
To CNF or not to CNF? An Efficient Yet

Presentable Version of the CYK Algorithm

Martin Lange
Dept. of Computer Science, University of Munich, Germany

Hans Leiß
Centrum f. Informations- und Sprachverarbeitung

University of Munich, Germany

June 3, 2009

Abstract

The most familiar algorithm to decide the membership problem for
context-free grammars is the one by Cocke, Younger and Kasami (CYK)
using grammars in Chomsky normal form (CNF). We propose to teach
a simple modification of the CYK algorithm that uses grammars in a
less restrictive binary normal form (2NF) and two precomputations: the
set of nullable nonterminals and the inverse of the unit relation between
symbols.

The modified algorithm is equally simple as the original one, but high-
lights that the at most binary branching rules alone are responsible for
the O(n3) time complexity. Moreover, the simple transformation to 2NF
comes with a linear increase in grammar size, whereas some transforma-
tions to CNF found in most prominent textbooks on formal languages
may lead to an exponential increase.

1 Introduction

The membership and parsing problems for context-free languages (CFL) are of
major importance in compiler design, bioinformatics, and computational linguis-
tics. The algorithm due to Cocke [4], Younger [24] and Kasami [9], often called
the CYK algorithm, is the most well-known and therefore commonly taught
algorithm that solves the word problem for context-free grammars (CFG), and
with a minor extension, the parsing problem as well. It is also a very prominent
example for an algorithm using dynamic programming, a design principle for
recursive algorithms that become efficient by storing the values of intermediate
calculations. It is therefore fair to say that the CYK algorithm is one of the
most important algorithms in undergraduate syllabi for students in subjects like
computer science, (bio)informatics, and computational linguistics.

1

One would expect that textbooks and course notes reflect this importance by
good presentations of efficient versions of CYK. However, this is not the case. In
particular, many textbooks present the necessary transformation of a context-
free grammar into Chomsky normal form (CNF) in a suboptimal way leading to
an avoidable exponential blow-up of the grammar. They neither explained nor
discuss whether this can be avoided or not. Complexity analyses often concern
the actual CYK procedure only and neglect the pretransformation. Some of the
textbooks give vague reasons for choosing CNF, indicating ease of presentation
and proof. A few state that CNF is chosen to achieve a cubic running time, not
mentioning that only the restriction to binary rules is responsible for that.

We find that this leaves students with wrong impressions. The complexity
of solving the word problem for arbitrary CFLs appears to coincide with the
complexity of the CYK procedure (ignoring the effects of the grammar trans-
formation). Also, CNF is unduly emphasised.

We believe that this situation calls for correction. We want to show that
efficiency and presentability are not contradictory, so that one can teach a less
restrictive version of CYK without compromising efficiency of the algorithm,
clarity of its presentation, or simplicity of proofs. We propose to use a grammar
normal form which is more liberal and easier to achieve than CNF and comes
with a linear increase of grammar size only, leading to a faster membership test
for arbitrary CFGs.

It would be unnecessary to argue that we should emphasize efficiency con-
cerns as well as ease of presentation in teaching CYK to students, if the goal
was just to show that the membership problem for CFLs is decidable. But since
CYK is often the only algorithm taught for that problem, students are led to
believe that it is also the one which should be used.

Older books on parsing, e.g. Aho and Ullman [1], doubt that CYK “will
find practical use” at all, arguing that time and space bounds of O(|w|3) and
O(|w|2) are not good enough and that Earley’s algorithm does better for many
grammars. At least the first part of this may no longer be true. For exam-
ple, Tomita’s [21, 19] generalization of LR parsing to arbitrary CFGs uses a
complicated “graph-structured” stack to cope with the nondeterminism of the
underlying push-down automaton; but Nederhof and Satta [15] show how to
obtain an efficient generalized LR parser by using CYK with a grammar de-
scribing a binary version of the pushdown automaton. Furthermore, there are
non-standard applications of CYK. For instance, Axelsson et al. [3] use a sym-
bolic encoding of CYK for an ambiguity checking test. The claim of Aho and
Ullman [1] that CYK is not of practical importance therefore seems too skepti-
cal.

The paper aims at scholars who do know about CYK or, even better, have
already taught it. We want to convince them that the standard version can
easily be improved and taught so that students learn an efficient algorithm.
Note that we only suggest that a particular variant of the algorithm is the best
one to teach, not that it should be presented in a particular style.

The paper is organised as follows. Sect. 2 discusses how the CYK algo-
rithm is presented in some prominent textbooks on formal languages, parsing

2

and the theory of computation. Sect. 3 recalls definitions and notations used
for languages and CFGs. Sect. 4 presents an efficient test for membership in
context-free languages, consisting of the grammar transformation into 2NF, two
precomputation steps and the actual CYK procedure. Correctness proofs and
complexity estmations are given for each of the steps. The section finishes with
an example.1 Sect. 5 contains some concluding remarks about teaching the vari-
ant proposed here and the possibility of avoiding grammar transformations at
all.

2 The CYK Algorithm in Textbooks

What is understood as the CYK algorithm? For textbooks on formal
languages, the input of the CYK algorithm is a context-free grammar G in
Chomsky normal form (CNF) and a word w over the terminal alphabet of G;
its output is a recognition table T containing, for each subword v of w, the set
of nonterminals that derive v, i.e. its syntactic properties. In particular, T tells
us whether w is a sentence of G. Thus, the membership problem for G is solved,
and by transforming an arbitrary context-free grammar into an equivalent one
in CNF, the membership problem for context-free grammars is solved as well.

Using some standard notation explained below, figure 1 shows a typical
version of CYK, where the nonterminals deriving the subword ai . . . aj of w are
stored in Ti,j .

input: a CFG G = (N, Σ, S,→) in CNF, a word w = a1 . . . an ∈ Σ+

CYK(G,w) =

1 for i = 1, . . . , n do
2 Ti,i := {A ∈ N | A → ai}
3 for j = 2, . . . , n do
4 for i = j − 1, . . . , 1 do
5 Ti,j := ∅;
6 for h = i, . . . , j − 1 do
7 for all A → BC
8 if B ∈ Ti,h and C ∈ Th+1,j then
9 Ti,j := Ti,j ∪ {A}

10 if S ∈ T1,n then return yes else return no

Figure 1: Algorithm CYK for the word problem of CFGs in CNF.

Concerning the restriction to CNF, a little reflection shows that the basic
1The expert reader may have a look at the example first to spot the modifications in

comparison to “their textbook version” of CYK.

3

idea of CYK can be extended to arbitrary context-free grammars (and beyond
[11, 16]). The syntactic properties of w can be computed from the syntactic
properties of all strict subwords v of w using a dynamic programming approach:
store the nonterminals deriving v in table fields Tv and compute Tw by combining
entries in stored Tv’s according to rules of G and all possible splittings of w into
at most m strict subwords v, where m is the maximum number of symbols in
the right hand sides of grammar rules. This gives an algorithm solving the word
problem for context-free grammars in time O(|w|m+1).

Such a remark is generally absent in textbooks on formal languages. Among
the computer science books on parsing, only Aho and Ullman [1] remark that
“a simple generalization works for non-CNF grammars as well”; among those in
computational linguistics one can find a generalization of the CYK algorithm to
acyclic CFGs without deletion rules in Winograd’s book [23], c.f. Naumann and
Langer [13]. The latter then motivates the restriction to CNF by a “simplifica-
tion to compute T ”, without going into any detail. Aho and Ullman [1] say that
CNF “is useful in simplifying the notation needed to represent a context-free
language”. Textbooks on formal languages motivate the restriction to CNF by
the fact that “many proofs can be simplified” if right-hand sides of rules have
length at most two [7], or claim that the advantage of CNF “is that it enables
a simple polynomial algorithm for deciding whether a string can be generated
by the grammar” [12]; this is only correct if the emphasis lies on “simple”. In
fact, there is a mixture of two reasons for using grammars in CNF in CYK:
cutting down the time complexity to O(|w|3) and keeping the correctness and
completeness proofs simple. The textbooks on formal languages do not clearly
say which of the restictions of the CNF format serves which of these goals.

In the literature on parsing, one can find a number of variations of CYK
that differ in the restrictions on the input grammar. The most liberal one that
suffices to make CYK run in time O(|w|3) is that the grammar is bilinear, i.e.
in each rule A → α there are at most two nonterminal occurrences in α, see
the so-called C-parser [10]. Others relax the CNF restriction by admitting unit
rules, i.e. rules A → α where α is a nonterminal [20]. Almost all textbooks on
formal languages stick to the very restrictive CNF, where in each rule A → α
either α = BC for nonterminals B and C, or α is a terminal, or α is the empty
word ε and A is the start symbol and must not be used recursively. Then
any context-free language has a grammar in CNF. For some variations of the
definition, obviously motivated by simplicity of presentation, this only holds
for languages without words of length 0 or 1. Given this variety, we draw the
conclusion that CYK is to be understood as the above sketched algorithm that
uses dynamic programming and context-free grammars in some normal form to
solve the membership problem in time O(|w|3).

Table 1 defines the normal forms that are being used in textbooks (apart
from our proposal 2NF) and shows how they relate to each other. In the column
“rule format”, A,B, C are arbitrary nonterminals, S is the start symbol that
may not occur on a right-hand side, a is a terminal symbol, u, v, w are strings
of terminal symbols, and α is a sentential form.

Table 2 lists, for several books that present a version of CYK, the format

4

Name Rule format

CNF− A → BC | a
CNF A → BC | a, S → ε

CNFε A → BC | a | ε
S2F A → α where |α| = 2
C2F A → BC | B | a, S → ε

2NF A → α where |α| ≤ 2
2LF A → uBvCw | uBv | v

CNF

2NF

CNF−

2LF

CNFε C2F

S2F

Chomsky normal form (CNF), strict 2-form (S2F),
canonical 2-form (C2F), 2-normal form (2NF), bilinear form (2LF)

Table 1: Grammar normal forms and their hierarchy w.r.t. inclusion

of the normal form they require and the asymptotic time and space complex-
ity they state for their CYK procedure on grammars in the respective normal
form. One can see that the most prominent textbooks on formal language
theory ignore the dependency on the grammar. Furthermore, they demand a
very restrictive normal form compared to other books which obtain reasonable
complexity bounds.

Transforming CFGs into CNF Most textbook solutions to the word prob-
lem for context-free grammars present the CYK algorithm for grammars in CNF
and just state that this is no restriction of the general case. A complexity anal-
ysis is often done only for the CYK procedure. Where a complexity analysis
for the transformation into CNF is missing, one obtains the impression that the
membership problem for CFGs can be solved within the same bounds as for
grammars in CNF. This is true but almost never achieved with the procedure
presented in these textbooks. Consequently, most students will not be able to
tell whether an algorithm like CYK is possible for arbitrary CFGs, and almost
none will know the time complexity of the membership problem for arbitrary
CFGs in terms of grammar size. This is problematic not only for computational
linguistics, where the grammar size is huge compared to sentence length.

The transformation to CNF combines several steps: the eliminiation of ter-
minal symbols except in right hand sides of size 1 (Term); the reduction to
rules with right-hand sides of size ≤ 2 (Bin); the elimination of deletion rules
(Del); and the elimination of unit rules (Unit). It is often neglected that the
complexity of the transformation to CNF depends on the order in which these
steps are preformed.

1. The blow-up in grammar size depends on the order between Del and Bin.
It may be exponential when Del is done first, but is linear otherwise.

5

Book Subject Format Time Space

Aho/Ullman ’72 Pa CNF |w|3 -
Hopcroft/Motwani/Ullman ’01 CT CNF− |w|3 -
Harrison ’78 FL CNF |w|3 |w|2
Naumann/Langer ’94 Pa CNF− |w|3 |w|2
Schöning ’00 CT CNF− |w|3 -
Sippu/Soisalon-Soininen ’88 Pa C2F |G| · |w|3 |N | · |w|2
Wegener ’93 CT CNF− |G| · |w|3 -
Lewis/Papadimitriou ’98 CT S2F |G| · |w|3 |N | · |w|2
Rich ’07 CT CNF− |G| · |w|3 -
Autebert/Berstel/Boasson ’97 FL CNFε - -

Subject: parsing (Pa), formal languages (FL), theory of computation (CT)
G is the input grammar, N its nonterminal set, and w is the input word.

Table 2: Overview over variants of CYK, with complexity mentioned

2. Unit can incur a quadratic blow-up in the size of the grammar.

Hence, except for Term, which gives a linear increase in grammar size, the
order in which the single transformation steps are carried out should be: Bin
7→Del 7→Unit. This will yield a grammar of size O(|G|2). Nevertheless, many
textbooks choose a different order, namely Del 7→Unit 7→Bin which yields a
grammar of size O(22|G|). Even worse so, only few textbooks contain a rigorous
complexity analysis of this transformation or a hint at its suboptimality.

Table 3 shows how the textbooks mentioned in Table 2 handle the trans-
formation into the normal form that their CYK variant demands, i.e. the one
listed in column “rule format” of Table 2. The last two columns give the asymp-
totic size of the resulting grammar and the fact whether or not the estimation
is given in the textbok. Table 4 shows the asymptotic time complexity for the
word problem that one obtains by combining their transformation to normal
form with their corresponding version of CYK.

Which normal form to choose? All normal forms mentioned in Table 1
allow for a time complexity of CYK that is cubic in the size of the input word and
linear in the size of the grammar. Therefore, the question which of the possible
normal forms to choose ought to be determined by two factors: (i) complexity of
the grammar transformation, in particular the size of the transformed grammar,
and (ii) ease of presentation and proofs.

To simplify the discussion, we only consider grammars for ε-free languages,
on which CNF and CNF−collapse. Simplicity of the grammar transformation

6

Book Target Method |G′| Stated

Aho e.a. CNF Del 7→Unit 7→Bin 7→Term 22|G| −
Hopcroft e.a. CNF− Del 7→Unit 7→Term 7→Bin 22|G| −
Harrison CNF Del 7→Unit 7→Term 7→Bin 22|G| −
Naumann e.a. (refers to Aho e.a.)
Schöning CNF− Del 7→Unit 7→Term 7→Bin 22|G| −
Sippu e.a. C2F Bin 7→Del |G| +
Wegener CNF− Term 7→Bin 7→Del 7→Unit |G|2 +
Lewis e.a. S2F Bin 7→Del 7→Unit |G|3 +
Rich CNF− Bin 7→Del 7→Unit 7→Term |G|2 +
Autebert e.a. CNFε Term 7→Bin 7→Unit |G|2 −
This paper 2NF Bin |G| +

Wegener [22] gives O(|V | · |G|) as |G′|, but ignores that Bin increased V to
size |G|.

Table 3: Transformation of CFG (with only useful symbols) into NF

and size of the resulting grammar would suggest to favour 2NF over C2F or
CNF. The transformation to 2NF only needs step Bin with a linear increase
in grammar size. The transformation to C2F needs the additional step Del,
but is also linear, provided that Bin is executed before Del. Transformation
to CNF affords the additional steps of Unit and Term. Step Unit causes a
quadratic inrease in grammar size and therefore ought to be omitted. Term
can be achieved by a linear blow-up of the grammar, but has no real advantage
for the complexity or presentation of CYK, so we prefer to omit it. Although
2LF is more liberal than 2NF, the latter is preferable since the transformation
to 2NF is simpler to explain.

But what is the price to pay in terms of modifications of CYK or the proofs
involved? Unit rules and deletion rules in the grammar seem to complicate the
filling of the recognition table: in order to compute Tv, one now has to consider
splittings v = v1v2 not only into strict subwords v1, v2, but also non-strict ones,
say v1 = ε, v2 = v. Actually, a small modification of the original version of
CYK suffices to accommodate for deletion and unit rules: just close the fields
Tv under the rule “if B ∈ Tv and A ⇒∗ B, add A to Tv”. This can be done
efficiently, as shown by Sippu and Soisalon-Soininen [20] or below.

However, this is part of what is done in transformations to CNF as well:
in order to eliminate deletion rules from a grammar, one computes the set
of nullable nonterminals, and in order to eliminate unit rules, one computes
the set of nonterminals that derive a given one [1, 7, 8]. But, rather than
using these relations to transform the grammar to CNF, one can use them in

7

Book via Time Stated

Aho e.a. CNF 22|G| · n3 −
Hopcroft e.a. CNF− 22|G| · n3 −
Harrison CNF 22|G| · n3 −
Naumann e.a. CNF 22|G| · n3 −
Schöning CNF− 22|G| · n3 −
Sippu e.a. C2F |G| · n3 +
Wegener CNF− |G|2 · n3 +
Lewis e.a. S2F |G|3 · n3 +
Rich CNF− |G|2 · n3 +
Autebert e.a. CNFε |G|2 · n3 −
This paper 2NF |G| · n3 +

The last column states whether or not the overall time complexity is given.

Table 4: Upper complexity bounds for the word problem on arbitrary CFGs

the CYK algorithm directly and leave the (2NF) grammar unchanged. We
think the explicit use of auxiliary information is better than an unnecessary
transformation of input data.

In our opinion, the advantage of using 2NF or C2F over CNF in CYK is
not reflected well in the literature. We are only aware of one textbook which
presents the CYK algorithm for grammars in C2F, [20] – a specialised book on
parsing – and a PhD thesis [14]. It seems to have been unnoticed so far that one
can use even 2NF instead of C2F. We consider 2NF as an advantage over C2F,
since not only unit rules, but also deletion rules are convenient in grammar
writing; the latter are often used as a means to admit optional constituents.
Furthermore, as we will show below, using 2NF does not compromise on the
ease of presentation nor proof.

3 Preliminaries

Let Σ be a finite set, called the alphabet. A letter is an element of Σ, a word is
a finite sequence of letters, and a language is a set of words. Σ∗ is the set of all
words over Σ, and Σ+ the set of all nonempty words. As usual, ε is used for the
empty word, wv for the concatenation of the two words w and v, and |w| for
the length of the word w, with |ε| = 0. For a word w = a1 . . . an and positions
1 ≤ i ≤ j ≤ n we write w[i..j] for the subword ai . . . aj of w.

A context-free grammar (CFG) is a tuple G = (N, Σ, S,→) s.t.

• Σ is the finite alphabet or set of terminals;

8

• N is the finite non-empty set of nonterminals, s.t. N ∩ Σ = ∅;
• S ∈ N is the start symbol ;

• → ⊆ N × (N ∪ Σ)∗ is a finite set of rules.

The set of all symbols of G is N ∪ Σ, which will always be denoted by the
letter V in the following. We will use uppercase letters like A,B, C to denote
nonterminals, lowercase letters like a, b, c to denote terminal symbols, small
letters like x, y, z to denote symbols, lowercase letters like u, v, w to denote
words over Σ, and Greek lowercase letters α, β, γ, . . . for sentential forms, i.e.
words over V . Henceforth we simply use grammar for context-free grammar.

A grammar can be represented by enlisting, for each nonterminal A, the
right-hand sides α of rules A → α. Thus, one measures the size of G by

|G| :=
∑

A∈N

∑

A→α

|Aα|.

We assume that each symbol occurs in some rule, so that |V | ∈ O(|G|).
The derivation relation ⇒⊆ V +×V ∗ is defined such that for all α, β ∈ V ∗,

αAβ ⇒ αγβ iff there is a rule A → γ. The relations ⇒n, ⇒+ and ⇒∗ are the
n-fold iteration, the transitive closure, and the reflexive-transitive closure of ⇒,
respectively.

The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒+ w}. Two context-
free grammars G1, G2 with the same terminal alphabet are equivalent if L(G1) =
L(G2).

Definition 1. A grammar G = (N, Σ, S,→) is in binary normal form (2NF)
if for all A → α we have |α| ≤ 2.

In our exposition of the CYK algorithm, two relations between symbols of a
grammar play an important role.

Definition 2. The set of nullable symbols of the grammar G = (N, Σ, S,→) is

EG := {A | A ∈ N,A ⇒+ ε}

and the unit relation of G is

UG := {(A, y) | ∃α, β ∈ E∗G with A → αyβ}.

4 The Word Problem for Context-Free Languages

We suggest the following algorithm to test, for a given grammar G and a given
word w, whether or not w ∈ L(G).

1. Preprocessing of the grammar.

(a) Transformation of G into an equivalent G′ in 2NF.

9

(b) Computation of the set EG′ of nullable symbols in G′.
(c) Construction of the the inverse unit relation ŬG′ of G′.

2. Building the CYK table for w and (G′, ŬG′).

Phase 2 applies a recognizer which is universal for grammars in 2NF with pre-
computed unit-relation. We now present the details and complexity analysis of
this algorithm, and then apply it to an example in section 4.5. Some readers
may want to look at the example before checking the complexity bounds.

4.1 Transformation into 2NF

It is well-known that every grammar can be transformed into an equivalent one
in CNF, applying the four transformations Term, Bin, Del, Unit mentioned
in the introduction. Every grammar can be transformed into one in 2NF by
just performing the step Bin.

Lemma 1. For every grammar G = (N, Σ, S,→) there is an equivalent gram-
mar G′ = (N ′,Σ, S,→′) in 2NF computable in time O(|G|), such that |G′| =
O(|G|), |N ′| = O(|G|).
Proof. The transformation Bin replaces each rule A → x1x2 · · ·xn with n > 2 by
the rules A →′ x1〈x2, . . . , xn〉, 〈x2, . . . , xn〉 →′ x2〈x3, . . . , xn〉, . . . , 〈xn−1, xn〉 →′

xn−1xn, abbreviating suffixes of length ≥ 2 by new symbols 〈xi, . . . , xn〉 ∈ N ′.
This can be carried out in a single pass through the grammar, and the number
of new nonterminals is bounded by the size of G. The equivalence of G′ and G
can easily be shown by transforming derivations with G′ into derivations with
G and vice versa.

In fact, G′ is a left-cover of G: any leftmost derivation with respect to G′ is
mapped to a leftmost derivation with respect to G by replacing applications of
A →′ x1〈x2, . . . , xn〉 with applications of A → x1x2 · · ·xn and omitting appli-
cations of 〈xi, . . . , xn〉 →′ xi〈xi+1, . . . , xn〉 and 〈xn−1, xn〉 →′ xn−1xn.

A

x1 〈x2, . . . , xn〉

x2 〈x3, . . . , xn〉

. . .

. . .〈xn−1, xn〉

xn−1 xn

7→
A

x1 x2 . . . xn

Conversely, any leftmost derivation with G is obtained from a leftmost derivation
of G′ by this mapping (cf. Exercise 3.29, [1]). Note that transformations to C2F
or CNF do not admit parses to be recovered by such a simple homomorphism
between strings of rules.

10

4.2 Precomputation of the Nullable Symbols

The following lemma gives an inductive characterisation of EG.

Lemma 2. Let G = (N, Σ, S,→) be a grammar. Then EG = E|N | where

E0 := {A | A → ε} and Ei+1 := Ei ∪ {A | ∃α ∈ E+
i with A → α}.

Proof. (“⊇”) By induction on i, one shows Ei ⊆ EG for all i.
(“⊆”) By definition, Ei ⊆ Ei+1 ⊆ N for any i. As N is finite, E|N |+1 = E|N |.

To show EG ⊆ E|N |, prove by induction on n that A ⇒n ε implies A ∈ E|N |.
Lemma 2 suggests to construct EG by iteratively computing the Ei until

Ei+1 = Ei. A näıve implementation of this idea can easily result in quadratic
running time. However, it is possible to compute EG in time linear in the gram-
mar, as mentioned by Harrison [7], Exercise 2 in Section 4.3, and Sippu e.a. [20],
Theorem 4.14. Since this seems not to be well-known, we present in Fig. 2 an
algorithm Nullable to do so for G in 2NF. It maintains a set todo which can be
implemented as a list with insertion of an element and removal of the first one
in constant time, and a set nullable which should be stored as a boolean array
with constant access time. Both are assumed to be empty initially.

Algorithm Nullable successively finds those nonterminals that can derive ε
starting with those that derive it in one step and proceeding backwards through
the rules. For this, the predecessors of a nonterminal B, i.e. all the nonterminals
A such that B occurs on the right-hand side of a rule A → α, need to be acces-
sible without searching through the entire grammar. The algorithm therefore
starts by storing in an initially empty array occurs the set of all such A for
each such B. This information is used to infer from the information that B is
nullable, that A is also nullable, if A and B are linked through a rule A → B.
If they are linked through a rule A → BC or A → CB then this depends on
whether or not C is nullable too. Hence, the array occurs actually holds for a
rule of the form A → B the nonterminal A, and for a rule of the form A → BC
or A → CB, the pair 〈A,C〉. This is then used in order to avoid quadratic
running time.

Lemma 3. For any grammar G = (N, Σ, S,→) in 2NF, algorithm Nullable
computes EG in time and space O(|G|).
Proof. Clearly, each of the for-loop in lines 1–2, 3–5, and 6–8 can be executed
in time O(|G|). For the while-loop note that no nonterminal B can be inserted
into todo once it has been removed from it, because then it is on nullable. Hence,
the while-loop can be executed at most |N | times. For each nonterminal B,
the inner for-loop is executed a number of times that is given by the number
of occurrences of B in the right-hand side of a rule. Since G is assumed to be
in 2NF, the combined number of iterations between the outer while- and the
inner for-loop is bounded by 2 · |G|. Furthermore, all the other instructions can
be executed in constant time yielding an overall running time of O(|G|).

The space needed is O(|N |) for the sets todo and nullable and O(|G|) for
the array occurs. Hence, it is bounded by O(|G|).

11

input: a CFG G = (N, Σ, S,→) in 2NF

Nullable(G) =

1 for all A → B do
2 occurs(B) := occurs(B) ∪ {A}
3 for all A → BC do
4 occurs(B) := occurs(B) ∪ {〈A,C〉}
5 occurs(C) := occurs(C) ∪ {〈A,B〉}
6 for all A → ε do
7 nullable := nullable ∪ {A}
8 todo := todo ∪ {A}
9 while todo 6= ∅ do
10 remove some B from todo
11 for all A, 〈A,C〉 ∈ occurs(B) with C ∈ nullable do
12 if A 6∈ nullable then
13 nullable := nullable ∪ {A}
14 todo := todo ∪ {A}
15 return nullable

Figure 2: Algorithm Nullable for the linear-time computation of EG.

4.3 Constructing the Unit Relation

As a consequence of Lemma 3, we can also compute the unit relation efficiently:

Lemma 4. Let G be a grammar in 2NF. The unit relation UG and its inverse,

ŬG := {(y,A) | (A, y) ∈ UG},
can be computed in time and space O(|G|).

We view ŬG as a relation on V and call IG = (V, ŬG) the inverse unit graph
of G.

Proof. According to Lemma 3, EG can be computed in time and space O(|G|).
To construct IG in linear time and space, first add a node for every symbol
in V . Then, for every rule A → y, A → By and A → yB with B ∈ EG, add
the edge (y,A) to ŬG. This gives us ŬG as a list of length O(|G|), generally
with multiple entries. We can similarly output a list of length |V | of nodes y
associated with a list of their UG-predecessors A1, . . . , An, i.e. a representation
of the graph IG as needed in Lemma 6 below. (We could, but need not remove
duplicates in the given time and space bound.)

Algorithm CYK below will need, for a given set M of symbols, the set of all
x such that there is a y ∈ M and x ⇒∗ y. We show that the restriction of ⇒∗

to V × V is the reflexive-transitive closure U∗G of the unit relation of G.

12

Lemma 5. Let G = (N, Σ, S,→) be a grammar. Then for all x, y ∈ V we have:
x ⇒∗ y iff (x, y) ∈ U∗G.

Proof. (“only if”) Suppose x ⇒∗ y, i.e. there is an n ∈ N with x ⇒n y. If
n = 0, then (x, y) ∈ U∗G because U∗G is reflexive. If n > 0, there is x → γ with
γ ⇒n−1 y. Since y is a single symbol, γ = αzβ for suitable α, β, z such that
z ∈ V , z ⇒n1 y and αβ ⇒n2 ε for some n1, n2 with 1 ≤ n1 + n2 < n. By
induction hypothesis we have (z, y) ∈ U∗G, and by Lemma 2, αβ ∈ E∗G. But then
(x, z) ∈ UG ⊆ U∗G, and since U∗G is transitive, (x, y) ∈ U∗G.

(“if”) Since U∗G is the (w.r.t. ⊆) least reflexive and transitive relation that
subsumes UG, we only need to show that ⇒∗ subsumes UG. But when (x, y) ∈
UG, there are α, β ∈ E∗G such that x → αyβ, and then x ⇒∗ y since αβ ⇒∗ ε.

It follows that for any M ⊆ V , the set of all x ∈ V which derive some
element of M , is just {x | ∃y ∈ M, (x, y) ∈ U∗G} and hence equals

Ŭ∗G(M) := {x | ∃y ∈ M, (y, x) ∈ Ŭ∗G}.

To compute such sets efficiently, we do not build the relation Ŭ∗G, which can
be quadratic in the size of ŬG and G, but use the inverse unit graph:

Lemma 6. Let G be a grammar in 2NF with symbol set V . Given its inverse
unit graph IG, the set Ŭ∗G(M) can be computed in time and space O(|G|), for
any M ⊆ V .

Proof. Ŭ∗G(M) consists of all nodes x ∈ V that are reachable in IG from some
node y ∈ M . The set of all nodes in a graph reachable from a given set of nodes
can be computed in time and space O(n + m) where n is the number of all
nodes and m the number of all edges. This simply uses depth- or breadth-first
search [5]. Hence, Ŭ∗G(M) can be computed in time and space O(|V |+ |UG|) =
O(|G|).

Clearly, one could drop the assumption that IG be given, as it can be con-
structed from G in time and space O(|G|). However, since we will need to
compute Ŭ∗G(M) for several M , it is advisable to construct IG once and for all
at the beginning only.

4.4 Building the CYK Table

The membership problem for a context-free grammar G = (N, Σ, S,→), i.e. to
determine for words w ∈ Σ∗ whether S ⇒+ w or not, generalizes naturally to
the computation of the sets {x | x ∈ V, x ⇒∗ v} of all symbols of G that derive
v, for all subwords v of w. These sets can be constructed inductively.

Theorem 7. Let G = (N, Σ, S,→) be a grammar in 2NF, (V, ŬG) its inverse
unit graph, and w ∈ Σ+. Then for any x ∈ V and any non-empty subword v of

13

w we have x ⇒∗ v iff x ∈ Tv, where the sets Tv and the auxiliary sets T ′v are
defined by

T ′v :=

{v}, if |v| = 1

{A | ∃v1, v2 ∈ Σ+,∃z1 ∈ Tv1 , ∃z2 ∈ Tv2 with
v = v1v2, A → z1z2}, else

Tv := Ŭ∗G(T ′v).

Proof. (“if”) We prove this by induction on v. Suppose x ∈ Tv. Then there is
a y ∈ T ′v s.t. (x, y) ∈ U∗G, and by Lemma 5, x ⇒∗ y.

Suppose |v| = 1. By the definition of T ′v we have y = v which immediately
yields x ⇒∗ v.

Now suppose |v| ≥ 2. Then y ∈ T ′v is only possible if there is a splitting
v = v1v2 of v into two non-empty subwords and a rule x → z1z2 such that
z1 ∈ Tv1 and z2 ∈ Tv2 . Hence, the hypothesis yields z1 ⇒∗ v1 and z2 ⇒∗ v2.
But then we have x ⇒∗ y ⇒ z1z2 ⇒∗ v1z2 ⇒∗ v1v2 = v.

(“only if”) Suppose x ⇒∗ v. There is n ≥ 0 such that x ⇒n v. By induction
on n, we show that x ∈ Tv. The base case of n = 0 means x = v, and in
particular |v| = 1 since x ∈ V . But then x ∈ T ′v and, hence, x ∈ Tv.

Now suppose that n > 0. Since G is 2NF and v 6= ε, the first rule applied
in the derivation is of the form (i) x → y with y ∈ V , or (ii) x → y1y2 with
y1, y2 ∈ V . In case (i), we have y ⇒n−1 v, and hence y ∈ Tv by hypothesis.
Since Tv is closed under the inverse of UG, we also have x ∈ Tv.

In case (ii), the derivation is of the form x ⇒ y1y2 ⇒n−1 v. Then there is a
splitting v = v1v2 of v such that y1 ⇒m1 v1 and y2 ⇒m2 v2 with m1,m2 < n. If
v1 = ε then v2 6= ε and we have y2 ∈ Tv2 by the hypothesis, and x ⇒ y1y2 ⇒∗ y2.
Hence, by Lemma 5, (x, y2) ∈ U∗G and, since Tv2 is closed under the inverse of
U∗G, also x ∈ Tv2 = Tv. Equally, if v2 = ε then v1 6= ε and y1 ∈ Tv1 by
hypothesis, which also yields x ∈ Tv1 = Tv. If v1, v2 both differ from ε, we get
y1 ∈ Tv1 and y2 ∈ Tv2 both from the hypothesis and therefore x ∈ T ′v which
entails x ∈ Tv.

Algorithm CYK in Fig. 3 contains an implementation of the procedure that is
implicitly given in Thm. 7. It computes, on a G in 2NF and a word w = a1 · · · an

of length n, for each 1 ≤ i ≤ j ≤ n the set Tai···aj of Theorem 7, which is here
called Ti,j .2 These are stored in an array of size n2, with a boolean array of
size |N | as entries, plus a terminal in the fields on the main diagonal. Initially,
all fields in the boolean arrays are set to false. Algorithm CYK assumes the
inverse unit graph IG to have been computed already.

Note that algorithm CYK only differs minimally from most textbook versions
of CYK, e.g. [8, 7]: these do not close the table entries under Ŭ∗G as done here

2Note that if a subword v occurs several times in w, computing and storing Tv for each
occurrence (i, j) separately wastes some time and space. There may be applications where it
pays off to implement T as an array indexed by subwords.

14

input: a CFG G = (N, Σ, S,→) in 2NF, its graph (V, ŬG),
a word w = a1 . . . an ∈ Σ+

CYK(G,ŬG,w) =

1 for i = 1, . . . , n do

2 Ti,i := Ŭ∗G({ai})
3 for j = 2, . . . , n do
4 for i = j − 1, . . . , 1 do
5 T ′i,j := ∅
6 for h = i, . . . , j − 1 do
7 for all A → yz
8 if y ∈ Ti,h and z ∈ Th+1,j then
9 T ′i,j := T ′i,j ∪ {A}
10 Ti,j := Ŭ∗G(T ′i,j)
11 if S ∈ T1,n then return yes else return no

Figure 3: Algorithm CYK for the word problem of CFG in 2NF.

in lines 2 and 10. Also note that CYK presupposes the input word w to be non-
empty. The case of the input ε can – as with all other CYK versions – easily be
dealt with separately since EG needs to be computed anyway and ε ∈ L(G) iff
S ∈ EG.

Lemma 8. Given a grammar G = (N, Σ, S,→) in 2NF, its graph IG and a word
w ∈ Σ+, Algorithm CYK decides in time O(|G| · |w|3) and space O(|G| · |w|2)
whether or not w ∈ L(G).

Proof. The for-loop in lines 1–2 takes time O(|w| · |V |). The inner loop in
lines 7–9 is executed O(|w|3) times, each iteration taking O(|G|) steps, and
each step being executed in constant time. Line 10 is executed O(|w|2) times,
taking O(|G|) steps for each execution according to Lemma 6. This amounts to
O(|w| · |V |+ |G| · |w|3 + |G| · |w|2) = O(|G| · |w|3) altogether.

The space needed to store T is O(|w|2 · |N |) and the one to compute the
Ŭ∗G(Ti,j) is O(|G|). Hence, we need space O(max{|w|2 · |N |, |G|}) ≤ O(|w|2 · |G|)
altogether.

Lemma 8 expects G to be in 2NF and IG given already. Solving the word
problem for arbitrary context-free grammars requires the transformation and
precomputation to be done beforehand.

Corollary 9. The word problem for context-free grammars G and words of
length n can be solved in time O(|G| · n3) and space O(|G| · n2).

Proof. First, transform G into an equivalent G′ in 2NF with |G′| = O(|G|). By
Lemma 1, this can be done in time and space O(|G|) . Then, compute the set

15

of nullable nonterminals and the inverse unit graph for G′ in time and space
O(|G′|) according to Lemma 2 and Lemma 4. Finally, execute CYK in time
O(|G′| · n3) and space O(|G′| · n2) according to Lemma 8.

Since |G′| is O(|G|), this yields an asymptotic running time of O(|G| · n3)
and a space consumption of O(|G| · n2).

4.5 An Example

We finish this section by executing the entire procedure on the following example
grammar G over the alphabet Σ = {a, b, 0, 1, (,), +, ∗}.

E → T | E + T

T → F | T ∗ F

F → aI | bI | (E)
I → 0I | 1I | ε

This is a standard example with L(G) being the set of arithmetic expressions
over the regular set of identifiers (a ∪ b)(0 ∪ 1)∗. This example (in slightly
modified form) can also be found in the standard text-book by Hopcroft e.a. [8],
where it is used to illustrate the transformation into CNF. Note that G has 4
nonterminals, 10 rules, and is of size 29.

First we need to transform G into 2NF by introducing new nonterminals X,
Y , Z for the right-hand sides that are larger than 2 symbols. The result is the
following grammar G′ with symbol set V .

E → T | EX X → +T
T → F | TY Y → ∗F
F → aI | bI | (Z Z → E)
I → 0I | 1I | ε

It has 7 nonterminals, 13 rules, and is of size 35. Since most textbook ver-
sions of CYK would require G to have been transformed into CNF, we state
the corresponding figures for the resulting CNF grammar without presenting it
explicitly. If it is obtained in the order Del 7→Unit 7→Term 7→Bin, then the
result has 15 nonterminals, 33 rules, and is of size 83.

It is easy to see that only I is nullable, i.e. EG′ = {I}. In order to be able
to compute Ŭ∗G(M) for any M ⊆ V we first determine the unit relation.

UG′ = {(E, T), (T, F), (F, a), (F, b), (I, 0), (I, 1)}
Hence, we have, for instance

Ŭ∗G′({a}) = {a,E, T, F} Ŭ∗G′({F}) = {F, T,E}
Ŭ∗G′({b}) = {b, E, T, F} Ŭ∗G′({T}) = {T, E}
Ŭ∗G′({0}) = {0, I} Ŭ∗G′({I}) = {I}

etc.

16

j = 1 2 3 4 5 6 7 8

E, T E
i = 1(F T

E, T, F E, T 2
a F E Z

I 30

4+ X

E,T, F 5
b Z

6)

7∗ Y

E, T, F 8
a

Figure 4: An example run of algorithm CYK.

To finish the example, consider the word w = (a0 + b) ∗ a. Executing CYK
on w creates the table depicted in Fig. 4. It is to be understood as follows. A
nonterminal A in the bottom half of an entry at row i and column j belongs to
T ′v for v = w[i..j]. Hence, it is in there because of a rule of the form A → yz
such that y and z occur at certain positions in the same row to the left and in
the same column below. A nonterminal in the top half of the entry belongs to
Tv \ T ′v , i.e. it is in there because it is a predecessor in Ŭ∗G of some nonterminal
from the bottom half. Hence, the entire entry represents Tv. The bottom halves
of the entries on the main diagonal always form the input word when read from
top-left to bottom-right.

4.6 Parsing with CYK

The CYK recognition algorithm can be turned into a parser either by con-
structing parse trees from the recognition table or by inserting trees rather than
nonterminals into the table. We only discuss how to construct parse trees from
the table, leaving aside the question of space-efficient structure sharing for a
table holding trees.

In the case of CYK for grammars in CNF, define a function extract(A, i, j)

17

that returns for A ∈ Ti,j the trees with root labelled A and yield ai · · · aj by

extract(A, i, j) =

{A(ai) | A → ai} if i = j

{A(s, t) | A → BC, i ≤ h < j,

s ∈ extract(B, i, h),
t ∈ extract(C, h + 1, j)} if i < j,

where A(s, t) is the tree with root labelled A and immediate subtrees s and t.
Since grammars in CNF are acyclic (i.e. A ⇒+ A does not occur), the number
of parse trees of a given w is finite, and all possible parse trees can be obtained
from the table in finitely many steps.

Our CYK uses grammars in 2NF, which may be cyclic and hence may have
inputs with infinitely many parses. We adapt the tree extraction algorithm so
that it returns a finite number of “essentially different” analyses. First, for
x ∈ T ′i,j an auxiliary function extract ′(x, i, j) returns trees with yield ai · · · aj

and root labelled x, which are leaves in case i = j or branch at the root to
two subtrees, each having a nonempty yield. Then, for A ∈ Ti,j , extract(A, i, j)
extends such trees by adding a root labelled A on top, if A ⇒+ x:

extract(A, i, j) = {A(t) | x ∈ T ′i,j , t ∈ extract ′(x, i, j), A ∈ Ŭ+
G ({x})}

∪ extract ′(A, i, j)

extract ′(x, i, j) =

{x} if i = j

{x(s, t) | x → yz, i ≤ h < j,

s ∈ extract(y, i, h),
t ∈ extract(z, h + 1, j)} if i < j.

Using extract , we consider all derivations A ⇒+ x as inessential variants of each
other and represent them as a unary branch. Since these branches generally
do not correspond to grammar rules A → x, the extracted trees are not parse
trees in the strict sense. If the grammar is acyclic, we can turn them into parse
trees: in this case, for each (A, x) ∈ U+

G , there are only finitely many derivations
A ⇒+ x, so their parse trees can be precomputed and extract(A, i, j) would put
them on top of the trees returned by extract ′(x, i, j). If the grammar is cyclic,
we can still precompute the finite number of derivations A ⇒+ x which have
no subderivations B ⇒+ B, and by using them in extract(A, i, j), we would
obtain a finite set of “canonical” parse trees. In this way, we get a correct
but incomplete parser. (Note that the missing parse trees with subderivations
B ⇒+ B also get lost if we turn the grammar into CNF.)

Suppose CYK is used with a 2NF grammar G′ for a given grammar G and
a word w. Since G′ is a left-cover of G by Lemma 1, it is easy to recover w’s
parse trees with respect to G from those for G′ obtained by CYK. One just has
to undo the transformation of k-ary branching rules to binary branching ones
on the trees, i.e. apply the covering homomorphism on left parses. In this way,
the finitely many “canonical” parse trees with respect to G′ can be transformed
into parse trees with respect to G. If G′ is acyclic, this gives a complete parser
for G.

18

5 Conclusion

Teaching CYK with pretransformation into 2NF The variant of CYK
we propose here is not more difficult to present than those in the standard
textbooks. The precomputations that this CYK version requires need to be
done in the textbook versions as well where they are part of the grammar
transformation: the computation of the nullable symbols is necessary for step
Del; the construction of the inverse unit graph could also be used to implement
step Unit. We believe that using these relations explicitly in the CYK algorithm
is better from a learning point of view than to use them in order to transform the
grammar. By using them in the algorithm one cannot do the Bin- and Del-
transformations in the wrong order and automatically avoids an exponential
blowup of the grammar. Moreover, it emphasises the fact that the computation
of such relations is a necessary means to solving the membership problem, and
it will therefore make it easier for students to remember it.

On the other hand, one may argue that the essence of CYK is the dynamic
programming technique and that therefore the actual algorithm should not con-
tain computation steps which obfuscate the view onto that technique. However,
our algorithm CYK only differs in two lines (the closure steps in lines 2 and 9)
from those that work on CNF input.

As shown in the introduction, many textbooks ignore the complexity of the
normal form transformation or ignore the dependency of CYK’s complexity on
the size of the input grammar. We believe that this is wrong in cases where the
blow-up in the grammar is suboptimal. It is obviously possible to present our
variant of CYK without the complexity analyses. If this is done, then using the
2NF variant bears two distinct advantages over the CNF variant: (1) It does
not contain hidden obstacles like the dependency of the blow-up on the order in
which the pretransformation steps are done. (2) Since the CNF transformation
comes with an at least quadratic blow-up in grammar size, one may be inclined
to think that the complexity of the word problem for arbitrary CFGs is at least
quadratic in the grammar size. The 2NF variant does not give this impression.

Finally, note that in the previous two sections we have presented one way
of presenting this variant of CYK. The essentials are easily seen to be the 2NF
transformation, the computation of the nullable symbols, the linear time and
space algorithm for computing the predecessors w.r.t. ⇒∗, and algorithm CYK.
The correctness proofs are of course not essential in order to obtain an efficient
procedure. They can be left out, as is done in many textbooks.

A tool is available that is meant to support teaching this variant of CYK3.
It visualises the entire procedure presented here on arbitrary input context-free
grammars. In particular, it shows simulations of the computation of the nullable
symbols, the inverse chain relation, and the filling of the CYK table.

Avoiding normal forms at all We have argued for omitting the grammar
transformation steps Term, Unit and Del in favour of precomputed auxiliary

3http://www.tcs.ifi.lmu.de/SeeYK

19

relations. One may push this a step further and teach a version of CYK which
omits the transformation Bin as well and only implicitly works with binary
branching rules. To do so, one would not only insert symbols x ∈ V into the
fields Tv of the recognition table, but also “dotted rules” A → α · β where
A → αβ is a grammar rule and α ⇒∗ v. The algorithm would have to close the
table under the rules

A → α
A → ·α ∈ Tε

A → α · aβ ∈ Tv
A → αa · β ∈ Tva

A ⇒∗ B, B → β· ∈ Tv
A ∈ Tv

A → α ·Bβ ∈ Tv, B ∈ Tu
A → αB · β ∈ Tvu

where the field identifiers are subwords of the input sentence and ·ε = ε·. How-
ever, this would be a step away form the simplicity of CYK towards Earley’s
algorithm [6], and seems less memorizable than the explicit transformation to
2NF. We therefore conclude that the pretransformation into 2NF and the ac-
cording variant of CYK forms the best balance between didactic needs and the
aim for efficiency.

References

[1] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and
Compiling, volume Volume I: Parsing. Prentice-Hall, 1972.

[2] J. Autebert, J. Berstel, and L. Boasson. Context-free languages and push-
down automata. In A. Salomaa and G. Rozenberg, editors, Handbook of
Formal Languages, volume 1, Word Language Grammar, pages 111–174.
Springer-Verlag, Berlin, 1997.

[3] R. Axelsson, K. Heljanko, and M. Lange. Analyzing context-free grammars
using an incremental SAT solver. In Proc. 35th Int. Coll. on Automata,
Languages and Programming, ICALP’08, Part II, volume 5126 of LNCS,
pages 410–422. Springer, 2007.

[4] J. Cocke and J. T. Schwartz. Programming Languages and Their Compilers.
Courant Institute of Mathematical Sciences, New York, 1970.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, McGraw-Hill, Cambridge, London, 1990.

[6] Jay Earley. An efficient context-free parsing algorithm. Communications
of the ACM, 13(2):94–102, 1970.

[7] M. A. Harrison. Introduction to Formal Language Theory. Addison-Wesley
series in computer science. Reading (MA): Addison-Wesley, 1978.

[8] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, New York, 3 edi-
tion, 2001.

20

[9] T. Kasami. An efficient recognition and syntax analysis algorithm for
context-free languages. Technical Report AFCRL-65-758, Air Force Cam-
bridge Research Laboratory, Bedford, Massachusetts, 1965.

[10] R. Leermakers. How to cover a grammar. In 27th Annual Meeting of the
ACL, Proceedings of the Conference, pages 135–142, Vancouver, Canada,
June 1989. Association for Computational Linguistics.

[11] H. Leiß. Bounded fixed-point definability and tabular recognition of lan-
guages. In Computer Science Logic. 9th International Workshop, CSL’95.,
volume 1092 of LNCS, pages 388–402. Springer, 1996.

[12] H.R. Lewis and C.H. Papadimitriou. Elements of the theory of computation.
Prentice Hall, snd edition, 1998.

[13] S. Naumann and H. Langer. Parsing. Teubner, Stuttgart, 1994.

[14] M.-J. Nederhof. Linguistic Parsing and Program Transformation. PhD
thesis, Proefschrift Nijmegen, Wiskunde en Informatica, 1994.

[15] M.-J. Nederhof and G. Satta. Efficient tabular LR parsing. In Proceedings
of the 34th Annual Meeting of the ACL, pages 239–246, Morristown, NJ,
USA, 1996. Association for Computational Linguistics.

[16] A. Okhotin. Boolean grammars. Information and Computation, 194(1):19–
48, 2004.

[17] E. Rich. Automata, Computability, and Complexity: Theory and Applica-
tions. Prentice-Hall, 2007.

[18] U. Schöning. Theoretische Informatik — kurzgefaßt. Hochschultaschen-
buch. Spektrum Akademischer Verlag GmbH, Heidelberg-Berlin, 2000.

[19] E. Scott, A. Johnstone, and R. Economopoulos. BRNGLR: a cubic Tomita-
style GLR parsing algorithm. Acta Inf., 44(6):427–461, 2007.

[20] S. Sippu and E. Soisalon-Soininen. Parsing Theory. Vol.I: Languages and
Parsing. EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1988.

[21] M. Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for
Practical Systems. Kluwer Academic Publishers, Norwell, MA, USA, 1985.

[22] I. Wegener. Theoretische Informatik. Teubner, 1993.

[23] Terry Winograd. Language as a Cognitive Process, Volume 1: Syntax.
Addison Wesley, New York, 1983.

[24] D. H. Younger. Recognition and parsing of context-free languages in time
n3. Information and Control, 10(2):372–375, 1967.

21

