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von

Felix Weigel

06. November 2006



Diese Arbeit ist als Buch mit dem Titel
”
Efficient XML Retrieval with Structural Summaries“ im Verlag

Dr. Hut erschienen (München 2006, 303 Seiten, ISBN 3-89963-461-6).

This work was published as a book entitled “Efficient XML Retrieval with Structural Summaries” by
Dr. Hut Verlag (Munich 2006, 303 pages, ISBN 3-89963-461-6).

Erstgutachter/Primary supervisor: Prof. Dr. François Bry
Ludwig-Maximilians-Universität München

Zweitgutachter/Secondary supervisor: Prof. Dr. Klaus U. Schulz
Ludwig-Maximilians-Universität München

Externer Gutachter/External supervisor: Prof. Dr. Gerhard Weikum
Max-Planck-Institut für Informatik, Saarbrücken

Beginn der Arbeit/Begin date: 01. Oktober 2003

Tag der Abgabe/End date: 06. November 2006

Tag der mündlichen Prüfung/
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Abstract

TheExtensible Markup Language (XML)is extremely popular as a generic markup language
for text documents with an explicit hierarchical structure. The different types of XML data
found in today’s document repositories, digital libraries, intranets and on the web range from
flat text with little meaningful structure to be queried, over truly semistructured data with a
rich and often irregular structure, to rather rigidly structured documents with little text that
would also fit a relational database system (RDBS). Not surprisingly, various ways of storing
and retrieving XML data have been investigated, includingnativeXML systems,relational
engines based on RDBSs, andhybrid combinations thereof.

Over the years a number of native XML indexing techniques have emerged, the most im-
portant ones beingstructure indicesand labelling schemes. Structure indices represent the
document schema(i.e., the hierarchy of nested tags that occur in the documents) in a compact
central data structure so that structural query constraints (e.g., path or tree patterns) can be ef-
ficiently matched without accessing the documents. Labelling schemes specify ways to assign
unique identifiers, orlabels, to the document nodes so that specific relations (e.g., parent/child)
between individual nodes can be inferred from their labels alone in a decentralized manner,
again without accessing the documents themselves. Since both structure indices and labelling
schemes provide compact approximate views on the document structure, we collectively refer
to them asstructural summaries.

This work presents new structural summaries that enable highly efficient and scalable XML
retrieval in native, relational and hybrid systems. The keycontribution of our approach is
threefold. (1) We introduceBIRD, a very efficient and expressive labelling scheme for XML,
and theCADG, a combined text and structure index, and combine them as twocomplementary
building blocks of the same XML retrieval system. (2) We propose a purely relational variant
of BIRD and theCADG, calledRCADG, that is extremely fast and scales up to large document
collections. (3) We present theRCADG Cache, a hybrid system that enhances theRCADG
with incremental query evaluation based on cached results of earlier queries. TheRCADG
Cache exploits schema information in theRCADG to detect cached query results that can
supply some or all matches to a new query with little or no computational and I/O effort. A
main-memory cache index ensures that reusable query results are quickly retrieved even in a
huge cache.

Our work shows that structural summaries significantly improve the efficiency and scal-
ability of XML retrieval systems in several ways. Former relational approaches have largely
ignored structural summaries. TheRCADG shows that these native indexing techniques are
equally effective for XML retrieval in RDBSs.BIRD, unlike some other labelling schemes,
achieves high retrieval performance with a fairly modest storage overhead. To the best of our
knowledge, theRCADG Cache is the only approach to take advantage of structural summaries
for effectively detecting query containment or overlap. Moreover, no other XML cache we
know of exploits intermediate results that are produced as aby-product during the evaluation
from scratch. These are valuable cache contents that increase the effectiveness of the cache at
no extra computational cost.

Extensive experiments quantify the practical benefit of allof the proposed techniques,
which amounts to a performance gain of several orders of magnitude compared to various
other approaches.
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Zusammenfassung

Die Extensible Markup Language (XML)ist eine weit verbreitete Auszeichnungssprache für
hierarchisch strukturierte Textdokumente. Heutzutage finden sich in Dokumentensammlun-
gen, elektronischen Bibliotheken, im Intra- und Internet verschiedenste Arten von XML-Doku-
menten: angefangen von Textdaten, deren flache Struktur sich kaum für die Anfrage eignet,
über semistrukturierte Dokumente im eigentlichen Sinne,die eine reiche und oft unregelmäßi-
ge Struktur aufweisen, bis hin zu eher einheitlich strukturierten Dokumenten mit wenig Text,
die ebenso gut in einer relationalen Datenbank gehalten werden könnten. So ist es nicht überra-
schend, wie viele unterschiedliche Arten es gibt, XML-Dokumente zu speichern, insbesondere
nativeSysteme,relationaleSysteme undhybrideAnsätze, die beide kombinieren.

Im Laufe der Zeit sind eine ganze Reihe nativer Indizierungsverfahren für XML entstan-
den, insbesondereStrukturindizesundNumerierungsschemata. Strukturindizes repräsentieren
dasDokumentenschema, d. h. die Hierarchie verschachelter XML-Etiketten(tags), in einer
einzigen zentralen Datenstruktur. Auf diese Weise könnenstrukturelle Anfragebedingungen,
etwa Pfad- oder Baummuster, effizient und ohne Zugriff auf die Dokumente ausgewertet wer-
den. Numerierungsschemata zeichnen die Dokumentknotenmit eindeutigen Kennummern aus.
Aus diesen lassen sich bestimmte Beziehungen zwischen den Knoten (z. B. die Eltern-Kind-
Beziehung) herleiten, wiederum ohne Zugriff auf die Dokumente oder auch nur eine zentra-
le Datenstruktur. Sowohl Strukturindizes als auch Numerierungsschemata stellen eine nähe-
rungsweise Sicht auf die Dokumentstruktur dar. Daher bezeichnen wir beide alsStrukturaus-
zug (structural summary).

Die vorliegende Arbeit stellt neuartige Strukturauszügevor, mit denen XML-Daten in na-
tiven, relationalen und hybriden Systemen auf höchst effiziente und skalierbare Weise durch-
sucht werden können. Unser Ansatz zeichnet sich in dreifacher Hinsicht aus. (1) Wir führen
BIRD ein, ein sehr effizientes und ausdrucksstarkes Numerierungsschema, sowie den Text-
und StrukturindexCADG, und verknüpfen beide Verfahren in einem XML-Anfragesystem.
(2) Es wird eine rein relationale Variante vonBIRD und demCADG namesRCADG vor-
gestellt, die selbst große Dokumentensammlungen sehr schnell durchsucht. (3) Der hybride
RCADG Cache erweitert denRCADG um eine inkrementelle Anfragekomponente auf der
Grundlage von zwischengespeicherten Ergebnissen früherer Anfragen. DerRCADG Cache
bedient sich der imRCADG vorhandenen Schemainformationen, um diejenigen Anfragenim
Zwischenspeicher zu finden, die alle oder zumindest einige Treffer für eine gegebene neue
Anfrage mit wenig oder gar keinem Berechnungsaufwand oder Zugriffen auf die Peripherie
liefern können. Mit Hilfe eines Hauptspeicherindex auf dem Zwischenspeicher werden sol-
che wiederverwendbaren Anfrageergebnisse selbst dann schnell gefunden, wenn bereits viele
Anfragen gespeichert worden sind.

Es zeigt sich, daß XML-Anfragesysteme hinsichtlich ihrer Effizienz und Skalierbarkeit er-
heblich von Strukturauszügen profitieren, und zwar in mehrfacher Hinsicht. Die bisher bekann-
ten relationalen Ansätze nutzen die Vorzüge von Strukturauszügen kaum aus. Am Beispiel des
RCADG wird deutlich, daß sich solche nativen Indizierungsverfahren durchaus auf die XML-
Suche in relationalen Datenbanken übertragen lassen.BIRD ermöglicht eine schnelle Suche
bei nur mäßig erhöhtem Speicherbedarf, anders als manches frühere Numerierungsschema.
Soweit bekannt, ist derRCADG Cache das einzige Verfahren, das mit Hilfe von Struktur-
auszügen untersucht, welche Anfrageergebnisse einanderenthalten oder überlappen. Darüber
hinaus ist uns kein weiterer XML-Zwischenspeicher geläufig, der auch Zwischenergebnisse
enthält, die während der Anfrageauswertung ohnehin anfallen. Solche Zwischenergebnisse
erhöhen den Wirkungsgrad des Verfahrens, ohne daß dafür zusätzliche Rechenleistung erfor-
derlich wäre.

Nach ausgiebigen Versuchsreihen läßt sich der praktischeNutzen der oben genannten Ver-
fahren auf einen Gewinn von mehreren Größenordnungen im Vergleich zu verschiedenen an-
deren Ansätzen beziffern.
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CHAPTER

ONE

XML Retrieval

1.1 Motivation

The Extensible Markup Language (XML)[XML] has by now become widely accepted as the standard
markup language for modelling, querying, exchanging and storing a broad range of semistructured data
with different characteristics. At the one end of the spectrum, there are text-centric documents with only
little explicit structure that is worth querying, such as web pages, Wikis, Blogs, news feeds, e-mail and
FAQ archives. At the other end of the spectrum, we have ratherdatabase-like XML content with a far more
rigid and meaningful structure and little text, such as product catalogues, tax payer’s data submitted via
electronic forms, bibliography servers, address books, web service descriptions and even scientific sensor
data. In between those two extremes, XML is perhaps most commonly used for a wide variety of data
which is truly semistructured, having a more or less complexand irregular structure that adds significant
information to the rich textual content. Examples are documents in digital libraries or in the database
of a publishing house, articles in electronic encyclopedias, on-line manuals, technical documentation in
corporate intranets, linguistic databases containing parsed fragments of natural language, and scientific
taxonomies or ontologies that formalize domain knowledge in a structured way.

While generic markup languages for semistructured data such as theStandard Generalized Markup
Language (SGML)[SGML] have been used already for a long time, most notably indocument management
and publishing, it was only the adoption of XML for the World-Wide Web that has made the semistructured
data model so popular for all kinds of businesses and applications. Given a steadily growing entourage of
complementary specifications, standards and tools that foster the creation, retrieval and manipulation of
large amounts of XML data, the community has long since abandoned the often-cited toy collections of
the early days [Bosak 1999] that contained a few kilobytes ofmanually marked-up poetry, facing today
the many gigabytes of real-world XML data in productive systems. In other words, now that such a large
number of people using such a large amount of data are convinced that XML is a good choice for their
purposes, efficient and scalable retrieval techniques needto be developed in order to prove them right.

1.2 Approaches to Efficient and Scalable XML Retrieval

Trying to tackle new problems with existing solutions is notuncommon and sometimes even the best strat-
egy. Moreover, given that XML is partly used for content which is close to either flat text or completely
structured data, it seems natural to find out how far one can get in XML retrieval using traditional Infor-
mation Retrieval (IR) engines or relational database systems (RDBSs). On the one hand, these two options
have the advantage of relying on rather mature technology, including very efficient data structures and
algorithms. On the other hand, both approaches suffer from the inherent dichotomy between text and struc-
ture that is characteristic of XML, incapable of supportingthe two simultaneously to the extent needed.
Neither the highly structured relational model nor the unstructured flat-text data model can fully capture
a rich XML hierarchy. In order to fit the relational model, thehierarchical, irregular structure of XML
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data must first be broken down to tuples with a suitable schema, and then efficiently restored from sets
of tuples at runtime. Even simple queries involving nested elements, possibly with interwoven text, are
not fully grasped by SQL’s string matching capabilities or regular expressions. Analogously, IR systems
need a more expressive data model than linear full-text to cope with the hierarchical nature of XML. Early
IR-inspired approaches to structured text retrieval, suchasPAT expressions [Salminen and Tompa 1992]
or theRegion Algebra[Consens and Milo 1994], only partially overlap with today’s query languages like
XQuery[XQuery] andXPath[XPath].

Therefore the development of dedicated XML retrieval systems has received much attention. They are
most commonly referred to asnative(i.e., structured-preserving) systems, as opposed to purely relational
approaches andhybrid systems that combine the former two. Native XML retrieval engines1 are built
on top of a tree or graph data model such as theDocument Object Model (DOM)[DOM] or the Object
Exchange Model (OEM)[Papakonstantinou et al. 1995]. Native XML systems are designed to capture the
nature of the data as closely as possible, unlike relationaldatabases or flat-text IR engines where on the
contrary the XML data must be adapted to the nature of the system. A wealth of tree- or graph-specific
data structures and algorithms have been devised to this end. They fall into three categories:

1. structure indices: index structures for retrieving instances of specific nested tag patterns in the
documents2, partly inspired by earlier work on query optimization in object-
oriented database systems3

2. labelling schemes: methods of assigning XML elements unique identifiers that encode certain
structural relations (e.g., nesting or document order) between these elements4

3. structural joins: join algorithms that operate on sets of XML elements to find instances of
more or less complex tree or path patterns, such as twigs, in the documents5

Structure indices are often calledstructural summariesin the literature. In this work we deliberately
generalize this term to subsume not only structure indices,but also labelling schemes. This is to emphasize
that both benefit XML retrieval by providing a reference to structural properties of XML elements, which
therefore need not be looked up in the documents. More precisely, we view structure indices ascentralized
structural summaries, i.e., global data structures where path patterns in the query can be matched, and
labelling schemes asdecentralized structural summaries, which allow to infer relationships between ele-
ments from information that is local to these elements. Since many contributions in the distinct categories
are largely complementary, synergies arise from combiningstructure indices, labellings schemes and join
algorithms for XML. In fact, most structural joins have beendesigned with a specific labelling scheme in
mind.

Structural summaries in the above sense are not to be confused with so-calledschemaspecifications,
i.e., formal definitions of the document structure such as a DTD or XML Schema [XSD1]. These are
grammar formalisms for specifying structural constraintsthat must be satisfied by all documents of a spe-
cific type. Although structural summaries also represent the document schema, their purpose is to reflect
structural patterns or properties that are currently expressed in the documents. As a consequence, struc-
tural summaries may change in response to modifications of the document collection that introduce new
structural patterns. By contrast, when adding documents toa collection that conforms to a specific DTD or
XML Schema, structural patterns that are not reflected thereare dismissed for being invalid with respect
to the (fixed) document schema. In this sense the DTD and XML Schema formalisms areprescriptive,
whereas the structural summaries we deal with here aredescriptive.

1Native XML retrieval systems include, e.g., those by McHughet al. [1997], Naughton et al. [2001], Li and Moon [2001],
Barbosa et al. [2001], Fiebig et al. [2002], Jagadish et al. [2002], and Paparizos et al. [2003].

2Structure indices for XML have been proposed, among others,by Goldman and Widom [1997], Milo and Suciu [1999],
Cooper et al. [2001], Kaushik et al. [2002b], Jiang et al. [2003], Schenkel et al. [2004] and Qun et al. [2003]. Chapter 5 surveys some
of these approaches.

3Index structures for object-oriented databases have been put forward, among others, by Bertino and Kim [1989],
Kemper and Moerkotte [1992], Nestorov et al. [1997] as well as Goldman and Widom [1997].

4An overview of labelling schemes for XML is given in Chapter 3.
5Structural join algorithms have been presented, e.g., by Zhang et al. [2001], Li and Moon [2001], Al-Khalifa et al. [2002],

Bruno et al. [2002], Chien et al. [2002], Jiang et al. [2003],Grust et al. [2003], Lam et al. [2003], Chen et al. [2005a], Liet al. [2005]
and Lu et al. [2005].
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1.3 Goal and Scope of the Thesis

It is true that building a native XML retrieval system from scratch allows one to take full advantage of the
aforementioned native data structures and techniques. However, now that scalability and retrieval efficiency
are major concerns, storing and querying XML data in an RDBS is particularly tempting because (1) effi-
cient access methods and highly scalable storage methods for relational data have been developed in over
thirty years; (2) query planning and optimization in the relational algebra is well-understood; (3) RDBSs
are already widely deployed and offer key features for the productive use, e.g., concurrency, transactions
and safety. Replicating this functionality in a home-grownnative XML database requires much work. On
the other hand, so far the benefits of native XML techniques, such as structural summaries, seem hard to
reconcile with the rigid and flat relational data model. In fact, almost all approaches to XML retrieval in
RDBSs are more or less oblivious of the most efficient indexing and labelling techniques for XML that
have been developed over the years.

The goal of this work is to show how innovative use of structural summaries can contribute to very
efficient XML retrieval in native, relational and hybrid systems:

• New native structural summaries are proposed whose properties are especially valuable for efficient
and scalable XML retrieval.

• These structural summaries are shown to be easily combined with other structural summaries. We
jointly integrate them into a hybrid retrieval system, whose performance is thereby significantly
improved.

• The same combination of structural summaries is used in a purely relational retrieval system. It turns
out that the cost of migrating the native XML retrieval techniques to the RDBS is low, whereas the
benefit in terms of retrieval speed can amount to several orders of magnitude.

• We show that structural summaries are also a very effective means to locate reusable data in a cache
of XML query results. Adding cache functionality based on structural summaries to our relational
retrieval system again improves the performance by orders of magnitude.

The successful use of structural summaries for different purposes in different retrieval contexts illustrates
that structural summaries are much more versatile than whatis commonly perceived. Especially the benefit
of centralized structural summaries for detecting query containment and overlap in XML caching has been
largely ignored so far, as it goes far beyound their canonical use as mere structure indices. Also, the tight
integration of structural summaries with the relational query engine that we achieve in our system is a
novum. It contributes to bridging the apparent gap between native and relational XML retrieval.

Besides the aforementioned applications, structural summaries are also very useful in two other re-
spects, which are only covered in a cursory way by this work (see Section 12 in Part VI). The first applica-
tion concerns IR-based XML retrieval systems, which face the twofold burden of adapting their storage and
relevance-ranking models to documents with a hierarchicalstructure. Here structural summaries not only
help to increase the retrieval efficiency, but also provide fast access to different kinds of structure-specific
ranking parameters, like path frequencies etc., that are needed for XML relevance ranking. Earlier work
[Weigel et al. 2005a; Weigel et al. 2004b] has studied the benefit of our structural summaries for both tasks
in combination with a variety of ranking models from XML Information Retrieval.

Second, it has been repeatedly pointed out in the literaturethat in addition to being efficient and scal-
able, XML retrieval systems should also guide human users intheir quest for specific parts of the docu-
ments, whose structure they may not know a-priori. This challenge is clearly specific to structured docu-
ment retrieval, and not faced by flat-text IR or current web search engines. Goldman and Widom [1997]
recognized early that centralized structural summaries, as global representations of the document schema,
play an important role in making users acquainted with the structure of the documents they are querying.
They proposed a graphical representation of the document schema and selected samples of element content
that users could browse before starting to formulate queries. Elsewhere [Weigel 2006] we argue that this
separate schema browsing can be tightly integrated with theactual retrieval process and extended to cover
both the structure and the contents of the documents. The goal is to provide users with a highly interactive
and intuitive retrieval experience, where the borders between schema browsing, query formulation, query
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evaluation and result inspection are largely blurred. Encouraging users to interact with the system in such
a way of course makes sense only with a very responsive retrieval engine. Actually this was the initial
motivation behind our studies of XML caching techniques, which allow to recognize previously computed
query results that can be immediately presented to the user in response to a new query. Since structural
summaries also play a role in this task (see above), they actually support intuitive XML retrieval in two
respects: on the one hand, by providing users with a graphical representation of the document schema, and
on the other hand, by enabling a smooth continuous feedback by the system during the integrated query and
browsing process that has just been sketched. Keeping in mind also the third benefit (namely, the support
for relevance ranking), one should indeed regard structural summaries as a core technology for various
aspects of XML retrieval.

Finally, a few words on the limitations of this work are in order. First, our techniques are based on a tree
data model that ignores cross-references in XML documents,which may be specified using eitherID/IDREF
attributes or XLink [XLink] and XPointer [XPointer] constructs. Especially the labelling schemes we
present make the assumption that every node in the document tree (except the root) has exactly one parent
node. Second, as others before we deliberately employ a formal query model instead of using XPath
or XQuery directly. However, our formalism covers the core features of most XML query languages,
including all thirteen XPath axes. Third, while updates of the document collection are discussed at various
occasions throughout this work, we assume that all data to bequeried is simultaneously stored in the
retrieval system at any point in time. In particular, this excludes distributed settings and the retrieval of
streamed XML data. Finally, several general database issues that also apply to XML retrieval systems are
ignored here. These include, e.g., concurrency and recovery, access control and privacy, and versioning of
XML data.

1.4 Structure of the Thesis

As mentioned before, this work focuses on the role of structural summaries for improving the efficiency
of XML retrieval systems. The following parts of the thesis cover different aspects of this topic. Part II
(page 17) presents various labelling schemes for XML, whichsummarize the document structure in a
decentralized way. Part III (page 71) reviews different index structures that all belong to the class of
centralized structural summaries. Part IV (page 89) shows how structural summaries can be used for
XML retrieval in relational database systems. Part V (page 129) deals with caching techniques for XML,
including a novel approach to detect query containment and overlap with the help of centralized structural
summaries. At the end of the thesis, Part VI (page 171) summarizes the contributions made and concludes
with a brief outlook on other useful aspects of structural summaries, namely, for enhancing XML relevance
ranking and the user interaction in XML retrieval systems. Finally, a short appendix lists further details of
the experiments that were carried out as part of this work.

Each of the parts just mentioned comprises two chapters. Thefollowing second chapter of the introduc-
tion compiles important preliminaries, including the dataand query model to be used throughout this work
as well as theThree-Level Model of XML Retrievalthat illustrates the use of structural summaries from an
abstract point of view. In Parts II to V, the first chapter contains a compact survey of contributions to the re-
spective aspect of XML retrieval that are representative for that part of the literature. The second chapter in
each part then proposes a new approach to the same problem. All new contributions are explained in detail
and evaluated empirically in extensive comparative experiments. We also highlight specific weakspots of
prior approaches that are addressed by the new solution, as well as open questions that remain to be solved.
The two chapters in Part VI contain a short summary and outlook, as mentioned above. The appendix also
consists of two chapters, one listing technical parametersof the experimental set-up and another supplying
a detailed analysis of our experiments with different labelling schemes.
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CHAPTER

TWO

Querying XML Documents using Structural Summaries

2.1 XML Data Model

As a basis for the XML retrieval techniques to be presented below, it is convenient and common practice
to abstract from the XML serialization [XML] and introduce amore formal data model instead. Throughout
this work, we regard any (collection of) XML documents as adocument tree(disregarding cross-references
specified withID/IDREF attributes), which is defined as follows:

Definition 2.1 (Document tree) Let T be a finite alphabet of tag names. Adocument treeis a finite or-
dered node-labelled rooted tree D= 〈V, r,Child,NextSib, tag〉 where V is the finite and non-empty set of
document nodes (elements)1, r ∈V is the root of D,Child⊆V×V is a binary relation such that〈V, r,Child〉
is an unordered tree with root r,NextSib⊆V×V is thesibling orderrelating a child to its immediate right
sibling (if any), andtag: V −→ T assigns to each node v∈V a tagtag(v) ∈ T. �

Figure 2.1 on the following page illustrates a single document both in XML syntax (a.) and as a doc-
ument treeD (b.). For convenience, each node inD is given a uniquenode label(the number inside
each node; ignore the precise labelling scheme for the moment). To keep the data model simple, multiple
documents in a collection are modelled as one large treeD consisting of a newly created rootr and the
individual document trees whose roots are children ofr.2 In the sequel,n = |V| denotes the cardinality
of V. TheChild relation is assumed to exclude self-edges of the form〈v,v〉 and multiple edges between
any pair of nodes inV. The sibling orderNextSibmust respect the XML document order [XML]. For any
v,w∈ V, let distance(v,w) be the number of edges on the unique path connectingv andw. Furthermore,
level(v) = distance(r,v) denotes the vertical position ofv in D (and also the number ofv’s ancestors),
whereashD = maxv∈V {level(v)} is the height ofD. Finally, letsize(v) be the number of descendants ofv
(i.e., nodes in the subtree rooted inv, excludingv itself), and letpre(v) (post(v)) denote the rank ofv in a
left-to-right preorder (postorder) traversal3 of D. Note thatprecoincides with the XML document order.

BesidesChild andNextSib, there are a number of other binary tree relations relevant for XML retrieval.
The relations listed in Table 2.1 on page 9 (first column) cover an important fragment of the XPath language
[XPath], similar toCore XPathas defined by Gottlob et al. [2006]. In particular, all thirteen XPath axes can
be expressed in our data model. ForChild, NextSib, Followingand their inverse relations (Parent, PrevSib
andPreceding, respectively), the closest XPath axes are given in the second column of Table 2.1. Similarly,

1For simplicity, we treat the termsdocument nodeandelementas interchangeable in the sequel. XML attributes and namespace
nodes are treated analogously to elements, as shown later.

2This is common practice in the literature. Alternatively, document identifiers may be introduced to ensure that any element can
be mapped to the unique containing document, if needed.

3Throughout this work we assume that in any depth-first (preorder, postorder, inorder) or breadth-first tree traversal, each node
is visited exactly once. A different definition of depth-first traversal is sometimes encountered in the literature: here each nodev is
visited twice, once before and once after its descendants. The resulting two ranks ofv equal the token positions of its opening and
closing tags in the XML serialization. In the sequel, we refer to this double-visit depth-first variant as thecombined pre-/postorder
traversalof the document tree.

7



2.1. XML DATA MODEL

<?xml version="1.0" ?>

<people>

<!-- subtree a1 -->

<person>

<name>Jeff Smith </name>
<profile>

<edu>MSc</edu>
<sex>male</sex>

</profile>

</person>

<!-- subtree a2 -->

<person>

<name>Jill Lee </name>
<profile>

<edu>PhD</edu>

<sex>female </sex>
</profile>

</person>

<!-- subtree a3 -->

<person>

<name>Mae Lee </name>
<profile>

<sex>female </sex>
</profile>

</person>

<!-- subtree a4 -->

<person>

<name>Sue Lee </name>
<gender>female</gender>

</person>

</people>

a. XML serialization

b. document treeD with unique node labels (numbers)

c. schema treeS for D

d. χQ′ and its matches inD e. χQ and its matches inD

f. χQn

1 and its matches inD g. χQn

2 and its matches inD

Figure 2.1: Different representations of a sample XML document (a.–b.) and its structural summary (c.).
In d.–g. four schema hits for the queries in Figure 2.2 on page 10 are shown, along with their respective
matches inD: d., matches toQ′ (Fig. 2.2a.); e., matches toQ (Fig. 2.2b.); f.–g., matches toQn (Fig. 2.2c.).

Selfcorresponds to theself axis in XPath.Sibling relates all pairs of children of a given node, regardless
of the sibling order. This corresponds to the union of XPath’spreceding-sibling,following-sibling
andself axes. Finally, given two nodesv,w ∈ V, NextElt(v,w) (PrevElt(v,w)) holds iff w occurs after
(before)v in document order.

We also consider proximity variants ofChild, NextSib, NextEltand their inverse relations. For any such
relationR, let Rj

i =
⋃

i≤l≤j R
l whereRl denotes thel-fold compositionR◦· · ·◦R of R. ThusR is equivalent

to R1
1. For convenience, the symbol “∗” acts as a “don’t care” upper bound.4 As shorthands, we write

R∗ for R∗0 andR+ for R∗1. For instance,Child∗ corresponds to the XPath axisdescendant-or-self
andChild+ to descendant . Furthermore, letR i be a shorthand forRi

i . ThusChild i(v,w) holds true
iff w is a descendant exactlyi levels belowv, i.e., iff Child+(v,w) anddistance(v,w) = i. SinceFollowing
andPrecedingare already closed under composition, there is no natural interpretation of similar proximity
variants for these relations. Instead, we definei-th-Following(v,w) to capture the semantics of the XPath
expressionfollowing::*[i] , relatingv to thei-th memberw of theFollowing-image ofv (in document
order). The reverse counterparti-th-Precedingis defined analogously (in reverse document order).

The remaining XPath axes (namely,attribute andnamespace) are modelled as combinations of

4For instance, one may assume that “∗” represents any fixed value greater than the total numbern of document nodes.
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name description / XPath axis proximity variant
transitive closure

Child(v,w) child Child i(v,w) Child+(v,w)

Parent(v,w) parent Parenti(v,w) Parent+(v,w)
NextSib(v,w) following-sibling NextSibi(v,w) NextSib+(v,w)

PrevSib(v,w) preceding-sibling PrevSibi(v,w) PrevSib+(v,w)
Following(v,w) following i-th-Following(v,w) n/a
Preceding(v,w) preceding i-th-Preceding(v,w) n/a
Self(v,w) self n/a n/a
Sibling(v,w) unordered sibling relation n/a n/a
NextElt(v,w) document order NextElti(v,w) NextElt+(v,w)

PrevElt(v,w) reverse document order PrevElti(v,w) PrevElt+(v,w)

Table 2.1: Decidable relations in the document tree.

the binaryChild relation and a setT = {Elements,Attributes,Namespaces} of unary relations indicating
the type of any nodev ∈ V (element, attribute and namespace node, respectively). For convenience, let
Root= {r} be the singleton relation containing only the rootr of D. Furthermore, as a counterpart to
the level function introduced before, we defineLevelji ⊂ V as the relation containing all nodes on levels
i ≤ l ≤ j, with Level00 = Root. Similarly, as a counterpart to thetag function introduced before, we define
for each tagt ∈ T a relationTagt ⊂ V containing exactly the nodes with tagt. These two relations are
needed for specifying queries against the document tree (see the next section).

Finally, to model the textual contents of XML documents, we define relationsContainsk,Governsk⊂V
for eachk in the setK of keywords occurring in the documents.5 Given a nodev ∈ V, v ∈ Governsk
(“v governsk”) iff there is a textual occurrence ofk somewhere between the opening and the closing
tag6 of v. By contrast,v ∈ Containsk (“v containsk”) iff there is a textual occurrence ofk somewhere
between the opening and the closing tag6 of v which is outside the pairs of opening and the closing tags
of all descendants ofv. Note that in the case of element nodes, government is a necessary but insufficient
condition for containment. By contrast, for non-element nodes (which are leaves ofD by definition) the
two relations coincide. For instance, consider the sample document tree in Figure 2.1b. on the facing
page: here the node 25 contains the keyword“PhD” . As a consequence, node 25 and all its ancestors inD
(i.e., 24, 18 and 0) also govern that keyword. As a matter of fact, the root node 0 in Figure 2.1b. governs
a couple of distinct keywords, but contains none. Note, however, that any node is allowed to have both
children and textual content. In other words, the data modelis flexible enough to capture documents with
mixed content.

The type, level, tag, keyword and root relations together make up the setR1 of unary relations inD.
The relations listed in Table 2.1 constitute the setR2 of binary relations inD.

2.2 XML Query Model

Based on the data model introduced in the previous section, we now define a concise query formalism that
captures the core features query languages for XML databases, such as XPath.7 Contrary to the XPath
semantics, the following definition permits queries with multiple result nodes. It also slightly extends the
concept ofconjunctive queries[Gottlob et al. 2006] with tag and keyword disjunctions.

Definition 2.2 (Query) A queryQ is a triple〈Qv,Qc,Qr〉 where Qv is a finite and non-empty set ofquery
nodes, Qr ⊂Qv is a non-empty set ofresult nodes, and Qc is a finite and non-empty set ofquery constraints
of the formR1(q) or R2(q,q′) such that all of the following conditions are satisfied:

5The rich data model underlying the XML Schema specification [XSD2] defines a variety of data types for element content. For
simplicity, we ignore non-textual data types such as integers, dates, etc. in this work.

6Or opening and closing quotes, ifv is an attribute or namespace node.
7Advanced features of XPath and XQuery [XQuery], such as iteration, functions and data types, are less tightly related to

structural summaries and therefore beyond the scope of thiswork. Conversely, the query model introduced here slightlyextends the
text search capabilities of these languages.

Structural Summaries as a Core Technology for Efficient XML Retrieval 9
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a. queryQ′ b. queryQ c. queryQn

Figure 2.2: Sample queries against the document tree on page8. All query nodes are regarded as result
nodes. Inb. andc., keyword constraints denote containment. Inc., the nodeqn

3 specifies a tag disjunction.

1. q,q′ ∈Qv;

2. R1 ∈ R1 is a unary tree relation;

3. R2 ∈ R2 is a binary tree relation;

4. the resulting query graph〈Qv,Qc〉 is connected (but not necessarily acyclic).

Multiple keyword constraints on the same query node are marked as either conjunctive or disjunctive.
Multiple tag constraints on the same query node are implicitly marked as disjunctive. �

Figure 2.2 illustrates three sample queries against the document tree in Figure 2.1b. on page 8. The
following two definitions specify which parts of the document treeD are relevant to a given query againstD.

Definition 2.3 (Matching) A matchingof a query Q= 〈Qv,Qc,Qr〉 against D is a mappingµQ : Qv−→V
such that all of the following conditions are satisfied:

1. µQ(q) ∈ R1 for each unary constraintR1(q) ∈Qc;

2. 〈µQ(q),µQ(q′)〉 ∈ R2 for all binary constraintsR2(q,q′) ∈Qc.

We also writeµ instead ofµQ without ambiguity when Q is clear from the context. For a given matchingµ,
theµ-image of Qv is called amatchto Q in D. �

Definition 2.4 (Query result) Theresultor answerans(Q) in D for a query Q= 〈Qv,Qc,Qr〉 is the set of
matches (µ-images of Qv) induced by all matchingsµ of Q in D, restricted to Qr . �

Unless stated otherwise, we assumeQr = Qv for any queryQ in the sequel. The answer toQn in
Figure 2.2c., e.g., consists of theperson , name , sex and gender nodes in the subtreesa2,a3,a4 of D
in Figure 2.1b. (page 8). The results of all three queriesQ′, Q andQn in Figure 2.2a.–c. are illustrated on
the right-hand side of Figures 2.1d., e.andf.–g., respectively.

2.3 Structural Summaries

While earlier XML test corpora comprised only a few documents of several kilobytes each [Bosak 1998;
Bosak 1999], nowadays XML databases must scale up to collections of many gigabytes which cannot
be expected to fit main memory. One way to ensure fast query evaluation in such cases is to develop
efficient access methods and paging strategies for the secondary storage where the documents reside. For
instance, Kanne and Moerkotte [2000] and Fiebig et al. [2002] have gone in this direction. Alternatively,
certain query constraints may be matched in the first place against an approximation, orsummary, of the
document tree that is much smaller and can therefore be accessed more efficiently (e.g., in main memory).
In a second step, the remaining query constraints are matched directly against those selected parts of the
document tree which were recognized as relevant in the first step.

This work investigates the use of various summaries of the document structure, orschema, for fast
query evaluation. The following general definition of astructural summarysubsumes labellings schemes,

10 Felix Weigel



CHAPTER 2. QUERYING XML DOCUMENTS USING STRUCTURAL SUMMARIES

some of which are presented in Chapters 3 and 4, as well as structure indices for XML, to be discussed
in Chapters 5 and 6. We shall see later that combining different structural summaries with each other and
with text indices enables highly efficient XML retrieval.

Definition 2.5 (Structural summary) A structural summaryof a document tree D is a compact data struc-
ture from which specific structural properties of D can be inferred without access to D itself. Structural
summaries can becentralizedor decentralized. A typical centralized summary of D is a tree containing
information about the set T of tags occurring in D, the levelsof nodes with these tags, and the way they are
nested. Typical decentralized summaries include labelling schemes that identify an individual node and its
tree relations in D using a limited amount of information that is local to that node. �

One particular centralized structural summary, which we refer to asschema treethroughout this work,
is fundamental to many XML index structures. It was introduced asDataGuide by Goldman and Widom
in 1997. As a preliminary notion, let thetag pathof any nodev∈V be the sequence/tag(v0)/ · · ·/tag(vj) of
tags of all nodesr = v0, . . . ,vj = v on the path from the rootr down to nodev (i.e., whereChild(vl ,vl+1) for
all 0≤ l < j). LetP be the set of distinct tag paths inD. Then the functionπ : V −→P maps any nodev∈V
to its unique tag path inD. For instance, in Figure 2.1b., π(25) = /people/person/profile/edu .

Definition 2.6 (Schema tree)Theschema treefor a document tree D is the finite rooted unordered node-
labelled tree S= 〈P,π(r),Child′, tag′〉 whose nodes (schema nodes) are the tag paths in D and whose root
is the tag path of the root r in D. The functiontag′ : P−→ T maps a tag path p∈ P to the last tag t∈ T
in p. For any two tag paths p1,p2 ∈ P, 〈p1,p2〉 ∈ Child′ ⊂ P×P iff there exists a tag t∈ T such that
p2 = p1/t. If Child′(p1,p2), thenSibling′ ⊂P×P relates p2 to all other children of p1, if any (recall that S
is unordered). Finally, the function occ: P−→P(V ) maps a node p in S to the set occ(p) ⊂V of nodes
in D with the corresponding tag path (itsoccurrencesin D). �

Figure 2.1c. on page 8 shows the schema tree forD in b. Duplicate tag paths inD (such as, e.g.,
/people/person/profile ) are represented only once inS. Every schema node is given a unique label
(number preceded by “#”), in this case simply its preorder rank in S. Since each distinct tag path inD
corresponds to exactly one node inS, we treat both as interchangeable in the sequel. For instance, the
tag path/people/person/profile and the node labelled #3 inS are identical. The level of a schema
nodep is defined as the level of any of its occurrences inD. It is easily verified that this is unambiguous,
given that all document nodes with the same tag path reside atthe same level inD. By contrast, since an
XML element may have both a child element and an attribute with the same name, there may be multiple
document nodes with identical tag paths but different types. To distinguish such nodes inS, we assign
each schema node a type from the setT = {Elements,Attributes,Namespaces} introduced above. Any
document nodev is then represented by the unique schema node with the same tag path and type asv.

Definition 2.6 mirrors some of the tree relations introducedbefore, but on the setP of tag paths rather
than on the setV of document nodes as in Section 2.1. ThusChild′ corresponds toChild andParent′

to Parent, and likewise forSibling′, Self′ and the unary constraints. Note that given a pairv1,v2 ∈ V of
nodes inD, Child′(π(v1),π(v2)) is a necessary, but insufficient condition forChild(v1,v2). For instance,
although #3 is a child of #1 inS (see Figure 2.1c.), not all person and profile nodes inD are par-
ent/child pairs (see Figure 2.1b.). This results from the approximative nature of the structural summary.
Similarly, document order is not captured by the schema tree. Matching these relations against the schema
tree can only filter out some parts of the document tree which are guaranteed not to match a given query,
while other parts need to be examined by accessingD directly. The following key definitions distinguish
query constraints that can be matched against the schema treeSfrom those which must be checked against
the document treeD (or a suitable representation ofD):

Definition 2.7 (S-constraint) The set of S-constraintsto be matched against the schema tree comprises

1. Parent′ andChild′

2. Sibling′

3. Self′

Structural Summaries as a Core Technology for Efficient XML Retrieval 11
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4. type, level, tag and root constraints

5. Contains′k andGoverns′k (approximate keyword constraints, see Chapter 6)

where i≤ j ∈ IN. �

Definition 2.8 (D-constraint) The set of D-constraintsto be matched against the document tree comprises

1. ParentandChild

2. PrevSib, NextSibandSibling

3. PrevEltandNextElt

4. PrecedingandFollowing

5. Self

6. Containsk andGovernsk

where i≤ j ∈ IN and k∈ K. �

For matchingS-constraints against the schema tree, we defineµS : Qv −→ P analogously toµ (see
Definition 2.3 on page 10), and call theµS-images ofQ its schema hits. For instance, the queryQn in
Figure 2.2c. on page 10 has two schema hits,χQn

1 andχQn

2 , shown in Figures 2.1f.–g. (left-hand sides).

The first one,χQn

1 , consists of the schema nodes #1, #2 and #5 which match the query nodesqn
1, qn

2 andqn
3,

respectively. The second schema hit,χQn

2 , consists of the schema nodes #1, #2 and #6. In the example,
Qn has two schema hits because of the tag disjunction on the query nodeqn

3. But even with unambigu-
ous tags, a query involving∗ proximity bounds as inChild∗1 might have multiple matchings inS. As an
example, assume that a neweditedBy node is added as a child of every document node below the root
in Figure 2.1b. on page 8. Then each of the schema nodes #1–#6 in Figure 2.1c. would have an addi-
tional editedBy child. Now if qn

3 specified the single tag constrainteditedBy instead of the disjunction
gender∨sex , Qn would have six distinct schema hits (whereqn

3 would be matched in turn by each of the
six new schema nodes).

Figures 2.1f.–g. also illustrate how each matcha ∈ ans(Qn) corresponds to exactly one schema hit
of Qn (namely, the one consisting of the tag paths ina). Given any schema hitχ for a queryQ, let ansQ(χ)
denote the subset ofans(Q) corresponding toχ (its matchesfor Q). We drop the subscript toanswhenQ is
clear from the context. For instance,ans(χQn

1 ) = {a2,a3} (without the profile nodes) andans(χQn

2 ) =
{a4}, as shown in Figures 2.1f.–g. Note that some schema hits of a queryQ may have no matches inD.
For example, a (hypothetical) schema hit consisting of the nodes #1, #3 and #6 in Figure 2.1c. would have
no matches since there is noperson node inD with both a profile and agender child.

2.4 The Three-Level Model of XML Retrieval

The followingThree-Level Model of XML Retrievalsummarizes the role and the benefit of the document
schema in XML retrieval, based on the data and query model introduced before. Queries, schema hits
and documents can be viewed as residing on three distinct levels of abstraction which differ both in their
relation to the actual XML data and in their physical representation. This is illustrated in Figure 2.3 on
the next page. The topmost level (thequery level) is populated by query expressions as purely intensional8

descriptions of some parts of the data (namely, those a user is interested in). Figure 2.3 depicts the three
sample queries from Figure 2.2 on page 10; obviously the query level contains an infinite number of other
possible expressions, too. Queries are created and manipulated in main memory (although they may of
course be stored on disk, e.g., in a query cache as described in Chapter 10). On the bottom level (the
document level), we have the extensions8 of these queries, i.e., their matches in the document tree. As

8By intensionwe mean an abstract description of data (e.g., query results) in terms of desired properties (such as the structure
and keyword constraints specified by a query), whileextensiondenotes some representation of the existing data with such properties.
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Figure 2.3: TheThree-Level Model of XML Retrievalrelates queries (top level) to their matches in the
document tree (bottom level) and the corresponding hits in the schema tree (intermediate level). The
sample queries shown here are taken from Figure 2.2 on page 10. The document matches and the schema
hits are the same as in Figures 2.1d.–g. on page 8.

mentioned before, the documents are held in secondary storage. Finally, the schema tree resides on an
intermediate level (theschema level) between the queries and the documents. It is typically small enough
to be kept in main memory, but may also be kept on disk (e.g., when stored in a relational database system,
as explained in Chapter 8).

With this Three-Level Model of XML Retrieval and the definitions above in mind, the idea of XML
query processing with structural summaries can be rephrased as follows. Given a queryQ on the top level
in Figure 2.3, we are looking for all matchingsµ mapping the query nodes inQ to relevant nodes in the
document treeD. However, matching query constraints directly on the bottom level means accessing a
large amount of data in secondary storage, which entails expensive I/O and possibly joins. By contrast,
given the schema treeSwe can match some query constraints (theS-constraints) very efficiently in a first
step (schema matching). The resulting matchingsµS select a number of schema hits on the intermediate
schema level as a preliminary extension ofQ. Each such schema hitχ represents a setans(χ) of potential
matches, orcandidates, for Q (recall that the schema tree is only an approximate summary of the document
structure). In a second step (document matching), the set of candidates is narrowed down to those which
also satisfy the remaining query constraints inQ (the D-constraints). In this way we finally obtain the
actual query extensionans(Q).

Parts II and III of this work elaborate on the details of this procedure. Among other things, it is
shown how labellings schemes, the second type of structuralsummary, facilitate document matching on
the bottom level and thus complement schema matching on the intermediate level. In Part IV, the schema
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level is migrated to the relational data model so that both ofthe lower two layers reside on disk. In Part V
the schema-level information is used together with the query intensions on the top level in order to detect
containment and overlap of query results on the document level. Finally, at the end of this work, we
will come back to the Three-Level Model of XML Retrieval onceagain, when discussing the benefits of
structural summaries for result ranking and user interaction in Part VI.
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CHAPTER

THREE

Labelling Schemes for XML and Tree Databases

3.1 Overview

The previous chapter has introduced the notion of structural summaries as a compact representation of
selected properties of the document treeD. One instance of particular interest is the schema tree thatsum-
marizes all tag paths occurring inD in a single central data structure. This chapter deals with adifferent
kind of structural summary that captures tree relations between document nodes. These structural sum-
maries are commonly referred to aslabelling schemes.1 Labelling schemes are decentralized summaries in
the sense of Definition 2.5 on page 11. In other words, the information about tree relations between specific
nodes inD is not stored in a global data structure such as the schema tree, but part of the representation of
these nodes. The following definition stresses the decentralized nature of labelling schemes:

Definition 3.1 (Labelling scheme)A labelling scheme(or tree encoding) for a document tree D is a de-
centralized structural summary of a specific set of tree relations in D. Each node in D is assigned a
(typically unique)node labelso that any of these relations between nodes in D can be inferred from their
labels, without access to remote parts of D or to a global representation of the entire document tree.�

As an example of a most basic labelling scheme, consider the assignment of consecutive integer labels
in a preorder traversal of the document tree. Figure 3.1b. on the following page (right-hand side) depicts
the preorder labelling for a small XML document shown in Figure 3.1a. (left-hand side). It is easy to see
that the node labels (i.e., preorder ranks) encode two of thetree relations introduced in Section 2.1, namely,
PrevEltandNextElt (document order). In the following, letpre(v) denote the preorder rank of a document
nodev. Given two nodesv andw in D, we haveNextElt+1 (v,w) iff pre(v) < pre(w) andNextEltji(v,w) iff
i ≤ (pre(w)−pre(v))≤ j, and likewise forPrevElt.

With these formulae, a binary constraintNextElt(q,q′) in a query againstD can be matched through
some simple arithmetic calculations on the labels of possible matches to the query nodesq andq′. The
next subsection compares different ways to match query constraints by inferring tree relations through
the manipulation of node labels. In any case, to take advantage of a particular labelling scheme for the
evaluation of XML queries, several conditions must be satisfied:

• The labelling scheme in question must support the efficient matching of at least some of the allowed
query constraints.

• At indexing time, node labels must be created and stored persistently for all document nodes.

• During query evaluation, there must be a way to retrieve the node labels of matches to query nodes.

• In dynamic settings where the document contents change overtime, the node labels must be kept up
to date.

1Synonyms for the termlabelling schemeincludenaming scheme, node identification scheme, numbering scheme(for a numeric
representation of tree relations), andtree encoding(on tree documents only).
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3.1. OVERVIEW

<?xml version="1.0 " ?>

<book>

<title>XML </title>

<chapter>

<section>database </section>
<section>XML </section>

</chapter>

<chapter>

<section>

<figure>Information Retrieval </figure>
</section>

</chapter>

<appendix>

<section>index </section>
</appendix>

</book>

a. XML serialization b. document treeD with preorder labels

Figure 3.1: Preorder labelling of a sample document tree.

These conditions can be more or less easy to fulfill in a given retrieval system. Choosing a suitable
labelling scheme depends on a number of factors:

1. query language: Which structural constraints are allowed? How is textual content retrieved?

2. nature of the data: How large is the document collection? Are the documents very heterogeneous
in structure? Do they change often? If so, is the document structure affected
or mainly their textual content?

3. storage: How are documents represented? Is it a native, hybrid, or relational system?
How much storage space is available?

4. retrieval: How are document nodes retrieved? Which index structure are available?
Does the system use a centralized structural summary?

Labelling schemes differ greatly in how well they fit a given query language and document collection in the
presence of specific storage requirements or retrieval and indexing techniques. The following list includes
the most salient properties of labelling schemes that need to be reconciled with the demands and constraints
of the retrieval system:

1. expressivity: Which tree relations can be inferred from the node labels, and in which way?

2. efficiency: How fast is the manipulation of node labels during query evaluation?

3. storage: How much space is occupied by the node labels on disk and in memory?
What is the average and the maximal label size?

4. robustness: How are the node labels updated when documents change? Do local changes
affect a large number of labels?

Section 3.2 below rephrases the question of expressivity ina more precise way, introducing two dis-
tinct ways of matching non-unary query constraints that arefundamental not only in the context of labelling
schemes, but also for all following contributions presented in this work. The rest of this chapter reviews a
number of different labelling schemes from the literature and compares them in terms of their expressivity,
efficiency for query evaluation, storage demands, and robustness against changes to the document collec-
tion. We explain representative approaches from three distinct classes of labelling schemes in detail (see
Sections 3.3 to 3.5). The classification is based on fundamental principles underlying the different labelling
procedures. The final comparison in Section 3.6 also highlights some open problems and possible optimiza-
tions. To illustrate the great diversity of labelling schemes that have been developed over more than twenty
years, we explicitly include references to many approachesthat are not reviewed here. A more exhaustive
survey of labelling schemes for XML and tree database is currently under way [Weigel and Schulz 2007].
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3.2 Reconstruction and Decision of Query Constraints

It has been mentioned before that the core functionality of query languages for XML databases, when
abstracting from language-specific details, is typically captured by unary predicates (e.g., node tests in
XPath) and binary tree relations. Accordingly, the data andquery models introduced in Chapter 2 comprise
a set of unary and binary tree relations that are used to specify query constraints to be matched against nodes
in the document tree. Algorithms for evaluating XML queriesof such kind can choose from a spectrum of
different strategies, with the following two extreme positions:2

1. We may use the unary query constraints to fetch a set of candidate image nodes for every single query
node. In a second step, pairs of candidates from distinct sets are combined using structural joins,
which amounts to solving a decision problem for the tree relation specified by the corresponding
binary query constraint.

2. Since candidate sets for unselective unary constraints can be very large, we may alternatively fetch
only the candidate sets for more restrictive query nodes (e.g., query leaves with selective keywords).
Given the matches to these nodes, candidates for other querynodes are computed from their labels
in memory, without further I/O taking place. This requires the use of a suitable labelling scheme.

The latter option is particularly interesting for binary relationsR that arefunctional, i.e., where the setR(v)
of R-successors of any given document nodev contains at most one node. Examples of functional relations
includeParent, PrevSibandNextSib, as well as any composition of these. The same applies to relationsR
that are selective in the sense that database nodes typically have only a small set of possibleR-successors.
These are, e.g., the transitive or reflexive-transitive closures ofParent, PrevSibandNextSib. Given a query
containing a constraintR(q,q′) on two query nodesq,q′ for such a relationR, if we already have a small
candidate set forq, then the second option permits to compute all relevant candidates forq′ efficiently.
Especially when the unary constraints onq′ are weak, obtaining a consistent candidate set forq andq′ via
decision instead might be costly.

In this section we extend the query model presented in Section 2.2 with some additional constraints in
order to capture the aforementioned differences in how the matching is realized. For each tree relationR
in Table 2.1 on page 9, letf Dec

R : V×V −→ {0,1} be a binary Boolean function such that for any pairv,w
of document nodes,f Dec

R (v,w) = 1 iff R(v,w) holds true. To computef Dec
R (v,w) one obviously needs to

know the labels of bothv andw. In addition, for each functional tree relationR (e.g.,Parentor Parenti) let
f Rec

R : V −→V be a unary node-valued function that computes exactly the uniqueR-successor of a given
document node. Thus,f Rec

Parenti (v) returns the only elementw for whichParenti(v,w) holds, namely, thei-th
ancestor ofv (if it exists). Note that for computingf Rec

R it suffices to know a single node label, rather than
two labels as needed forf Dec

R .
In the sequel we refer to the computation off Rec

R as thereconstructionof R and to the computation
of f Dec

R as thedecisionof R. Among the many labelling schemes described in the literature, decision is a
much more common feature than reconstruction. In fact, a scheme that is able to reconstruct a particular tree
relationR (by computingf Rec

R ) can also decideR (sincef Dec
R (v,w) = 1 iff f Rec

R (v) = w). Clearly the inverse
is not true. Therefore the most expressive labelling schemes are those with reconstruction capabilities (see
Section 3.6). Later it will be shown that labelling schemes capable of reconstructing some tree relations
indeed tend to expedite the whole evaluation process, compared to schemes that only support decision. The
reason is that deciding a tree relation involves the fetching and joining of a second set of nodes (possibly
including false positives).

Table 3.1 lists additional query constraints symbolizing the reconstruction of different tree relations.
The counterparts ofParenti , PrevSibi andNextSibi from Table 2.1 on page 9 areparenti , prevSibi and
nextSibi , respectively. For instance, the functionparenti is equivalent tof Rec

Parenti . Note that these are partial
functions because not every document node has an ancestor orsibling at distancei. Furthermore, we con-
sider some functions which do not correspond to any of the binary relations in Table 2.1, but nevertheless

2McHugh et al. [1998] discuss a number of different query evaluation strategies which are more or less close to either
of the two extremes. The strategies proposed by Li and Moon [2001], Zhang et al. [2001], Grust [2002], Bruno et al. [2002],
Al-Khalifa et al. [2002], and Chien et al. [2002] rely entirely on decision, whereas Bremer and Gertz [2006] or Pal et al. [2004] em-
ploy reconstruction.
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3.2. RECONSTRUCTION AND DECISION OF QUERY CONSTRAINTS

name description domain / range

parenti(v) i-th ancestor of v (reverse document order) V −→ V
prevSibi(v) i-th sibling left of v (reverse document order) V −→ V
nextSibi(v) i-th sibling right of v (document order) V −→ V
i-th-child(v) i-th child of v (document order) V −→ V
i-th-ca(v,w) i-th common ancestor of u and v (reverse document order) V×V −→ V
lca(v,w) lowest common ancestor of u and v V×V −→ V
sepLevel(v,w) level of the lowest common ancestor of u and v V×V −→ IN
distance(v,w) number of edges on the path from u to v V×V −→ IN

Table 3.1: Reconstructible relations in the document tree.

have come up in the literature. Thei-th child (from left to right) of an elementv is computed by the function
i-th-child(v). Two binary functions reconstruct common ancestors of a given pair of elements. The first one,
lca(v,w), returns the lowest common ancestor ofv andw (i.e., the last node in document order that is an an-
cestor of bothv andw). The second function,i-th-ca(v,w), reconstructs a common ancestor of bothv andw
at a specific distancei. Note that since any two elements are descendants of the document rootr, the func-
tion lca always reconstructs an existing ancestor whereas the valueof i-th-camay be undefined for some
pairs of elements and a given parameteri. The level of the lowest common ancestor ofv andw is computed
by the functionsepLevel(v,w) (for separation level[Peleg 2000]), anddistance(v,w) returns their distance
as defined in Section 2.1. It is easy to see thatdistance(v,w) = level(v)+ level(w)−2 ·sepLevel(v,w).

a. tree relations to be decided b. tree relations to be reconstructed

Figure 3.2: Tree relations involving the nodeu that are to be decided or reconstructed.

Figure 3.2 illustrates tree relations that might be decidedor reconstructed for a fixed nodeu in the
document treeD from Figure 3.1b. on page 18. In Figure 3.2a. (left-hand side), each rectangular area
contains theR-image ofu for a particular relationR to be decided (i.e., all document nodes standing in
relationR with u). For instance, the root ofD is part of theParent+-image ofu. Note how the images of
more general relations contain images of more specific ones.Thus the root node is also part ofu’s PrevElt+-
image, which contains theParent+-image and thePreceding-image ofu. Such containment of tree relations
is interesting when analyzing the expressivity of labelling schemes. From the observation just mentioned,
e.g., one can conclude that a labelling that decidesParent+ andPrevElt+ also decidesPreceding.

Figure 3.2b. (right-hand side) indicates which nodes inD can be reached by reconstructing selected
tree relations using the label ofu. For instance, if a labelling scheme is capable of reconstructingparenti ,
then the label 0 of the parent ofu can be obtained fromu’s label 5 without access toD. As observed above
for decision, support for reconstructing certain relations implies the capability for reconstructing others.
For instance, schemes that reconstructparenti(v) also reconstructlca(v,w) and i-th-ca(v,w), by iterating
the ancestor reconstruction of either node and intersecting the resulting node sets.
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3.3 Subtree Encodings

The simplest labelling schemes (apart from ordinary pre- orpostorder) assign every nodev in D a label
representing the subtreeDv belowv, as captured by the following general definition:

Definition 3.2 (Subtree encoding)The class ofsubtree encodingssubsumes those schemes where the la-
bel of a given document node v in D encodes the position and theextent of the subtree Dv of D that is rooted
in v, by means of offsets in the sequence of nodes resulting from traversing (at least part of) the document
tree in a specific order. �

The most common way to obtain this node sequence is a preorderor postorder or combined pre-/postorder
traversal3 of the entire document tree, but not all approaches in this class follow that pattern. While the
exact representation of the subtrees varies accordingly, for given nodesv,w in D Child+(v,w) is always
decided by testing whetherDv containsDw.

The labelling schemes in this class all decide more or less the same set of tree relations, but do not
support the reconstruction of the node neighbourhood (see Table 3.2 on page 39). The subtree encodings
reviewed below fall into three subclasses:interval (or range) encodings(see Section 3.3.1) label every
nodev with the interval spanned by the smallest and largest preorder ranks inDv. The second approach
(see Section 3.3.2) uses both pre- and postorder ranks to represent the subtree of a given node. In both
cases, only elements are labelled while keyword occurrences are ignored. By contrast, a number of sim-
ilar encodings for structured text documents (see Section 3.3.3) model subtrees as nestedregionsin the
sequence of opening tags, closing tags and keywords formingthe XML serialization of the document tree
(see Figure 3.1a. on page 18). A fourth class that is omitted here containsleaf encodings, which resemble
interval-based schemes to some extent [Weigel and Schulz 2007].

3.3.1 Interval Encoding

Among the earliest labelling schemes that appeared in the literature,interval encodingswere originally
proposed for accelerating the routing in communication networks. Especially the often-cited work by
Santoro and Khatib [1985] has inspired a number of simplifiedvariants for structured documents. In Fig-
ure 3.3 on page 24 a couple of interval encodings are applied to the sample document tree in Figure 3.1b.
on page 18.

Pre/Max. The scheme in Figure 3.3a. is sometimes calledPre/Max. Here each nodev is labelled
with the intervalIv = [pre(v),max(v)] wheremax(v) = max{pre(w) |w∈Dv}. As shown in the figure,
Iv contain the labels of all descendants ofv, which allows to decide theChild+ relation as follows:
we haveChild+(v,w) iff pre(w) ∈ Iv.4 Furthermore, verify thatFollowing(v,w) iff pre(w) > max(v);
NextElt+(v,w) iff pre(w) > pre(v); and likewise for inverse and proximity variants. Kannan etal. [1992]
sketch this scheme using postorder ranks.

Order/Size. Note, however, that when inserting new nodes into the document both the lower and the
upper bound of certain interval labels will need to be updated. Therefore, nodes are often labelled with
their preorder rank and subtree size, from which the interval defined above is easily inferred. This saves
the updating of the upper interval bound. The resulting scheme, described by Li and Moon [2001], is
commonly referred to asOrder/Size encoding in the literature. As can be seen in Figure 3.3b. on page 24,
for a given nodev with the label〈pre(v),size(v)〉, we havemax(v)=pre(v)+size(v) and thereforeIv =
[pre(v),pre(v)+size(v)]. Chien et al. [2002] useOrder/Size in a stack-based structural join algorithm.

Extended Preorder. Li and Moon [2001] also put forward a more robust variant of the Order/Size
scheme, calledExtended Preorder, which strives to reduce the impact of node insertions by reserving
certain labels for future use. Others refer to this scheme asdurable node numbering[Chien et al. 2001;

3The combined pre-/postorder tree traversal is explained infootnote 3 on page 7.
4ConceptuallyChild+(v,w) is decided by testing the interval inclusionIw ⊂ Iv, but pre(w) ∈ Iv (or, alternatively,max(w) ∈ Iv)

can be checked more efficiently and is equivalent when assuming properly nested interval bounds, as in well-formed XML documents.
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Yu et al. 2005]. The idea is simply to leave certain preorder ranks in theOrder/Size scheme unassigned
during indexing, which may then be used later for nodes newlyinserted at the resulting gap positions.
Each nodev in a tree encoded usingExtended Preorder is labelled with a pair〈order(v),offset(v)〉 where
offset(v)≥ size(v). If offset(v) = size(v) thenorder(v) = pre(v) andExtended Preorder coincides with the
Order/Size scheme in Figure 3.3b.Greater offset values make the encoding moresparse, which means that
more labels are available for subsequent node insertions. There is no definitive algorithm in the literature
specifying which labels should be reserved for future use inthis way. Clearly this depends on the nature of
both the documents and the updating workload. Figure 3.3c.on page 24 illustratesExtended Preorder with
uniform gaps of sizes= 5 between any two (opening or closing) tags in the XML serialization (symbolized
by triangular subtrees). In this example, each nodevi in the complete sequencev0, . . . ,vn−1 of nodes in
document order is labelled with a pair of integersIvi = 〈order(vi),offset(vi)〉 such that

order(vi) =







0 if i = 0
order(vi−1)+s+1 if Parent(vi ,vi−1)
order(vi−1)+offset(vi−1)+s+1 otherwise

offset(vi) =

{

s if size(vi) = 0
order(vj−1)+offset(vj−1)+s−order(vi) otherwise

wherej = max{l |Child(vi ,vl)} is the index of the rightmost childvj of vi .

SPaR. Due to its simplicity and (limited) robustness,Extended Preorder has been adopted in a number
of systems. Chien et al. [2001; 2002; 2006] apply the scheme to multiversion document management.
TheirSparse Preorder and Range (SPaR) labels are pairs〈dnn(v), range(v)〉 consisting of adurable node
numberand arange, which are exactly theorderandoffsetcomponents described above.

3.3.2 Pre-/Postorder Encoding

The Pre/Post labelling scheme, proposed first by Dietz [1982] and later byTsakalidis [1984], exploits
the characteristic nesting of XML elements to decide the ancestor/descendant relation. Recall that enu-
merating all nodes in the order of their opening tags is equivalent to a (left-to-right) preorder traversal
of the document tree, whereas visiting the nodes in the orderof their closing tags yields a postorder
traversal. As shown in Figure 3.3d. on page 24, thePre/Post scheme labels every nodev in D with
the pair〈pre(v),post(v)〉 of its pre- and postorder ranks inD. It is easy to see thatChild+(v,w) holds iff
pre(w) > pre(v)∧post(w) < post(v). Intuitively, this is because in the (well-formed) XML serialization,
elements nested withinv are opened after the opening tag ofv and closed before the closing tag ofv.5

XPath Accelerator. Grust [2002; 2004] arranges the node labels in a two-dimensionalpre/postplane
spanned by the pre- and postorder ranks inD. Figure 3.4a. on page 25 shows thepre/postplane that
corresponds to the sample treeD in Figure 3.3d.on page 24. The root node ofD, labelled with the smallest
preorder rank and the greatest postorder rank inD, always resides in the upper left corner of the plane. As
shown in Figure 3.4a., Child+, FollowingandNextElt+ as well as their inverse relations each correspond
to a particular area relative to the context nodev. For instance, the descendants ofv = 〈6,5〉 all lie in the
shaded rectangle whose upper left corner representsv; compare this to the formal containment test above.
Similarly, thePre/Post scheme decides the other relations as follows:Following(v,w) iff pre(w) > post(v);
NextElt+(v,w) iff pre(w) > pre(v); and analogously for the inverse relations.

TheXPath Accelerator engine developed by Grust et al. [2002; 2004] extendsPre/Post with level and
other information in order to decide all remaining XPath axes such asattributeorpreceding-sibling.
The R-Tree index [Guttman 1984; Böhm et al. 2000] is used to index the points in the resulting multidi-
mensional plane. Grust also explains how to derive a lower bound onpre(w) and an upper bound onpost(w)

5Note that the interval containment test for interval encodings isnot applicable to thePre/Post scheme: as can be seen in
Figure 3.3d., there may be inner nodesv for whichpre(v) > post(v), such as the shaded nodev with the label〈6,5〉. DecidingChild+

based on the resulting empty interval[pre(v),post(v)] would not reflect the fact thatv does have descendants.
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for decidingChild+(v,w), which restricts the search space spanned by the inequalitystatement above. This
optimization, calledshrink-wrapping, exploits an interesting property of thePre/Post encoding:6

Lemma 3.3 (Pre/Post level/size dependency)For any node v in the document tree,pre(v)−post(v)+
size(v) = level(v). �

Proof. Let av,dv,pv denote the number of ancestor, descendant, and preceding nodes ofv in D, respec-
tively. Note that the number of ancestors ofv is equal to its level, i.e.,av = level(v). Similarly,dv = size(v)
(see Section 2.1). Then we have

pre(v) = |{v′ |pre(v′) < pre(v)}| = av +pv

post(v) = |{v′′ |post(v′′) < post(v)}| = dv +pv

Figure 3.2a. on page 20 illustrates the last equality in both lines. With the above observations onlevel(v)
andsize(v), it follows that

pre(v)−post(v)+size(v) = av +pv− (dv +pv)+size(v)
= av−dv+size(v)
= level(v)−size(v)+size(v)
= level(v)

�

For all leaf nodesv′, size(v′) = 0 and therefore Lemma 3.3 becomes

pre(v′)−post(v′) = level(v′)≤ hD (1)

The final inequality follows from the definition of the heighthD of the document treeD (see Section 2.1).
To obtain upper and lower bounds on the pre- and postorder ranks of any descendantw of v, consider
the leftmost and rightmost leaveswl ,wr in the subtree rooted inv. (Of course, if no such leaves exist,
Child+

v (w) fails for any nodew∈V.) Given the position ofwl andwr , the following facts are obvious:

post(wr )≤ post(v) (2) pre(wl )≥ pre(v) (3)

From (1), (2) and (1), (3), respectively, Grust infers the following upper bound onpre(wr ) and lower bound
onpost(wl ). Note that sincewl has the smallest postorder rank andwr the greatest preorder rank among all
descendants ofv, these bounds also apply to all other descendantsw of v:

pre(w) ≤ pre(wr) ≤ post(v)+hD (4)

post(w) ≥ post(wl ) ≥ pre(v)−hD (5)

Thus with shrink-wrapping, the decision ofChild+ is modified as follows:

Child+(v,w) iff pre(w) ∈ [pre(v), post(v)+hD] ∧ post(w) ∈ [pre(v)−hD, post(v)]

using (4) and (5). To illustrate the benefit of this optimization, Figure 3.4a.on page 25 depicts the restricted
area of thepre/postplane to be searched for descendants of the nodev = 〈6,5〉. Note that while shrink-
wrapping also applies to thechild, attribute anddescendant-or-self axes, there is no analogue
for theancestor axis: for all nodesu such thatParent+(v,u), the lower bound onpre(u) and the upper
bound onpost(u) are fixed by the document root which, by definition, has the smallest preorder rank and
the greatest postorder rank inD.

While originally theXPath Accelerator engine was based onPre/Post encoding, subsequent work
by Grust et al. [2004] adopted a common variant of region encoding (introduced asStart/End encoding
below) which is more favourable to B+-Tree indexing and at the same time less sensitive against node
insertions. Recently, they adopted theOrder/Size scheme [Boncz et al. 2005a] and combined it with a
paging strategy [Boncz et al. 2005b] for further reducing the cost of updates. Besides shrink-wrapping,
Grust et al. [2003; 2003; 2004] discuss theStaircase Joinand various other optimizations for the efficient
decision of tree relations in the two-dimensional node plane, which aim to reduce the range of index scans.

6The proof is omitted in the 2002 and 2004 papers by Grust.
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a. Pre/Max b. Order/Size

c. Extended Preorder d. Pre/Post

e. Start/End

Figure 3.3: Selected subtree encodings applied to the document tree in Figure 3.1b. on page 18. Inc.,
shaded triangles symbolize subtrees of “virtual” nodes.
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a. Pre/Post b. Start/End

c. Order/Size d. Pre/Max

Figure 3.4: Two-dimensional representation of selected trees in Figure 3.3 on the preceding page:
a. pre/postplane for Figure 3.3d.; b. start/endplane for Figure 3.3e.; c. pre/sizeplane for Figure 3.3b.;
d. pre/max plane for Figure 3.3a. Descendants of a particular nodev lie in the shaded area:a. range
covered byChild+-images ofv = 〈6,5〉 (light/dark: without/with shrink-wrapping);b. Child+-images of
v = [13,18]; c. Child+-images ofv = 〈6,1〉; d. Child+-images ofv = 〈6,7〉.
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3.3.3 Region Encoding

The third class of subtree encodings subsumes schemes that were originally designed for structured text
databases. Modelling elements and text phrases as regions (substrings) in the serialized document, these
schemes are most commonly referred to asregion encodings. Unlike thePre/Post scheme or the different
interval encodings described above, which assign labels toXML elements (rather than tags or text strings)
in a depth-first traversal of the document treeD, region encodings are not tied to the notion of a document
tree whose nodes cover the whole textual extent of the document. As a matter of fact, early approaches
like thePAT algebra by Salminen and Tompa [1992] or theRegion Algebraby Consens and Milo [1994;
1995; 1998] abstract from the various ways to mark up structured documents, assuming the set of (possibly
overlapping) regions to be somehow known at indexing time. This makes them amenable also to structured
text documents with little or no explicit markup, such as program source code, Wiki documents, BIBTEX
files, or plain text that complies with specific formatting conventions.

The text-centric character of region encodings has two immediate consequences. First, since not only
elements but also occurrences of keywords (or phrases) are labelled, the encodings are sensitive against
changes to the textual contents of the documents. On the other hand, proximity constraints on keyword
occurrences (which are a common feature of query languages for text databases) can be checked against
the labels. Note, however, that region encodings do not retain information about the element distance inD
unlike the tree-based encodings discussed above.

Second, with their notion of independent regions which is more general than the tree model underlying
other subtree schemes, region encodings also capture overlapping elements which do not contain one an-
other. Prohibited in well-formed XML, this “improper” nesting is common, e.g., in SGML documents and
multi-hierarchical corpora. However, it is easy to verify that both thePre/Post and the interval encodings
described above can be applied to documents with overlapping elements (although this is typically not
considered in the post-SGML literature). This observationis consistent with the fact that all three encoding
variants are essentially alternative representations of the position and size of a node’s subtree.

Start/End. A number of region encodings have been developed over the years, the main difference lying
in the representation of regions and the corresponding procedure for deciding region containment (i.e.,
Child+ in our data model). One particularly common scheme, which wehenceforth refer to asStart/End
encoding, labels every nodev with the intervalIv = [start(v),end(v)] spanned by the first and last visit
to v in the combined pre-/postorder traversal of the document tree. Note that each keyword occurrence is
now modelled as atext nodein its own right.7 More formally, for each nodevi in the complete sequence
v0, . . . ,vn−1 of structure and text nodes in document order,

start(vi) =

{

0 if vi is the root
end(vi−1)+1 otherwise

end(vi) =

{

start(vi) if vi is a text node
start(vi)+sizet(vi)+2 ·sizes(vi)+1 otherwise

wheresizet(vi) andsizes(vi) respectively denote the number of text nodes and structuresnodes belowvi .
The resulting labels are illustrated in Figure 3.3e.on page 24. According to the first case in the definition
of end(vi) above, each keyword occurrence has identical start and end positions, whereas for a structural
leaf nodev denoting an empty element, we haveend(v) = start(v) + 1. (Occasionally structural leaves
are assigned identical start and end positions, too [Halverson et al. 2003; Chen et al. 2005b].) The sec-
ond case covers structure nodes without children, and ancestors of either text or structure nodes or both.
This is a straightforward generalization of definitions in the literature [Grust et al. 2004] which typically
do not consider mixed content. If nodes never have both text and structure nodes as descendants, then

end(vi) =











start(vi) if vi is a text node

start(vi)+size(vi)+1 if vi has text children

start(vi)+2 ·size(vi)+1 otherwise

7Contrast this with similar data models such asDOM [DOM] and Infoset [Infoset], where a text node may contain multiple
keyword tokens.
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Figure 3.4b. on page 25 depicts the two-dimensionalstart/end plane for the document tree in Fig-
ure 3.3e.on page 24. Note how all text nodesw lie on the diagonal wherestart(w) = end(w). Below this
line the plane is empty sincestart(v) ≤ end(v) for every nodev. The effect is the same forPre/Max in
Figure 3.4d. on page 25, where the diagonal borderline is marked by the structural leaves (since there are
no text nodes in this encoding). Compare this to thepre/postandpre/sizeplanes on the left-hand side of
Figure 3.4 (a.andc., respectively), where the whole space is populated. The decision ofChild+, Following
andNextElt+ described for thePre/Max encoding above also applies to theStart/End scheme by analogy.
Thus we haveChild+(v,w) iff start(w) ∈ Iv (or, alternatively,end(w) ∈ Iv), and so on.

3.4 Path Encodings

The largest and most diverse class of labelling schemes contains all approaches that create node labels from
the paths leading to the nodes they designate, rather than their subtrees as in the previous section:

Definition 3.4 (Path encoding)The class ofpath encodings(or prefix encodings) subsumes those schemes
where the label of a given node v encodes (at least some of) thenodes on the path from the document root
down to v, as a sequence ofsibling codeseach uniquely denoting an ancestor of v on that path. �

We choose the termsibling codeto emphasize that for each step on the path leading down tov, the label
must specify in which subtree (i.e., below which of the sibling nodes lying ahead) the nodev is located.
The full top-down sequence of sibling codes then uniquely identifiesv. Due to their hierarchical nature, the
labels of any path encoding respect document order iff the underlying sibling codes do. This is true, e.g., if
siblings are simply assigned ascending integers from left to right as withDewey encoding in Figure 3.6a.
on page 31. By contrast, schemes that use tag-specific sibling codes cannot decideNextElt+ (see below).

Creating node labels from paths has consequences regardingspace consumption, robustness, expressiv-
ity and runtime performance that differentiate path encodings from the subtree encodings described above.
First, the size of each label grows with the length of the encoded path (O(n) in the worst case). Therefore
path encodings typically take up more space than subtree encodings, whose label size is in O( logn). Some
approaches come with binary encodings of the “raw” sibling code sequences that reduce the label size in
practice, even though the asymptotic behaviour is not improved. Second, since a node’s label does not
reflect the size of its subtree, path encodings are inherently robust against insertions in certain positions
(such as adding children to leaf nodes). Third, from the pathto a nodev we can tell both the ancestors
and the descendants ofv, as follows. Since the root path to an ancestoru of v is always a prefix of the
root path leading tov, Child+(u,v) holds iff the sequence of sibling codes that form the label ofu is a
prefix of the sequence of sibling codes inv’s label. The same is true for the binary-encoded node labels,
provided the codes for any set of siblings are prefix-free8. Thus the decision ofChild+ boils down to a
comparison of bit strings. Furthermore, by removing a suffixof a specific length from the (raw or binary)
label ofv, we obtain the label of any ancestor ofv. For instance, deleting the last sibling code in the label
of v produces the label ofv’s parent node. This way path encodings support the reconstruction ofparenti ,
unlike all subtree encodings. As shown later, this makes a fundamental difference in query performance.

Path encodings fall into two subclasses. In contrast tofull path encodings(see the next subsection)
where all ancestors of a node contribute to its label,partial path encodingscover only fragments of a
node’s root path (see Section 3.4.2). This reduces the labelsize, but in most cases also the reconstruction
capabilities compared to full path encodings.

3.4.1 Full Path Encodings

Dewey. The most well-known path labelling scheme is certainlyDewey encoding9, which is used in
the Dewey Decimal Classification [DDC] for libraries and wasalso adopted by the early hypertext search
engineHyTime[Kimber 1993]. Dewey labels are assigned as follows. First all children of a givennode

8A set of binary codes isprefix-freeprefix-freeif none of the codes is a prefix of another code in the set.
9The labelling of nodes in a hierarchy with sequences of integers, similar to the section numbers in this paper, is calledDewey

encoding after the American librarian Melvil Dewey (1851–1931), who used a restricted variant of this scheme for his Dewey Decimal
Classification [DDC].
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a.

b.

c.

d.

e.

Figure 3.5: Different representations of twoDewey labels, “1.5” and “1.261”, and their impact on deciding
NextElt+ (document order).a. In the decimal form, document order cannot be checked in a lexicographi-
cal string comparison, but only numerically after level alignment. b.With a fixed number of bits per level,
the labels compare lexicographically, but may occupy needless space. Thus the second sibling code of the
first label has been left-padded with a zero-byte (8 leftmostbits on level 1). c.Levels with a variable num-
ber of bits must be aligned (using separators) and left-padded with 0’s (first label, level 1) for comparison at
runtime. d. UTF-8 byte prefixes (shaded) specify the length and value range of the following suffix (‘0’:
7 bits, values[0..127]; ‘110’+‘10’: 5+6 bits, values[0..2047] where[0..127] is unused). The prefixes of
the second byte in each label permit lexicographical comparison without alignment. Prefixes also indicate
level boundaries for reconstruction.e. TheORDPATH encoding is similar, but more compact for small
sibling codes (‘01’: 0 bits,[1..1]; ‘10’: 1 bit, [2..3]; ‘110’: 2 bits,[4..7]; ‘11110’: 8 bits,[24..279]).

are given consecutive sibling codes in ascending order fromleft to right, starting from 1, as illustrated in
Figure 3.6a. on page 31. TheDewey label of a nodev is then simply the top-down concatenation of all
sibling codes on the root path tov, with a dot as separator between every pair of sibling codes.

Notice that this guarantees unique node labels and also allows to decide document-order constraints,
provided the labels are not compared as strings (where “1.261” would incorrectly occur before “1.5”) but
numerically and level-wise (see Figure 3.5a.). As Tatarinov et al. [2002] point out, this can be achieved
through two distinct types of binary label encoding: (1) Allocating a fixed number of bits for each level
eliminates the need for separators, but may result in excessive label size since the greatest sibling code on a
given level causes bits to be wasted in all labels with smaller sibling codes on that level (see Figure 3.5b.).
(2) The same level may occupy a variable number of bits in distinct labels, depending on the corresponding
sibling codes in these labels (see Figure 3.5c.). Two given labels for which the number of bits per level
is known can be split into corresponding sibling codes to be compared numerically (by dynamically left-
padding the shorter sibling code with0’s, if applicable).

Tatarinov et al. [2002] adopt this second option, using UTF-8 as the variable-size label encoding.10

Here sibling codes in the range[0..127] occupy one byte whereas larger sibling codes are reserved two
bytes. As shown in Figure 3.5d., the sibling code boundaries in the binary label string can be inferred
from the leading bits in each byte, which are prefix-free. Hence a query constraintNextElt+(v,w) could be
decided by first cutting the binary labels ofv andw into sibling codes and then comparing them pairwise,
with left-padding where necessary. But since a one-byte UTF-8 code (which always begins with a0) is
lexicographically smaller than any two-byte code (whose first bit is fixed to1), labels can even be compared
without aligning and padding sibling codes, in a simple bitwise (or bytewise) left-to-right comparison. This
speeds up structural joins of large node sets, where document order tends to be checked very frequently.

10UTF-8 is the byte-oriented encoding form of the Unicode character encoding (seewww.unicode.org).
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By contrast, deciding and reconstructing tree relations other thanNextElt+(u,v) requires individual
sibling codes to be manipulated, which must therefore be located in the (raw or binary) label strings first.
For reconstructingparenti(v), the lasti sibling codes are removed from the label ofv. Obviously one must
know the sibling code boundaries in the binary label to chop off the right bit-string suffix. Fori-th-child(v),
a new sibling codei is appended to the label. Note, however, that while this yields the label reserved for
the i-th child of v, the existence of this child is not guaranteed. The same applies to thei-th right sibling
of v, whose label results from incrementing the last sibling code in v’s label by i. Similarly, a decrement
produces the label ofprevSibi(v) (if the last sibling code was 1, thenv has no left sibling). The labels of
ancestors common to two given nodesu,v (e.g.,lca(u,v)) are obtained by reconstructing and comparing
the root paths ofu andv. The separation level ofu,v (see Section 2.1) is equal to the number of sibling
codes in the label of their lowest common ancestor,lca(u,v). Finally,distance(u,v) can be computed from
the level information that is inherent to the labels (see Section 3.2).

Deciding query constraints withDewey labels is done as follows.Child+(u,v) constraints can be
matched by reconstructing the ancestors ofu andv and testing for equality, or alternatively, by checking
whetheru’s label is a prefix ofv’s label such that the end of the former coincides with a levelboundary in
the latter.Child i(u,v) is decided by comparingu to the result of reconstructingparenti(v). Sibling(u,v)
holds true iffu andv differ only in their last sibling code. ForNextSib+(u,v) v’s last sibling code must
be greater thanu’s; for NextSibi(u,v) the difference must be exactlyi. Following(u,v) holds true iff
NextElt+(u,v)∧¬Child+(u,v). Deciding the proximity relationsi-th-Following(u,v) andNextElti(u,v)
would requiresize(u) to be known, which cannot be reconstructed fromDewey labels (see above).

ORDPATH. TheORDPATH scheme by O’Neil et al. [2004] enhancesDewey in two respects. First, the
binary label strings are created using a Huffman code [Huffman 1952] designed to reduce the (average and
maximum) label length. Note that sinceDewey assigns ascending sibling codes from left to right, small
sibling codes close to the minimum value, 1, occur much more frequently than greater ones, at least in
typical documents where the average node fan-out is low. Thebinary encoding proposed by O’Neil et al.11

reduces the number of bits used for small sibling codes, at the expense of longer labels for nodes with
large sibling codes on their path. Figure 3.6b. on page 31 depicts a sample tree with raw and encoded
ORDPATH labels. Each sibling code (separated by “|”) is preceded by a length component (terminated by
“ p
p”) indicating the number of bits used for the following sibling code value.12 Values up to 7 take up less

space than with UTF-8 (see the value ranges in the caption below Figure 3.5e.on the preceding page); e.g.,
only 2 bits are needed for the most frequent value 1, comparedto 8 bits with UTF-8. For values beyond 24,
ORDPATH mostly requires more bits than UTF-8.

ORDPATH also comes with an update method, calledcareting-inby O’Neil et al., which allows for
(theoretically) unlimited node or subtree insertions at any position in the document tree, without affecting
existing labels. To this end, for a newly labelled document tree only odd sibling codes are used, as shown
in Figure 3.6b., whereas even codes are reserved for future insertions, as follows. There are three cases of
insertion to be handled: (1) A nodev is inserted as the only child of a former leafu. Thenv’s label is the
label of u after appending an additional odd sibling code “1”. For instance, a child to be inserted below
node “1.3.1” in Figure 3.6b. would be labelled “1.3.1.1”. (2) A nodev is inserted as the new leftmost
(rightmost) child of an inner nodeu. Thenv’s label is the label of the former leftmost (rightmost) child w
of u after decrementing (incrementing) the last sibling code inw’s label by 2. Note that this may create
negative sibling codes, which are also covered by the binaryencoding. For instance, a newly inserted left
sibling of node “1.3.1” would be labelled “1.3.-1”. (3) A nodev is inserted between two adjacent childrenw
andw′ of u. Thenv’s label is the label ofu after appending the even sibling code (caret) that falls between
w andw′, followed by a new odd code “1”. For instance, two new siblings w′′,w′′′ between “1.3.1” and
“1.3.3” would be labelled “1.3.2.1” and “1.3.2.3”, respectively. Repeated insertions on the same path may
create labels with multiple consecutive carets, such as “1.3.2.2.1” for another sibling betweenw′′ andw′′′.
Note, however, thatORDPATH labels always end in an odd sibling code.

11In fact, O’Neil et al. present two alternative encodings (optimizing large or small node fan-out), both of which are skewed
toward reducing the length of smaller sibling codes. Details given here, in Figure 3.5e.on the preceding page, and in the experimental
evaluation in Chapter 4 apply to the second encoding.

12The bit-string separators “p
p” and “|” are used for illustration purposes only and are not presentin physical storage.
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It is easy to see that carets do not affect the decision ofNextElt+(u,v) andChild+(u,v) (and hence,
Following(u,v), see above). Thus a bitwise comparison of the children of thenodeu= “1.3” in the previous
example correctly reflects the document order “1.3.1”< “1.3.2.1”< “1.3.2.2.1”< “1.3.2.3”< “1.3.3”.
Also, all these labels are recognized as belonging to descendants ofu, having “1.3” as a common pre-
fix. By contrast, when solving the vertical proximity problemsChildi(u,v) or parenti(v) (and similarly,
i-th-ca(u,v) or lca(u,v)) carets must be treated as zero-depth components that do notadd to the proximity
counti. Similarly,Sibling(u,v) holds true iffu andv differ only in a suffix consisting of zero or more carets
followed by the last (odd) sibling code; forNextSib+(u,v) v’s suffix must be bitwise greater thanu’s.

UnlikeDewey, ORDPATH cannot decideNextSibi(u,v) because careting-in blurs the distance between
siblings. For the same reason,ORDPATH does not support the reconstruction ofprevSibi(v), nextSibi(v)
and i-th-child(v). Note, however, that this decrease in expressivity is compensated for by much greater
robustness: withORDPATH, a nodev can be inserted at any position in constant time, whereas with Dewey
all following siblings ofv and their descendants must be relabelled.13 This also outweighs the increased
storage consumption ofORDPATH due to the sparse encoding. The overhead compared toDewey is
not measured by the authors but turns out not to be dramatic inour own experiments (see Chapter 4).
O’Neil et al. briefly outline how careting-in can also be applied to a subtree encoding similar toPre/Max.

Extended Dewey. WhileORDPATH skips certain sibling codes to accommodate future node insertions,
theExtended Dewey scheme by Lu et al. [2005] uses sparse sibling codes that allow to determine all tags
on the root path of a nodev in D from its label. More precisely, every sibling code inv’s label is mapped
to the corresponding tag by a global data structure containing the necessary tag information fromD (see
below). In particular, for any tagt occurring inD we need to know itschild tags, i.e., the sett0, . . . ,tct−1

containing allct distinct tags of nodes inD whose parent has the tagt. For instance, the root tagbook of
the sample document in Figure 3.6c. on the next page has the child tagstitle , chapter , appendix ,
hencec book = 3, whereasc chapter = c section = c appendix = 1. Each set of child tags is assumed to be
ordered in some arbitrary way (a possible order is indicatedby the tag subscripts in Figure 3.6c.).

Given an inner nodeu in D with tag t and child tagst0, . . . ,tct−1 (ct > 0), sibling codes are assigned
to all children ofu from left to right (i.e., in document order), as follows. Anychild v of u with tag ti
(0≤ i < ct ) is assigned the smallest free sibling codes≥ 0 such thatsmodct = i. For instance, letu be the
root of the document tree shown in Figure 3.6c. on the facing page. Besides, lett = book , t0 = title ,
andt1 = chapter , t0 = appendix . Then thetitle child of u receives the sibling codes= 0 in order
to meet the conditionsmod 3= 0 for title children of a book node. The sibling codes for the two
chapter children of the root are not consecutive because both must satisfy smod 3= 1. Therefore the
first chapter node has code 1 and the second has code 4 (the smallests> 1 such thatsmod 3= 1). The
sibling code for theappendix child happens to be the next free integer, 5 (for a secondtitle child it
would be 6 instead). As can be seen in Figure 3.6c., text nodes are also labelled, using the fixed sibling
code−1. The root label is the empty wordε.

For decodingExtended Dewey labels, Lu et al. use a Finite-State Transducer (FST), as shown in Fig-
ure 3.7a. on page 33 for the sample documentD in Figure 3.6c. on the facing page. The FST reads a
sequence of sibling codes and outputs the corresponding tagsequence. There is one state for each distinct
label in D, plus one extra state representing textual content (PCDATA in Figure 3.6c.). The inital state,
book , represents the root label inD. For each inner-node tagt with child tagst0, . . . ,tct−1, there is a
transition fromt to ti (0≤ i < ct) which accepts all sibling codess such thatsmodct = i, and outputsti .
Furthermore, from every state representing a tag there is a transition to thePCDATA state which accepts
the sibling code−1 and outputsPCDATA . To keep Figure 3.7a. simple, these are shown for thetitle ,
section and figure tags only. As an example, the label “4.0” of nodev in Figure 3.6c.on the next page
enters the initial state, outputtingbook , then passes through thechapter state because 4 mod 3= 1, and
finally reaches thesection state since 0 mod 1= 0. The data needed to create the FST forD is obtained
from a DTD or other schema, if available, or else collected ina first pass through the documents, before
creating the node labels.

13Even thoughORDPATH supports unlimited node insertions without invalidating existing labels, O’Neil et al. [2004] suggest a
periodical relabelling at least for highly dynamic document collections, in order to avoid long chains of even sibling codes caused by
repeated careting-in at the same position in the document tree.
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a. Dewey b. ORDPATH

c. Extended Dewey d. Path-Based

e. mPID

Figure 3.6: Selected path encodings applied to the documenttree in Figure 3.1b. on page 18.
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Path-Based scheme. The sibling codes used by theDewey-based approaches above set up a total order
among the children of any node. Therefore they cannot handleoverlapping siblings to be found, e.g., in
SGML documents. By contrast, thePath-Based labelling scheme by Sacks-Davis et al. [1997] establishes
a partial sibling order by assigning consecutive left-to-right sibling codes to all childrenwith the same tag
name.14 As shown in Figure 3.6d. on the preceding page, siblings with different tag names (such as the
title and appendix nodes) may have the same sibling code (“1”) and hence identical labels (“1.1”).

The consequences of using tag-specific sibling codes are threefold. First, thePath-Based scheme
supports overlapping siblings as long as they are distinguished by their tag name. Second, the labels do not
reflect document order, because of the partial sibling order. For instance, in Figure 3.6d. the appendix

node has a smaller label than its left sibling. Only nodes with the same sequence of tags on their root
path can be compared. Third, since the numerical labels alone are not unique (see above), the tags of all
ancestors of a given node must be compared when decidingChild+ or Sibling: Child+(u,w) holds true
iff u’s sequence of sibling codes is a prefix ofw’s sequence andu’s tag path is a prefix ofw’s tag path.
For instance, letu be the firstchapter in Figure 3.6d. on the previous page and letw be the section

labelled “1.1.2”, which is directly belowu. Without the second condition concerning the tag paths of the
two nodes,w could be mistaken for a descendant of thetitle node or theappendix node because both
have the same label asu, namely, “1.1”.

To make sure that all necessary information for decidingChild+ is available during query evaluation,
Sacks-Davis et al. keep the tag paths together with the node labels in an inverted index. In each posting for
a given keyword (say,“XML” ), the labels of nodes containing that keyword are grouped bytheir tag path
which is stored once for each group. For instance, the“XML” posting for Figure 3.6d. on the preceding
page would contain two singleton groups, one for the path/book/title (containing the label “1.1.1”)
and another for the path/book/chapter/section (containing the label “1.1.2.1”). Mind the redundant
storage of the path prefix/book , which can be avoided with other data structures (see the next subsec-
tion). Also note that unlike elements, text nodes (each representing a single keyword occurrence) have
consecutive sibling codes, in order to support text distance queries. Thus the occurrence of“Retrieval” in
Figure 3.6d. has the sibling code 2 for being the second keyword occurrence in the figure node, not 1
for being the first occurrence of“Retrieval” in that node.

3.4.2 Partial Path Encodings

ThemPID scheme by Bremer and Gertz [2006] relies on tag-specific sibling codes like thePath-Based
encoding above, and also has the same expressivity. However, it uses several compression techniques and
a binary encoding for reducing the storage consumption, as follows. Given a tag pathp in D, let thearity
of p be the maximum number of siblings with pathp in D. First, Bremer and Gertz observe that when
assigning tag-specific sibling codes≥ 0, all nodes with a tag path whose arity is 1 have the fixed code 0.
For instance, consider the tag pathp = /book/chapter/section/figure that occurs only once in the
document treeD in Figure 3.6e.on the previous page. Since there are never two siblings withthe pathp, the
arity of p is 1. For convenience, in Figure 3.6e.the arity of any tag path is indicated as a subscript to the last
tag in that path (thusfigure has the subscript 1). In fact, nodes whose tag path is either/book/chapter
or /book/chapter/section are the only nodes inD whose subscript is greater than 1 (i.e., whose sibling
codes are not fixed). All other sibling codes can be omitted from the labels without loss of information
(see below), provided that (1) we record during the labelling the tag paths with an arity> 1 and (2) we
know the tag path of every node. Recall from the description of the Path-Based scheme above that tag
path information is required anyway with tag-specific sibling codes, both for ensuring node uniqueness
and for decidingChild+ constraints. The following paragraphs explain how themPID scheme realizes the
two requirements that enable a very efficient label compression.

In order to avoid the redundant storage of duplicate tag pathprefixes, as with thePath-Based scheme,
Bremer and Gertz separate the node labels from the tag information and keep the latter in a centralized
structural summary (in this case, aDataGuide). The summary for the sample documentD in Figure 3.6e.
on the preceding page is shown in Figure 3.7b.on the next page. EveryDataGuide node has two properties:
the arity of the tag path it represents (subscripts in Figure3.7b.), and a unique path label (in this case,

14This tag-specific sibling coding is calledSame-Sibling Order Encodingby Tatarinov et al. [2002].

32 Felix Weigel



CHAPTER 3. LABELLING SCHEMES FOR XML AND TREE DATABASES

a. FST forExtended Dewey (see Figure 3.6c.) b. DataGuide for mPID (see Figure 3.6e.)

Figure 3.7: Global data structures used by selected labelling schemes in Figure 3.6 on page 31.a. The
Finite-State Transducer (FST) for theExtended Dewey scheme, applied to the document treeD in Fig-
ure 3.6c. The input is a sequence of sibling codes inD determining a unique path in the transducer. The
output is the sequence of states (tags) along this path.b. Structural summary (DataGuide) for themPID-
encoded treeD in Figure 3.6e.DataGuide nodes have preorder labels. Tag subscripts specify the maximum
number of siblings with a specific tag path inD.

preorder labels are used, although the particular labelling scheme does not matter). The label of a tag path
in theDataGuide is referenced by all document nodes with that tag path: themPID label of a document
nodev in D is a pair(π(v),pos(v)) where the first component is the path label of the uniqueDataGuide node
representing the tag path ofv. With upward pointers in theDataGuide, the tags and arities along the entire
root path of any document node are thus available without redundant storage. The second label component,
pos(v), is theposition pathof v, i.e., the sequence of non-fixed sibling codes onv’s root path. For instance,
the nodev with the mPID label (#3,〈1,0〉) in Figure 3.6e. on page 31 has the position path〈1,0〉 and
references theDataGuide node #3. Note that the corresponding tag path ofv, /book/chapter/section ,
comprises three steps whereaspos(v) contains only two sibling codes. This is because one of the ancestors
of v has a fixed sibling code that has been omitted during labelling in order to save space. Obviously, we
need to know which code was dropped when usingv’s label in decision or reconstruction operations. For
instance, we cannot computeparent1(v) if we ignore whether the second sibling code inpos(p) belongs
to v (in which case it has to be removed) or tov’s parent (in which case it must be kept).

To align pos(v) with the tag path represented byπ(v), the arities ofDataGuide nodes are used as
follows. Fromπ(v) = #3 and its ancestors in theDataGuide we can tell that the sibling code forv’s book

ancestor has been omitted: as indicated by the tag subscript1 to book in Figure 3.7b., the arity of the tag
path /book is 1, therefore thebook node inD has the fixed sibling code “0”. In other words, the original
position path ofv before the compression was〈0,1,0〉 (compare this to thePath-Based label 〈1,2,1〉 of
the same nodev in Figure 3.6d. on page 31).15 Given this information, the (compressed)mPID label of
v’s parent is easily reconstructed asparent1(v) = (#2,〈1〉), where #2 is the parent of #3 in theDataGuide
and〈1〉 results from deleting the sibling code “0” ofv in pos(v) = 〈1,0〉.

The waymPID decidesChild+ constraints is quite close to thePath-Based scheme. Given themPID
labels of two nodesu andv, Child+(u,v) holds iff pos(u) is a prefix ofpos(v) andChild′+(π(u),π(v))
holds true in theDataGuide. Note that the prefix test is applied to the compressed position paths, without
the need to restore omitted sibling codes. As a matter of factmPID labels are not even manipulated as raw
sequences, but as packed bit strings consisting of fixed-length binary sibling codes. No level separators are
used since the number of bits needed for the sibling codes of aparticular tag pathp is fixed to the base 2
logarithm of the arity ofp, which is stored in theDataGuide. If Child′+(π(u),π(v)) holds true, then the
sibling codes inpos(u) andpos(v) are prefix-free and the twomPID labels can be compared in their binary
form. Otherwiseu does not containv anyway. Moreover, given the lengths of sibling codes specified

15Note that the sibling code “0” in the last step ofpos(v) is not fixed – e.g., thesection node left ofv has code “1” – and hence
cannot be omitted.
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by theDataGuide nodes, the binary label of any nodev can be decomposed for reconstruction without
extra bits for length components or padding, as in Figure 3.5on page 28. To sum up, Bremer and Gertz
show how the use of a centralized structural summary for storing global document information permits
effective compression and fast manipulation of node labelsat the same time. In practicemPID labels are
very compact (see the experimental results in Chapter 4), although the worst-case label size is still O(n),
as for all path encodings.

3.5 Multiplicative Encodings

Finally, we would like to mention two labelling schemes whose decision or reconstruction capabilities are
based on arithmetic properties of node labels in trees with ahighly regular structure, such as binary trees or
completek-ary trees. In such a regular tree, labels can be assigned so that specific relations between nodes
can be inferred from their labels alone, by simple numeric calculations. The idea is to find a mapping
from a given irregularly structured document treeD to a regular treeDρ such that some of the arithmetic
properties inDρ carry over toD:

Definition 3.5 (Multiplicative encoding) The class ofmultiplicative encodingssubsumes schemes where
the label of a given document node v in D numerically encodes certain tree relations involving v, without
direct reference to nodes in the neighbourhood of v. To this end the document tree D is (not necessarily
physically) mapped to an internal representation Dρ with certain structural regularities that generally do
not hold in D, such as fixed node fan-outs or subtree sizes. These regularities entail arithmetic (typically
multiplicative) invariants on the labels of nodes in Dρ that are in a specific tree relation. The mappingρ
from D to Dρ is such that tree relations between nodes in D can be decided or reconstructed by exploiting
the invariants of their counterparts in Dρ . �

Labelling with multiplicative encodings conceptually involves three consecutive steps. First, the doc-
ument treeD to be labelled is analyzed in order to determine a suitable internal representationDρ of D.
In the second step, labels are created for the nodes inDρ . Finally, each node inD is assigned the label of
its unique counterpart inDρ . Note, however, that the labelling ofDρ andD might happen simultaneously,
i.e., steps two and three may be merged. In fact, the multiplicative approaches reviewed below do not even
fully representDρ physically in memory or on disk. Once a suitable mappingρ from nodes inD to nodes
in Dρ is found, they simple traverseD and assign every node the label that it would have inDρ .

It has been mentioned above that every multiplicative encoding relies on specific structural regularities
in Dρ to decide or reconstruct tree relations inD. Since in most realistic casesD is not as regularly
structured asDρ , however, not all desirable properties of the labels inDρ carry over toD. Therefore the
first of two major challenges in devising a good multiplicative labelling scheme is to find a way of mapping
anygiven document treeD to an internal representationDρ such that the desired expressivity of the scheme
is guaranteed. The second challenge concerns the storage space needed for the resulting labels inD. As will
become apparent in the rest of this section, the structural regularity ofDρ typically causesDρ to contain
many nodes that have no counterpart inD (so-calledvirtual nodes, a term coined by Lee et al. [1996]).
In more formal terms, the mappingρ from nodes inD to nodes inDρ is generally not surjective.16 In
practice this means that a potentially large portion of the range of possible labels is not used in the labelling
of D, being reserved for virtual nodes. Conversely, a much larger range of label values may be needed
for indexing a given document treeD than when using a less sparse encoding such as, e.g.,Order/Size or
Pre/Post (see Sections 3.3.1 and 3.3.2, respectively). On the other hand, these labelling schemes are also
far less expressive than some multiplicative encodings. The trade-off between expressivity and label size
is further discussed in Section 3.6.

Virtual Nodes. The earliest multiplicative labelling scheme we know of hasbeen proposed by Lee et al.
in 1996. We refer to it as theVirtual Nodes scheme in the remainder of this work. As a very expressive
but also very space-hungry approach, it is a good example forthe aforementioned trade-off faced by some
multiplicative encoding. Besides, the arithmetics behindthis scheme is interesting in its own right.

16By contrast, the mappingρ clearly is injective because otherwise the node labels inD would not be unique, unless they contain
extra components besides the labels fromDρ .
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Figure 3.8: The multiplicative encodingVirtual Nodes applied to the document in Figure 3.1b.on page 18.
Shaded circles reached by dashed lines symbolize “virtual”nodes. Note the breadth-first label order.

When labelling a given document treeD using theVirtual Nodes scheme, the shape of the internal
representationDρ of D depends on themaximal fan-outin D, i.e., the greatest number of children of
any node inD. In the sequel, letkD denote the maximal fan-out inD. Once the value ofkD is determined
(usually, in a first traversal of the document tree),D is mapped to akD-ary treeDρ , as shown in Figure 3.8.17

Intuitively, Dρ is obtained by adding virtual nodes toD: for eachv in D, ρ(v) = v; if v does not comply
with the definition of akD-ary tree, the missing nodes are added as rightmost virtual children tov. The
example illustrates that the number of virtual nodes inDρ may be exponential in the height ofD in the
worst case.

The nodes in thekD-ary treeDρ (including virtual nodes) are labelled with consecutive integer num-
bers≥ 1 in a left-to-right breadth-first traversal ofDρ . As shown in Figure 3.8, the nine nodes inD are
given labels in the range[1..54], which illustrates the sparseness of theVirtual Nodes scheme. On the
other hand, a number of tree relations can be decided and reconstructed using these labels. The following
lemmata explain the reconstruction ofi-th-childandparent1 (the proofs have been omitted by Lee et al. in
the 1996 paper):

Lemma 3.6 (Virtual Nodes child reconstruction) Let D be a document tree with maximal fan-out kD

and let Dρ be the kD-ary tree that is used for labelling D with theVirtual Nodes scheme. Besides, let v be
a node in D and letorder(v) be the label of v in Dρ . If v has at least i children in Dρ (i > 0), then the i-th
child w of v in Dρ has the labelorder(w) = kD · (order(v)−1) + i + 1. �

Proof. For any nodeu in Dρ , let pu denote the number of nodes precedingu in a left-to-right breadth-first
traversal ofDρ . First of all, from the wayVirtual Nodes labels are assigned, beginning with the label 1, it
follows thatorder(u) = pu +1 for any nodeu in Dρ . In particular, this is true for the desired child nodew
of v. So it remains to be shown thatpw = kD · (order(v)−1) + i.

Obviouslypw = p′w+p′′w wherep′′w is the number of left siblings ofw, which are children ofw’s parentv,
andp′w denotes the number of nodes precedingw that are not children ofv. Given thatw is the i-th child
of v, there arei−1 left siblings ofw, i.e.,p′′w = i−1. The numberp′w is determined as follows. Since node
labels are assigned consecutively in a left-to-right breadth-first traversal ofDρ , all nodes precedingw that
are not children ofv are either predecessors ofv or children of predecessors ofv. We know that there are
order(v)−1 predecessors ofv in Dρ (see above) and that each of them haskD children (none of them is
a leaf, otherwisev could not have a child nodew by definition ofDρ as akD-ary tree). Hence there are
kD · (order(v)−1) children of predecessors ofv in Dρ . However, the only predecessor ofv that is not also a
child of a predecessor ofv is the root ofDρ . It follows thatp′w = kD · (order(v)−1)+1. We conclude that

pw = p′w +p′′w
= kD · (order(v)−1)+1 + i−1

= kD · (order(v)−1) + i �

17By ak-ary tree, we mean a tree in which every node is either a leaf or an inner node with exactlyk children, and where no inner
node is visited after a leaf node in the left-to-right breadth-first traversal of the tree.

Structural Summaries as a Core Technology for Efficient XML Retrieval 35



3.6. SUMMARY AND DISCUSSION

The formula in Lemma 3.6 can be used to reconstructi-th-child(v) for any nodev in D, with an impor-
tant restriction: the result is correct only for nodes that indeed have at leasti children inD. Notice that this
condition is even stricter than the one forDρ that is mentioned in the lemma. After all, even if thei-th child
of v in Dρ exists, we ignore whether it has a counterpart inD, i.e., it might be a virtual node. In this case
the formula computes the label that is reserved for thei-th child ofv in D, should it ever exist.

Lemma 3.7 shows how to reconstructparent1(v) for any nodev in D except the root (which is easily
recognized by its fixed label 1). Higher ancestors are obtained by repeated parent reconstruction. Note that
there is no additional restriction onv here because of the way howD is mapped toDρ (see Figure 3.8): one
can show that for any nodev in Dρ , if v belongs toD then so do all its ancestors.

Lemma 3.7 (Virtual Nodes parent reconstruction) Let D be a document tree with maximal fan-out kD

and Dρ the kD-ary tree that is used for labelling D with theVirtual Nodes scheme. Besides, let v be a node
in D and letorder(v) be the label of v in Dρ . If v is not the root of Dρ , then the parent u of v in Dρ has the

labelorder(u) =
⌊

order(v)−2
kD

⌋

+1. �

Proof. As in the proof of Lemma 3.6, we definepu as the number of nodes precedingu in a left-to-right

breadth-first traversal ofDρ , and similarly forpv andv. Recall thatorder(u)= pu+1, hencepu =
⌊

order(v)−2
kD

⌋

remains to be shown. First, assume thatv is the leftmost child of its parentu. Then the number of pre-
decessors ofv that are not children ofu is order(v)−1. By the same argument as in the proof above, the
parents of these nodes are exactly thepu predecessors ofu in Dρ . Among theorder(v)−1 predecessors
of v, the root ofDρ is the only node that does not have a parent inDρ , so we are looking for thepu parents

of order(v)−2 nodes. Given that exactlykD children share the same parent, there must bepu = order(v)−2
kD

parents.
In general, ifv is the i-th child of u (1 ≤ i ≤ kD), then the number of predecessors ofv that are

not children ofu is order(v)−1− (i− 1), and accordinglypu = order(v)−2−(i−1)
kD

. However, this is equal

to
⌊

order(v)−2
kD

⌋

since(i−1)≤ kD−1. �

PBiTree. Unlike Virtual Nodes, which is fairly expressive, thePerfect Binary Tree (PBiTree) encoding
by Wang et al. [2003a] only decidesParent+ constraints. The document treeD is mapped (“binarized”) to
a complete binary treeDρ

18 using an injective homomorphismρ such that for any pairu,v of document
nodes,Parent+(v,u) in D iff Parent+(vρ ,uρ) in Dρ . As with other multiplicative schemes, this may entail
the creation of numerous virtual nodes needed to makeDρ complete. (Again, the binarization need not
take place physically.)

The label of a nodev in D is the inorder rank ofρ(v) in Dρ . In the binary tree with its highly regular
structure, ancestor reconstruction is possible. The ancestor of a nodeρ(v) at heighth in Dρ is computed

asanc(ρ(v),h) = 2h ·
⌊

ρ(v)
2h+1

⌋

+2h. The ancestor reconstruction inDρ allows to decideParent+ in D, as

follows: Parent+(v,u) holds true for nodesu,v in D iff ρ(u) = anc(ρ(v),h) for someh. By contrast,
decidingParenti(v,u) for a specific proximityi is impossible because the binarization does not preserve
the node levels and distances in the original treeD. To check whetheru andv are at a specific distance
in D, we would need to know the height ofρ(u) in the binarized tree Dρ—but there is no way to inferh
from i. By the same argument,PBiTree does not support the reconstruction ofparenti in D.

3.6 Summary and Discussion

Labelling schemes are structural summaries that can matchD-constraints on individual document nodes
in a decentralized fashion, without accessing larger partsof the data. As such they are a fundamental
building block for many different structural joins algorithms and a valuable complement to centralized
structural summaries like the schema tree introduced in Section 2.3. This section has provided an overview
of selected representative labelling schemes for XML documents. As mentioned before, there is a wealth

18By acomplete k-ary tree, we mean a tree in which every node is either a leaf or an inner node with exactlyk children, and where
all leaf nodes are at the same level.
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of contributions that have been made in more than twenty years, with a particular raise of activity during
the last five to six years. An exhaustive survey is still missing in the literature but currently under way
[Weigel and Schulz 2007]. It applies an extended version of the classification above to about thirty distinct
labelling schemes (see Table 3.2 on page 39).

To compare and evaluate the various approaches, four characteristic properties and possible optimiza-
tion goals have been suggested. Theexpressivityof a labelling scheme indicates whichD-constraints can
be matched using that scheme, and in which way. In this context we have proposed the termsdecision
andreconstructionto denote two very different matching techniques that are preferable in distinct retrieval
situations. The impact on the matching performance is quantified in Section 4.6 and Section 8.5. Besides,
theruntime performanceof alternative labelling schemes varies for a given decision or reconstruction op-
eration, which can affect the performance of the query processor, too. Thespace consumptionon disk and
in memory depends on the average and maximal label sizes. Finally, updatability(or robustness) deals with
how well a given scheme can reflect structural or textual modifications of the underlying documents. Node
insertions are particularly difficult to handle for certainclasses of labelling scheme (see below).

As often, these major characteristics turn out to representconflicting optimization goals. The rest of
this chapter briefly compares the selected approaches aboveon each of the four fields, in an attempt to
highlight the different priorities of the individual labelling schemes (and also classes of schemes) in the
trade-off between space consumption, expressivity, efficiency, and robustness.

Space consumption. In the literature on labelling schemes, storage issues are sometimes regarded either
from a more theoretical or from a more practical point of view, depending on the intended application
scenario and also the community that a particular approach comes from. On the one hand, it is important
to explore the asymptotic worst-case bounds on the label size, and much work has been devoted to ob-
taining ever tighter upper bounds, mostly by experts in the field of Discrete Mathematics (among others,
Peleg [2000], Kaplan and Milo [2000], Abiteboul et al. [2001a], Alstrup et al. [2002]). However, some of
these labelling schemes are rather complicated and therefore unlikely to be widely deployed. Also the
significance of theoretical bounds for practical use is limited: thus some of the highly space-optimized
schemes have been reported to perform worse than simpler ones [Kaplan et al. 2002], because the worst-
case bounds tend to overestimate the space that is actually consumed when labelling real-world documents.

On the practical side, many techniques for reducing the space consumption have been developed, even
though they may not improve the asymptotic behaviour. Thesetechniques target either the average size
or the maximal size of the labels that are created for a given document collection, depending on whether
individual labels are stored using a variable or a fixed number of bits, respectively. For path encodings with
their worst-case label size of O(n), various binary encodings have been put forward, includingthe skew
Huffman codes used byORDPATH that reserve shorter bit strings for the most frequent sibling codes.
Even for the less specialized UTF-8 encoding applied toDewey andExtended Dewey, Lu et al. [2005]
report space savings of up to 50% compared to raw labels. Unlike these approaches, themPID scheme
does not encode the number of bits used for each sibling code in the labels, but stores this information
in a centralized structural summary once for all nodes with the same tag path. This way the label size is
reduced considerably. Some more space is saved by omitting codes of singleton siblings in the labels, which
effectively compresses the labels. Compared toORDPATH,mPID encoding reduces the space consumption
by up to 50% with variable-size labels, and even more for fixed-size labels (see Section 4.6 in the next
chapter). In some cases the average and occasionally even the maximum size ofmPID labels is smaller
than for preorder ranks [Bremer and Gertz 2006; Weigel et al.2005d].

Extended Dewey, Path-Based andmPID also exemplify alternative approaches to combining node la-
bels with element tags using some sort of global data structure outside the labels. ThePath-Based scheme
keeps all distinct tag paths together with the node labels inan inverted index, which causes redundant stor-
age but saves pointers. By contrast,Extended Dewey andmPID labels reference the corresponding tag paths
in a centralized structural summary (FST orDataGuide, respectively). WhilemPID uses explicit pointers to
DataGuide nodes,Extended Dewey chooses sparse sibling codes representing FST states. Which approach
takes up less space depends on the structure of the documents: it affects both the size of theDataGuide
(hence the length of the pointers) and the sparseness of the sibling codes. In general the FST has the same
number of edges but fewer nodes than theDataGuide. On the other hand, whileExtended Dewey supports
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recursive DTDs, it cannot handle tags that occur below different tag paths in the documents, unlikemPID.
A modified FST with states representing tag paths rather thansingleton tags would grow to the same size
as theDataGuide.

Although subtree encodings enjoy a modest upper label size bound of O( logn), there are differences
to observe. For instance, Grust et al. [2004] point out that with a fixed label size, region encodings like
Start/End can represent only half as many nodes asPre/Post. Intuitively, this is because node labels
[start(v),end(v)] with start(v) > end(v) are prohibited (see the unused lower part of the two-dimensional
label space in Figure 3.4b. on page 25). On the other hand, theOrder/Size scheme is no sparser than
Pre/Post (compare Figures 3.4a. andc.) but more robust against changes of the document tree (see the
paragraph on updatability below).

Expressivity. Table 3.2 on the facing page summarizes the expressivity of the labelling schemes dis-
cussed in this chapter. Roughly speaking, one can observe two clusters in the table: one the one hand, there
are very expressive schemes like most multiplicative encodings and the path encodings close toDewey
(upper half of Table 3.2). On the other hand, many other approaches are much more focused on specific
decision or reconstruction problems. In particular, subtree encodings (lower part of Table 3.2) only decide
Parent+ andNextElt+ constraints, but ignore sibling decision as well as any reconstruction besides sub-
tree size. Combined with the fact that they are concise, fastin decision problems and easy to implement,
this makes them a good choice for the set-at-a-time identification of ancestor/descendant pairs in structural
joins.

The group of path encodings (middle part of Table 3.2) falls into three subgroups each with a different
expressivity profile. The most expressive approaches with rich decision and reconstruction capabilities are
those based on some form ofDewey encoding (rows down to and includingExtended Dewey in Table 3.2).
A second cluster subsumes a number of path encodings that arenot compatible with document order,
which prevents the decision and reconstruction of most horizontal tree relations. These includes schemes
with tag-specific sibling codes, like thePath-Based andmPID labellings, as well as so-calledlayered
encodings (marked with an “ℓ” in Table 3.2). Layering is discussed in Section 4.5.2 below. Like the
layered schemes, the remaining path encodings mostly stem from the graph theory and network routing
communities and are mainly designed to minimize the label size and derive tight asymptotic bounds, at
the expense of even more restricted expressivity. While guaranteeing a better worst-case label size, they
tend to be far too complicated for productive use and are therefore primarily of theoretical interest. Note
that due to their top-down approach to node labelling (see Section 3.4), all path encodings ignore the size
of specific subtrees in the documents (last column in Table 3.2). The only exception, theLCA scheme by
Peleg [2000], is in fact a combined path and subtree encoding.

Finally, the first two of the multiplicative encodings (upper part of Table 3.2) are highly expressive
owing to the strong tree regularities they exploit (see Section 3.5). Note that theVirtual Nodes scheme does
not recognize document order because is assigns node labelsin a breadth-first traversal of the document
tree. TheBIRD scheme is presented in the next chapter. In contrast to theseschemes,PBiTree encoding
supports only the decision ofParent+ because of the lossy mapping into its internal tree representation (see
Section 3.5). Like path encodings, the multiplicative schemes are incapable of reconstructingsize, due to
their sparseness.

Runtime performance. Labelling schemes not only differ with respect to the choiceof tree relations
that they decide or reconstruct, but also in how fast this is done. For instance, ancestor reconstruction with
Virtual Nodes or Dewey-based schemes may take time linear in the length of the labelstring (depending
on the binary label encoding), whereasmPID andBIRD compute the ancestor labels at any height in quasi-
constant time. The asymptotic behaviour of these labellingschemes when faced with various reconstruction
and decision problems is analyzed in earlier work [Weigel etal. 2005c].

Note, however, that assessing the efficiency of a labelling approach is complex, and hardly possible
when taking only theoretical properties into account, because many factors can have a more or less tangible
influence on the runtime performance of the query engine. Thus our experiments in the next chapter (see
Sections 4.6.2 and 4.6.3) show that in practice, using reconstruction rather than decision has a huge impact
while the difference between distinct reconstruction methods is often negligible.
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Table 3.2: Expressivity of different labelling schemes. Symbols in the individual columns indicate whether
a specific tree relation is decided or reconstructed by a particular labelling scheme (see the key below the
table for the meaning of the symbols). Shaded columns highlight tree relations that are of special interest for
XPath or XQuery processors. The table includes many approaches not discussed in this work. For a detailed
analysis and comparison of all labelling schemes, see the complete survey [Weigel and Schulz 2007].
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Updatability. Modifying a document collection that has been indexed usinga specific labelling scheme
may affect the existing labels assigned to individual document nodes. The impact of a document update
typically depends on any combination of (1) the labelling scheme used (e.g., path versus subtree encoding
with or without text labelling), (2) the kind of update (insertion versus removal of a document, element, or
text passage), (3) the location of the update (e.g., in a leafnode of the document tree), and (4) the extent of
the update (e.g., how many nodes are added at a given position). While the removal of documents, elements
or text passages is often handled simply by leaving labels unassigned, adding new content is more critical.

In some scenarios, updates occur either rarely (like in static databases containing, e.g., medical, juridi-
cal, geographical or historical information), or new data are first collected and then added to the database
in a bulk update once in a while (e.g., in digital archives, linguistic corpora, encyclopedias and dictionar-
ies, product catalogues, or digital libraries). Under suchcircumstances, robustness is a minor concern,
whereas storage demands and runtime performance are much more important. A straightforward solution
is to reindex the entire document collection from time to time. On the other hand, in dynamic databases
whose contents change frequently, like news repositories,auction servers, or flight booking services, such
a strategy is clearly infeasible. Here node insertions mustbe doneincrementally, i.e., without affecting too
many of the existing node labels.

The class boundaries between subtree encodings, path encodings and multiplicative encodings also
mark fundamental differences with respect to updatability. As observed by Yu et al. [2005], subtree encod-
ings propagate topological changes bottom-up through the document treeD because the label (i.e., interval
or region) of any document node is contained in the label of all its ancestors inD. For instance, if a newly
inserted node causes the parent interval to overflow, then this might propagate up to the root ofD. The
situation is even worse for multiplicative encodings, where an overflow might propagate to disparate re-
gions inD or even the entire tree (e.g., considerVirtual Nodes labelling when the maximal fan-out ofD
increases).

By contrast, path encodings propagate label updates top-down to all descendants, which inherit a prefix
of the path label from their ancestor. As a consequence, pathencodings can more easily accommodate an
unknown number of future node insertions. ThusDewey encoding naturally supports the adding of new
rightmost siblings (in other words, unordered insertions)without the need for reassigning existing labels,
provided labels can occupy a variable number of bits. Other path encodings use placeholder labels, either
one below each node (for unordered insertions, as suggestedby Kaplan et al. [2002]) or one between any
two siblings (for ordered insertions at arbitrary positions in D, as suggested by O’Neil et al. [2004] for
ORDPATH).

With fixed-size subtree or multiplicative encodings, the easiest way to prepare for a limited number of
node insertions to come is to leave a certain number of labelsunassigned during indexing. This technique
was proposed by Li and Moon [2001] forExtended Preorder, among others. Note, however, that the size of
the gaps must be fixed at indexing time, unlike the placeholders used with path encodings. If variable-size
labels are admissible, floating-point rather than integer numbers may be used as interval bounds in order
to make subtree encodings more robust. This idea was alreadyhinted at by Santoro and Khatib [1985] and
was later adopted by Chien et al. [2001] and Jagadish et al. [2002], too.

Alternatively, theRelative Region scheme by Kha et al. [2001] encodes the interval bounds of any
nodev in D relative to the interval bounds of the parentu of v. Similar encodings have been described by
Tatarinov et al. [2002] (Local Order ) and Sacks-Davis et al. [1997] (Path-Based). However, this means
thatParent+(v,u) can no longer be decided from the labels ofv andu alone, which spoils the local character
of the labelling and may entail extra I/O during the query evaluation.

Kha et al. also suggest defining the interval bounds in terms of byte offsets rather than preorder node
ranks. The same idea is pursued by Yoshikawa et al. [2001]. Note that this not only reduces the robustness
of the labelling, but also prevents proximity matching in terms of the token distance. In the literature on
structural joins for XML retrieval, where region encoding has been most influential (see above), the original
representation using token positions is predominant.
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CHAPTER

FOUR

TheBIRD Labelling Scheme

4.1 Overview

To assess the cost and benefit of labelling schemes for XML, the preceding chapter has surveyed a choice
of approaches with different features and weaknesses. We now present a new labelling scheme called
BIRD (the acronym ofBalanced Index-based numbering scheme for Reconstruction and Decision) that
combines great expressivity and efficiency with modest storage needs and reasonable robustness.BIRD
is the first in a sequence of interrelated contributions to bepresented throughout this work. Together with
theCADG index (Part III), it serves as a building block to theRCADG retrieval engine (Part IV), whose
evaluation algorithm draws much of its power from the reconstruction capabilities of theBIRD scheme.
The benefits ofBIRD also carry over to incremental query evaluation with theRCADG Cache (Part V).

Before explainingBIRD in detail, let us briefly recapitulate on the role of labelling schemes for XML
retrieval. Given more and more large collections of XML documents, efficiency and scalability are a
major concerns. Matching query constraints directly in thedocuments is prohibitively expensive especially
when using general-purpose storage infrastructure, such as an RDBS or a standard file system. Centralized
structural summaries like the schema tree introduced in Chapter 2 partially shift the burden to the schema
level, where weaker query conditions (so-calledS-constraints) can be processed very fast. However, while
this typically rules out some false positives, the results of the schema-matching stage must be checked once
more on the document level against the exact query constraints (theD-constraints). Labelling schemes
as decentralized structural summaries can assist in this document-matching stage, supplying information
about the tree relations between individual document nodesthrough their labels. Rephrasing Definition 3.1
on page 17 a little more precisely, one can say that labellingschemes specify conventions for assigning
unique labels to the nodes in the document tree that allow to decide or reconstruct specificD-constraints
efficiently without access to the entire document tree, which saves I/O and possibly join operations.

Following the terminology introduced in the previous chapter, BIRD belongs to the small class of
multiplicative encodings (see Section 3.5). Recall from Definition 3.5 on page 34 that unlike subtree or
path encodings which derive the label of an element respectively from its descendants or ancestors, mul-
tiplicative labelling schemes exploit certain regularities in the document structure to encode tree relations
numerically in the labels. In the case ofBIRD, each document node is given a fixedweightat indexing
time, and labels are assigned in such a way that the label of every node is a multiple of its weight. As
shown later, this allows to reconstruct the ancestors, siblings and children of any given document node
and to decide almost all tree relations in our data model. Thus BIRD is among the few most expressive
labelling schemes known to the literature (see Table 3.2 on page 39). In particular,BIRD labels respect the
document order, which greatly facilitates sort, join and merge operations on node sets (see Section 4.6). Of
course using only labels that are multiples of specific weights leaves many possible label values unused. As
other multiplicative labelling schemes,BIRD is in fact a rather sparse encoding that reserves many labels
to so-called “virtual” nodes, i.e., additional document nodes that do not exist physically (and hence cannot
be queried), but are assigned node labels nonetheless. Their existence is assumed solely for the sake of
establishing structural regularities that are not manifest in the original document tree.
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a. document treeD b. schema treeS

Figure 4.1: The multiplicative encodingBIRD applied to the document in Figure 3.1b. on page 18.

For illustration, consider the document tree shown in Figure 4.1a. Each nodev is annotated with its
BIRD labelβ (v) (in bold face) and with its weightω(v) (in parentheses). For instance, the shaded nodev
in the figure has the labelβ (v) = 20 and the weightω(v) = 2. Weights are not stored with the labels, but
in a centralized structural summary such as the schema tree in Figure 4.1b. All nodes ina. with the same
tag path asv have the same weight, which is attached to the correspondingschema nodeπ(v) in b. (large
numbers). Decision problems for any XPath axis can be solvedbased on the following observations. First,
given two nodesv andw in the document tree,w is a descendant ofv iff β (v) < β (w) < β (v)+ ω(v). Thus
node 21 is a descendant ofv because 20< 21< 20+2. To decideNextSib+(v,w), we test ifβ (v) < β (w)
and the two nodesv,w have the same parent node (parents are reconstructed, see below). Following(v,w)
holds true iffβ (w)≥ β (v)+ ω(v). For instance, node 25 followsv since 25≥ 20+2. Furthermore, given
the BIRD label β (v) of a nodev and the weightω(u) of any ancestoru of v (say, its parent node), we
can reconstruct theBIRD label ofu, which isβ (u) = β (v)− (β (v) modω(u)).1 The parent ofv in Fig-
ure 4.1a., e.g., has the weight 6, hence the label reconstruction yields 20− (20 mod 6) = 20−2= 18. This
briefly illustrates how theBIRD labelling is used to decide the tree relations in our data model for two given
document nodes and to reconstruct part of the tree neighbourhood (here, the root path) of a single given
document node. The decision and reconstruction of other tree relations is discussed below.

We shall see that theBIRD scheme supports the decision ofall XPath axes, as well as the reconstruction
of all functional XPath axes (i.e., those containing at mostone node by definition, such as theparent axis).
Involving only trivial arithmetic calculations such as those shown above, the decision and reconstruction is
very efficient, provided that fast access to theBIRD weights is available. To this end, the weights are stored
in a centralized structural summary (e.g., the schema tree introduced in Chapter 1) that is typically small
enough to reside in main memory. Matters of storage consumption are discussed below, where we introduce
various variants ofBIRD labelling schemes that offer distinct compromises betweenthe expressivity of
the scheme and the size of the resultingBIRD labels. The storage requirements are also influenced by
the choice of the structural summary (see Section 4.8). In this sense,BIRD labelling actually defines a
family of possible schemes. Our experimental evaluation (see Section 4.6) shows thatBIRD outperforms
various other tree labelling schemes in terms of runtime performance and expressivity, and that its storage
behaviour and updatability are competitive on document collections up to the gigabyte range.

The next section explains how to createBIRD labels and weights for a given document tree to be la-
belled. The algorithms described there cover different variants ofBIRD encoding. Section 4.3 presents a
series of lemmata that show how to reconstruct tree relations fromBIRD labels and weights. The deci-
sion of query constraints is covered by Section 4.4. These two sections formally prove the expressivity of
theBIRD scheme that was claimed earlier (see Table 3.2 on page 39). Handling document updates with
BIRD is discussed in Section 4.5, featuring two variants of the scheme that promises increased robustness.
Section 4.6 reports on the outcome of our experimental evaluation and comparison of a number of differ-
ent labelling schemes for XML data. Section 4.7 summarizes the contributions made by the competing
schemes. We conclude in Section 4.8 with an outlook on further optimizations and open questions.

1For integersi, j (j 6= 0), let i mod j denote the unique integerl ≡ i moduloj such that 0≤ l < j.
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4.2 The Family ofBIRD Labelling Schemes

This section deals with how to createBIRD labels and weights at indexing time. Runtime operations forthe
decision and reconstruction of query constraints are covered in the next two sections. As mentioned above,
a centralized structural summary is used for providing quick access toBIRD weights during query evalua-
tion. In the sequel, we assume that the weights are stored in the schema tree, as shown in Figure 4.1 on the
facing page. For a discussion of other structural summariesthat can be used withBIRD, see Section 4.8.

Let D be a document tree to be labelled, and letS be its schema tree. As illustrated in the examples
above, we have to make sure that for any given nodev in D, the weights ofv and all its ancestors inD can
be obtained fromS. Also, it has already been mentioned that for any nodev in D, theBIRD labelβ (v) of v
must be a multiple of its weightω(v). We thus enforce the following two invariants during the labelling:

1. Weight invariant: All document nodes with the same tag path have the sameBIRD weight. For
any nodev in D, its weightω(v) is stored in the nodeπ(v) in S.

2. Label invariant: During the labelling ofD, theBIRD labelβ (v) of any nodev in D is deter-
mined to be the smallest unassigned multiple ofω(v) in document order.

Let ω(p) denote theBIRD weight stored in a given a schema nodep in S. The first invariant states that
for every document nodev, ω(v) = ω(π(v)). Intuitively, the weight ofv must be large enough to subsume
the interval spanned by allBIRD labels in the subtree ofD that is rooted inv. Note that in general this
interval is larger than the numbersize(v) of nodes in that subtree becausev’s descendants are subject to the
label invariant above. Also note that distinct document nodes with the same tag path may have different
intervals. To comply with the weight invariant, we therefore chooseω(π(v)) to be the largest interval for
any document node with the same tag path asv. This idea is expressed formally in the weight definition
below (see the next subsection).

Labelling a document treeD with BIRD is done in three phases. First,D is traversed once to determine
for each document nodev the number of children ofv, which is later used to determine the aforementioned
subtree interval ofv. In the second phase, the schema treeS is traversed bottom-up to compute and store
the weightω(π) of every schema nodep in S. Finally, in the third phaseD is traversed again in document
order to assignBIRD weights to all document nodes inD, based on the weights inS.

4.2.1 CreatingBIRD Weights

To facilitate the labelling process, we only considerbalancedvariants of theBIRD scheme. Here the
weights for schema nodes are unified among all children (or grand-children, etc.) of a given schema node
in S.2 The degree of balancing is controlled by the parameterb.

Let p denote a node inS, and letb≥ 1. By theb-step ancestorof p, we mean the unique ancestor
of p in S that is reached fromp in exactlyb parent steps. As a matter of fact, theb-step ancestor ofp is
defined if and only iflevel(p)≥ b. Since the weightωb(p) of p in a b-balancedBIRD scheme is based on
the maximal interval size among the siblings, cousins, grandcousins, etc. ofp in S, depending on the value
of b, the following definition ofb-equivalent nodesis needed. Intuitively, two nodes are 1-equivalent iff
they are siblings (i.e., share the same parent), 2-equivalent iff they are siblings or cousins (i.e., share the
same grandparent), and so on.

Definition 4.1 (b-equivalence)Let S be a schema tree with set of nodes P. The equivalence relations∼b

(b≥ 1) on the set P of nodes in S are inductively defined as follows:

1. for all p,p′ ∈ P, p∼1 p′ iff the1-step ancestors (i.e., parents) of p and p′ are defined and coincide.

2. Let b≥ 1. For all p,p′ ∈ P, p∼b+1 p′ iff p∼b p′, or the b+1-step ancestors of p and p′ are defined
and coincide.

If p∼b p′, we say that p and p′ are b-equivalent. By [p]b we mean the equivalence class of the node p with
respect to∼b. �

2There also exists an unbalanced variant that produces smaller weights and labels, but has disadvantages in terms of expressivity
and memory consumption during label creation (see Section 4.8).
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The following two definitions are key to the bottom-up creation of balancedBIRD weights inS:

Definition 4.2 (Child count) Let D be a document tree with set of nodes V, and let v∈ V be a node
in D. The child countchildCount(v) of v is the number of children of v in D, i.e.,childCount(v) =
|{w∈V | Child(v,w)}|. �

Definition 4.3 (BalancedBIRD weight) Let D be a document tree with set of nodes V, and let S be the
schema tree for D with set of nodes P. Besides, let b≥ 1. The b-balancedBIRD pre-weightω ′b(p) and the
b-balancedBIRD weightωb(p) of a schema node p∈ P are recursively defined as follows:

ω ′b(p) :=

{

ωb(p′) ·maxv∈V {childCount(v)+1 | π(v) = p} iff p has a child p′,
1 otherwise

ωb(p) := maxp′∈P{ω ′b(p
′) | p′ ∼b p}.

Finally, for every v∈V, the b-balancedBIRD weightof v is defined asωb(v) := ωb(π(v)). �

Note that the maximum operation in the definition ofωb leads to unified weights for allb-equivalent
schema nodes inS (balancing). It also guarantees the well-definedness of pre-weightsω ′b since any two
childrenp′,p′′ of a schema nodep have the sameb-balanced weightsωb(p′) = ωb(p′′). The final clause
conforms to the weight invariant on page 43.

1-balanced weights are also calledchild-balancedweights. Ifb equals the heighthD of the document
treeD, thenωb(p) is called thetotally balanced weightof the schema nodep. In the remainder of this
chapter,Sb denotes the variant of the schema treeSwhere theb-balanced weightωb(p) is attached to each
schema nodep, as illustrated forb = 1 in Figure 4.2 on the next page.

Example: Child-balanced BIRD weights. Consider the document treeD shown in Figure 4.2a. and
the corresponding schema treeS1 in Figure 4.2b. on the facing page, to which the child-balancedBIRD
has been applied (i.e., 1= 1). Each nodep in S1 is annotated with its child-balanced weightω1(p) and,
for convenience, the pre-weightω ′1(p) (in parenthesis). Ifp has children, then Figure 4.2b. also depicts
the number maxv∈V {childCount(v)+1 | π(v) = p} that is used in Definition 4.3 above (written above the
line next top). Note that only the weightsω1 are stored physically in the schema tree.

To understand how the depicted pre-weights and weights inS1 are computed, consider the leftmost path
in Figure 4.2b.The weighting procedure runs bottom-up and begins with the leavesp1 = /r/a/c/b/c and
p2 = /r/a/c/b/b , which respectively represent the document nodes 115 and 116 in D (larger numbers3 in
Figure 4.2a.). Their pre-weight is fixed toω ′1(p1) = ω ′1(p2) = 1 according to the first part of Definition 4.3.
To compute the final weightω1(p1) of p1, we must determine the greatest pre-weight of all schema nodes
that are 1-equivalent top1. Since[p1]1 = [p2]1 = {p1,p2}, we obtainω1(p1) = ω1(p2) = 1 (second part
of Definition 4.3). We next consider the parent nodep3 = /r/a/c/b of p1 andp2, which represents the
document nodes 111, 114 and 282 inD. The nodes 111 and 282 have no children, butchildCount(114) = 2
(see Figure 4.2a.). Therefore in the calculation ofω ′1(p3), the child weightω1(p1) is multiplied by a
factor 2+1 = 3 according to the first part of Definition 4.3. The resulting pre-weight ofp3 is ω ′1(p3) = 3.
In the next step, the final weightω1(p3) is computed: The bottom-up algorithm has already computed the
pre-weight of the siblingsp4 = /r/a/c/c andp5 = /r/a/c/d of p3, which is 1 because they are leaves.
The weight of each of the three siblingsp3, p4 andp5 is the maximum of their pre-weights, i.e.,ω1(p3) =
ω1(p4) = ω1(p5) = 3 according to the second part of Definition 4.3. On the higherlevels, pre-weights
and weights are computed in exactly the same way until we reach the root/r of S1. Its 1-balancedBIRD
weight is 450.

4.2.2 CreatingBIRD Labels

We now describe theb-balancedBIRD scheme, which assigns an integerβb(v) to each nodev in D, given
the schema treeS for D that containsb-balanced weights as described above (see Definition 4.3). In the
special case whereb = 1, the scheme is called thechild-balancedBIRD scheme. If b = hD represents the
height of the document tree, we refer to it as thetotally balancedBIRD scheme.

3For convenience, the example refers to document nodes by their BIRD labels, although the label computation is only explained
later (see the next subsection).
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a. document treeD

b. schema treeS1

Figure 4.2: Child-balancedBIRD labelling (b = 1). a. A sample document treeD. For any document
nodev shown in the figure, the large number denotes the child-balancedBIRD labelβ1(v) of v, whereas
the small number in parentheses denotes the upper bound ofv’s subtree interval, i.e.,β1(v) + ω1(v).
b. The 1-balanced schema treeS1 for D in a. For any schema nodep shown in the figure, the large
number denotes the child-balancedBIRD weight ω1(p) of p, whereas the small number in parenthe-
ses denotes the corresponding pre-weightω ′1(p) of p. For each non-leaf nodep in S, the number
maxv∈V {childCount(v)+1 | π(v) = p} is indicated (see Definition 4.3 on the preceding page). Notethat
only BIRD labels and weights (i.e., large numbers ina. andb.) are stored physically.
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a. document treeD with child-balancedBIRD labels b. schema treesS1 for D

Figure 4.3: Child-balancedBIRD labelling applied to the sample document in Figure 2.1 on page 8.

Definition 4.4 (BalancedBIRD label) Let D be a document tree with root r, and let Sb be the schema
tree for D with b-balanced weights as defined above, for a fixedb≥ 1. The b-balancedBIRD labelβb(v)
of a given document node v in D is recursively defined as follows. If v= r, then βb(v) is any multiple
of ωb(π(r)) (e.g.,βb(v) := 0). Otherwise let u denote the parent of v in D, and letβb(u) be the b-balanced
BIRD label of u. If v is the leftmost child of u, thenβb(v) is the smallest multiple ofωb(π(v)) that is greater
thanβb(u). Otherwise let w be the immediate left sibling of v in D, and let βb(w) be the b-balancedBIRD
label of w. Thenβb(v) := βb(w)+ ωb(π(v)). �

The recursive definition of theBIRD labels above translates naturally into a labelling algorithm that
traversesD in pre-left order (i.e., document order) during the third ofthe aforementioned labelling phases.
This ensures that the label invariant on page 43 is observed (see Lemma 4.6 below). Note that Definition 4.4
does not distinguish between specific values of the balancing parameterb. Instead theb-balancing is
implied by the weights inS. Therefore exactly the same labelling algorithm is used forcreating the labels
of anyb-balancedBIRD scheme.

Example: Child-balancedBIRD labels. In Figure 4.2a. on the preceding page, each document nodev
is annotated with its 1-balancedBIRD labelβ1(v) (large number). The labelling starts with 0 for the root
node, and traverses the document tree top-down left-to-right, as described above. Note that for anyb≥ 1
theBIRD labels and weights are defined in such a way that all labels in the subtree rooted in a document
nodev are contained in the interval[βb(v),βb(v)+ ωb(v) [. This important relation between labels and
weights is established by Lemma 4.5 below. For convenience,the upper bound of the subtree interval is
depicted as the small number in parentheses next to each nodein Figure 4.2a. Note that only the labels are
stored physically, whereas the intervals are calculated from the labels and weights at runtime.

Example: Totally balancedBIRD labels. Figure 4.4a. on the next page shows the same document tree
as Figure 4.2a. on the preceding page, but withBIRD labels computed for a balancing parameter ofb = 4.
Note that sinceD has heighthD = 4, the labelling shown in Figure 4.4a. is the totally balancedBIRD
scheme forD. Each database nodev is annotated with its labelβ4(v) (large number) and with the upper
boundβ4(v)+ ω4(v) of its subtree interval. The 4-balancedBIRD weights for the nodes inD are given as
annotations to the corresponding nodes in the schema treeS4 (see Figure 4.4b.).

Example: Document tree and schema tree from Chapter 2. Figure 4.3 shows the document treeD
and child-balanced schema treesS1 for the XML fragment in Figure 2.1a. on page 8. The document
tree in Figure 4.3a. differ from the one in Figure 2.1b. in that preorder labels have been replaced with
child-balancedBIRD labels. The schema tree in Figure 4.3b. is the same as in Figure 2.1c., except that
child-balancedBIRD weights have been added to the nodes.

The following two lemmata show thatBIRD weights define subtree intervals for the labels of document
nodes and their descendants inD. This observation is important because it guarantees the uniqueness of
the node labels inD. In addition, it shows that the labelling functionβ is compatible with the document
orderNextElt+ in D, in the sense thatNextElt+(v,w) impliesβ (v) < β (w) for any two nodesv,w in D.
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a. document treeD

b. schema treeS4

Figure 4.4: Totally balancedBIRD labelling (b = hD = 4). a. A sample document treeD. For any
document nodev shown in the figure, the large number denotes the totally balancedBIRD label β4(v)
of v, whereas the small number in parentheses denotes the upper bound of v’s subtree interval, i.e.,
β4(v) + ω4(v). b. The 4-balanced schema treeS4 for D in a. For any schema nodep shown in the
figure, the large number denotes the totally balancedBIRD weightω4(p) of p, whereas the small number
in parentheses denotes the corresponding pre-weightω ′4(p) of p. For each non-leaf nodep in S, the number
maxv∈V {childCount(v)+1 | π(v) = p} is indicated (see Definition 4.3 on page 44). Note that onlyBIRD
labels and weights (i.e., large numbers ina. andb.) are stored physically.
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Lemma 4.5 (BIRD label order) Let D be a document tree with set of nodes V, and let b≥ 1. Besides,
let v be a node in D, and let v1, . . . ,vm denote the sequence of all children of v in document order. Finally,
let ω := ωb(π(v1)) = · · ·= ωb(π(vm)). Then we have

βb(v) < βb(v1) < · · · < βb(vm) < βb(vm)+ ω ≤ βb(v)+ ωb(v) �

Proof. Clearly ω ≥ 1 (see Definition 4.3 on page 44). Hence the inequalitiesβb(v) < βb(v1) < · · · <
βb(vm) < βb(vm)+ ω follow from Definition 4.4 on page 46, and only the final inequality βb(vm)+ ω ≤
βb(v)+ ωb(v) remains to be proved.

Let p := π(v) and letp′ := π(v1) = · · · = π(vm). Obviouslyω = ωb(p′). Since according to Defini-
tion 4.4βb(vi+1) = βb(vi)+ω for all 1≤ i < m, we haveβb(vm)+ω ≤ βb(v)+ω · (m+1). Furthermore,
sincev1, . . . ,vm are child nodes ofv, ω · (m+ 1) ≤ ω ·maxw∈V {childCount(w)+1 | π(w) = p}. With
the first part of Definition 4.3, it follows thatω · (m+ 1)≤ ω ′b(p), which in turn is no larger thanωb(p),
according to the second part of Definition 4.3. Putting it alltogether, we have proved that

βb(vm)+ ω ≤ βb(v)+ ω · (m+1) ≤ βb(v)+ ω ′b(p) ≤ βb(v)+ ωb(p)

The final inequality in Lemma 4.5 follows directly fromωb(p) = ωb(v). �

Lemma 4.6 (BIRD labelling function) Let D be a document tree with set of nodes V and root r, and
let b≥ 1. Regardless of the initial assignment ofβb(r), both of the following statements are true:

1. For all v∈V, βb(v) modωb(π(v)) = 0.

2. The labelling functionβb is injective and compatible with the document order in D. �

Proof. The statement 1 follows immediately from Definition 4.4 and statement 2 from Lemma 4.5. �

The final lemma in this subsection shows how the growth of nodelabels is limited by the height and
branching degree of the document tree:

Lemma 4.7 (BIRD label size) Let D be a document tree with height hD, maximal fan-out kD, set of
nodes V and root r. Besides, let b≥ 1. Suppose that r is assigned the b-balancedBIRD label βb(r) := 0.
Thenβb(v)≤ (kD +1)hD for all v ∈V. �

Proof. Let Sb be the schema tree forD with b-balancedBIRD weights as defined above. Besides, for
any schema nodep in Sb let height(p) denote the height ofp in Sb, defined in the obvious way. A simple
induction starting from leaves of the schema tree shows thatfor all p in Sb, ωb(p)≤ (kD +1)height(p). Since
height(π(r)) = hD, we haveωb(π(r))≤ (kD +1)hD. The result follows from Lemmata 4.5 and 4.6. �

4.3 Reconstruction of Tree Relations withBIRD

We now examine the runtime manipulation ofBIRD labels during query evaluation. This section deals with
the reconstruction of various tree relations fromBIRD labels and weights that are stored in a centralized
structural summary. Solving decision problems withBIRD is discussed in the next section.

In the sequel, letD be a document tree, and letSb be the schema tree forD with b-balancedBIRD
weights, for a fixedb≥ 1. Besides, letπ be the mapping from document nodes inD to schema nodes inSb,
as defined in Chapter 2.

Lemma 4.8 (BIRD ancestor reconstruction) Suppose that for some document node v in D we are given
its BIRD labelβb(v) and the schema node p:= π(v) in Sb. Let i≥ 1. Then using the weights in Sb we can
solve the following tasks without access to D:

• Decide if there exists an ancestor u of v that is reached from vwith exactly (at least) i parent steps.

• In the affirmative case, get theBIRD labelβb(u) and the schema nodeπ(u) corresponding to u. �
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Proof. Obviously,v has an ancestoru that can be reached with exactlyi parent steps iffp has such an
ancestor,p′, in Sb. By traversing the root path ofp in Sb upwards, we may decide this question, findingp′

in the affirmative case. By Lemma 4.6 on the facing page,βb(u) is a multiple ofωb(p′). It follows from
Lemma 4.5 thatβb(u) is the greatest multiple ofωb(p′) that is smaller thanβb(v). As mentioned before,
theBIRD label ofu can be calculated asβb(u) = βb(v)− (βb(v) modωb(p′)). �

Lemma 4.9 (BIRD child reconstruction) Suppose that for some document node v we are given itsBIRD
label βb(v) and the schema node p:= π(v) in Sb. Let i≥ 1. Then using the weights in Sb we can compute
theBIRD labelβb(vi) of the i-th child vi of v, assuming that this child exists, without access to D. �

Proof. From Sb we fetch the uniform weightω := ωb(p′) of any childp′ of p. By Definition 4.4 on
page 46, ifi = 1 thenβb(vi) is the smallest multiple ofω that is larger thanβb(v), and fori > 1 we have
βb(vi) = βb(v1)+ ω · (i−1). �

Note that in general, we cannot directly compute the schema nodeπ(vi) that corresponds to thei-th
child vi of v, unless we have further information (e.g., in the schema tree Sb we would need the tag ofvi).
In any case, however, that we know the weight ofvi sinceb≥ 1, i.e., we use a child-balanced labelling
scheme.

Lemma 4.10 (BIRD left-sibling reconstruction) Suppose that for some document node v we are given
its BIRD labelβb(v) and the schema node p:= π(v) in Sb. Let i≥ 1. Then using the weights in Sb we can
solve the following tasks without access to D:

• Decide if v has exactly (at least) i siblings that precede v indocument order.

• If v has at least i preceding siblings, get the numberβb(vi) of the i-th preceding sibling vi of v. �

Proof. We may assume thatv has a parent nodeu (otherwisev has no siblings). Letβb(u) denote itsBIRD
label, calculated as described in Lemma 4.8 on the facing page. Besides, letω := ωb(p). By Lemma 4.5
on the preceding page,v has at leasti preceding siblings iffβb(u) < βb(v)− i ·ω . From Definition 4.4 on
page 46, it follows thatv has exactlyi preceding siblings iffβb(v)− (i +1) ·ω ≤ βb(u) < βb(v)− i ·ω . If
the i-th preceding siblingvi of v exists, it has theBIRD labelβb(vi) = βb(v)− i ·ω . �

As for thei-th child (see above), we cannot directly compute the schemanode corresponding to thei-th
left siblingvi of v, unless we have further information. The nodesvi andv have the same weight sinceb≥ 1.

Lemma 4.11 (BIRD right-sibling reconstruction) Suppose that for some document node v we are given
its BIRD labelβb(v) and the schema node p:= π(v) in Sb. Let i≥ 1. Then using the weights in Sb we can
compute the numberβb(vi) of the i-th right sibling vi of v, assuming that it exists, without access to D.�

Proof. Similar to Lemma 4.10 above. �

Note that while we can decide whether a given document nodev has a specific ancestor or left sibling
(see Lemmata 4.8 and 4.10, respectively), the same is not true for children and right siblings (see Lem-
mata 4.9 and 4.11, respectively). Intuitively, this is because the only way to find out about the existence of
such a node is to reconstruct theBIRD label that it would have if it existed, and then to check whether the
assumption that this label is indeed assigned to the node in question causes a conflict, e.g., because there is
no corresponding schema node or because there is overlap with the subtree interval of nodes whose label
is already known. However, since the labelling is done in document order, these cases are easy to detect
for nodes on reverse axes but much harder for nodes on forwardaxes (in the XPath terminology). As far
as Lemmata 4.9 and 4.11 are concerned, we can only check if thechild or right sibling to be reconstructed
would fit into the subtree interval[βb(v),βb(v)+ωb(v) [ of the assumed parent nodev. But it is impossible
to decide whether it actually exists or whether it is only a virtual node.

The following lemma summarizes the reconstruction capabilities of balancedBIRD schemes, which
are also listed in the first row of Table 3.2 on page 39.
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parenti(v)
parent

We proceed as in Lemma 4.8 on page 48.

i-th-child(v)
child

We proceed as in Lemma 4.9 on the previous page.

prevSibi(v)
preceding-sibling

We proceed as in Lemma 4.10 on the preceding page.

nextSibi(v)
following-sibling

We proceed as in Lemma 4.11 on the previous page.

i-th-ca(v,w) Starting fromv, we visit all nodes on the root path ofv bottom-up. An-
cestors ofv are reconstructed iteratively using the procedure described in
Lemma 4.8 on page 48. For each nodeu on v’s root path (includingv it-
self), we decide ifChild∗(u,w) holds true (see Lemma 4.14 in Section 4.4
below), until either thei-th decision test succeeds or the root ofD is re-
constructed. In the first case, the last reconstructed ancestor of v equals
i-th-ca(v,w). Otherwise the value ofi-th-ca(v,w) is undefined.

lca(v,w) The value oflca(v,w) is computed asi-th-ca(v,w) for i = 1 (see above).

sepLevel(v,w) Let u := lca(v,w), computed as described above, and letp′ := π(u) be the
schema node corresponding tou. It is easy to see that eitherp′ = p or p′ is
obtained during the ancestor reconstruction as described in Lemma 4.8 on
page 48. The separation levelsepLevel(v,w) of v andw is the level ofp′ in
the schema tree.

distance(v,w) Let level(v) and level(w) be the levels ofv andw in D, respectively. Fur-
thermore, letsepLevel(v,w) be the separation level ofv andw, which is
computed as described above. Thendistance(v,w) = level(v)+ level(w)−
2 ·sepLevel(v,w).

Table 4.1: Relations reconstructible using anyb-balancedBIRD scheme whereb≥ 1. Given theBIRD
labelβb(v) of a document nodev as well as the schema nodep = π(v) holding the weight corresponding
to v, all binary functional relations are reconstructible without access to the document level. Analogously,
givenβb(v), p and theBIRD labelβb(w) of a second document nodew, all ternary functional relations are
reconstructible without access toD. Fordistance, the level ofw must be known, too. For each reconstruc-
tion problemf (v) or f (v,w), the reconstruction procedure is sketched as part of the proof of Lemma 4.12,
and the corresponding XPath axis is given, if applicable, with v as context node. For example,parenti(v)
denotes thei-th ancestor of nodev, which is on theparent axis.

Lemma 4.12 (BIRD reconstruction) Let D be a document tree, and let Sb be the schema tree for D that
contains the b-balanced weights of the nodes in D, for a fixed b≥ 1. Suppose we are given theBIRD
label βb(v) of the document node v in D and the schema node p= π(v) in Sb that corresponds to v. Letf
be any of the following functional relations:parenti , i-th-child, prevSibi , nextSibi . Then, using the weights
in Sb we can reconstruct the value off (v) without access to D.

Furthermore, assume that in addition toβb(v) and p we are also given theBIRD label βb(w) of a
second document node w in D. Now letR be any of the following relations: i-th-ca, lca, sepLevel. Then,
using the weights in Sb we can reconstruct the value off (v) without access to D.

Finally, assume that in addition toβb(v), βb(w) and p we are also given the levellevel(w) of w
in D (e.g., becauseπ(w) is known, too). Then, using the weights in Sb we can reconstruct the distance
distance(v,w) of v and w in D without access to D. �

Proof. See Table 4.1. �

The remainder of this subsection discusses some propertiesspecific to totally balancedBIRD labelling.
An attractive feature of totally balancedBIRD labelling is the following.
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a. reconstruction with single node labels b. reconstruction with pairs of node labels

Figure 4.5: Reconstruction of nodes in a document treeD of heighthD that is labelled with the totally
balancedBIRD scheme. a. The part ofD that can be reconstructed given the labelβhD(v) and the
weight ωhD(v) of the nodev in D. b. The part ofD that can be reconstructed fromv using pairs of
BIRD labels (preorder and inverse postorder).

Lemma 4.13 (BIRD totally balanced reconstruction) Let D be a document tree of height hD. Besides,
let p be a schema node in ShD with a child p′. ThenωhD(p) is a multiple ofωhD(p′).

Furthermore, letβhD(v) be theBIRD label of some document node v in D with children v1, . . . ,vm in
document order, and letω := ωhD(v1) = · · · = ωhD(vm) be the balanced weight of the children of v. Then
we haveβhD(vi) = βhD(v)+ i ·ω for all vi (1≤ i ≤m). �

Proof. The first statement is simply a consequence of the fact that all schema nodes at the same level of
the schema tree are assigned the same weight byωhD . By Definition 4.3, each balanced pre-weightω ′hD
on the parent level is a multiple of this weight. Hence the same holds for the maximum of the pre-weights,
which produces the weight on the parent level. The second statement follows easily. �

Note that Lemma 4.13 generally does not apply to labelling schemes that are not totally balanced, i.e.,
whereb< hD. Figure 4.2 on page 45 illustrates this forb= 1 andhD = 4. As a counterexample for the first
statement in the lemma, consider the schema node/r/b in Figure 4.2b., whose weight 75 is not a multiple
of the weight 4 of its children inS1. In the document treeD shown in Figure 4.2a., the leftmost child 375
of the root and its four children illustrate that the second statement in Lemma 4.13 does not apply.

The following is a simple consequence of Lemma 4.13. Given a nodev with the totally balancedBIRD
labelβhD(v), the labelβhD(w) of any descendantw of v, specified in the form “w is thei-th child of the. . . of
the j-th child of v”, can be computed without access toD, using the totally balancedBIRD weights stored
in ShD . Note, again, that forb < hD) we cannot guarantee the existence of this node without accessingD.

From the totally balancedBIRD labelβhD(v) of a nodev in D we can reconstruct the weightωhD(π(v)),
given the list of the uniform weights of all levels of the schema treeShD . In fact ωhD(π(v)) is the largest
weightω stored in our list such thatβhD(v) modω = 0. (As a by-product, the level ofv is also obtained
this way.) Hence, forb = hD Lemmata 4.8, 4.9 and 4.10 can be refined in the sense that we do not need to
know the schema nodep corresponding tov.

The higher the balancing degreeb, the fewer nodes in the structural summary are needed for storing
weights. Forb = hD, anhD-tuple of weights suffices for the reconstruction of node labels. In special cases,
however, it might be convenient to store the weights redundantly in all nodes of the summary. This is
true, e.g., when using the schema tree which serves both as weight index and as path index during query
evaluation.

The results obtained for the totally balanced enumeration scheme are summarized in Figure 4.5a.
Given theBIRD label βhD(v) of a document nodev, we immediately know how many ancestorsu of v
there are, and we can compute the labelsβhD(u) of all these ancestors without accessing the document
level. Furthermore we can deduce the number of preceding left siblingsw for each of these nodes as well
as their labelsβhD(w). In the remaining regions of the tree (indicated by small dots in Figure 4.5a.) we
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know the label reserved for each node, yet we cannot decide which labels correspond to existing nodes
and which ones are unassigned. This picture can be generalized through the use of a symmetric second
labelling based on aninverse postorder traversalof the document tree. The inverse postorder behaves like
a “right-to-left preorder”. If each document node is assigned a pair of labels according to a preorder (→)
and a “right-to-left preorder” (←) traversal ofD, then for a given nodev with the labels〈β→hD

(v),β←hD
(v)〉

we can compute the number of preceding and following siblings ofv as well as their respective label pairs.

4.4 Decision of Tree Relations withBIRD

In this section we explain how to decide specific tree relations without access to the document level, using
the BIRD labelling scheme. In the sequel we assume that ab-balancedBIRD scheme is applied to the
document treeD, whereb≥ 1. As before, letSb denote the schema tree forD that contains theb-balanced
BIRD weights, and letπ be the mapping from document nodes inD to schema nodes inSb, as defined in
Chapter 2.

The first row in Table 3.2 on page 39 lists the set of tree relations that can be decided using balanced
BIRD labelling. Comparing this to Table 2.1 on page 9 reveals thata large subset of the relations in our
data model is covered. In fact, the only relations that cannot be decided byBIRD (besidesSelf, which is
trivial to decide) arei-th-FollowingandNextElti as well as their reverse counterparts. Unlike the other
proximity relations (e.g.,Parenti or NextSibi), deciding any of these requires knowledge about the size of
specific subtrees ofD, which is spoilt by the sparseness of theBIRD labels (as for all multiplicative and
most path encodings, by the way).

In the following we constructively prove that all other treerelations can be decided usingBIRD. The fol-
lowing sixteen relations4 are mentioned explicitly:Child, Child+, Child∗, NextSib, NextSib+, NextSib∗,
Following, the respective inverse relations,Sibling, andSelf. For any such relationR and two document
nodesv,w in D, we writeD |= R(v,w) iff in D the relationR holds betweenv andw i.e., if f Dec

R (v,w) = 1.
For instance,D |= Child(v,w) iff w is a child ofv in D.

The following lemma shows that using any balancedBIRD scheme, a superset of all XPath axes5 is
decidable without any I/O operation. The XPath axes corresponding to the aforementioned relations are
given in Table 4.2 on the facing page.

Lemma 4.14 (BIRD decision) Let D be a document tree, and let Sb be the schema tree for D that contains
the b-balanced weights of the nodes in D, for a fixed b≥ 1. Suppose we are given

• theBIRD labelβb(v) of the document node v in D,

• the schema node p= π(v) in Sb that corresponds to v,

• theBIRD labelβb(w) of a second document node w in D.

Let R be any of the following relations:Child, Child+, Child∗, Parent, Parent+, Parent∗, NextSib,
NextSib+, NextSib∗, PrevSib, PrevSib+, PrevSib∗, Sibling, Following, Preceding, Self. Then, using the
weights in Sb we can decide if D|= R(v,w) (or if D |= R(w,v)) without access to D. �

Proof. See Table 4.2 on the next page. �

4.5 Handling Document Updates withBIRD

In this section we sketch two different update strategies toillustrate that theBIRD scheme is not only
appropriate for static document collections, but capable to adapt to different kinds of dynamic data. The
second strategy below is also interesting from a theoretical point of view since it generalizes the update
technique of path encodings (see Section 3.4).

4Further proximity variants such asParentji are handled similarly. They are also included in an alternative presentation ofBIRD’s
decision and reconstruction capabilities, to be introduced in Chapter 8.

5We do not consider theattribute andnamespace axes here, which can be treated similarly to thechild axis, see Section 2.1.
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D |= Child(v,w)
child

We check ifp has any child, say,p′, usingSb. In the negative case,
w is not a child ofv. In the positive case letω := ωb(p′). ThenD |=
Child(v,w) iff βb(w) is a multiple ofω andβb(v) < βb(w) < βb(v)+
ωb(p). The weightsωb(p′) andωb(p) are obtained fromSb.

D |= Child+(v,w)
descendant

We retrieveωb(p) using Sb. Then D |= Child+(v,w) iff βb(v) <
βb(w) < βb(v)+ ωb(p).

D |= Child∗(v,w)
descendant-or-self

The relation holds iffD |= Child+(v,w) or βb(v) = βb(w).

D |= Parent(v,w)
parent

We proceed as in Lemma 4.8 on page 48, withi = 1, and compare the
resultingBIRD label toβb(w).

D |= Parent+(v,w)
ancestor

We iterate the procedure in Lemma 4.8 fori = 1 until reaching eitherw
(positive result) or a nodeu whereβb(u) < βb(w) (negative result).

D |= Parent∗(v,w)
ancestor-or-self

The relation holds iffD |= Parent+(w,v) or βb(v) = βb(w).

D |= NextSib(v,w) We obtain ωb(p) and p’s parentp′ from Sb and compute the la-
bel βb(u) of the parentu of v in D (see Lemma 4.11 on page 49).
D |= NextSib(v,w) holds iff βb(w) = βb(v) + ωb(p) and βb(w) <
βb(u)+ ωb(p′).

D |= NextSib+(v,w)
following-sibling

We obtainωb(p), p′ and βb(u) as above (seeD |= NextSib(v,w)).
D |= NextSib+(v,w) holds iff βb(w)−βb(v) is positive and a multiple
of ωb(p) and if βb(w) < βb(u)+ ωb(p′).

D |= NextSib∗(v,w) The relation holds iffD |= NextSib+(v,w) or βb(v) = βb(w).

D |= PrevSib(v,w) We proceed as in Lemma 4.10 on page 49, withi = 1, and compare the
resultingBIRD label toβb(w).

D |= PrevSib+(v,w)
preceding-sibling

We obtain ωb(p) and p’s parentp′ from Sb and compute the la-
bel βb(u) of the parentu of v in D (see Lemma 4.8 on page 48).
D |= PrevSib+(v,w) holds iff βb(v)− βb(w) is positive and a multi-
ple ofωb(p) and if βb(u) < βb(w).

D |= PrevSib∗(v,w) The relation holds iffD |= PrevSib+(v,w) or βb(v) = βb(w).

D |= Sibling(v,w) The relation holds iffD |= PrevSib+(v,w) or D |= NextSib+(v,w) or
D |= Self(v,w) (see below).

D |= Following(v,w)
following

The relation holds iffβb(v) + ωb(p) ≤ βb(w), by Lemma 4.5 on
page 48 and Lemma 4.6 on page 48. The weightωb(p) is obtained
from Sb.

D |= Preceding(v,w)
preceding

The relation holds iffβb(w) < βb(v) and w is not an ancestor
of v. The latter problem is decided as described above (seeD |=
Parent+(v,w)/ancestor).

D |= Self(v,w)
self

The relation holds iffβb(v) = βb(w).

Table 4.2: Relations decidable using anyb-balancedBIRD scheme whereb≥ 1. Given theBIRD labels
βb(v) andβb(w) of two document nodesv,w as well as the schema nodep = π(v) holding the weight
corresponding tov, all relations are decidable without access to the documentlevel. For each decision
problemR(v,w), the decision procedure is sketched as part of the proof of Lemma 4.14 on the preceding
page, and the corresponding XPath axis is given withv as context node. For example,Child(v,w) means
w is a child ofv and therefore on thechild axis.
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4.5.1 SparseBIRD Labelling

It has been mentioned before that as a multiplicative encoding,BIRD labels virtual nodes, causing certain
labels to be left unassigned. This amount of unused labels typically grows with the balancing factorb. For
instance, reconsider the document tree in Figure 4.2 on page45 that is labelled using the child-balanced
BIRD scheme (b = 1). Here 75 labels are reserved for the subtree rooted at the node with the label 150
(the second child of the root, in document order) although the subtree contains only two nodes. This is
because the node 150 inherits the weight 75 via child balancing from its left sibling, 75, whose subtree
is much larger. When inserting nodes in the subtree below node 150, the odds are that the corresponding
labels are still unassigned such that no relabelling is necessary. In other words, the sparse encoding makes
BIRD inherently robust against a certain amount of node insertions in specific positions. The same phe-
nomenon is exploited by Li and Moon [2001] for theirExtended Preorder labelling, and also applies to
other approaches such as region encodings (see Section 3.3).

Of course, inserting a node in a subtree whose label space is exhausted causes an overflow. As a result,
the weights not only of the overflowing node, but also of its siblings in the schema tree change (again due
to child balancing). This update may propagate up through the schema tree and thus spoil the weights of
all other document nodes in the worst case. Because overflowscause a periodical relabelling of the entire
document collection, the update strategy just described isapplicable only when the data is known to remain
reasonably homogeneous over time, with only little difference in the size of subtrees below the same tag
path. To reduce the overflow risk further, one may also deliberately leave some extra labels unassigned, as
suggested by Li and Moon, at the expense of an increased overall label size (see below).

In many applications node insertions do not occur at arbitrary positions in the document tree, but only at
the end of the collection (i.e., after the last node in document order). This further reduces the overflow risk.
As a special case, consider collections of bibliographic data likeDBLP [DBLP] or the largeInternet Movie
Database(IMDb) [IMDB] (see also Section 13.2 in the appendix), where the bulk of insertions happen
when adding entire documents (e.g., in the case ofIMDb, new files describing movies, actors, directors,
or producers). This does not alter the nodes in existing documents (unless the new document changes
the weights of one or more tag paths due to balancing, in whichcase the labels of at least all nodes with
that path throughout the database are affected). Hence for such collections of more or less homogeneous
documents with updates at the document level only, incremental updates are not mandatory. Section 4.6
below provides experimental evidence for this.

4.5.2 Layered BIRD Labelling

We now sketch a second strategy for decoupling existing labels from labels assigned to newly added nodes.
This strategy is henceforth referred to aslayering.6 The idea is to partition the document tree into a
hierarchy of horizontal regions, orlayers, which are then labelled independently. The complete (layered)
label of a given document nodev on layerℓi (i ≥ 0) is then composed ofv’s label on layerℓi as well as
the labels of selected ancestors ofv on higher layers in the hierarchy. As an extreme case, consider again
the path encodings presented in Section 3.4 that label any document nodev with a sequence of sibling
codes each representing the position of an ancestor ofv on a specific document level. Path encodings such
asDewey can be regarded as special layered schemes where each layer corresponds to one level in the
document tree, so that each component in the layered label ofv is just the sibling code of the ancestor
of v on the corresponding document level. It has been observed before that when using path encoding,
the label ofv stays the same no matter how many nodes are inserted into the subtree rooted inv. This is
precisely because all layers (i.e., document levels in thiscase) are labelled separately. The same idea can
be generalized so that multiple levels of the document tree are subsumed by the same layer and therefore
represented by the same component of a layered node label, asfollows.

Figure 4.6a. on the next page depicts the same document treeD as Figure 4.2a. on page 45, but
with two layersℓ0 andℓ1 that cover the five levels ofD. Consequently, the layeredBIRD labels consist
of two components. The upper layer,ℓ0, covers the three topmost levels inD. Nodes on these levels

6A formal unified definition of what we calllayering is given in the aforementioned survey of labelling schemes
[Weigel and Schulz 2007]. There we also show that many variations of the same technique have been proposed independentlybefore,
mostly for reducing the maximal node label size.
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a. layered document treeD

b. layered schema treeS1

Figure 4.6: Child-balancedLayered BIRD labelling with two layers,ℓ0 (top) andℓ1 (bottom). a.A sample
document treeD. For any document nodev on the upper layerℓ0, the layered label is simply the child-
balancedBIRD labelβ1(v) of v that results from labelling only the upper part ofD. Nodes on the lower
layerℓ1 inherit the label of their lowest ancestor on layerℓ0 (first label component, before “|”). In addition,
subtrees on the lower layerℓ1 are labelled independently, again with the child-balancedBIRD scheme
(second label component, after “|”). b. The 1-balanced schema treeS1 for D in a. For any schema nodep
in S1 that represents document nodes on layerℓi (i ∈ {0,1}), the child-balancedBIRD weightω1(p) of p
is shown that results from labelling only subtrees ofD on layerℓi . Note that schema nodes representing
leaves on either layer inD have the minimal weight, 1 (according to Definition 4.3 on page 44), even if
they are not leaves inS1.
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have as first label component ordinary child-balancedBIRD labels and as an implicit second component 0
(omitted in the figure). By contrast, document nodes on the lower layer,ℓ1, inherit the first label component
from their lowest ancestor on the upper levelℓ1, while the second component results from independently
labelling their respective subtree onℓ1, again with the child-balancedBIRD scheme. For instance, consider
the node 7 on the upper layer in Figure 4.6a. (left-hand side). All descendants of node 7 reside on the
lower layer, and therefore have 7 as their first label component. The second component of their labels is
independent of the upper-layer component, which allows to handle node insertions gracefully. For instance,
any number of children may be added below the node 7 (with layered labels “7|12”, “7|15”, . . . , according
to the child-balancedBIRD scheme onℓ1) without affecting the labels of any nodes onℓ0, or any of their
descendants on the lower layer. In fact, overflows may only occur inside a document subtree on a given
layer (e.g., if a right sibling of node “7|11” has to be added). But since any number of subtrees is allowed
on any layer, theLayered BIRD scheme still supports arbitrary many insertions (though not at all positions
in the document tree).

The BIRD weights on each layer are easy to determine using the bottom-up procedure described in
Section 4.2.1. A new layer is introduced in the scheme as soonas a suitable position for future node
insertions is reached (e.g., right above themovie level in theIMDb collection). Theoretically any number
of layers may be created, up to the extreme case where each document level is on a different layer, and
theLayered BIRD scheme coincides withDewey. Layering also helps to prevent individual weights from
growing too large: when the desired upper bound is reached, the current layer is closed, and weighting
restarts with a leaf value of 1. In fact, any layer may even span only part of a level in the document tree, and
different tag paths may cross a different number of layers. Thus the labels of two document nodesv andw
on the same level inD need not even consist of the same number of components: e.g.,v may be part of a
much richer subtree requiring more layers thanw. The exact number and position of the layer boundaries
in the schema tree determines both the size of the resultingLayered BIRD labels and the positions inD
where unlimited insertions are supported. Like path encodings, theLayered BIRD scheme likely benefits
from a suitable binary encoding of the node labels (see Section 3.4.1) for storing the variable-sized layered
labels in a compact form.

Finally, all decision and reconstruction operations on ordinary BIRD labels are easily adapted to the
layered variant. As a matter of fact, in each such operation only one component of aLayered BIRD label
needs to be manipulated as in the unlayered case, whereas allother components are either removed from
the label or simply ignored. For instance, in order to reconstruct the i-th ancestoru := parenti(v) of a
document nodev in D, one first goes upi levels in the schema tree, starting fromπ(v), to determine the
weight of u. Whenever a layer boundary is crossed during the bottom-up traversal, the corresponding
component in the layered label ofv is removed. The label ofu on the target layer is computed from the
corresponding component inv’s label as usual, for the remaining numberj ≤ i of levels covered by that
layer. All higher-layer label components remain unchanged.

Assume, e.g., thatv is the node “7|10” in Figure 4.6a. on the previous page. Ifi = 1, then no layer
boundary is traversed, and the label of the parentu of v is “7|9”, because(10− (10 mod 3)) = 9. Fori = 2,
the boundary fromℓ1 to ℓ0 is crossed. Hence the second component in the layered label “7|10” of v
is removed. The label of nodeu on layerℓ0 is “7” since 7− (7 mod 1) = 7, according to the ordinary
BIRD reconstruction onℓ0. (Note that hereu is the lowest ancestor ofv on the upper layer, whose label
is inherited.) Similarly, all higher ancestors ofv are reconstructed:parent3(“7|10”) = “5” because 7−
(7 mod 5) = 5, andparent4(“7|10”) = “0” because 7− (7 mod 30) = 0. Verify in Figure 4.6a. that the
nodes on the root path ofv = “7|10” in D are indeed “7|9”, “7”, “5” and “0”.

For decidingChild+(u,v), we check whether the relation holds for the label components of u andv
on u’s layer and whether all preceding components are equal in both layered labels. Comparing nodes
according to the document order is done component-wise in top-down direction, as with path encodings.

4.6 Experimental Evaluation

This section reports on our experimental evaluation and comparison of the following four labelling schemes:
BIRD (non-layered child-balanced, i.e.,b = 1), ORDPATH by O’Neil et al. [2004] (see Section 3.4.1),mPID by Bremer and Gertz [2006] (see Section 3.4.2) andVirtual Nodes by Lee et al. [1996] (see Sec-

56 Felix Weigel



CHAPTER 4. THEBIRD LABELLING SCHEME

tion 3.5). We applied each scheme to the three document collectionsCities, DBLP andXMark 1100(see
Section 13.2 in the appendix), which differ considerably insize and structural complexity (in terms of the
number and length of the tag paths occurring in the documents). We implemented the four schemes to
be compared as described in the original literature. In linewith the analysis of labelling schemes in the
previous chapter, the following optimization goals are examined: storage consumption (see Section 4.6.1);
runtime performance, both for individual reconstruction and decision operations (see Section 4.6.2) and for
entire queries (see Section 4.6.3), and updatability (see Section 4.6.4). Differences in the expressivity of
all schemes are discussed in Section 4.7.

As testbed we use the native XML databaseX2 [Meuss et al. 2005; Meuss et al. 2003; Meuss 2000].
X2 is implemented in Java and uses a RDBS back-end (PostgreSQL) where the XML documents are stored
in relational form (details are explained in Chapter 6). During the query evaluation,X2 manipulates trees in
main memory, which are restored from sets of document nodes fetched from the RDBS. All tests are carried
out sequentially on the same machine, whose performance characteristics are listed in Section 13.1 of the
appendix (Test Environment A). The database cache of the RDBS is disabled. Apart from the processes
for X2 and the RDBS, the test computer is idle during the experiments.

4.6.1 Storage Consumption

The storage consumption of the four labelling schemes on alltest document collections are given in Ta-
bles 4.3a.–c. on page 58. The first three columns after the scheme name contain the minimum, maximum,
and average number of bits used for a single node label, respectively. The remaining columns list the
storage needed for all labels together, both as an absolute value in MB (kB for Cities) in columns five
and seven, and relative to the corresponding result obtained for preorder labelling (columns six and eight),
which is the baseline in our experiments. The relative values are computed on bit counts, whereas the
absolute values are rounded to the nearest MB (kB forCities).

We apply two different methods to compute the total storage consumed by a given labelling scheme.
On the one hand, we sum up the exact bit counts needed for the labels, assuming that labels can be stored
with variable size. This produces the absolute (relative) values in the fifth (sixth) column, which follow
the average label sizes in column four. On the other hand, it is perhaps more realistic to assume that when
stored in the database, all labels assigned to nodes in the same document collection take up the same space.
The total storage taken up by such fixed-size labels is the product of the maximum label size, as given
in column three, and the total number of nodes in the collection (see Section 13.2). The resulting values
appear in columns seven (absolute) and eight (again relative to the values obtained for preorder labelling).

We found that theBIRD scheme almost always takes up considerably less space thanORDPATH and
especiallyVirtual Nodes, the two schemes which are closest toBIRD in terms of expressivity (see Table 3.2
on page 39). When assigning fixed-size labelsBIRD reduces the space consumption by nearly a factor 2
for ORDPATH and between 2.2 and 4.5 for Virtual Nodes. The reason is that forBIRD the maximum
label size is much closer to the average size than forORDPATH andVirtual Nodes, which therefore incur
a significant storage overhead for fixed-size labels. For variable-size labels this factor decreases, butBIRD
labels still are clearly smaller than those of other schemes.

As the only approach (except preorder) with smaller labels thanBIRD, themPID scheme optimizes
storage at the expense of expressivity, as shown in Table 3.2on page 39. Remarkably,mPID occupies less
space than the preorder scheme in our experiments, at least when assuming variable-size labels. In the un-
derlying trade-off between expressivity and space consumption, themPID scheme chooses an intermediate
position between schemes with high expressivity and storage consumption, such asVirtual Nodes, on the
one hand and schemes with low expressivity and storage consumption, such as the subtree encodings in
Section 3.3, on the other hand.

In further experiments with more deeply nested, text-oriented document collections, such as theINEX
benchmark corpus [INEX] that consists of extremely heterogeneous and layout-polluted research papers,
we observed that on averageBIRD labels grow larger thanORDPATH labels (97 versus 60 bits;Virtual
Nodes 78 bits), whereas their maximum size is still smaller than that of ORDPATH (98 versus 135 bits;
Virtual Nodes 217 bits). One reason is that with a maximum path length of 17,the multiplicative effect
on the label size (see Lemma 4.7 on page 48) becomes more dominant. What is worse, in heterogeneous
collections such asINEX the child-balancing blows up the weights of tag paths that lead to subtrees which
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scheme
ID size (bits) total storage (kB)

min. max. avg.
variable ID size fixed ID size

absolute % pre absolute % pre

BIRD 1 24 22 104 161 113 150

ORDPATH 2 49 33 151 232 223 305
—w/o careting-in 2 41 27 123 189 186 255

Virtual Nodes 1 58 37 168 261 264 363mPID 1 14 11 50 78 64 88

preorder 1 16 14 65 100 73 100

a. Cities

scheme
ID size (bits) total storage (MB)

min. max. avg.
variable ID size fixed ID size

absolute % pre absolute % pre

BIRD 1 37 36 25 170 25 161

ORDPATH 2 53 37 26 186 36 240
—w/o careting-in 2 52 36 25 179 35 233

Virtual Nodes 1 95 37 25 174 64 413mPID 1 28 21 14 99 19 122

preorder 1 23 21 14 100 15 100

b. DBLP

scheme
ID size (bits) total storage (MB)

min. max. avg.
variable ID size fixed ID size

absolute % pre absolute % pre

BIRD 1 44 43 113 188 113 177

ORDPATH 2 86 48 124 207 221 345
—w/o careting-in 2 77 43 111 185 198 309

Virtual Nodes 1 198 81 210 350 508 794mPID 1 29 20 54 90 74 116

preorder 1 25 23 60 100 64 100

c. XMark 1100

Table 4.3: Storage consumption of different labelling schemes on the three document collectionsCities,
DBLPandXMark 1100(see Section 13.2 in the appendix for details).

greatly vary in size, thus causing many labels to be reservedfor virtual nodes. Obviously, this could
be avoided if equal weights were assigned to nodes with a similar number of descendants, rather than
with equal tag paths. The corresponding structural summaryholding the weights clearly would differ
significantly from the schema tree. But as mentioned in Section 4.1,BIRD can be combined with other
index structures providing efficient access to the weights,as long as specific requirements are met (see
Section 4.8 below).

Preliminary experiments show that for theINEX collection, the maximum label size may thus be re-
duced to 64 bits, i.e., below the performance-critical boundary discussed in the next section, although the
resulting weight index is huge. The exact size of the labels as well as of the structural summary serving as
weight index depends on which document nodes share the same weight, i.e., are regarded as equivalent in
terms of their subtree sizes. The finer the underlying equivalence relation, the better the weights reflect the
actual subtree sizes, but the more nodes are needed in the structural summary to represent those weights.
Methods to optimize this trade-off between label size and weight index size remain to be developed.
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Figure 4.7: Efficiency of ancestor reconstruction.a., b. Reconstruction ofparenti from different levelsl,
for fixed proximityi. c., d. Reconstruction ofparenti from a fixed levell, for different proximitiesi.

4.6.2 Efficiency of Decision and Reconstruction

The first set of runtime experiments measure the efficiency ofdecision and reconstruction with different
labelling schemes. Figures 4.7 and 4.8 plot the computationtime needed for various reconstruction and
decision problems on theDBLP and theXMark 1100collection. Results forCities are not shown, but
reveal similar tendencies. All four schemes (excluding preorder, for obvious reasons) were tested with
the same set of synthetically generated problems. Since thespeed of individual operations cannot be
measured with sufficient confidence, the figures represent the accumulated time (in milliseconds) needed
for 50,000 repetitions of each decision or reconstruction.Note that this subsumes all necessary operations
including, e.g., access to the schema tree forBIRD or mPID and label comparison during decision.

Reconstruction. Figures 4.7a., b. show the time needed to reconstruct the parents of nodes at different
levels (abscissa). ForDBLP (a.) andXMark 1100(b.), mPID is almost as fast asBIRD, whereasORD-
PATH andVirtual Nodes are slower by at least a factor 4. OnXMark 1100, the difference betweenBIRD
andORDPATH is up to one order of magnitude. Clearly the performance of both BIRD andmPID is in-
dependent of the level of the source node. ForORDPATH, the computation time grows with the depth of
the source node. The reason is thatORDPATH bit strings must be parsed top-down (i.e., from left to right)
down to the level of the source node. The deeper the source node is located in the document tree, the longer
the parsing takes. We observe the same effect forVirtual Nodes on DBLP andXMark 1100although in
theory its ancestor reconstruction works in constant time (see below). Presumably the representation of
numbers of arbitrary size, needed forVirtual Nodes here because of the sheer length of the node labels,
creates an overhead for arithmetic operations on label values. Since breadth-first labels grow larger on
deeper levels, this explains why the performance ofVirtual Nodes degradates in Figures 4.7a. andb. The
effect is not observed for theCitiescollection where theVirtual Nodes labels take up at most 64 bits (not
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Figure 4.8: Efficiency of ancestor decision.a., b. Decision ofParenti from different levelsl, for fixed
proximity i. c., d. Decision ofParenti from a fixed levell, for different proximitiesi.

shown in the figure).

Figures 4.7c. andd. on page 59 illustrate the orthogonal situation: hereparenti is reconstructed from
source nodes at a fixed level in the tree (level 7 forDBLP, level 13 forXMark 1100), with varying distancei
(abscissa). As in Figures 4.7a.andb., BIRD andmPID are significantly faster thanORDPATH andVirtual
Nodes (nearly one order of magnitude; mind the different scales inc. andd.) and reveal no dependency on
the number of levels to be traversed. Both schemes climb up a path in the schema tree and then directly
reconstruct the desired node label, which takes practically constant time. By contrast, theVirtual Nodes
scheme reconstructs all ancestors iteratively and therefore suffers from a linear degradation for bigger
distancesi. ORDPATH’s bit shift operations are indifferent to proximity.

Decision. The plots in Figure 4.8 are based on a similar setting as thosein Figure 4.7 on the previous
page, but this time for the decision of theChildi relation. We observe the same dependencies on the level
of the source node and the distance to the target node as in thereconstruction tests.BIRD is as fast as for
reconstruction (3 ms for 50,000 iterations), whereasmPID is one order of magnitude slower. OnDBLP,
BIRD outperformsORDPATH andVirtual Nodes by a factor 30 and 40, respectively (up to 100 forVirtual
Nodes with a level difference of 7). OnXMark 1100, the difference is nearly two orders of magnitude (up
to 400 forVirtual Nodes with a level difference of 13).

The complete report [Weigel et al. 2005c] on our experimentscovers a more detailed analysis of the
asymptotic behaviour of different labelling schemes, including the ones evaluated here, when faced with
specific reconstruction and decision problems.
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a. DBLP b. XMark 1100

Table 4.4: Efficiency of query evaluation with different labelling schemes on the two document collections
DBLPandXMark 1100(see Section 13.2 in the appendix).

4.6.3 Efficiency of Query Evaluation

Experimental set-up. To quantify to what extent the differences in decision and reconstruction speed
observed in Section 4.6.2 affect the overall performance for entire queries, we evaluated a couple of sam-
ple tree queries using the same labelling schemes as in the previous section, both against theDBLP and
theXMark 1100collection. The four test queries run against each collection are shown in Tables 14.1a.
and 14.1b. on page 184 in the appendix, respectively. To avoid artefacts due to file system cache effects,
the best and the worst result of six consecutive iterations of each query were discarded. The remaining four
iterations of the same query (occasionally fewer for some long-running queries) were then averaged. Ta-
bles 4.4a. andb. list the total evaluation times (without profiling). A second set of runs of the same queries
was carried out to measure the contribution of individual query stages. Chapter 14 in the appendix contains
a detailed analysis of this additional experiment, including the complete profiling results (see Tables 14.2a.
and 14.2b. on page 185).

Due to the restricted tree query language supported by the retrieval systemX2, the test queries only
involve the decision ofChild i and the reconstruction ofparenti . Note that all query nodes are result nodes,
i.e., an answer to a query comprises the matches to all nodes in the query tree, not just one focussed node as
in XPath. The same evaluation algorithm is used for all labelling schemes; just the reconstruction, decision,
and comparison operations vary. The only exception is that schemes which do not preserve preorder (i.e.,mPID andVirtual Nodes) cannot benefit from certain optimizations (see below). As abaseline, we use
preorder labels with brute-force reconstruction and decision: reconstructing thei-th ancestor of a node
requiresi look-ups in a parent/child table in the RDBS that maps the preorder label of any node to the
preorder label of its parent node.

In order to estimate the benefits of reconstruction operations (which are not supported by all labelling
schemes, see above), we implemented and tested the threepath join strategies ALWAYS, FIRST, andNEVER
which differ in their use of reconstruction ofparenti . Details about the strategies are given elsewhere
[Weigel et al. 2005c]. In short,ALWAYSmeans that the matches of any branching node in the query tree
are joined with those of its child nodes by reconstructing the ancestors of the child matches and testing
whether they are contained in the branching node’s set of matches. Since our retrieval engineX2 evaluates
queries bottom-up, the first child of any branching query node does not undergo the path join (which
would fail for the empty set of parent matches), but simply propagates its matches up to the parent node
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by reconstruction. The same is true for the second strategy,FIRST, which treats only subsequent children
differently. Here the path join decides for each pair of matches to the branching node and its child node
whether theChild+ relation holds. No test for set containment is needed, and schemes respecting document
order may benefit from optimizations saving the decision forsome pairs of nodes, using common structural
join algorithms. The third strategy,NEVER, does not take advantage of reconstruction at all, not even for
the first child of a given branching node. Instead of propagating matches upward in the query tree, all nodes
in the documents with a path matching the path of the branching node are retrieved and then joined with
the matches of its first child query node by decidingChild+. Subsequent children are handled as described
for theFIRSTstrategy.

Summary. The following key results sum up the outcome of our experiments (again, see Chapter 14 in
the appendix for additional details of the analysis):

Result 1 TheBIRD labelling scheme performs best for virtually all queries and path join strategies, both
on the DBLP and the XMark 1100 collection. �

The overall performance in all tests against theDBLP and XMark 1100collections is given in Ta-
bles 4.4a. andb. on page 61. Each of the three rightmost columns corresponds to one of the three path
join strategies explained above.BIRD almost always outperforms the other schemes, beaten only once bymPID (DBLP: Q3FIRST; XMark 1100: Q0FIRST) and twice by preorder (DBLP: Q0FIRSTandNEVER;
XMark 1100: Q2 FIRSTandNEVER). The most efficient schemes compared toBIRD aremPID (DBLP:
factor≤ 1.6; XMark 1100: factor≤ 1.2) andORDPATH (DBLP: factor≤ 1.6; XMark 1100: factor≤ 3.3).
In terms of absolute numbers, the greatest difference betweenBIRD andmPID is 1.2 seconds onDBLPand
1.5 seconds onXMark 1100. ORDPATH is onDBLP up to 0.6 seconds slower and onXMark 1100up to
30 seconds. The distance toVirtual Nodes is considerable (DBLP: factor≤ 58;XMark 1100: factor≤ 704
compared toBIRD). In extreme cases,Virtual Nodes is one order of magnitude slower than the baseline,
preorder, and even more compared to the other schemes, especially when reconstruction is disabled (e.g.,
Q1 NEVERin Table 4.4b.). The exact performance differences vary dramatically with the time spent on
label comparisons (see also the following results). In terms of absolute numbers, the greatest difference
betweenBIRD andVirtual Nodes is more than one hour. As could be expected, brute-force reconstruction
and decision with preorder labels is usually very slow, especially when other schemes benefit from exten-
sive use of in-memory reconstruction. Evaluation with preorder labels takes up to 40 times or 10 minutes
longer than withBIRD labels.

Result 2 The efficiency of label comparisons has a greater impact on the overall performance than recon-
struction and decision, and can be affected by the label size. �

A detailed profiling of different evaluation ingredients (see Chapter 14) proves that most of the query
evaluation time is spent on comparing node labels, both during decision and, most prominently, when
manipulating the sets of potential matches fetched or reconstructed before. While decision and reconstruc-
tion contribute up to one second to the total evaluation time, label comparison easily takes two orders of
magnitude longer. Accordingly, the time spent on reconstruction and decision differs by one second or
less among the schemes (ignoring cases whereVirtual Nodes must perform far more decision operations
than the other schemes, see Result 4), whereas the efficiencyof label comparison can make a difference of
20 seconds and more. As the difference betweenVirtual Nodes and the other schemes onDBLP shows,
the size of the labels can have a huge impact on the performance of all label operations (most notably, the
frequent comparisons): as the only scheme whose labels do not fit the native 64-bit data types provided
by most high-level programming languages,Virtual Nodes suffers from a considerable overhead even for
the strategyALWAYS(a second handicap ofVirtual Nodes for the other two strategies is subsumed under
Result 4).ORDPATH is subject to the same effect onXMark 1100where its labels grow larger than 64 bits,
too. While the impact of the label size depends on the underlying computer architecture as well as the data
structures used, schemes exceeding a certain label size will always incur some runtime overhead, not to
speak of the disk space they occupy.

62 Felix Weigel



CHAPTER 4. THEBIRD LABELLING SCHEME

Result 3 Reconstruction is of paramount importance to efficient query evaluation because it saves label
fetching and comparison. �

The comparison of the three path join strategiesALWAYS, FIRSTandNEVERalso clearly shows that
reconstruction is key to efficient query evaluation. Performance decreases dramatically for all schemes and
almost all queries when reconstruction is disabled (strategy NEVER, as opposed toFIRSTandALWAYS).
The fact that the huge overhead incurred byNEVERis mainly due to label comparisons rather than node
fetching illustrates that our results do not only apply to native retrieval systems likeX2 but also, perhaps
to a lesser extent, to other engines where fetching is cheaper (such as purely relational systems).BIRD,
ORDPATH andmPID preferFIRSTwith its mixture of reconstruction and decision, owing to their efficient
decision techniques.Virtual Nodes, by contrast, suffers from a massive join overhead for this strategy,
caused by the breadth-first order of its labels (see Result 4). With its different join algorithm,ALWAYS
bringsVirtual Nodes a little closer to the other three schemes.

Result 4 Labelling schemes preserving document order benefit greatly from path join optimizations. �

The path join strategies involving decision, i.e.,FIRSTandNEVER, locate ancestor/descendant pairs
in sets of matches to two given query nodes. Processing theselabel sets in document order has the advan-
tage that not all possible label pairs (i.e., the full Cartesian product) need to be checked, which may save
many decision (and, consequently, comparison) operations, as explained in the complete report on the ex-
periments [Weigel et al. 2005c]. Obviously schemes likeBIRD, ORDPATH and preorder benefit from this
optimization whereasVirtual Nodes, whose labels are assigned in a breadth-first traversal of the document
tree, typically must decide ancestorship for many more label pairs. The resulting overhead explains why for
FIRSTandNEVER, Virtual Nodes is far less competitive than forALWAYS. ThemPID scheme, although
violating the document order between arbitrary nodes, is also amenable to the optimization provided that
only sets of nodes with the same tag path are joined (because among these nodes, the document order is
preserved). Since our test systemX2 always retrieves and joins nodes belonging to the same schema node,
this condition is satisfied andmPID can be handled as if it were fully compatible with document order.

4.6.4 Updatability

In Section 4.5.1 an update scenario is outlined where more and more documents are successively added
to a collection that was originally labelled with a deliberately sparseBIRD scheme. The question is how
often an overflow of some of the weights established during the last indexing occurs, which triggers a
relabelling of the entire collection (recall that no layering is available in this setting). To answer this
question empirically for a large collection of real-world data, we carry out the following experiment.

An XML version of theInternet Movie Database (IMDb)(8.4 GB on disk, see Section 13.2 for details)
is labelled with two variants of the child-balancedBIRD scheme that differ in their degree of sparseness.
Nearly 2,000,000 documents are indexed consecutively in chunks of 1,000 documents (about 4-6 MB
per chunk). Figure 4.9 on the following page showsBIRD’s overflow behaviour and space consumption
as more and more documents are added. In a first experiment, nofuture insertions are anticipated, i.e.,
the weight of a given tag path is always just as large as it mustbe to accommodate the greatest known
subtree below that path (“BIRD” in Figure 4.9a. and 4.9b.). We then label the collection once again, this
time reserving extra labels for 100 potential child node insertions below any overflowing node during the
weight computation (“BIRD + 100” in Figure 4.9a. and 4.9b.).

Each point in the plot in Figure 4.9a. (left-hand side) illustrates how many times at least one weight
in the schema tree must be changed while adding another 100,000 documents, thus causing a relabelling
of the collection. The two large peaks at the beginning indicate that the ordinaryBIRD weights become
reasonably stable only after indexing the first 400,000 documents, or 20% of the data. Up to that point, a
large number of overflows occur in the first experiment (dashed line). However, this improves significantly
when applying the extra-sparse encoding (solid line). Notethat in these early stages of the evolution of the
collection, relabelling is much cheaper than later on, after many documents have been added. In the sequel,
the need for relabelling dwindles rather quickly, especially for BIRD + 100 which triggers only one more
weight update before adding 1,300,000 documents without any overflow.
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overflows that occur while labelling a chunk of 100,000 documents with child-balancedBIRD schemes of
different sparseness.b. Growth of the maximum label size for different labelling schemes while adding
documents ot the collection.

In Figure 4.9b. we observe an early saturation of the label sizes (the maximum was mostly reached
after indexing less than 20% of the documents) and a very low overall space consumption forBIRD (at
most 45 bits per label, for a collection of more than 83,000,000 nodes). Obviously reserving extra labels
to increase the robustness of the scheme is not expensive in terms of storage: the greatestBIRD label in
the extra-sparse encoding (“BIRD + 100”, at most 54 bits per label) still occupies far less than64 bits, a
critical boundary in our runtime experiments (see Section 4.6.3 above). Although with a height of five
the document tree for theIMDb collection is fairly shallow,ORDPATH labels grow rapidly beyond the
64-bit line (maximum label size 73 bit). This is true even fora variant ofORDPATH with smaller labels
(“ORDPATH w/o caret” in Figure 4.9b.; maximum label size 68 bit). Here the sparse encoding (careting-
in) for future updates is disabled, at the expense of limited updatability. The resultingORDPATH variant is
similar toDewey, but enjoys binaryORDPATH encoding. However, the labels are still considerably larger
than with either variant of theBIRD scheme.

4.7 Summary and Discussion

This chapter has introduced theBalanced Index-based numbering scheme for Reconstruction and Deci-
sion (BIRD). BIRD is a multiplicative labelling scheme optimized towards fast query evaluation through
efficient reconstruction and decision of query constraints. Experiments show thatBIRD scales up well
to large collections containing gigabytes of XML documents, in terms of both the runtime performance
and the space occupied by the node labels. We have also sketched several variants ofBIRD labelling that
target distinct optimization goals. Thusb-balancedBIRD with b > 1 extends the reconstruction capability
beyondi-th-child, to descendants on deeper levels. As an extreme case, thetotally balancedlabelling re-
constructs large parts of the document tree while minimizing the number of distinct weights to be stored in
a structural summary. On the other hand, increasing the balancing parameterb causes the node labels and
weights to grow larger unless the structure of the documentsis extremely homogeneous.

A decrease in space efficiency is also the price to pay for greater updatability. We have sketched two
ways to makeBIRD more robust against node insertions: a sparse variant reminiscent ofExtended Preorder
[Li and Moon 2001] that deliberately reserves labels for future nodes to be added; and theLayered BIRD
labelling which replaces singleton labels with top-down label sequences, similar to path encoding. The
sparseBIRD scheme performs quite well on the largeIMDb collection, preventing many weight overflows
with only a very modest storage overhead. However, deeply nested and heterogeneous collections such as
INEX are still much of a challenge to the scalability ofBIRD.
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Figure 4.10: Visualization of the positions that differentlabelling schemes occupy in the trade-off between
expressivity, runtime efficiency, storage consumption, and updatability. Each of the first three criteria
is represented by a distinct dimension in the three-dimensional trade-off space shown. Updatability is
symbolized by the colours of the points in the plot: darker colours indicate a more robust labelling scheme.
Time and space efficiency reflect our experimental results, not the theoretical worst-case complexity.

Comparison of labelling schemes. Figure 4.10 presents a tentative visualization of the trade-off between
the different optimization goals mentioned before. The idea is to positionBIRD and its competitors in the
form of a ranking along distinct axes that respectively represent expressivity (vertical), space efficiency
(left) and runtime performance (right). Intuitively spoken, one can see that the various approaches head in
different directions to solve the problem of “good” XML labelling. Let us briefly highlight the characteris-
tics of each labelling scheme, symbolized by its position inthe trade-off space. Preorder labelling (white)
is at the lower end of the expressivity and performance dimensions, but of course very space-efficient.Ex-
tended Preorder (red, see Section 3.3.1) gains a little expressivity (and hence, runtime efficiency) through
the use of a second label component, which doubles the label size. Compared to preorder andExtended
Preorder, mPID (blue, see Section 3.4.2) adds important reconstruction capabilities but lacks support for
deciding document order; still we assume that the benefit of the former outweighs the downside of the latter
(see below for a short discussion on how to rank the differentcriteria). In terms of time and space efficiency,
the performance ofmPID is unsurpassed in our experiments.ORDPATH (brown, see Section 3.4.1) is more
expressive thanmPID (most notably because it respects document order), but lesstime- and space-efficient.
Finally,Virtual Nodes (yellow, see Section 3.5) andBIRD (green) are the most expressive schemes tested.
While BIRD is as fast asmPID and has smaller labels thanORDPATH, Virtual Nodes is fairly inefficient
in both respects.

However, notice that the above representation of trade-offs has the following limitations. First, the
important criterion of updatability is not represented in ageometric fashion, unlike the other three opti-
mization goals just mentioned. Instead, darker colours in Figure 4.10 indicate a more robust approach.
Obviously,ORDPATH is most advanced in terms of updatability. Second, the three-dimensional trade-off
space shown in Figure 4.10 is topological, but not metric. Inother words, the relative position of two ap-
proaches to each other indicates which one is better in termsof a specific criterion, but it does not indicate
how much. Finally, the topology in the two horizontal dimensions (i.e., time and space efficiency) is based
on our experimental results (see Sections 4.6.1, 4.6.2 and 4.6.3 above), not on the theoretical complexity
of the underlying problems. Otherwise,BIRD would be close toVirtual Nodes in the storage dimension
because the labels of both schemes grow exponentially in theheight of the document treeD (the base being
the maximal fan-out inD, see Lemma 4.7 on page 48). Similarly,mPID would be close toORDPATH in
the storage dimension because despite the good compressionrate achieved bymPID, its worst-case label
size is still linear in the number of nodes inD.
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Weighting comparison criteria. As the discussion above illustrates, the decision which labelling scheme
to use for a particular application depends on a number of different criteria and factors to be weighted
against each other. Most prominently, the importance of robustness depends on whether the document col-
lection to be labelled is frequently updated and if so, in which way (see Section 3.6). Similar constraints
and preferences may apply to the storage available, the runtime performance e.g. on large collections,
and the support for handling specific tree relations. For instance, the fact that in generalmPID andVir-
tual Nodes labels do not reflect the document order can be an important disadvantage especially for the
evaluation of XPath and XQuery, whose semantics strongly build on node sets being sorted in document
order. Lack of support for document order deeply affects theevaluation algorithm and seriously limits the
use of most common structural join algorithms. However, if it is guaranteed that at any time during the
query evaluation only labels are compared that belong to elements with the same tag path, then themPID
scheme may actually be a good choice, becausemPID labels of such nodes do respect document order (see
Section 3.4.2).7

Further criteria to be taken into account when choosing a suitable labelling scheme include the indexing
performance (e.g., how many traversals of the document treeare needed for labelling), specific mappings
to physical storage [Bremer and Gertz 2006] or other labelling schemes [Wang et al. 2003a], or whether
global data structures such as the schema tree or an FST can beused [Gavoille and Peleg 2003; Peleg 1999].
Also, manipulating node labels in a restricted environment(such as standard SQL without user-defined
extensions) may be an issue (see Chapter 7). For instance, some approaches require full regular expressions
[Yoshikawa et al. 2001] or bitwise parsing [O’Neil et al. 2004], which may or may not be supported by the
runtime environment.

As a general finding, however, the experiments in Section 4.6show that the ability of a labelling scheme
to reconstruct certain query constraints (most notably,parenti) is key to efficient XML query evaluation.
This is confirmed in different settings by Christophides et al. [2003] and by Lu et al. [2005]. Consequently,
while the subtree encodings reviewed in Section 3.3 producesmall node labels that can be used in struc-
tural joins to decideChild+ constraints, they are usually outperformed by schemes likeBIRD that exploit
the power of reconstruction. We empirically support this claim in further experiments to be presented later
(see Chapter 8), whereBIRD competes with thePre/Post labelling (see Section 3.3.2) in a relational en-
vironment. The same effect can be expected for other schemeswith reconstruction support, e.g.,Dewey or
ORDPATH. As the use ofORDPATH in a commercial RDBS [O’Neil et al. 2004] shows, these approaches
are of great practical interest. The plainDewey scheme is easy to implement and fairly robust, but needs
of course a binary label encoding to prevent excess label size. ORDPATH is particularly attractive due to
its support for unlimited updates, which in a highly dynamicsetting will outweigh by far the loss of a little
expressivity and space efficiency.

4.8 Optimizations and Open Problems

Layered BIRD and unbalancedBIRD labelling. The comparison and experimental evaluation of mul-
tiple labelling schemes above has shown that the child-balanced, non-layeredBIRD scheme is highly ef-
ficient and expressive. The practical performance and benefit of theLayered BIRD labelling outlined in
Section 4.5.2 remains to be evaluated. As a matter of fact there is also anunbalancedvariant ofBIRD
labelling, which emerges naturally when fixing a balancing factor ofb = 0. Additional work omitted here
shows that the unbalanced labelling scheme creates labels and weights that are smaller and less likely to be
affected by node insertions. Intuitively, this is explained by the fact that without balancing fewer document
nodes are forced to have the same weight and hence labels thatare multiples of a specific number. While
a weight overflow in any balancedBIRD scheme invalidates the weights and labels of all document nodes
that are represented by a sibling, cousin, . . . of the schema node causing the overflow, the unbalancedBIRD
labelling restricts this to those elements with exactly thesame schema node.

However, without balancing certain tree relations such asi-th-childor nextSibi can no longer be recon-
structed. Furthermore, the creation of unbalanced labels turns out to be more complex than in the balanced
case. In particular, the memory consumption during labelling is probably prohibitively high because for

7In fact we exploit this feature, to the benefit ofmPID, in our experiments with theX2 system, whose query kernel processes
node sets that were fetched for specific tag paths.
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each element visited in the first pass through the document tree, the sequence of tags of its children must
be recorded, rather than only the number of children as in thecurrent labelling procedure. This issue would
need to be solved before the unbalancedBIRD scheme might become a more space-efficient and robust
alternative to the balancedBIRD labelling described above.

Structural summaries of document subtrees. By contrast, there are other ways how theBIRD scheme
could be optimized to obtain labels that are smaller and morerobust against modifications of the document
tree (most notable, node insertions at arbitrary positions). As suggested by the position ofBIRD in the
trade-off space in Figure 4.10 on page 65, these are the majorchallenges faced by our approach. A possible
technique for reducing the size ofBIRD labels and weights has been hinted at in Section 4.6.1. Therewe
sketched an alternative structural summary which is different from the schema tree that we used as weight
index throughout this chapter. Currently all document nodes with the same tag path are assigned the same
weight, as stated by the first invariant on page 43. Obviouslythis may cause many labels to be reserved
for virtual nodes, namely, when some document nodes with a given path have a large subtree (and hence, a
large weight) while other document nodes with the same tag path would only need a much smaller weight.
The sample document in Figure 4.3a. on page 46 illustrates this effect: although the node with the BIRD
label 36 (the rightmost child of the document root) has only two children, which would require aBIRD of 3
(see Section 4.2.1), the actual weight of the node 36 is 9. Thereason is that other document nodes with the
same tag path as node 36 (namely, its three siblings 9, 18 and 27) all have larger subtrees which do not fit
a weight of 3.

It therefore seems promising to decouple the weights from the tag paths by using a structural summary
in which every node represents element with a similar subtree size, rather than elements with the same tag
path. As a matter of fact,BIRD can be used with a variety of structural summaries covered byDefinition 2.5
on page 11. The only restriction is that theChild relation on document nodes must be preserved by the
structural summary in the obvious sense, so that ancestor weights are available when reconstructingparenti .
Clearly this is true for the schema tree: recall from Section2.3 that given two document nodesu andv
with respective tag pathsπ(u) andπ(v), if we have aD-constraintChild(u,v) in the document tree then
the correspondingS-constraintChild′(π(u),π(v)) holds true in the schema tree. An open question is
which other structural summaries could be used that satisfythe above condition and at the same time
treat elements as equivalent that have subtrees of a similarsize or structure. Note that this could not only
help to decrease labels and weights, but also makeBIRD labelling more robust: after all, weight changes
caused by overflows would no longer propagate to all documentnodes with the same tag path, regardless
of their subtree size. Instead only nodes with a specific sortof subtree would be affected. Depending
on how heterogeneous the document structure is, this may mean that many node labels that are currently
invalidated for no reason remain unchanged.
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Index Structures for Structured Documents

5.1 Overview

This chapter surveys existing techniques for indexing boththe structure and the textual contents of XML
documents. The various table- or tree-shaped data structures presented here are all instances ofcentralized
structural summaries(see Definition 2.5 on page 11). As such they could in principle be complemented by
decentralized summaries as those discussed before (see Chapters 3 and 4). From the wealth of centralized
approaches to capturing the structure of XML documents, only a few representative indexing schemes can
be reviewed in the scope of this thesis. For a more detailed survey, the reader is referred to earlier work
[Weigel 2002].

5.2 Inverted Files

The most basic document indices areinverted files(also calledinverted lists). These table-like index
structures are standard in Information Retrieval on “flat” documents (i.e., documents without markup) but
have also been used for semistructured data like XML documents, either stand-alone or in combination
with more complex structure indices (see below).

A typical inverted file is shown in Figure 5.1a. on the following page. It indexes the textual contents
of the document treeD in Figure 2.1b. on page 8, as follows: each row in the table (orpostingin the file)
maps a unique keywordk∈ K (left column) to the places wherek occurs in the documents (right column)—
much in the same way as the keyword index in the backmatter of this thesis. In the example, each keyword
occurrence is given as the unique node label of the containing element; multiple occurrences ofk in the
same element are not distinguished. However, depending on the underlying data and query model, the index
could be either coarser (identifying only the documents where k occurs, as in flat-text retrieval) or more
fine-grained (indicating the exact position ofk’s occurrences in a given element, as needed when evaluating
queries with text distance constraints). In addition, the physical organization of the postings may vary;
e.g., the table shown in Figure 5.1a. could also be in first normal form. In Information Retrieval typically
not all distinct keywords are indexed, the most frequent ones (so-calledstop wordslike conjunctions and
prepositions) being left out to keep the index smaller. Finally, keywords are often normalized (e.g., by
stemming and conversion to lower-case) in order to map all morphological and orthographical variants of
a term to the same set of occurrences.

Inverted files are also used to index tag occurrences in structured documents. Figure 5.1b. on the
following page depicts such a tag index for the document treeD in Figure 2.1b. on page 8. Each distinct
tagt ∈ T is mapped to the set of nodes with tagt in D. Note that the two inverted files in Figures 5.1a.–b.
together support simple queries againstD. For instance, to select allname nodes containing the keyword
“Lee” , one would look up“lee” in the first table andname in the second one, and then intersect the
two resulting node sets. This produces the query result{21,30,39} which is correct, as can be verified in
Figure 2.1b.
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a. inverted text file

b. inverted tag file

c. inverted path file

d. inverted text/path file

Figure 5.1: Inverted files for the document tree in Figure 2.1b. on page 8.

By contrast, locating the occurrences of an entire tag pathp = /t0/ · · ·/tj (wherej > 0) in D with an
inverted tag file is cumbersome and often inefficient. All tagstl (0≤ l ≤ j) in p must be looked up separately
in the index, which producesj + 1 node sets. For eachj + 1-tuple〈v0, . . . ,vj〉 in the look-up result one
must then check whetherChild(vl ,vl+1) holds true for all 0≤ l < j. Tuples for which this fails do not
represent element paths inD. For instance, letp be the tag path/people/person/name in Figure 2.1b.
on page 8. Looking up the three tagspeople , person and name in the table in Figure 5.1b. produces
the tuples〈0,9,12〉 and〈0,9,21〉, among many others. TheChild test reveals that the first tuple is indeed
an occurrence ofp in D, whereas the second is not a valid element path (because 21 isnot a child of 9).

TheChild test is a special case of a so-calledstructural join[Zhang et al. 2001; Al-Khalifa et al. 2002;
Bruno et al. 2002; Chien et al. 2002], where two node sets are compared to find all pairs of nodes in a
particular tree relation (most commonly,Child or Child+). Many relations can be decided efficiently
for a given node pair when a suitable labelling scheme is available (see Chapters 3 and 4). But even if
sophisticated algorithms are used, joining large node setsmay be expensive in terms of runtime. In this
case the size of the node sets to be joined depends on how oftenthe individual tags in the path occur
in the documents. Consider the tag path/people/person/name again, and assume there are only few
person names in the data, but manyname nodes occur below other tags, such as/people/group/name
or /people/relation/name and so on. Then theChild join will involve a large set ofname nodes,
most of which are not part of the query result (for not being children of person nodes). This is because
the tag index fails to capture information about the nestingof tags.

A second drawback of indexing singleton tags rather than tagpaths is that the number of structural joins
needed to rule out invalid tuples grows with the length of thequery path—even when the matches to most
query nodes are not needed to answer the query. In the exampleabove, unless thepeople and person

nodes have been explicitly marked as result nodes, the desired answer is just a list ofname nodes (which
of course must have aperson and apeople ancestor, but we do not need to know their node labels). An
index locating all nodes reached by a specific tag path without touching the ancestors of these nodes can
save many structural joins. Such path index structures are presented in the next two sections.

5.3 Atomic Path Indexing

To reduce the number of structural joins needed for matchingtag paths, index structures have been proposed
that map an entire tag path to the set of nodesD with that path. Each tag path is represented as a single
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Figure 5.2: Two-dimensional path bitmap for the document tree in Figure 2.1b. on page 8.

text string (like those used for illustration throughout this text) that contains all the tags on that path in top-
down order. Note that prefixes shared by distinct tag paths are duplicated in their respective strings: e.g., the
common prefix of/people/person/name and /people/person/profile is stored redundantly. We
refer to this asatomic path indexingsince tag paths are treated as monolithic objects (rather than sequences
of tags, as with thecompositionalpath representation described below).

5.3.1 Inverted Path Files

A simple way to index tag paths is to put them in an inverted file, either as keys or as values. Figure 5.1c.
on the facing page depicts a table similar to the one inb., but with entire tag paths in the first column. Given
such an index, query paths involving onlyChild steps can be easily matched. In fact, the paths could be
represented physically as a B+-Tree or a Trie [Fredkin 1960] to accelerate the look-up. By contrast, query
paths withChild+ or Child∗ steps or missing tag constraints require special string-matching techniques
that allow to ignore steps in the indexed tag paths. Details are given in Section 7.4.1 forXRel, an atomic
path index by Yoshikawa et al. [2001].

To match both tag paths and keyword constraints without having to intersect node sets looked up in
separate text and path indices (such as those in Figures 5.1a. andc.), Sacks-Davis et al. [1997] combine
both into a single table, shown in Figure 5.1d. This inverted text/path file differs from the original inverted
text file in two respects. First, the occurrences in the second column are no longer singleton node labels, but
sequences of labels representing element paths in the documents. For instance, while the posting for“fe-
male” in Figure 5.1a. contains the node label 26, among others, the correspondingposting in Figure 5.1d.
contains the element path/0/18/24/26 instead. Second, the occurrences in a given posting are grouped by
distinct tag paths, which are stored with each group. In Figure 5.1d., the“female” posting comprises two
groups: the first one contains two occurrences of the tag path/people/person/profile/sex (namely,
the element paths leading to nodes 26 and 34), whereas the second group contains only one occurrence
of another tag path,/people/person/gender . Again, special string-matching techniques are needed to
handle query paths with descendant steps or tag wildcards, as mentioned above.

5.3.2 Path Bitmaps

In flat-text Boolean Information Retrieval, keyword occurrences in documents are traditionally indexed
using a two-dimensional bitmap called thedocument/term matrix. Imagine the bitmap as a table with one
column for each document and one row for each distinct keyword (term) occurring in these documents.
Given any combination of a keywordk and a documentd, the bitmap value〈k,d〉 in the corresponding
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a. look-up for a tag path b. look-up for a keyword c. tag path/keyword look-up

Figure 5.3: Different operations on a three-dimensional path bitmap (BitCube).

table cell indicates whether or notk occurs ind (values1 and0, respectively).
The same idea can be applied to structured documents by reserving a single column for each distinct tag

path, rather than each document. Figure 5.2 on the precedingpage depicts the resulting two-dimensional
bitmap for the document treeD in Figure 2.1b.on page 8. Note that since all combinations of keywords and
tag paths are materialized, the bitmap is generally sparse.For instance, in the two leftmost columns no bit is
set because thepeople and person nodes inD do not contain text. By contrast, from the third column
we can tell that six distinct keyword occur inname nodes. Bit vector operations such as conjunction
and disjunction permit to test simple Boolean keyword constraints against tag paths: e.g., the only tag
path leading to occurrences of both“female” and“male” is /people/person/profile/sex (bitwise
conjunction of the“female” and“male” rows in Figure 5.2). However, there is no way to determine from
the bitmap whether there is any single node inD that contains these two keywords together, because no
pointers to individual occurrences of keywords and/or tag paths are given. In terms of the Three-Level
Model of XML Retrieval introduced in Section 2.4, the two-dimensional bitmap only indexes information
on the schema level, but not the document level.

It seems natural to add a third dimension to the bitmap which captures information on the document
level. TheBitCube proposed by Yoon et al. [2001] is such a three-dimensional bitmap, consisting of a
keyword axis, a document axis and an element (or element path) axis. As with the document/term matrix
above, we substitute tag paths to documents in order to have the full schema information reflected in the
index structure. Thus for any triple〈k,p,v〉 consisting of a keywordk, a tag pathp and a document nodev,
a bitmap value of1 indicates that nodev with pathp contains an occurrence ofk. Like the two-dimensional
path bitmap, theBitCube may be extremely sparse. For instance, a bitmap value of0 is stored for every
tuple〈k′,p,v〉 consisting ofp andv and any keywordk′ that doesnot occur inv.

Figure 5.3 illustrates different ways to look up information in theBitCube. In a., a vertical slice of the
cube is read which contains all values〈k,p,v〉 for a fixed tag pathp. This basically produces a tag path-
specific inverted text file (compare this to Figure 5.1a. on page 72). Analogously, a horizontal slice of the
BitCube, as shown in Figure 5.3b., corresponds to a keyword-specific inverted path file (see Figure 5.1c.),
or a single posting in the combined text/path file by Sacks-Davis et al. (see Figure 5.1d.). Finally, a com-
bination of both operations produces a vector containing all elements (or, alternatively, element paths) that
have a specific tag path and contain a specific keyword, as depicted in Figure 5.3c.

5.4 Compositional Path Indexing

A variety of path indices have been proposed which are more orless close to the schema tree introduced in
the previous chapter (see Definition 2.6 on page 11). As illustrated in Figure 2.1c. on page 8, each distinct
tag path occurring in the document treeD is materialized as a sequence of nodes in the schema treeS,
rather than an atomic string value.1 The most obvious advantage of thiscompositionalpath representation
is that prefixes shared by multiple tag paths are stored only once. For instance, the samepeople and

1In fact, given the alphabetT of tag symbols, the schema treeS can be viewed as a Trie [Fredkin 1960] created from a set of
words overT that represent all distinct tag paths.
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person nodes inSare part of the tag paths/people/person/name and /people/person/profile ,
among others. For highly heterogeneous collections where the schema tree grows large, this decrease in
redundancy – compared to atomic path indexing – can save somespace. Another benefit of compositional
path indexing for query evaluation against a recursive schema is discussed later (see Section 7.4.1).

Note that since the schema tree does not capture document-level information (recall the Three-Level
Model of XML Retrieval illustrated in Figure 2.3 on page 13),additional pointers are needed to locate the
occurrences of tag paths in the data. Besides, in order to match keyword constraints, the textual contents of
the documents need to be indexed, too. In the sequel we reviewa couple of alternative ways to realize this.

5.4.1 DataGuide

The perhaps best-known compositional path index for semistructured data is theDataGuide, developed
in 1997 by Goldman and Widom for theLore retrieval system [McHugh et al. 1997]. For tree data, the
DataGuide looks exactly like the schema treeS shown in Figure 2.1c. on page 8. As mentioned before,
in all but very few artificial casesS is small enough to fit main memory.2 Thus schema matching in the
DataGuide is done by following paths in a memory-resident tree structure, typically starting from the root
node. Query paths with unspecific tags or with steps involving Child+ or Child∗ cause backtracking inS
since multiple matches might be found. For instance, the XPath query /people/person/profile/*

matches two tag paths inS, represented by the nodes #4 and #5 in Figure 2.1c. on page 8, respectively.
To locate occurrences of tag paths in the documents, Goldmanand Widom combine theDataGuide

with an inverted path file similar to the one shown in Figure 5.1c.on page 72. The only difference is that in
the left column of the table, the tag paths are represented bythe numbers of the correspondingDataGuide
nodes, rather than strings. Thus the first row maps the tag path #0 to element 0, the second row maps #1 to
elements 9, 18, 27, 36, and so on (the tag path numbers correspond toDataGuide nodes in Figure 2.1c. on
page 8). Together the two index structures allow to match query paths where only the leaf node is a result
node, as in the XPath expression/people/person/name which returns onlyname nodes. Note that the
DataGuide does not provide matches to higher nodes on the query path (e.g., the correspondingperson
nodes).

Combining theDataGuide with an inverted text file like the one shown in Figure 5.1a. on page 72
permits to match path queries with keyword constraints. Forinstance, to obtain all elements inD that have
the tag path/people/person/name and contain the keyword“lee” , one would proceed in four steps:

1. Search the given tag path in theDataGuide in Figure 2.1c. on page 8. This selects the schema
node #2 (in this case, a singleton node since the query path comprises onlyChild steps with no tag
wildcards).

2. Look up the schema node #2 in the inverted path file (see Figure 5.1c. on page 72). This produces
the element set{12,21,30,39} as matches to the structure part of the query.

3. Look up the given keyword in the inverted text file in Figure5.1a. on page 72. This produces the
element set{21,30,39} as matches to the text part of the query.

4. Compute the intersection of both element sets (if the keyword constraint specified government rather
than containment, a structural join of the two sets would be needed instead). This yields{21,30,39}
as the query result.

Note that steps 2 and 3 are independent of each other and couldtherefore be executed in reverse order.
Step 4 can be expensive for large node sets, especially when astructural join is required (see above).

A number of other compositional path indices for XML have been proposed, most of which resemble
the DataGuide to some extent. The remainder of this section briefly reviewsa few characteristic ap-
proaches. For a more detailed survey and comparison, see [Weigel 2002]. Further XML index structures
have been proposed by Chung et al. [2002], Kaushik et al. [2002a], Shin et al. [1998], Wang et al. [2003b]
as well as Rao and Moon [2004], among others.

2In theory the schema treeS can grow as large as the document treeD, but only if no tag path occurs twice inD. Typically
even highly heterogeneous tree collections such asTreebank[Treebank] orINEX [INEX] contain considerable structural redundancy.
Examples of graph documents where theDataGuide has exponential size are given in previous work [Weigel 2002].
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5.4.2 IndexFabric

The IndexFabric by Cooper et al. [2001] aims to eliminate step 4 above, where the results of two separate
index look-ups for a tag path and a keyword are joined to produce the final query answer. To this end,
the inverted path and keyword files are combined with the schema treeS into one large disk-based tree
structure, theIndexFabric, as follows. For a given tag pathp in the documents, letKp be the set of distinct
keywords occurring in any element with pathp. If Kp is not empty, then new branches are added belowp
in Swhich represent the keywords inKp as a Trie [Fredkin 1960]. The nodes in these additional branches
represent sets of elements with pathp that contain a particular keyword inKp. This way not only the query
path, but also the keyword constraints can be matched by following paths in theIndexFabric.

For instance, for the tag pathp = /people/person/name in the document treeD (see Figure 2.1b.
on page 8), we haveKp = {“jeff” , “jill” , “lee” , “mae” , “smith” , “sue” }. The IndexFabric for D would
therefore contain (among others) a path/people/person/name/l/e/e representing the elements 21, 30
and 39 (which have the tag path/people/person/name and contain the keyword“lee” , see above).
Similarly, /people/person/name/s/m/i/t/h would represent 12, and/people/person/name/s/u/e
would represent 39. Note that these two paths in theIndexFabric would share a prefix of four steps, includ-
ing thes node: like tag paths, keywords below the same tag path are also represented in a compositional
fashion (namely, as a Trie) to reduce redundancy.

In terms of the Three-Level Model of XML Retrieval (see Figure 2.3 on page 13), theIndexFabric com-
bines information from both the schema level (the tag paths)and the document level (the path and keyword
occurrences). Clearly the resulting index structure is toolarge to be held in main memory. Cooper et al.
therefore propose a paging strategy for partitioning theIndexFabric on disk in order to restrict the num-
ber of page faults during index look-ups. Besides, to save disk space all non-branching parts of paths in
the IndexFabric are contracted, which reduces the number of nodes in the tree. However, the compressed
IndexFabric only indexes leaf nodes inD or nodes which contain keywords, and therefore fails to answer
certain path queries.

5.4.3 Signature File Hierarchy

TheSignature File Hierarchy by Chen and Aberer [1998; 1999] pursues a different strategyto alleviate
the burden of joining path and keyword occurrences in step 4 (see page 75). Recall that since query paths
with Child+ or Child∗ steps and/or unspecified labels may have more than one match in the schema treeS,
entire subtrees ofS must be searched in a backtracking procedure. In the course of this search, multiple
schema nodes may be selected, all of which undergo the occurrence look-up in the inverted path file (step 2).
However, it might happen that some schema nodep does not contribute any occurrences to the query result,
because no element with the tag pathp contains the query keyword. In this case the occurrences ofp are
in vain fetched from the inverted path file in step 2 and intersected with element sets from the inverted text
file in step 4.

In order to rule out such false positives early during the matching, Chen and Aberer use a well-known
Information Retrieval technique to give approximate hintsas to which tag paths inShave occurrences that
contain a specific query keyword, as follows. Assume that each keywordk∈ K occurring in the documents
is mapped to a bit string with a fixed length and a fixed number ofbits set. This bit string is called the
keyword signatureof k. For any nodev in the document treeD, let Kv be the set of distinct keywords
occurring inv. A keyword signature for the nodev is then created by superimposing the signatures of all
keywords inKv by bitwise disjunction. Note that given the keyword signature ofv and the signature of any
keywordk∈K, the following implication holds: ifv containsk, then all bits set in the signature ofk are also
set inv’s keyword signature (we also say that the signature ofv qualifiesfor the signature ofk). However,
the inverse is in general not true: even ifv’s signature qualifies fork’s signature,v may not containk, since
the bit patterns in the signatures of distinct keywords contained byv may happen to overlap and together
cover all bits that are set in the signature ofK.

These observations can help to avoid needless look-ups and joins in steps 2 and 4. From the contrapo-
sition of the implication above, it follows that given the signatures of a set of document nodes and a query
keywordk, we may recognize for some (though perhaps not all) nodes that they surely donot containk
(namely, those whose signatures contain unset bits that areset ink’s signature). To exploit this during path
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matching, Chen and Aberer create aSignature File Hierarchy by annotating the schema tree with keyword
signatures and information from the inverted path file, as follows. First, every keywordk∈ K to be indexed
or queried is mapped to a fixed-length signature (usually thesame signature will be recreated fromk when-
ever needed, so that the mapping need not be stored physically). Each schema nodep in Sholds asignature
file listing all elementsv with the tag pathp, along with their keyword signatures. These are created by
merging the signatures of the keywords they contain, as described in the previous paragraph.

A signature file serves two purposes: on the one hand, it locates the elements with a particular tag
path, thus replacing the inverted path file. On the other hand, it provides an approximate summary of the
keywords contained in these elements. Given the signature of the query keywordk and the signature file of
a schema nodep visited during path matching inS, we may recognize that no element listed inp’s signature
file containsk—by examining the signature file, without access to any keyword index. This would save
us from joiningp’s occurrences with other element sets in vain in step 4. Notethat this method is inexact
in the sense that occurrences ofp with the right bits set in their signature might still be false positives.
Hence the subset ofp’s occurrences whose signatures look promising fork cannot be used as-is, but must
be joined with the look-up result fork, as before. However, occurrences whose signature does not qualify
can be safely ignored, without altering the query result.

The path occurrences in the signature files add document-level information to the schema tree, which
is therefore unlikely to reside in main memory. For instance, applied to theIMDb collection comprising
more than 80 million document nodes (see Chapter 13), the contents of all signature files together would
easily take up some 640 MB (assuming 32-bit signatures and 32-bit element node labels). As a remedy,
Chen and Aberer [1999] suggest storing the keyword signatures for each tag path in a Trie rather than a flat
list, which avoids the redundant storage of shared bit prefixes (but of course requires some extra space for
the Trie structures).

5.4.4 T-Index

With theT-Index, Milo and Suciu [1999] have introduced a family of index structures for tree- or graph-
shaped documents, that are all tailored to tag paths of a specific structure, described by apath template
(hence the nameT-Index). The template, to be fixed by the database administrator before creating the index,
specifies which tag paths (or fragments thereof) are indexedand which ones are ignored. Depending on the
given path template, aT-Index may capture more or less of the document structure than theDataGuide.
Textual contents of the documents can be indexed with an inverted keyword file, as with theDataGuide.

Milo and Suciu discuss two particular variants of theT-Index that are of general interest. The1-Index
covers all tag paths starting from the document root. When dealing with tree documents, the1-Index looks
exactly like theDataGuide. The2-Index locates all pairs of ancestor and descendant elements that are
linked by a specific sequence of tags. For instance, given a2-Index for the document tree in Figure 2.1b.
on page 8, it would be possible to look up all pairs of nodes〈u,v〉 where there exists a third nodew such
thatChild(u,w), Child(w,v), tag(w) = profile andtag(v) = edu . In the example, these are the node
pairs〈9,16〉 and〈18,25〉. Note that the2-Index allows to retrieve paths and path fragments anywhere in
the documents, not necessarily starting at the root. This saves the search and backtracking needed with the
DataGuide or 1-Index when matching query paths whose first step involves the descendant axis, such as
//profile/edu .

Of course, the2-Index incurs a heavy storage penalty, being quadratic in the size of the document tree in
the worst case. More selective path templates may reduce theindex size by ignoring less frequently queried
paths. Thus a restricted2-Index might cover only path fragments of a specific length or with specific tags.
However, tuning theT-Index in this way requires a thorough knowledge of both the schema and the query
workload.

5.5 Tree and Graph Indexing

The data model introduced in Section 2.1 regards XML documents as trees, deliberately restricting them to
the nesting structure their elements. However, index structures have been proposed that take into account
cross-links, which can be specified using either XML’sID/IDREF attributes or external mechanisms such
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as XLink [XLink] or XPointer [XPointer]. For instance, theHopi index by Schenkel et al. [2004; 2005]
supports path queries with descendant steps and tag wildcards against arbitrary graphs. TheDataGuide
andT-Index presented above are also applicable to documents with cross-links.

The key problem here is how elements that are reached by multiple distinct tag paths should be repre-
sented in the schema tree. One solution, adopted by theT-Index, is to treat all elements having the same set
of tag paths as occurrences of the same schema node. Thus every schema node represents a set of tag paths,
rather than a single path as in the tree case. This preserves the unique mapping from elements to schema
nodes and ensures that the1-Index on graph documents grows lineary with the number of documentnodes.
However, the schema tree may now contain path duplicates because the sets of tag paths represented by
distinct schema nodes are not necessarily disjoint. This causes backtracking during path matching even for
queries without tag wildcards andChild+ or Child∗ steps.

An alternative approach, taken by theDataGuide, is to let each schema node represent exactly one tag
path as before, which means that elements reached by multiple tag paths are indexed redundantly. On the
one hand, this avoids the extra backtracking incurred by theT-Index. On the other hand, theDataGuide
may grow exponentially in the worst case, due to the redundant indexing of elements. However, document
collections which cause exponential growth tend to be extremely artificial and are unlikely to occur in
practice [Weigel 2002].

A graph document model also entails important difficulties for the use of decentralized structural sum-
maries such as the labelling schemes discussed in Chapter 3.Since any document node may be related
to any other regardless of the hierarchical nesting of elements, it is much harder to encode specific tree
relationships such asChild or Child+ in a local fashion. The most powerful labelling schemes for XML
are therefore restricted to tree documents.

Schenkel [2004] argues that a judicious choice of how to index a given document collection depends on
a number of parameters including, e.g., the collection size, the query workload and, for graph documents,
the structure of the cross-links. For instance, some parts of the collection may be entirely tree-shaped while
others are heavily connected through cross-references. TheFliX framework by Schenkel provides methods
to partition a heterogeneous collection of cross-linked documents, based on different parameters, in order
to let each part of the collection benefit from the most appropriate indexing technique. This could be a step
towards the semi-automatic selection of structural summaries (both centralized and decentralized) based
on the monitoring of data and query statistics, as offered bysome commercial relational database systems
(e.g., IBM’sDB2).

5.6 Summary and Discussion

For any index structure in whichever data model, there are atleast three possible (and often conflicting)
optimization goals:

1. runtime performance: To what extent does the index accelerate query evaluation?

2. storage consumption: How much space does the index structure take up on disk or in memory?

3. robustness: How do changes to the indexed data affect the index?

Besides these general questions, there are additional issues specific to the XML data model. The survey of
centralized structural summaries in this chapter, albeit brief and by no means exhaustive, has highlighted
some of the key problems to be taken into account when indexing XML data:

4. path representation: Are tag paths atomic or compositional?

5. content and structure: How does the index combine keyword and path occurrences?

6. backtracking: How are unspecific query paths matched?

The following is a short discussion of these issues with respect to the different approaches presented above.
The runtime performance of XML query evaluation with a givenindex structure depends not only on

how fast it locates elements that satisfy some part of the query (e.g., a tag, tag path, or keyword constraint),
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but also on how many separate index look-ups and joins are needed to compute the whole query result. As
mentioned before, the flat inverted files discussed in Section 5.2 support only look-ups for individual tag
or keyword constraints. Each conjunction of two constraints entails the intersection or structural join of
(possibly large) sets of elements. Hence the overhead for matching complex queries with branching paths
can be considerable. Different algorithms have been proposed to expedite joining; in particular, so-called
holistic twig joins[Bruno et al. 2002] strive to reduce the size of intermediateresults by matching multiple
tag or keyword constraints simultaneously. However, sinceinverted files only cover simple constraints, the
initial node sets to be joined may still be large.

This problem is addressed by various path indexing techniques which allow to match the leaf of an en-
tire query path including multiple tag constraints at once,without structural joins. Matches to nodes higher
on the path are either materialized in the index, as with the inverted text/path file by Sacks-Davis et al.,
or reconstructed on-the-fly with a suitable labelling scheme (see Chapters 3 and 4). Major differences
exist concerning the representation of tag paths in the index. Atomic path indices like the inverted path
or text/path files presented in Section 5.3 store tag paths asstrings, thereby duplicating shared path pre-
fixes. This redundancy not only increases the index size, butalso makes it harder to handle changes to
the path structure (e.g., when a subtree in a document is moved). Compositional path indices like the
DataGuide and its variants avoid this redundancy by organizing tag paths in a tree structure, similar to
a Trie [Fredkin 1960]. Goldman and Widom [1997] show how to update theDataGuide incrementally in
time linear in the number of nodes changed.

In any case, matching unspecific query paths that may have multiple matches in the schema requires an
additional effort: for atomic path indexing, substring matching or regular expressions are needed, whereas
compositional indices must be searched with backtracking.Moreover, multiple schema matches entail
additional look-ups in the inverted files as well as additional joins. TheSignature File Hierarchy uses
keyword signatures as a heuristic means to avoid needless joins. However, the space overhead in the
schema tree can be considerable. Exact methods that materialize entire tree relations (e.g.,Child+ as with
the2-Index) are unlikely to scale up to tens of gigabytes. Here an alternative are labelling schemes that
encode such tree relations locally. However, this introduces additional caveats concerning updates (see
Chapter 3).

Another important question is how to combine path and keyword indexing in order to enable fast look-
ups of both without blowing up the index size. The straightforward approach sketched for theDataGuide
– i.e., separately look up structure and contents, then jointhe results – again entails the manipulation of
potentially large node sets. Keeping both tag and elements in a single table like the inverted text/path file
optimizes combined look-ups, at the expense of a larger index size because the same tag path is indexed
repeatedly for distinct keywords. This could be problematic at least for atomic path indices, where the
entire path string is literally duplicated. Path bitmaps like theBitCube further aggravate the problem by
materializing all possible combinations of tag paths and keywords, rather than only those which actually
occur in the documents. Compressing the resulting sparse bitmaps could recuperate wasted space, but
would also introduce a runtime overhead for decompression during the index look-up.

One viable approach is taken by theIndexFabric, which materializes all existing keyword/tag path
combinations in a large Trie on disk and creates additional main-memory structures for fast access to
the right disk pages. However, this involves compression techniques that prevent theIndexFabric from
answering all queries. The next chapter presents a different solution with full support for the XML query
model above: it is an enhancedDataGuide that features (1) combined structure and keyword indexing on
disk, (2) a compositional schema representation in main memory, and (3) efficient keyword-driven pruning
during path matching.
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CHAPTER

SIX

TheContent-Aware DataGuide (CADG)

6.1 Overview

This chapter presents theContent-Aware DataGuide (CADG), a compositional centralized structural sum-
mary based on theDataGuide, which is optimized for the efficient evaluation of queries with combined
path and keyword constraints. The attribute “content-aware” is meant to emphasize that unlike pure path
indices like the originalDataGuide, theCADG combines content and structure matching during all steps
of the retrieval process. In particular, it allows to prune branches of the schema tree which are irrelevant
with respect to a given set of query keywords, in order to avoid needless path look-ups and backtracking
during path matching. Moreover, the join of elements with a specific tag path and keyword occurrence is
materialized on disk, which significantly reduces the need for joins of large element sets at runtime.

Together with theBIRD labelling scheme (see Part II), theCADG is the basis for the two other main
contributions of this work, namely, the relational query evaluation with theRCADG index (see Part IV)
and the incremental query processing with theRCADG Cache (see Part V). Besides, theCADG has also
been combined with ranking techniques for structured documents [Weigel et al. 2005a] (see Part VI). In
the following, some technical details that are not relevantto this work are omitted for simplicity. A more
exhaustive presentation and evaluation of theCADG can be found in earlier work [Weigel et al. 2004a;
Weigel 2003].

6.2 Materialized Join of Content and Structure

The previous chapter has highlighted several ways to combine the content and the structure of XML doc-
uments to be indexed. This problem is indeed of paramount importance for the efficient evaluation of
combined tag path and keyword queries. In this respect, the main drawback of theDataGuide setting
described above is that content and structure information are rigorously separated into two different data
structures (namely, the inverted keyword and tag path files). This way keywords and tag paths taken from
the same query must be looked up independently, as if all their occurrences were equally relevant to the
query. Only in the last step of the retrieval process (see page 75) content and structure are brought together
again, in a join of potentially large element sets that is computed at runtime.

The experiments with theDataGuide and the inverted files below show that the content/structurejoin is
often a bottleneck during the query evaluation. TheCADG avoids this by materializing this join at indexing
time: the inverted keyword and tag path files are replaced with a singleelement tablecontaining all triples
〈p,k,v〉 where a document nodev with the tag pathp contains the keywordk. Figure 6.1 on the following
page depicts the element table for the document treeD in Figure 2.1b. on page 8. Tag paths, keywords and
elements are stored in thepid, keyandeid columns, respectively. Note how the labels of schema nodes in
Figure 2.1c. on page 8 act as foreign keys to thepid column in the element table in Figure 6.1. In general
the element table is larger than the sum of the two inverted files, for two reasons. First, while every pair
〈p,v〉 of a tag pathp and one of its occurrencesv is stored once in the inverted path file, the same pair
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Figure 6.1: TheCADG element table for the document tree in Figure 2.1b. on page 8.

〈p,v〉 occurs repeatedly in the element table, once for each distinct keyword thatv contains. Besides, it is
convenient to store an additional entry〈p,v, “” 〉 for each pair〈p,v〉 and the empty keyword“” such that
occurrences of tag paths can be efficiently looked up withoutany specific keyword in mind.

For instance, given the tag pathp = /people/person/sex represented by the schema node #5 in
Figure 2.1c.on page 8, the element table in Figure 6.1 locates either all occurrences ofp (entries〈#5, “” ,v〉
for anyv, i.e., 17, 26 and 34) or only the subset of occurrences ofp that contain the keyword“male” (entries
〈#5, “male” ,v〉 for anyv, i.e., only 17), whatever is need for answering the query. Inthe second case, the
use of the element table saves one look-up in the inverted text file and one content/structure join, compared
to theDataGuide evaluation procedure sketched on page 75.

6.3 Keyword-Driven Path Matching

Another problem faced by path indices is that unselective query paths involvingChild+ steps or missing tag
constraints can have multiple matches in the index (see Section 5.4 above for an example). In compositional
path indices like theDataGuide, these matches are found through backtracking in the schematree. In
the worst case, the whole schema tree must be scanned in this way. Even though this does not entail I/O
operations since the schema tree is memory-resident, it maycause some overhead in the case of structurally
diverse document collections likeTreebank[Treebank] orINEX [INEX], whoseDataGuide contains tens
of thousands of nodes. More importantly, however, every schema node selected during path matching
causes a separate look-up in the inverted path file, which in turn may produce a set of elements to be joined
with look-up results from the inverted text file. Reconsiderthe sequence of steps for query evaluation with
theDataGuide (see page 75): only during the join in step 4 it becomes clear which elements satisfy both
the structural and the textual query constraints—after allthe I/O for the table look-ups is done.

Unlike theDataGuide (or IndexFabric or T-Index), the CADG allows to skip during path matching
branches of the schema tree that represent parts of the documents where the query keyword does not
occur, and that therefore cannot contribute to the query result anyway. As an example, consider the XPath
query //person//*[contains(.,"male")] and the schema tree in Figure 2.1c. on page 8. To answer
this query with theDataGuide procedure, we would first look up all schema nodes below #1 (the person

node) in the inverted path file. The following intersection of the resulting five element sets with the inverted
text file posting for“male” would reveal that only node 17 satisfies the query. By contrast, with theCADG
the path matching could be restricted to the schema node #5 right away, so that only a single element set
would be fetched from the path file in step 2 and intersected inthe last step. This of course requires some
keyword-specific information to be available on the schema level. In terms of the data model introduced
in Chapter 2, theCADG allows to match approximate keyword constraintsContains′k andGoverns′k for
keywordsk∈ K during path matching (see Section 2.3). In the following we outline two alternative ways
to do this (for details see [Weigel et al. 2004a; Weigel 2003]).

6.3.1 TheSignature CADG (SCADG)

The first possibility to realize a keyword-driven, or content-aware, path matching is inspired by theSigna-
ture File Hierarchy. Recall from Section 5.4.3 that here each schema node keeps asignatures file containing
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the elements it represents, and for each element a keyword signature that indicates its textual contents in
an approximate manner. The problem is that for tag paths which occur frequently in the documents, the
list of occurrences to be scanned and signatures to be compared is long. Besides, all information from the
inverted path file must be held in memory. TheSignature CADG (SCADG) remedies this by merging all
keyword signatures in the same signature file into a tag path-specificcontainment signature, much in the
same way as the signature for a single element is created fromthe signatures of the keywords it contains.
Thus each node in the schema treeS stores only one signature instead of a whole signature file, which
reduces the index size and the number of signatures to be compared during path matching.

The path matching procedure for containment constraints issimilar to the one sketched for theSigna-
ture File Hierarchy before. During step 1, each schema nodep matching a query node with a containment
constraint for a keywordk is examined to check whether its containment signature qualifies for the signa-
ture ofk. If this is not the case,p is ignored, i.e., its occurrences are not looked up and do nottake part in
subsequent joins. Of course merging multiple keyword signatures into a single containment signature (by
bitwise disjunction) may render the content representation even less precise than with theSignature File
Hierarchy. However, this only affects the number of false positives that might be overlooked during path
matching, whereas the final query result is exact (as with theSignature File Hierarchy).

A second signature attached to each schema nodep in S indicates which keywords are governed by the
elements with the tag pathp. Thisgovernment signatureis created by merging the containment signatures
of all descendants ofp in S. Obviously, if the government signature ofp does not qualify for any key-
word signature in the query, then there is no point in searching p’s subtree inS for nodes with promising
containment signatures. Thus government signatures allowto prune entire subtrees of the schema tree and
to ignore their nodes during the look-up and join steps. Thisapplies even very early during step 1, when
matching nodes higher on the query path which perhaps do not specify keyword constraints themselves
(such as theperson node in the sample query above).

6.3.2 TheInverted-File CADG (ICADG)

A second variant of theCADG pursues the same goals as theSCADG, but with different means. Unlike the
SCADG, theInverted-File CADG (ICADG) does not annotate the schema tree in order to lift some content
information up to the schema level. Instead, all tag paths that lead to elements containing query keywords
are looked up in the element table before the path matching begins. Imagine these keyword-relevant tag
paths as highlighted in the schema tree, indicating which parts of the document schema must be examined
(from a keyword-only point of view) and which ones can be safely ignored. In fact, since only the leaves of
the paths are stored in the element table, we need to decide efficiently for any schema node visited during
path matching whether it is an ancestor of such a keyword-relevant leaf. To this end, thePre/Max labelling
schemes introduced in Chapter 3 is applied to the schema tree. Using this interval labelling, ancestorship
can be decided in constant time for any two schema nodes.

For instance, reconsider the sample query//person//*[contains(.,"male")] and the schema
treeS in Figure 2.1c. on page 8. A quick look-up for“male” in the element table identifies #5 as the
only keyword-relevant schema node. Thus the path leading from #0 to #5 inS should be highlighted,
indicating that the other branches leading to #2, #4 and #6 can be ignored. This is achieved by comparing
thePre/Max labels of the schema nodes visited during path matching inSto the labels of keyword-relevant
nodes fetched beforehand. In the example, the relevant schema node has the label[#5,#5] (being a leaf of
the schema tree). Starting from the root ofSwith the interval[#0,#6], we proceed since[#5,#5]⊂ [#0,#6].
Similarly, [#5,#5] ⊂ [#1,#6] for the child of the root. However, in the following the intervals [#2,#2],
[#4,#4] and[#6,#6] do not contain[#5,#5]. Therefore the only keyword-relevant path inS leads from #1
via #3 to #5.

A minor technical issue concerns the robustness of theICADG against modifications of the document
structure. It has been noted above that the labels of schema nodes inSact as foreign keys to the element
table. However, when a new tag path appears in the document collection, the schema node labels may
need to be reassigned according to thePre/Max scheme. Since changing foreign keys to the large element
table could entail massive disk I/O, every schema node is given an extra identifier that is used as foreign
key instead of the preorder rank of the node. This artificial key value remains constant over time and thus
preserves the foreign key relation regardless of the current shape of the schema tree.
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Figure 6.2: Runtime performance gain of theICADG andSCADG, compared to theDataGuide.

6.4 Experimental Evaluation

The following summarizes the most salient results of the exhaustive experiments that were carried out for
the original work on theCADG [Weigel 2003]. The experimental set-up is as follows. Threedifferent index
structures have been implemented and integrated with theX2 retrieval system for XML [Meuss et al. 2005;
Meuss et al. 2003; Meuss 2000]: on the one hand, theSCADG andICADG as main-memory tree structures
backed by the element table on disk, and on the other hand, theDataGuide in main memory with the
inverted text and tag path files as tables on disk. All three tables are kept in a relational database system,
with the following columns indexed: the element table has one B+-Tree on the path and keyword columns
and another B+-Tree on the keyword column alone. The inverted text file is indexed by a B+-Tree on the
keyword column. The inverted tag path file is indexed by a B+-Tree on the path column. TheSCADG uses
64-bit signatures.

With this setting, three different document collections have been indexed, whose characteristics are
summarized in the appendix (see Section 13.2).Cities is very small, with a fairly homogeneous and non-
recursive structure, whereasXMark 29, a synthetically generated corpus [XMark], is structurally slightly
more diverse and contains recursive paths (e.g.,parlist elements may contain otherparlist ele-
ments). The highly recursive and heterogeneousNP collection comprises half a gigabyte of syntactically
analyzed German noun phrases [Oesterle and Maier-Meyer 1998]. Both manually written and automati-
cally generated query sets have been evaluated against the three collections, resulting in the following four
test suites:CitiesM contains 90 hand-crafted queries against theCities collection. CitiesA(639 queries),
XMarkA(192 queries) andNpA(571 queries) consist of synthetic queries against theCities, XMark 29, and
NP collections, respectively. All test suites contain both satisfiable and unsatisfiable queries (50% each).
Detailed properties and a classification of the queries according to various selectivity measures are given
in [Weigel et al. 2004a; Weigel 2003]. Only path queries havebeen processed in this experiment so as
to minimize dependencies on the underlying evaluation strategy and join algorithms employed by theX2

system.
All tests have been carried out sequentially on the same computer hosting bothX2 and the RDBS

back-end (technical details are listed in the appendix, seeTest Environment B in Section 13.1). To prevent
artefacts due to the file system cache, each query has been processed once without taking the results into
account. The following three iterations of the same query were then averaged. Figure 6.2 shows the
performance results for three selected subsets of the queries in each test suite: while plota. covers all
evaluated queries, plotb. in the middle narrows down to unselective queries with mostly Child+ steps and
few tag constraints. Finally, plotc. covers all satisfiable queries. Each plot depicts, on a logarithmic scale,
the average speedupof theSCADG andICADG over theDataGuide, i.e., the proportion of theCADG’s
evaluation time to theDataGuide’s evaluation time.

In a nutshell, the experiments show that (1) theCADG is considerable faster than theDataGuide espe-
cially on large collections and (2) theICADG always performs a little better than theSCADG. TheICADG
beats theDataGuide by a factor 5 to 200 on average, depending on the document collection. Not sur-
prisingly, the speedup increases for poorly structured queries (see Figure 6.2b.), where the potential for
subtree pruning is higher. TheICADG evaluates structurally unspecific queries against the largeNPcollec-
tion 479 times faster than theDataGuide on average. Further statistics show that in this setting oneout of
two queries are evaluated by two orders of magnitude faster than with theDataGuide [Weigel et al. 2004a].
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Figure 6.3: Storage consumption of theICADG, SCADG andDataGuide, relative to the collection size.

For queries with more selective keywords, the speedup againincreases by 10-20% on average, and up to
30% for theICADG. Yet the content awareness pays off even for unselective keywords. Summing up, the
CADG performs best on queries with selective keywords and littlestructure constraints. In practice this is
an important class of queries, given that most users are accustomed to web search engines and therefore
tend to focus on keyword constraints, especially when they are not familiar with the document schema.

The chart in the Figure 6.2c. on the facing page focuses on the subset of satisfiable queries in each test
suite, which makes up about 50%. While theICADG’s average speedup still reaches 4-7 for the smaller test
suites (versus 5-12 for all queries ina.) and two orders of magnitude forNpA, theSCADG performs only
twice as good as theDataGuide on theCitiesandXMark 29collections. OnNP it beats theDataGuide by
one order of magnitude (average speedup 28). The reason why theSCADG performs worse in Figure 6.2c.
is that this experiment does not include the queries that theSCADG answers particularly fast: obviously
it excels at filtering out unsatisfiable queries, especiallythose with non-existing keywords which it rejects
immediately during path matching. In practice this might bea valuable feature, as users are unwilling to
accept long response times when there is no result in the end.TheICADG is a little slower here because it
recognizes non-existing keywords only after a look-up in the element table.

Figure 6.3 plots the storage consumption of theICADG, SCADG andDataGuide, respectively. The
chart shows that again bothCADGs are most effective for large corpora such as theNP collection. The
ICADG grows to 87% (2.4 MB) and theSCADG to 168% (4.6 MB) of the size of theCitiescollection in
the database (DataGuide 1.6 MB). However, this storage overhead is reduced considerably for XMark 29
and completely amortized forNP (ICADG 3% (21 MB),SCADG 6% (36 MB),DataGuide 3% (15 MB)).
Note that the size measures of theSCADG include an extra table containing the signatures for all distinct
keywords in the collection. Without this table, the overhead compared to theICADG is negligible. Further
experiments including stop words and unstemmed morphological keyword variants have not substantially
changed the results.

6.5 Summary and Discussion

The experiments above clearly show the benefit of theCADG’s materialized content/structure join and
keyword-driven path matching, which come at a relatively low cost in terms of storage. Note that the
results reported here only apply to a hybrid setting, where the structural summary is kept in memory and
the rest and the rest of the index structure resides in a relational database system. Chapters 7 and 8 explore
a different situation where the index is stored entirely on disk and the whole evaluation process takes place
inside the RDBS.
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CHAPTER

SEVEN

XML Retrieval in Relational Database Systems

7.1 Overview

The indexing approaches presented in Chapters 5 and 6 mostlytarget native or hybrid retrieval systems
where at least some part of the index structure is held in mainmemory (typically, a centralized struc-
tural summary such as the schema tree). However, faced with very large document collections where
scalability and retrieval efficiency are major concerns, storing and querying XML data entirely inside a re-
lational database system (RDBS) seems particularly promising because (1) highly efficient access methods
for relational data have been developed for over thirty years and (2) query planning and optimization in
the relational algebra is well-understood. Besides, nowadays there is a great choice of mature relational
databases, some of them freely available, that are already widely deployed and offer many features which
are favourable to a productive use. These include, e.g., concurrency, transactions, safety and recovery, as
well as sophisticated index structures and algorithms for query planning and optimization.

Consequently, a variety of relational storage schemes for XML have emerged, which are either generic
in nature or rely on a fixed schema (e.g., a given DTD or XML Schema [XSD1]). All these approaches
have in common that they “shred” the hierarchical XML data into tuples to be stored in the flat data model
of the RDBS. One the one hand, possibly expensive joins are necessary to restore part of the original node
hierarchy at query time. On the other hand, the resulting tables can be efficiently indexed and searched
with the common operators of the relational algebra. This chapter reviews several alternative approaches
to XML retrieval in an RDBS, highlighting their respective strengths and weaknesses for different kinds of
documents and queries. One particularly interesting question here is in how far existing native XML index-
ing techniques, like the ones described in the preceding chapters, can be adapted for use in the relational
setting.

7.2 Classification of Storage Schemes

A recent survey by Krishnamurthy et al. [2003] provides a comprehensive overview, terminology and clas-
sification of a large number of research contributions dealing with XML and RDBSs. First,storage schemes
are contrasted withpublishing techniques, whose aim is not to store XML in the relational data model but
to make relational data accessible as if it were XML. (The latter are not tightly related to this work and
therefore ignored in the sequel.) Relational storage schemes for XML are further differentiated according
to the database schema they use for shredding XML data. Approaches in the first class derive a suitable
relational schema for each document collection from a givenDTD or other prescriptive XML schema,
and are therefore calledschema-basedby Krishnamurthy et al.1 (Yoshikawa et al. [2001] refer to them as
structure-mapping approaches.) For instance, Schmidt et al. [2000] suggest storing all elements with the

1Schema-based approaches include work by Shanmugasundaramet al. [1999], Harding et al. [2000], Schmidt et al. [2000],
Bohannon et al. [2002], Runapongsa and Patel [2002], Chen etal. [2003], Balmin and Papakonstantinou [2005] and
Chebotko et al. [2005].
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same tag path together in a separate table. The number of tables needed thus depends on the structural
diversity of the documents. The second class isschema-obliviousin the sense that all sorts of XML docu-
ments, whatever their structure may be, are stored in the same set of tables, designed to fit the XML data
model as closely as possible while allowing for efficient query evaluation.2 (These storage schemes are
therefore calledmodel-mapping approachesby Yoshikawa et al.)

Note that schema-oblivious storage schemes may well index the structure of the documents (in fact,
we will come to know such schemes in this chapter and the next one). But the document schema does not
affect the number of tables and columns used. On the one hand,this means that all elements are stored
in a predefined set of tables, which may therefore become large and need appropriate indexing. Besides,
keeping all data in a small number of tables might slow down the parallel access by multiple threads.
On the other hand, schema-oblivious storage has a number of advantages: (1) No prescriptive schema is
needed to index a new collection of XML documents. If desired, a structural summary can be created on
the fly while indexing the documents. (2) During query evaluation, only a small fixed number of tables is
accessed. There is no need to compute the union of results retrieved from distinct tables. (3) The storage
scheme is robust against schema evolution. For instance, noadditional table is needed when a new tag path
appears in the documents. These issues advocate a schema-oblivious approach in the course of this work.
The following brief review of some existing storage schemestherefore covers mainly schema-oblivious
works.

7.3 Node Indexing

An obvious way to shred an XML document treeD into relations is to represent each document node inD
as a tuple in anode table, with enough information to restore specific tree relationsthrough selfjoins of the
node table. For instance, if the tuple representing a document nodev contains the unique node labels ofv
and its parent inD, then all parent/child pairs in the documents can be obtained through an equijoin of the
node table on the two label columns. Textual contents are either included in the node table or stored in one
or more additional tables. We refer to this kind of relational XML storage asnode indexingschemes in the
sequel. Three such schemes are outlined in this section.

7.3.1 TheEdge Scheme

TheEdge scheme by Florescu and Kossmann [1999] uses a node table withfive columns that essentially
materialized theParentrelation. Each document nodev is represented as a quintuple containing the unique
node label ofv, the node label ofv’s parent,v’s tag name, the position ofv among its siblings (if any) and
a flag indicating whether or notv has textual contents. The actual content values are stored in a separate
content tablemapping node labels to strings.3 While matchingChild steps in a query path is easy with
theEdge scheme – a simple equijoin of the node table as sketched above–, handlingChild+ steps is only
possible through recursive SQL queries [Krishnamurthy et al. 2003]. Keyword containment constraints
entail joins of the node table with the content table. For government constraints again recursive SQL
queries would be needed.

Florescu and Kossmann also describe two variants of theEdge scheme that aim to expedite access
to relevant tuples in the node table and avoid joins with the content table. First, the node table may be
partitioned into a separate table for all nodes with the sametag. Second, further columns may be added to
the node table in order to store the attributes of an element and their text values. This is known asinlining.
However, since not all elements have the same attributes, the resulting node table may contain manynull

values. Both the partitioning and the inlining turn the storage scheme into a schema-based approach, with
the pros and cons listed above.

2Schema-oblivious approaches have been proposed, among others, by [Deutsch et al. 1999], Yoshikawa et al. [2001],
Grust [2002], Jiang et al. [2002], Tatarinov et al. [2002], DeHaan et al. [2003], Harding et al. [2003], Chen et al. [2004],
Pankowski [2004] and Chen et al. [2005a].

3Actually theEdge scheme is a little more involved, capturing different data types in distinct type-specific content tables.
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Figure 7.1: Node table of theXPath Accelerator scheme for the document tree in Figure 2.1b. on page 8.

7.3.2 TheXPath Accelerator Scheme

TheXPath Accelerator scheme by Grust et al. [2002; 2004] also materializes theParentrelation, but adds
information for handlingChild+ steps and type constraints. Each document nodev is represented as a
quintuple in the node table which contains the pre- and postorder ranks ofv, the preorder rank ofv’s parent
as well asv’s tag name and node type. Figure 7.1 shows the node table for the document tree in Figure 2.1b.
on page 8.Child steps are matched through an equijoin of the node table, as with theEdge scheme. For
handlingChild+ steps, Grust et al. takes advantage of thePre/Post labelling scheme (see Chapter 3).
Recall from Section 3.3.2 that given two elementsu andv, Child+(u,v) holds iff pre(u) < pre(v) and
post(v) < post(u). This decision procedure translates directly into a predicate for a selfjoin of the node
table. Thus theXPath Accelerator efficiently matchesChild+ steps without recursive SQL queries.

Grust et al. show that all XPath axes can be decided through joins with different predicates on the node
table columns. In terms of the query model specified in Section 2.2, any query withm query nodes is
matched in anm-fold selfjoin of the node table. To expedite the joins, several optimization have been
proposed, including theStaircase Join[Grust et al. 2003], a new join operator to be integrated intothe
RDBS kernel, andshrink-wrapping, a method to decideChild+ steps with a more restrictive predicate.

7.3.3 TheSTORED Scheme

Deutsch et al. [1999] describe a mixed semistructured/relational storage scheme that is at the boundary
between schema-based and schema-oblivious approaches. Itmakes use of data mining techniques for
semistructured data [Wang and Liu 1998] in order to devise a relational schema that captures the most
regularly structured part of the documents. The remaining data is collected in a so-calledoverflow graph
that is not stored in the RDBS, but in a separate database for semistructured data. The creation of the
overflow graph may benefit from a prescriptive schema, but does not depend on it. If a document changes,
newly inserted data that does not conform to the relational schema is added to the overflow graph.

Queries against the original data in the documents are translated into separate queries to be evaluated
by the RDBS and the semistructured database, respectively.Regular path expressions are allowed, but the
translation into SQL expressions is non-trivial. Besides,the mediation between the two database systems
may cause performance issues. Although in principle any kind of semistructured data can be handled by
theSTORED scheme, it clearly targets documents with a rather regular structure.

7.4 Path Indexing

Above we raised the question whether path indexing techniques for native XML retrieval could be exploited
in a relational retrieval setting as well. Chapter 5 has highlighted two advantages of indexing entire tag
paths rather than only individual elements:
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1. Path indices allow to match simple query path expressionswith fewer joins.

2. Matching tag paths rather than singleton tags provides more selective search conditions, which sim-
plifies index look-ups and reduces the size of intermediate results to be joined.

A third plus is especially relevant to query planning and relevance ranking:

3. Path-specific information (e.g., the node type or statistics about the keyword distribution) need not
be stored redundantly for all elements with a given tag path,but only once in the path index.

These observations apply to native or hybrid retrieval systems just as well as to XML retrieval in RDBSs.
However, among the many relational storage schemes cited above, few preserve information about entire
tag paths or at least fragments thereof. The remainder of this section reviews two such schemes. Similar to
the native approaches presented before, they represent tagpaths either in atomic or compositional form.

7.4.1 Atomic Path Indexing withXRel

The XRel scheme by Yoshikawa et al. [2001] resemblesXPath Accelerator to some extent (see Sec-
tion 7.3.2), but extends the database schema in order to capture schema-level information, as follows.XRel
consists of three tables that index tag paths, elements and textual contents, respectively.4 Each distinct tag
path is represented as a string which is given a unique integer identifier calledpath ID. A path tablewith
two columns,pathexpandpathid, materializes the mapping from path strings to path IDs. Thepath ID is a
foreign key to the other two tables containing document nodes and their contents, respectively. Document
nodes are labelled using region encoding (see Section 3.3.3), a labelling scheme similar toPre/Post that
can efficiently decide theChild+ relation. Each document nodev is represented in the node table as the
quadruple consisting ofv’s start and end position (according to the region encoding)as well as the path ID
of v’s tag path and an integer indicating the position ofv among its siblings, if any. Similarly, the textual
contents of any elementv are represented as a tuple in the content table – recall that region encoding treats
every text value as a node in its own right – that consists of start and end positions, the path ID ofv and the
text value to be indexed.

Path queries without keyword constraints are processed in ajoin of the path and node tables, as follows:
relevant tag paths are looked up in the path table (using string matching, see below), and the selected path
IDs act as foreign keys to retrieve their occurrences in the node table. As explained in Chapter 5 for native
path indices, this means that matching a whole query path of lengthm (more precisely, retrieving matches
to its leaf node) requires just one join of the path and node tables, in contrast with them-fold selfjoin of the
node table needed with the node indexing schemes above. If the query specifies a keyword containment
constraint, the path table is joined with the content table instead. However, this way only the position of
the matching text value is retrieved, not the containing element itself (this would require another join with
the node table).

Tree queries are first divided into path expressions whose leaves are result nodes or branching nodes or
leaf nodes in the tree pattern. For instance, the XPath queryQ3 = /people//person[name]//edu is di-
vided into the query paths/people//person , /people//person/name and /people//person//edu .
Then the occurrences of these query paths are retrieved as just described, through multiple joins with the
node table. Matches to the entire tree pattern are filtered out during the join by extra predicates that decide
theChild+ relation for the individual occurrences of distinct query paths, using their region-encoded node
labels. In the case ofQ3, e.g., this might rule outname children of person nodes for which noedu
descendant could be found.

To understand the look-up of query path expressions in the path table, assume the table contains, among
others, the three distinct tag pathsp1 = /people/person/name , p2 = /people/person/profile/name
andp3 = /people/person/lastname as strings in thepathexpcolumn. A path query without tag wild-
cards andChild+ steps could be matched simply by an equality predicate on thepathexpcolumn in the
path table. For instance, a suitable predicate for the queryQ1 = /people/person/name in SQL syn-
tax would bepathexp= ‘/people/person/name’ , which would correctly selectp1 but notp2 andp3.

4The presentation of theXRel scheme here is slightly simplified in order to fit the XML data model from Section 2.1.
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Now consider another queryQ2 = /people/person//name that involves aChild+ step. A naı̈ve se-
lection predicate on the path table would bepathexplike ‘/people/person/%name’ , using SQL’s
wildcard % for matching any (possibly empty) sequence of characters ina string. However, this would
not only matchp1 andp2 but alsop3, which is wrong. This is because using% , one cannot distinguish
between tag names and their delimiters. Note thatpathexplike ‘/people/person%/name’ would be
incorrect too, selecting other tag paths such as, e.g.,/people/personnel/name . Finally, pathexplike
‘/people/person/%/name’ would correctly rule outp3, but fail to selectp1.

To handle queries likeQ2, Yoshikawa et al. replace each delimiter “/ ” in a tag path with the two-
character sequence “ #/ ”. This way the beginning and end of tags in a query path can be marked up inde-
pendently. For instance,Q2 is matched using the predicate#/people#/person#%/name . It is easy to ver-
ify that this matchesp1 = #/people#/person#/name andp2 = #/people#/person#/profile#/name ,
but excludesp3 = #/people#/person#/lastname , as desired. However, more complex path queries
such as/people/*/name or /people//*/name require regular expressions.5

The atomic indexing of tag paths as strings inXRel’s path table has a number of disadvantages. First,
string matching on a large path table can be slow when the selection predicate is a regular expression
or a suffix pattern beginning with the% wildcard. Second, the path table contains many duplicates of
path prefixes because every tag path is stored in its entirety, from root to leaf. However, query for-
malisms like XQuery, XPath or the one introduced in Section 2.2 specify path expressions in fragments
rather than as root-to-leaf patterns. For instance, the XPath queryQ3 above contains three path fragments
(namely,/people//person , name and edu ) from which theXRel processor must first restore the query
paths /people//person , /people//person/name and /people//person//edu to be looked up in
the path table. Third, matching tree queries likeQ3 with XRel sometimes produces many false hits on
the schema level that are only discarded during the join withthe node table. For instance, when look-
ing up the above query paths forQ3 in XRel’s path table, there is no way to select only those tag paths
which refer to the sameperson node: /people/faculty/person , /people/staff/person/name
and /people/students/person/edu are all valid matches to the three query paths, although theydo
not belong to the same schema hit. Needlessly retrieving andjoining their respective occurrences from
the node table sometimes slows down the query evaluation considerably (see the experiments in the next
chapter). For recursive document collections, this can even lead to false query results. A sample query
illustrating this issue and the corresponding SQL code for theXRel scheme are given in the next chapter.

7.4.2 Compositional Path Indexing withBLAS

TheBi-Labelling Based System (BLAS) by Chen et al. [2004] is so far the only relational storage scheme
for XML we are aware of that represents (suffixes of) tag pathsin a compositional manner. The name
of the approach alludes to the fact that there are two different kinds of labels,D-labels for elements and
P-labelsfor tag paths, which are used to match structural query constraints on the document and schema
levels, respectively. D-labels are simply integer intervals following region encoding, as with theXRel
scheme above. P-labels are generated on the fly during indexing and query evaluation for any tag path
suffix encountered in a document or query. A P-label is an integer interval denoting the set of all possible
tag paths which share a specific suffix. For instance, the P-label for the tag path suffix/person/name
represents all possible tag paths/. . ./person/name . In particular, each root-to-leaf tag pathp (a special
case of a path suffix) is assigned a P-label that is stored witheach occurrence ofp in the node table, similar
to the path ID used byXRel above.

The idea is to choose P-labels in such a way that given the P-label P of any tag path suffix in the
query, one can easily retrieve all elements with that tag path suffix by inspecting their P-labels in the
node table. To this end, the labelling ensures that for any two tag path suffixess ands′ with P-labelsPs

and Ps′ , respectively,Ps containsPs′ (as an interval) iffs is a suffix of s′. OtherwisePs and Ps′ are
disjoint. For instance, the P-label for the suffix/name contains the P-label for/person/name which
in turn contains the P-label for/people/person/name . Thus a query paths= //person/name can be
matched by selecting all tuples in the node table whose P-label is contained inPs. This would include, e.g.,
elements reached by/people/person/name , but not those below/people/person/profile/name

5Regular expressions are not part of the SQL-92 standard [SQL2], but included in SQL:1999 [SQL3].
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(whose P-label is disjoint withPs).
P-labels, D-labels and textual contents of elements are allstored together, i.e., there is no separate path

table as withXRel. Chen et al. suggest using a separate node table for all elements with the same tag name,
similar to theEdge scheme above. Each elementv is represented as a tuple consisting ofv’s D-label (i.e.,
its start and end positions in the documents), the P-label ofv’s tag path as well as the level ofv and its
textual content, if any. The P-labels are created on-the-flyfor all tag paths encountered during indexing,
based on schema statistics like the total number of distincttags and the height of the document tree. (In
this senseBLAS uses a schema-based storage scheme.)

Similarly, when a queryQ comes in, P-labels are created for all tag path suffixes inQ. The tag path
suffixes inQ are obtained by extracting all sequences of consecutive non-branchingChild steps from the
query path expressions. For instance, the tree queryQ3 = /people//person[name]//edu is cut into
four path suffixes, namely,/people , /person , /name and /edu . Both the “// ” symbol denoting a
Child+ step and XPath predicates indicating a branch act as breakpoints for dividing path expressions into
suffixes. These suffixes are looked up as P-labels in the node tables. The resulting four sets ofpeople ,
person , name and edu nodes are then combined through structural joins on their D-labels, in order to
filter out those quadruples which indeed form a subtree with the specified structure.

The example above illustrates that path suffixes withoutChild+ steps are generally less selective than
the original query paths (e.g., compare the four suffixes that BLAS extracts fromQ3 to the three rooted
query paths used byXRel above). To obtain more selective look-up predicates, Chen et al. propose two
optimizations. First, longer path suffixes can be created for children of a branching query node: inQ3,
e.g., we can use/person/name instead of/name because theperson and name nodes are connected
through aChild step. This might reduce the number ofname nodes participating in the structural joins.
However, the technique does not apply to theedu node inQ3, because of the descendant step. Thus
BLAS still tolerates even more false hits on the schema level thanXRel, despite its compositional path
representation. Since only pathsuffixesare matched in the first place, there is no way to select onlyedu

nodes below a specificperson node in the schema tree, or even below anyperson at all, let alone to
rule out combinations ofperson , name and edu nodes that do not belong to the same schema hit.

The second optimization makes use of schema information in aDTD (if available) tounfold (i.e.,
instantiate) path expressions like/people//person//edu in Q3 into a set of root-to-leaf paths without
Child+ steps and tag wildcards. This way few look-ups for unselective path suffixes in the node table are
replaced with many look-ups for very selective rooted tag paths, in a sort of query expansion. Note that
the idea is similar to the path matching thatXRel performs through string matching in the path table and
that native systems realize by traversing the schema tree. However, with prescriptive schema information
as specified by DTDs, the query expansion proposed by Chen et al. is likely to produce many tag paths
that do not occur in the documents. For recursive DTDs the unfolding does not even terminate unless a
maximum length for the resulting tag paths is fixed. Finally,the unfolding withBLAS seems to happen
outside the RDBS, and it is not explained how this could be best done in the relational model.

7.5 Summary and Discussion

Given that today’s relational database technology is efficient, scalable, mature and widely deployed, the
prospect of seamlessly integrating XML retrieval with RDBSs is particularly tempting. The literature
abounds with different ways to store and query XML data as tuples. While many approaches depend
on DTDs or other specifications of the document structure to choose a database schema, and some use
labelling schemes as decentralized structural summaries of tree relations between individual tuples, very
few relational storage schemes leverage the benefit of indexing schema information with a centralized
structural summary. Systems that only index singleton elements with their tags, but not paths (as with
theEdge scheme) must often join large node sets to find out that only few candidates are actually part of
the query result. Sophisticated join algorithms have been developed as a compensation (like theStaircase
Joinby Grust et al. [2003] forXPath Accelerator). But still experimental results such as the ones reported
by Chen et al. [2004] or those presented in the next chapter show that path indexing can speed up query
evaluation in RDBSs just as much as in a native or hybrid environment.

However, it makes a difference how exactly the schema information is represented. Most observations
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made in Chapter 5 for native path indexing also apply to relational systems. On the one hand, atomic path
indices likeXRel do prevent irrelevant elements from being retrieved and joined in certain cases, but their
string representation of tag paths is redundant, awkward tomatch and of limited use for branching path
expressions and recursive document collections. By separating document-level and schema-level infor-
mation into two distinct tables,XRel can match schema constraints without accessing the full document
data, but the resulting path information is often not precise enough to pick exactly the relevant elements
in the node table. On the other hand, the compositional path representation ofBLAS is quite compact, but
produces even more false positives on the schema level thanXRel and also requires query preprocessing
outside the RDBS (for creating P-labels and unfolding querypaths). Moreover,BLAS stores and compares
both schema-level and document-level information in node tables, which means larger index scans during
schema matching and more I/O needed for updates when the document structure changes.

The next chapter shows how to avoid these shortcomings to make relational XML retrieval benefit even
more from path indexing with a centralized structural summary. TheRelational CADG (RCADG) presented
below is based on a compositional path representation whichis simpler and more precise thanBLAS. It
builds on the interval labelling of schema nodes described for theICADG [Weigel 2003] in Section 6.3.2.
As a matter of fact, this approach is dual toBLAS in the following sense. In theICADG, the interval
label of a schema node represents all rooted tag paths with a common prefix. The interval of a longer
tag path is contained in the intervals of shorter ones with the same prefix. For instance, the interval for
/people/person contains the one for/people/person/name . By contrast, the P-labels used byBLAS
represent sets of tag path suffixes. For the purpose of analogy, they may be regarded as interval-labelled
nodes of a modified schema tree containing allinverse(i.e., leaf-to-root) tag paths or path suffixes in the
documents. The examples above illustrate how indexing pathprefixes rather than suffixes can reduce the
number and size of intermediate results to be joined. The next chapter explains how theRCADG takes
advantage of this observation.
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CHAPTER

EIGHT

TheRelational CADG (RCADG)

8.1 Overview

This chapter introduces theRelational CADG (RCADG), a new time- and space-efficient approach to XML
retrieval in relational database systems. The aim of this work is to bring together sophisticated XML
indexing techniques and the mature and highly optimized relational technology in order to get the best
from both worlds. TheRCADG builds on much of the work presented so far, most prominently: theBIRD
labelling scheme explained in Chapter 4, a decentralized structural summary with powerful decision and
reconstruction capabilities, and theCADG index presented in Chapter 6, a centralized structural summary
that combines the schema tree in main memory with a materalization of the content/structure join on disk.
The main contributions of theRCADG are (1) a relational storage scheme for theCADG and (2) query
planning, translation and evaluation algorithms that together

1. leverage the full schema matching precision of theCADG in an RDBS,

2. preserve its compositional path representation to rule out many false schema hits early,

3. exploit the power ofBIRD reconstruction to avoid needless disk I/O and joins of largeintermediate
results,

4. enable query planning and optimization based on path and keyword selectivity statistics and an ana-
lysis of reconstructible relations in the query, and

5. exploit standard relational techniques as much as possible.

The rest of this chapter discusses these issues in more detail. The next section explains the relational
storage scheme used by theRCADG and outlines the query evaluation process from an intuitivepoint of
view. Section 8.3 briefly reviews the child-balancedBIRD encoding introduced in Chapter 4, focusing on
how to realize decision and reconstruction in the RDBS. Based on these preliminaries, Section 8.4 describes
the nuts and bolts of XML retrieval with theRCADG, including query planning and rewriting as well as
the generation of SQL code for query matching on the schema and document levels. Section 8.5 reports
the results of comparing our implementations of theRCADG, XPath Accelerator andXRel schemes with
the originalCADG. Section 8.6 provides a quick wrap-up of theRCADG’s contributions compared to the
related work reviewed in the previous chapter. The last section mentions some remaining issues and open
questions.

8.2 TheRCADG Storage Scheme

This section describes a relational database scheme for storing theContent-Aware DataGuide (CADG) in
an RDBS. As described in Chapter 6, theCADG consists of two data structures, the schema tree and the
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Figure 8.1: TheRCADG path table for the schema tree in Figure 2.1c. on page 8.

element table. Since the latter is ready to be stored in an RDBS without further modification, only the
schema tree must be migrated to the relational data model. Topreserve the compositional representation of
tag paths in theCADG, the schema tree should not be stored as a list of path strings, as with theXRel scheme
(see Section 7.4.1). Moreover, schema-level and document-level information should be kept separate rather
than in one large table, as the one used by theBLAS scheme (see Section 7.4.2).

A straightforward relational representation of the schematreeS is the path table shown in Figure 8.1.
The idea is to “shred”Sinto tuples each representing a single schema node. To decide theChild andChild+

relations inSefficiently, each schema node is labelled according to thePre/Max encoding (see Chapter 3).
The result is similar to applying one of the node indexing schemes mentioned in Section 7.3 to the schema
tree (rather than the document tree as proposed there). Eachschema nodep in S is stored as a tuple

〈pid,parid,maxid, tag, type, level,weight, . . .〉

that consists of at least the seven fields listed in Table 8.1:

field description
pid the preorder rank of p in S (assuming an arbitrary sibling order)
parid the preorder rank of p’s parent node in S (null for the root of S)
maxid the greatest preorder rank of any node in the subtree of S rooted in p
tag the tag name of p in S (the last tag in the tag path corresponding to p)
type the node type of p in S
level the level of p in S
weight the BIRD weight of p (see Section 8.3 below)

Table 8.1: Mandatory fields in theRCADG path table for a given nodep in the schema treeS.

Further fields may be added to store tag-path specific information, e.g., statistics for query planning and
result ranking or keyword signatures for keyword-driven schema matching (see Section 5.4.3). Examples
for such optional fields are given in Table 8.2:

field description
csig the containment signature of p in the SCADG (see Section 6.3.1)
gsig the government signature of p in the SCADG (see Section 6.3.1)
elts the number of elements with the tag path p
keys the number of distinct keywords contained in elements with the tag path p

Table 8.2: Selected optional fields in theRCADG path table for a given nodep in the schema treeS.

For reasons of clarity, the descriptions in this chapter assume three minor simplifications of the actual
path table as it is implemented in ourRCADG-based XML database. First, we henceforth consider an
RCADG path table consisting only of the mandatory fields in Table 8.1, unless stated otherwise. Second,
the string values in thetag andtypecolumns of Figure 8.1 are given only for illustration purposes. In fact
this information is encoded numerically, using a unique mapping from tag names or node types to integer
values. Finally, the actual path table has an additional field containing update-robust foreign keys to the
element table, as explained for theICADG (see Section 6.3.2).
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For XML retrieval with theRCADG, the path table on disk replaces the schema tree in main mem-
ory, which is no longer needed. The element table is the same as for theCADG (see Section 6.2). The
RCADG-based retrieval system evaluates a given XML queryQ by (1) translatingQ into a sequence of
SQL statements involving joins of the path and element tables, (2) running these queries in the RDBS to
obtain the query result as a set of element tuples (matches),and (3) returning the answer in a suitable form
(e.g., by extracting the XML representation of the query matches from the original documents or gener-
ating it on the fly). In a first phase, schema matching takes place through anm-fold selfjoin of the path
table, wherem is the number of query nodes inQ. This produces a preliminary result table containing all
schema hits forQ (schema hits are introduced in Section 2.3). Schema-level matching takes advantage of
thePre/Max labels in the path table to decide the ancestorship of schemanodes. In the second phase the
schema hits are matched on the document level in repeated joins of the most recent intermediate result with
the element table. Successively partial matches to schema hits are either completed or discarded, until all
query constraints have been processed and the last result table contains the final query result. Document-
level matching benefits specifically fromBIRD reconstruction and decision. The following sections explain
all steps of this procedure in detail.

8.3 BIRD Revisited: Reconstruction and Decision in the RDBS

In Chapter 4 is has been shown how the reconstruction and decision capabilities of theBIRD labelling
scheme can accelerate the query evaluation.BIRD decides and reconstructs many tree relations in the
document tree using simple arithmetic computations on numeric element labels and tag path weights. To
take advantage ofBIRD for theRCADG, these computations must be performed inside the RDBS during
query matching on the document level (the second of the abovementioned retrieval phases). More precisely,
reconstruction and decision formulae are part of the joins of intermediate result tables with the element
table, in the form of either join predicates or projection clauses (theWHERE andFROM parts of a SQL query,
respectively) or both.

Figures 8.2 and 8.3 on the following page list rules to deducesuitable join predicates and projection
clauses for matching binary query constraints on the document level with child-balancedBIRD labels. In
the remainder of this chapter we refer to these rules asdocument matching rules, in contrast to several other
types of rule to be introduced later. In each rule, the upper part represents “input” or preconditions, i.e.,
constraints that are either given in the query or have been deduced through query rewriting (see below) or
by applying other rules. The lower part represents “output”or postconditions, i.e., deduced conditions on
BIRD labels and weights to be used in the joins, or further constraints to be processed. The join expressions
are given in a formal notation as for the relational algebra.Translations of sample expressions into SQL
can be found in the next section. Suffice it to say here that thereconstruction and decision formulae in
Figures 8.2 and 8.3 on the next page are all simple enough to beexpressed in plain SQL [SQL2] without
user-defined functions. They involve only comparison operators (<, <=, =), arithmetic operators (+, -, the
multiplication* and themodulooperator%) as well as Boolean operators (AND, OR).

Figure 8.2 on the following page summarizesBIRD’s decision capabilities in eleven rules of the above-
mentioned form. In each such rule with a binary constraintR(v0,v1) in the upper part, the lower part
specifies predicates for selecting elementsv1 in a join with the element table such thatR(v0,v1) is satisfied
for a given elementv0. Both v0 and theBIRD weight of its tag pathπ(v0) are assumed to be known. For
instance, consider the first rule DMDec

Child∗0
, which states that the nodes in the subtree rooted in a particular

elementv0 are exactly those elements whoseBIRD label is greater than or equal tov0’s label but smaller
thanv0’s label plus its weight. Applied to elementv0 = 24 in Figure 4.3a. on page 46, whose tag path
π(v0) = #3 has the weight 3 (see Figure 4.3b. on page 46), the rule DMDec

Child∗0
selects asv0’s descendants

(includingv0) all elementsv1 where 24≤ v1.eid< 24+3, i.e., the elements 24, 25 and 26 in Figure 4.3a.
This mirrors exactlyBIRD’s decision procedure forChild∗0 that is described in Chapter 4.

In the same way most other binary relations listed in Table 2.1 on page 9 can be decided (except
i-th-Following, NextEltji and their inverses, which are not supported byBIRD), using the corresponding
rules in Figure 8.2. Note that constraints of the formParentji(v0,v1) or Childj

i(v0,v1) are rewritten into
Child∗0(v0,v1) andParent∗0(v0,v1) earlier during the evaluation, after matching their proximity bounds on
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Child∗0(v0,v1)

v1.eid≥ v0.eid ∧ v1.eid< v0.eid+ π(v0).weight
(DMDec

Child∗0
)

Parent∗0(v0,v1)

v1.eid≤ v0.eid ∧ v1.eid> v0.eid−π(v1).weight
(DMDec

Parent∗0
)

NextSib∗1(v0,v1) ∃v2 : Parent(v0,v2)

v1.eid> v0.eid ∧ v1.eid< v2.eid+ π(v2).weight ∧ v1.eid modπ(v0).weight= 0
(DMDec

NextSib∗1
)

NextSibj
i(v0,v1)

NextSib∗1(v0,v1) ∧ v1.eid−v0.eid

π(v0).weight
≥ i ∧ v1.eid−v0.eid

π(v0).weight
≤ j

(DMDec
NextSibj

i
)

PrevSib∗1(v0,v1) ∃v2 : Parent(v0,v2)

v1.eid< v0.eid ∧ v1.eid> v2.eid ∧ v1.eid modπ(v0).weight= 0
(DMDec

PrevSib∗1
)

PrevSibji(v0,v1)

PrevSib∗1(v0,v1) ∧ v0.eid−v1.eid

π(v0).weight
≥ i ∧ v0.eid−v1.eid

π(v0).weight
≤ j

(DMDec
PrevSibji

)

Following(v0,v1)

v1.eid≥ v0.eid+ π(v0).weight
(DMDec

Following)
NextElt∗1(v0,v1)

v1.eid> v0.eid
(DMDec

NextElt∗1
)

Preceding(v0,v1)

v1.eid≤ v0.eid−π(v1).weight
(DMDec

Preceding)
PrevElt∗1(v0,v1)

v1.eid< v0.eid
(DMDec

PrevElt∗1
)

Self(v0,v1)

v1.eid= v0.eid
(DMDec

Self)

Figure 8.2:BIRD document matching rules for deciding binary tree relations(v0,v1,v2 ∈V).

Parent∗0(v0,v1)

v1.eid= v0.eid− (v0.eid modπ(v1).weight)
(DMRec

Parent∗0
)

PrevSibii(v0,v1) ∃v2 : Parent(v0,v2) ∧ v0.eid− i ·π(v0).weight> v2.eid
v1.eid= v0.eid− i ·π(v0).weight

(DMRec
PrevSibii

)

NextSibi
i(v0,v1) ∃v2 : Parent(v0,v2) ∧ v0.eid+ i ·π(v0).weight< v2.eid+ π(v2).weight

v1.eid= v0.eid+ i ·π(v0).weight
(DMRec

NextSibi
i
)

Self(v0,v1)

v1.eid= v0.eid
(DMRec

Self)

Figure 8.3:BIRD document matching rules for reconstructing binary tree relations (v0,v1,v2 ∈V, i ∈ IN).
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the schema level (see Section 8.4.2). Therefore no further rules for these relations are needed at this stage.
The four decision rules forNextSib and PrevSibin Figure 8.2 expect as input theBIRD label and

weight not only ofv0, but also of its parentv2. Similarly, the rule DMDec
Precedingcan only be applied when

given the weight of the elementsv1 to be selected. The evaluation procedure presented in the next section
makes sure that (1) during schema-level matching all required weights are extracted from the path table
and (2) during document-level matching only rules for constraintsR(v0,v1) are applied for whichv0 (and
possiblyv2) is known, either from previous joins with the element tableor through reconstruction (see the
next paragraph).

Figure 8.3 on the facing page lists the most important reconstruction rules for theBIRD scheme. For
any constraintR(v0,v1) in the upper part of a reconstruction rule, the singletonR-image ofv0 can be com-
puted from theBIRD label and weight ofv0 as specified in the lower part of that rule. Like in the decision
case, some reconstruction rules require as additional input the label and weight ofv0’s parentv2 or the
weight of the elementv1 to be reconstructed, which are retrieved earlier during theevaluation process. For
instance, to match a query constraintParent11, which is rewritten toParent∗0 after schema-level matching,
the rule DMRec

Parent∗0
can only be applied when bothv0 and the corresponding parent weightπ(v1).weightare

given. Forv0 = 24 in Figure 4.3a.on page 46, e.g., we know from schema-level matching thatv1’s tag path
π(v1) = #1 has the weight 9 (see Figure 4.3b. on page 46). Thus theBIRD label ofv1 is reconstructed as
v1.eid= 24− (24 mod 9) = 18 according to the rule DMRec

Parent∗0
. Note that apart from the trivial reconstruc-

tion of theSelf relation (rule DMRec
Self in Figure 8.3), only ancestors and preceding siblings at an arbitrary,

but fixed distancei can be reconstructed with theRCADG. Other reconstructible relations (see Table 3.1 on
page 20) are not considered here.

8.4 Query Evaluation with theRCADG

1 // evaluateQuery: RCADG query evaluation from scratch

2 // →Q: the query to be evaluated

3 procedureevaluateQuery(Q: query)

4 // schema-level matching

� 5 call rewriteSchemaLevel(Q) // see Section 8.4.1

�

6 call matchSchemaLevel(Q) // see Section 8.4.2

7 // document-level matching

� 8 call rewriteDocLevel(Q) // see Section 8.4.3

9 P := call createPlan(Qv,Qc) // see Section 8.4.4

10 for all stepss∈ P do
11 call matchDocLevel(Q, s) // see Section 8.4.5

�

12 end for

13 // projection to result nodes

14 call createResult(Q) // see Section 8.4.6

15 end procedure

Algorithm 8.1:RCADG query evaluation from scratch. The input is a queryQ = 〈Qv,Qc,Qr〉 to be evalu-
ated, whereQv is the set of query nodes,Qc the set of query edges andQr the set of result nodes inQ.

The top-level evaluation procedure for theRCADG is given in Algorithm 8.1. As mentioned before,
query evaluation is divided into two phases. In phase 1, the query constraints are processed on the schema
level (lines 5 to 6), typically at a negligible join cost since the path table is rather small. Initially some
rewriting attempts to minimize the query and prepares it forevaluation with theRCADG (line 5). The
remaining query constraints are then translated to a singleSQL statement expressing a selfjoin of the path
table (line 6). This produces a first intermediate result on the schema level consisting of tuples of schema
nodes that together form a matching to the entire query graph(theschema hits, as defined in Section 2.3).
The schema hits are stored as rows in a temporary table with columns for the labels (pid) and weights
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a. intermediate resultQ s0 after phase 1

b. intermediate resultQ s1 after steps1 in phase 2

c. intermediate resultQ s2 after steps2 in phase 2

d. intermediate resultQ s3 after steps3 in phase 2

e. final resultans(Q) after phase 2

Figure 8.4:RCADG result tables for the queryQ in Figure 2.2b.on page 10. The SQL code for computing
the results comprises five statements, given in Figures 8.6,8.12 and 8.17 (see pages 105, 113 and 117,
respectively). Four intermediate result tables are created, one in phase 1 (a.) and three in phase 2 (b.–d.).
These tables may be stored persistently to build up a query result cache (see Chapter 10). The final answer
to Q (e.) is extracted from the result table ind. It is visualized as subtreea2 in Figure 2.1e.on page 8.

(weight) of all schema nodes in a tuple. Such a result table is shown inFigure 8.4a. for the sample queryQ
in Figure 2.2b. on page 10.

In the second evaluation phase (lines 8 to 12 in Algorithm 8.1), further rewriting removes query con-
straints that have been fully catered for on the schema level(line 8). Then the query is matched on the
document level, based on the intermediate schema-level result from phase 1. Step by step occurrences of
tag paths in the schema hits are retrieved from the element table, checked against the query constraints,
and possibly added to the next intermediate result table (see Figures 8.4b.–d.). Where applicable, recon-
struction is used to avoid expensive joins with the element table. First a query plan is created (line 9 in
Algorithm 8.1) that specifies which binary constraints shall be reconstructed and in which order the oth-
ers shall be decided. This also determines which occurrences are obtained through joins with the element
table, and in which order. Each step in the constraint-solving plan comprises a number of joins of the
most recent result table with the element table, together with reconstructions and decisions, and produces
another table with the updated intermediate results. A finalprojection of the last intermediate table onto all
distinct matches to the result nodes in the query (line 14) produces the final answer (see Figure 8.4e.). The
rest of this section explains all evaluation stages in detail.

8.4.1 Schema-Level Query Rewriting

Before the actual matching takes place, the query is preprocessed in order to eliminate unneeded query
nodes and redundant constraints. Note that the underlying query rewriting is designed for theRCADG and
BIRD and by no means exhaustive. However, the rules below are generic and hence applicable to other
retrieval scenarios, too. We only sketch a couple of basic rewriting rules here. A thorough analysis of
minimization techniques for XML queries is beyond the scopeof this thesis.1

1XML query rewriting and optimization in different application scenarios has been studied, among others, by
McHugh and Widom [1997], Amer-Yahia et al. [2001], Zhang et al. [2001; 2002], Ramanan [2002], Olteanu et al. [2002],
Pilar [2002], Grust et al. [2003], Flesca and Furfaro [2003]and Jagadish et al. [2004].
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It has already been mentioned that query rewriting is triggered twice during the evaluation procedure,
namely, once before schema-level matching (phase 1) and once again before document-level matching
(phase 2). The different rules that rea applicable in eitherphase are described here and in Section 8.4.3,
respectively. It is not hard to prove that all these rules preserve the query semantics. Note that during
the rewriting, any binary query constraintR j

i(q,q′) and its inverse(R−1) j
i(q
′,q) are treated as interchange-

able. In the sequel, letRProx = {Parent,Child,NextSib,PrevSib,NextElt,PrevElt} be the set of binary
proximity relations (see Section 2.1). The following queryrewriting rules are used by the procedure
rewriteSchemaLevelat the beginning of retrieval phase 1 (see Algorithm 8.1 on page 101):

Adding query edges. The source and target node of anyPrevSibor NextSibedge (with or without prox-
imity bounds) are linked to the same parent node in the query graph. If exactly one of the two sibling nodes
has an outboundParent11 edge (or inboundChild1

1 edge), then anotherParent11 edge is added that links the
other sibling to the same parent. Otherwise, if both siblings are connected to different nodes viaParent11
(or Child1

1) edges, then these two nodes are linked by aSelf constraint. If neither sibling is involved in a
parent/child constraint, twoParent11 edges to a single new parent node are created.

For instance, consider the query in Figure 8.5a. on the following page that contains two binary query
constraintsNextSib(q6,q5) and Parent(q5,q4), among others. Since every match toq6 is necessarily a
sibling of a match toq5 and therefore has the same parent node, we can safely add a newconstraint
Parent(q6,q4) (see Figure 8.5b.). Without theParent(q5,q4) edge in the original query ina., a new query
nodeq7 would be created with two edgesParent(q5,q7) andParent(q6,q7). Conversely, ifq6 were linked
to an exiting query nodeq7 by aParentedge, then a new edgeSelf(q7,q4) would be added instead.

The purpose of this treatment of sibling nodes is twofold. First, it allows to infer further selection
predicates from the newly addedSelf edges. Moreover, making implicit parent/child relations explicit
through additionalParentedges allows to take these relations into account during query planning (see
Section 8.4.4). In particular, the query planner might opt for matching the explicitParentconstraint at a
certain point during phase 2 in order to apply one of theBIRD document matching rules for deciding or
reconstructing the sibling relation afterwards. Recall from the previous section that these rules require the
respective parent nodes to be known (see rules DMDec

PrevSib∗1
, DMDec

PrevSibji
, DMDec

NextSib∗1
, DMDec

NextSibj
i
in Figure 8.2

and rules DMRec
PrevSibii

, DMRec
NextSibi

i
in Figure 8.3 on page 100).

Merging query nodes. All (new or existing) binary query constraints are analyzedto mergequery nodes
which must have the same set of matches. For instance, all neighbours reached from a given query node by
Parentii edges (i ∈ IN) are merged. The same applies to all other functional query constraints, i.e.,NextSibi

i ,
NextEltii , PrevSibii , PrevEltii , andSelf. The unary constraints involving two nodes to be merged mustbe
compared in order to reconcile their tag names, node types, levels and keywords. If this is impossible
(e.g., when a query node representing only elements and another query node representing only attributes
are linked via aSelf edge), the query is rejected as unsatisfiable.

proximity first second result

lower R···i (q0,q1) R···i ′ (q0,q1) R···max{i, i ′}(q0,q1)

upper
R j
··· (q0,q1) R j ′

··· (q0,q1) Rmin{j, j ′}
··· (q0,q1)

R j
··· (q0,q1) R∗··· (q0,q1) R j

··· (q0,q1)
R∗··· (q0,q1) R∗··· (q0,q1) R∗··· (q0,q1)

Table 8.3: Adjustment of proximity bounds when merging of overlapping binary query constraints (i, i ′≥0:
lower bounds;j, j ′ ≥ 0: upper bounds;∗: unspecified upper bound). Two query edges of typeR∈ RProx

from q0 to q1 (first, second) are replaced with a single query edge of typeR from q0 to q1 (result).

Merging overlapping query edges. Each pair of edges of typeR ∈ RProx that overlap, i.e., share the
same source and target node, is replaced with a single edge oftype R. The upper and lower proximity
bounds of this new edge are determined as specified in Table 8.3. For instance, when two edgesParent∗i ,
Parent∗i ′ with different lower proximity boundsi, i ′ connect the same pair of query nodes, the resulting
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a. original query b. rewriting in phase 1 c. rewriting in phase 2

Figure 8.5:RCADG query rewriting.a.A sample query against theXMarkbenchmark collection [XMark].
Result nodes are shaded.b. The query ina. after the first rewriting for matching on the schema level
(phase 1). c. The query ina. after the second rewriting for matching on the document level (phase 2).

merged edge inherits the stricter condition (i.e., the greater lower bound), as specified in the first row in
Table 8.3. Note that this rule applies regardless of the upper bounds of the two edges (symbolized by the
ellipsis “. . . ”), which are covered by one of the other three rules.

Collapsing transitive query edges. Unselective query nodes cause many tuples in the element table to
be selected and joined, and should therefore be eliminated whenever possible. In particular, queries may
specify unselective nodes which are neither part of the answer nor needed for path joining. To eliminate
such useless parts of the query, we remove all intermediate nodes between two edges of typeR ∈ RProx

in the same direction from the query and replace the two edgeswith a single direct connection of typeR,
unless the intermediate node satisfies any of the following conditions: (1) it has unary constraints to be
matched; (2) it is also reached by other than the two edges in question; or (3) it is a result node. In all
remaining cases the node contributes neither selection predicates nor join predicates nor projection clauses
to the SQL queries to be created.

For instance, consider the sample query in Figure 8.5a.. The query nodeq2 has two inbound edges,
Child(q1,q2) andParent∗1(q3,q2). TheChild edge is equivalent to the inverse constraintParent(q2,q1), as
mentioned above. Thusq2 is an intermediate node between toParentedges in the same direction. However,
it cannot be removed because of its tag constraint, which is essential to the query semantics. Without the
tag constraint,q2 would be removed and the two query edges toq1 andq3 would be replaced by a single
edge linkingq3 to q1 directly. Table 8.4 summarizes the rules forcollapsingtwo edges in this way, i.e.,
replacing them with a single transitive one that links the source of the inbound edge directly to the target
of the outbound edge. As shown in the table, lower and upper proximity bounds add up, if specified
(otherwise “don’t care” symbols prevail). Again the ellipsis “. . . ” is a placeholder for ignored bounds to
which appropriate rules in Table 8.4 apply in turn.

proximity inbound outbound result

lower R···i (q0,q1) R···i ′ (q1,q2) R···i+i ′ (q0,q2)

upper

R j
··· (q0,q1) R j ′

··· (q1,q2) Rj+j ′
··· (q0,q2)

R j
··· (q0,q1) R∗··· (q1,q2)

R∗··· (q0,q2)R∗··· (q0,q1) R j ′
··· (q1,q2)

R∗··· (q0,q1) R∗··· (q1,q2)

Table 8.4: Adjustment of proximity bounds when collapsing transitive binary query constraints (i, i ′ ≥ 0:
lower bounds;j, j ′ ≥ 0: upper bounds;∗: unspecified upper bound). Two query edges of typeR∈ RProx

from q0 to q1 (inbound) and fromq1 to q2 (outbound) are replaced with a single query edge of typeR
from q0 to q2 (result).
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CREATE

TABLE Q_s0 AS -- create new result table

SELECT

createSchemaHitID() AS sid, -- create fresh schema hit ID

PT1.pid AS p1, PT2.pid AS p2, -- add schema node labels

PT3.pid AS p3, PT4.pid AS p4,
PT1.weight AS w1, PT2.weight AS w2, -- add schema node weights

PT3.weight AS w3, PT4.weight AS w4
FROM

PathTable PT1, PathTable PT2, PathTable PT3, PathTable PT4 -- selfjoin of path table

WHERE

PT1.tag = ‘person’ AND PT2.tag = ‘name’ AND -- match tag constraints

PT3.tag = ‘edu’ AND PT4.tag = ‘sex’ AND

PT1.type = ‘Element’ AND PT2.type = ‘Element’ AND -- match node type constraints

PT3.type = ‘Element’ AND PT4.type = ‘Element’ AND

PT2.parid = PT1.pid AND -- decide Child(q1,q2)
PT3.pid > PT1.pid AND PT3.pid <= PT1.maxid AND -- decide Child∗1(q1,q3)
PT1.pid < PT4.pid AND PT1.maxid >= PT4.pid -- decide Parent∗1(q4,q1)

Figure 8.6: SQL code for evaluating the queryQ in Figure 2.2b.on page 10 on the schema level (phase 1).
A selfjoin of the path table produces the first intermediate result table containing a single schema hit (see
Figure 8.4a. on page 102). The table has fields for a schema-hit identifier (sid, created on the fly by the
functioncreateSchemaHitID()) as well as for the schema node labels (p) andBIRD weights (w) of all nodes
in the schema hit. Each pair of columnspi andwi corresponds to the query nodeqi in Q.

8.4.2 Schema-Level Matching

After the initial rewriting, allS-constraints in the query are matched on the schema level in an m-fold
selfjoin of the path table, wherem is the number of nodes in the rewritten query. The outcome of this join
is a first intermediate result table containing all schema hits for the query, which will later be joined with
the element table (see Section 8.4.5). Figure 8.4a. on page 102 shows the schema-matching result for the
queryQ in Figure 2.2b. on page 10. The sample query has only one schema hit,χQ, which is shown as a
tree in Figure 2.1e.on page 8. This schema hit occupies one row in the result table, with a unique identifier
created on the fly (columnsid in Figure 8.4a.). The remaining fields are the labels and weights of all nodes
in the schema hit (columnsp andw in Figure 8.4a., which correspond to thepid andweightfields from
the path table in Figure 8.1 on page 98). For query planning, statistical information about the schema node
may be taken from the path table, too (omitted in Figure 8.4a.).

Generating SQL code. The procedurematchSchemaLevelcalled in line 6 of Algorithm 8.1 on page 101
is responsible for generating and executing the SQL code that creates the first result table during phase 1.
The sample code corresponding to the table in Figure 8.4a. is given in Figure 8.6. TheCREATE, SELECT
andFROM clauses are easily derived from the given queryQ to be evaluated, as follows. The result table is
calledQ s0 (denoting step 0 of the evaluation ofQ). SinceQ has four nodes (see Figure 2.2b.on page 10),
four instances of the path table (calledPathTablehere) are joined, and the result is projected onto the path
labels and weights as described above. The call tocreateSchemaHitID() in theSELECT part is a placeholder
for generating fresh identifiers for rows in the result table, which are needed when reusing cached query
results (see Chapter 10). It can be realized using, e.g., a system-specific autocounter function.

To generate theWHERE part of the statement in Figure 8.6, one must (1) choose thoseconstraints inQ
that shall be matched on the schema level and (2) translate these constraints to suitable join conditions.
These two tasks are guided byschema adaptation rulesandschema matching rules, respectively.

Adapting query constraints to the schema level. The schema adaptation rules for theRCADG are listed
in Figure 8.7 (for unary constraints) and Figure 8.8 on the following page (for binary constraints). Rule SA0
in Figure 8.7 states that the tag, root, level and type constraints on any query node apply directly to the
schema nodes that match this query node (because these areS-constraints, as defined on page 11). By
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R(q0) R∈ R1\ {Containsk,Governsk}
R(π(v0))

(SA0)
R(q0) R∈ {Containsk,Governsk}

R′(π(v0))
(SA1)

Figure 8.7:RCADG schema adaptation rules for unary query constraints (q0,q1 ∈Qv; v0,v1 ∈V; vl denotes
a document node matchingql).

R(q0,q1) R∈ {Parent,Child,Self}
R′(π(v0),π(v1))

(SA2)
R(q0,q1) R∈ {NextSib,PrevSib,Sibling}

Sibling′(π(v0),π(v1)) ∧ ¬Root(π(v1))
(SA3)

R(q0,q1) R∈ {Following,Preceding,NextElt}
¬Root(π(v1))

(SA4)

Figure 8.8:RCADG schema adaptation rules for binary query constraints (q0,q1 ∈Qv; v0,v1 ∈V; vl de-
notes a document node matchingql). Proximity bounds are preserved.

Tagt0(p) · · · Tagtm(p) t0, . . . ,tm∈ T

p.tag= t0 ∨ ·· ·∨p.tag= tm
(SMTag)

R(p) R∈ T

p.type= R
(SMType)

Levelii(p)

p.level= i
(SM

Levelii
)

Levelji(p)

p.level≥ i ∧ p.level≤ j
(SM

Levelij
)

Root(p)

Level00(p)
(SMRoot)

Contains′k0
(p) · · · Contains′km

(p) k0, . . . ,km∈ K

−(σ(k0) θ · · ·θ σ(km)) ⊔ p.csig=⊤
(SMContains′k

)

Governs′k0
(p) · · · Governs′k0

(p) k0, . . . ,km∈ K

−(σ(k0) θ · · ·θ σ(km)) ⊔ p.gsig=⊤
(SMGoverns′k

)

Figure 8.9:RCADG schema matching rules for unary query constraints (p∈ P; i < j ∈ IN). In the last two
rules,σ is the signature creation function;⊤ denotes a keyword signature with all bits set;⊓,⊔,− are
bit string operators for bitwise conjunction, disjunctionand inversion, respectively; andθ = ⊔ or θ = ⊓
depending on whether the keyword constraints onp are marked as conjunctive or disjunctive, respectively.

Child′(p0,p1)

p1.parid = p0.pid
(SMChild′)

Child′ ∗0(p0,p1)

p1.pid≥ p0.pid ∧ p1.pid≤ p0.maxid
(SMChild′ ∗0

)

Child′ ii(p0,p1)

Child′ ∗0(p0,p1) ∧
p1.level= p0.level+ i

(SM
Child′ ii

)
Child′ ji(p0,p1)

Child′ ∗0(p0,p1) ∧
p1.level≥ p0.level+ i ∧ p1.level≤ p0.level+ j

(SM
Child′ ji

)

Sibling′(p0,p1)

p1.parid = p0.parid
(SMSibling′)

Self′(p0,p1)

p1.pid = p0.pid
(SMSelf′)

Figure 8.10:RCADG schema matching rules for binary query constraints (p0,p1 ∈ P; i < j ∈ IN). The rules
SMParent′ , SMParent′ ∗0

, SM
Parent′ ii

and SM
Parent′ ji

are omitted for simplicity. They are symmetric to the rules

SMChild′ , SMChild′ ∗0
, SM

Child′ ii
and SM

Child′ ji
, respectively. Note how SMChild′ ∗0

exploits thePre/Max labels

of schema nodes. For a lower proximity of 1, replacep1.pid≥ p0.pid with p1.pid > p0.pid (SMChild′ ∗1
).
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contrast, keyword constraints can only by matched approximately on the schema level (rule SA1), and only
if the path table contains keyword signatures (thecsigandgsigfields mentioned in Section 8.2). Similarly,
Parent, Child andSelf constraints in the query translate toParent′, Child′ andSelf′ constraints on schema
nodes, according to rule SA2 in Figure 8.8. Rule SA3 specifies that the only the unordered sibling relation
can be matched in the schema tree and that the root node does not have siblings. The other binary tree
relations cannot be matched on the schema level at all, but atleast we can infer fromFollowing, Preceding
andNextElt constraints in the query that the schema root cannot match their target node (rule SA4). This
is because its only occurrence, the document root, is the first node in document order (and hence not in the
Following- or NextElt-image of any other element) as well as the ancestor of all other elements (and hence
not in theirPreceding-image).

Matching query constraints on the schema level. The schema matching rules in Figures 8.9 and 8.10 on
the preceding page determine how to translate unary and binary constraints on schema nodes (as produced
by the schema adaptation rules) to join conditions on the path table. The first two rules in Figure 8.9
simply match tag and type constraints against thetag andtypecolumns in the path table. Likewise, level
constraints with fixed proximity bounds translate to an equality check on thelevel column, while level
ranges translate to a range check (rules SM

Levelii
and SM

Levelij
, respectively). Rule SMRoot is justified by

the fact that the root is the only node at level 0. Keyword constraints are handled by rules SMContains′k
and SMGoverns′k

, if applicable, which respectively check containment and government signatures in the path

table. The bit string manipulation in the lower parts of bothrules reflects the way keyword signatures
are compared (see Section 5.4.3).2 Translating these conditions involves the SQL operators for bitwise
conjunction (“&”), disjunction (“|”) and inversion (“~”). Thus the keyword-driven schema matching with
keyword signatures, as described in Section 6.3.1 for theSCADG, can be mimicked in the path table of the
RCADG.

Finally, the rules in Figure 8.10 translate binary constraints on schema nodes that result from the schema
adaptation rules in Figure 8.8. The parent/child relation requires a mere equality comparison on thepid
andparid fields of the schema nodes (rule SMChild′ ). The SMChild′ ∗0

rule exploits thePre/Max labels in
the pid andmaxidcolumns of the path table to decide ancestorship between twoschema nodes, like the
ICADG described in Section 6.3.2. The proximity variants SM

Child′ ii
and SM

Child′ ji
additionally check the

level difference of the two schema nodes. Rule SMSibling′ states that two schema nodes are siblings if they
have the same parent inS. TheSelf′ relation on schema nodes is checked through a simple comparison of
their unique labels in thepid column (rule SMSelf′ ).

8.4.3 Document-Level Query Rewriting

As shown in Algorithm 8.1 on page 101, the second retrieval phase begins with another round of query
rewriting. This time the goal is to eliminate parts of the query that contribute onlyS-constraints, which
are not matched on the document level. The following query rewriting rules are used by the procedure
rewriteDocLevelcalled in line 8 of Algorithm 8.1:

Removing query nodes. In phase 2, after allS-constraints have been fully processed on the schema level,
some query nodes are no longer needed. As in phase 1, this applies to nodes that contribute neither selection
predicates nor join predicates nor projection clauses to the SQL queries to be created for document-level
matching. In particular, we remove every query node which satisfies all of the following conditions: (1) it
is not a result node; (2) it has no keyword constraint; and (3)it is connected to the rest of the query graph
by a singleSelf or inboundParentor outboundChild edge (with any proximity bounds, if applicable).

It is easy to verify that this preserves all information which is needed the match the query on the
document level. For instance, consider the queryQ′ in Figure 2.2a.on page 10. Assuming that the nodeq′4
is not a result node, it can be safely ignored during document-level matching because it contributes only
tag (and perhaps level) constraints, which have already been processed on the schema level (see the next

2Earlier work on theSCADG [Weigel et al. 2004a] explains the choice of the bit string operatorθ for keyword conjunctions and
disjunctions in Figure 8.9 on the facing page.
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section). As a matter of fact, in the schema hits retrieved during phase 1 all tag paths matchingq′3 are of
the form //person//profile/sex . Therefore there is no need to matchq′4 on the document level. Of
course, ifq′4 were reached by, say, aNextSibor NextEltedge rather than aParentedge, the rule would not
apply since sibling constraints are not fully matched on theschema level.

Collapsing transitive query edges. A similar argument concerns intermediate nodes in a chain oftwo
transitiveParentor Child edges in the query. The two edges can be collapsed and the intermediate node
removed unless it is a result node or has keyword constraints. This collapsing rule for phase 2 differs in
two respects from the one described in Section 8.4.1 for phase 1: on the one hand, it applies only toParent
andChild edges; on the other hand, it covers even intermediate nodes with tag, type or level constraints
because forParentandChild these have been fully catered for on the schema level.

For instance, consider the query shown in Figure 8.5a. on page 104 again. In phase 1, the two edges
Parent∗1(q3,q2) andChild(q1,q2) (which is equivalent toParent(q2,q1)) could not be collapsed (see Fig-
ure 8.5b. on page 104) because the intermediate nodeq2 has a tag constraint. In phase 2, however,
the tag constraint onq2 has become dispensable since all matches toq3 have a tag path of the form
//person/watches//open auction anyway. Henceq2 is removed from the query and the two adja-
cent edges are replaced with a single edgeParent∗2(q3,q1) (see Figure 8.5c.). Note the lower proximity
bound 2 resulting from the adjustment rules in Table 8.4 on page 104.

8.4.4 Query Planning

As mentioned before, the document-level matching is performed stepwise according to a query plan cre-
ated immediately after the second query rewriting. The query plan determines in which order the query
nodes are matched, either through joins with the element table or through recontruction of binary query
constraints. The planning goals are (1) to avoid as many joins with the element table as possible by ex-
ploiting the full power ofBIRD reconstruction, and (2) to minimize the number of tuples in intermediate
results by probing the element table with the most selectiveconstraints first (e.g., rare query keywords).
Obviously conflicts may arise between these two goals (see below). To simplify the understanding of the
main idea, this section describes an algorithm that produces a single query plan for a given query, based on
and a naı̈ve but effective optimization strategy. The next subsection explains how exactly to realize joins,
reconstruction and decision in the RDBS. For now we are only concerned with methods to arrange these
steps for efficiently evaluating a given query.

Query plans. A query plan Pis a sequence ofevaluation steps. Each evaluation steps is a triples=
〈Joins,Recs,Decs〉 whereJoins is a set of query nodes to be matched in steps through joins with the
element table, andRecs andDecs are sets of binary constraints to be reconstructed and decided in steps,
respectively. Figure 8.11 on the next page depicts two sample query plans involving joins, reconstruction
and decision. As illustrated in Figure 8.11a., the planPQ in b. matches the queryQ from Figure 2.2b. on
page 10 in three steps. In the first step,sQ

1 , Join1 = {q4}means that matches to query nodeq4 are retrieved
by joining the schema-matching result from phase 1 (Figure 8.4a. on page 102) with the element table
(Figure 6.1 on page 82). Given theBIRD weights in the intermediate result, the ancestors of these elements
that matchq1 can be reconstructed on the fly, without the need for another element-table join. This is
indicated by the red edge in Figure 8.11a., and specified asRec1 = {Parent∗1(q4,q1)} in Figure 8.11b.
By contrast,Dec1 = {} since the twoChild constraints inQ cannot be reconstructed withBIRD. The
intermediate result table produced by stepsQ

1 is shown in Figure 8.4b. on page 102.

In the next step,sQ
2 , this table is joined with the element table to obtain the matches toq2 (Join2 = {q2}).

Now theChild(q1,q2) edge inQ can be decided (Dec2 = {Child(q1,q2)}), which yields the intermediate
result in Figure 8.4c. on page 102. Similarly, stepsQ

3 joins q3 and decidesChild∗1(q1,q3). This produces
the result table in Figure 8.4d. which contains all matchings toQ (since all query constraints have been
matched in the three evaluation steps). The query planPQ thus specifies a way to answerQ using three
look-ups in the element table, compared to four look-ups needed without structural summaries (e.g., see
Sections 7.3.1 and 7.3.2). The second query in Figure 8.11c. illustrates a case where the benefit of the
RCADG is even greater. As shown in the query plan in Figure 8.11d., this five-node query can be matched

108 Felix Weigel



CHAPTER 8. THERELATIONAL CADG (RCADG)

a. the queryQ from
Figure 2.2b. on page 10

plan PQ = 〈sQ
1 , sQ

2 , sQ
3 〉

stepsQ
1 = 〈Join1, Rec1, Dec1〉

Join1 = {q4 }
Rec1 = {Parent∗1(q4,q1)}
Dec1 = {}

stepsQ
2 = 〈Join2, Rec2, Dec2〉

Join2 = {q2 }
Rec2 = {}
Dec2 = {Child(q1,q2)}

stepsQ
3 = 〈Join3, Rec3, Dec3〉

Join3 = {q3 }
Rec3 = {}
Dec3 = {Child∗1(q1,q3)}

b. plan for the queryQ in a.

c. the query from Figure 8.5c. on page 104

plan P = 〈s1, s2〉

steps1 = 〈Join1, Rec1, Dec1〉

Join1 = {q5 }
Rec1 = {

Parent(q5,q4),
Parent∗1(q4,q1),
PrevSib(q5,q6)
}

Dec1 = {Parent(q6,q4)}

steps2 = 〈Join2, Rec2, Dec2〉

Join2 = {q3 }
Rec2 = {}
Dec2 = {Parent∗2(q3,q1)}

d. plan for the query inc.

Figure 8.11:RCADG query plans for the queries in Figure 2.2b. on page 10 (a.–b.) and Figure 8.5c. on
page 104 (c.–d.). In a. andc., blue colour indicates query nodes matched through joins with the element
table, red colour stands for nodes and edges matched throughreconstruction, and green colour highlights
query edges matched through decision.

in two steps with only two look-ups in the element table. Compared to the schema-less approaches men-
tioned above,BIRD reconstruction saves three index look-ups and possibly much I/O in this example. The
positive effect of such query planning on the runtime performance in also reflected in the experimental
results (see Section 8.5).

Planning algorithm. The two query plans in Figure 8.11 are produced by the procedurecreatePlanthat
is called in line 9 of Algorithm 8.1 on page 101. The pseudocode forcreatePlanis given in Algorithm 8.2
on the following page. The procedure accepts as input a setMv of query nodes to be matched and another
setMc of query edges between these nodes. When evaluating from scratch,createPlanis called for all
query nodes and edges in a given queryQ, i.e., Mv = Qv andMc = Qc.3 First an empty query planP is
created (line 7). The setKv initialized in line 9 keeps track of all query nodes that are matched during the
execution of the plan, either by element-table joins or by reconstruction.

The outermostfor loop (lines 12–48) ofcreatePlanexamines each of the given query nodes inMv to
determine which ones shall be matched through a join with theelement table and which ones can then be
reconstructed on the fly. For each nodeq∈Mv to be joined, a new evaluation steps is added toP andJoins

is initialized withq (line 17). Then thefor loop in lines 20–36 examines nodesq′ and edgesc in a breadth-
first traversal of the subgraph ofQ that is reachable fromq, using a queueM′v. Inbound edgesR(q′,q) may
be replaced with their equivalent outbound inverse(R−1)(q,q′), as during query rewriting. Edges that are

3Different parameters may be given tocreatePlanwhen a query cache is used, see Chapter 10.
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1 // createPlan: RCADG query planning

2 // →Mv: the set of query nodes to be matched

3 // →Mc: the set of query edges to be matched

4 // ← the query plan to be devised

5 procedurecreatePlan(Mv, Mc)

6 // create an empty query plan

7 P := a new empty query plan

8 // remember “known” nodes that have been matched meanwhile (Kv⊂Mv)

9 Kv := /0

10 // for all nodes in Mv, reconstruct as many edges in Mc as possible

11 // start with nodes that are selective and support much reconstruction

12 for all q∈Mv in a suitable orderdo

13 // join q in a new step s unless it is already known

14 if q∈ Kv then next in loop end if
15 Kv := Kv∪{q}
16 s := a new empty evaluation step

→ 17 Joins := {q}
18 P := P∪{s}

19 // starting from q, follow all reconstructible edges in Mc

� 20 for M′v := {q} while M′v 6= /0 do
21 q′ := call removeFirst(M′v)
22 for all edgesc leavingq′ do
23 if c 6∈Mc then next in loop end if
24 qt := the target node ofc
25 if qt was reconstructed fromq then
26 next in loop
27 end if
28 if qt ∈ Kv or qt 6∈Mv then

→ 29 Decs := Decs∪{c}
30 else ifc is reconstructiblethen

→ 31 Recs := Recs∪{c}
32 M′v := M′v∪{qt}

33 Kv := Kv∪{qt}

34 end if
35 end for

�

36 end for

37 // use extra steps to match keywords of nodes reconstructed in step s

� 38 if Recs 6= /0 then
39 for all c∈Recs do
40 qt := the target node ofc
41 if qt has keyword constraintsthen
42 s := a new empty evaluation step
43 Joins := Joins∪{qt}

44 P := P∪{s}
45 end if
46 end for

�

47 end if

48 end for

49 // return the query plan

50 return P

51 end procedure

Algorithm 8.2: Query planning with theRCADG. The input consists of two setsMv,Mc of nodes and edges
in a query to be matched. The output is a suitable query planP for evaluating the given query constraints.
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not in the given setMc of edges to be matched are ignored (line 23; this does not happen when evaluatingQ
from scratch). Edges to nodes that have been matched before are decided (line 29) since in this case the
current intermediate result contains already pairs of matches to both endpoints of the edge. Edges to yet
unmatched nodes inMv that can be reconstructed are added toRecs (line 31). Each target nodeqt of such
an edge is appended to the queueM′v, so that in the end all chains of reconstructible edges fromq to nodes
in Mv are reconstructed in the current steps. The check in line 25 makes sure that each edge is matched
only once. Non-reconstructible edges to nodes inMv are ignored at this stage. Note, however, that they will
be either decided or reconstructed later, when their targetnode is visited as nodeq in a subsequent iteration
of the outermostfor loop. The time and space needed for query planning withcreatePlanis linear in the
size of the given setMc of query edges.

For instance, reconsider the query shown in Figure 8.11c. on page 109. In the first iteration of the
outermost loop increatePlan, a new steps1 is created forq = q5, thereforeJoin1 = {q5} (line 17 in
Algorithm 8.2). In lines 20–36, the nodesq6, q4 andq1 in Mv are visited and the corresponding edges are
added toRec1 (line 31). Only the edge fromq6 to q4 is decided because these two nodes have just been
matched through reconstruction (line 29). The edgeParent∗2(q3,q1) cannot be reconstructed fromq1 and
is therefore ignored in the first step. However, sinceq2 ∈ Mv, one of the subsequent iterations will start
from q2 and match this edge—through decision, becauseq1 has already been matched in steps1 (line 29).
All other nodes inMv (q1, q4 andq6 in Figure 8.11c.) are immediately skipped in the outer loop (line 14).

As shown in the next subsection, keyword constraints are easily handled when matching a query node
through a join with the element table. However, a little extra treatment is needed when the matches to
a query node with keyword constraints are obtained through reconstruction rather than an element-table
join. For example, if the query nodeq4 in Figure 8.11c. had a keyword constraintContainsk(q4) for some
keywordk∈ K, then the plan in Figure 8.11d. would be incorrect because matches toq4 are never looked
up in the element table to see whether they really contain an occurrence ofk. Therefore in lines 38–47
of Algorithm 8.2, all query nodes matched through reconstruction in the current evaluation steps are
examined once again. Those with keyword constraints are scheduled for an extra join with the element
table in subsequent steps (line 43). In the above example, wewould have to add a third steps3 to the
query plan in Figure 8.11d. with Join3 = {q4}, Rec3 = {} andDec3 = {}. Note that although the benefit
of reconstruction on the runtime performance is reduced in such cases, this plan is still preferable to one
whereq4 is matched through a join right from the start, for two reasons. First, reconstructingq4 allows
to reconstructq1 in the first step, too, which saves one join (sinceq1 does not have a keyword constraint).
Second, looking upq4 in the element table requires only an equality condition on theeid column because
the matches to be checked are already known from the previousstep. By contrast, deciding theParentedge
from q5 to q4 involves a range condition, which is less efficient.

Planning strategies. Note that the number of possible reconstructions often depends crucially on the
choice of the next query node to be joined. For instance, an alternative query plan for the query in Fig-
ure 8.11c. that matchesq1 through a join in the first step cannot reconstruct theParent∗1(q4,q1) edge and
therefore needs more than two element-table joins to answerthe query. One method to reduce the number
of joins in a query plan is to sort the given setMv of query nodes in such a way that nodes which allow
more edges to be reconstructed are processed first. To this end we compute for each nodeq∈Mv its recon-
struction count, i.e., the total length of all reconstructible paths leaving q (not shown Algorithm 8.2). The
nodes inMv are then sorted in the order of descending reconstruction counts before the actual planning be-
gins. As a consequence, the outermostfor loop in Algorithm 8.2 on the facing page (lines 12–48) collects
reconstructible edges in a greedy manner, which is perhaps not optimal but certainly an efficient and quite
effective strategy (see the experiments Section 8.5). Although the reconstruction counts could probably be
computed in time linear in the number of query edges inMc, even a simple repeated traversal of the query
graph with distinct start nodes runs sufficiently fast, despite its quadratic time complexity inMc.

However, there are more possible planning goals besides minimizing the number of element-table joins.
Most importantly, the size of intermediate results to be joined can be reduced by matching first those query
nodes that have selective constraints such as, e.g., infrequent keywords or tag paths or rare combinations of
both. To take advantage of the most selective query constraints, statistical information about the distribution
of tag paths and keywords in the documents is needed. Section8.2 has introduced the optionaleltsandkeys
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columns in the path table as basic selectivity estimates. These can easily be integrated with the planning
algorithm, similar to the reconstruction count above. Moresophisticated planning could also use cardinality
estimates for combined structure and keyword constraints.Yet this is outside the scope of this work.

Of course, when pursuing multiple planning goals at once conflicts may arise, e.g., when highly selec-
tive query nodes have a low reconstruction count and vice versa. The following preliminary solution to this
problem reconciles both reconstruction and selectivity optimization while giving keyword constraints the
priority. Currently we simply distinguish query nodes inMv with any keyword constraint from those with-
out, and sort the two resulting subsets ofMv separately in the order of descending reconstruction counts,
as described above. Any node with a keyword constraint is thus visited before all nodes without keyword
constraints as nodeq in the outermostfor loop ofcreatePlan(lines 12–48 in Algorithm 8.2). This suffices
to produce query plans like the ones illustrated in Figures 8.11a. andc., for example.

Intermediate results. The procedurecreatePlanin Algorithm 8.2 on page 110 produces query plans with
only a single element-table join per evaluation step. In other words, in any given query planP we have
∀si ∈ P : |Joinsi |= 1. However, the planning algorithm is easily adapted to allow for multiple joins in the
same step, which reduces the number of steps and hence of intermediate result tables to be created. Since
subsequent intermediate results for the same query usuallyoverlap considerably (e.g., consider the tables
in Figures 8.4b.–d. on page 102), permitting multiple joins per evaluation stephelps to save storage in the
RDBS. However, intermediate results play an important rolefor the incremental query evaluation based
on cached queries, as explained in Chapter 10. In a caching scenario, it makes sense to evaluate queries
in small steps with many intermediate results, because thisallows to compare and reuse the answers to
previous queries at a fine granularity.

Both approaches have been successfully applied in the two scenarios. The experiments with query
evaluation from scratch in Section 8.5 are based on a slightly modified version ofcreatePlanthat allows
multiple joins in each evaluation step. By contrast, for theincremental evaluation in Chapter 10 we will
assume one join per step, which increases the effectivenessof the query cache at the expense of a higher
space consumption. For simplicity, the following description of the query matching on the document level
adopts the single-join approach, too.

8.4.5 Document-Level Matching

Once a query planP has been devised for the queryQ to be answered, the evaluation stepssi ∈ P (i ≥ 1)
are translated and matched on the document level one by one. Each stepsi produces a new intermediate re-
sult tableQ si by joining the previous result tableQ si−1 with the element table (recall from Section 8.4.2
thatQ s0 denotes the schema-matching result computed during phase 1). Figure 8.4 on page 102 depicts
the sequence of result tables produced during the evaluation of queryQ in Figure 2.2b. on page 10. The
document-level matching discussed here comprises the three tables in Figures 8.4b.–d., which correspond
directly to the three evaluation steps in the query planPQ shown in Figure 8.11b. on page 109.

The first step inPQ, sQ
1 , adds matches to the query nodesq4 andq1 (columnsp4 andp1 in Figure 8.4b.,

respectively) by joiningq4 and reconstructing the edgeParent∗1(q4,q1) in Q. Note that there are two distinct
pairs matching the two query nodes (q4 = 26, q1 = 18 versusq4 = 34, q1 = 27). In the document treeD
in Figure 4.3a. on page 46, these are the pairs ofperson and sex nodes in the subtreesa2 anda3 of D,
respectively. As a consequence, the result tableQ s1 contains two rows each representing a distinct partial
matching of the queryQ (partial, because nodesq2 andq3 are ignored at this stage). The second step of
the query plan,sQ

2 , matches the query nodeq2 through another join with the element table and decides
theChild(q1,q2) edge. Since there is a correspondingname child below theperson element in botha2

anda3, each of the two partial matchings can be expanded with a match to q2 (the p2 values 21 and 30
in Figure 8.4c., respectively). The last step,sQ

3 , joins q3 and decides theChild∗1(q1,q3) edge. While the
person node ina2 has a matchingedu descendant that is added to the result table (element 25 in the last
column in Figure 8.4d.), there is no such descendant ina3. Hence the second partial matching from the
previous resultQ s2 (last row in Figure 8.4c.) is discarded. Thus at the end of phase 2, the result tableQ s3

in Figure 8.4d. contains all possible matchings to the entire queryQ (in this case, a single document-level
match for the only schema hitχQ retrieved in phase 1).
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CREATE

TABLE Q_s1 AS -- create new result table

SELECT

sid, p1, p2, p3, p4, w1, w2, w3, w4, -- copy schema hits

ET4.eid AS e4, -- add matches to q4
ET4.eid - (ET4.eid % w1) AS e1 -- reconstruct Parent∗1(q4,q1)

FROM

Q_s0, ElementTable ET4 -- join previous result table with element table

WHERE

ET4.pid = p4 AND -- match unary constraints on q4
ET4.key = ‘female’

a. steps1 of document-level matching (phase 2)

CREATE

TABLE Q_s2 AS -- create new result table

SELECT

sid, p1, p2, p3, p4, w1, w2, w3, w4, -- copy schema hits

e1, e4, -- copy matches from previous steps

ET2.eid AS e2 -- add matches to q2
FROM

Q_s1, ElementTable ET2 -- join previous result table with element table

WHERE

ET2.pid = p2 AND -- match unary constraints on q2
ET2.key = ‘’ AND

ET2.eid > e1 AND ET2.eid < e1 + w1 -- decide Child∗1(q1,q2)

b. steps2 of document-level matching (phase 2)

CREATE

TABLE Q_s3 AS -- create new result table

SELECT

sid, p1, p2, p3, p4, w1, w2, w3, w4, -- copy schema hits

e1, e2, e4, -- copy matches from previous steps

ET3.eid AS e3 -- add matches to q3
FROM

Q_s2, ElementTable ET3 -- join previous result table with element table

WHERE

ET3.pid = p3 AND -- match unary constraints on q3
ET3.key = ‘’ AND

ET3.eid > e1 AND ET3.eid < e1 + w1 -- decide Child∗1(q1,q3)

c. steps3 of document-level matching (phase 2)

Figure 8.12: SQL code for evaluating the queryQ in Figure 2.2b. on page 10 on the document level
(phase 2). The document-level matching ofQ is divided into three steps,s1–s3, according to the query plan
in Figure 8.11b. on page 109. As before, blue, red and green colour highlightscode related to element-
table joins, reconstruction and decision, respectively.a. Steps1: The query nodeq4 is matched through a
join of the element table (see Figure 6.1 on page 82) with the schema-matching result (see Figure 8.4a. on
page 102). Matches toq1 are obtained by reconstructing theParent∗1(q4,q1) edge. This produces the result
table in Figure 8.4b. on page 102. b. Steps2: The query nodeq2 is matched through a join of the element
table with the intermediate result from steps1. TheChild(q1,q2) constraint is adapted toChild∗1(q1,q2)
(see Figure 8.14) and then decided. The result table is shownin Figure 8.4c. on page 102.c. Steps3: The
query nodeq3 is matched through a join of the element table with the intermediate result from steps2, and
theChild∗1(q1,q3) constraint is decided. This produces the result table in Figure 8.4d. on page 102.
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R(q0) R∈ {Containsk,Governsk}
R(v0)

(DA0)

Figure 8.13:RCADG document adaptation rules for unary query constraints (q0 ∈Qv; v0 ∈V; vl denotes a
document node matchingql).

R j
i(q0,q1) R∈ {Parent,Child}

R∗0(v0,v1)
(DA1)

Rj
i(q0,q1) R∈ R2\ {Parent,Child}

R j
i(v0,v1)

(DA3)

R∗i (q0,q1) R∈ {Parent,Child}
R∗0(v0,v1)

(DA2)
R∗i (q0,q1) R∈ R2\ {Parent,Child}

R∗i (v0,v1)
(DA4)

Figure 8.14: RCADG document adaptation rules for binary query constraints (q0,q1 ∈Qv; v0,v1 ∈V;
i < j ∈ IN; vl denotes a document node matchingql).

Generating SQL code. The SQL code for creating the three intermediate result tablesQ s1, Q s2 and
Q s3 in Figures 8.4b.–d. is given in Figure 8.12 on the preceding page. Three SQL statements are gen-
erated and executed by the procedurematchDocLevelwhich is called once for each evaluation step (see
line 11 in Algorithm 8.1 on page 101). The rest of this subsection explains howmatchDocLevelexpresses
query constraints as SQL statements that are then handed over to the RDBS.

For instance, consider the first join with the element table in steps1, expressed by the SQL statement in
Figure 8.12a. on the preceding page. Some parts of the code are either fixed or like a template to be filled
in with the query node inJoin1, whereas others are inferred from the query constraints ins1 using a set of
document-level rules (see below). A fixed code block is the projection of schema-level information (first
line of theSELECT clause): it simply copies the schema hits retrieved in phase1, along with theirBIRD
weights which may be needed for reconstruction and decision(see Section 8.3). SinceJoin1 = {q4}, the
schema matching resultQ s0 is joined with an instanceET4 of the element table (FROM clause), and the
matches toq4 in theeid column ofET4 are added to the new result tableQ s1 (SELECT clause). The result
table names to be used in theCREATE andFROM parts follow directly from the current evaluation step (in
this case,s1). Furthermore, a first join condition selects those tuples in the element table with a tag path
matchingq4 (first row in theWHERE clause). These code templates apply analogously toJoin= {q2} in
Figure 8.12b. andJoin= {q3} in Figure 8.12c.

The remaining code fragments in Figure 8.12 are derived for each stepsi from unary keyword con-
straints on the join node inJoini and from the binary constraints inReci andDeci . As during phase 1, two
distinct sets of rules specify how to translate these query constraints to SQL:document adaptation rules
select the constraints to be matched on the document level whereasdocument matching rulesgenerate
appropriate selection and projection expressions for these constraints.

Adapting query constraints to the document level. The document adaptation rules for unary and binary
constraints are given in Figures 8.13 and 8.14, respectively. The rule DA0 in Figure 8.13 states that keyword
constraints are the only unary constraints to be matched on the document level (recall from Section 8.4.2
that tag, type, root and level constraints are handled during phase 1). The adaptation rules DA1 and DA2 on
the left-hand side in Figure 8.14 suppress proximity boundsof ParentandChild constraints, because they
have already been translated to level predicates during schema matching (see rules SM

Child′ ii
and SM

Child′ ji
in Figure 8.10 on page 106). Binary constraints other thanParentandChild are matched unmodified on the
document level, as specified by rules DA3 and DA4 on the right-hand side of Figure 8.14.

Matching binary query constraints on the document level. After applying the document adaptation
rules, the resulting unary and binary constraints on elements are translated to join conditions and projection
clauses using a set of document matching rules. These rules handle exactly theD-constraints listed in
Definition 2.8 on page 12. We first discuss the matching of binary D-constraints withBIRD. Keyword
matching is explained below.
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Containsk0(v0) θ · · · θ Containskm(v0) k0, . . . ,km∈ K

v0.key= k0 θ · · · θ v0.key= km
(DMContainsk

)

Governsk0(v0) ∨ ·· · ∨ Governskm(v0) k0, . . . ,km∈ K

∃w∈V : Child∗0(v0,w) ∧ (Containsk0(w) ∨ ·· · ∨ Containskm(w))
(DMGovernsk

)

Figure 8.15:RCADG document matching rules for unary query constraints (q0 ∈Qv; v0 ∈V; vl denotes
a document node matchingql). In the first rule for keyword containment,θ = ∧ or θ = ∨ depending
on whether the keyword constraints onq0 are marked as conjunctive or disjunctive, respectively. The
second rule translates a disjunction of government constraints into a single condition. By contrast, given
a conjunction of government constraints the rule applies toeach constraint separately (treating it as a
singleton disjunction).

The binary constraints to be matched on the document level includeChild, NextSib, NextElt, Following
and their inverses as well asSibling and Self. All of them can be decided using theBIRD document
matching rules in Figure 8.2 on page 100. Alternatively,Parent, PrevSib, NextSibandSelfconstraints may
be reconstructed with the rules in Figure 8.3 on page 100. However, no ambiguitites arise since the query
plan for a given query specifies which constraints to decide and which to reconstruct, as described above.

For instance, reconsider the query planPQ in Figure 8.11b. on page 109 and the corresponding SQL
statements in Figure 8.12 on page 113. In the first step,s1, the constraintParent∗1(q4,q1) shall be matched
through reconstruction. The adaptation rule DA2 in Figure 8.14 on the facing page replaces query nodes
with elements and modifies the lower proximity bound in orderto prepare the application of a suitable
document matching rule. This yields the adapted constraintParent∗0(v4,v1) wherev4 stands for any match
to the query nodeq4, and likewise forv1. The unique reconstruction rule that is relevant to this constraint
is DMRec

Parent∗0
in Figure 8.3 on page 100. Applied to the pair〈v4,v1〉 (which is called〈v0,v1〉 in Figure 8.3),

the lower part of the rule states that for any matchv4 to q4, the element label of the corresponding ancestor
matchingq1 can be computed asv1 = v4− (v4 modπ(v1).weight) whereπ(v1).weightis theBIRD weight
of the tag path ofv1. Now compare this to the SQL code fors1 in Figure 8.12a. on page 113. Here
the reconstruction formula for theParent∗1(q4,q1) edge inQ is expressed as the projection clause that is
highlighted red. TheBIRD weightπ(v1).weightof v1 is available in the columnw1 of the result tableQ s0
from phase 1 (see Section 8.4.2). The matches toq4 are taken from theeid column of the instanceET4 of
the element table, hencev4 becomesET4.eid. Finally, the matches toq1 to be reconstructed are given the
aliase1. Thusv1 = v4− (v4 modπ(v1).weight) translates toET4.eid - (ET4.eid%w1) AS e1 in SQL.

As in the example above, the lower part of any reconstructionrule is added to theSELECT part of the
SQL statement to be created. More complex rules like DMRec

PrevSibii
or DMRec

NextSibi
i

in Figure 8.3 also have

preconditions concerning the parentv2 of the elementv0 whose siblingv1 shall be reconstructed. Note that
when applying such a rule to a sibling constraint onv0 andv1, matches tov2 are guaranteed to be already
known because (1) the schema-level rewriting of the query ensures thatv0 andv2 are connected with a
Parentedge and (2) this parent edge is reconstructed no later than the sibling constraint onv0, according
to the query planning algorithm in Section 8.4.4. The precondition onv0 andv2 in the upper part of rules
DMRec

PrevSibii
and DMRec

NextSibi
i

is added to theWHERE clause of the SQL statement to be created. This way

the node label ofv1 is computed for any tuple containing elementsv0 andv2 that satisfy the precondition.
Other tuples are silently dropped.

The following steps in the query planPQ in Figure 8.11b. on page 109 involve the decision of binary
constraints. Here the document matching rules in Figure 8.2on page 100 are applied to create suitable join
predicates for the SQL statement. For instance, in steps2 the constraintChild∗1(q1,q2) is decided. As de-
scribed before, it is adapted toChild∗0(v1,v2) by rule DA2 in Figure 8.8 on page 106. The first decision rule
in Figure 8.2, DMDec

Child∗0
, produces the join predicatev2.eid≥ v1.eid∧v2.eid< v1.eid+π(v1).weightwhich

is translated to the SQL expressionET2.eid> e1 AND ET2.eid< e1 +w1, as shown in theWHERE part of
Figure 8.12b. on page 113 (highlighted green). TheChild∗1(q1,q3) edge in steps3 is treated analogously.
As in the reconstruction case, some decision rules like DMDec

NextSib∗1
and DMDec

PrevSib∗1
in Figure 8.2 assume

parent matches to be known, which is safe with the query rewriting and planning introduced above.
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Matching keyword constraints on the document level. According to Definition 2.8 on page 12, the only
unary constraints to be matched on the document level are keyword constraints. Like binaryD-constraints,
they are first adapted to the document level (using rule DA0 in Figure 8.13 on page 114) and then trans-
lated by applying document-matching rules (DMContainsk

and DMGovernsk
in Figure 8.15 on the previous

page). For instance, consider again the query planPQ for the queryQ in Figure 8.11a. on page 109.
The query nodeq4 to be matched through an element-table join in the first stepsQ

1 has a keyword con-
straintContains“female” (q4). According to the adaptation rule DA0 this constraint must be enforced on
the elements matchingq4, which are contained in the instanceET4 of the element table in Figure 8.12a.
on page 113. The matching rule DMContainsk

in Figure 8.15 specifies the appropriate join predicate for a
conjunction or disjunction of keywordsk0 θ · · · θ km (θ ∈ {∧,∨}). The resulting predicate for the single-
ton keyword“female” in the keyword column ofET4 is shown in the last line of code in Figure 8.12a.:
ET4.key= ‘female’. The same mechanism applies to the join nodes of the subsequent stepss2 ands3

(q2 andq3, respectively). Since these do not have query keywords, a containment constraint for the empty
keyword is assumed by default. Recall from Section 6.2 that an extra row is added to the element table
for each element and the empty keyword. This way matches to query nodes without keyword constraints
can be looked up efficiently with a precise equality predicate like ET2.key= ‘’ or ET3.key= ‘’ in Fig-
ures 8.12b. and 8.12c., respectively.

The join predicate for government constraints is a little more involved, due to the fact that the element
table only indexes contained keywords explicitly. The datamodel in Section 2.1 defines the keywords
governed by an elementv as thosek ∈ K that are contained either inv or in any of its descendants. This
definition also captures conjunctions and disjunctions of government constraints, as follows. An elementv
governs a disjunctionk0∨ ·· · ∨ km of keywords if eitherv or any of its descendants contains at least one
of these keywords. The matching rule DAGovernsk

in Figure 8.15 on the preceding page reflects exactly
this definition, replacing the government constraints on a given elementv0 with containment constraints
on another elementw that is eitherv0 itself or one of its descendants (i.e.,Child∗0(v0,w)). Similarly,
v governs a conjunctionk0∧ ·· · ∧ km of keywords if each of these keywords is contained in any nodein
the subtree rooted inv. Note, however, that not all keywords are necessarily contained in the same node
in the subtree. Simply substituting “∧” to “∨” in DA Governsk

would therefore be too restrictive. Instead the
rule DAGovernsk

is applied separately to each government constraintGovernski (v) (0≤ i ≤ m), so that the
keyword disjunction in the upper part of the rule consists only of ki . This way distinct descendants ofv are
accepted for distinct keywordski .

As an example, consider a variant of the queryQ in Figure 8.11a. whereq4 has two government
constraints,Governs“female” (q4) andGoverns“PhD” (q4), instead of the containment constraint. If the two
government constraints are marked as disjunctive, then thejoin predicateET4.key= ‘female’ in Fig-
ure 8.12a. is replaced with the code listed in Figure 8.16a. on the next page. Here a single subquery
checks whether any descendant of a match toq4 contains either“female” or “PhD” . By contrast, a con-
junction of independent subqueries for all keywords is needed when the two government constraints are
marked as conjunctive (see Figure 8.16b.).

8.4.6 Computing the Final Query Result

The last intermediate result table created during phase 2 contains allquery matchingsas defined before
(see Definition 2.3 on page 10). Recall from Section 2.2 that the finalquery answer ans(Q) is obtained by
restricting these matchings to the setQr of result nodes given as part of the query specification. Also, the
result tables contain the schema hits and weights corresponding to each matching, which are not part of the
query answer. Therefore a final query is needed to extract allrelevant data from the last intermediate result
table and return it as the final resultans(Q) to the user. This is done by the procedurecreateResultcalled
in line 14 of Algorithm 8.1 on page 101.

The SQL code for creating the final result of the queryQ in Figure 8.11a. on page 109 is given in
Figure 8.17 on the next page. It consists of a single statement that simply projects the last intermediate
result table,Q s3 in Figure 8.4d. on page 102, onto those columnsei which contain the matches to result
query nodesqi . In the example we assume that all nodes inQ are results nodes, i.e.,Qr = Qv. Note the
use of the keywordDISTINCT to remove duplicate results from the final output. In fact, explicit duplicate
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... -- CREATE, SELECT, FROM as before

WHERE

ET4.pid = p4 AND -- select matches v to q4
ET4.key = ‘’ AND

EXISTS ( -- match Governs disjunction using a single descendant w of v
SELECT eid
FROM ElementTable ET4desc
WHERE

ET4desc.eid >= ET4.eid AND ET4desc.eid < ET4.eid + w4 AND -- match Child∗0(v,w)
(ET4desc.key = ‘female’ OR ET4desc.key = ‘PhD’) -- match Contains disjunction on w

)

a. disjunction of government constraints on nodeq4 in queryQ

... -- CREATE, SELECT, FROM as before

WHERE

ET4.pid = p4 AND -- select matches v to q4
ET4.key = ‘’ AND

EXISTS ( -- match Governs” f emale” (q4) using a descendant w of v
SELECT eid
FROM ElementTable ET4desc
WHERE

ET4desc.eid >= ET4.eid AND ET4desc.eid < ET4.eid + w4 AND -- match Child∗0(v,w)
ET4desc.key = ‘female’ -- match Contains” f emale” (w)

) AND

EXISTS ( -- match Governs”PhD” (q4) using another descendant w of v
SELECT eid
FROM ElementTable ET4desc
WHERE

ET4desc.eid >= ET4.eid AND ET4desc.eid < ET4.eid + w4 AND -- match Child∗0(v,w)
ET4desc.key = ‘PhD’ -- match Contains”PhD” (w)

)

b. conjunction of government constraints on nodeq4 in queryQ

Figure 8.16: SQL code for matching keyword government constraints. The code is generated for a variant
of queryQ in Figure 8.11a.on page 109 where the containment constraintContains“female” (q4) on nodeq4

has been replaced with two government constraintsGoverns“female” (q4) andGoverns“PhD” (q4). The two
government constraints are either disjunctive (a.) or conjunctive (b.). Each of the two statements is meant
to replace the code for the first evaluation steps1 in the query planPQ in Figure 8.11b. on page 109. The
CREATE, SELECT andFROM clauses remain unchanged (see Figure 8.12a. on page 113). Only theWHERE
is modified according to the document matching rule DAGovernsk

in Figure 8.15 on page 115, as follows.
Let v be a match to the query nodeq4. a. A disjunction of the two government constraints is translated
into a single subquery selecting any descendantw of v that contains either keyword.b. A conjunction
of the two government constraints translates to a conjunction of two separate subqueries. Each subquery
independently selects a descendantw of v that contains a specific keyword.

SELECT

DISTINCT e1, e2, e3, e4 -- copy matches to result nodes

FROM

Q_s3 -- retrieve answer from the last intermediate result

ORDER BY

e1, e2, e3, e4 -- order result as needed

Figure 8.17: SQL code for computing the final result of the query Q in Figure 8.11a. on page 109. The
last intermediate result from phase 2 (see Figure 8.4d. on page 102) is projected onto matches to the result
nodes (in this case, all query nodes). This produces the query answer shown in Figure 8.4e.on page 102.
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elimination is only needed when some match columns are dropped, i.e., whenQr ( Qv. TheORDER BY

clause serves to return the query answer in some specific order. In this case, it is sorted so that all matches
to the query nodeq1 appear in document order. (Tatarinov et al. [2002] mention different output modes to
be applied analogously.)

The output of the SQL query in Figure 8.17 is shown in Figure 8.4e. on page 102. Hereans(Q)
consists of the tuple〈18,21,25,26〉 of node labels that denotes exactly the document subtree depicted
in Figure 2.1e. on page 8 (the corresponding node labels are given in Figure 4.3a. on page 46). Of
course a different result presentation may be chosen for theuser. For instance, given the original XML
representation of the documents and a mapping from node labels to the corresponding byte offsets in the
XML code, the query answer could be presented as XML fragments (possibly rendered using stylesheets).
Alternatively, XML code might be generated on the fly. However, these presentation details are beyond the
scope of this work.

8.5 Experimental Evaluation

To evaluate the practical use of XML indexing with theRCADG, we created path and element tables for
different document collections in an RDBS and implemented the evaluation procedureevaluateQuery(see
Algorithm 8.1 on page 101) in a retrieval engine calledDocument eXplorer(DoX). DoX evaluates XML
queries like those used throughout this work by translatingthem into SQL statements against the path and
element tables, as described above. The system is compared to (1) the native XML engineX2 that was
already used for the experiments with theCADG in Section 6.4; (2) the relational node indexing scheme
XPath Accelerator by Grust et al. [2002; 2004] (see Section 7.3.2); and (3) the relational path indexing
schemeXRel by Yoshikawa et al. [2001] (see Section 7.4.1). All query engines have been implemented (or
reimplemented, in the case ofXPath Accelerator andXRel) in Java. Details of the hardware and software
set-up are given in the appendix (see Test Environment A in Section 13.1).

We ran a number of queries against the four document collectionsIMDb, XMark 1100, INEXandDBLP
listed in Section 13.2 of the appendix. TheInternet Movie Database(IMDb) comprises more than 8 GB of
XML documents describing movies and actors from a commercial web site [IMDB], whereasXMark 1100
consists of 1 GB recursive XML synthetically generated by a benchmarking tool [XMark]. The highly
heterogeneousINEX benchmark [INEX] contains scientific articles in full-text. DBLP [DBLP] is an on-
line collection of bibliographic data from computer science. The key results of the evaluation are the
following:

1. TheRCADG outperforms both the native and the relational baseline systems by two orders of mag-
nitude and more in terms of retrieval speed. Complex querieswith large results causing the baseline
systems to break down are answered within seconds by theRCADG. Querying XML in a relational
database system benefits greatly from native XML indexing techniques (see Section 8.5.2 below).
To a certain extent this also confirms previous findings reported by Chen et al. [2004] for theBLAS
storage scheme (see Section 7.4.2).

2. TheRCADG easily scales up to collections of multiple gigabytes both in terms of retrieval speed and
storage demands. The path table is typically several ordersof magnitude smaller than the original
data (see Section 8.5.4).

3. Query planning has a significant impact on the performanceof theRCADG. While very encouraging
results were obtained with the planning strategies described above, in some cases inappropriate plan-
ning may prevent a performance gain. Also, enhancing the relational optimizer with tree statistics
seems promising (see Section 8.5.3).

4. Keyword-driven schema matching using signatures in the path table does not entail a significant
performance gain in our experiments. The overhead for signature comparison lies between 100 ms
and 300 ms, whereas the time needed for creating signatures is negligible.

Table 8.5 on the next page summarizes the performance results for theRCADG (averaged after remov-
ing the best and worst of five runs). Sample queries are given as their closest XPath equivalents. The
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Corpus QID
result

closest XPath query
processing

size time (s)

IMDb
I3 6507 //*[title=”love”]/production year 1.27
I4 118,150 //movie[.//genre=”documentary”]//actor 8.77

XMark
1100

X4 2 /site/open auctions/open auction[ 0.44
bidder[personref/@person=“person20”]/following-sibling::
bidder[personref/@person=“person17290”]]/reserve

X15 1890 /site/closed auctions/closed auction/annotation/description/ 0.52
parlist/listitem/parlist/listitem/text/emph/keyword

X14 9461 /site//item[contains(description, “gold”)]/name 3.34
X13 22,000 /site/regions/australia/item[name and description] 0.88
X2 597,777 /site/open auctions/open auction/bidder/increase 17.54

Table 8.5:RCADG query performance, in seconds. The original queries are given here as their closest
XPath equivalent.XMark 1100queries are adapted from the XQuery benchmark [XMark]. Onlymatches
to XPath result nodes were computed (unlike Table 8.6 on the following page).

XMark 1100queries X2, X4, X13, X14 and X15 as well as X1 (in Table 8.6 on the following page) capture
the XPath portion in the corresponding queries from the XQuery benchmark [XMark]. As can be seen in
Table 8.5, theRCADG scales well with both the size of the document collection andthe number of query
results. The rest of this section discusses more results (see Tables 8.6, 8.7 and 8.8) in greater detail.

8.5.1 Test Systems

TheDoX system consists of (1) an indexer for creating theRCADG tables andBIRD labels, (2) a system
kernel including modules for query rewriting, planning andSQL code generation, and (3) a runtime for
creating XML queries, triggering the kernel operations andsending the resulting SQL statements to the
RDBS. The twoRCADG tables are indexed using B+-Trees, as follows. The path table has a cluster index
on the〈pid,maxid, tag〉 fields and an additional index on thetagfield. The element table has a cluster index
on the〈pid,key,eid〉 fields and an additional index on the〈key,eid〉 fields. In the RDBS, only standard
relational operators are used; in particular, no structural join for sets of XML elements is available.

Our native XML baseline database isX2 [Meuss et al. 2005], which combines the originalCADG index
(see Chapter 6) and theBIRD labelling scheme (see Chapter 4). At system start-up, theCADG schema tree
is loaded into main memory. During query evaluation,X2 fetches sets of elements from the relational
back-end and combines them into query matchings in memory. Element sets are joined using a variant of
the TwigStackstructural join by Bruno et al. [2002]. The query planning algorithm is similar to the one
used byDoX (see Section 8.4.4 above). In particular,X2 benefits fromBIRD reconstruction, too. Note that
X2 always computes matches to all query nodes, i.e.,Qr = Qv by default.

As a baseline for relational query evaluation without a schema index we implemented theXPath Ac-
celerator storage scheme by Grust et al. [2002; 2004] (see Section 7.3.2). Each query is translated into an
m-fold join of the node table wherem is the number of nodes in the query. Any element is labelled byits
pre- and postorder ranks in the document tree, which also serve to decide binary query constraints. Recon-
struction is not supported, and no schema-level index is available. The node table is indexed using separate
B+-Trees on the preorder, postorder, parent label, tag and node type fields, as described by Grust [2002].
Textual contents are kept in a separate table indexed both onthe preorder and keyword fields. We also
applied theshrink-wrappingoptimization proposed by Grust [2002]. By contrast, non-standard relational
operators like theStaircase Join[Grust et al. 2003] are not available. Query planning for thenode-table
join happens entirely in the realm of the RDBS.

A second relational baseline system is our implementation of XRel [Yoshikawa et al. 2001] (see Sec-
tion 7.4.1).XRel indexes tag paths as strings in a path table and performs schema-level matching through
string search in the path table. A foreign key connects each tag path to its occurrence in a node table.
Each XML query is translated into a single SQL statement joining the path and node tables. Again, query
planning is done by the RDBS kernel. LikeXPath Accelerator, XRel uses a subtree labelling scheme (see
Section 3.3) to decide binary query constraints on the document level. Reconstruction is not supported.
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Corpus QID
result

closest XPath query
processing time (s)

size RCADG CADG XPAcc

IMDb

I1a 12 //person[name=“mastroianni” 0.10 12.72 0.04
and born/@place]/biography/movie

I1b 3 //person[name=“felix” 0.11 12.60 0.50
and born/@place]/biography/movie

I1c 24 //person[name=“cooper” 0.15 12.84 215.83
and born/@place]/biography/movie

I1d 72 //person[name=“steve” 0.52 12.85 > 600
and born/@place]/biography/movie

I2 6507 //title[.=“love”] 0.37 0.30 > 600
I3 6507 //*[title=“love”]/production year 1.52 26.07 > 600
I4 118,150 //movie[.//genre=“documentary”]//actor 34.68  > 600

XMark
1100

X1 1 /site/people/person[@id=“person0”]/name 0.09 6.85 0.02
X21 13 //site//europe//item[.//description// 0.32 21.80 > 600

keyword[.=“abandon” and .//bold]
and .//name
and (.//category or .//*[@category])
and .//mail[.//date and .//from and .//to]]

X13 22,000 /site/regions/australia/item[ 2.35 2.79 61.46
name and description]

X2 597,777 /site/open auctions/open auction/ 122.43  292.14
bidder/increase

Table 8.6: Query performance comparison forRCADG, CADG (CADG) andXPath Accelerator (XPAcc),
in seconds. The original queries are given here as their closest XPath equivalent.XMark 1100queries are
adapted from the XQuery benchmark [XMark]. Unlike Tables 8.5 and 8.8, matches toall query nodes were
computed. The symbol “ ” indicates that a specific query was not answered properly.

8.5.2 Runtime Performance

RCADG versusCADG. A first set of experiments measures the performance gain theRCADG achieves
over native XML retrieval withX2 (see the RCADG and CADG columns in Table 8.6). To avoid a handicap
for the X2 system, which always matches the entire query graph, the systems treated all query nodes as
result nodes. For theRCADG, the runtime performance therefore differs from the results in Table 8.5 on
the preceding page.

Queries I1a to I1d retrieve the place of birth and the movies of different people mentioned in the
movie databaseIMDb. Note how the performance of both theRCADG and theCADG remains stable as
the selectivity of the query keyword decreases: while the keyword “mastroianni” is contained only in
406 elements, the frequency of“felix” is almost ten times higher;“cooper” occurs in 10,398 elements
and“steve” in 38,983 elements. TheRCADG’s performance gain is two orders of magnitude for the most
selective keyword (I1a) and still more than a factor 20 for the most frequent keyword (I1d). As queries I2
and I3 illustrate, the overhead incurred by theCADG is mainly due to “output” nodes likeplace and
movie which are not subject to keyword constraints. While theCADG is highly competitive for queries
without such unselective nodes, such as I2, theproduction year node in I3 slows down the native
system by two orders of magnitude. Unlike theRCADG, theCADG retrieves matches to thetitle and
production year nodes in the element table and transfers them into main memory for deciding their
binary query constraint (thechild step).4 By contrast, theRCADG translates binary constraints into join
conditions supported by relational indices on the element table, and therefore faces no such overhead for
loading large element sets.

Query I4 illustrates another potential weak-spot in nativeretrieval systems which compose matches
to tree queries in main memory: processing large intermediate result sets containing tens or hundreds of
thousands of tuples easily exceeds the hardware capacities. During the evaluation of I4,X2 quickly ran out

4The huge overhead for I3 compared to I2 might not be faced by native systems which do not compose path occurrences in this
way but retrieve entire tree fragments instead, like theNatiX system [May et al. 2004; Fiebig et al. 2002].

120 Felix Weigel



CHAPTER 8. THERELATIONAL CADG (RCADG)

Corpus QID closest XPath query
result size processing time (s)

RCADG XRel RCADG XRel

INEX
N1a //p 609 609 < 0.01 0.09
N1b //p[sub]/b 27 3,485,916 0.01 515.22

Table 8.7: Query performance comparison forRCADG andXRel on the schema level, in seconds. Process-
ing times and intermediate result sizes are measured at the end of phase 1. The original queries are given
here as their closest XPath equivalent.

of memory; allocating more than 800 MB on our 1-GB machine avoided a crash but resulted in swapping.
TheRCADG, however, copes well with large result sets.

Query X21 against theXMark 1100collection examines how the systems cope with tasks whose com-
plexity is in the query structure, not the result size. TheRCADG invests 85% of a total of 321 ms in
generating extremely efficient SQL code that involves the reconstruction of fourParentconstraints. By
constrast,X2 is again trapped in too many decision operations. The results for X1 and X2 in Table 8.6 con-
firm the earlier observations for I3 and I4, respectively. Note that when returning only matches to the XPath
result nodes, theRCADG answers the same queries again up to 7 times faster (see Table8.5), retrieving
more than half a million matches in less than 20 seconds.

RCADG versusXPath Accelerator. It has been mentioned before thatXPath Accelerator decides all
binary constraints via selfjoins on the node table, lackingboth reconstruction capabilities and schema-level
information. Consequently, in our test with different keyword selectivities (queries I1a to I1d in Table 8.6
on the preceding page), the evaluation time rapidly grows with the size of intermediate results, reaching
820 seconds for I1d compared to only 0.52 seconds with theRCADG. Less selective queries like I2 to I4
also take longer than ten minutes to evaluate. Only for highly selective queries like I1a or X1,XPath
Accelerator is slightly faster than theRCADG, possibly because the latter issues multiple SQL queries
rather than only a single one. The impact of a complex query graph like X21 is much higher forXPath
Accelerator than for the native or relationalCADGs. SinceXPath Accelerator selects tuples in the element
table based only on singleton tags rather than tag paths, it has to join large intermediate results.

The most unselective query in our test suite, X2, has a much simpler structure (no branches and no
descendant steps). HereXPath Accelerator is faster than for X21, but still takes more than twice as long
as theRCADG. Query X2 is reported as critical by Grust et al. [2004], too.Note that when retrieving only
matches to the leaf of the path, in XPath style, theRCADG outperformsXPath Accelerator by one order
of magnitude (22 seconds versus 220 seconds). As query I4 shows,XPath Accelerator does not scale well
to unselective queries with many descendant steps, which involve range conditions in the selfjoin of the
node table. Here theRCADG is two orders of magnitude faster. Note that even the specialrelational index
structures and join operators employed by Grust [2002], which are reported to recover up to one order of
magnitude of processing time, are unlikely to remedy this handicap completely. Obviously theRCADG
takes considerable advantage fromBIRD reconstruction when answering query I4, using the keyword-
restrictedgenre node as a starting point in the query plan.

Summing up, the experiments prove that the native XML indexing techniques underlying theRCADG
entail a decisive performance gain in the relational domain.

RCADG versusXRel. As explained in Section 7.4.1,XRel’s atomic representation of tag paths as strings
has a number of disadvantages, compared to the compositional path representation of theRCADG. First,
string matching tends to be slower than the comparison of numeric node labels, especially for query paths
starting with a descendant step. The following experiment quantifies this overhead using queries against the
INEX collection. Table 8.7 compares how fastRCADG andXRel match a query graph on the schema level
(phase 1) and how many matches they retain for document-level matching (phase 2). For N1a both systems
retrieve 609 matches, but theRCADG is slightly faster. Second,XRel produces many partial matches to be
discarded later in phase 2: for N1b its intermediate result is five orders of magnitude larger than that of the
RCADG. As explained in Section 7.4.1,XRel’s atomic path representation is not precise enough to discard
combinations ofsub and b elements that do not belong to the samep parent.
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Corpus QID closest XPath query
result size processing time (s)

RCADG XRel RCADG XRel

DBLP
D1a //article[author=“codd”]/title 34 34 0.12 9.18
D1b /dblp/article[author=“codd”]/title 34 34 0.12 9.14

XMark
1100

X1 /site/people/person[@id=“person0”]/name 1 1 0.09 3.96
X22 //parlist[.//text[.=“zenelophon”]]/ 133  183 0.14 27.95

listitem/text
X14 /site//item[contains(description,“gold”)]/name 9461 9461 3.34 > 600
X13 /site/regions/australia/ 22,000 22,000 0.88 > 600

item[name and description]
X23 //regions[contains(.,“zyda@ask”)]//keyword 416,175 416,175 32.21 310.03
X2 /site/open auctions/open auction/ 597,777 597,777 17.54 6.12

bidder/increase

Table 8.8: Query performance comparison forRCADG andXRel, in seconds (phases 1 and 2). The original
queries are given here as their closest XPath equivalent. Only matches to XPath result nodes were computed
(unlike Table 8.6 on page 120). The symbol “ ” indicates that a specific query was not answered properly.

This also slows down the subsequent document-level matching, as shown in Table 8.8. Here the pro-
cessing time subsumes the entire query evaluation process (phases 1 and 2), and the result size only counts
only elements that are part of the final answer to the query. OntheDBLP collection theRCADG is almost
two orders of magnitude faster thanXRel (D1a), even for an absolute query path (D1b). OnXMark 1100,
the difference is between one and three orders of magnitude.XRel outperforms theRCADG only for a
single unselective query without branching nodes and descendant steps (X2). For such queries matching
exactly one path in the schema, theRCADG’s compositional path representation has no extra benefit, but
rather entails a small overhead compared to exact string matching without wildcards.

By contrast, for proper tree queries with descendant steps,XRel not only takes more processing time but
may also produce wrong final results on recursive collections likeXMark 1100. For instance, in the case of
query X22,XRel is two orders of magnitude slower than theRCADG and retrieves 50 false hits. By contrast,
the query evaluation with theRCADG is fast and correct, owing to its compositional path representation and
BIRD reconstruction. This phenomenon is explained as follows. For illustration, reconsider the query in
Figure 8.5a. on page 104. TheRCADG answers this query with only two element-table joins, as specified
by the corresponding query plan in Figure 8.11d. on page 109. The SQL code generated to answer the
same query withXRel is given in Figure 8.18 on the next page. Here we ignore the query nodeq6 and the
NextSibedge becauseXRel does not support sibling constraints. For the resulting query graph comprising
the five query nodesq1 to q5, XRel combines a five-fold join of the path table with another five-fold join
of the node and content tables (see theFROM clause in Figure 8.18). As described in Section 7.4.1, tag
path patterns are created from the query and matched againstthepathexpcolumn in the path table (black
part of theWHERE clause in Figure 8.18). The path IDs retrieved this way act asforeign keys to the node
and content tables (blue part of theWHERE clause in Figure 8.18). Finally, all binary query constraints are
decided on the document level, using region encoding (greenpart of theWHERE clause in Figure 8.18).
Note how matches to distinct tag paths are first retrieved independently and then combined through the join
predicates on the node and content tables. This causes the large intermediate result after phase 1 for N1b
in Table 8.7.

Compared toXRel, theRCADG (1) replaces suffix and infix string matching involving numerous wild-
cards with efficient numeric equality predicates in the selfjoin of the path table, (2) saves three out of five
expensive joins with the element table throughBIRD reconstruction, (3) looks up fewer schema hits in the
element table in cases where the individual query paths havedisparate partial matches in the documents
(as in query N1b above), and (4) correctly discards partial matches from the final result in presence of a
recursive schema. For instance, assume that the sample query from Figure 8.5a. is run against a document
collection containing nestedperson elements. Then the code in Figure 8.18 on the facing page wrongly
accepts thoseperson elements which lack a suitablewatches child, but instead have aperson descen-
dant with such awatches child. The reason is thatXRel loses track of the commonperson ancestors
of matches to nodeq2 ( watches ) andq4 ( profile ), which are treated simply as matches to two dis-
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SELECT

NT3.start, NT3.end, NT4.start, NT4.end -- add matches to q3 and q4
FROM

PathTable PT1, PathTable PT2, PathTable PT3, -- join path, node and content tables

PathTable PT4, PathTable PT5,
NodeTable NT1, NodeTable NT2, NodeTable NT3, NodeTable NT4,
ContentTable CT5

WHERE

PT1.pathexpLIKE ‘#%/person’ AND -- match tag paths

PT2.pathexpLIKE ‘#%/person#/watches’ AND

PT3.pathexpLIKE ‘#%/person#/watches#%/open_auction’ AND

PT4.pathexpLIKE ‘#%/person#%/profile’ AND

PT5.pathexpLIKE ‘#%/person#%/profile#/gender’ AND

NT1.pathid = PT1.pathid AND -- match unary constraints

NT2.pathid = PT2.pathid AND

NT3.pathid = PT3.pathid AND

NT4.pathid = PT4.pathid AND

CT5.pathid = PT5.pathid AND

CT5.value = ‘XML’ AND

NT1.start < NT2.start AND NT1.end > NT2.end AND -- decide Child(q1,q2)
NT2.start < NT3.start AND NT2.end > NT3.end AND -- decide Parent∗1(q3,q2)
NT1.start < NT4.start AND NT1.end > NT4.end AND -- decide Parent∗1(q4,q1)
NT4.start < CT5.start AND NT4.end > CT5.end -- decide Parent(q5,q4)

ORDER BY

NT3.start, NT3.end, NT4.start, NT4.end -- order result as needed

Figure 8.18: SQL code for query evaluation withXRel (see Section 7.4.1). Blue colour highlights code
related to joins with the node or content table, whereas green colour is used for the decision of binary
query constraints. The query being evaluated is a variant ofthe query in Figure 8.5a. on page 104 where
the nodeq6 and the binary constraintNextSib(q6,q5) have been removed (sinceXRel does not support
sibling constraints).

tinct path patterns (#%/person#/watches and #%/person#%/profile in theWHERE part of the SQL
statement). By contrast, theRCADG keeps tuples of matches to all nodes in the query graph as interme-
diate results and hence never mixes up distinctperson ancestors. Faced with two nested partialperson

matches as just described (one satisfying only the constraints related toq2 and the other toq4), theRCADG
rejects both during phase 2 at the latest, but possibly even earlier during schema matching. In the same
way, it discards nestedparlist elements that only partially match the root of query X22 in Table 8.8.

8.5.3 Impact of Query Planning and Optimization

TheRCADG offers a considerable potential for query optimization. First, the path table neatly accommo-
dates certain statistical information about the document tree and its textual content, as sketched in Sec-
tion 8.2. The need to enhance relational query optimizers with such tree-specific data was pointed out by
Krishnamurthy et al. [2003]. Second, query evaluation may benefit greatly from logical query planning and
rewriting. For instance, query X4 from theXMark benchmark (see Table 8.6 on page 120) originally en-
forces only aNextEltconstraint between the twopersonref nodes. Replacing this with a more restrictive
NextSibconstraint between thebidder nodes reduces the processing time with theRCADG from 5287 ms
to 508 ms, if matches to all query nodes are to be computed. If only the reserve node is regarded as a
result node, the rewriting techniques described in Section8.4.3 remove thesite , open auctions and
personref nodes after schema matching, which again saves 68 ms, resulting in a total processing time of
440 ms as shown in Table 8.5 on page 119. Processing the secondkeyword constraint earlier in the query
plan would probably further accelerate the evaluation.
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8.5.4 Storage Requirements

Maintaining schema information besides the actual elementdata, as with theRCADG or CADG, comes at
only little extra cost in terms of storage. In our experiments, the path table occupies merely between 48 kB
(DBLP) and 120 kB (XMark 1100) on disk, including the various B+-Trees and optional fields mentioned
before. TheCADG schema tree in memory occupies 2 MB in both cases (with keyword signatures and
statistical information attached to the schema nodes, as described before). Only for the heterogeneous
INEX corpus the path table is nearly 2 MB on disk and the schema tree25 MB in memory.

By contrast, the element table of theRCADG grows to 17 GB forXMark 1100and 34 GB forIMDb
(again including all relational index structures). In particular, the materialized join of elements and the
keywords they contain introduces considerable redundancy, which on the other hand speeds up query eval-
uation. For instance, to support efficient keyword search, different keywords occurring in the same element
are stored in distinct rows of the element table, rather thanin a single tuple containing the full textual ele-
ment content as a string (this has been proposed, e.g., by Grust et al. [2004] forXPath Accelerator). While
our approach is certainly less compact (because there may bemultiple tuples for the same element/tag
path pair), it permits to solve keyword constraints with efficient equality conditions instead of substring
matching. We applied the same technique to theXPath Accelerator storage scheme to make both systems
comparable.

Note that in the experiments, theXPath Accelerator node and content tables together are only a little
smaller than theRCADG’s element table (XMark 1100: 3 GB + 11 GB; IMDb: 12 GB + 19 GB). By
contrast, theCADG originally stores elements with the same tag path and keyword together as a list in the
same tuple (non-first normal form), rather than in separate rows as with theRCADG. Therefore its element
table is considerably smaller (4.5 GB onXMark 1100, 5.2 GB onIMDb). For theRCADG, storing elements
in non-first normal form is infeasible because it prevents index conditions on individual elements, as used
by theBIRD rules in Figures 8.2 and 8.3.

To sum up, our experiments show that theRCADG scales up to multiple gigabytes and is far from
the quadratic space needed by highly redundant techniques like a fully materializedParent∗1 relation, as
proposed by Jiang et al. [2002]. The nativeCADG is more storage-efficient than the two relational schemes.
Yet we believe that from a user’s perspective, and given the steady advances of storage technology, retrieval
speed should be given a higher priority than space consumption.

8.6 Summary and Discussion

TheRelational CADG (RCADG) presented in this chapter exploits native XML indexing techniques for
the efficient evaluation of XML queries a relational database system. In particular, it has been shown how
a centralized structural summary (theCADG) and a decentralized structural summary (theBIRD labelling
scheme) can be migrated to the relational data model, and howsuitable query planning and rewriting exploit
these summaries to reduce the number and size of element setsto be joined in the RDBS.

The benefit of path indexing in RDBSs has been discussed in theprevious chapter for storage schemes
like XRel, which stores tag paths as strings in a path table, andBLAS, which represents tag path suffixes
as numeric intervals. Like theRCADG, these schemes match simple path expressions with fewer joins
than those without a path index [Krishnamurthy et al. 2003],like theXPath Accelerator or Edge schemes.
As described in Section 7.4, path-based approaches retrieve elements based on more restrictive selection
predicates, which simplifies index scans and reduces the size of intermediate results to be joined. Besides,
path-specific information like the node type is no longer stored redundantly for all elements with a given
tag path, but only once in the corresponding path table entry.

Contributions of the RCADG. The RCADG further enhances relational path indexing in several re-
spects, addressing several open problems mentioned in the literature. The key contribution of our approach
compared to previous work is theprecise compositional representation of tag paths. To the best of our
knowledge theRCADG is the only relational storage scheme to represent every tagpath prefix as a se-
quence of nodes (i.e., tuples in the path table). This has a number of advantages, also compared to the
abovementioned string-based or suffix-based approaches:
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• The entire query graph structure is matched against the pathtable before accessing the large element
table. Unsatisfiable schema constraints are detected extremely fast during retrieval phase 1. Ac-
cess to the element table are restricted to paths satisfyingall S-constraints. In particular, branching
path expressions are matched already on the schema level. This discards partial schema hits during
phase 1 that cannot be detected by less precise path indices like XRel andBLAS.

• Schema-level matching receives excellent indexing support through B+-Trees on the numerical in-
terval labels for schema nodes. This is more efficient thanXRel’s substring matching, especially for
paths with leading descendant steps. Matching tag path constraints through a selfjoin of the small
path table is cheap and happens entirely in the realm of the relational query optimizer.

• Representing the schema as a tree in the RDBS allows theRCADG to take advantage ofBIRD
reconstruction, which avoids expensive joins with the element table.

• The RCADG efficiently evaluates queries involving any XPath axis and//* steps, which string-
based approaches as proposed by Yoshikawa et al. [2001] and Jiang et al. [2002] support only with
more complex regular expressions. Furthermore,/* steps do not entail extra selfjoins of the element
table as withXRel.

• Existential XPath predicates are handled correctly even for recursive collections without a massive
join overhead, which is considered an open problem by Krishnamurthy et al. [2003]. False positives
in the final query result as withXRel are avoided.

• Prefixes shared by multiple tag paths are not stored redundantly as withXRel. No string operations
are needed to concatenate query path fragments, as withXRel or BLAS.

• Unlike the P-labels used byBLAS, the tag-path references in theRCADG’s element table are robust
against changes to the schema tree.

Fast tree matching in large recursive document collections. XRel’s incorrect handling of certain queries
against recursive collections was hinted at by Krishnamurthy et al. [2003], who concluded that “the general
problem of translation of path expressions with predicatesfor the path-based schema-oblivious schemes is
still open”. Node-indexing approaches like theXPath Accelerator or Edge schemes answer such queries
by triggering a selfjoin of the node table for each step in a query path, which is costly. With the exception
of BLAS, theRCADG is the only path-indexing approach we know of that correctlyhandles these queries.
BLAS achieves this by checking additional level constraints on elements, a technique which might also fix
XRel’s defective evaluation of such queries. TheRCADG does the same already on the schema level and
therefore needs much fewer comparison operations. Besides, theRCADG benefits from the reconstruction
capabilities of theBIRD tree encoding to avoid expensive joins with the element table. As shown in Chap-
ter 4, this feature is paramount to efficient large-scale processing of XML queries. While the experimental
results reported by Chen et al. forBLAS are in line with our findings concerning path- versus node-indexing
schemes, they are insufficient to judge the scalability of their approach up to tens of gigabytes.

Tree-aware query planning. The query planning and rewriting techniques presented in this chapter
strive to optimize the generation of SQL code for evaluatingtree queries in an RDBS. However, the way
a relational query kernel processes this code could also benefit from techniques specific to the tree data
model. Tatarinov et al. [2002] point out that “relational optimizers need to understand the hierarchical
structure of XML”. With theRCADG, statistical information kept in the path table enables more accurate
query planning based on properties of the document tree (notmerely the set of tuples stored in the element
table), such as the number of elements with a given tag path orthe number of distinct keywords contained
or governed by these elements. While in our experiments encouraging results were obtained without such a
“tree-aware” RDBS kernel, we expect that physical plans estimating access costs based on XML statistics
will further speed up the query evaluation.
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Indexing textual element contents. It has been mentioned before thatXPath Accelerator (and many
other relational storage schemes) keep elements and their textual contents in separate node and content
tables, unlike theRCADG which combines both in a single element table. As a matter of fact, theRCADG’s
element table is a materialized join of the node and content tables used by node-indexing storage schemes,
augmented with schema-level information in the form of references to the path table. Grust et al. [2004]
argue that separate node and content tables allow to match structural constraints on the document level
without accessing textual contents in the first place. This is an advantage when given unselective keyword
constraints. In particular, queries without any keyword constraint may run faster against a node table that
is clustered, say, in document order [Grust et al. 2004].

Of course, keyword constraints are often selective and thushelp to reduce the size of intermediate result
to be joined. With separate node and content tables, such queries are also easily processed through a simple
join on the document node labels. Here the RDBS query kernel automatically figures out whether to start
the join with the structure or keyword constraints. However, potentially selective schema constraints (such
as a specific combination of tag paths in the query) are not taken into account.

Therefore theRCADG combines tag paths, keywords and elements in a single element table which
is clustered by tag paths, keywords and elements, in that order. For queries with selective schema and
keyword constraints, this reduces the I/O during the element look-up. However, unselective constraints
may cause more disk pages to be accessed than with the separate node and content tables, due to the
clustering. Thus schemes likeXPath Accelerator and theRCADG are optimized towards distinct kinds of
query. However, while the difference between separate versus combined indexing of content and structure
is crucial in native XML retrieval (see Chapter 6), the impact in the relational scenario is probably lower.

The way element contents are indexed also has an impact on howto obtain an XML serialization of
the query results. Grust et al. [2004] sketch a method to create XML fragments on the fly by sequentially
scanning the node table in document order. Since theRCADG’s element table is clustered by tag paths and
keywords rather than elements, this could result in much random disk I/O. Therefore we keep the original
documents and the byte offsets for all elements instead. This allows to retrieve the original serialization of
any result element from the documents in time linear in the size of the XML fragment, not the overall size
of all documents.

8.7 Optimizations and Open Problems

The most obvious way to enhance query evaluation with theRCADG further is more sophisticated query
planning based on selectivity estimates of keywords, tag paths, and combinations of both. An interesting
question in this context is how much of the planning can be realized outside the RDBS and at which point
the relational optimizer must be modified. As shown before, query planning is also tightly related to query
rewriting, where more advanced rules might be developed. Infact, much work has been done in the field of
XML query optimization so far, which is largely complementary to our approach. For references to related
work, see Section 8.4.3 above.

Another obvious enhancement of theRCADG is the use of a structural join algorithm in the RDBS.
However, at the time of this writing such XML-specific functionality is not available in most off-the-shelf
database systems. Realizing structural joins as user-defined functions might be considered in the future.

We have also outlined how theRCADG seamlessly integrates keyword signatures, a heuristic technique
from Information Retrieval, in order to detect keyword mismatches early during schema matching. How-
ever, in a small-scale experiment this technique did not expedite the query evaluation. A more thorough
analysis is needed to understand whether this observation also holds for other queries on different document
collections.

Finally, it should be mentioned that theRCADG could in principle be combined with labelling schemes
other thanBIRD, although this would require parts of the query rewriting, planning and matching to be
revised. Chapter 3 has presented a small number of alternative labelling schemes with similar expressivity.
In particular, an approach with better update support, suchasORDPATH [O’Neil et al. 2004], could be
attractive at least for certain applications with highly dynamic document collections. However, sinceBIRD
offers high query performance combined with reasonable space consumption and integrates well with re-
lational query evaluation, we believe that it is a good choice for possible future work on theRCADG.
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CHAPTER

NINE

Caching Techniques for Incremental XML Retrieval

9.1 Overview

The preceding chapters have introduced different contributions to making the evaluation of XML queries
more efficient. So far it has been assumed that each query is evaluatedfrom scratch, i.e., regardless of any
previously computed search results for the same or other queries. However, in a typical query workload
there may be numerous queries whose results overlap at leastpartially. This applies in particular to an
iterative retrieval process as discussed in Section 1.3, where the user is encouraged to modify and run a
given query repeatedly in order to improve the retrieval results. This chapter reviews different ways to
store available query results in aquery cacheafter evaluation so that new queries might be answered based
on these cached results. Such reuse of query results is called incremental query evaluationin the sequel
because parts of the answers to future queries emerge gradually during the retrieval process. In the literature
the termsemantic cachingis also very common. The main challenge in incremental queryprocessing is to
detect and exploit containment or overlap of query results with only a small overhead for the cache look-up.
Later a new query cache will be presented that allows to do this more efficiently than with the approaches
discussed in this chapter. Experiments will also show that the incremental evaluation of a given query is
often much more efficient than its evaluation from scratch.

Since cached query results can be regarded as views on (part of) the original document data, incre-
mental query processing is an instance of the problem of query answering in the presence of views.
Calvanese et al. [2003] distinguish the following two variants of the problem: inview-based query con-
tainment, queries and view definitions are compared on the intensional level only, i.e., without accessing
the actual data. By contrast, inview-based query answeringthe results of a given query are computed from
both the view definitions and extensions. Notice that this requires the views to be materialized. Query
answering with views is notorious for being inherently complex in the relational data model, and the same
is true for semistructured data (see below). Despite the high theoretical complexity, however, many differ-
ent approaches have been proposed that strive to push the practical efficiency of incremental XML query
processing to its limits. They build on a variety of different computational and data models and retrieval
techniques such as, e.g., native XQuery engines [Chen and Rundensteiner 2005; Shah and Chirkova 2003]
or XQL engines [Quan et al. 2000], two-way finite state automata [Calvanese et al. 2002], tree automata
[Chen et al. 2002] orLightweight Directory Access Protocol(LDAP) servers [Marrón and Lausen 2002].

This chapter reviews a selection of representative approaches to the incremental evaluation of XML
queries using some sort of query cache. A thorough comparison and survey of the topic seems to be
missing as of the time of this writing. Besides the underlying data model and the expressiveness of the
query language, there are other potential criteria for comparison and classification. For instance, one could
start out by distinguishingschema-awareandschema-obliviousapproaches, as for the relational storage
schemes in Chapter 7. However, most systems reviewed below either ignore the document schema or
consider it only for query evaluation from scratch, but not for caching purposes. As a tentative guideline
to this overview – but also for future work in the field –, the following questions highlight the most salient
issues that can serve as marks of distinction when comparingXML caching techniques.
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1. query representation: Which query language and features are supported? If queries may be partially
answered using uncached data, which query engine is used forthat purpose?

2. cache representation: How are cache contents represented? Is the representationintensional or ex-
tensional? Is the cache held in main memory, or secondary storage, or both?

3. cache usage: Does the cache exploit or require a DTD or other schema specification? Can
results of distinct cached queries be combined to answer a given new query?
How to choose the best among alternative reusable queries inthe cache? Does
the system support a combined evaluation from the cache and from scratch?

4. query comparison: How are cached and new queries compared? Does the system take advantage
of result overlap, result containment, or only the repeatedevaluation of the
same query? What is the time complexity for detecting query containment or
overlap?

5. scalability: How does the system avoid cache overflows? Is there a cache replacement
strategy? Does the overhead for cache look-ups grow with thecache size?

6. practical benefit: Has the system been evaluated experimentally to quantify the practical benefit
of incremental query evaluation compared to the evaluationfrom scratch?
How effective and efficient is the cache look-up?

9.2 XML Query Containment and Overlap

Before reviewing a couple of methods for processing XML queries incrementally, a formal description of
the underlying decision problems is in order. The fundamental notion ofquery containmenthas already
been mentioned. It is often understood in a fairly abstract sense with no regard to the actual representation
of queries and their results, and sometimes even used without specifying its formal semantics. Intuitively,
a queryQc is said to contain another queryQn iff the answer toQc subsumes all matches toQn. Typically,
this intuition implies that ifQc containsQn and the result ofQc is available in the cache, thenQn can be
answered from the cache only, without accessing the original documents or any representation thereof.

However, after taking a closer look it turns out that whetheraccess to data outside the cache is needed
to evaluateQn depends on the exact representation ofQc’s answer in the cache. In fact, the conclusion
just mentioned silently assumes that each node in the document treeD that is part of some match toQc

is cached together with its entire subtree inD. For instance, supposeQc = //person/name andQn =
//person/name[.= "Lee"] , whereQn restrictsQc with an additional keyword constraint. Obviously
the set of matches toQn is a subset of the set of matches toQc, henceQc containsQn in the above
sense. However, to processQn incrementally, we must have access to the full textual content of the name

elements inQc’s answer. If matches toQc are only represented as sets of unique element labels in the cache
(as in the result tables produced by theRCADG evaluation that was presented in the previous chapter), then
answeringQn requires access to data outside the cache. Therefore, discussing the question of access to
data inside or outside the cache generally makes sense only with the concrete data representation of a given
caching approach in mind.

A second notion that is fundamental to incremental XML retrieval isquery overlapor partial query
containment. The overlapping of two XML queries that do not fully containeach other is ignored by
almost all caching techniques we know of, and therefore rarely defined in the literature. In fact, there are
multiple ways how queries can overlap or partially contain each other, some of which are easier to exploit
than others. Figure 9.1 on the next page contrasts differentcases of overlap/partial containment (a.–c.)
with full query containment (d.). The following definitions capture these differences.1 In this context,
recall from Definition 2.3 on page 10 that each match to a queryQ is essentially a set of document nodes
that together match the query nodes inQ. Given such a matcha, let v(a) be the set of document nodes ina.

1Here we assume a fixed document collectionD against which the queries are executed, as before. Note thatthe definitions in
this chapter are easily generalized to capture query containment and overlap without a fixed document collection.
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a. overlap (Definition 9.1) b. node-containment (Definition 9.2)

c. match-containment (Definition 9.3) d. (full) containment (Definition 9.4)

Figure 9.1: Query containment and overlap. Each of the four subfigures depicts a cached query and a new
query to be evaluated incrementally, together with their extensions (matches) in the document treeD from
Figure 2.1b. on page 8. Note that subfiguresa.–d. show different pairs of queries and results with a vary-
ing degree of similarity. Four decision problems are presented, roughly speaking, in order of decreasing
hardness for most caching systems:a. Overlapping queries only share individual elements in their results.
Missing elements or entire matches must be retrieved from scratch. b. If the new query is node-contained
in a cached query, some of its matches are entirely present inthe cache while others must be computed from
scratch. c. A cached query that match-contains the new query provides atleast some elements for each
match of the new query.d. Full query containment guarantees that the cached query is no more restrictive
than the new query, and that all elements in the query result are present in the cache. However, note that
the cached query result may need to be purged of false matcheswith respect to the new query.

Definition 9.1 (Query overlap) Let Qc and Qn be two queries. We say that Qc overlaps withQn, Qc⊃⊂Qn,
iff for at least one match an ∈ ans(Qn) there exists a match a∈ ans(Qc) such that v(an) ∩ v(a) 6= /0. �

Definition 9.2 (Node-containment)Let Qc and Qn be two queries. Besides, let An be the subset of matches
to Qn that share nodes with matches to Qc, i.e., An = {an ∈ ans(Qn) | ∃a∈ ans(Qc) : v(an) ∩ v(a) 6= /0}.
Finally, let VQn =

⋃

a∈An v(a) and VQc =
⋃

a∈ans(Qc) v(a). We say that Qc node-containsQn, Qc⊃v Qn, iff
Qc⊃⊂Qn and VQc ⊃VQn. �

Definition 9.3 (Match-containment) Let Qc and Qn be two queries. We say that Qc match-containsQn,
Qc⊃m Qn, iff for each match an ∈ ans(Qn) there exists a match a∈ ans(Qc) such that v(an) ∩ v(a) 6= /0.�

Definition 9.4 (Query containment) Let Qc and Qn be two queries. We say that Qc (fully) containsQn,
Qc⊃Qn, iff Qc match-contains Qn and Qc node-contains Qn. �
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schema constraints query constraints complexity proved by

with DTD
/ , [] , // , * ExpTime-complete Neven and Schwentick 2003, Wood 2003

/ , [] coNP-complete Neven and Schwentick 2003, Wood 2001

/ , // , * PTime Neven and Schwentick 2003

without DTD
/ , [] , // , * coNP-complete Miklau and Suciu 2002

/ , [] , // PTime Amer-Yahia et al. 2001

/ , [] , * PTime Wood 2001

Table 9.1: Complexity of XPath query containment with selected query and schema constraints.

9.3 Complexity of XML Query Containment

As mentioned before, the incremental evaluation of XML queries based on cached results depends on
methods to detect containment or overlap between queries inthe cache and a new query to be answered.
Many papers have studied the theoretical complexity of query containment on semistructured data for
different query languages which are mostly based on regularpath expressions. There are a number of
parameters to the query containment problem that have a considerable impact on its theoretical complexity.
These parameters include: (1) the query language used to express the cached queries or views and the new
query; (2) the input alphabet (i.e., set of symbols in the XMLdocuments) which may be either finite or
infinite; (3) whether we are interested in containment on either a fixed set of documents or any document
collection or all documents that are valid with respect to a given schema specification (e.g., a DTD); and,
most prominently, (4) particular features and restrictions of the query language, schema (if any) and the
concrete queries to be compared.

Table 9.1 summarizes some important complexity results concerning the containment of XPath queries
with various constraints on the queries and the document schema. The complexity of XPath containment
depends mainly on the allowed features of the language (e.g., which axes are used) and on the avail-
ability of schema constraints (e.g., in the form of a DTD). Most authors have studied different com-
binations of XPath features such as predicates (“[] ”), wildcard node-test (“* ”) and thechild and
descendant axes (“/ ”, “ // ”). They found that unless “* ” and “ // ” are both allowed, XPath contain-
ment can be decided in polynomial time [Amer-Yahia et al. 2001; Wood 2001; Miklau and Suciu 2002].
Miklau and Suciu also describe an algorithm for deciding containment in polynomial time that is sound, but
not complete. The situation is different in the presence of schema constraints, however. As Wood [2003]
points out, child or sibling constraints inferrable from a DTD permit to detect some cases of containment
that are not visible from the query intension alone. Yet suchconstraints also increase the complexity of the
query comparison. Neven and Schwentick [2003] show that as soon as predicates are allowed, deciding
XPath containment in the presence of a DTD requires exponential time.

Various other query and schema constraints have been considered in the literature to obtain a more
precise picture of the complexity of the problem. For instance, Neven and Schwentick extended the XPath
language with existential variable bindings and disjunction. Wood inquired into child, sibling and func-
tional constraints in DTDs as well as certain restrictions of tag repetitions in DTDs and queries. Before,
Deutsch and Tannen [2001] observed the impact of integrity constraints on XPath queries in the presence
of DTDs. Others have dealt with different query languages. For instance, Calvanese et al. [2000; 2002;
2003] considered both conjunctive queries over relationalviews and regular path queries over semistruc-
tured views of the documents, stressing the impact of whether the queries are expressed in terms of the
original or the view alphabet. They proved that deciding containment of regular path queries (with or
without inverse axes) needs exponential time in any case, although the tight complexity bounds vary.

9.4 XML Query and Result Caching

9.4.1 Incomplete Trees

In general a query cache can be expected to contain only part of the information needed to answer a given
query. Abiteboul et al. [2001b] therefore represent cachedquery results in a data structure that also speci-
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fies which information is missing in the cache. To this end, earlier work by Imielinski and Lipski [1984] on
incompleteness in relational databases is applied to a simple semistructured data and query model. Unlike
most other authors, Abiteboul et al. regard the XML data being cached as unordered. They describe the
document structure using a structural summary that is effectively a simplified variant of a DTD. The struc-
tural summary is mainly used for formulating queries. Any query is a prefix of the structural summary,
i.e., a subtree of the summary tree that includes its root, together with optional keyword constraints and tag
negation predicates. Queries may contain branchings of multiple root-to-leaf path patterns. More advanced
features such as XPath’s tag wildcard (“* ”) and the descendant axis (“// ”) are not supported.

Abiteboul et al. propose theIncomplete Treeas a main-memory cache data structure that comprises
both extensional and intensional parts. The extensional part of the Incomplete Tree is a prefix of the
document treeD, i.e., a copy of the upper part ofD (including the root ofD) that gradually becomes larger
as more and more query results are being added to the cache during retrieval.2 To indicate which data
are missing from the cache, the logical complements of all cached queries are intensionally represented
by extra nodes in the Incomplete Tree that have keyword constraints or DTD-style multiplicity predicates
attached. For instance, an intensional node below a path/people/person/name in the Incomplete Tree
might specify that the occurrences ofname elements in the cache exclude elements which donot contain
the keyword“Lee” . This information is inferred by negating queries whose results are to be cached (in
the example, a query involving the path/people/person/name combined with a containment constraint
for “Lee” ). Using the incompleteness information, non-redundantremainder queriescan be created in
polynomial time, i.e., queries extracting precisely thoseparts of the desired data that is missing in the
cache. Abiteboul et al. even claim that so-calledlocal queries, which are evaluated with cached elements
as context nodes, retrieve exactly the missing elements from the documents. However, it remains unclear
how document subtrees which have never been cached (due to some mismatch with all prior queries) can
be reached when using cached elements as context nodes. Moreover, the authors concede that generating
non-redundant remainder queries does not guarantee practical efficiency. No experimental evaluation is
provided in the literature.

A second issue concerns the size of the cache. Note that specifying missing information through query
negation may result in an exponential growth of the cache. Abiteboul et al. point out that this is a general
lower bound for representing the complement of a sequence ofqueries in the cache. They also describe
several workarounds which guarantee a maximum cache size that is polynomial in the total size of all
cached queries and their results. However, these techniques either make the cache look-up more complex
(in some cases, NP-hard) or further restrict the query language.

An alternative way to bound the cache size has been developedby Hristidis and Petropoulos in 2002.
Their XCacher system builds on the work by Abiteboul et al. and comes with support for a subset of
XQuery. Simplified XQuery expressions (no query nesting, document order, orLET clauses) are first trans-
lated into expressions of the same prefix-selection query language that has been used by Abiteboul et al.
(see above). The main difference ofXCacher compared to previous work lies in its central data structure,
theModified Incomplete Tree (MIT). The extensional part of the MIT is similar to the original Incomplete
Tree. Unlike the latter, however, the MIT intensionally describes the data currently cached, rather than the
data missing from the cache. Thus there is no need to compute query negations when adding results to the
cache. Combined with a partitioning of the possible elementcontent into a limited number of predefined
domain ranges (e.g., fixed intervals for numeric data in the documents), this avoids the exponential growth
of the incomplete tree. Notice that although both systems store all elements on root-to-leaf paths to query
matches in the cache, they still assume that the extensionalpart of the cache tree can be held in main mem-
ory. To cope with obviously resulting space limits and avoidcache overflows, Hristidis and Petropoulos opt
for expelling selected cache contents, and also sketch a simple replacement strategy (least-recently used).

9.4.2 HLCaches

HLCaches by Marrón and Lausen [2002] is a cache for XPath queries. TheHLCaches system uses an
LDAP server as its storage back-end.LDAP (short forLightweight Directory Access Protocol) is a net-

2Since queries do not contain descendant steps, query results comprise all nodes on a root-to-leaf path in the document tree.
Adding such a result to the Incomplete Tree is therefore guaranteed to preserve its prefix property.
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working protocol for accessing TCP/IP-based directory services [LDAP]. TheLDAP server provides a
query interface for simple navigation in the directory tree. HLCaches uses theLDAP infrastructure and
query engine for storing and retrieving the contents of XML documents, as follows. Each XML element or
text node is stored as a node in theLDAPdirectory tree. TheLDAPserver also maintains metadata includ-
ing the distinct kinds of directory nodes and their nesting,which resembles the schema tree for XML data
introduced before. This schema information is used for evaluating queries from scratch, but not for query
comparison. An XPath query to be evaluated is first split intosubqueries each of which entails a separate
query against theLDAP directory. During the creation ofLDAP queries, XPath navigation patterns in the
XML document tree translate to navigation patterns in theLDAP directory tree. Note, however, that the
LDAPquery language described by Marrón and Lausen does not support all XPath axes. In fact,HLCaches
seems to be restricted to XPath queries involving only thechild anddescendant axes as well as their
inverse relations.

SpecialLDAP nodes are reserved for caching processed queries and their results. The query cache
contains for each evaluated subquery the corresponding XPath expression (represented both as a string and
a hash code) as well as the set of elements matching that subquery. Each result element is stored together
with its context node. This allows for the following combined intensional and extensional query compari-
son. A new XPath query is decomposed into subqueries whose hash codes are looked up in the cache part
of theLDAP hierarchy. Subqueries are normalized before the look-up tocapture XPath-specific syntactic
variants such as inverse axes, etc. For each cached subquerywhose intension (i.e., XPath expression) is
equivalent to a new subquery, the sets of their context nodesare compared to determine whether the two
subqueries are equivalent or overlapping. In particular, if the cached set of context nodes includes the set
of context nodes of the new subquery, then the latter can be evaluated entirely from cache contents.

Notice that query containment detection is limited to thosesubqueries that have been processed in the
same form before (modulo syntactic variation). By contrast, cached subqueries that are strictly more gen-
eral than a given new subquery are not recognized as reusable. This might seriously limit the effectiveness
of the cache (no experimental results forHLCaches are given in the paper). Moreover, Marrón and Lausen
do not explain how to combine cached queries that only partially contain the new query with other over-
lapping cache contents or with fresh results retrieved directly from the documents. In particular, the related
issues of duplicate elimination and integration with the evaluation from scratch are not covered. Finally,
no strategy is given for decomposing new or cached queries tobe looked up or stored in the cache.

9.4.3 Prefix-Based Containment

Another XPath cache with a string-based look-up procedure was proposed by Mandhani and Suciu in 2005.
Their approach covers a subset of tree-shaped XPath queries(in particular, onlychild anddescendant
steps are allowed, and value joins are prohibited). The system requires a hybrid storage back-end to com-
bine relational data and XML fragments representing the cache contents. The cache consists of a number
of tables containing both the query intensions (as strings)and query extensions (as XML fragments). Sim-
ilar to HLCaches, any new queryQn is split into subqueries which are then normalized and represented as
slightly modified XPath strings. These strings are looked upin the cache in order to find a cached queryQc

that containsQn. The main difference toHLCaches lies in the way queries are decomposed and compared.
In particular, the technique put forward by Mandhani and Suciu does not only retrieve identical subqueries
in the cache, but also benefits from certain cached queries that are strictly more general than the query to
be evaluated. Note, however, that while the system offers limited support for checking the containment of
numeric value predicates in queries, keyword constraints cannot be compared during the cache look-up.
Besides, partial containment in cached queries is not exploited: any given query can reuse results from
at most one query in the cache, and there is no way to complete such cached results with other results
computed from scratch.

Mandhani and Suciu focus on a special case of full query containment that we refer to asPrefix-Based
Containmentin the sequel. Given any tree-shaped XPath queryQ, let thequery axisof Q be the path from
the root of the query tree down to the unique XPath result nodein Q. A query prefixof Q is obtained by
choosing any node on the query axis ofQ as asplit nodeand removing all nodes below it. Obviously there
are as many distinct prefixes ofQ as there are query axis nodes. The unique prefix ofQ that is obtained by
choosingQ’s result node as split node is said to bemaximalbecause it includes the whole query axis ofQ.
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The following sufficient condition for the containment of a new queryQn in a cached queryQc is
proved by Mandhani and Suciu:Qc containsQn if a split nodeqn on the query axis ofQn can be chosen
such that (1) the resulting prefix ofQn is equivalent to the maximal prefix ofQc, and (2) each predicate
below the result node ofQc is mirrored inQn, by a predicate belowqn that is either equivalent or more
selective. Intuitively, this means thatQc andQn are equivalent down to the level of the split nodeqn in Qn,
andQc is no more restrictive thanQn in the remaining query parts. The main problems are to choosea
suitable split node inQn such that there are cached queries satisfying the first condition, and then to check
efficiently whether they also fulfill the second condition.

The tables used for storing any cached queryQc include columns for the maximal prefix ofQc and
for the set of predicates below the result node inQc. These subqueries ofQc are stored as strings, after
some normalization intended to unify XPath-specific syntactic variations. An index on the prefix column
enables the fast selection of cached queries with a particular maximal prefix. When a new queryQn arrives,
first its maximal prefix is looked up in the cache (i.e., the result node ofQn is chosen as split nodeqn in
the beginning). Every cached query with the same maximal prefix (after normalization) is then examined
to determine whether each of the predicates below its resultnode has a counterpart inQn that is either
equivalent or more selective. To avoid the expensive computation of tree pattern embeddings between
predicates inQc andQn, Mandhani and Suciu suggest creating certain generalizations of the predicates
belowqn in Qn as soon as the split node is chosen. With this sort of query expansion, the above condition
on Qc’s predicates is easy to check: each of the result-node predicates inQc must appear in the expanded
set of predicates belowqn in Qn. Note that for effiency reasons only a limited number of generalized
predicates can be created, which might cause reusable queries in the cache to be overlooked. Also there is
no index on the cache table for supporting the predicate check.

The first cached query that is proven to containQn in this way is used for answeringQn incrementally.
If the predicates inQn are strictly more selective than those inQc, then the cached result ofQc is restricted
accordingly. By contrast, if no reusable query could be found in the cache, the next higher node on the
query axis ofQn is chosen as split node, and the query expansion and look-up recommence. This bottom-
up iteration throughQn’s axis nodes stops when either a containing query is found inthe cache or the
query comparison eventually fails for the root ofQn (in which caseQn must be evaluated from scratch).
The search for a good split node inQn is performed bottom-up because a greater speedup is expected
whenQc andQn share a longer prefix, since fewer predicates inQn need to be evaluated on a smaller cached
result. In the experiments an average speedup factor of 2.6 was obtained compared to the evaluation from
scratch, for a large query workload including many queries with locality (which a favourable to incremental
processing). As a small caveat, Mandhani and Suciu mention that the results also reflect the locality of disk
pages fetched before the actual experiments, when the cacheis created. This could mean that for systems
with a persistent cache, where no disk pages are fetched during start-up, the absolute response times are
longer and hence the speedup factor is smaller.

9.4.4 ACE-XQ

TheACE-XQ system by Chen et al. [2002; 2003; 2004; 2005] (formerlyXCache [Chen et al. 2002]) an-
swers XQuery expressions using materialized views. Acontainment mappingis established between the
variables in a new XQuery expression and a cached one. To thisend, queries to be cached are normalized
and then described in terms of the variables occurring in theRETURN clause or elsewhere in the query, the
path expression connecting them and conditions such as keyword constraints. To benefit from cached re-
sults, variables in the new query may only involve stricter conditions on structure or content than their
counterparts in the cached query. In other words, only full query containment is exploited (although
Chen and Rundensteiner [2005; 2002] report on experimentalresults for overlapping queries, which are
not explained). Recent work by Chen and Rundensteiner [2005] elaborates on XQuery containment in the
presence ofhierarchical multi-valued dependenciesamong variables, which can define different groupings
of the same data. Cache replacement strategies have been studied in the 2004 paper by Chen et al. However,
the problem of how to choose the best cached query for containment mapping remains open.
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9.4.5 Caching Based on Access Frequencies

Shah and Chirkova [2003] address the materialization of XMLviews on relational data accessed through
an XQuery interface. Unlike all other approaches mentionedso far, they assume a constantquery workload,
i.e., a fixed set of queries repeatedly evaluated by the system. The results of the most frequent queries are
stored as XML text fragments in a cache relation. To this end,access countersrecord which tuples are
used most often in query processing. From time to time, data in other frequently used tuples is added to the
materialized XML fragments, provided they are related to the cache contents in some way (e.g., because
they contain the same keywords). The authors claim that the data to be cached is chosen by a learning
algorithm, although the choice is made primarily based on the value of the access counters, and there
are no adaptive parameters that change over time like, say, weights in neural networks or other machine
learning paradigms. Also there is no training phase in the ordinary sense, where some sort of feedback
loop leads to a stepwise self-adjustment of the adaptive system parameters. The only adaptive parameter
is the threshold for selecting data that is access sufficiently often to be cached. However, the value of this
threshold is determined once empirically and then stays fixed.

The caching scheme proposed by Shah and Chirkova has a numberof disadvantages. First, the cache
creation and maintenance requires much manual intervention by the database administrator. In particular,
the choices to be made by the administrator include a value for the access count threshold, queries for
testing it, the relations to be monitored, and a suitable schema for the cached data. Furthermore, since
query results are cached as strings representing XML fragments, they cannot benefit from XML indexing
techniques nor can they serve as partial results to new queries, their structure being invisible to the relational
query processor. This makes it hard to exploit query containment and overlap in many cases. In fact, the
experiments reported by the authors mostly show that retrieving XML results materialized after a previous
run of the same query takes less time than computing the answer again from scratch, which is trivial.

9.4.6 Argos

The Argos system by Quan et al. [2000] addresses incremental query evaluation from a different point
of view. Targeting view maintenance for dynamic resources,it assumes a fixed query workload known
in advance that is evaluated repeatedly against documents which change over time. Contrast this to the
approaches described before, which are designed to handle previously unseen queries against a static docu-
ment collection. Covering a fragment of tree-shaped XQL queries,Argos retrieves cached results to queries
that have been processed before. During an initialization phase, all queries are evaluated once with their
keywords removed in order to produce materialized views on the current structural matches in the docu-
ments. Those matches that also satisfy the keyword conditions are flagged using truth values. The flags
guide the both the cache look-up and the insertion of new datainto the collection. Whenever the textual
document content changes, the flags for all affected structural matches are updated accordingly. However,
to cope with changes to the structure of the documents queries must be reevaluated. Note that query overlap
and partial query evaluation using materialized views are not examined. Besides, Quan et al. only evaluate
the proposed update algorithm, while the look-up efficiencyis ignored in their experiments.

9.5 Summary and Discussion

The goal of this chapter was to provide an informative, albeit non-exhaustive, overview of different caching
techniques for the incremental evaluation of XML queries. The various contributions reviewed above differ
in their way of representing queries, documents (possibly including the document schema) and cached
results; looking up reusable query results in the cache through query comparison; handling previously
unseen queries and partially relevant cached results; combining cache contents with each other and with
data retrieved directly from the documents; maintaining and cleaning up the cache over time; and evaluating
the practical benefit of the system on a real-world scale. Therest of this section highlights problems and
potential optimizations that have been largely ignored so far. Some of these issues will be reconsidered and
addressed in the next chapter where we present a novel approach to the efficient incremental processing of
XML queries, based on the contributions introduced in previous parts of this work.
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Extensional cache look-up and query comparison. Most of the caching approaches described above
either completely ignore the document schema or consider itonly for query evaluation from scratch, but
not for retrieving relevant cache contents. A given pair of acached and a new query is typically compared
on a purely intensional basis. However, the question to whatextent the results of two queries in a given
document collection actually overlap or even contain one another often cannot be answered from their
intensions alone. In such cases purely intensional approaches, failing to recognize valuable cache contents,
needlessly repeat the (possibly expensive) evaluation from scratch. In terms of the Three-Level Model of
XML Retrieval (see Figure 2.3 on page 13), it may be beneficialto compare queries not only on the query
level, but also on the schema level as an approximate view of the query extension that can be accessed
efficiently.

As mentioned before, some authors have investigated the useof DTDs for inferring structural con-
straints underlying the documents, which allow to detect otherwise invisible query overlap or contain-
ment. However, query comparison in the presence of DTDs has been mostly addressed from a theoret-
ical point of view in order to derive complexity bounds, while practical issues regarding efficient data
structures and algorithms are often ignored. The Incomplete Trees used by Abiteboul et al. as well as
Hristidis and Petropoulos (see Section 9.4.1) go in this direction, but lack indexing support for instanta-
neous access to relevant parts of the DTD tree. Besides, prescriptive schema specifications such as DTDs
are usually designed to capture a larger class of documents.Therefore they tend to be more general than
descriptive schemata like theCADG, which mirror the current structure of the documents more closely
and thus may reveal additional constraints to be exploited in the comparison. In the next chapter we show
how to make use ofCADG-based schema information and a suitable index structure for quick access to
potentially reusable query results in the cache.

Reuse of overlapping query results. The systems reviewed above exploit query containment to a varying
extent. While some only benefit from the cache when exactly the same query is evaluated repeatedly, others
take advantage of cached queries that are strictly more general than the current query to be answered.
For instance,HLCaches makes use of cached queries containing only a subquery of thenew query to be
evaluated, by looking up subqueries independently and thenrestricting their results to satisfy the remaining
constraints. However, while full containment can be handled this way, cached queries that deliver only
part of the final answer cannot be exploited. In fact only few systems take advantage from partial query
containment or overlap. The Incomplete Tree approach seemsto generate suitable remainder queries for
completing partial query results retrieved from match-containing queries in the cache, at the expense of a
potential cache blow-up. By contrast, it remains unclear whether the proposed solution with so-called local
queries can really add previously unseen matches to the query result, which is mandatory for exploiting
cached queries that indeed overlap with the new query, but donot match-contain it.

One problem that most systems would need to solve before handling such queries is the need for an
integrated query evaluation from cache and from scratch. (Abiteboul et al. [2001b] regard this as a kind of
mediation between the domain of the cache and the domain of the original documents.) The next chapter
presents a way to reuse cached query results that (perhaps partially) cover some matches to a given new
query, and to compute all missing matches (and missing partsof incomplete matches) from scratch in an
integrated retrieval process.

Reuse of intermediate query results. All caching techniques discussed so far assume that only final
query results are stored in the cache. However, XML queries (notably those with branching path pat-
terns) are typically evaluated not in a single operation, but rather stepwise by composing multiple inter-
mediate results that have been obtained for smaller subqueries. For instance, to answer the XPath query
Q1 = //person[name= "Lee"]//edu , some systems would first retrieve two node sets, namely, theset
of person elements whosename child contains an occurrence of the keyword“Lee” and the set of
all edu nodes with aperson ancestor. In a second step a structural join of the two sets would pro-
duce the final XPath result, i.e., thoseedu nodes that satisfy all query constraints. Let us assume that
the final query result is cached by any of the aforementioned systems, while the two intermediate result
sets are discarded. Now suppose that the system is given two new queries for incremental evaluation:
Q2 = //person[name= "Lee"] andQ3 = //person//edu . Obviously neither of these queries is con-
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tained in the cached query. In fact, the results ofQ1 andQ2 are disjoint (assuming XPath result node
semantics), while there is overlap betweenQ1 andQ3. In any case, a system that only exploits query con-
tainment fails to answer the new queries from the cache, although their results were readily available to the
system during the evaluation of the cached query.

Two conclusions can be drawn from the phenomenon just described. First, by examining the inter-
mediate results produced during the evaluation of a cached query one may discover query containment or
overlap with new queries, even though the final result in the cache is too restrictive to answer these queries.
Consequently, caching intermediate results can increase the effectiveness of the cache, allowing to exploit
query containment or overlap that exists only up to a certainstep during the evaluation of the cached query.

Second, the benefit of caching intermediate query results depends not only on the query workload, but
also on the planning strategies that were in effect when evaluating the queries that are now in the cache. For
instance, an alternative evaluation plan for the sample query Q1 above would be to retrieve three node sets
in the first place, namely,person nodes,name nodes containing the keyword“Lee” , and edu nodes.
Two structural joins would then be needed to produce the finalanswer to be cached. If the three node sets
were cached as intermediate results, bothQ2 andQ3 above could be answered from the cache, although
some extra effort would be needed to match theperson constraint. By contrast, the result of joining the
person and name node sets during the evaluation ofQ1 could also be kept in the cache, which would
immediately answerQ2.

We are not aware of any systems that store both final and intermediate results in the cache. Conse-
quently, the impact of query planning on the cache contents has been completely ignored so far. The next
chapter presents a new approach to caching both intermediate and final results, as well as an experimental
quantification of the resulting impact on the effectivenessof the cache. There we will also discuss related
issues such as the question which intermediate results to cache.

Choice of cache contents to be reused.There are only few approaches where all query results to be
cached are merged into a single data structure, such as the Incomplete Tree used by Abiteboul et al. [2001b]
(see Section 9.4.1). Most other systems store the results ofdistinct queries separately in the cache. If the
look-up for a new queryQn retrieves multiple cached queries that are not equivalent to Qn but can be
reused, these systems face the question which cached query to choose in order to minimize the compu-
tation and I/O required to answerQn incrementally. This problem of choosing the best among several
reusable queries in the cache is frequently ignored in the literature. The simple strategy proposed by
Mandhani and Suciu [2005] for Prefix-Based Containment (seeSection 9.4.3) is based on a purely inten-
sional comparison of the queries, ignoring extensional aspects such as the selectivity of query constraints
in Qn that remain to be processed. However, just like the extensional comparison of queries based on
schema information can help to detect query containment or overlap (see above), the choice of cached
results to be reused can benefit from access to query extensions, too. The next chapter explains a way to
combine intensional and extensional information in order to make a good choice.

Choice of query results to be cached. A general problem related to incremental query processing is the
question which query results should go into the cache or be removed from it at a given point in time. In
fact this question splits up into several subproblems that we only mention here briefly. The first question is
how to decide whether a given query is worth caching. For instance, a very unselective query with a huge
result might be a bad candidate because it occupies much space in the cache while hardly facilitating the
incremental evaluation of more specific queries to come. Second, if we assume a fixed size limit of the
cache, the problem of a cache overflow arises. Here the question is which queries to keep in the cache and
which to discard (if any). An imminent cache overflow may alsoaffect the selection criteria for new queries
to be cached, thus relating back to the first problem. Finally, for some applications it might be useful to set
up a functional cache at system start-up, rather than to begin with an empty cache. Here the problem is to
generate appropriate cache contents before the actual queries come in.
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TEN

TheRCADG Cache for XML Queries and Results

10.1 Overview

With the work onBIRD, CADG and RCADG that has been presented before, we have developed and
combined different contributions to making XML retrieval more efficient. An underlying assumption was
that each query to be answered would be evaluated “from scratch”, i.e., regardless of the answers to other
queries processed earlier, although such previous resultsmight contain some or even all matches to the new
query being processed. In this chapter we present theRCADG Cache, an XML query cache that allows for
efficient and scalable incremental query processing with theRCADG.

The benefit of caching query results for future use was recognized long before the advent of XML.
Experience with view-based query answering on relational data [Halevy 2001] shows that the incremental
evaluation based on cached query results can substantiallyimprove the performance of RDBSs compared
to the evaluation from scratch. In fact, the main problems related to caching are similar both for relational
and XML data: (1) to determine which cache entries contain (part of) the desired data, and (2) to choose
those cache entries from which the final result can be obtained with the smallest computational and I/O
effort. Yet for accelerating XML search it is not enough to apply techniques developed for view-based
query answering in RDBSs to XML data stored as tuples. An explicit representation of the hierarchical
structure of the data is needed to decide if and how some cached query results can contribute to answering
a given new query (except in the trivial case where the same query is asked repeatedly).

The preceding chapter has reviewed a number of caching techniques designed specifically for the incre-
mental retrieval in XML documents. Among these approaches,there are few RDBS-based systems. Prior
work on XML query caching has focussed mostly on native or hybrid retrieval engines. Therefore the idea
of extending theRCADG – which owes much of its efficiency and scalability to its entirely relational nature
– to incremental query processing was a particularly interesting challenge in its own right. But besides that,
theRCADG Cache also addresses some of the other issues mentioned before that earlier approaches have
left open.

Most notably, we present a way to take advantage of schema information provided by structural sum-
maries for finding reusable queries in the cache that would beoverlooked by purely intensional approaches,
and for retrieving cache contents that overlap with the desired answer. More precisely, theschema hitsthat
we compute when evaluating queries with theRCADG also help to detect query containment and overlap
efficiently in a combined intensional and extensional comparison procedure. Here we exploit the fact that
even when two queries cannot be compared directly, their schema hits can.The schema hits of a cached
queryQ are held in a main-memory index structure for fast cache look-ups without access to the actual
query results on disk. Comparing the schema hits ofQn andQ may reveal that while the matches to some
schema hits toQn must be computed from scratch, others are (perhaps partially) contained in the match
set of a schema hit toQ; in other words,Q overlaps withQn. Similarly, if the matches to all schema hits
of Qn are fully contained inQ’s match sets, thenQ containsQn. After the query look-up and comparison,
an integrated evaluation process retrieves part of the finalresult ofQn from one or more cached queries, if
possible, and the rest from scratch.
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The different notions of query containment and overlap havebeen formally defined in the preceding
chapter (see Section 9.2). Recall that while results of a cached queryQ containing a new queryQn may
only need to be purged of false positives with respect toQn, exploiting query overlap or partial containment
is more challenging because it allows only for an incompleteevaluation ofQn to be finished in following
steps, perhaps by accessing the full data set. As shown in Figure 9.1a.–c. on page 131, the result of an
overlapping queryQ may be incomplete in two ways: not necessarily all parts ofQn are matched inQ, and
also entire hits can be missing (which might be obtained fromother cached queries, though). Unlike prior
work addressing only query containment, where all desired data is subsumed by the result of a single cached
query, we consider the more general overlap problem because(1) completing partial and retrieving missing
matches is usually still faster than answeringQn from scratch; (2) the cached part of the result is quickly
available while the evaluation of the missing part is going on in the background; (3) when performing top-k
search, those matches retrieved in the cache may even sufficeto fulfill the request. These advantages can
be particularly rewarding in the interactive retrieval scenario that motivated this work (see Chapter 1).

TheRCADG Cache also addresses the open question of how to benefit from intermediate results com-
puted during the evaluation of queries to be cached. We have observed that all incremental approaches we
know of restrict themselves to caching merely final query results, despite the fact that even when the final
result to a cached queryQ is too restricted and hence useless for answeringQn, a partial evaluation ofQ
may yield full or partial matches toQn. As a matter of fact, intermediate results are sometimes much more
likely to overlap with subsequent queries (for an example see Section 10.3 below). Therefore theRCADG
Cache also stores intermediate results obtained during the evaluation of cached queries. The intermediate
results tables produced by theRCADG (see Chapter 8) conveniently provide the query processor with mul-
tiple “snapshots” of a query result as it evolved during the stepwise evaluation process. The information
which snapshots (i.e., intermediate or final results) are available for a particular query in the cache is de-
rived from the query plan that was used to compute them. Details about the underlying query plan are kept
as annotations to the schema hits in the main-memory part of the cache. One problem besides efficient
cache look-ups is to avoid a cache blow-up in space, due to therich information about query intensions,
extensions and plans in the cache.

Finally, we consider a preliminary strategy for choosing the best among several reusable queries in the
cache. Based on the query plans for the candidate queries, alternative plans are deduced for incrementally
answering the current query from the respective results in the cache. These plans are then compared in
terms of their execution cost, in order to exploit possibly the most useful cache contents.

Before explaining the nuts and bolts of incremental XML query processing with theRCADG Cache,
the next two sections present a couple of examples that illustrate the general ideas behind our approach.
Section 10.4 then explains to what extent theRCADG Cache takes advantage of query containment and
overlap. In Section 10.5 all essential data structures and algorithms of the cache are presented in detail.
Section 10.6 reports on our experimental evaluation of theRCADG Cache. The rest of the chapter high-
lights differences to other approaches as well as open issues and possible optimizations.

10.2 Schema Information in theRCADG Cache

Schema information is useful for incremental query processing because it helps to detect query overlap
or partial containment for queries that are hard to compare on a purely intensional basis. For instance,
consider the three queries in Figure 10.1a.–c. on page 143 which represent the intensional viewpoint,
depicting exactly the information that is visible on the query level. For the sake of the example, assume
that the final results of the queriesQ′ andQ (a., b.) have already been retrieved and stored in the query
cache (ignoring its exact structure for the moment). Noticethat the third queryQn (c.) cannot be proved
to be contained in any of the cached queries from the intensions alone: the keyword constraints“Lee” and
“female” makeQn more restrictive thanQ andQ′, but at the same time the tag disjunctiongender∨sex
is less restrictive. Thus we cannot decide whether the threeresult sets overlap, nor retrieve exactly the
intersection ofQn with Q or Q′, unless we compare the actual results in the documents. Since this would
requireQn to be evaluated from scratch, the cache contents seem useless for answeringQn. However, below
we show how to translate the intensions of all three queries to extensional constraints on the schema level,
which are then compared in order to obtain part of the answer to Qn from the cache at low computational
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and I/O cost.
In many situations the schema information is indispensablefor exploiting cache contents. For a cached

queryQc and a new queryQn whose intensions tell nothing about containment or overlap, schema hits
may show whetherQc nevertheless containsQn, or else which parts ofans(Qn) are missing inans(Qc)
and would need to be retrieved from other cached results or from the documents. Typical cases include the
following:

• Qc has aParentconstraint whereQn allowsParent∗1 (similar forChild and/or different proximity)

• Qc has a specific tag, type or level constraint that is missing inQn

• Qc has specific tag constraints whereasQn accepts the disjunction of a superset of these tags

• any combination of the above

As mentioned above, descriptive schemata, as up-to-date summaries of the current document structure,
often allow to detect more of the reusable cache contents than prescriptive schemata, which tend to be
too general. A key concept in comparing queries on the schemalevel areS-constraints andD-constraints
(see Definitions 2.7 and 2.8 on page 12). Recall from Chapter 8that a given queryQn is evaluated (from
scratch) with theRCADG in two phases: during schema matching, we match theS-constraints inQn against
the schema tree, which produces a set of schema hits. Then during document matching we successively
retrieve the occurrences of these schema hits while matching Qn’s D-constraints in an interleaved process.
To rephrase the caching problem, we would like to reuse (maybe partial) matches to (at least some) schema
hits from cached queries with constraints similar toQn, and match only the missing constraints inQn

against them.S-constraints play an important role in efficiently finding reusable queries in the cache. In
the sequel we assume that every query has at least one binaryS-constraint (caching queries withoutParent
andChild edges with theRCADG Cache is discussed in Section 10.8).

10.2.1 A Simple Example

First consider a cached queryQc that has exactly the same structure asQn in Figure 10.1c. on page 143,
but lacks the keyword constraints. ClearlyQc andQn have identicalS-constraints and hence the same two
schema hitsχQc

1 = χQn

1 andχQc

2 = χQn

2 (see Figures 2.1f., g. on page 8), but possibly different result sets.
To decide whetherQc overlaps withQn, we obviously need to compare thoseD-constraints in both queries
that correspond to each other. In this simple example the correspondence is easy to spot becauseQc

andQn are isomorphic. More involved cases are discussed below. The general idea is to compare the
(extensional) schema hits matching both queries along withtheir (intensional) query constraints. In what
we call schematization, all unary and binaryD-constraints in a query are applied to those nodes of a
particular schema hit which match the query nodes involved in these constraints. Intuitively, each query
node is “replaced” with the corresponding node in the schemahit. In the sequel, letQ↓χQ denote the
schematization of a given query,Q, with one of its schema hits,χQ. For instance, Figures 10.1f., g. depict
Qn↓χQn

1 andQn↓χQn

2 , i.e., the schematizations ofQn with χQn

1 andχQn

2 , respectively. ForχQn

1 , e.g., the
schematizedD-constraints areContains“Lee” (#2), Contains“female” (#5), Parent(#2,#1) andParent∗1(#5,#1)

(the inversion of the binary constraints is explained later). SchematizingQc with χQc

1 yields the same result,
except that the keyword constraints are missing.

The schematization of D-constraints tells us which parts ofQn and Qc must be reconciled: Qc andQn

overlap with respect toχQn

1 andχQc

1 if the schematizedD-constraints that we get forQc are no more re-
strictive than those obtained forQn on the same schema nodes. For the binary constraints inQc andQn, this
is trivial since they are equal (Parent(#2,#1) andParent∗1(#5,#1) in either query). However, the condition

would also be satisfied, say, if we had a binaryD-constraintNextElt+1 (#2,#5) in Qc↓χQc

1 and a corre-

spondingD-constraintNextSib+
1 (#2,#5) or PrevSib42(#5,#2) in Qn↓χQn

1 (now shown in Figure 10.1). In
our example, the overlap test also succeeds for the unary constraints in both queries because the empty
keyword constraint attached to node #2 inQc↓χQc

1 is obviously less restrictive than the keyword constraint

Contains“Lee” (#2) in Qn↓χQn

1 , and likewise for node #5. The test would fail, e.g., ifQc↓χQc

1 specified a

single keyword other than“Lee” for node #2 or an additional binary constraint not mirrored in Qn↓χQn

1 .
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Note that even if the test fails, the answers toQc andQn might happen to overlap or even be exactly equal
for the particular document collection in question. However, such coincidental overlap cannot be detected
without access to the document level. Hence our approach is necessarily incomplete, just like the purely
intensional techniques developed earlier.

In our simple example, theD-constraints inQc arenecessary conditionsfor any match toQn because
Qc⊃Qn, i.e.,Qc containsQn as defined in the preceding chapter (see Definition 9.4 on page131). In fact,
we can even make stronger statements with respect to the individual schema hits ofQc andQn, namely,
ans(χQc

1 )⊃ ans(χQn

1 ) and ans(χQc

2 )⊃ ans(χQn

2 ). Note that such containment between the matches to
particular schema hits may hold even when the two queries do not fully contain one another. For instance,
imagine thatQc is modified so as to accept only elements with tagsex as matches toqc

3, but not those with
tag gender . Clearly there is no full containmentQc⊃Qn under these circumstances: whileQc indeed
node-containsQn, as required in Definition 9.4 on page 131, the matches inans(χQn

2 ) are not mirrored in

ans(Qc), i.e.,Qc does not match-containQn. But still we haveans(χQc

1 )⊃ ans(χQn

1 ), so that at least a part
of Qn’s result can be retrieved in the cache. Thus the schematization sometimes permits to reuse cache
contents (in this case, the cached matches toχQc

1 ) that would otherwise be ignored.

Given thatans(χQc

1 )⊃ ans(χQn

1 ), thesufficient conditionsneeded to retrieve exactlyans(χQn

1 ) follow

from the comparison of the schematizedD-constraints inQc↓χQc

1 andQn↓χQn

1 . The goal is to create are-

mainder query[Hristidis and Petropoulos 2002] that returnsans(χQn

1 ) based onans(χQc

1 ) that is stored in
the cache, without repeating work that was done for before when evaluatingQc. Here the remainder query
for computingans(χQn

1 ) from ans(χQc

1 ) consists simply of the keyword constraintsContains“Lee” (#2) and

Contains“female” (#5). In other words, the matches toχQn

1 are obtained by selecting those matches toχQc

1 in
the cache where“Lee” occurs in thename element and“female” occurs in thesex element. If the cached
elements are stored with their textual contents, we save at least two accesses to the documents compared to
evaluatingQn from scratch. But even when the keyword constraints are checked against the documents (as
it is the case for theRCADG Cache, see below), starting from a limited set of cached matches that already
satisfy a certain number of query constraints (e.g., all binary constraints inQc) typically substantially re-
duces the evaluation cost in terms of CPU time and I/O operations. This is where the benefit of incremental
query processing comes from.

In fact we do not requireQc to node-containQn in order to take advantage of cached matches toχQc

1 ,
as in the example above. InsteadQn may well have some extra nodes not mirrored inQc whose matches
can be fetched from the documents during the evaluation of the remainder query. While this does cause
joins and possibly I/O, at least the cached matches toχQc

1 tell us exactly where to find the missing data
in the documents. For instance, supposeQn also included aParentconstraint to a fourth query node
with tag profile , similar to Q′ in Figure 10.1a. on the next page. Retrieving the missingprofile
element for every match toQc in the cache could be done very efficiently with theRCADG, given the set
of these matches as a starting point. Supporting overlapping queries in this way makes the cache much
more effective than other approaches that are restricted tofull query containment or even equivalence (see
Chapter 9). The definition ofschema-hit containmentbelow formally describes the degree of overlap
supported by theRCADG Cache.

10.2.2 The General Case

The simple example above illustrates how the schematization of D-constraints reveals which constraints
in Qn andQc correspond and must be compared in their restrictiveness. While for isomorphic queries this
is trivial, the real benefit of schematization shows whenQn andQc are structurally different. Two problems
must be solved here. First, we would like to be able to identify overlapping queries forQn in a (possibly
large) number of queries in the cache, and second, we need a way to compareQn’s schema hits and cached
schema hits that are not isomorphic.

To tackle the first problem, we also schematize theS-constraints in all queries to be cached or evaluated
incrementally.The schematization of S-constraints helps in locating cached queries that are potentially
useful for evaluating Qn. Note that while this look-up technique turns out to be very effective and efficient,
it cannot guarantee to produce only relevant candidates because even finding cached queries that overlap
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a. cached queryQ′ b. cached queryQ c. new queryQn

d. Q′ ↓χQ′ e. Q↓χQ f. Qn↓χQn

1

g. Qn↓χQn

2

Figure 10.1: Schematization of three sample queries
against the document tree in Figure 2.1b. on page 8.
a.–c. query intensions. d.–g. queries after schematiza-
tion with the schema hits in Figures 2.1d.–g. Note that
Qn has distinct schematizationsf., g. for the two schema
hits χQn

1 , χQn

2 , respectively. Binary constraints have been
normalized, tag constraints are shown for convenience.

with Qn would require access to the document level, let alone those that containQn. For efficiency reasons,
we simply look up all cached queries that share an edge with the new query after the schematization of
S-constraints. For instance, consider the queryQn in Figure 10.1c. again. Schematizing the two binary
S-constraints inQn, Child′(qn

1,q
n
2) andChild′ ∗1(q

n
1,q

n
3), as before yieldsChild′(#1,#2), Child′ ∗1(#1,#5) for

the schema hitχQn

1 andChild′(#1,#2), Child′ ∗1(#1,#6) for χQn

2 . Any schematized query with one of these
edges in the cache is regarded as a candidate for the comparison ofD-constraints, as described above.

However, there may be even more equally relevant queries in the cache that also include one of the
S-constraints above, albeit in a syntactically different way. For instance,Child′ ∗1(#1,#5) is of course
equivalent toParent′ ∗1(#5,#1). Moreover, after schematization we can even treatParent′ ∗1(#5,#1) and
Parent′ ji(#5,#1) as interchangeable for anyi, j because the vertical distance between the schema nodes
#5 and #1 is fixed, so that it does not matter which proximity bounds were specified in the original query.1

Therefore the schematizedS-constraints in any query being added to or looked up in the cache arenor-
malized, as follows: (1) everyChild′ constraint is replaced with its unique equivalentParent′ constraint;
(2) all proximity bounds forParent′ edges are replaced with the “∗” symbol; (3)Parent′ becomesParent
to prepare the subsequent comparison ofD-constraints; (4) tag, type and level constraints are discarded,
being unambiguous for schema nodes. In the case ofQn↓χQn

1 , this yieldsParent∗∗(#2,#1), Parent∗∗(#5,#1)

(see Figure 10.1f.), whereas forQn↓χQn

1 we haveParent∗∗(#2,#1), Parent∗∗(#6,#1) (see Figure 10.1g.).
Now assume that these constraints forQn are looked up in a cache that contains the results of the two

queriesQ′ andQ shown in Figures 10.1a. andb., respectively. As mentioned earlier (see Figures 2.1d., e.
on page 8),Q′ andQ each have one schema hit (χQ′ andχQ, respectively). The outcome of schematizing
Q′ with χQ′ , Q′ ↓χQ′ , andQ with χQ, Q↓χQ, is shown in Figures 10.1d. ande., respectively. The six
binaryS-constraints depicted there make up the schema-level contents of the cache (we ignore the cached
query answers on the document level for the moment). Lookingup Parent∗∗(#2,#1), Parent∗∗(#5,#1) and
Parent∗∗(#6,#1) for Qn in the cache, we retrieve bothQ′ ↓χQ′ andQ↓χQ (each sharing two binary con-
straints withQn↓χQn

1 and one withQn↓χQn

2 , see Figure 10.1). Now that we have found candidates for
the incremental evaluation ofQn, we need to check whether there is actually query containment or overlap
of Qn andQ′ or Q. This is done by comparing the schematizedD-constraints. The following definition

1Note that proximity bounds may only be ignored when schematizing the vertical tree relationsChild andParent.
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captures a sufficient condition for query overlap that is exploited by theRCADG Cache:

Definition 10.1 (Schema-hit containment)Let D be a document collection and let S be the schema tree
for D. Besides, letχQc

andχQn
respectively be schema hits in S for a cached query Qc and a new query Qn

against D. We say thatχQc
containsχQn

, χQc
⊃s χQn

, iff all of the following conditions are satisfied:

1. Qc↓χQc
either is a subgraph of Qn↓χQn

, or else contains no additional binary constraints that
introduce a proper restriction of ans(χQc

) in D.

2. Given any D-constraint in Qc↓χQc
that has a corresponding D-constraint in Qn↓χQn

, the former is
at most as restrictive as the latter. �

The first condition in Definition 10.1 explicitly states thatcertain additional constraints inQc which are
not mirrored inQn may be ignored. For instance, the schematization ofQ′ with χQ′ produces the binary
constraintParent∗∗(#5,#3) (highlighted green in Figure 10.1d. on the previous page) which is missing in
Qn↓χQn

1 (see Figure 10.1f.). However, removing this constraint fromQ′ would not alterans(Q′) because
the ancestors of the schema node #5 are unambiguously fixed. Hence this additional constraint inQ′ can
be ignored. Since the second condition in Definition 10.1 is also satisfied, we haveχQ′ ⊃s χQn

1 .
By contrast, the other cached query,Q, contains a binary constraint that must not be ignored. The

Parent∗∗(#4,#1) edge highlighted red in Figure 10.1e., which is not mirrored in Figure 10.1f., indeed
makesQ more restrictive: compare Figures 2.1e., f. on page 8 to verify that the matcha3 in ans(χQn

1 ) is

not part ofans(χQ), because of this edge. HenceχQ does not containχQn

1 in the sense of Definition 10.1.
Likewise, since theParent∗∗(#5,#1) constraint inQ′ ↓χQ′ andQ↓χQ (see Figures 10.1d., e.) is missing
in Qn↓χQn

2 (see Figure 10.1g.), the second schema hitχQn

2 for Qn is not contained in any cached schema

hit. Thereforeans(χQn

2 ) cannot be computed incrementally with theRCADG Cache. In this way we
examine all schematized constraints in a cached query that are not mirrored inQn to decide whether the
query can still contribute matches toQn. By contrast, extra constraints in the new queryQn are simply
added to the remainder query (see above). The second condition in Definition 10.1 is checked by comparing
D-constraints as described before.2

Through schematization we learn that part of the answer toQn – namely, the matches to the first
schema hitχQn

1 – can be obtained incrementally fromQ′ by matching the keyword constraints for“Lee”
and“female” againstans(χQ′) in the cache. By contrast, the rest of the answer toQn – namely, the matches
to the second schema hitχQn

2 – must be retrieved from scratch. Again, this distinction would be impossible
on the intensional level and even if a DTD were given.

10.3 Intermediate Query Results in theRCADG Cache

The examples above assumed that only the final results of the two queriesQ andQ′ are stored in the cache.
However, theRCADG evaluation algorithm matchesD-constraints step-wise, not all at once. Recall from
Chapter 8 that the result of every step in a query plan is stored in a separate table in the RDBS. Caching
these intermediate results can further increase the effectiveness of the cache when partial matches to a
cached query happen to coincide with results for the new query Qn.

For instance, assume that theD-constraints in the queryQ from Figure 10.1b. on the previous page
have been matched according to the query planPQ shown in Figures 8.11a., b. on page 109. Recall that
PQ comprises three steps: in the first two steps,sQ

1 andsQ
2 , theD-constraintsChild(q2,q1), Parent∗1(q4,q1)

andContains“female” (q4) are matched, producing as an intermediate result the two matchesa2,a3. This
intermediate result after stepsQ

2 is symbolized by the blue ellipse in Figure 10.2 on the facingpage. Only
in the third step,sQ

3 , the edu nodeq3 is matched, causinga3 to be discarded from the final answer toQ

(grey ellipse in Figure 10.2). Thus beforesQ
3 , all matches toχQn

1 (namely,a2 anda3) can be obtained from

2Note that when looking up a new schematized queryQn↓χQn
in the cache, every schematized queryQc↓χQc

that is retrieved
shares some binaryS-constraints (i.e.,Parent′ or Child ′ edges) withQn↓χQn

. For the corresponding binaryD-constraints (i.e.,Parent
andChild edges) inQc↓χQc

, the second condition in Definition 10.1 is trivially fulfilled. This means that in fact this condition need
only be checked for additional constraints inQc↓χQc

that are not mirrored inQn↓χQn
.
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Figure 10.2: Containment and overlap of intermediate and final query results. An intermediate result for
the queryQ shown on top (center) contains two document matches,a2 anda3 (blue ellipse on the bottom
level). In the last step of the evaluation ofQ, the matcha3 is discarded from the final answer toQ (grey
ellipse). Thus only the intermediate result forQ contains all matches to the first schema hitχQn

1 of Qn (left
half of the green area on the bottom level), whereasQ’s final answer is too restrictive forQn.

the intermediate result ofQ in the cache. (Observe that in Figure 10.2 the blue ellipse denotingans(χQ)

and the left part of the green area denotingans(χQn

1 ) contain the same set of matches, namely,a2 anda3).
This makesQ a competitor ofQ′ in the contribution of cached query results for evaluatingQn. Moreover,
Q’s matches already satisfy the keyword constraintContains“female” (#5) that also appears inQn, but notQ′.
Thus the intermediate result forQ in the cache even permits to answerQn more efficiently than when
usingQ′. The query planner described in Section 10.5 below therefore prefersQ to Q′, thus saving an
access to the document level.

The example illustrates how the caching of intermediate results can improve both the effectiveness of
the cache and the efficiency of the evaluation of remainder queries. Of course, this benefit comes at the
expense of higher storage demands (see Section 10.6 for experimental results). In order to keep track of
the intermediate results available for the queryQ in the cache, we annotate each schematizedD-constraint
in Q with the unique step in the underlying query planPQ in which that constraint was matched during
the evaluation ofQ. This allows to determine the latest evaluation step inPQ after which the cached
schema hitχQ can be reused for answering the new queryQn. Let JχQK

sQ
2

denote the part ofQ after

schematization withχQ that has been matched before or in stepsQ
2 , i.e., everything but the highlighted

portion of Figure 10.1e. on page 143. In our example, we haveans(χQn

1 ) = ans(JχQK
sQ
2
), hence the

intermediate result forQ obtained in the stepsQ
2 can be used for answering part ofQn.
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10.4 Exploiting Containment and Overlap with theRCADG Cache

The preceding sections have sketched how to take advantage of queries in theRCADG Cache that overlap
with or even contain a queryQn to be evaluated incrementally. However, not all cached matches to such
queries can be exploited in that way. In fact, our technique reuses the sets of matches to cached schema
hits that contain all matches to a given schema hitχQn

of Qn, as defined above. In other words,ans(χQn
)

cannot be obtained by combining sets of matches to multiple schema hits in the cache. Note, however, that
matches to distinct schema hits ofQn may well be obtained from different schema hits or even different
queries in the cache. The following definition formally specifies which part of the answer toQn can be
taken from the cache:

Definition 10.2 (RCADG Cache overlap) Let D be a document collection, let S be the schema tree for D,
and let C be anRCADG Cache built from queries against D. Besides, let Qn be a query against D to be
evaluated incrementally using the contents of C. Furthermore, for any query Q against D let XQ be the
set of schema hits of Q in S, and let XC =

⋃

Qc∈C XQc
be the set of all schema hits stored in the cache C.

Finally, let X= {χQn
∈ XQn

|∃ χC ∈ XC : χC ⊃s χQn
} be the set of schema hits of Qn that are contained in

any cached schema hit (see Definition 10.1 on page 144).
TheRCADG Cache overlapansC(Qn) for Qn in C is defined as ansC(Qn) =

⋃

χQn
∈X ans(χQn

). �

TheRCADG Cache overlapansC(Qn), ansC(Qn) ⊂ ans(Qn), denotes exactly the subset of document
matches toQn that is taken from the cache (and possibly completed with data from theRCADG element
table through remainder queries, as explained in the next section). Note that we can compute the union
in the definition ofansC(Qn) without checking for duplicate matches since the sets of matches to distinct
schema hits of the same query are always disjoint, as observed in Section 2.3.

As can be seen from Definition 10.2,ansC(Qn) subsumes all matches to those schema hits forQn that
are contained in any cached schema hit. In other words, schema-hit containment is necessary for detecting
and exploiting query overlap with theRCADG Cache. On the other hand, remember that schema-hit con-
tainment is only a sufficient condition for query overlap, i.e., there may be partial or even full containment
between queries whose schema hits violate either conditionin Definition 10.1 on page 144. This is be-
cause query overlap and containment are defined in terms of the document matches to the queries, but the
schema-level view provided by the schema hits is only an approximation of the actual query extension on
the document level. Hence the method to detect query overlapthat we propose is necessarily incomplete
with respect to the definitions on page 131. However, it is complete in the sense that a cache look-up for a
given schematization ofQn retrieves all schematizations of cached queries whoseS- andD-constraints are
equivalent or more general.

10.5 Incremental Query Evaluation with theRCADG Cache

This section presents the data structures and algorithms for incremental query evaluation with theRCADG
Cache. The cache stores the queries, query plans and query results(both intermediate and final) obtained
in theRCADG evaluation procedure that is described in Chapter 8. It consists of (1) a main-memory index
structureC containing the intensions, schema-level extensions and evaluation plans of the cached queries,
and (2) the document-level matches to all cached queries, which reside in result tables in the RDBS.

Each query to be cached is normalized and schematized as described above (see Section 10.2). The
resulting graph is decomposed into itsschema edges(the binary constraints between schema nodes in Fig-
ures 10.1d.–g.on page 143), which are then stored inC. The same decomposition, applied to a schematized
new queryQn, produces the schema edges to be looked up inC. The look-up result is a mappingLQn

be-
tween schema edges created forQn and schema edges belonging to some cached queries, togetherwith
information about the query plans that were used to match thelatter.

The schema edges retrieved in the cache tell us which cached queries and schema hits are candidates
for (partially) answeringQn. Every pair of schematizations of a cached query andQn that have a schema
edge in common (likeQ↓χQ andQn↓χQn

1 in Figures 10.1e., f.) must be tested for schema-hit containment,
as sketched before (see Section 10.2.2). This way we computea setHQn

of cache hitsspecifying (1) all
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Figure 10.3: Integrated query evaluation with theRCADG andRCADG Cache.

cached schema hits that contain a schema hit forQn (see Section 10.2), (2) the evaluation steps providing
the right “snapshots” of their sets of matches in the cache (see Section 10.3), and (3) the remainder queries
for restricting and/or completing these cached results, depending on the additional constraints inQn. Once
the cache hits are available, a query plan is created for eachremainder query, telling us how to obtain the
desired matches toQn based on the data specified by the corresponding cache hit andperhaps the full data
set in the element table. Since the same subset ofQn’s answer may be obtained from distinct cache hits,
we propose a cost measure that indicates which of several alternative plans to execute in order to exploit
the best-fitting cache hit. Owing to schema information, no duplicates need to be eliminated when merging
results from distinct query plans.

Figure 10.3 illustrates the integrated query evaluation with theRCADG andRCADG Cache. Every
query to be evaluated incrementally is first matched on the schema level. The resulting schematizations
are then decomposed into schema edges, which are looked up inthe main-memory part of the cache.
Those schematizations for which no relevant cache contentscould be retrieved are evaluated from scratch,
as explained in Chapter 8. The others enter the query comparison phase, where query constraints are
examined in order to decide for which schema hits matches areavailable in the cache. Again some schema
hits may be scheduled for the evaluation from scratch. Queryplanning is essentially the same for both
evaluation threads, except that for the incremental evaluation only remainder query plans are devised,
not full evaluation plans. The aforementioned cost estimation selects the most promising among multiple
alternative plans for matching a given schema hit from the cache. The routines for translating and executing
query plans are identical. The disjoint union of all resultsfor distinct schema hits yields the final result.
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schema edge cache edges

Parent∗∗(#5,#1) 7→ { 〈 Parent∗∗(q4, q1), sQ
1 , {χQ } 〉 ,

〈 Parent∗∗(q
′
3, q′1), sQ′

1 , {χQ′} 〉 }

Parent∗∗(#2,#1) 7→ { 〈 Parent∗∗(q2, q1), sQ
2 , {χQ } 〉 ,

〈 Parent∗∗(q
′
2, q′1), sQ′

2 , {χQ′} 〉 }

Parent∗∗(#5,#3) 7→ { 〈 Parent∗∗(q
′
3, q′4), sQ′

1 , {χQ′} 〉 }

Parent∗∗(#4,#1) 7→ { 〈 Parent∗∗(q3, q1), sQ
3 , {χQ } 〉 }

Figure 10.4: TheRCADG Cache C{Q′,Q} containing the schematized queriesQ′ ↓χQ′ andQ↓χQ from
Figures 10.1d., e. on page 143. Every distinctschema edge, i.e., a binary constraint from any of the
schematized queries (left-hand side), is mapped to a set ofcache edgesfor different queries in the cache
(right-hand side). Each such cache edge specifies (1) the corresponding query edge before schematization,
(2) the evaluation step in which the constraint was matched,and (3) the set of schema hits that produced
the contraint during schematization. In our example, thereare only singleton sets of schema hits because
bothQ′ andQ each have only one schema hit.

10.5.1 Storing Queries in theRCADG Cache

The main-memory partC of theRCADG Cache is a mapping from schema edges to sets of so-calledcache
edgesthat indicate which queries and schema hits in the cache produced a particular schema edge during
schematization. Figure 10.4 depictsC after adding the queriesQ′ andQ from Figure 10.1 on page 143,
assuming the schema hits and query plans discussed above. Werefer to this particular cache asC{Q′,Q}.

For instance, consider the first entry inC{Q′,Q}, which maps the schema edgecs = Parent∗∗(#5,#1) to

two distinct cache edges. The first cache edge,〈Parent∗∗(q4,q1),s
Q
1 ,{χQ}〉, indicates that schematizing the

binary constraintParent∗∗(q4,q1) in Q with the schema hitχQ produced the schema edgecs, and that this
constraint was matched on the document level in stepsQ

1 during the evaluation ofQ. Likewise, the second
cache edge associated withcs in C{Q′,Q} states that the same schema edge is also part ofQ′ ↓χQ′ . Note that
the two cached queriesQ andQ′ bind the same schema node #5 to query nodes with differentD-constraints:
as shown in Figures 10.1d., e.on page 143, the query nodeq4 in Q has a keyword constraint for“female”
whereas the query nodeq′3 has no keyword constraint. When retrieving the two cache edges during the
look-up for a new queryQn, whose schematization also containscs, the differentD-constraints attached to
q4 andq′3 will need to be compared to theD-constraints inQn (see Section 10.5.3 below).

In Figure 10.4 each cache edge covers exactly one schematization of a query in the cache. For instance,
the cache edge in the first row represents a binary constraintin Q↓χQ and the cache edge in the second
row represents one inQ′ ↓χQ′ . Note, however, that in general multiple schema hits for thesame cached
query may produce the same schema edge. An example is given inFigures 10.1f., g. on page 143 where
the schema edgeParent∗∗(#2,#1) is part of bothQn↓χQn

1 andQn↓χQn

2 . Therefore each cache edge stands
for a set of schema this, as indicated by the curly braces around χQ andχQ′ in Figure 10.4. It is easy to
see that all schema hits in a given cache edge coincide on the corresponding query edge, i.e., they map
its source and target nodes to the same pair of schema nodes. Also note that a cache edge for a particular
evaluation step has no other (but maybe fewer) schema hits than any cache edge an earlier step in the same
query plan because schema hits may be discarded, but not added during the evaluation (see Chapter 8).

As more queries are added to the cache, new cache edges with different binary constraints, eval-
uation steps and schema hits are associated with new or existing schema edges inC. HenceC is a
one-to-many mapping from schema edges to cache edges.

10.5.2 Retrieving Cache Contents

Every new query to be evaluated incrementally first undergoes the same schema-level rewriting and match-
ing procedures that were described for the evaluation from scratch (see Sections 8.4.1 and 8.4.2). In the
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schema
hit

evaluation
step

match edges

new edge cache edge

χQn

1 7→ { sQ
1 7→ { 〈 Parent∗∗(q

n
3, qn

1), 〈Parent∗∗(q4, q1), sQ
1 , {χQ }〉 〉 } ,

sQ
2 7→ { 〈 Parent∗∗(q

n
2, qn
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Figure 10.5: The resultLQn

{Q′,Q} of looking up cache edges inC{Q′,Q} (see Figure 10.4 on the preceding

page) for the schematized binary constraints inQn↓χQn

1 andQn↓χQn

2 (see Figures 10.1f., g. on page 143).
The look-up result is a nested mapping with the following structure. Each of the two schema hits forQn

(left column) is mapped to a nested mapping that groups the retrieved cache edges by evaluation steps.
Every distinct evaluation step from any of the retrieved cache edges (middle column) is mapped to a set of
match edgeseach representing the matching of a relevant binary constraint which happened in that step.
A match edge simply binds a cache edge to the corresponding query edge inQn, and thus indicates which
D-constraints in a cached query and inQn must be compared.

case of our sample queryQn, this yields the two schema hitsχQn

1 andχQn

2 . Next, the query is normalized
and schematized with each of these schema hits, as shown in Figures 10.1f., g. on page 143. The resulting
schema edges are then looked up in the main-memory part of theRCADG Cache. In our example, three
distinct schema edges are looked up, namely,Parent∗∗(#5,#1), Parent∗∗(#2,#1) andParent∗∗(#6,#1). In the
cacheC{Q′,Q}, four cache edges are retrieved for the first two schema edges(top four rows in Figure 10.4
on the facing page) whereas there is no hit for the third one.

The look-up result forQn is rearranged in a nested mapLQn
(see Figure 10.5), as follows. Each

cache edgecc retrieved for a schema edgecs is bound to the binary constraintc in Qn that createdcs.
For instance, looking up the schema edgecs = Parent∗∗(#5,#1) that was created from the binary con-
straintc = Parent∗∗(q

n
3,q

n
1) in Qn, we retrieve the cache edgecc = 〈Parent∗∗(q4,q1),s

Q
1 ,{χQ}〉 in C{Q′,Q}.

Thereforec andcc are associated in the first entry ofLQn
in Figure 10.5. Henceforth we refer to such a

pair 〈c,cc〉 of a query edgec in Qn and a cache edgecc retrieved forc as amatch edge. Match edges
specify whichD-constraints in a cached and a new query must be reconciled for schema-hit containment
to hold true. In this case, the first match edge in Figure 10.5 specifies that the second condition in Defini-
tion 10.1 on page 144 must be checked for theD-constraints attached to two pairs of query nodes, namely,
qn

3,q4 andqn
1,q1. The differences and relations between schema edges, cacheedges and match edges is

summarized in Table 10.1 on the following page.
As can be seen in Figure 10.5, the look-up forQn in C{Q′,Q} produces six match edges (right-hand side,

one match edge in each row). The nested structure ofLQn
emerges when grouping these match edges by

(1) by the schema hit forQn for which the cache edges were retrieved (left column) and (2) by the evaluation
steps in the cache edges (middle column), in that order. For instance, the first four match edges inLQn

were
retrieve forQn↓χQn

1 and the last two forQn↓χQn

2 . Note that sinceQn↓χQn

1 andQn↓χQn

2 share the same

schema edgeParent∗∗(#2,#1) (see Figures 10.1f., g. on page 143), the match edges forχQn

2 in the last two

rows of Figure 10.5 are duplicates of the match edges forχQn

1 in rows two and four. This redundancy
will allow us to obtain matches to distinct schema hits forQn independently, which is a characteristic of
the notion ofRCADG Cache overlap introduced before (see Definition 10.2 on page 146).In fact, LQn

is
usually not materialized in its entirety at any given point in time. Instead we successively and separately
create, then process and finally discard each of the distincttop-level entries for all schema hits ofQn (see
below).

As indicated by the curly braces in Figure 10.5, each nestinglevel in LQn
is a one-to-many mapping.

On the lower level (right-hand side), there may be multiple cache edges representing binary constraints in
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edge type description

query edge c
(Fig. 10.1 a.–c.)

Specifies a binary query constraint on the intensional level. These are the edges in
the query graph. There are query edges for expressing all XPath axes.

schema edge cs
(Fig. 10.1 d.–g.)

Represents a schema-level match to a query edge for a specific schema hit. Schema
edges are created by schematizing queries to be cached or to be looked up in the
cache. They serve as keys in the main-memory part of the cache, allowing to
retrieve cached candidate queries for a new query to be evaluated incrementally.

cache edge cc
(Fig. 10.4)

Indicates which query edge in a cached query corresponds to a particular schema
edge, and which schema hits produced that schema edge during the schematization
of that query. Cache edges serve to collect all schema hits to a cached query that
are relevant to a specific schema edge being looked up in the cache. Each cache
edge also specifies in which evaluation step the query edge in question was matched
on document level.

match edge cm
(Fig. 10.5)

Binds a cache edge to a query edge that belongs a new query being looked up in
the cache. Match edges specify which D-constraints in a cached query correspond
to which D-constraints in the new query. This is essential for deciding schema-hit
containment and creating remainder queries that return the RCADG Cache overlap.

Table 10.1: Different representations of binary query constraints (“edges”) during the incremental evalua-
tion process. Only query edges (first row) are part of the query model (see Section 2.2). All other types of
edge are needed for retrieving and comparing queries that are stored in theRCADG Cache.

a specific cached query that were matched in the same evaluation step (although this is not the case for
our sample queriesQ′ andQ in the cache). The upper level ofLQn

(left-hand side of Figure 10.5) is a
one-to-many mapping, too, since for the same schema hit of a new query, cache edges for different queries
and evaluation steps may be retrieved in the cache, as shown in the figure.

Finally, note that the look-up resultLQn
for Qn only covers the first two steps in the evaluation of the

cached queriesQ′ andQ. In particular, the cache entries inC{Q′,Q} for the schema edgesParent∗∗(#5,#3)
andParent∗∗(#4,#1) (last two rows in Figure 10.4 on page 148) are not retrieved because these are not part
of any schematization ofQn (see Figure 10.1 on page 143). Provided that the mapping underlying C{Q′,Q}
is implemented so as to avoid a sequential scan of the memory-resident cache part (e.g., using suitable hash
functions), such irrelevant cache contents are typically never touched during the look-up. This means that
even as the cache grows, the promising candidate queries areretrieved very efficiently. In Section 10.6 we
experimentally confirm the scalability of theRCADG Cache.

10.5.3 Deciding Schema-Hit Containment

This subsection presents an algorithm for computing theRCADG Cache overlap (see Definition 10.2 on
page 146) for a new queryQn to be evaluated incrementally, given the cache look-up result LQn

. At the
heart of the algorithm is the decision procedure for schema-hit containment. For each cached schema hitχ
in LQn

that was retrieved for a schema hitχQn
of Qn, we check whetherχ ⊃s χQn

as defined on page 144.
If the test succeeds, we create a cache hit saying thatχ ⊃s χQn

to the setHQn
of cache hits forQn. Before

explaining the containment test and the creation of cache hits, let us take a brief look at the set of cache
hits that are eventually produced for the queryQn in Figure 10.1 on page 143, assuming the cacheC{Q′,Q}
that containsQ′ andQ, as before.

Figure 10.6 on the next page depictsHQn

{Q,Q′}, i.e., the set of cache hits obtained forQn in the example

above. Two cache hits have been created from the look-up result LQn

{Q,Q′} in Figure 10.5 on the preceding
page. Each cache hit specifies in the three leftmost columns how to obtain the matches to a specific schema
hit for Qn (in the example,χQn

1 ) from the matches to a particular schema hit in the cache (χQ or χQ′ ) using

a fixed snapshot (stepssQ
2 andsQ′

2 , respectively). For instance, the cache hitκ in the first row in Figure 10.6

tells us thatans(χQn

1 ) is a subset ofans(JχQK
sQ
2
). Furthermore, from the pairs of corresponding edges in

the queriesQn andQ (middle), we see that the matches to the query nodeqn
1 in Qn are taken from the set of
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cache
hit

final
step

schema
hits

corresponding edges in
new and cached queries

constraints in
remainder query

κ = 〈 sQ
2 , {JχQKsQ

2
⊃sχQn

1 },

{ 〈
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n
2,q

n
1)
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〉
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〈
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〉 }
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2
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}

〉

Figure 10.6: The setHQn

{Q′,Q} of cache hits forQn, constructed fromLQn

{Q′,Q} in Figure 10.5 on page 149. The

two cache hitsκ andκ ′ both obtainans(χQn

1 ) from the cache, whereasans(χQn

2 ) must be computed from
scratch. The cache hit in the first row,κ , reuses the intermediate result that was cached after the second
step in the evaluation of the queryQ, with one keyword constraint as remainder query. The cache hit in the
second row,κ ′, needs two keyword constraints against the final answer to the queryQ′ in the cache.

matches toq1 in the mentioned subset, and likewise forqn
2,q2 as well asqn

3,q4. Finally, the remainder query
in the rightmost column indicates which subset of the cachedresults is relevant toQn. In the case ofκ ,
a single keyword constraint narrowsans(JχQK

sQ
2
) down to those tuples where the elements matchingqn

2

(i.e., q2) contain the keyword“Lee” . Alternatively, the second cache hitκ ′ shows how to compute the
same setans(χQn

1 ) from ans(JχQ′K
sQ′
2

). Note that in this case, the remainder query has two keyword

restrictions instead of one as withκ , becauseq′3 in Q′ does not enforce the constraintContains“female” that
is required byqn

3 (see Figure 10.1c. on page 143), unlike the nodeq4 in Q that is used byκ .

Creating cache hits. Algorithm 10.1 on the following page lists pseudocode for processing a schema
hit χQn

of Qn, given the cache look-up resultLQn
and an initially empty setHQn

of cache hits to be created
for χQn

. The procedurecreateCacheHitssuccessively visits all sets of match edges forχQn
and distinct

evaluation steps inLQn
. Evaluation steps belonging to the same query plan are processed one after the other,

in the order defined by the plan. Remember that the match edgesfor a specific evaluation step indicate
which pairs of query nodes and edges inQn and a cached query might correspond. The outerfor loop in
Algorithm 10.1 (lines 8–41) finds all consistent combinations of match edges in each stepsi (lines 27–30),
and tests for which of these combinations there is a cached schema hitχ such thatJχKsi ⊃s χQn

. In line
with Definition 10.1 on page 144, the containment test involves the comparison of keyword constraints
attached to corresponding query nodes (lines 15–25) as wellas of the binaryD-constraints that have been
matched up to stepsi (lines 32–40). These two issues are elaborated below.

Each combination of match edges is represented as a cache hitcontaining the corresponding pairs of
new and cached query edges as well as the remaining constraints inQn. Cache hits that were successful in
stepsi are added to the setHcur of currently active cache hits. If there is another iteration for stepsi+1, these
cache hits are extended with additional match edges from that step to find out whetherJχKsi+1 ⊃s χQn

holds
true, too. Successful cache hits for stepsi that fail in stepsi+1 are removed fromHcur and are collected
in Hold instead. They remembersi as the last reusable snapshot of the results they represent,but do not
participate in any further iterations. The other cache hitsenter yet another round of containment tests until
there are either no more steps in the current plan, or one stepis missing inLQn

(lines 10–12). A missing
step indicates that none of the constraints matched in this step is mirrored inQn↓χQn

. As a consequence,
all subsequent snapshots of the cached query result after the missing step cannot be reused forχQn

.
In the end, all cache hits that were successful for any step inany plan are added to the result setHQn

(lines 43–48).HQn
collects the cache hits for all schema hits ofQn, which are computed in successive

calls tocreateCacheHits. Cache hits that represent the same combination of corresponding query edges
for the same evaluation step are merged. Thus a single cache hit in HQn

may specify multiple schema-hit
containment pairs for different schema hits ofQn (hence the curly braces in the third column in Figure 10.6).
This way each cache hit for a stepsi can be translated into a single remainder query plan operating on the
matches to multiple schema hits at once, which are all storedin the result table forsi (and maybe those of
its successors). Query planning forQn is explained in Section 10.5.4.
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1 // createCacheHits: creation of cache hits for a new schema hit

2 // → χQn
: a schema hit for a new query Qn

3 // → LQn
: the cache look-up result for Qn

4 // ⇄ HQn
: the set of cache hits to be created

5 procedurecreateCacheHits(χQn
: schema hit,LQn

: map,HQn
: set of cache hits)

6 group the steps with keyχQn
in LQn

by the plan they belong to
7 Hcur := /0; Hold := /0 for each new plan being processed
8 for all stepssi in a given plan, in the order of their executiondo

9 // only results obtained in successive evaluation steps can be used

� 10 if i > 1 and the step beforesi was skippedthen
11 break loop

�

12 end if

13 // find cached and new query edges whose D-constraints can be reconciled

14 M := /0

� 15 for all match edgescm associated withsi in LQn
do

16 cn := the query edge fromQn in cm

17 c := the query edge from the cache edge incm

18 qn
s, qn

t := the source and target nodes ofcn

19 qs, qt := the source and target nodes ofc
→ 20 Ks := call checkKeywords(qn

s, qs )
→ 21 Kt := call checkKeywords(qn

t , qt )
22 if Ks 6= nil and Kt 6= nil then
23 M := M∪{〈cn, c, Ks∪Kt〉}

24 end if

�

25 end for

26 // update the set of cache hits with new pairs of corresponding query edges

� 27 H := the cache hits inHcur that are inconsistent with any subset of edge pairs inM
28 Hcur := Hcur \H; Hold := Hold∪H
29 H := all consistent cache hits created fromHcur using any subset of edge pairs inM

�

30 Hcur := Hcur∪H

31 // keep only cache hits contributing a schema hit that contains χQn

� 32 for all cache hitsκ ∈ Hcur do
→ 33 X := call checkSnapshot(κ,si ,LQn

)
34 if X = /0 then
35 Hcur := Hcur \{κ}; Hold := Hold∪{κ}
36 else
37 for an arbitraryχ ∈ X, addJχKsi ⊃s χQn

to κ (replacing any existing statement forχQn
)

38 replace the step inκ with si

39 end if

�

40 end for

41 end for

42 // collect and possibly merge successful cache hits for all steps and plans

� 43 for all cache hitsκ ∈ Hcur∪Hold with a schema-hit containment forχQn
do

44 if ∃κ ′ ∈ HQn
:κ,κ ′ have the same corresponding query edges and stepthen

45 addκ ’s schema-hit containment forχQn
to κ ′

46 else
47 HQn

:= HQn
∪{κ}

�

48 end if
49 end for

50 end procedure

Algorithm 10.1: Creation of cache hits with theRCADG Cache. The input is a schema hitχQn
for the

new queryQn to be evaluated, the resultLQn
of looking upQn in theRCADG Cache, and a setHQn

for
collecting the cache hits to be created. A sample output is shown in Figure 10.6 on the previous page.
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Checking unary D-constraints. The only unaryD-constraints to be compared in the containment test are
keyword constraints.3 The procedurecreateCacheHitsin Algorithm 10.1 on the facing page compares the
keyword constraints of every pair of query nodes that are thesource or target nodes of two query edges in
the same match edge (lines 15–25). Only edges whose source and target node constraints can be reconciled
pairwise are added to the setM (line 23) that is used to create new cache hits (lines 27–30).

The actual comparison of keyword constraints is triggered by calls tocheckKeywordsin lines 20 and 21
of Algorithm 10.1. The pseudocode forcheckKeywordsis given in Algorithm 10.2. The procedure com-
pares the keyword constraints of two query nodesqn andq belonging to the new queryQn and a cached
queryQ, respectively. It returns the subset ofqn’s keyword constraints that remain to be checked against
the cached matches toq, or nil if q’s keyword constraints are too strict forqn. The empty set is returned
(line 60) if qn andq specify the same keywords with essentially the same Booleanjunctor (conjunction
or disjunction) and scope (containment or government). If only q has keyword constraints,nil is returned
(line 63). If on the contrary onlyqn has keyword constraints, all these constraints must be matched (line 66).

In all remaining cases the keyword constraints ofqn and q must be compared more thoroughly, as
shown in Figure 10.7 on page 155. The right-hand side of the figure (coloured) comprises sixteen areas
of eight squares each, most of them containing a relational symbol, which are arranged in pairs (a grey
square on the left and a coloured or white square on the right). Each of the sixteen areas corresponds to a
particular combination of the following four parameters:junctor(q), scope(q) (horizontal) andjunctor(qn),
scope(qn) (vertical). The upper left area, e.g., applies if both nodesspecify a disjunction of containment
constraints.

The four pairs of relation symbols in each area are to be read as follows: “=”, “⊂”, “⊃” and “⊃⊂ ”
denote the equality, containment (in either direction) andnon-empty intersection (overlap) of sets, respec-
tively. Any pair 〈θ ,θ ′〉 of a grey and a coloured symbol indicates that if the two sets of keywords used
in the constraints ofq andqn are in relationθ (grey square), then the two sets of elements that satisfy
these constraints are in relationθ ′ (coloured square). For instance, consider the upper left pair 〈=,=〉 in
Figure 10.7. It says that ifq andqn both specify a disjunction of containment constraints for the same
set of keywords, then they will be matched by the same set of elements (as far as keyword constraints
are concerned, i.e., ignoring all other query constraints that q andqn may be involved in). This obvious
fact is captured by the first conditional branch of the procedurecheckKeywordsin Algorithm 10.2 on the
following page, along with the other four〈=,=〉 pairs (highlighted grey and red).

The other pairs in Figure 10.7 deal with less obvious cases. All pairs with a “⊃” symbol on the right-
hand side (highlighted yellow) indicate thatq’s keyword constraints are no more restrictive than those
of qn, which is exploited in lines 74 and 77 of Algorithm 10.2. Ifq andqn both specify a conjunction of
such constraints with the same scope (the two yellow “⊃” symbols directly below the two lower-right red
“=” symbols in Figure 10.7), then only the constraints inqn that are missing inq need to be part of the
remainder query (line 74). For instance, given two sets of constraintsContainsk0(q) ∧ Containsk1(q) and
Containsk0(q

n) ∧ Containsk1(q
n) ∧ Containsk2(q

n) for q andqn, respectively, onlyContainsk2(q
n) must be

checked against the matches toq in the cache. In all other cases where the keyword constraints can be
reconciled (remaining pairs with yellow “⊃” symbols in Figure 10.7), the remainder query includes the
entire set of keyword constraints ofqn.

For all but the yellow and red pairs in Figure 10.7 (symbols “=” and “⊃”, respectively), either the
set of elements matchingq’s keyword constraints is known to be a subset ofqn’s set of matches (blue
“⊂” symbols), or no specific relation between the match sets canbe inferred (white squares with no sym-
bol). For these junctor/scope/keyword combinations, the procedurecheckKeywordsreturnsnil (line 69
in Algorithm 10.2 on the next page), which causes the corresponding match edge to be discarded from
cache-hit creation (line 23 in Algorithm 10.1 on the facing page).

Checking binary D-constraints. The notion of schema-hit containment in Definition 10.1 on page 144
implies that the schematized cached query does not contain any D-constraints which make its extension
too restrictive with respect to the schematized new queryQn. For every binaryD-constraints in the cached
query, this means that if the constraint has a counterpart inQn, they must be reconciled, and if not, the

3Recall from Definition 2.7 on page 11 that the other unary query constraints specifying tag, type and level conditions are
S-constraints. Being fully captured by schema nodes, they need not be matched on the document level.
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51 // checkKeywords: comparison of keyword constraints

52 // → qn: a query node in the new query Qn

53 // → q: a query node in a cached query Q
54 // ← a set of keyword constraints for the remainder query, or nil

55 procedurecheckKeywords(qn: query node,q: query node)

56 // qn and q have similar constraints for the same keywords

57 if keywords(qn) = keywords(q) and
58 ( junctor(qn) = junctor(q) or |keywords(qn)|< 2 ) and
59 ( scope(qn) = scope(q) or |keywords(qn)|= 0 ) then

→ 60 return /0

61 // only q has keyword constraints

62 else ifkeywords(qn) = /0 then
→ 63 return nil

64 // only qn has keyword constraints

65 else ifkeywords(q) = /0 then
→ 66 return the constraints forkeywords(qn)

67 // q’s keyword constraints are too restrictive

68 else if〈q,qn〉 does not have a yellow “⊃” in the “matches” column in Figure 10.7then
→ 69 return nil

70 // some keyword constraints in Qn are already subsumed by q
71 else if junctor(qn) = “∧” and
72 junctor(qn) = junctor(q) and
73 scope(qn) = scope(q) then

→ 74 return the constraints forkeywords(qn)\keywords(q)

75 // all keyword constraints in Qn must be matched

76 else
→ 77 return the constraints forkeywords(qn)

78 end if

79 end procedure

Algorithm 10.2: Comparison of keyword constraints with theRCADG Cache. This procedure is needed
for verifying the second condition in Definition 10.1 on page144. The input is a query node in the new
queryQn to be evaluated and a query node from a queryQ in the RCADG Cache. The output is the
(possibly empty) subset of the keyword constraints ofqn that need to be matched as part of the remainder
query forQn. A return valuenil indicates that the keyword constraints ofqn andq cannot be reconciled. For
a given query nodeq, junctor(q) is the Boolean operator (“∧” or “∨”), andscope(q) is either containment
or government.

154 Felix Weigel



CHAPTER 10. THERCADG CACHE FOR XML QUERIES AND RESULTS

Figure 10.7: Comparison of the keyword constraints of a nodeq in a cached query and a nodeqn from a
new query to be evaluated incrementally. Each cell in the table represents a specific relation between the
two sets of keywords used in the constraints (left half of thecell, highlighted grey) and the resulting relation
between the two sets of elements that satisfy these constraints (right half of the cell, white or coloured).
The pairs of relations vary with the nature of the keyword constraints inq andqn. For instance, if both
nodes specify a disjunction of containment constraints (four upper-left pairs) andq has more keywords in
the disjunction thanqn (third pair, symbol “⊃” highlighted grey), then it may also have a superset of the
matches toqn (symbol “⊃” highlighted yellow). By contrast, if both query nodes feature a conjunction of
government constraints (four lower-right pairs) andq has again more keywords thanqn, then it may only
have a subset of the matches toqn (third pair, symbol “⊂” highlighted blue).

constraint must not introduce a proper restriction. This isverified by the procedurecheckSnapshotlisted in
Algorithm 10.3 on the following page. The procedure is called repeatedly bycreateCacheHitsin line 33 of
Algorithm 10.1 on page 152 for a (preliminary) cache hitκ and an evaluation stepsi of a particular queryQ
in the cache. At this point in time,κ contains a set of corresponding query edges fromQ andQn as well as
a set of remainder query constraints forQn, as illustrated in Figure 10.6 on page 151. The pairs of query
edges inκ indicate which binary constraints inQ have which counterparts inQn after schematization.
Qn is schematized with a specific schema hitχQn

given as a parameter tocreateCacheHits(see above).
The schema hits forQ that produced the pairs of query edges inκ are available from the corresponding
cache edges forχQn

andsi in the look-up resultLQn
(see Figure 10.5 on page 149). LetXsi be the set

of these schema hits. Now the task is to check whether there isat least oneχ ∈ Xsi such that the binary
D-constraints inQ↓χ andQn↓χQn

comply with Definition 10.1 (the unaryD-constraints were already
compared beforeκ was created, see above).

Note that to confirmJχKsi ⊃s χQn
we only need to examine those binaryD-constraints ofQ that were

matched in stepsi , because constraints in earlier steps of the same plan have been checked in previous
iterations of the outermostfor loop in createCacheHits(line 8 in Algorithm 10.1). As observed in Sec-
tion 10.5.1, this is true for all schema hits in the setXsi , which is contained in the set of schema hits retrieved
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80 // checkSnapshot: decision of schema-hit containment

81 // → κ: a preliminary cache hit for a schema hit χQn
of the new query Qn

82 // → si : a step in the evaluation plan of a cached query Q
83 // → LQn

: the cache look-up result for Qn

84 // ← a set of schema hits for Q that contain χQn
in step si

85 procedurecheckSnapshot(κ: cache hit,si : evaluation step,LQn
: map)

86 X := nil

87 // all edges of Q decided or reconstructed in si must be mirrored in Qn↓χQn

� 88 for all query edgesc∈ Deci ∪Reci do
89 if c is not among the edges from cached queries inκ then
90 return /0
91 end if
92 Xc := the schema hits from the cache edge forχQn

, si andc in LQn

93 if X = nil then
94 X := Xc

95 else
96 X := X∩Xc

97 end if

�

98 end for

99 // all query nodes of Q joined in si must be mirrored in Qn↓χQn

�100 for all query nodesq∈ Joini do
101 if q is not among the nodes from cached queries inκ then
102 return /0
103 end if

�

104 end for

105 return X

106 end procedure

Algorithm 10.3: Decision of schema-hit containment with the RCADG Cache (slightly simplified). This
procedure is needed for verifying the first condition in Definition 10.1 on page 144. The input is a cache
hit κ created for a schema hitχQn

of the new queryQn to be evaluated, an evaluation stepsi for a cached
queryQ that supplies the cached edges inκ , and the cache look-up result forQn. The output is the set of
schema hits forQ that containχQn

in stepsi . A return value /0 indicates thatκ associates edges from both
queries in such a way that the containment test fails, because some binary constraints in the schematized
queryQ that were decided or reconstructed in stepsi are not mirrored inQn↓χQn

.

for any predecessor ofsi . The procedurecheckSnapshotreturns the subsetX ⊂ Xsi of all schema hits for
which the containment test succeeded. IfX is non-empty,κ ’s evaluation step and schema-hit containment
for χQn

are updated accordingly (lines 37, 38 in Algorithm 10.1 on page 152). Note that since all schema
hits inX coincide on the query edges represented byκ (see Section 10.5.1), only one statement of the form
JχKsi ⊃s χQn

is added toκ in line 37, for any schema hitχ ∈ X.
The procedurecheckSnapshotin Algorithm 10.3 tests whether any binary constraint was decided or

reconstructed insi lacks a counterpart inQn↓χQn
(line 89). If so, the containment test fails forκ andsi ,

and the empty set is returned. Otherwise we fetch for each query edgec∈ Deci ∪Reci the corresponding
set of schema hits inLQn

, which is contained in the cache forχQn
, si andc (see Figure 10.5 on page 149).

The setX eventually contains the intersection of all these sets of schema hits (lines 92–97).
To understand why query edges that were decided or reconstructed insi must have a counterpart inQn

for schema-hit containment to hold, consider a query edgec = R(qs,qt) in Deci ∪Reci that is not mirrored
in Qn↓χQn

. If both qs andqt have counterparts inQn↓χQn
, then matchingc may have caused tuples in

the intermediate result toQ to be discarded in stepsi . For instance, ifc = PrevSib(qs,qt), then all tuples
whereqs is matched by a leftmost sibling are dropped insi . However, these tuples might well be part of
the answer toQn, which accepts matches toqs andqt for which the relationR does not hold.

Now assume thatqs has no counterpart inQn↓χQn
. From the query planning algorithm presented in
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Section 8.4.4, it is obvious that matches toqs must have been obtained in stepsi or earlier: either by a join
with the element table which may have caused matches toQn to be discarded from the intermediate result
of Q in stepsi−1, or by reconstructing another query constraint whose target node isqs. However, since
there are no cycles in the setReci of reconstructed edges (see Chapter 8.4.4), the matching ofqs must have
involved an element-table join at some point of the evaluation, either directly or indirectly, which violates
the first condition in Definition 10.1 on page 144.

If qs ∈ Deci , then the same argument applies in cases whereqt has no counterpart inQn↓χQn
. Now

assume thatqs ∈ Reci . In general the reconstruction ofc may have caused tuples to be discarded that
would have been matches toQn (again, consider the case wherec = PrevSib(qs,qt) andqs is matched by a
leftmost sibling). Therefore query constraints inDeci andReci are treated alike in line 88 ofcheckSnapshot.
However, in fact we can show that under certain circumstances, reconstructed query edges whose target
node is not mirrored inQn are admissible. The argument behind this is sketched in Section 10.8.

As mentioned before, every join with the element table in step si may eliminate tuples from the in-
termediate result ofQ produced in that step. This might prevent the incremental evaluation ofQn based
on this snapshot ofQ’s answer, unless the join conditions are also implied byQn. Therefore we need to
check whether all query nodes inQ that are matched through an element-table join in stepsi have a coun-
terpart inQn↓χQn

. Nodes inJoini typically have at least one adjacent edge inDeci or Reci . If such a
node is not mirrored inQn↓χQn

, this edge does not satisfy the condition in line 89 of Algorithm 10.3 on
the facing page, so that the containment test fails, as intended. However, the query planning algorithm in
Section 8.4.4 may also produce evaluation steps that contain query nodes fromQ to be joined, but no query
edges to be decided or reconstructed. As a simple solution, we explicitly verify that each node inJoini has
a counterpart inQn↓χQn

(lines 100–104 in Algorithm 10.3), which ensures that the unary constraints of
the two nodes were compared before. Again, possible optimizations are discussed in Section 10.8.

To sum up, throughout this subsection we have seen five reasons why the containment test for two
schema hitsχQn

of Qn andχ of Q may fail in a particular query stepsi :

1. No match edges were retrieved for another evaluation stepprecedingsi in the same query plan (see
createCacheHitsin Algorithm 10.1 on page 152, line 10). For instance, this isthe case for the schema
hit χQn

2 of Qn (see Figure 10.5).

2. The schematization withχQn
andχ produces pairs of query nodes inQn↓χQn

andQ↓χQ whose key-
word constraints cannot be reconciled (seecheckKeywordsin Algorithm 10.2 on page 154, lines 63
and 69).

3. At least one binary constraint fromQ that is not mirrored inQn↓χQn
was decided in stepsi (see

lines 88–98 in Algorithm 10.3 on the preceding page). An example is the constraintParent∗∗(#4,#1)
in Figure 10.1e.on page 143 that was decided in stepsQ

3 of the evaluation ofQ.

4. At least one binary constraint fromQ that is not mirrored inQn↓χQn
was reconstructed in stepsi

(see lines 88–98 in Algorithm 10.3 on the preceding page). Constraints that do no introduce a
proper restriction may be ignored. An example is the query edgeParent∗∗(#5,#3) in the queryQ′, see
Figure 10.1d. on page 143.

5. At least one query node fromQ that is not mirrored inQn↓χQn
was matched through an element-

table join in stepsi (see lines 100–104 in Algorithm 10.3 on the preceding page).

10.5.4 Remainder Query Planning

As mentioned before, a separate query plan is created for each member of the setHQn
of cache hits forQn.

Such a plan specifies how to obtain the matches to one or more schema hits ofQn from a specific interme-
diate result table in the cache that is determined by the unique evaluation step represented by the cache hit.
Recall from Figure 10.6 on page 151 that every cache hitκ lists all constraints in a particular remainder
query forQn whose answer subsumes exactly these matches. From the remainder query constraints inκ , a
query plan forκ is created as follows.
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plan PQn

κ = 〈sQn

κ ,1〉

stepsQn

κ ,1 = 〈Join1, Rec1, Dec1〉

Join1 = {qn
2 }

Rec1 = {}
Dec1 = {}

a. plan based on cache hitκ for queryQ

plan PQn

κ ′ = 〈sQn

κ ′,1, sQn

κ ′,2〉

stepsQn

κ ′,1 = 〈Join1, Rec1, Dec1〉

Join1 = {qn
2 }

Rec1 = {}
Dec1 = {}

stepsQn

κ ′,2 = 〈Join2, Rec2, Dec2〉

Join2 = {qn
3 }

Rec2 = {}
Dec2 = {}

b. plan based on cache hitκ ′ for queryQ′

Figure 10.8:RCADG Cache query plans for the incremental evaluation of the queryQn in Figure 10.1c.
on page 143, based on the different cache hits in Figure 10.6 on page 151. a. The query plan created for
the cache hitκ (first row in Figure 10.6). It computesans(χQn

1 ) from ans(JχQK
sQ
2
). b. The query plan

created for the cache hitκ ′ (second row in Figure 10.6). It computesans(χQn

1 ) from ans(JχQ′K
sQ′
2

).

The core of the planning algorithm sketched in Section 8.4.4is common to both the evaluation from
scratch and the evaluation with theRCADG Cache. The only difference is that when reusing cache contents,
someD-constraints in the new queryQn need not be matched any more. Therefore the planning procedure
createPlanin Algorithm 8.2 on page 110 is called with restricted setsMv andMc of query nodes and edges,
rather than all query nodes and edges inQn as for the evaluation from scratch:Mv comprises all query
nodes ofQn that are involved in any unary or binary remainder query constraint in κ , andMc contains
all binary remainder query constraints inκ . Consequently, in the resulting incremental query plan forQn

the element table is joined only for query nodes and keyword constraints inQn that are missing in the
cached query. Additional binary constraints inQn are decided if they involve matches in the cached result,
otherwise reconstructed if possible.

Figure 10.8 depicts alternative query plans for computing the matches to the first schema hit ofQn, χQn

(see Figure 10.1e.), based on results of either of the cached queriesQandQ′. The planPQn

κ in Figure 10.8a.
for the cache hitκ from Figure 10.6 specifies how the matches toχQn

1 are computed based on matches

to χQ, using the result snapshot cached after the second step in the evaluation ofQ. The planPQn

κ has only
one step created for the remainder query constraintContains“Lee” (qn

2) in κ . The step involves a single join
with the element table, needed to retrieve those matches toq2 in ans(JχQK

sQ
2
) which contain an occurrence

of the keyword“Lee” .

An alternative planPQn

κ ′ in Figure 10.8b., created for the cache hitκ ′ in Figure 10.6, obtains the matches

to χQn

1 from ans(JχQ′K
sQ′
2

), i.e., a part of the snapshot of the answer to queryQ′ cached after stepsQ′

2 . This

plan requires two element-table joins because the remainder query inκ ′ comprises two keyword constraints,
Contains“Lee” (qn

2) andContains“female” (qn
3). Note that bothPQn

κ andPQn

κ ′ compute the same result – namely,

ans(χQn

1 ) – from distinct query results in the cache.
In general, to avoid the repeated matching of the same schemahit for Qn, we need to decide for each

schema hit which cache hit to use. This is done based on a cost measure for the query plans created for
the different cache hits, which at the moment simply counts the number of element-table joins needed to
execute a given plan. Thus in the example above,PQn

κ has a lower cost thanPQn

κ ′ , henceκ is used for
answeringQn while κ ′ is discarded. More sophisticated methods could also take into account selectivity
estimates for keyword and tag constraints. Essentially thesame optimizations that were evoked for planning
the evaluation from scratch also apply to the incremental query evaluation.

Figure 10.9 on the next page shows the SQL code generated for executing the query planPQn

κ . It joins
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SELECT

DISTINCT e1 AS e1, e2 AS e2, e4 AS e3 -- project result nodes as in cache hit κ
FROM

Q_s2 RT, -- retrieve answer from the penultimate intermediate result of Q
ElementTable ET2 -- join intermediate result table with element table

WHERE

RT.sid = ‘χQ’ AND -- select cached schema hit specified by cache hit κ
ET2.pid = RT.p2 AND -- match unary constraint on q2 in remainder query

ET2.eid = RT.e2 AND

ET2.key = ‘Lee’

ORDER BY

e1, e2, e4 -- order result as needed

Figure 10.9: SQL code for retrieving the matches to the schema hit χQn

1 of queryQn in Figure 10.1c. using
a cached intermediate result of the queryQ in Figure 10.1b. on page 143. The query statement computes
ans(χQn

1 ) from ans(JχQK
sQ
2
), as specified by the cache hitκ in Figure 10.6 on page 151. The tableQ s2

containing this particular snapshot of the matches toχQ is shown in Figure 8.4c.on page 102. The keyword
constraint in the remainder query inκ entails a join with the element table in Figure 6.1 on page 82.

the snapshot ofQ’s result in Figure 8.4c. on page 102 with the element table shown in Figure 6.1 on
page 82. From the result table ofQ, all tuples representing matches toχQ are selected. The matches to the
query nodeq2 in these tuples are then looked up in the element table to verify that they indeed contain the
keyword“Lee” , as demanded by the remainder query constraint inκ . The statement returns both tuples in
Q’s result table in Figure 8.4c., projected onto the fieldse1, e2 ande4. The projection clause in Figure 10.9
reflects the pairs of corresponding query nodes inκ . The resulting tuples〈18,21,26〉 and〈27,30,34〉 are
illustrated as matchesa2 anda3 on the document level in Figure 10.2 on page 145. Note that thesecond
tuple,a3, is not available in the last result table ofQ (see Figure 8.4d.on page 102), which again underpins
the benefit of caching intermediate query results.

In our running example, only matches toχQn

1 are retrieved in the cache whileans(χQn

2 ) must be obtained
without cache support. Therefore two distinct query plans must be executed to obtain the complete result
of Qn. In general, there may be multiple cache hits for distinct schema hits ofQn, each with its own
query plan, plus one additional plan covering all remainingschema hits ofQn that must be matched from
scratch. In our test system, these query plans are executed sequentially in the order of increasing estimated
execution cost. However, since the results of the differentquery plans are guaranteed to be disjoint (see
above), theRCADG Cache is particularly amenable to the parallel processing of multiple cache hits. This is
likely to improve the user experience especially in a highlyinteractive, browsing-oriented retrieval scenario
like the one sketched in the introduction.

10.6 Experimental Evaluation

To evaluate the incremental query processing described in the previous section, we have conducted two
different experiments. A small-scale experiment studies how the performance for the incremental eval-
uation of a few hand-picked queries varies when cached queries with different degrees of similarity are
available. The second experiment relates the cost and benefit of caching on a larger scale, using a randomly
generated cache content and query workload. The two document collections used in the experiments are
IMDb andXMark 1100, respectively (see Section 13.2 in the appendix). Both experiments observe a num-
ber of different performance measures explained below. Salient properties of all test queries are shown in
Figure 10.10a. on page 161 for the small-scale experiment and in 10.11a. on page 162 for the large-scale
experiment.4 All query processing times presented in the sequel represent the average time needed to com-
pute all matches to all nodes in a given query with theRCADG Cache, as explained above. The average
is computed over three out of five consecutive runs after discarding the best and worst result, in order to

4Here the termssmall-scaleandlarge-scalerefer to the size of the query workload submitted to evaluation, not to the size of the
test document collections. In fact, the larger of our two collections is used in the small-scale experiment.
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minimize artefacts. The correctness and completeness of the results returned by theRCADG Cache have
been verified against the results computed from scratch. Thecache contents always include intermediate
and final results. All result tables on disk are indexed with aB+-Tree on thesid column (see Figure 8.4 on
page 102).

The test system is a Java implementation (JDK 1.5.0) of the data structures and algorithms presented
above. The mapping from schema edges to cached tuples in the main-memory partC of theRCADG Cache
(see Figure 10.4 on page 148) is a hash table providing accessin amortized constant time. At system start-
up C is loaded into memory, and JDBC connections to the RDBS back-end are established once for the
whole test session. This takes 1-2 seconds. During the experiments, the test system and the RDBS are both
running on the same machine. Apart from these two tasks, the computer is idle during the experiments. All
queries are processed sequentially in Test Environment C (see Section 13.1).

10.6.1 Cost and Benefit of Evaluating Queries with theRCADG Cache

We quantify the benefit of incremental query evaluation by measuring theprocessing timeand thenumber
of joinsneeded to compute the result (although counting the number of tuples being joined would be more
accurate). Since schema matching is the same for the evaluation from cache and from scratch, we do not
count then-way selfjoin of the path table but only the number of joins with the larger element table (the
processing time includes both phases). On the cost side, retrieving and matching overlapping queries and
their schema hits in the main-memory part of the cache takes some extra computation time not needed when
evaluating a query from scratch. We refer to this overhead as(cache) search time. Besides, the persistent
cache data structures consume extra storage both in main memory and on disk, which we denote ascache
size(in memoryandon disk, respectively).

We now define the notion ofcache supportto measure how “useful” the cache contents inC are for
evaluating a given queryQn incrementally. LetX be the set of schema hits forQn, and letP a query plan
for processingQn from scratch with minimal estimated execution costcost(P) > 0 (see Section 10.5.4).
Besides, let

⋃

j Xκj be a partition ofX such that eachXκj contains exactly the schema hits represented by the
cache hitκj computed forQn andC. Finally, letPκj denote the query plan devised forκj . Then the cache

support forQn andC is defined as

(

1−
Σj |Xκj |·cost(Pκj )

|X|·cost(P)

)

·100%. In this formula, the numerator denotes the

estimated cost of processing the selected cache hits, accumulated over all the schema hits ofQn that they
represent. The denominator subsumes the estimated cost of computing the matches to all schema hits from
scratch. Thus the entire formula quantifies the execution cost saved in comparison to the evaluation from
scratch.

For simplicity, we henceforth assume thatcost(P) is again the number of element-table joins needed to
executeP. Note that with this coarse cost estimation function, a cache support of 100% doesnotnecessarily
mean thatQn itself is found in the cache, only that no joins with the element table are needed to evaluateQn

incrementally usingC. In the experiments described next, the cache support indicates to what extent the
evaluation ofQn can possibly benefit from the cache. The following guiding questions summarize three
major optimization goals:

1. effectiveness: Are useful cached queries exploited if available?

2. efficiency: Does the benefit of caching outweigh the overhead?

3. scalability: How does the overhead vary with growing cache size?

10.6.2 Small-Scale Experiment

To answer the first of the above questions, we consecutively evaluate a fixed test query against five different
cached queries, in the order of increasing cache support. The experiment illustrates on a small scale the
effectiveness of our approach, by showing how the incremental processing time is correlated with the cache
support, which theRCADG Cache strives to optimize. LetQn

i be the query to be evaluated incrementally,
and letQij , 1≤ j ≤ 5, denote the five queries serving as cache contents in the consecutive runs.
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a. characteristics of theIMDb
sample query workload

b. complete results of the performance
evaluation

Figure 10.10: Results of the small-scale experiment on theIMDb collection.

For this experiment we use theIMDb collection containing nearly 9 GB of XML documents about
movies and actors. The incremental query evaluation against a sequence of different cached queries is
conducted four times with distinct queriesQn

i and corresponding cache contents (1≤ i ≤ 4). For each
queryQn

i , the cached queriesQij are derived fromQn
i by applying a specific class of editing operations,

as they typically occur in user sessions with relevance feedback: N denotes modifications of the query
structure andL of the tag constraints;-/+ means making the query more or less restrictive, respectively.
Combining the two degrees of freedom yields the four classesN-, N+, L- andL+. For instance, adding
a query node is in classN-, whereas adding an alternative tag constraint to a node thatalready has a tag
constraint (or removing the existing constraint) would be in L+. Figure 10.10a. lists some properties of
the queryQn

i for each class of editing operations. For instance, the column N- lists characteristics of the
queryQn

1 that is incrementally evaluated against a sequence of queries created through node restriction.
Note the large number of document matches in the last row.

Figure 10.10b. plots the processing time in milliseconds for each of the fivequeries in each of the four
sequences. As can be seen on the abscissa, the cache support grows from 0% (j = 1) to 100% (j = 5).
For j = 1, the cache contains only the queryQi 1 that allows no joins with the element table to be saved,
compared to evaluatingQn

i from scratch. By contrast, forj = 2 the cache contains the queryQi 2 instead
which provides a cache support of 25%, and so on. This patternapplies to all four sequences tested (see
the key in Figure 10.10b.). The results show that for all classes of editing operations, the processing time
decreases significantly with growing cache support, down to20% of the time needed without the cache.

10.6.3 Large-Scale Experiment

The second experiment targets all three optimization goalsin a large-scale setting. The goal is to monitor
the actual benefit experienced by users of a system that makesintermediate and final query result available
for reuse in theRCADG Cache. To this end, we simulate a cache growing from 0 to 199 distinct queries in
five stages, as it could evolve during a longer retrieval period with continuous incremental query evaluation.
Figure 10.11d. on the following page lists some statistics of the cache in the four stagesC1 to C4. In the
initial stageC0, the cache is empty (omitted in Figure 10.11d.on the next page). As more and more queries
(i.e., cache edges from schematized queries) are added, thesize of the cache grows from 1 MB in memory
and 77 MB on disk (C0, leftmost column) to 5 MB in memory and nearly 1 GB on disk (C4, rightmost
column).

In the absence of a real-world query workload which could only be extracted from the log of a system
in productive use, we model the workload as a sequence of random queries, including some popular or
“hotspot” queries which are more likely to be asked repeatedly (possibly with modifications as in the small-
scale experiment above). The test queries are obtained as follows. From a seed of 150 distinct randomly
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a. characteristics of selected queries in theXMark 1100sample query workload

b. complete results (time: processing time (ms);sup: cache support (%);ovh: search time (%))

c. selected results d. contents of the evolving cache

Figure 10.11: Results of the large-scale experiment on theXMark 1100collection.
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generated tree queries against theXMark 1100collection, we randomly remove 15 hotspot queries. Then
we create five exact copies and five variants of each hotspot query. Query variants are obtained by applying
different editing operations such as, e.g., adding a query node or removing a tag or keyword constraint. The
complete set of test queries is the union of the resulting 150hotspot queries and the remaining 135 seed
queries.

Now 19 distinct queries are randomly removed from this set. These so-callednewqueries are to be
evaluated incrementally in the experiment. Figure 10.11a. on the facing page shows some properties
of selected new queries. The remainingcachedqueries are added to theRCADG Cache (see below).
Obviously hotspot queries among the new queries are likely to enjoy a higher cache support, owing to
their duplicates and variants in the cache. Note that the probability of a hotspot query being selected for
incremental evaluation is equal to the probability that a hotspot query occurs in the entire test set, which is
reasonable.

After removing the 19 new queries from the workload and eliminating duplicates among the other
queries, 199 queries remain to be added to the cache, as follows. The set of 199 queries is randomly sorted
and partitioned into four subsets of 38, 35, 61 and 65 distinct queries, respectively. These are evaluated
from scratch, and the answers for each query set are successively added to the initially empty cache. This
yields the stagesC1 to C4 in Figure 10.11d.on the preceding page. Note that the main-memory footprint of
theRCADG Cache is modest even when nearly 1 GB of results are cached on disk (including the B+-Trees
on intermediate result tables). Since the growth of the cache contents on disk is linear in the number of
cache edges, we expect that the system easily scales up further by three orders of magnitude.

The results of evaluating all 19 new queries from scratch andagainst the five cache stages are listed in
Figure 10.11b. on the facing page. For each query (rows) and cache stage (groups of columns), thetime,
sup andovh columns respectively list the processing time in milliseconds, the cache support in percent,
and the search time (as a percentage of the processing time).Runtime measurements subsume all retrieval
phases including rewriting, planning and translation, forall schema hits (those retrieved in the cache and
those matched from scratch). For the purpose of analyzing the outcome of the experiment, the new queries
are divided into four groups of three to seven members (groups of rows in Figure 10.11b.).5

All seven queries in the first group benefit from specific cachecontents available in different stages of
the cache evolution. For instance, consider the fieldstime0, time1 andsup0, sup1 in the first two rows in
Figure 10.11b. At some point in time during the transition from stageC0 to C1, cache contents have been
added that overlap with the queriesT0 andT4, which avoids additional joins (cache support 100%) and
decreases the processing time by a factor 30 forT0 and a factor 97 forT4. In subsequent stages (C2–C4),
the search time increases a little, but clearly does not depend on the overall size of the cache. The other
five queries in the upper part of Figure 10.11b. benefit only at later stages (T14 in C2; T15 in C4; T20 and
T22 in C2 and later; andT21 in C2). Up to this point where the cache becomes useful for a given query,
the cache look-up causes only a negligible overhead.

Of the 130,000 distinct matches retrieved when answering the queryT21, 10% are retrieved from the
cache after only 0.6 seconds (not shown in Figure 10.11b.). This illustrates how incremental evaluation
may increase the reactivity of the system even when only partof the results can be obtained from the
cache. Note that forT22 which already has 100% cache support inC2, the performance further improves
in C3 andC4 where newly cached queries permit more efficient query plans. This effect, which we also
observe for the second group of queries in Figure 10.11b., is not reflected in the cache values because our
primitive cost estimation is too coarse. Figure 10.11c. plots selected results from the first six columns in
Figure 10.11b. (scratch andtime0 –time4) for all cache stages. Note the negligible overhead introduced
by look-ups in the empty cache, compared to the evaluation from scratch (left-hand side of Figure 10.11c.).

The third group of queries in Figure 10.11b. lists queries that do not benefit from cache contents,
mostly by lack of overlapping queries in the cache. Again we observe a small search overhead (inevitable
for deciding whether or not to use the cache) which grows muchslower than the cache. The results ofT3
andT13 are computed from 2-3 overlapping queries with small cache support, hence the evaluation from
scratch is faster. Query planning with selectivity estimates, as mentioned above, is likely to eliminate such
cases. The same applies to the queries in the fourth group (last three rows in Figure 10.11b.), where the

5This grouping of the new queries must not be confused with thepartitioning of the cached queries into the four cache stages that
was described earlier.
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cache look-up does not pay off compared to the extremely fastevaluation from scratch.
The queryT2 in the third group benefits largely from the fact that every cache edgecc collectively

represents all schema hits that share a particular schema edge. Recall from Section 10.5.2 that this allows
to compare the corresponding query constraints only once for the whole set of schema hits incc. Due to
the structure of the queryT2, there are thousands of containing schema hits in the cache which only differ
with respect to a single schema edge. We found that matching the many shared schema edges repeatedly
would cost a needless extra 14 seconds, which is completely avoided with our data structures. Nevertheless,
this observation indicates that in extreme cases where a query entails a huge look-up result, the runtime
overhead might be considerable. However, such cases are detected immediately after schema matching and
before the schematization, as soon as the number of schema hits becomes available. If a certain threshold is
exceeded, one may still decide at this point of the evaluation to look up only some schema hits in the cache,
or evaluate the whole query from scratch. Besides, queries with very large result sets should probably not
be cached (also in view of the storage consumption, see Section 10.8).

10.7 Summary and Discussion

As a last step in this work on increasing the efficiency of XML retrieval, this chapter has presented the
RCADG Cache as a practical example of how to use schema information from astructural summary for
incrementally answering XML queries, based on a cache containing both intermediate and final results
of prior queries. The benefit of incremental XML retrieval ingeneral has been discussed in the previous
chapter, along with some problems and possible solutions that have been ignored so far. TheRCADG
Cache addresses several of these issues:

Use of query extensions. The incremental retrieval algorithm proposed here is largely tailored to the
two-phase retrieval performed by theRCADG, which first matches queries on the schema level so as to
obtain document-level matches more efficiently. For theRCADG, the schema tree serves as a path index
locating parts of documents with specific properties, such as tag paths and textual content. TheRCADG
Cache uses the same schema information to retrieve and compare cached queries that resemble a new query
to some extent. Here the schema hits provide an approximate view of the query extensions on the document
level. Inspecting these result views, one may be able to reuse certain query results in the cache that are
ignored by purely intensional approaches. In doing so, theRCADG Cache uses only schema information
that is supplied by theRCADG anyway, and therefore does not introduce an extra overhead compared to
the evaluation from scratch. Unlike the few DTD-aware systems reviewed in Chapter 9, our approach relies
on a descriptive schema and is therefore closer to the current state of the documents.

Reuse of overlapping query results. Most approaches to incremental XML retrieval are quite limited
in their effectiveness, taking advantage only of cached queries that are either equivalent or strictly more
general than the new query to be evaluated. Moreover, combined query processing with and without
cache support has mostly been neglected. TheRCADG Cache exploits query overlap to a large extent
by partitioning the query extension into sets of matches to distinct schema hits. This way part of the query
result may be obtained from the cache while another part is retrieved from scratch. Since the two partial
answers are computed independently, the approach is inherently amenable to parallelization. In the end all
results are simply put together in a disjoint union. We have outlined an integrated evaluation procedure that
efficiently detects and exploits any query overlap that can be handled by theRCADG Cache, and retrieves
all missing results from scratch.

Reuse of intermediate query results. It has been mentioned before that intermediate results computed
during the evaluation of cached queries have so far been disregarded. In this work, we have shown how the
techniques developed for caching final query results can be extended to apply also to intermediate results,
and how this allows to answer new queries incrementally for which no final result in the cache could have
been reused, thus again increasing the effectiveness of thecache. It turns out that if intermediate results
are available, they may be treated in just the same way as finalquery results, with only a modest amount
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of book-keeping required. The main challenge here is to find asuitable representation of the available
“snapshots” of the cached query results as they evolved overtime. Again, we find that the necessary
information is readily available, namely, in the form of query plans that capture all steps the evaluation has
gone through to answer the cached query. Thus we efficiently determine which “snapshot” of a given query
result is preferable, using no additional data structures.

Of course, keeping both intermediate and final results in thecache entails a higher cost in terms of
storage. However, our experiments show that theRCADG Cache scales well up to the gigabyte level in
term of both storage consumption and runtime performance. In particular, its main-memory footprint is
very low because the bulk of the cache contents is kept on disk.

Runtime performance. In an extensive performance evaluation, we have demonstrated the practical
benefit of using theRCADG Cache, assuming an unbiased synthetical query workload. Compared to
the RCADG system, theRCADG Cache achieves a speedup of up to two orders of magnitude in our
experiments. There are only few cases where the overhead forthe cache look-up is not compensated for by
faster retrieval, so that the evaluation from scratch is faster. Although the loss in performance is not large
in these cases, there is some potential for optimization here. Another issue is the possibly larger overhead
caused by extremely unselective queries in the cache (see below).

A comparative study of the performance of different cachingapproaches is missing at the time of
this writing. One reason is that many authors have addressedmainly the theoretical side of the problem.
We therefore merely highlight some performance-related differences between earlier approaches and the
RCADG Cache. First, theRCADG Cache designed to leverage and take advantage of the efficiency and
scalability of theRCADG. In particular, it takes over the relational storage schemeof theRCADG. Recall
from Chapter 8 that elements inRCADG result tables are not represented as XML fragments including their
entire document subtree, but rather by their unique elementlabel only. As a consequence, the matching of
D-constraints in the remainder query (such as the keyword constraint in the example above) requires access
to data “outside” theRCADG Cache. However, the missing data is simply obtained through a joinwith
the element table, which resides in the same RDBS as the cachecontents. Thus remainder queries can be
processed as efficiently as any other query, as shown in the experiments.

Marrón and Lausen [2002] argue that the hierarchicalLDAP data model they use for theirHLCaches
system (see Section 9.4.2) fits XML data better than the relational model. On the other hand, their
query interface is quite restricted, and not performance results are given that could support their claim.
Kang et al. [2005] survey different storage schemes for XML caches, without commitment to any specific
query language. Their experiments suggest that query results cached in binary or plain text format can be
retrieved and updated faster than cache contents stored in an RDBS. However, this is mostly due to an extra
overhead for serializing relational data to XML text fragments, which are used to transfer results from the
database to the cache and further on to the user. Our database-resident cache deliberately departs from such
a strict three-tier architecture, hence the results reported by Kang et al. do not apply.

In contrast to work based on Incomplete Trees [Abiteboul et al. 2001b; Hristidis and Petropoulos 2002],
the RCADG Cache comes with a main-memory index structure for quick access tocached queries with
specific extensional properties. Finally, while Hristidisand Petropoulos store the root path of every cached
element in their Modified Incomplete Tree, our approach exploits theBIRD labelling scheme to recon-
struct root paths, which therefore need not be cached. This not only expedites the query evaluation, but
also reduces the storage requirements of the cache.

10.8 Optimizations and Open Problems

There are a number of ways in which theRCADG Cache may be enhanced over what has been described
above. Most optimizations center around cache look-up and cache maintenance issues. The rest of this
chapter outlines the most salient issues; a more thorough investigation is left for the future.

Binary query constraints other than Parentand Child. So far we have assumed that every query to be
cached has at least oneParentor Child edge, and have restricted the cache look-up to these constraints.
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As a matter of fact,NextSib, PrevSibandSelf edges can be handled similarly. For instance, an additional
constraintNextSib2

1(q
n
2,q

n
3) in the queryQn in Figure 10.1c. on page 143 can be handled as follows:

during the schematization ofQn, the NextSibedge translates to theS-constraintSibling′. The schema
node #2 that matchesqn

2 has only one sibling satisfying the tag constraintgender∨sex , namely, node #6.

Therefore there is only one schema hit for the modified queryQn: it looks exactly likeχQn

2 and produces
a schematization similar to the one in Figure 10.1g. on page 143, only with an additional schema edge
NextSib2

1(#2,#6).6 This schema edge is used as a look-up key inC just like any other edge that represents
a Parentor Child constraint. If the query nodeqn

3 had no tag constraint, then there would be three distinct
schema hits forQn which would matchqn

3 with the schema nodes #2, #3 and #6, respectively.
In contrast to the sibling andSelfconstraints, theD-constraintsFollowingandNextEltand their reverse

variants do not have correspondingS-constraints. In fact, ifQn contained a query edgeFollowing(qn
2,q

n
3)

andqn
3 had no tag constraint, thenqn

3 could be matched by any schema node inS, not only #2, #3 and #6
as withNextSib. These binary tree relations are therefore likely to produce too many schema hits and
hence too many schema edges to be looked up in the cache. Hencewe restrict the schematization to
S-constraints as described before. Note that as a consequence, theRCADG Cache cannot handle queries
like //person/following::name that do not contain anyS-constraint.

Transitive query constraints. Another look-up issue concerns the chaining of transitive query con-
straints such asParentor Child. For instance, consider the two queriesQ1 = //person/profile/edu

andQ2 = //person//edu against the same document collectionD as in the running example (see Fig-
ure 2.1b.on page 8). From the schema tree in Figure 2.1c., one can see that bothQ1 andQ2 have the same
schema nodes matching theirperson and edu nodes (namely, #1 and #4, respectively). Clearly both
ans(Q1) andans(Q2) are part of theRCADG Cache overlap forD, soQ2 should be evaluated incremen-
tally whenQ1 is in the cache and vice versa. However, if only the two schemaedges ofQ1, Parent∗∗(#4,#3)
andParent∗∗(#3,#1), are cached, a cache look-up for the schema edge inQ2, Parent∗∗(#4,#1), will fail.
Analogously, looking up either of the schema edges ofQ1 would ignore the schema edge ofQ2. Note that
this does not cause wrong result to be produced, but we needlessly miss a chance for incremental query
evaluation, which decreases the efficiency of the cache. Themost straightforward solution to this problem
is to extend the schematization such that transitive constraints likeParent∗∗(#4,#1) are silently added to the
cache as well as to the set of schema edges being looked up inC.

D-constraints in the schema-hit containment test. The notion of schema-hit containment (see Defini-
tion 10.1 on page 144) implies that binaryD-constraints in a cached queryQc which do not introduce a
proper restriction should be ignored in the containment test, even if they are missing in the new queryQn

being looked up in the cache. For instance, an unmirroredParentedge that was reconstructed during the
evaluation ofQc is admissible because ancestor reconstruction cannot cause partial matches to be dis-
carded. This case is illustrated in Figure 10.1a. on page 143 for the query edgeParent(q′3,q

′
4) in queryQ′

(the corresponding schema edgeParent∗∗(#5,#3) in Figure 10.1d. is highlighted green). Similarly, statis-
tics in theRCADG path table could reveal that certain constraints that are restrictive at first sight (e.g.,
an existential child constraint expressed in an XPath predicate) are actually safe to ignore in the given
document collection. Furthermore, binary constraints inQc need not have an exact counterpart inQn for
schema-hit containment to hold. An example has been given inSection 10.2.1 where the schema edge
NextElt+1 (#2,#5) in Qc corresponds to a more restrictive schema edgeNextSib+

1 (#2,#5) in Qn. The proce-
durecheckSnapshotas outlined in Algorithm 10.3 on page 156 does not recognize such cases of schema-hit
containment. However, the necessary modifications are straightforward.

Cache maintenance. In this work we have not addressed the problems related to maintaining the cache
contents over time that were sketched at the end of the previous chapter. In practice these issues are
fundamental to any caching technique, not only in XML retrieval. While some efforts have been devoted
to the maintenance of XML query caches, the research in this field stills seems very much in flux. Recall

6Note that for horizontal relations such as sibling constraints, the normalization must not remove the proximity boundsbecause
these are not fixed as forChild andParent.
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from Section 9.5 that major questions here are (1) which results to put into the cache; (2) which cache
contents to expel to avoid an overflow; and (3) how to initialize the cache so that the system can jump-start
with an appropriate sample of the expected query workload. As a possible criterion for deciding the first
question, we have mentioned above that highly unselective queries with many schema edges are likely
to suffer from a considerable look-up overhead, and therefore should be shunned in caching. Second, to
retain the most useful data in a cache of limited size, a replacement strategy is needed. Besides standard
strategies for the maintenance of priority queues, likeleast-recently/least-frequently used, possible hints
for assigning appropriate priorities could come from explicit user feedback or silent monitoring of user
interaction. Alternatively, one might choose to retain those results that were most expensive to compute.
Mandhani and Suciu [2005] sketch a simple solution based on afixed size limit, but only determined an
empirical workload-specific value for the threshold. They also propose a warm-up technique for cache
initialization.

A fourth problem related to cache maintenance occurs when the underlying document collection is
updated. In this situation some or all cache contents may become stale. Since the tag paths to updated
elements are available in the element table, we might use theexisting main-memory indexC to retrieve
stale cache contents efficiently, exploiting schema information in the same way as for detecting query
overlap. To some extent, the robustness of our cache also depends on the underlying tree encoding. Some
more hints at database update techniques are given by Quan etal. [2000], although in a different retrieval
scenario.
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CHAPTER

ELEVEN

Summary and Discussion

This work is about how structural summaries for XML data can contribute to making XML retrieval sys-
tems more efficient. For studying this question the following preliminaries have been introduced. First
of all, the notions of XML documents, the structure orschemaof such documents, their textual contents,
and queries specifying structural and textual properties of desired portions of the documents have been
defined and summarized in theThree-Level Model of XML Retrieval(see Section 2.4 in Part I). Second,
we have given an informal definition of the termstructural summary, which is deliberately general enough
to include bothcentralizedapproximate representations of the document schema anddecentralizedexact
representations of relations between individual XML elements, in the form of labelling schemes. Third,
we consider distinct kinds of XML retrieval system, namely,native, relationalandhybrid ones.

The main argument of the thesis is that certain kinds of structural summary, when applied appropriately,
speed up the query evaluation significantly even in very large collections of XML documents, while causing
only a modest storage overhead. This claim is underpinned byextensive experiments that evaluate the
proposed new techniques and also compare them to prior approaches known from the literature. The
preceding parts of this work have considered different types and various aspects of structural summaries
that all contribute to the efficiency improvement, which is achieved in native, hybrid and purely relational
retrieval systems. In the sequel we briefly recapitulate ourfindings, highlighting both problems that have
been solved and questions that remain open.

Part II: Labelling Schemes for XML. Labelling schemes are decentralized structural summariesthat
serve to match binary query constraints on the document level without accessing the documents them-
selves. Query constraints can be eitherdecidedor reconstructed. Labelling schemes differ greatly in their
expressivity (i.e., if and how they match specific tree relations), time and space efficiency, and robustness
against modifications to the document tree. These conflicting optimization goals span atrade-off space
where different labelling schemes occupy different positions. In Chapter 3 we have seen three classes of
labelling schemes. First,subtree encodings(including as subclassesinterval, pre-/postorderand region
encodings) use node labels that represent the size of the subtree of a given document node. This gives
them rich decision capabilities and limited robustness, but prevents support for reconstruction. Second,
path encodings(which subsumetotal andpartial path encodings) concatenate node labels along the root
path of a given document node. The resulting labels are possibly large and therefore compressed using
different binary encodings. For reconstruction and decision the labels can mostly be manipulated in their
binary form. Path encodings are typically fairly robust against document updates. Third, a small number
of multiplicative encodingslabel the document tree as if it had a highly regular structure, using different
non-materialized homomorphisms. The resulting labellingschemes are typically rather sparse but offer
fast decision and reconstruction of many tree relations.

Chapter 4 has presented theBIRD labelling scheme [Weigel et al. 2005c; Weigel et al. 2005d],a mul-
tiplicative encoding whose labels are created using certain numerical components, orweights, that reflect
properties common to multiple document nodes.BIRD uses the schema tree as a centralized structural
summary to ensure fast access to the weights for reconstruction and decision.BIRD is among the most
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expressive labelling schemes in the literature. Experiments show that it outperforms almost all other ap-
proaches in terms of retrieval speed and maximal label size.The efficiency of reconstruction and compari-
son operations is shown to be paramount for good retrieval performance. Only one competitor ofBIRD is
much more space-efficient, but less expressive. A major drawback ofBIRD in its current form is its poor
updatability when faced with node insertions in certain positions of the document tree. Several potential
optimizations have been sketched that should makeBIRD labels and weights more stable and at the same
time smaller than in our experiments.

Part III: Index Structures for XML. Different native index structures for XML documents are surveyed
in Chapter 5, including traditional inverted lists from flat-text Information Retrieval, adaptations thereof to
elements with their tag paths, and finally tree data structures like the schema tree that can be used to index
tag paths and keywords simultaneously. The latter are mostly variants of centralized structural summaries
like the schema tree, and as such can be combined with labellings schemes for better retrieval performance.
The look-up latency of such path indices depends much on how tag paths, textual contents, and their
combinations are physically represented, especially whenprocessing queries with branching paths.

Chapter 6 briefly reviews theCADG index [Weigel et al. 2004a; Weigel 2003], which achieves signifi-
cant performance gains by materializing the join of tag pathand keyword information that prior approaches
have computed at runtime. Of course this also has an impact onthe size of the index structure, but the space
overhead is modest and practically restricted to secondarystorage. Note, however, that rather than trying
to assess the retrieval performance of a path index in isolation, it makes more sense to take into account
also which labelling schemes and structural join algorithms are used with it. In Part II we have given the
results of combining theCADG with different labelling schemes in a hybrid retrieval system, with positive
outcome in terms of time- and space efficiency as well as scalability. In the remainder of the thesis, the
combination ofCADG andBIRD is further evaluated in a relational setting.

Part IV: Relational Storage of XML. For various reason mentioned in the introduction to this work (see
Chapter 1), the storage and retrieval of XML data in relational database systems has aroused much interest
in recent years. In Chapter 7 we have reviewed different waysto store the inherently hierarchical XML
documents in specific schemata of the flat and rigid relational data model. Most earlier approaches simply
represent either singleton elements or pairs of parent and child elements as tuples in a table, thereby losing
the originally explicit information about the nesting of elements and tags. Expensive structural joins are
needed to restore this information when matching query constraints on the document level or the schema
level at runtime. Only few relational storage schemes have been described in the literature that attempt to
represent schema-level information (most notably, tag paths) in the RDBS. They mainly suffer from a lossy
representation of the hierarchical nesting in the documents, which can cause many partial matches to be
retrieved in vain during the evaluation of tree queries.

Our experiments in Chapter 8 reproduce such cases where the sets of intermediate result retrieved by
these systems needlessly blow up to millions of elements, compared to several hundred with our approach.
We basically use the same combination ofCADG andBIRD as in Chapter 4, after migrating both to the re-
lational data model. The storage scheme of the resultingRelational CADG (RCADG) [Weigel et al. 2005b]
is straightforward since we only need to fix a suitable relational schema for the structural summary part
of the CADG. However, we carefully avoid the lossy representation of tag paths mentioned above. The
RCADG also comes with some basic query rewriting techniques that could probably be extended. How-
ever, the core of the relational query evaluation with theRCADG is the query planning algorithm which
is described in great detail. The algorithm is designed to benefit as much as possible fromBIRD’s recon-
struction capabilities, which have proved crucial to good performance in our experiments with the hybrid
system (see Chapter 4).

As a matter of fact, there are at least two conflicting optimization goals that a good planning strategy
should try to reconcile somehow. On the one hand, the query should be evaluated with the least possible
number of joins with the element table, where the bulk of the document-level information resides. Every
binary query constraint that is reconstructed (in our case,usingBIRD) saves one join with the element
table. On the other hand, to minimize the size of intermediate results to be joined when matching branch-
ing queries, the element table should be initially probed with the most restrictive selection predicates. The
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problem here is twofold. First, those query nodes with the most selective unary query constraints are not
necessarily those which allow to reconstruct a large numberof binary constraints, hence the conflict in
query planning. Moreover, while the selectivity of tag pathconstraints is easily kept in the structural sum-
mary, estimating the cardinality of the set of matches to a combined path/keyword constraint is non-trivial
given a limited amount of space for storing selectivity statistics. Therefore we currently apply a simple
heuristic that simply prefers query nodes with any keyword constraint over those without keyword con-
straints, regardless of the frequency with which the actualkeyword in the query occurs in the documents.

While this already yields very good results in our experiments, where theRCADG outperforms other
relational and hybrid systems by up to three orders of magnitude, we expect even better results from
more sophisticated query optimization and planning techniques. Another possible enhancement is the
implementation of a structural join operator in the RDBS. Currently theRCADG uses standard nested-loop
and indexed-loop joins since no tree-aware operator is available in our RDBS.

Part V: Caching Techniques for XML. Chapter 9 surveys a number of approaches to the incremental
evaluation of XML queries using cached results of earlier queries. The different caching techniques are
compared in terms of various criteria of theoretical or practical interest. These include, among others,
the underlying data and query model, the way cached queries and results are represented, the extent to
which only partially relevant query results in the cache canbe reused, and the scalability of the approach
(determined by the cache size and the look-up latency). A major issue here are the notions ofquery
containmentandquery overlap. Even the apparently unambiguous idea of query containmentbetween a
cached and a new query can have different meanings for semistructured data, depending on whether the
entire result of the new query must be physically present in the cache or whether only each match to the
new query must have a (possibly partial) counterpart in the result of the cache query. In the latter case,
additional joins with the element table may be needed to obtain the complete result of the new query,
however this might still be done much faster than evaluatingthe new query from scratch. In a third variant,
only some of the matches to the new query are retrieved in the cache whereas the remaining matches must
be computed from scratch. This requires the integration of distinct query evaluation procedures that may
or may not use the cache.

To facilitate the comparison of the various cache proposalsin the literature, we therefore formally define
different degrees of query containment and query overlap. It turns out that almost all known approaches are
restricted to full query containment. Notice that this doesnot mean that all cases of strict query containment
are detected. Since this problem has exponential complexity, all of the reviewed algorithms are incomplete.
This also applies to theRCADG Cache, an XML query cache that we introduce in Chapter 10. The
RCADG Cache enhances theRCADG with efficient and scalable incremental query processing. Unlike
almost all other approaches mentioned before, theRCADG Cache compares queries not only based on
their intensions, but also theirextensionson the schema level, which provide an approximate view on the
actual query results on the document level. In a process calledschematization, queries are first matched
against the structural summary to find representatives, orschema hits, of different disjoint parts of the
query result, which is unknown at that time. The schema hits are then looked up in a main-memory index
to the cached queries and results in theRCADG Cache. A sophisticated comparison of query intensions
and extensions (i.e., query constraints and schema hits) allows to detect certain cases of containment or
overlap which cannot be exploited without the structural summary, even if a DTD is given. Again, the use
of structural summaries brings a decisive advantage over schema-oblivious approaches, a phenomenon that
we already observed in previous parts of this work.

Furthermore, theRCADG Cache is the only XML cache we know of that exploits not only final but
also intermediate query results which usually emerge naturally during query evaluation. In the case of the
RCADG, intermediate results are conveniently stored as temporary tables in the RDBS, which need only
be made persistent to be included in the cache. Obviously, caching more results generally increases not
only the effectiveness, but also the size of the cache. Therefore one major challenge to be overcome for
exploiting query overlap and intermediate results was the design of a suitable cache index and look-up
procedure that enable fast access to potentially relevant queries in the cache, even when the overall number
of cached queries is huge. A second precondition for successful exploitation of overlapping queries in
the cache is that those matches to a new query that cannot be obtained from the cache must be computed
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from scratch, and later be combined with the remainder of thequery results that was retrieved in the cache.
Since the schema hits we use for selecting relevant cache contents represent disjoint sets of matches on
the document level, we can simply evaluate the same query with and without cache in parallel and finally
union the partial result sets without duplicate elimination. In Chapter 10 we give a detailed description
of all necessary data structures and algorithms, along withseveral examples that illustrate the benefit of
the salient contributions of theRCADG Cache, namely, query overlap detection and use of intermediate
results.

To evaluate theRCADG Cache, we have conducted two different experiments that simulatepotential
user behaviour in an interactive retrieval system such as the one sketched in the introduction to this work
(see Section 1.3). We find that with theRCADG Cache, the query evaluation is accelerated by up to two
orders of magnitude, depending on the query workload assumed to fill the cache. A careful set-up monitors
a growing cache as it may evolve during the continuous use of acache-enabled retrieval system. An obvious
issue here is the maintenance of the cache over time, most notably, the choice of query results to be cached
and others to be expelled from the cache when is grows too large. These questions are not fully addressed
here, however preliminary solutions have been outlined.
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TWELVE

Perspectives and Outlook

At this point, where all issues that are covered by this thesis have been mentioned and all contributions
made in about three years of work have been developed, documented and evaluated, a final word is in
order on how the results can guide or entail future work in thefield. We will briefly recapitulate what
can be gathered from this work as far as efficient XML retrieval is concerned, and then sketch two other
applications of structural summaries that can also benefit directly or indirectly from our results.

12.1 Lessons Learnt

The key conclusion that should be drawn from what has been presented here is thatstructural summaries
are indeed at the core of making XML retrieval efficient and scalable enough to face today’s challenges and
tomorrow’s expectations. We have seen how structural summaries can solve some of the most fundamental
problems that arise during XML query evaluation, with whatever system or technique:

1. provide fast access to occurrences of specific tags or tag paths in the documents;

2. identify certain unsatisfiable queries immediately, without accessing the documents;

3. decide the question whether a certain tree relation holdsbetween two elements, in constant time
without any I/O;

4. reconstruct a part of the neighbourhood of a given element, in constant time without any I/O;

5. hold data that is specific to a certain class of elements, sothat it is readily available for any of these
elements without redundant storage.

These features have been exploited at various places throughout this work: the native retrieval systemX2

uses theCADG as path index andBIRD for deciding and reconstructing tree relations without access to
the document level; the relational retrieval systemDoX does the same with theRCADG; BIRD uses the
CADG or RCADG to store its weights; themPID scheme does the same with theDataGuide; and so on
(another example will be given below). From a bird’s eye view, the reason why structural summaries are
the method of choice in the various cases is always the same: simply because they provide the right amount
of information about the underlying XML data in the right way, and ignore the rest. This is exactly what
users expect from a retrieval system, and also what the querykernel expects from its index structures and
access paths. In other words, a “good” structural summary for a given purpose provides just the right
abstraction of the data that is needed to avoid the expensivemanipulation of the data itself. TheThree-
Level Model of XML Retrievaldepicted in Figure 2.3 on page 13 is meant to visualize just that intuition, in
a sufficiently generic way to be applied also to other retrieval scenarios that are different, but related. For
instance, the picture might be adapted to a streamed data source, or a set of distributed data sources, or the
combination of distinct summaries (abstractions) on multiple intermediate levels.
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From a more down-to-earth perspective, the different data structures and algorithms introduced in this
work are of course the predominant contribution, which we hope will be broadly applicable in other sit-
uations where similar problems arise. While theRCADG Cache with is rather specialized data structures
is likely more interesting from a system-centric point of view, BIRD and theRCADG storage scheme
are generic enough to be adopted without much need for modification. The abridged survey of labelling
schemes presented in Chapter 3 illustrates such transfer ofsolutions across quite disparate domains of
research: thus some of the most frequently cited labelling schemes in the XML literature were actually
designed for routing in communication networks. In fact, some of the work that was done before the ad-
vent of XML in the Discrete Mathematics community seems to have been reconsidered (and sometimes
rediscovered) later, with new applications in mind.

It is equally true, however, that much of the more theoretical achievements in labelling tree and graph
data never made it into the Related Work sections of papers onXML retrieval. The history of science
probably abounds with examples where “new” solutions (moreprecisely, solutions yet unconsidered) to a
specific problem emerged just because someone realized the link to work that had been done by someone
else before. This is said to emphasize the value of surveys and analytical or empirical comparisons of
alternative approaches to similar, if not identical questions. Thus if a prominent place in this work has been
reserved for classification, systematic comparison, visualization, and terminology, this was done with such
methodological considerations in mind.

A practical application of the classification criteria thathave been proposed for labelling schemes could
be a recommender tool that suggests a suitable scheme to be applied to a given document collection, based
on characteristics of the documents (e.g., structural heterogeneity, maximum path length, maximum fan-
out, markup-to-text ratio), of the data source (static versus dynamic, continuous versus bulk updates), of
the query workload to be expected (most common tree relations queried, frequency of complex branching
patterns, proportion of structural to textual query constraints), of the runtime environment (primary and
secondary storage available, access speed to secondary storage) and of the user’s skills and expectations
(expert versus novice, real-time information need versus off-line analysis). It is easy to see that these
parameters reflect quite closely the optimization goals of different labelling schemes that are plotted in
Figure 4.10 on page 65.

Such a recommender tool is also conceivable for choosing a suitable path index, or for indexing fre-
quently queried parts of the document tree in some privileged fashion. Similar indexing assistance is al-
ready offered by some commercial RDBSs. Analogous techniques might also apply to cache maintenance,
where the system must decide which query results to put into the query cache and which to expel once
the available resources (storage or look-up time, in the case of very unselective queries) are exhausted. In
the end, monitoring the aforementioned user, data and system parameters (which may change over time)
could lead to a largely autonomous system administration agent running in the background. Going through
continuous maintenance cycles, it would adjust the system set-up to the current real usage, rather than the
fictitious usage assumed once before the system start-up.

12.2 Further Applications of Structural Summaries

Finally, we would like to hint at two other aspects of XML retrieval besides efficiency where structural sum-
maries are useful, namely, relevance ranking and user interaction in XML retrieval systems. These fields
being beyond the scope of this work, the following description is necessarily cursory. A more balanced
discussion of the various benefits of structural summaries is found elsewhere [Weigel 2006].

12.2.1 Relevance Ranking

In Chapter 1 is was pointed out that Information Retrieval (IR) systems for XML documents face the
problem of relevance ranking with respect to both the textual contents and the markup structure of the
documents. Most ranking models for structured documents are adaptations of flat-text models such as
tf ·idf [Salton and McGill 1983], which computes relevance scores based on (1) theterm frequency, i.e., the
number of occurrences of a given term (keyword) in a specific document, and (2) thedocument frequency,
i.e., the number of documents in the collection that containat least one occurrence of that term. When
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applying such models to XML documents, other or perhaps additional frequencies are needed that reflect
the distribution of terms with respect to distinct elementsor tags or tag paths. For instance, some XML
ranking models redefine the document frequency as the numberof elementswith a specific tag paththat
contain least one occurrence of a given term. Note that with this definition the document frequency is a
function of a term and a tag path, while the former definition above treated it as a function of a term only.

Redefining frequencies in this way has immediate consequences for the storage structures used to im-
plement a given ranking model. For instance, while the merely term-specific document frequency (first
definition above) easily fits an inverted text file (see Figure5.1a. on page 72), the term/tag path-specific
document frequency (second definition above) has no place inthe inverted text file because tag path in-
formation is not covered by this data structure. Suitable index structures for this sort of document fre-
quency values include, e.g., the inverted text/path file (see Figure 5.1d.), the two- or three-dimensional
path bitmaps (see Figure 5.2 on page 73 and Figure 5.3 on page 74, respectively) and the element table of
theCADG (see Figure 6.1 on page 82).

In earlier work [Weigel et al. 2004b] we have developed a method to find out which index structure is
capable of storing all sorts of frequency that are used by a particular ranking model for structured doc-
uments. A generic classification scheme, thePath/Term/Node Hierarchy, is introduced which describes
XML ranking models in terms of their dependency on three building blocks of an XML document (namely,
Path, Term, andNode). Since the same vocabulary is used to specify which document properties a given
XML index can store, thePath/Term/NodeHierarchy makes it easy to relate the needs of a ranking model
to the capabilities of an index. It turns out that the more basic ranking models can benefit from most of the
centralized structural summaries reviewed above. However, among the index structures presented in Part III
of this work, only theCADG (see Chapter 6), theIndexFabric (see Section 5.4.2) and the inverted text/path
file (see Section 5.2) are capable of storing so-calledPTN frequencies, i.e., frequency values that are at the
same time term-, path- and node-specific.PTN frequencies are used by some of the more sophisticated
ranking models such asXPRES[Wolff et al. 2000].

Following thePTNanalysis of theCADG and other index structures, we have created a modifiedCADG,
theIntegrated-Ranking CADG (IR-CADG), which can be configured so as to meet the demands of a variety
of different ranking models for XML [Weigel et al. 2005a; Weigel et al. 2004b]. TheIR-CADG is an ex-
ample of how the ranking of structured documents can take advantage of centralized structural summaries.
In terms of the Three-Level Model of XML Retrieval, the frequency values stored in the summary make
certain properties regarding keyword and path distributions on the document level visible on the schema
level. This permits systems to use advanced ranking models with complex frequency parameters that mir-
ror more closely the textual and structural properties of the documents, which may eventually lead to better
precision and recall. As a by-product, efficiency benefits discussed for unranked XML retrieval carry over
to the ranked case.

12.2.2 User Interaction

Section 1.3 has sketched a new way for users to interact with the retrieval system, which makes heavy use
of a graphical representation of the schema tree as structural summary. In earlier work [Meuss et al. 2005]
we have described a preliminary version of such a graphical user interface (GUI). The system proposed
there provides separate views on the schema, queries and results. Once a query has been formulated and
evaluated, the retrieved hits are explored in a graphical representation reflecting the query structure. While
browsing the result view, users often wish to modify the query, realizing mismatches with their information
need. Currently this requires re-editing and re-running the query outside the result view (perhaps after
consulting the schema again). This not only causes needlesscomputations to retrieve data which is already
known, but also makes it hard for the user to keep track of updates to the query result.

The most salient feature of the new GUI to be developed is the tight integration of the schema, query
and result views. Ideally the user would silently issue new queries or modify previous ones while brows-
ing the document schema or query result through a point-and-click interface, as follows. First the user
activates interesting tag paths in the schema tree and perhaps annotates them with keyword constraints.1

1Note the similarity between these user-specified query patterns in the schema tree and the schematized queries introduced for
caching purposes in Chapter 10.
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The occurrences of these tag path patterns (actually, manually collected schema hits) span a set of subtrees
in the documents which in turn induce a partial schema tree that is specific to the current activation. For
instance, consider the sample document treeD in Figure 2.1b. on page 8. Initially the schema treeS for D
looks like the one shown in Figure 2.1c. on page 8. If the user activates theperson and gender nodes
in S, then the subtreesa1 to a3 in D are temporarily ignored, being irrelevant to the current user interest
(since neither of the three subtrees contains agender node). Consequently, the schema treeS is reduced
to reflect exactly the schema of the remaining subtreea4 of D. In this case, this means that the schema
nodes #3, #4 and #5 disappear from the schema view. Whenever the user changes the activation pattern in
the schema view, the structure of the schema tree shown thereis immediately updated, e.g., by hiding paths
outside the reduced schema as above, or by making hidden paths reappear. Note that finding the currently
relevant subtrees ofD can benefit from our efficient tree matching techniques, justlike the evaluation of
explicit user queries.

Note that the user can at any point in time either narrow down or expand the schema treeSby changing
the path activation. Moreover, distinct paths can bemerged, i.e., treated as equivalent both in query evalua-
tion and in the GUI. Conversely, occurrences of the same tag path can be distinguished inS, based on their
textual content or statistics such as subtree size, bysplitting the corresponding node in the schema view.
In terms of the Three-Level Model of XML Retrieval, this blurs to some extent the distinction between
the schema and document levels. However, since users are in full control over the shape of the schema
tree, we believe that this feature will actually help them locate relevant information in the document and
schema trees more naturally than when a rigid separation of the two levels is enforced at all times. Again,
the benefit of structural summaries results from their providing the “right” abstraction of the document
contents. Users should ideally decide themselves what level of abstraction is currently appropriate, given
the information need they have in mind.
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CHAPTER

THIRTEEN

Experimental Set-up

13.1 Hardware and Software

Test Environment A

CPU: AMD Athlon XP 2600+, 2.1 GHz, 256 kB cache
RAM: 1 GB
OS: Slackware Linux, version 9.1, kernel version 2.4.26
RDBS: PostgreSQL, version 7.3.2 (database cache disabled)
JAVA: Sun JDK, version 1.4.2

Test Environment B

CPU: AMD Athlon XP 1800+, 1.5 GHz
RAM: 1 GB
OS: SuSE Linux, version 8.2, kernel version 2.4.20
RDBS: PostgreSQL, version 7.3.2 (database cache disabled)
JAVA: Sun JDK, version 1.4.1

Test Environment C

CPU: AMD Athlon XP 2600+, 2.1 GHz, 256 kB cache
RAM: 1 GB
OS: Slackware Linux, version 9.1, kernel version 2.4.26
RDBS: PostgreSQL, version 7.3.2 (database cache disabled)
JAVA: Sun JDK, version 1.5.0

13.2 Document Collections

name XML size nodes keywords tag paths depth

Cities 1.3 MB 16,000 19,000 253 7
XMark 29 30 MB 417,000 84,000 515 13
DBLP 157 MB 5,390,160 757,451 129 7
NP 510 MB 4,585,000 130,000 2,349 40
INEX 536 MB 12,049,113 496,169 10,203 17
XMark 1100 1,145 MB 20,532,979 84,000 549 13
IMDb 8,633 MB 83,404,825 2,340,060 276 5

Table 13.1: Test document collections.
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CHAPTER

FOURTEEN

Comparative Performance Evaluation of Five Labelling Schemes

This section provides some detailed observations from the comparative performance evaluation of different
labelling schemes that is described in Section 4.6.3. As mentioned there, theBIRD, ORDPATH, mPID, and
Virtual Nodes schemes are compared against each other and against the preorder labelling as baseline. The
experiment is carried out on two document collections,DBLP andXMark 1100(see Section 13.2 above).
Each set of queries against either collection is evaluated repeatedly with three different path join strategies,
namely,ALWAYS, FIRSTandNEVER[Weigel et al. 2005c].

Tables 14.1a. andb. list the eight queries that are run against theDBLP andXMark 1100collections,
four against each. Queries with equal number resemble each other to a certain extent: bothXMark 1100’s
andDBLP’s Q0 queries are small trees with a single branching node, a textual constraint and a moderate
number of results (where matches for all query nodes are counted as mentioned above). The Q1 queries
are structurally similar but lack the textual constraint, which makes them less selective than their Q0 coun-
terparts. The Q2 queries stress the path join capabilities of the system, whereas each of the Q3 queries
consists of only one path.

The detailed performance results for all queries against theDBLPandXMark 1100collections are given
in Tables 14.2a.andb., respectively. For each of the three path join strategies, there are five columns listing
the average time in milliseconds spent by a given labelling scheme in different evaluation stages for a given
query. Each of the five stages accumulates all instances of one of the following problems that occur during
evaluation of a single query:

1. REC: reconstruction of theparenti relation

2. DEC: decision of theChild i relation1

3. JOIN: path join (subsumes part of REC, DEC and COMP)

4. FETCH: retrieval of document nodes from the RDBS2

5. COMP: node label comparison

Running Q0 against both collections produces largely similar results. When applying theALWAYSstrat-
egy,BIRD outperformsORDPATH andmPID and is 2-3 times faster thanVirtual Nodes thanks to faster
reconstruction, whereas preorder is prohibitively slow. This changes when theFIRSTstrategy introduces
decision. OnDBLP, preorder evaluation of Q0 is even slightly faster thanBIRD (2.2%) and outperforms
Virtual Nodes by far. The latter is especially handicapped during the join. On XMark 1100, preorder is
clearly inferior to any other scheme forFIRST. mPID andBIRD are more than twice as fast asORDPATH

1This subsumes part of COMP. Note that theVirtual Nodes scheme decidesChild i(u,v) for two document nodesu,v by recon-
structingparenti(v) and then testing whether the reconstructed ancestor label equalsu. This extra reconstruction is subsumed by DEC
and not included in REC values.

2Note that since preorder labels support neither decision nor reconstruction, REC, DEC and JOIN may subsume considerable
portions of fetching time in the baseline tests.
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a. DBLP

b. XMark 1100

Table 14.1: Sample queries against theDBLPandXMark 1100collections (see Section 4.6.3).

and beatVirtual Nodes by one order of magnitude. ApplyingNEVERslows down evaluation roughly by a
factor 2 onDBLPand much more onXMark 1100. Due to faster decision,BIRD remains on the top.

Evaluating Q1 onXMark 1100takes somewhat longer than evaluating Q0 (typically one order of mag-
nitude) because due to the missing textual query constraints, far bigger node sets must be joined. The size
of the query results differs by two orders of magnitude.BIRD andmPID retrieve more than 14,000 nodes
in less than 3 seconds, followed byORDPATH (6 seconds). As before, performance breaks down when re-
construction is disabled. Thus the performance ranking is similar to Q0 except that forFIRSTandNEVER,
Virtual Nodes is far slower even than the baseline since its join handicap weighs particularly heavy for this
query. OnDBLP, Q1 reveals a pattern similar to Q0 but is evaluated much faster. The reason is that the
number of matches to all three query nodes in Q0, ignoring thetextual constraint, exceeds that for Q1 by
two orders of magnitude (e.g., 157,382 titles in Q0 versus 1,195 titles in Q1). Therefore joining is much
easier for Q1 even though the final result is bigger than that of Q0. As a consequence, nearly 5000 nodes
are retrieved in only a few hundred milliseconds by most schemes and strategies.

The evaluation of Q2 onXMark 1100is lengthy despite the small number of final matches. After all,
joining sets of some 100,000name nodes, 100,000bold nodes and 380,000category nodes with the
102 keyword nodes containing the query keyword puts the system to a hard test. Without decision,BIRD
andmPID do the job in 14 seconds, saving 20 seconds compared toORDPATH andVirtual Nodes. As
for Q0 and Q1, the preorder scheme is not competitive. With the FIRSTstrategy, where decision comes
into play, the former three schemes are not affected whereasthe response time ofVirtual Nodes grows
by a factor 1.8 due to the join overhead. Interestingly, preorder benefitslargely from decision for joining,
increasing its performance by a factor 40 compared toALWAYS, and evaluates Q2 slightly faster thanBIRD.
The top-down join algorithm applied byFIRSTlets preorder save much time that is otherwise needed for
reconstruction (and hence, fetching). Disabling reconstruction decreases the performance by roughly a
factor 3, but the scheme ranking remains the same.

On DBLP, the task is somewhat easier (as long as reconstruction is allowed) because the//title//i
branch has only 664 matches, which quickly narrows down the 3,747 candidates of the leftmost branch in
the Q2 tree. Consequently, performance figures forALWAYSandFIRSThardly change compared to Q0
(BIRD beforeORDPATH, mPID, as well asVirtual Nodes and preorder). With reconstruction disabled,
however, fetching 157,382article matches slows down the evaluation and increases the differences
between individual labelling schemes. As observed forXMark 1100’s Q2 query,BIRD outperformsORD-
PATH andmPID by 1 second, preorder by 4.5 seconds, andVirtual Nodes by 5 minutes. The latter again
suffers from the join overhead.

Finally, the queries Q3 are degenerated trees each consisting of a single path, such that there are no
decision and join costs forALWAYSand FIRST. As could be expected, differences between these two
strategies in the performance of any given labelling schemeare negligible on either collection.BIRD
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a. DBLP

b. XMark 1100

Table 14.2: Efficiency profiling of query evaluation with different labelling schemes (see Section 4.6.3).

retrieves 1,777 matches fromXMark 1100in 30 milliseconds on average, more than three times as fast
asORDPATH. mPID comes close behind. Disabling reconstruction, theNEVERstrategy entails fetching
for all inner nodes on the query path. While onDBLP this causes 3,748 nodes to be fetched, which
affects only the performance ofVirtual Nodes and preorder whose decision is less efficient, onXMark 1100
382,316 nodes undergo fetching and joining. AgainBIRD andmPID cope best with the decision problem
(10 and 11 seconds, respectively), followed by preorder (14seconds),ORDPATH (25 seconds, due to label
comparison), andVirtual Nodes (3.8 minutes, due to the join overhead).
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access control, 6
alignment, 28, 33
ALWAYS, 61–63, 183, 184
arithmetic, 17, 34, 42, 59, 99
arity, 32,32, 33,see alsofan-out
artefact, 61, 84, 160
asymptotic behaviour, 27, 37, 38, 60
attribute, 6, 7, 7fn, 8, 9, 9fn, 11, 22, 23, 52fn, 77,

81, 90, 103

B+-Tree, 23, 73, 84, 119, 124, 125, 160, 163
back-end, 57, 84, 119, 133, 134, 160
backtracking, 75–79, 81, 82
balancing, 43, 44, 46, 51, 54, 57, 64, 66
benchmark, 57, 104, 118–120, 123
bibliographic data, 3, 54, 118
binarization, 36
binary encoding,seeencoding
bit-string, 27, 29, 33, 37, 59, 76, 107

operator, 106, 107fn
separator, 28, 29fn, 33

bitmap, 73, 74, 79
path, 73, 74, 79, 177

Boolean
function, 19
keyword constraint, 74
operator, 99, 153, 154
retrieval, 73

breadth-first, 7fn, 35, 35fn, 36, 38, 59, 63, 109
browsing, 5, 6, 159, 177
bulk update, 40, 176

cache
content, 130, 133, 134, 136, 138, 141, 146,

148, 159–161, 163, 165–167
irrelevant, 140, 150, 163
reusable, V, 134, 136–142, 147, 158, 160,

174
database, 57, 181
edge, 148,148, 149, 150, 152, 155, 156, 161,

163, 164
file system, 61, 84

growth, 133, 150, 160, 161, 163, 174
look-up, 129, 130, 133, 134, 136, 137, 146,

150–152, 156, 163–166
maintenance, 165–167, 176,see alsoreplace-

ment strategy
overflow, 130, 133, 138, 167
semantic, 129
size, 130, 133, 160, 173
stage, 163, 163fn
support, 159–161, 163, 164

careting-in, 29,29, 30, 30fn, 58, 64
classification, 18, 37, 84, 89, 129, 176, 177
closure, 8, 9

reflexive-transitive, 19
transitive, 9, 19

cluster, 38
index, 119
table, 126

collapse, 104,104, 108
communication, 21, 176
comparison

lexicographical, 28
numeric, 28, 32, 121, 122

complexity, 57, 65, 111, 121, 129, 130, 132, 137,
173

exponential, 35, 65, 75fn, 78, 132, 133, 173
compression, 32–34, 37, 65, 76, 79, 171
concurrency, 5, 6, 89
conjunction, 71, 74, 79, 106, 107, 107fn, 115–117,

153, 155
content/structure join, 81, 82, 85, 97,see alsomate-

rialized join
corpus, 10, 26, 40, 57, 84, 85, 119–122, 124,see

alsodocument collection
cost estimation, 112, 125, 126, 147, 158–160, 163,

173
cross-link, 77, 78,see alsoIDREF

data mining, 91
data type, 9fn, 62, 90fn
DataGuide, 11, 32–34, 37, 38, 75, 75fn,75, 77–79,

81, 82, 84, 85, 175
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DBLP, see Digital Bibliography and Library Project
decision, 19, 19fn,19, 20, 23, 27, 30, 33, 34, 37,

38, 42, 43, 48, 50, 52, 52fn, 53, 56, 57,
59–64, 66, 91, 97, 99, 101, 102, 108, 109,
111, 113–115, 121, 123, 130, 131, 150,
156, 171, 183, 183fn, 184, 185

depth-first, 7fn, 26
descriptive schema,see alsodocument schema
Dewey, 27, 27fn, 28–30, 32, 37–40, 54, 56, 64, 66
Dewey, Melvil, 27fn
Digital Bibliography and Library Project(DBLP),

54, 57–62, 118, 122, 124, 181, 183–185
Discrete Mathematics, 37, 176
disjunction, 9, 10, 12, 74, 76, 83, 106, 107, 107fn,

115–117, 132, 140, 141, 153, 155
distance, 19, 20, 26, 30, 32, 36, 39, 40, 50, 60, 62,

71, 101, 143,see alsoproximity
distributed data source, 6, 175
document

collection, V, 4, 6, 18, 30fn, 37, 40, 42, 52, 54,
57, 58, 61, 66, 78, 82–84, 89, 93, 95, 118,
119, 122, 125, 126, 130fn, 132, 136, 137,
142, 144, 146, 159, 159fn, 166, 167, 176,
181, 183,see alsocorpus

height, 7, 23, 35, 36, 44, 46, 48, 51, 64, 65, 94
hierarchy, V, 3, 27fn, 89
level,seelevel
order, 4, 7–9, 11, 17, 20, 22, 26–28, 30, 32, 38,

41, 43, 46, 48, 49, 51, 54, 56, 62, 63, 65,
66, 107, 118, 126, 133

schema, V, 4–6, 12, 74, 83, 85, 90, 94, 124,
129, 132, 134, 136–141, 147, 164, 167,
171, 177,see alsoDocument Type Defi-
nition

descriptive,4, 137, 141, 164
heterogeneous, 18, 57, 64, 67, 75, 75fn, 78,

84, 118, 124,see alsoirregular
homogeneous, 54, 64, 84,see alsoregular
irregular, V, 3, 34,see alsoheterogeneous
prescriptive,4, 89–91, 94, 137, 141
regular, 34, 36, 38, 41, 91, 171,see alsoho-

mogeneous
structured, V, 5, 21, 26, 34, 71, 74, 81, 176,

177
text-centric, 3, 26
tree, 6, 7, 7fn,7, 9–13, 17–24, 26, 27, 29, 30,

30fn, 31–36, 38, 40–48, 50–52, 54–56,
59, 63–67, 71–74, 75fn, 76, 77, 81, 82,
90, 91, 94, 98, 99, 112, 119, 123, 125,
130, 131, 133, 133fn, 134, 143, 171, 172,
176, 178

Document Object Model (DOM), 4, 26fn
Document Type Definition (DTD), 4, 30, 38, 89, 94,

132, 133, 137, 144, 173,see alsodocu-

ment schema
document/term matrix,73, 74
DOM, seeDocument Object Model
DTD, seeDocument Type Definition
duplicate, 11, 32, 73, 78, 79, 93, 116, 134, 146, 147,

149, 163, 174
durability, 21, 22,see alsorobustness
dynamic, 17, 30fn, 40, 52, 66, 126, 136, 176

effectiveness, V, 5, 34, 85, 108, 111, 112, 130, 134,
138, 142, 144, 145, 160, 164, 173

encoding,see alsolabelling scheme
binary, 27, 29, 32, 37, 56, 171
prefix-free, 27,27fn, 28, 33

equijoin,seejoin
evaluation plan,seequery plan
existential quantification, 125, 132, 166
expressivity, 18,18, 20, 27, 30, 32, 34, 37–39, 41,

42, 43fn, 57, 65, 66, 126, 171

false positive, 19, 41, 76, 77, 83, 95, 140
fan-out, 29, 29fn, 35, 36, 40, 48, 65, 176,see also

arity
field, 98, 105, 107, 119, 159

mandatory, 98
optional, 98, 111, 124

filter, 11, 85, 92, 94
Finite-State Transducer (FST), 30, 33, 37, 38, 66,

see alsotransducer
FIRST, 61–63, 183, 184
flat text, V, 3–5, 71, 73, 172, 176
foreign key, 81, 83, 92, 98, 119, 122
FST,seeFinite-State Transducer

gap positions, 22, 40
generalization, 4, 26, 52, 54, 130fn, 135
global data, 4, 5, 17, 30, 33, 34, 37, 39, 66
government, 9, 75, 83, 90, 98, 107, 115–117, 153–

155
grammar, 4

heuristic, 79, 126, 173
holistic,79
homomorphism, 36, 171
horizontal proximity, 38, 166fn
hybrid retrieval system,seeretrieval system
hypertext, 27

I/O, V, 13, 19, 40, 41, 52, 82, 83, 95, 97, 109, 126,
138, 139, 141, 142, 175

IDREF,see alsocross-link
IDREF, 6, 7, 77
IMDb, see Internet Movie Database
incomplete, 133, 137, 140, 142, 146, 173
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index, 4, 4fn, 6, 11, 18, 58, 69, 71, 72, 74–78, 84,
85, 89, 121, 124, 137, 139, 146, 165, 172,
175, 177

path, 51, 72, 92, 124, 164, 172, 175, 176
atomic, 73
compositional, 75

weight, 51, 58, 67
INEX, see Initiative for the Evaluation of XML Re-

trieval
information need, 176–178
Information Retrieval (IR), 3–5, 71, 73, 76, 126,

172, 176
Infoset, 26fn
Initiative for the Evaluation of XML Retrieval(INEX),

57, 58, 64, 75fn, 82, 118, 121, 124, 181
inlining, 90,90
insertion, 21–23, 27, 29, 30, 30fn, 37, 40, 54, 56,

63, 64, 66, 67, 136, 172
integrated query evaluation,seequery evaluation
Integrated-Ranking CADG, 177,177
Internet Movie Database(IMDb), 54, 56, 63, 64, 77,

118–120, 124, 159, 161, 181
inverted file, 71,71, 72, 73, 79, 81,see alsoinverted

list
path, 73–77, 81–83
tag, 72

inverted list,71, 172,see alsoinverted file
IR, seeInformation Retrieval
IR-CADG, seeIntegrated-Ranking CADG

join
equi, 90, 91
self, 90–92, 99, 101, 105, 121, 122, 125, 160
structural, 4, 4fn, 19, 21, 28, 36, 38, 40, 62,

66, 72,72, 75, 79, 94, 119, 126, 137, 138,
172, 173

keyword signature, 76,76, 77, 79, 83, 98, 106, 107,
124, 126

label
invariant, 43,43, 46
size

fixed, 33, 37, 40, 57, 77
maximum, 18, 29, 37, 54fn, 57, 58, 64, 172
variable, 28, 37, 40, 56, 57

labelling scheme
multiplicative, 34,34, 35, 38, 40–42, 54, 64,

171
path, 27,27, 31, 32, 34, 37, 38, 40, 41, 52, 54,

56, 64, 171
subtree, 21,21, 24, 26, 27, 30, 38, 40, 57, 66,

119, 171
Layered BIRD, 54–56, 64, 66

layering, 38, 54fn,54, 56, 63
level,see alsoThree-Level Model of XML Retrieval

document,12, 14, 41, 50–54, 56, 74–77, 95,
97–99, 102, 104, 107, 108, 112–116, 119,
122, 126, 142, 143, 145, 146, 148, 150,
153fn, 159, 164, 171–175, 177, 178

query, 12,12, 137, 140
schema, 13,13, 14, 41, 74, 76, 82, 83, 92–95,

98, 101, 102, 104, 105, 107, 108, 114,
115, 119, 121, 125, 126, 137, 140, 141,
143, 146–148, 150, 164, 172, 173, 177

limitations, 6, 65
local data, 4, 11, 18, 40, 78, 79
locality, 135
lossiness, 38, 66, 172

markup, V, 3, 26, 71, 176
match edge, 149,149, 150–153, 157
matching

candidate, 13,13, 19, 94, 184
document-level, 99, 101, 103, 107, 108, 112,

113, 121, 122
partial, 99, 112, 121, 122, 140, 144, 166, 172
rule,seerule
schema-level, 99, 101, 103, 105, 119, 125

materialization, 74, 79, 81, 90–92, 124, 129, 135,
136, 149, 171, 172

join, 81, 85, 124, 126
mediation, 91, 137
metric, 65
modulo,42fn, 99
multiplicative encoding,seelabelling scheme

namespace, 7fn, 8, 9, 9fn, 52fn
native retrieval system,seeretrieval system
nesting, V, 4, 11, 22, 57, 64, 122, 123

interval, 21fn
region, 21

NEVER, 61–63, 183–185

on-the-fly, 79, 94
optimization goal, 57, 64, 65, 78, 160, 161, 171, 176
order

combined pre-/post,7fn, 21, 21fn, 26
document,seedocument order
inverse postorder, 51, 52,52
sibling, 7,7, 8, 32fn, 98

partial, 32
overflow

cache,seecache
graph, 91
label, 40, 54, 56, 63
weight, 63, 64, 66, 67

overhead
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runtime, 59, 62, 63, 79, 82, 118, 120, 120fn,
121, 122, 125, 129, 130, 160, 163–165,
167, 184, 185

space, V, 30, 57, 64, 79, 85, 171, 172

padding, 28, 34
paging, 10, 23, 76
parallelization, 90, 159, 164, 174
parameter, 5, 6, 20, 43, 46, 64, 78, 109fn, 132, 136,

153, 155, 176, 177
partition, 54, 76, 78, 90, 133, 160, 163, 163fn, 164
path encoding,seelabelling scheme
path occurrence, 77, 78, 120fn
Path/Term/NodeHierarchy (PTN), 177
PCDATA, 30
performance measure, 59, 61, 84, 85, 120, 121, 159,

160, 163
persistent storage, 17, 102, 135, 160, 173
plane

pre/max, 25
pre/post, 22, 23, 25
pre/size, 25, 27
start/end, 25, 27

posting, 32, 71,71, 73, 74, 82
pre-weight, 44,44, 45, 47, 51,see alsoweight
precision, 97, 177
predecessor, 23, 35, 36, 49, 51, 52, 101, 156
prefix-free encoding,seeencoding
prescriptive schema,see alsodocument schema
priorities, 37, 112, 124, 167
privacy, 6
profiling, 61, 62, 185
projection, 99, 102, 104, 107, 114, 115, 159
proximity, 8, 9, 21, 26, 29, 30, 36, 40, 52, 52fn,

59, 60, 103, 104, 106, 107, 141,see also
distance

bounds, 12, 99, 103, 104, 106–108, 114, 115,
143, 143fn, 166fn

pruning, 79, 84
PTN, see Path/Term/NodeHierarchy

query
answer,seequery result
branching, 61, 62, 79, 92, 94, 95, 121, 122,

125, 133, 137, 172, 176, 183, 184
candidate, 138, 140, 142, 143, 146, 150
comparison

extensional, 134, 137–139
intensional, 134, 137–140, 142, 164

containment, V, 5, 6, 14, 129, 130, 130fn, 131,
131, 132, 134–143, 145, 146, 173

match, 131,131, 137, 142
node, 131,131, 142

editing, 161, 163, 177

evaluation,see alsoquery processing
from scratch, V, 5, 101, 109, 111, 112, 129,

129, 130, 131, 134–137, 139–142, 144,
147, 148, 151, 158–161, 163–165, 173,
174

incremental, V, 41, 81, 112, 129,129, 130,
132, 135–140, 142, 143, 146, 147, 150,
157–161, 163, 166, 173

integrated, 137, 139, 147, 164
extension, 12,12fn, 13, 129–131, 133, 134,

137, 138, 140, 141, 146, 153, 164, 165,
173

graph, 10, 101, 103, 107, 111, 120–123, 125,
150

hotspot,161, 163
intension, 12,12fn, 14, 129, 130, 132–134, 137,

138, 140, 141, 144, 146, 150, 173
language, 4, 6, 9, 18, 19, 26, 61, 129, 130, 132–

134, 165
level,seelevel
optimization, 4, 5, 23, 37, 89, 97, 102fn, 108,

112, 119, 123, 126, 158, 172, 173
overlap, V, 5, 6, 14, 129, 130, 130fn, 131,131,

132, 134–146, 160, 163, 164, 167, 173,
174

path, 75, 76, 78, 84, 92, 93, 132
performance, 27, 119–122, 126
plan, 102, 108,108, 109–113, 115–117, 121–

123, 138, 140, 144–148, 151, 156–160,
163, 165

alternative, 111, 130, 138, 140, 147, 158
planning, 5, 89, 92, 97, 98, 103, 105, 108–111,

115, 118, 119, 123–126, 138, 147, 151,
156, 157, 163, 172, 173

preprocessing, 95, 102
processing, 13, 81, 129, 136, 138–140, 142,

159, 164, 173,see alsoquery evaluation
remainder, 142,142, 144, 147, 151, 153–155,

157–159, 165
result, V, 5, 6, 10,10, 12fn, 14, 61, 71, 72,

75–77, 79, 82, 83, 90, 93, 94, 99, 102,
104, 105, 112, 116–119, 121, 122, 126,
129–133, 133fn, 134–147, 151, 156–161,
163–165, 167, 173, 174, 176, 177, 184,
see alsoresult table

false, 93, 122, 125
final, 99, 102, 116, 117, 122, 125, 137–140,

144, 145, 147, 151, 160, 164, 165, 184
intermediate, V, 79, 92, 95, 97, 99, 101, 102,

105, 108, 111–114, 117, 120–124, 126,
137, 138, 140, 144, 145, 151, 156, 157,
159, 163, 164, 172–174

partial, 136, 137, 164, 173
snapshot, 140,140, 147, 150, 151, 157–159,
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165
rewriting, 99, 102, 102fn, 103, 104, 107–109,

115, 119, 126, 172
document-level, 107
schema-level, 102

selectivity, 84, 97, 112, 120, 126, 138, 158,
163, 173

semantics, 8, 9, 66, 103, 104, 130, 138
translation, 91, 97, 99, 101, 105, 107, 112, 114–

120, 125, 133, 134, 140, 147, 151, 163,
166

tree, 61, 62, 94, 134
twig, 4, 79

queue, 109, 111, 167

R-Tree, 22
ranking model, 5, 176, 177
RDBS,seerelational database system
recall, 177
reconstruction, 19, 19fn,19, 20, 21, 27, 28, 30, 33–

38, 41–43, 48–51, 56, 57, 59–66, 97, 99,
101, 102, 108, 109, 111–115, 119, 121,
122, 125, 157, 166, 171, 172, 183, 183fn,
184, 185

recovery, 6, 89
recursive

definition, 44, 46
query, 90, 91
schema, 38, 75, 84, 93–95, 118, 122, 125

redundancy, 32, 33, 37, 51, 73, 75, 75fn, 76–79, 92,
95, 102, 124, 125, 133, 149, 175

regular expression, 4, 66, 79, 93, 93fn, 125
path, 91, 132

relabelling, 30, 30fn, 54, 63
relational algebra, 5, 89, 99
relational database system, V, 3, 5, 6, 41, 57, 61,

66, 84, 85, 89, 91, 92, 94, 95, 97–99, 108,
112, 114, 118, 119, 124–126, 139, 144,
146, 160, 165, 172, 173, 176, 183

relational retrieval system,seeretrieval system
relevance feedback, 161
relevance ranking, 5, 6, 92, 176
removal, 40
replacement strategy, 130, 133, 167,see alsocache

maintenance
response time, 85, 135, 184
result table, 99, 102, 105, 108, 112–116, 130, 146,

151, 159, 160, 165,see alsoquery result
retrieval phase, 99, 103, 107, 125, 163
retrieval system

hybrid, V, 4, 5, 18, 85, 89, 92, 94, 134, 139,
171–173

native, V, 4, 4fn,4, 5, 18, 57, 63, 89, 91, 94,
118–120, 120fn, 121, 124, 126, 175

relational, V,4, 5, 18, 63, 90, 91, 95, 171, 175
robustness, 18,18, 22, 27, 30, 37, 40–42, 64, 66, 78,

83, 167, 171,see alsoupdatability
rule

adaptation, 105–107, 114–116
matching,99, 100, 103, 105–107, 114–117

safety, 5, 89
satisfiable, 84, 85, 103, 125, 175
scalability, V, 3, 5, 41, 64, 89, 94, 125, 130, 139,

150, 160, 165, 172, 173, 175
schema,seedocument schema

aware,129
based, 89fn,89, 90, 91, 94
edge, 146–148,148, 149, 150, 160, 164, 166,

167
hit containment, 142,144, 146, 149–153, 156,

166
level,seelevel
level matching,seematching
level query rewriting,seequery rewriting
oblivious, 90, 90fn,90, 91, 125, 129, 173

schematization, 141,141, 142–146, 148, 150, 155,
157, 164, 166, 173

scratch, evaluation from,seequery evaluation
search time, 160, 163
selection, 93, 103, 104, 107, 114, 124, 172
selfjoin,seejoin
semistructured data, V, 3, 71, 75, 91, 129, 132, 133,

173
separation level,20, 29, 39, 50
serialization, 7, 7fn, 21, 22, 126
set-at-a-time, 38
SGML,seeStandard Generalized Markup Language
shredding, 89, 90, 98
shrink-wrap, 23,23, 25, 91, 119
skew, 29fn, 37
snapshot,seequery result
space consumption, 27, 37, 57, 63, 64, 112, 124,

126
sparseness,22, 30, 34, 35, 37, 38, 41, 52, 54, 63, 64,

74, 79, 171
Staircase Join, 23, 91, 94, 119
Standard Generalized Markup Language (SGML),

3, 26, 32
static, 40, 52, 136, 176
statistics, 78, 84, 92, 94, 97, 98, 105, 111, 118, 123–

125, 161, 166, 173, 178
stemming, 71, 85
stop word,71, 85
storage scheme, 89–94, 97, 118, 119, 124, 126, 129,

165, 172, 176
streamed data source, 6, 175
string matching, 4, 92–94, 121, 122
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structural join,seejoin
structural summary, 8, 10, 11,11, 13, 17, 33, 42,

51, 58, 64, 67, 85, 90, 133, 164, 171–173,
175, 177

centralized, 4–6, 11,11, 17, 18, 32, 34, 36, 37,
41–43, 48, 71, 78, 81, 89, 94, 95, 97, 124,
171, 172, 177

decentralized, 4, 11,11, 17, 41, 71, 78, 94, 97,
124, 171

structured document,seedocument
subtree encoding,seelabelling scheme
successor, 19, 151

tag path, 11,11, 32, 33, 37, 42, 43, 54, 63, 66,
67, 72–75, 75fn, 76–79, 81–84, 90, 92–
95, 98, 99, 101, 108, 114, 115, 119, 122,
124, 125, 172, 173, 177, 178

tag-specific sibling codes, 27, 32, 32fn, 38
template, 77,77, 114
terminology, 41, 49, 89, 176
Three-Level Model of XML Retrieval, 6, 12–14, 74–

76, 137, 171, 175, 177, 178
threshold, 136, 164, 167
topology, 40, 65
trade-off, 34, 37, 57, 58, 65

space, 65, 67,171
transaction, 5, 89
transducer, 33,see alsoFinite-State Transducer
transitive, 104, 108, 166
tree database, 17, 18
tree neighbourhood, 21, 34, 42, 175
tree-aware, 125, 173
Treebank, 75fn, 82
Trie, 73, 74fn, 76, 77, 79
tuning, 77

Unicode, 28fn
union, 8, 90, 146, 147, 163, 164, 174
unique, 7, 7fn, 11, 19, 27, 33, 34, 34fn, 42fn, 43, 71,

78, 98, 115, 134, 143, 145, 157
node label, V, 4, 7, 11, 17, 28, 32, 41, 46, 71,

90, 92, 105, 107, 130, 165
updatability,37, 38, 40, 42, 57, 63–65, 172,see also

robustness
user, 5, 6, 12, 14, 85, 116, 118, 124, 129, 159, 161,

165, 167, 174–177, 177fn, 178
expert, 176
interaction, 6, 14, 167, 176, 177
novice, 176

user-defined function, 66, 99, 126
UTF-8, 28, 28fn, 29, 37

versioning, 6
vertical proximity, 7, 30, 143, 143fn

visualization, 65, 102, 175, 176

web, V, 3, 118
search, 5, 85

weight, 41–44,44, 45, 47, 49–51, 53–56, 58, 63,
64, 66, 67, 98, 99, 101, 115,see alsopre-
weight

invariant, 43,43, 44
well-formed, 21fn, 22, 26
wildcard, 73, 75, 78, 92–94, 122, 132, 133

XLink, seeXML Linking Language
XMark, see XML Benchmark
XML Benchmark(XMark), 104, 119, 120, 122, 123
XML Linking Language (XLink), 6, 78
XML Pointer Language (XPointer), 6, 78
XPointer,seeXML Pointer Language
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