createCacheHitm Algorithm[IT] on pageIh2, lif€N0). For instance, thttéscase for the schema

hit x¥' of Q" (see FigurET5).

2. The schematization wii;i(lQn andy produces pairs of query nodesi lXQ” andQ | xQ whose key-
word constraints cannot be reconciled (sheckKeywordi Algorithm[I02 on pagETh4, lin€sl63
andBd).

3. At least one binary constraint fro@ that is not mirrored irQ" | x<" was decided in step (see
lines[B3E3B in AlgorithnlI0OI3 on the preceding page). An gxars the constrainParent (#4,#1)
in Figure[TO. ] on pagdI43 that was decided in s@mf the evaluation 0.

4. At least one binary constraint fro@ that is not mirrored irQ”i)(Qn was reconstructed in step
(see line{F9EI8 in Algorithdi_I0.3 on the preceding page)ns@aints that do no introduce a
proper restriction may be ignored. An example is the quege&drent (#5,#3) in the queryY, see
FigurelIO Ml on pagdT4s.

5. At least one query node fro@ that is not mirrored irQ“i)(Qn was matched through an element-
table join in stes (see line§EIJAETD4 in AlgorithEl 1.3 on the preceding page).

10.5.4 Remainder Query Planning

As mentioned before, a separate query plan is created fomeamber of the sét Q" of cache hits foQ".
Such a plan specifies how to obtain the matches to one or mioeenschits ofQ" from a specific interme-
diate result table in the cache that is determined by theugnégyaluation step represented by the cache hit.
Recall from Figurd_IQl6 on pafie 151 that every cache Htists all constraints in a particular remainder
query forQ" whose answer subsumes exactly these matches. From thendemailery constraints ix, a
query plan fork is created as follows.
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plan PE" = (31, 57.2)

plan P,?n _ <SS”1> stepsf?,nﬁl = (Joiny, Req, Deq)
. Joipg = {q3}
steps?_l = (Joiny, Req, Deg) Req = {}
Joim = {af} Dea = {}
Req = {} p :
Deqg = {} stepsg,_2 = (Joinp, Reg, Deg)
Joip = {d3}
Ree = {}
De = {}
a. plan based on cache hitfor queryQ b. plan based on cache hit for queryQ@

Figure 10.8:RCADG Cache query plans for the incremental evaluation of the qu@hin Figure[I0.X]
on pagdIaB, based on the different cache hits in Flguré 10pagdIR1. EaThe query plan created for
the cache hik (first row in FigurdCIOF). It computerms()(ig ) from ans([[XQ]]sg). Bl The query plan

created for the cache hit (second row in FigurleZId.6). It computmss(x?n) from ans([[XQ’]}Sg/).

The core of the planning algorithm sketched in SediionBigtebmmon to both the evaluation from
scratch and the evaluation with tREADG Cache. The only difference is that when reusing cache contents,
someD-constraints in the new quefy" need not be matched any more. Therefore the planning proeedu
createPlarin Algorithm[B2 on pagEZT10 is called with restricted $é{sandM, of query nodes and edges,
rather than all query nodes and edge®lhas for the evaluation from scratcM, comprises all query
nodes ofQ" that are involved in any unary or binary remainder query trairg in k, andM; contains
all binary remainder query constraintskn Consequently, in the resulting incremental query plar(for
the element table is joined only for query nodes and keywaorstraints inQ" that are missing in the
cached query. Additional binary constraint€Qh are decided if they involve matches in the cached result,
otherwise reconstructed if possible.

Figure[IB depicts alternative query plans for computieghatches to the first schema hit@f, x<"

(see FigurEZIT.&), based on results of either of the cached que@laadQ’ The pIarPQ in Figurd[IO. 3]
for the cache hik from Figure[IOFb specifies how the matcheg@ are computed based on matches

to x©, using the result snapshot cached after the second step avétuation of). The pIanP,? has only
one step created for the remainder query const@imttaing e (03) in K. The step involves a single join
with the element table, needed to retrieve those matchq;simans([[xQ]]sg) which contain an occurrence
of the keyword'Lee” .

An alternative pIanP,?,n in FigurdlIO:I0] created for the cache hit in Figure[IOLP, obtains the matches
to X?n from ans([[xq]]sgy), i.e., a part of the snapshot of the answer to quErgached after stegsg/. This

plan requires two element-table joins because the remaijugey ink’ comprises two keyword constraints,
Containg ee» (03) andContaingemale’ (03). Note that botrP,?n andP,?,n compute the same result — namely,
ans()(?n) — from distinct query results in the cache.

In general, to avoid the repeated matching of the same schirfaa Q", we need to decide for each
schema hit which cache hit to use. This is done based on a @asure for the query plans created for
the different cache hits, which at the moment simply coumésrtumber of element-table joins needed to
execute a given plan. Thus in the example ab@ﬁg, has a lower cost thaﬁSn, hencek is used for
answeringQ" while k’ is discarded. More sophisticated methods could also takeaiccount selectivity
estimates for keyword and tag constraints. Essentiallgainge optimizations that were evoked for planning
the evaluation from scratch also apply to the incrementatyavaluation.

Figure[ITP on the next page shows the SQL code generatexonting the query plaﬁ,?n. It joins
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SELECT

DISTINCT el AS el, €2 AS e2, e4 AS e3
FROM

Q_s2 RT,

ElementTable ET
WHERE

RT.sid = ‘xQ’ AND

ET2.pid = RT.p2 AND

ET2.eid = RT.e2 AND

ET2.key = ‘Lee’
ORDER BY

el, e2, e4

Figure 10.9: SQL code for retrieving the matches to the seﬁeinxfn of queryQ" in Figure[ITO ] using
a cached intermediate result of the quérin Figure[T0 bl on pagdT43. The query statement computes

ans()(fn) from ans([[XQ]]sg), as specified by the cache itin Figure[TOPb on padeIbl. The talfles,

containing this particular snapshot of the matcheglds shown in FigurEE@lon pag€Id2. The keyword
constraint in the remainder queryinentails a join with the element table in Figlirel6.1 on dage 82.

the snapshot o@'s result in Figurd8&] on pagdI02 with the element table shown in Fiduré 6.1 on
pagdBP. From the result table ©f all tuples representing matchesx8 are selected. The matches to the
qguery nodey, in these tuples are then looked up in the element table thatbat they indeed contain the
keyword“Lee”, as demanded by the remainder query constrairt ifihe statement returns both tuples in
Q's result table in FigurEBd], projected onto the fieldst, e2 ande4. The projection clause in FigufeID.9
reflects the pairs of corresponding query nodes.ifThe resulting tuple$l8 21, 26) and(27,30,34) are
illustrated as matches andaz on the document level in FiguEeZID.2 on pfigel 145. Note thase¢bend
tuple,as, is not available in the last result table@fsee FigurE8dlon pagdId2), which again underpins
the benefit of caching intermediate query results.

In our running example, only matchesxﬁn are retrieved in the cache WhﬂIEIS(XZQn) must be obtained
without cache support. Therefore two distinct query planstibe executed to obtain the complete result
of Q". In general, there may be multiple cache hits for distinétessa hits ofQ", each with its own
query plan, plus one additional plan covering all remairgolgema hits 0Q" that must be matched from
scratch. In our test system, these query plans are exe@dadistially in the order of increasing estimated
execution cost. However, since the results of the diffeqer@ry plans are guaranteed to be disjoint (see
above), th&RCADG Cache is particularly amenable to the parallel processing of ipldicache hits. This is
likely to improve the user experience especially in a hightgractive, browsing-oriented retrieval scenario
like the one sketched in the introduction.

10.6 Experimental Evaluation

To evaluate the incremental query processing describedaeipitevious section, we have conducted two
different experiments. A small-scale experiment studies the performance for the incremental eval-
uation of a few hand-picked queries varies when cached egigrith different degrees of similarity are

available. The second experimentrelates the cost and behediching on a larger scale, using a randomly
generated cache content and query workload. The two doduwobections used in the experiments are
IMDb andXMark 110Q respectively (see SectifnIB.2 in the appendix). Both ix@ats observe a num-

ber of different performance measures explained belowe@gbroperties of all test queries are shown in
Figure[ITOI@&l on pagdIdl for the small-scale experiment arffdin &l bh pagdIA2 for the large-scale

experimentt All query processing times presented in the sequel représeaverage time needed to com-
pute all matches to all nodes in a given query with READG Cache, as explained above. The average
is computed over three out of five consecutive runs afteradiog the best and worst result, in order to

4Here the termsmall-scaleandlarge-scalerefer to the size of the query workload submitted to evatumgthot to the size of the
test document collections. In fact, the larger of our twdeations is used in the small-scale experiment.
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minimize artefacts. The correctness and completenes®attults returned by tfRCADG Cache have
been verified against the results computed from scratch.c@iblee contents always include intermediate
and final results. All result tables on disk are indexed wiBiaTree on thesid column (see Figufe8d.4 on
pagd10OP).

The test system is a Java implementation (JDK 1.5.0) of the stauctures and algorithms presented
above. The mapping from schema edges to cached tuples ireinememory par€ of theRCADG Cache
(see Figur&I0dl4 on pafie48) is a hash table providing attassortized constant time. At system start-
up C is loaded into memory, and JDBC connections to the RDBS lesckare established once for the
whole test session. This takes 1-2 seconds. During the iexpets, the test system and the RDBS are both
running on the same machine. Apart from these two tasksgimgpuater is idle during the experiments. All
queries are processed sequentially in Test Environmerea€gsctiofi 1311).

10.6.1 Cost and Benefit of Evaluating Queries with th®@ CADG Cache

We quantify the benefit of incremental query evaluation byasuging therocessing timand thenumber

of joinsneeded to compute the result (although counting the nunflieples being joined would be more
accurate). Since schema matching is the same for the ealdiedm cache and from scratch, we do not
count then-way selfjoin of the path table but only the number of joinshathe larger element table (the
processing time includes both phases). On the cost sidi&viagy and matching overlapping queries and
their schema hits in the main-memory part of the cache takeg £xtra computation time not needed when
evaluating a query from scratch. We refer to this overheg@ache) search timeBesides, the persistent
cache data structures consume extra storage both in maimmeamd on disk, which we denote eache
size(in memoryandon disk respectively).

We now define the notion afache supporto measure how “useful” the cache contentEiare for
evaluating a given quer@" incrementally. LeX be the set of schema hits f@", and letP a query plan
for processindQ" from scratch with minimal estimated execution coss{P) > 0 (see Sectioi 10.3.4).
Besides, letJ; X, be a partition oK such that eacl,; contains exactly the schema hits represented by the
cache hitk; computed forQ" andC. Finally, let P denote the query plan devised fiqr Then the cache
3 \XKJ \-cos(PKj)

[X]-cos{(P)
estimated cost of processing the selected cache hits, adatat over all the schema hits @F that they
represent. The denominator subsumes the estimated casnpiuting the matches to all schema hits from
scratch. Thus the entire formula quantifies the executi@h €aved in comparison to the evaluation from
scratch.

For simplicity, we henceforth assume tleass{P) is again the number of element-table joins needed to
executeéP. Note that with this coarse cost estimation function, a eatlpport of 100% doastnecessarily
mean thaQ" itself is found in the cache, only that no joins with the eletable are needed to evalug@
incrementally using. In the experiments described next, the cache supportateido what extent the
evaluation ofQ" can possibly benefit from the cache. The following guidingsiions summarize three
major optimization goals:

support forQ" andC is defined ag 1 — -100%. In this formula, the numerator denotes the

1. effectiveness Are useful cached queries exploited if available?
2. efficiency Does the benefit of caching outweigh the overhead?
3. scalability: How does the overhead vary with growing cache size?

10.6.2 Small-Scale Experiment

To answer the first of the above questions, we consecutivalyate a fixed test query against five different
cached queries, in the order of increasing cache suppo#g.eXperiment illustrates on a small scale the
effectiveness of our approach, by showing how the increal@nbcessing time is correlated with the cache
support, which th& CADG Cache strives to optimize. Le® be the query to be evaluated incrementally,
and letQ;, 1 <j <5, denote the five queries serving as cache contents in tfsecotive runs.
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Figure 10.10: Results of the small-scale experiment oNtizb collection.

For this experiment we use th®IDb collection containing nearly 9 GB of XML documents about
movies and actors. The incremental query evaluation agaissquence of different cached queries is
conducted four times with distinct queri€¥' and corresponding cache contents(lL< 4). For each
queryQf, the cached querig; are derived fronQ" by applying a specific class of editing operations,
as they typically occur in user sessions with relevancelfaekt N denotes modifications of the query
structure and. of the tag constraints:/+ means making the query more or less restrictive, respégtive
Combining the two degrees of freedom yields the four cla¥sedi+, L- andL+. For instance, adding
a query node is in clags-, whereas adding an alternative tag constraint to a nodetrestidy has a tag
constraint (or removing the existing constraint) would bé&.+. Figure[IO I&] lists some properties of
the queryQ!" for each class of editing operations. For instance, theneobi+- lists characteristics of the
query Q] that is incrementally evaluated against a sequence ofepiereated through node restriction.
Note the large number of document matches in the last row.

Figure[TO T plots the processing time in milliseconds for each of thediweries in each of the four
sequences. As can be seen on the abscissa, the cache suppsrfrgm 0% [=1) to 100% [ =5).
Forj =1, the cache contains only the que&py that allows no joins with the element table to be saved,
compared to evaluatin@ from scratch. By contrast, fgr= 2 the cache contains the que®y, instead
which provides a cache support of 25%, and so on. This padigplies to all four sequences tested (see
the key in FigurdZIOI0). The results show that for all classes of editing operatitime processing time
decreases significantly with growing cache support, dow208 of the time needed without the cache.

10.6.3 Large-Scale Experiment

The second experiment targets all three optimization goaddarge-scale setting. The goal is to monitor
the actual benefit experienced by users of a system that nregkesiediate and final query result available
for reuse in theRCADG Cache. To this end, we simulate a cache growing from 0 to 199 distineries in
five stages, as it could evolve during a longer retrievalqebwith continuous incremental query evaluation.
Figure[IO Tl on the following page lists some statistics of the cache énftiur stage€1 to C4. In the
initial stageC0, the cache is empty (omitted in FiglreI0dlbn the next page). As more and more queries
(i.e., cache edges from schematized queries) are addesizéhef the cache grows from 1 MB in memory
and 77 MB on disk €0, leftmost column) to 5 MB in memory and nearly 1 GB on di§ikd{ rightmost
column).

In the absence of a real-world query workload which could/dd extracted from the log of a system
in productive use, we model the workload as a sequence obramlieries, including some popular or
“hotspot” queries which are more likely to be asked repdgtgubssibly with modifications as in the small-
scale experiment above). The test queries are obtainedl@s$o From a seed of 150 distinct randomly
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T19 3243| 3267 3380 3320 3263 3013 0 0 0 0 0 0 1 1 2 3
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T2 11015] 11159 11220 11335 12767 13572 0 0 0 0 0 0 1 2 4 6
T3 40 50 85 101 117 157 0 0 0 0 17 0 35 41 50 52
T5 39 54 61 78 69 84 0 0 0 0 0 0 29 42 39 39
T9 1576| 1567 1574 1580 1560 1576 0 0 0 0 0 0 0 0 0 0
T13 6806 6974 7079 7191 8977 9050 0 0 0 2 2 0 1 3 4 7
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Figure 10.11: Results of the large-scale experiment oiXtark 1100collection.
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generated tree queries against ®idark 1100collection, we randomly remove 15 hotspot queries. Then
we create five exact copies and five variants of each hotsgoygQuery variants are obtained by applying

different editing operations such as, e.g., adding a quedg or removing a tag or keyword constraint. The

complete set of test queries is the union of the resultingHdiSpot queries and the remaining 135 seed
gueries.

Now 19 distinct queries are randomly removed from this sdtesE so-calledewqueries are to be
evaluated incrementally in the experiment. Figlite_T@ldn the facing page shows some properties
of selected new queries. The remainicachedqueries are added to tHRCADG Cache (see below).
Obviously hotspot queries among the new queries are likelgrjoy a higher cache support, owing to
their duplicates and variants in the cache. Note that thbahility of a hotspot query being selected for
incremental evaluation is equal to the probability that espot query occurs in the entire test set, which is
reasonable.

After removing the 19 new queries from the workload and eiating duplicates among the other
queries, 199 queries remain to be added to the cache, as$olithe set of 199 queries is randomly sorted
and partitioned into four subsets of 38, 35, 61 and 65 distineries, respectively. These are evaluated
from scratch, and the answers for each query set are sugelgssilded to the initially empty cache. This
yields the stage€1 to C4 in FigurdlIO.TH] on the preceding page. Note that the main-memory footpfint o
theRCADG Cache is modest even when nearly 1 GB of results are cached on dislkding the B -Trees
on intermediate result tables). Since the growth of the eacimntents on disk is linear in the number of
cache edges, we expect that the system easily scales uerfhytithree orders of magnitude.

The results of evaluating all 19 new queries from scratchagainst the five cache stages are listed in
Figure[TO. Bl on the facing page. For each query (rows) and cache stagap&od columns), theime,
sup andovh columns respectively list the processing time in millised®, the cache support in percent,
and the search time (as a percentage of the processing Rue)ime measurements subsume all retrieval
phases including rewriting, planning and translation,dibischema hits (those retrieved in the cache and
those matched from scratch). For the purpose of analyzegukcome of the experiment, the new queries
are divided into four groups of three to seven members (grofipows in Figur€ IO 1M]).5

All seven queries in the first group benefit from specific caahr@ents available in different stages of
the cache evolution. For instance, consider the figlds0, timel andsup0, supl in the first two rows in
Figure[IOTD] At some point in time during the transition from sta@@to C1, cache contents have been
added that overlap with the queri&é® and T4, which avoids additional joins (cache support 100%) and
decreases the processing time by a factor 3afband a factor 97 foil 4. In subsequent stageS2—C4),
the search time increases a little, but clearly does notriepa the overall size of the cache. The other
five queries in the upper part of FigUre_TOHlbenefit only at later stage$ {4 in C2; T15in C4; T20 and
T22 in C2 and later; andr21 in C2). Up to this point where the cache becomes useful for a givemyg
the cache look-up causes only a negligible overhead.

Of the 130,000 distinct matches retrieved when answeriagjtreryT21, 10% are retrieved from the
cache after only 0.6 seconds (not shown in Figure TB) 1This illustrates how incremental evaluation
may increase the reactivity of the system even when only gfatthe results can be obtained from the
cache. Note that fof 22 which already has 100% cache suppor€i) the performance further improves
in C3 andC4 where newly cached queries permit more efficient query plaihss effect, which we also
observe for the second group of queries in Figure 1011& not reflected in the cache values because our
primitive cost estimation is too coarse. Figlire T@T}dlots selected results from the first six columns in
Figure[TOTD] (scratch andtime0 —time4) for all cache stages. Note the negligible overhead inttedu
by look-ups in the empty cache, compared to the evaluat@mn fcratch (left-hand side of Figure IO

The third group of queries in Figule_TOmlllists queries that do not benefit from cache contents,
mostly by lack of overlapping queries in the cache. Again Wweeove a small search overhead (inevitable
for deciding whether or not to use the cache) which grows nslmier than the cache. The resultsTa¥
andT13 are computed from 2-3 overlapping queries with small cacippasrt, hence the evaluation from
scratch is faster. Query planning with selectivity estiasats mentioned above, is likely to eliminate such
cases. The same applies to the queries in the fourth grosiptifieee rows in FigureEZI0 ), where the

5This grouping of the new queries must not be confused wittp#rétioning of the cached queries into the four cache stétug
was described earlier.
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cache look-up does not pay off compared to the extremelyefadtiation from scratch.

The queryT2 in the third group benefits largely from the fact that everghsaedgec. collectively
represents all schema hits that share a particular schegea Becall from SectidiT0%.2 that this allows
to compare the corresponding query constraints only oncthéowhole set of schema hits @3. Due to
the structure of the quef2, there are thousands of containing schema hits in the caktodwnly differ
with respect to a single schema edge. We found that matchenghany shared schema edges repeatedly
would cost a needless extra 14 seconds, which is completeiged with our data structures. Nevertheless,
this observation indicates that in extreme cases where i g@m¢ails a huge look-up result, the runtime
overhead might be considerable. However, such cases adelkimmediately after schema matching and
before the schematization, as soon as the number of sché&seehomes available. If a certain threshold is
exceeded, one may still decide at this point of the evalndatidook up only some schema hits in the cache,
or evaluate the whole query from scratch. Besides, quelithswary large result sets should probably not
be cached (also in view of the storage consumption, seecBEMLY).

10.7 Summary and Discussion

As a last step in this work on increasing the efficiency of XMitrieval, this chapter has presented the
RCADG Cache as a practical example of how to use schema information fratnuetural summary for
incrementally answering XML queries, based on a cache oontaboth intermediate and final results
of prior queries. The benefit of incremental XML retrievalganeral has been discussed in the previous
chapter, along with some problems and possible solutioatsithve been ignored so far. TREADG
Cache addresses several of these issues:

Use of query extensions. The incremental retrieval algorithm proposed here is lgrtgglored to the
two-phase retrieval performed by tRE€ADG, which first matches queries on the schema level so as to
obtain document-level matches more efficiently. ForR@DG, the schema tree serves as a path index
locating parts of documents with specific properties, siectag paths and textual content. TREADG
Cache uses the same schema information to retrieve and compdreatgaeries that resemble a new query
to some extent. Here the schema hits provide an approxireatend the query extensions on the document
level. Inspecting these result views, one may be able tcereadain query results in the cache that are
ignored by purely intensional approaches. In doing sORGADG Cache uses only schema information
that is supplied by th& CADG anyway, and therefore does not introduce an extra overhmagared to
the evaluation from scratch. Unlike the few DTD-aware systeeviewed in Chapt€l 9, our approach relies
on a descriptive schema and is therefore closer to the dugtae of the documents.

Reuse of overlapping query results. Most approaches to incremental XML retrieval are quite tadi

in their effectiveness, taking advantage only of cachedigs¢hat are either equivalent or strictly more
general than the new query to be evaluated. Moreover, cadhguery processing with and without
cache support has mostly been neglected. RGADG Cache exploits query overlap to a large extent
by partitioning the query extension into sets of matchesgtirtt schema hits. This way part of the query
result may be obtained from the cache while another partiieved from scratch. Since the two partial
answers are computed independently, the approach is mheagnenable to parallelization. In the end all
results are simply put together in a disjoint union. We hawttireed an integrated evaluation procedure that
efficiently detects and exploits any query overlap that aahdndled by th& CADG Cache, and retrieves
all missing results from scratch.

Reuse of intermediate query results. It has been mentioned before that intermediate results atedp

during the evaluation of cached queries have so far beeegdisded. In this work, we have shown how the
techniques developed for caching final query results caxteméed to apply also to intermediate results,
and how this allows to answer new queries incrementally foictvno final result in the cache could have
been reused, thus again increasing the effectiveness ehttiee. It turns out that if intermediate results
are available, they may be treated in just the same way asffireatyy results, with only a modest amount
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of book-keeping required. The main challenge here is to fisditable representation of the available
“snapshots” of the cached query results as they evolved tower. Again, we find that the necessary
information is readily available, namely, in the form of gquelans that capture all steps the evaluation has
gone through to answer the cached query. Thus we efficieatgrishine which “snapshot” of a given query
result is preferable, using no additional data structures.

Of course, keeping both intermediate and final results incd@he entails a higher cost in terms of
storage. However, our experiments show thatRRADG Cache scales well up to the gigabyte level in
term of both storage consumption and runtime performanegatticular, its main-memory footprint is
very low because the bulk of the cache contents is kept on disk

Runtime performance. In an extensive performance evaluation, we have demoedttae practical
benefit of using theRCADG Cache, assuming an unbiased synthetical query workload. Condpare
the RCADG system, theRCADG Cache achieves a speedup of up to two orders of magnitude in our
experiments. There are only few cases where the overhe#itefeache look-up is not compensated for by
faster retrieval, so that the evaluation from scratch itefaf\lthough the loss in performance is not large
in these cases, there is some potential for optimizatioa.hsmother issue is the possibly larger overhead
caused by extremely unselective queries in the cache ($a®)be

A comparative study of the performance of different cachépgroaches is missing at the time of
this writing. One reason is that many authors have addrasséuy the theoretical side of the problem.
We therefore merely highlight some performance-relatffér@inces between earlier approaches and the
RCADG Cache. First, theRCADG Cache designed to leverage and take advantage of the efficiency and
scalability of theRCADG. In particular, it takes over the relational storage schefrtae RCADG. Recall
from ChapteEB that elementsRCADG result tables are not represented as XML fragments inciytthieir
entire document subtree, but rather by their unique eletabet only. As a consequence, the matching of
D-constraints in the remainder query (such as the keyworstcaint in the example above) requires access
to data “outside” th(RCADG Cache. However, the missing data is simply obtained through a yath
the element table, which resides in the same RDBS as the cacltents. Thus remainder queries can be
processed as efficiently as any other query, as shown in fheziexents.

[Marron and Causen [20P2] argue that the hierarchiAP data model they use for theitl Caches
system (see Sectidi3}.2) fits XML data better than theioelat model. On the other hand, their
query interface is quite restricted, and not performansaltg are given that could support their claim.
[Kang etal: [200b] survey different storage schemes for XMthes, without commitment to any specific
qguery language. Their experiments suggest that querytsesathed in binary or plain text format can be
retrieved and updated faster than cache contents storedRDBS. However, this is mostly due to an extra
overhead for serializing relational data to XML text fragme which are used to transfer results from the
database to the cache and further on to the user. Our datedsdent cache deliberately departs from such
a strict three-tier architecture, hence the results repdsy{Kang et gl. do not apply.

In contrast to work based on Incomplete TréesSTADEeDoULIGD T HrIStidis and Petropoulos 2002],
the RCADG Cache comes with a main-memory index structure for quick accessathed queries with
specific extensional properties. Finally, wiile Hristidisd Peiropoulgs store the root path of every cached
element in their Modified Incomplete Tree, our approach @ixpithe BIRD labelling scheme to recon-
struct root paths, which therefore need not be cached. Tdtismy expedites the query evaluation, but
also reduces the storage requirements of the cache.

10.8 Optimizations and Open Problems

There are a number of ways in which tREADG Cache may be enhanced over what has been described
above. Most optimizations center around cache look-up actie maintenance issues. The rest of this
chapter outlines the most salient issues; a more thorowgistigation is left for the future.

Binary query constraints other than Parentand Child. So far we have assumed that every query to be
cached has at least oRarentor Child edge, and have restricted the cache look-up to these cimsira
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As a matter of factNextSih PrevSiband Selfedges can be handled similarly. For instance, an additional
constraintNextSitZ(g3,q3) in the queryQ" in Figure[IOZK] on pagdId3 can be handled as follows:
during the schematization @", the NextSibedge translates to th&constraintSibling’. The schema
node #2 that matcheg has only one sibling satisfying the tag constragghder \V sex , namely, node #6.
Therefore there is only one schema hit for the modified q@#yit looks exactly Iike)(é?n and produces

a schematization similar to the one in Figfire 1§} &n pagd 143, only with an additional schema edge
NextSib}(#Z, #6).5 This schema edge is used as a look-up ke jost like any other edge that represents
a Parenbr Child constraint. If the query nodg; had no tag constraint, then there would be three distinct
schema hits foQ" which would matctgj3 with the schema nodes #2, #3 and #6, respectively.

In contrast to the sibling anBlelfconstraints, th®-constraintd~ollowingandNextEltand their reverse
variants do not have correspondi8gonstraints. In fact, iQ" contained a query edgeollowing(q3,q3)
andqj3 had no tag constraint, thef§ could be matched by any schema nod&,imot only #2, #3 and #6
as with NextSih These binary tree relations are therefore likely to predio® many schema hits and
hence too many schema edges to be looked up in the cache. Mensstrict the schematization to
S-constraints as described before. Note that as a consegjubr®&CADG Cache cannot handle queries
like //person/following::name that do not contain ang-constraint.

Transitive query constraints. Another look-up issue concerns the chaining of transitiverg con-
straints such afarentor Child. For instance, consider the two quer@s= //person/profile/edu
andQ, = //person//edu against the same document collectidras in the running example (see Fig-
urelZIblon pagdB). From the schema tree in Fidurecd.@ne can see that bo@y andQ, have the same
schema nodes matching thgierson and edu nodes (namely, #1 and #4, respectively). Clearly both
angQ;) andangQ,) are part of theRCADG Cache overlap forD, soQ; should be evaluated incremen-
tally whenQ; is in the cache and vice versa. However, if only the two schedggs 0f,, Parent (#4,#3)
and Parent (#3,#1), are cached, a cache look-up for the schema edg rParent (#4,#1), will fail.
Analogously, looking up either of the schema edge®pfvould ignore the schema edge@$. Note that
this does not cause wrong result to be produced, but we restyglimiss a chance for incremental query
evaluation, which decreases the efficiency of the cache nfds straightforward solution to this problem
is to extend the schematization such that transitive caims$rlike Parent (#4,#1) are silently added to the
cache as well as to the set of schema edges being lookeddup in

D-constraints in the schema-hit containment test. The notion of schema-hit containment (see Defini-
tion[I0] on pagET34) implies that bindDyconstraints in a cached que®f which do not introduce a
proper restriction should be ignored in the containmertt g&a&n if they are missing in the new quepy}
being looked up in the cache. For instance, an unmirr&@entedge that was reconstructed during the
evaluation ofQ° is admissible because ancestor reconstruction cannoé gartial matches to be dis-
carded. This case is illustrated in FiglileZI@l dn pagdIa3 for the query ed@arentas, d,) in queryQ
(the corresponding schema ed@erent (#5,#3) in FigurelIO Al is highlighted green). Similarly, statis-
tics in theRCADG path table could reveal that certain constraints that asgicéve at first sight (e.g.,
an existential child constraint expressed in an XPath pegd) are actually safe to ignore in the given
document collection. Furthermore, binary constraint®imeed not have an exact counterpar@Qhfor
schema-hit containment to hold. An example has been giv&eationlCTIOZ]1 where the schema edge
NextElt] (#2,#5) in Q° corresponds to a more restrictive schema edeetSib; (#2,#5) in Q". The proce-
durecheckSnapshais outlined in AlgorithifiLI0l3 on pafle_156 does not recognizk sases of schema-hit
containment. However, the necessary modifications arigktfarward.

Cache maintenance. In this work we have not addressed the problems related totaiaing the cache
contents over time that were sketched at the end of the previbapter. In practice these issues are
fundamental to any caching technique, not only in XML retaie While some efforts have been devoted
to the maintenance of XML query caches, the research in &l dtills seems very much in flux. Recall

SNote that for horizontal relations such as sibling constsaithe normalization must not remove the proximity bounelsause
these are not fixed as f&hild and Parent
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from Sectio@F that major questions here are (1) whichltes$nl put into the cache; (2) which cache
contents to expel to avoid an overflow; and (3) how to intialihe cache so that the system can jump-start
with an appropriate sample of the expected query workloala fossible criterion for deciding the first
guestion, we have mentioned above that highly unselectiegies with many schema edges are likely
to suffer from a considerable look-up overhead, and theeesbould be shunned in caching. Second, to
retain the most useful data in a cache of limited size, a cepfeent strategy is needed. Besides standard
strategies for the maintenance of priority queues, ldast-recently/least-frequently usgabssible hints

for assigning appropriate priorities could come from esipliser feedback or silent monitoring of user
interaction. Alternatively, one might choose to retainghoesults that were most expensive to compute.
[Mandhani and Suciu [20p5] sketch a simple solution based fored size limit, but only determined an
empirical workload-specific value for the threshold. Thésogpropose a warm-up technique for cache
initialization.

A fourth problem related to cache maintenance occurs whernutiderlying document collection is
updated. In this situation some or all cache contents magrbecstale. Since the tag paths to updated
elements are available in the element table, we might usexiséing main-memory indeg to retrieve
stale cache contents efficiently, exploiting schema infdiom in the same way as for detecting query
overlap. To some extent, the robustness of our cache algmdsn the underlying tree encoding. Some
more hints at database update techniques are givEn by Qaanzd0y], although in a different retrieval
scenario.
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CHAPTER
ELEVEN

Summary and Discussion

This work is about how structural summaries for XML data cantdbute to making XML retrieval sys-
tems more efficient. For studying this question the follayvpreliminaries have been introduced. First
of all, the notions of XML documents, the structuresshemaof such documents, their textual contents,
and queries specifying structural and textual propertfedesired portions of the documents have been
defined and summarized in tAéree-Level Model of XML Retrievédee Sectioi 214 in Pdlt I). Second,
we have given an informal definition of the tesmmuctural summarywhich is deliberately general enough
to include bothcentralizedapproximate representations of the document schemaecehtralizedexact
representations of relations between individual XML elatsein the form of labelling schemes. Third,
we consider distinct kinds of XML retrieval system, namelgtive relationalandhybrid ones.

The main argument of the thesis is that certain kinds of atratsummary, when applied appropriately,
speed up the query evaluation significantly even in verydadlections of XML documents, while causing
only a modest storage overhead. This claim is underpinneekignsive experiments that evaluate the
proposed new techniques and also compare them to prior agpes known from the literature. The
preceding parts of this work have considered different $ygred various aspects of structural summaries
that all contribute to the efficiency improvement, which éhi@ved in native, hybrid and purely relational
retrieval systems. In the sequel we briefly recapitulatefimgiings, highlighting both problems that have
been solved and questions that remain open.

Part [T Labelling Schemes for XML. Labelling schemes are decentralized structural summtréts
serve to match binary query constraints on the document \eitleout accessing the documents them-
selves. Query constraints can be eittlecidedor reconstructedLabelling schemes differ greatly in their
expressivity (i.e., if and how they match specific tree fetat), time and space efficiency, and robustness
against modifications to the document tree. These confijaijtimization goals span teade-off space
where different labelling schemes occupy different posii In Chaptel3 we have seen three classes of
labelling schemes. Firssubtree encoding@ncluding as subclassésterval, pre-/postorderand region
encoding} use node labels that represent the size of the subtree oka document node. This gives
them rich decision capabilities and limited robustness,poavents support for reconstruction. Second,
path encoding$which subsumeotal andpartial path encodingsconcatenate node labels along the root
path of a given document node. The resulting labels are Ipigdsirge and therefore compressed using
different binary encodings. For reconstruction and deanishe labels can mostly be manipulated in their
binary form. Path encodings are typically fairly robustiagadocument updates. Third, a small number
of multiplicative encodingfabel the document tree as if it had a highly regular strggtusing different
non-materialized homomorphisms. The resulting labelingemes are typically rather sparse but offer
fast decision and reconstruction of many tree relations.

ChapteEl has presented tB&RD labelling schemd TWeIgeT et al. 20Q%c; Weigel et al. 2Q0adjul-
tiplicative encoding whose labels are created using e¢enamerical components, areights that reflect
properties common to multiple document nod&RD uses the schema tree as a centralized structural
summary to ensure fast access to the weights for reconsinuetd decision.BIRD is among the most
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expressive labelling schemes in the literature. Expertmshow that it outperforms almost all other ap-
proaches in terms of retrieval speed and maximal label $ize efficiency of reconstruction and compari-
son operations is shown to be paramount for good retrievébpeance. Only one competitor 81RD is
much more space-efficient, but less expressive. A majorlolalwvofBIRD in its current form is its poor
updatability when faced with node insertions in certainifmss of the document tree. Several potential
optimizations have been sketched that should nizR® labels and weights more stable and at the same
time smaller than in our experiments.

PartT]Index Structures for XML. Different native index structures for XML documents areveyed
in ChapteEDb, including traditional inverted lists from ftakt Information Retrieval, adaptations thereof to
elements with their tag paths, and finally tree data strestlike the schema tree that can be used to index
tag paths and keywords simultaneously. The latter are ynestlants of centralized structural summaries
like the schema tree, and as such can be combined with ladpeBchemes for better retrieval performance.
The look-up latency of such path indices depends much on hgwpaths, textual contents, and their
combinations are physically represented, especially vpnecessing queries with branching paths.
ChapteED briefly reviews thEADG index [WelgeT et al. 2003&; Weigel 2903], which achievesifig
cant performance gains by materializing the join of tag autth keyword information that prior approaches
have computed at runtime. Of course this also has an impdbeasize of the index structure, but the space
overhead is modest and practically restricted to secorstarpge. Note, however, that rather than trying
to assess the retrieval performance of a path index in isalat makes more sense to take into account
also which labelling schemes and structural join algoritare used with it. In Pailll we have given the
results of combining th€ADG with different labelling schemes in a hybrid retrieval €t with positive
outcome in terms of time- and space efficiency as well as sitiya In the remainder of the thesis, the
combination ofCADG andBIRD is further evaluated in a relational setting.

Part[V] Relational Storage of XML.  For various reason mentioned in the introduction to thisk/(see
ChapteflL), the storage and retrieval of XML data in relatlatatabase systems has aroused much interest
in recent years. In ChaptEl 7 we have reviewed different vimysiore the inherently hierarchical XML
documents in specific schemata of the flat and rigid relatidai model. Most earlier approaches simply
represent either singleton elements or pairs of parentaifdlelements as tuples in a table, thereby losing
the originally explicit information about the nesting oégients and tags. Expensive structural joins are
needed to restore this information when matching querytcaings on the document level or the schema
level at runtime. Only few relational storage schemes haenlescribed in the literature that attempt to
represent schema-level information (most notably, taggan the RDBS. They mainly suffer from a lossy
representation of the hierarchical nesting in the docusemhtich can cause many partial matches to be
retrieved in vain during the evaluation of tree queries.

Our experiments in ChaptEl 8 reproduce such cases wheretthefintermediate result retrieved by
these systems needlessly blow up to millions of elementapered to several hundred with our approach.
We basically use the same combinatiorfC&DG andBIRD as in Chaptdrl4, after migrating both to the re-
lational data model. The storage scheme of the resuRistgtional CADG (RCADG) [WeigeT et al. 2009b]
is straightforward since we only need to fix a suitable retei schema for the structural summary part
of the CADG. However, we carefully avoid the lossy representation gfgaths mentioned above. The
RCADG also comes with some basic query rewriting techniques thaitlgprobably be extended. How-
ever, the core of the relational query evaluation with READG is the query planning algorithm which
is described in great detail. The algorithm is designed teefieas much as possible froRIRD’s recon-
struction capabilities, which have proved crucial to goedi@rmance in our experiments with the hybrid
system (see Chapfdr 4).

As a matter of fact, there are at least two conflicting optatian goals that a good planning strategy
should try to reconcile somehow. On the one hand, the quenyldtbe evaluated with the least possible
number of joins with the element table, where the bulk of tbeunent-level information resides. Every
binary query constraint that is reconstructed (in our cas@)g BIRD) saves one join with the element
table. On the other hand, to minimize the size of intermediesults to be joined when matching branch-
ing queries, the element table should be initially probetthwie most restrictive selection predicates. The
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problem here is twofold. First, those query nodes with thetselective unary query constraints are not
necessarily those which allow to reconstruct a large nurobdinary constraints, hence the conflict in
qguery planning. Moreover, while the selectivity of tag patimstraints is easily kept in the structural sum-
mary, estimating the cardinality of the set of matches toralmoed path/keyword constraint is non-trivial
given a limited amount of space for storing selectivity istais. Therefore we currently apply a simple
heuristic that simply prefers query nodes with any keywardstraint over those without keyword con-
straints, regardless of the frequency with which the adtegivord in the query occurs in the documents.
While this already yields very good results in our experitsewhere theRCADG outperforms other

relational and hybrid systems by up to three orders of magdaitwe expect even better results from
more sophisticated query optimization and planning tegies. Another possible enhancement is the
implementation of a structural join operator in the RDBSrr@€ntly theRCADG uses standard nested-loop
and indexed-loop joins since no tree-aware operator isablaiin our RDBS.

Part i1 Caching Techniques for XML. ChapteP surveys a number of approaches to the incremental
evaluation of XML queries using cached results of earliegrggs. The different caching techniques are
compared in terms of various criteria of theoretical or pcat interest. These include, among others,
the underlying data and query model, the way cached quenigsesults are represented, the extent to
which only partially relevant query results in the cache bameused, and the scalability of the approach
(determined by the cache size and the look-up latency). Aomiague here are the notions gfiery
containmenandquery overlap Even the apparently unambiguous idea of query containivetmteen a
cached and a new query can have different meanings for seotisted data, depending on whether the
entire result of the new query must be physically presenttiéncache or whether only each match to the
new query must have a (possibly partial) counterpart in &selt of the cache query. In the latter case,
additional joins with the element table may be needed toiolitee complete result of the new query,
however this might still be done much faster than evaluatieghew query from scratch. In a third variant,
only some of the matches to the new query are retrieved ingbleecwhereas the remaining matches must
be computed from scratch. This requires the integrationsifmtt query evaluation procedures that may
or may not use the cache.

To facilitate the comparison of the various cache propasdle literature, we therefore formally define
different degrees of query containment and query overtdprrs out that almost all known approaches are
restricted to full query containment. Notice that this doesmean that all cases of strict query containment
are detected. Since this problem has exponential compleXibf the reviewed algorithms are incomplete.
This also applies to th&®CADG Cache, an XML query cache that we introduce in Chafdiel 10. The
RCADG Cache enhances th& CADG with efficient and scalable incremental query processinglikg
almost all other approaches mentioned before,REBADG Cache compares queries not only based on
their intensionsbut also theiextensionsn the schema level, which provide an approximate view on the
actual query results on the document level. In a procesedsthematizationqueries are first matched
against the structural summary to find representativescbhema hitsof different disjoint parts of the
query result, which is unknown at that time. The schema In@gteen looked up in a main-memory index
to the cached queries and results in RE@ADG Cache. A sophisticated comparison of query intensions
and extensions (i.e., query constraints and schema hlitsysato detect certain cases of containment or
overlap which cannot be exploited without the structurahswary, even if a DTD is given. Again, the use
of structural summaries brings a decisive advantage ohensa-oblivious approaches, a phenomenon that
we already observed in previous parts of this work.

Furthermore, th&@CADG Cache is the only XML cache we know of that exploits not only final but
also intermediate query results which usually emerge aliyuturing query evaluation. In the case of the
RCADG, intermediate results are conveniently stored as tempadahfes in the RDBS, which need only
be made persistent to be included in the cache. Obviousthitng more results generally increases not
only the effectiveness, but also the size of the cache. Ttrerene major challenge to be overcome for
exploiting query overlap and intermediate results was th&gh of a suitable cache index and look-up
procedure that enable fast access to potentially relevasrtas in the cache, even when the overall number
of cached queries is huge. A second precondition for suftdessploitation of overlapping queries in
the cache is that those matches to a new query that cannotdieedbfrom the cache must be computed
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from scratch, and later be combined with the remainder ofjtlexy results that was retrieved in the cache.
Since the schema hits we use for selecting relevant cachterdsirepresent disjoint sets of matches on
the document level, we can simply evaluate the same quehyamil without cache in parallel and finally
union the partial result sets without duplicate eliminatidn Chapte[ZI0 we give a detailed description
of all necessary data structures and algorithms, along setleral examples that illustrate the benefit of
the salient contributions of thRCADG Cache, namely, query overlap detection and use of intermediate
results.

To evaluate th&@ CADG Cache, we have conducted two different experiments that simyatential
user behaviour in an interactive retrieval system such estie sketched in the introduction to this work
(see SectiolI13). We find that with tREADG Cache, the query evaluation is accelerated by up to two
orders of magnitude, depending on the query workload asstorfél the cache. A careful set-up monitors
a growing cache as it may evolve during the continuous useacle-enabled retrieval system. An obvious
issue here is the maintenance of the cache over time, magilgothe choice of query results to be cached
and others to be expelled from the cache when is grows toe.|diigese questions are not fully addressed
here, however preliminary solutions have been outlined.

174 Felix Weigel



CHAPTER
TWELVE

Perspectives and Outlook

At this point, where all issues that are covered by this thhaive been mentioned and all contributions
made in about three years of work have been developed, dotechand evaluated, a final word is in
order on how the results can guide or entail future work inftbkel. We will briefly recapitulate what
can be gathered from this work as far as efficient XML retriégv@oncerned, and then sketch two other
applications of structural summaries that can also beniedititly or indirectly from our results.

12.1 Lessons Learnt

The key conclusion that should be drawn from what has beesepted here is thatructural summaries
are indeed at the core of making XML retrieval efficient arelaiole enough to face today’s challenges and
tomorrow’s expectationd/Ve have seen how structural summaries can solve some ofostsfamdamental
problems that arise during XML query evaluation, with wivatesystem or technique:

1. provide fast access to occurrences of specific tags orathg n the documents;
2. identify certain unsatisfiable queries immediatelyhwiit accessing the documents;

3. decide the question whether a certain tree relation Hodtlween two elements, in constant time
without any 1/O;

4. reconstruct a part of the neighbourhood of a given elenrenbnstant time without any 1/0;

5. hold data that is specific to a certain class of elementdhatat is readily available for any of these
elements without redundant storage.

These features have been exploited at various places thwoatithis work: the native retrieval systex?
uses theCADG as path index an&8IRD for deciding and reconstructing tree relations withoutesscto
the document level; the relational retrieval systBwX does the same with thiRCADG; BIRD uses the
CADG or RCADG to store its weights; thePID scheme does the same with thetaGuide; and so on
(another example will be given below). From a bird’s eye vive reason why structural summaries are
the method of choice in the various cases is always the samptydecause they provide the right amount
of information about the underlying XML data in the right wayd ignore the rest. This is exactly what
users expect from a retrieval system, and also what the deengl expects from its index structures and
access paths. In other words, a “good” structural summary fgiven purpose provides just the right
abstraction of the data that is needed to avoid the expensiwvepulation of the data itself. ThEhree-
Level Model of XML Retrievalepicted in FigurE2]3 on pafiel 13 is meant to visualize jutittuition, in

a sufficiently generic way to be applied also to other retdieseenarios that are different, but related. For
instance, the picture might be adapted to a streamed dateesou a set of distributed data sources, or the
combination of distinct summaries (abstractions) on mpldtintermediate levels.
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12.2. FURTHER APPLICATIONS OF STRUCTURAL SUMMARIES

From a more down-to-earth perspective, the different datetsires and algorithms introduced in this
work are of course the predominant contribution, which wpehwill be broadly applicable in other sit-
uations where similar problems arise. While R €ADG Cache with is rather specialized data structures
is likely more interesting from a system-centric point oéwj BIRD and theRCADG storage scheme
are generic enough to be adopted without much need for matiific The abridged survey of labelling
schemes presented in Chagikr 3 illustrates such transfeslations across quite disparate domains of
research: thus some of the most frequently cited labellohgmes in the XML literature were actually
designed for routing in communication networks. In factnsoof the work that was done before the ad-
vent of XML in the Discrete Mathematics community seems teehlaeen reconsidered (and sometimes
rediscovered) later, with new applications in mind.

It is equally true, however, that much of the more theoréachievements in labelling tree and graph
data never made it into the Related Work sections of papebshdin retrieval. The history of science
probably abounds with examples where “new” solutions (npoeeisely, solutions yet unconsidered) to a
specific problem emerged just because someone realizemkite lwork that had been done by someone
else before. This is said to emphasize the value of surveysaalytical or empirical comparisons of
alternative approaches to similar, if not identical questi Thus if a prominent place in this work has been
reserved for classification, systematic comparison, Vizai#on, and terminology, this was done with such
methodological considerations in mind.

A practical application of the classification criteria thae been proposed for labelling schemes could
be a recommender tool that suggests a suitable scheme tpledap a given document collection, based
on characteristics of the documents (e.g., structurarbgéneity, maximum path length, maximum fan-
out, markup-to-text ratio), of the data source (static wemynamic, continuous versus bulk updates), of
the query workload to be expected (most common tree reltioeried, frequency of complex branching
patterns, proportion of structural to textual query caaists), of the runtime environment (primary and
secondary storage available, access speed to secondayejtand of the user’s skills and expectations
(expert versus novice, real-time information need verdtdire analysis). It is easy to see that these
parameters reflect quite closely the optimization goalsitiémrnt labelling schemes that are plotted in
Figure[ZID on pade®s.

Such a recommender tool is also conceivable for choosingtabsel path index, or for indexing fre-
quently queried parts of the document tree in some prividegshion. Similar indexing assistance is al-
ready offered by some commercial RDBSs. Analogous teclesiquight also apply to cache maintenance,
where the system must decide which query results to put irgaqtiery cache and which to expel once
the available resources (storage or look-up time, in the o&sery unselective queries) are exhausted. In
the end, monitoring the aforementioned user, data andmyséeameters (which may change over time)
could lead to a largely autonomous system administratientginning in the background. Going through
continuous maintenance cycles, it would adjust the syst&rmsto the current real usage, rather than the
fictitious usage assumed once before the system start-up.

12.2 Further Applications of Structural Summaries

Finally, we would like to hint at two other aspects of XML iietral besides efficiency where structural sum-
maries are useful, namely, relevance ranking and usesictien in XML retrieval systems. These fields
being beyond the scope of this work, the following desaoiptis necessarily cursory. A more balanced
discussion of the various benefits of structural summasiésund elsewher§ TWeigeT 2706].

12.2.1 Relevance Ranking

In Chaptefd is was pointed out that Information Retriev&)(systems for XML documents face the
problem of relevance ranking with respect to both the tdxtoatents and the markup structure of the
documents. Most ranking models for structured documemsadaptations of flat-text models such as
tf -idf [Rallon and McGITT983], which computes relevance scoesed on (1) theerm frequencyi.e., the
number of occurrences of a given term (keyword) in a specifaudhent, and (2) thdocument frequency
i.e., the number of documents in the collection that congileast one occurrence of that term. When
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applying such models to XML documents, other or perhapstiaddil frequencies are needed that reflect
the distribution of terms with respect to distinct elememtsags or tag paths. For instance, some XML
ranking models redefine the document frequency as the nuofileéementswith a specific tag patithat
contain least one occurrence of a given term. Note that Wwithdefinition the document frequency is a
function of a term and a tag path, while the former definitibn\ee treated it as a function of a term only.

Redefining frequencies in this way has immediate conse@seioc the storage structures used to im-
plement a given ranking model. For instance, while the nyetesim-specific document frequency (first
definition above) easily fits an inverted text file (see FidarEal on pagdZR), the term/tag path-specific
document frequency (second definition above) has no plateeimverted text file because tag path in-
formation is not covered by this data structure. Suitabbeinstructures for this sort of document fre-
quency values include, e.g., the inverted text/path file @gurd2), the two- or three-dimensional
path bitmaps (see Figufe®.2 on p&gE 73 and Figute 5.3 ol @hgespectively) and the element table of
the CADG (see Figur€gl1 on paf€l82).

In earlier work [WelgeT €t al. 2004b] we have developed a meétio find out which index structure is
capable of storing all sorts of frequency that are used byrtécp&ar ranking model for structured doc-
uments. A generic classification scheme, Bagh/Term/Node Hierarchyis introduced which describes
XML ranking models in terms of their dependency on threeding blocks of an XML document (namely,
Path, Termy andNodé. Since the same vocabulary is used to specify which doctipreperties a given
XML index can store, th@ath'TerniNodeHierarchy makes it easy to relate the needs of a ranking model
to the capabilities of an index. It turns out that the moradiemking models can benefit from most of the
centralized structural summaries reviewed above. Howaweong the index structures presented in[Bart 111
of this work, only theCADG (see Chaptdl6), tHadexFabric (see Sectioi’5.4.2) and the inverted text/path
file (see SectiolBl2) are capable of storing so-cd¥&N frequencies.e., frequency values that are at the
same time term-, path- and node-specifIN frequencies are used by some of the more sophisticated
ranking models such a6PREJMNVOIT et al 2000)].

Following thePTNanalysis of th€€ADG and other index structures, we have created a modiidalG,
the Integrated-Ranking CADG (IR-CADG), which can be configured so as to meet the demands of a variety
of different ranking models for XML[TWeigeT et al. 2009a; Wef et al. 2004b]. ThéR-CADG is an ex-
ample of how the ranking of structured documents can takargdge of centralized structural summaries.
In terms of the Three-Level Model of XML Retrieval, the freancy values stored in the summary make
certain properties regarding keyword and path distrimgion the document level visible on the schema
level. This permits systems to use advanced ranking mod#iscamplex frequency parameters that mir-
ror more closely the textual and structural properties efdtbcuments, which may eventually lead to better
precision and recall. As a by-product, efficiency benefisgsdssed for unranked XML retrieval carry over
to the ranked case.

12.2.2 User Interaction

Sectior LB has sketched a new way for users to interact dthetrieval system, which makes heavy use
of a graphical representation of the schema tree as stalstummary. In earlier worlfJMeuss et al. 2ZD05]
we have described a preliminary version of such a graph&al interface (GUI). The system proposed
there provides separate views on the schema, queries aritbre3nce a query has been formulated and
evaluated, the retrieved hits are explored in a graphigabsentation reflecting the query structure. While
browsing the result view, users often wish to modify the guealizing mismatches with their information
need. Currently this requires re-editing and re-runnirggdhery outside the result view (perhaps after
consulting the schema again). This not only causes neetlegsutations to retrieve data which is already
known, but also makes it hard for the user to keep track of igsda the query result.

The most salient feature of the new GUI to be developed isigfint integration of the schema, query
and result views. ldeally the user would silently issue nexrges or modify previous ones while brows-
ing the document schema or query result through a pointetiokl-interface, as follows. First the user
activates interesting tag paths in the schema tree and gsegmmnotates them with keyword constraihts.

INote the similarity between these user-specified quengpettin the schema tree and the schematized queries intmdoc
caching purposes in ChaplEd 10.
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The occurrences of these tag path patterns (actually, mgcodected schema hits) span a set of subtrees
in the documents which in turn induce a partial schema tratishspecific to the current activation. For
instance, consider the sample document Bee FigurelZIblon pagdB. Initially the schema tr&for D
looks like the one shown in FiguieZXlon pagdB. If the user activates tiperson and gender nodes

in S, then the subtrees, to az in D are temporarily ignored, being irrelevant to the currerrusterest
(since neither of the three subtrees containg:ader node). Consequently, the schema t&de reduced

to reflect exactly the schema of the remaining sub&gef D. In this case, this means that the schema
nodes #3, #4 and #5 disappear from the schema view. Wherevasér changes the activation pattern in
the schema view, the structure of the schema tree shownithiemmediately updated, e.g., by hiding paths
outside the reduced schema as above, or by making hiddes neabpear. Note that finding the currently
relevant subtrees d can benefit from our efficient tree matching techniques, ljistthe evaluation of
explicit user queries.

Note that the user can at any pointin time either narrow domexpand the schema tr&by changing
the path activation. Moreover, distinct paths camigedi.e., treated as equivalent both in query evalua-
tion and in the GUI. Conversely, occurrences of the samea#igqan be distinguished 8 based on their
textual content or statistics such as subtree sizesplisting the corresponding node in the schema view.
In terms of the Three-Level Model of XML Retrieval, this béuto some extent the distinction between
the schema and document levels. However, since users ané goftrol over the shape of the schema
tree, we believe that this feature will actually help theral® relevant information in the document and
schema trees more naturally than when a rigid separatidredfito levels is enforced at all times. Again,
the benefit of structural summaries results from their gtimg the “right” abstraction of the document
contents. Users should ideally decide themselves whalt déabdstraction is currently appropriate, given
the information need they have in mind.
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13.1 Hardware and Software

Test Environment A
AMD Athlon XP 2600+2.1 GHz, 256 kB cache

CPU:
RAM:
Os:
RDBS:
JAVA:

1GB

Slackware Linuxversion 9.1, kernel version 2.4.26
PostgreSQlversion 7.3.2 (database cache disabled)
Sun JDK version 1.4.2

Test Environment B

CPU:
RAM:
os:
RDBS:
JAVA:

AMD Athlon XP 1800+1.5 GHz

1GB

SuUSE Linuxversion 8.2, kernel version 2.4.20

PostgreSQLversion 7.3.2 (database cache disabled)
Sun JDK version 1.4.1

Test Environment C
AMD Athlon XP 2600+2.1 GHz, 256 kB cache

CPU:
RAM:
os:
RDBS:
JAVA:

13.2 Document Collections

1GB

Slackware Linuxversion 9.1, kernel version 2.4.26
PostgreSQlversion 7.3.2 (database cache disabled)
Sun JDK version 1.5.0

Experimental Set-up

name XML size nodes keywords | tag paths | depth
Cities 1.3 MB 16,000 19,000 253 7
XMark 29 30 MB 417,000 84,000 515 13
DBLP 157 MB 5,390,160 757,451 129 7
NP 510 MB 4,585,000 130,000 2,349 40
INEX 536 MB 12,049,113 496,169 10,203 17
XMark 1100 1,145 MB 20,532,979 84,000 549 13
IMDb 8,633 MB 83,404,825 | 2,340,060 276 5

Table 13.1: Test document collections.
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Comparative Performance Evaluation of Five Labelling Sobe

This section provides some detailed observations fromdhgarative performance evaluation of different
labelling schemes that is described in Sediion.6.3. Adioreed there, th&IRD, ORDPATH, pPID, and
Virtual Nodes schemes are compared against each other and against thggpitabelling as baseline. The
experiment is carried out on two document collectiddBLP andXMark 1100(see SectioRiZI3.2 above).
Each set of queries against either collection is evaluatpéatedly with three different path join strategies,
namely ALWAY SFIRSTandNEVER[WeIgeT et al. 2004c].

TabledTTZR] andl] list the eight queries that are run against BgLP and XMark 1100collections,
four against each. Queries with equal number resemble ébehto a certain extent: botkMark 1100s
andDBLP's QO queries are small trees with a single branching nodextaal constraint and a moderate
number of results (where matches for all query nodes aretedwas mentioned above). The Q1 queries
are structurally similar but lack the textual constrainjeth makes them less selective than their QO coun-
terparts. The Q2 queries stress the path join capabilifiéseosystem, whereas each of the Q3 queries
consists of only one path.

The detailed performance results for all queries agaieddBLP andXMark 1100collections are given
in TableTIZAlandbl respectively. For each of the three path join strategiesetare five columns listing
the average time in milliseconds spent by a given labellaigme in different evaluation stages for a given
query. Each of the five stages accumulates all instanceseodfaihe following problems that occur during
evaluation of a single query:

1. REC: reconstruction of thearent relation

2. DEC: decision of thehild' relatiort

3. JOIN: path join (subsumes part of REC, DEC and COMP)
4. FETCH: retrieval of document nodes from the RBBS

5. COMP: node label comparison

Running QO against both collections produces largely simésults. When applying tLWAY Strat-
egy, BIRD outperformsORDPATH anduPID and is 2-3 times faster thavirtual Nodes thanks to faster
reconstruction, whereas preorder is prohibitively slowislchanges when tHelRST strategy introduces
decision. OrDBLP, preorder evaluation of QO is even slightly faster tBdRD (2.2%) and outperforms
Virtual Nodes by far. The latter is especially handicapped during the.j@m XMark 110Q preorder is
clearly inferior to any other scheme fBIRST pPID andBIRD are more than twice as fast @RDPATH

1This subsumes part of COMP. Note that Wietual Nodes scheme decideShild! (u,v) for two document nodes, v by recon-
structingparent(v) and then testing whether the reconstructed ancestor lgbalsai. This extra reconstruction is subsumed by DEC
and not included in REC values.

2Note that since preorder labels support neither decisiorremnstruction, REC, DEC and JOIN may subsume considerabl
portions of fetching time in the baseline tests.
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QD HITS QUERY

Qo 136 )/aniclelfauthorfcontains(., "codd’)] and . Aitle]

Qi 4805fincollection[./auther and . fitle]

Q2 1269/ article[/fauthorfcontains(., i")] and /titlelfi and ./fyear]
Q3 5419/book//cite/™/attribute::label

a. DBLP
Qo 128 jifeuropelfitem[. /parlist{contains(.,"bedford”)] and ./femph/keyword]
] 14 699 )/europelitern]. fparlist and ./femph/keyword]
@ 225 /site/inamericalitem[./description/keyword[contains(., "akandon™) and ./fbold]
and ./iname and ™/ attribute:: category]
a3 1777|//people//person//address/city[contains(., “munich™]]

b. XMark 1100

Table 14.1: Sample queries against B@LP andXMark 1100collections (see SectiénZ¥.3).

and beavirtual Nodes by one order of magnitude. ApplyindEVERslows down evaluation roughly by a
factor 2 onDBLP and much more oXMark 1100 Due to faster decisiofBIRD remains on the top.

Evaluating Q1 orXMark 1100takes somewhat longer than evaluating QO (typically oneroofimag-
nitude) because due to the missing textual query constrdartbigger node sets must be joined. The size
of the query results differs by two orders of magnituB&kD anduPID retrieve more than 14,000 nodes
in less than 3 seconds, followed B\RDPATH (6 seconds). As before, performance breaks down when re-
construction is disabled. Thus the performance rankingrisar to QO except that foFIRSTandNEVER
Virtual Nodes is far slower even than the baseline since its join handicgighe particularly heavy for this
query. OnDBLP, Q1 reveals a pattern similar to QO but is evaluated muclerfa3the reason is that the
number of matches to all three query nodes in QO, ignoringetkiial constraint, exceeds that for Q1 by
two orders of magnitude (e.g., 157,382 titles in QO verst93 titles in Q1). Therefore joining is much
easier for Q1 even though the final result is bigger than th@@ As a consequence, nearly 5000 nodes
are retrieved in only a few hundred milliseconds by most se®and strategies.

The evaluation of Q2 oXMark 1100is lengthy despite the small number of final matches. After al
joining sets of some 100,008ame nodes, 100,00bold nodes and 380,000ategory nodes with the
102 xeyword nodes containing the query keyword puts the system to a batdwithout decisiorBIRD
anduPID do the job in 14 seconds, saving 20 seconds compar&RiOPATH andVirtual Nodes. As
for Q0 and Q1, the preorder scheme is not competitive. WighHHIRST strategy, where decision comes
into play, the former three schemes are not affected wheheasesponse time dfirtual Nodes grows
by a factor 18 due to the join overhead. Interestingly, preorder benlkgifiteely from decision for joining,
increasing its performance by a factor 40 comparesld/AY Sand evaluates Q2 slightly faster thaiRD.

The top-down join algorithm applied ByIRSTlets preorder save much time that is otherwise needed for
reconstruction (and hence, fetching). Disabling recamsion decreases the performance by roughly a
factor 3, but the scheme ranking remains the same.

OnDBLP, the task is somewhat easier (as long as reconstructioloigeal) because thé/title//i
branch has only 664 matches, which quickly narrows down fié73candidates of the leftmost branch in
the Q2 tree. Consequently, performance figuresMAVAY Sand FIRST hardly change compared to QO
(BIRD beforeORDPATH, uPID, as well asVirtual Nodes and preorder). With reconstruction disabled,
however, fetching 157,382rticle matches slows down the evaluation and increases the ditffese
between individual labelling schemes. As observeditark 11005 Q2 query,BIRD outperformg®RD-
PATH anduPID by 1 second, preorder by 4.5 seconds, ®irtual Nodes by 5 minutes. The latter again
suffers from the join overhead.

Finally, the queries Q3 are degenerated trees each cogsatia single path, such that there are no
decision and join costs fohLWAY Sand FIRST As could be expected, differences between these two
strategies in the performance of any given labelling schaneenegligible on either collectionBIRD
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PATH JOIN STRATEGY (USE OF RECONSTRUCTION)

QID SCHEME ALWAYS FIRST

REC. DEC. JOIN FETCH COMP. REC. b JOIN FETCH COMP. REC. 5 FETCH COMP.
BIRD 95 0 555 1344 3163 0 0 479 1372 3145 0 0 454 3288 5777|
ORDPATH 309 0 754 1458 3305 0| 1 463 1442 3337 0 1 482 3435 6071
Q0 |uPID 105 0 633 1321 3210 0 0 489 1302 3235 0 1 515 3293 5862
Virtual Nodes 279 0 871 1789 8196 o 11155 13600 1593 8229 0 19207 22846 3189 14217
Preorder 105985 52| 115870 104931 3298 112 96| 560 1423 3126 177 191 657 2728 5762
BIRD 3| 1 46 44 87| E 2 171 53 83 0 1 142 51 94
ORDPATH 6 2 82 43 90| 5| 5 169 46 96 0 9 146 44 102
Q1 |uPID 3 1 60 36 86 3 2 99 42 88 0 7 178 45| 93
Virtual Nodes 7 4 83 37 224 8 3951 4621 51 337 0 6415 7826 39 232
Preorder 3991 1671 2614 3953 108 3950 2493 2617 3896 109 5558 5963 6333 5484 136
BIRD 121 0 276 1465 2842 1 0 137 1359 2847 0 2 265 4695 7910
ORDPATH 275 0 436 1498 3045 4 0 136 1402 2983 0 8 304 4844 8461
Q2 |uPID 116 0 290 1377 2934 1 1 148 13186 3025 0 5 301 3956 8117
\Virtual Nodes 279 0 480 1653 7937 5| 1683 1915| 1943 7485 0| 313732| 372942 5635 20749
Preorder 101840 2| 109615| 1010686 3040 1577 237 385 2799 2818 4259 4560 4886 7950 7960
BIRD 4 0 0 33 113 3 0 0| 27 119 0 3 233| 63| 149
ORDPATH 25 0 0 35 114 10 0 0| 40 124 0 14 270 66 168
Q3 |puPID 2 0| 0 32 113 5| 0 0 41 121 0 10| 253 50 156
Virtual Nodes 22 0 0 40 460| 9| 0 0| 38 373 0 9821 12011 55 402
Preorder 3677 0 0| 3654 153 3645 0 0| 3592 136 7189 7767 8284 7088 192
a. DBLP

PATH JOIN STRATEGY (USE OF RECONSTRUCTION)
SCHEME ALWAYS FIRST

e DEC. JOIN FETCH COMP. REC.
BIRD 23

0 34 214 322 4 0 18| 119 321 0 6 913 1710 2427

ORDPATH 43 0 54 92 1418 22 1 39 87 1390 1 60) 765 1856| 11229

Qo |wPID 10| 0 a1 234 303 5 1 26 101 322 0 14 431 2190 32086
\Virtual Nodes 89 1 91 161 1562 20 4138 4385 123 1516 1| 288881| 325576 3663 11933
Preorder 22489 57) 17651 22199 355] 6402 1218 1244 6354 354| 14764 15668| 16427 16071 3191

BIRD 22 1 224 449 1856 24 4 226 431 1879 0| 28 2442 2181 5560
ORDPATH 135 13 396 422 6276 127 33 451 408 6236 0 299 4691 2543| 18612

Q1 |uPID 45 4 239 4086 1882 28 9 268 391 1895 0 71 2856 2142 5475
\Virtual Nodes 246 43 485 520 6840 201| 630458 672159 736 6561 0] 4789521 5255989 3306| 19672
Preorder 85921 14391| 31301] 84439 2256 88464 34430 34903| 86842 2346| 161888 174078| 179089 161040 6225

BIRD 277 0 1119 4823| 10647 0 0 739 4401 10614 0| 0 991 6559| 14670
ORDPATH 1208 0 2483 5772| 34048 0 0 1296 5058 34620 0 1 1117| 8291 34493

Q2 |uPID 297 0 1346 4664| 10621 0 0 856 3962| 10690, 0| 0 782 7214| 14297
\Virtual Nodes 1381 0 2681 6153 33399 0| 28756| 32258 5915 34196 0| 35127 39637 10018| 43217
Preorder 523485 272| 553241| 516648 11439 357 304 1209 4617| 10590 558 555) 1345 6670| 13854

BIRD 1 0 0 9 32 1 0 0 8 29 0 1 64 3676 8707
ORDPATH 3 0 0 9 68 2 0 0 8 80 0| 46 159 4880 23936

Q3 |[uPID 2 0 0 8 26 0 0 0 7 30 0 2 7 3200 8543
\Virtual Nodes 2 0 0 9 72 3| 0 0 9 81 0| 200549| 242698 5103| 22680
Preorder 874 0 0 867 34 879 0 0 867 37 4941 5004 5117| 8305 8243

b. XMark 1100

Table 14.2: Efficiency profiling of query evaluation with féifent labelling schemes (see Secflon3.6.3).

retrieves 1,777 matches froMark 1100in 30 milliseconds on average, more than three times as fast

asORDPATH. puPID comes close behind. Disabling reconstruction,Nf&/ERstrategy entails fetching

for all inner nodes on the query path. While DBLP this causes 3,748 nodes to be fetched, which

affects only the performance Wirtual Nodes and preorder whose decision is less efficientXéark 1100
382,316 nodes undergo fetching and joining. AgalRD anduPID cope best with the decision problem
(10 and 11 seconds, respectively), followed by preordesébbnds)DRDPATH (25 seconds, due to label
comparison), an¥irtual Nodes (3.8 minutes, due to the join overhead).
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