
One-Letter Automata: How to Reduce k Tapes to One

Hristo Ganchev and Stoyan Mihov and Klaus U. Schulz

August 19, 2003

Abstract

The class of n-dimensional regular relations has various closure properties that are
interesting for practical applications. From a computational point of view, each closure
operation may be realized with a corresponding construction for k-tape finite state au-
tomata. While the constructions for union, Kleene-star and (coordinate-wise) concatena-
tion are simple, specific and non-trivial algorithms are needed for relational operations
such as composition, projection, and cartesian product. Here we show that all these op-
erations for k-tape automata can be represented and computed using standard operations
on conventional one-tape finite state automata plus some trivial rules for tape manipula-
tion. As a key notion we introduce the concept of a one-letter k-tape automaton, which
yields a bridge between k-tape and one-tape automata. We achieve a general and efficient
implementational framework for n-tape automata.

1 Introduction

Multi-tape finite state automata and especially 2-tape automata have been widely used
in many areas of computer science such as Natural Language Processing [5, 8, 14] and
Speech Processing [9, 11]. They provide an uniform, clear and computationally efficient
framework for dictionary representation [3, 7] and realization of rewrite rules [1, 6, 4], as
well as text tokenization, lexicon tagging, part-of-speech disambiguation, indexing, filtering
and many other text processing tasks [5, 8, 13, 14]. The properties of k-tape finite state
automata differ significantly from the corresponding properties of 1-tape automata. For
example, for k ≥ 2 the class of relations recognized by k-tape automata is not closed under
intersection and complement. Moreover there is no general determinization procedure
for k-tape automata. On the other side the class of relations recognized by k-tape finite
state automata is closed under a number of useful relational operations like composition,
cartesian product, projection, inverse etc. This latter property makes k-tape automata
interesting for many practical applications.

There exist a number of implementations for k-tape finite state automata [5, 10, 12].
Most of them are implementing the 2-tape case only. While it is straightforward to realize
constructions for k-tape automata that yield union, Kleene-star and concatenation of the
recognized relations, the computation of relational operations such as composition, projec-
tion and cartesian product is a complex task. This makes the use of the k-tape automata
framework tedious and difficult.

We introduce an approach for presenting all relevant operations for n-tape automata
using standard operations for classical 1-tape automata plus some straightforward oper-
ations for adding, deleting and permuting tapes. In this way we obtain a transparent,
general and efficient framework for implementing k-tape automata.

1

The main idea is to consider a restricted form of k-tape automata where all transition
labels have exactly one non-empty component representing a single letter. The set of all
k-tuples of this form represents the basis of the monoid of k-tuples of words together with
the coordinate-wise concatenation. We call this kind of automata one-letter automata.
Treating the basis elements as symbols of a derived alphabet, one-letter automata can be
considered as conventional 1-tape automata. This gives rise to a correspondence where
standard operations for 1-tape automata may be used to replace complex operations for
k-tape automata.

The paper is structured as follows. Section 2 provides some formal background. In
Section 3 we introduce one-letter k-tape automata. We show that classical algorithms
for union, concatenation and Kleene-star over one-letter automata (considered as 1-tape
automata) are correct if the result is interpreted as a k-tape automaton. Section 4 is central.
A condition is given that guarantees that the intersection of two k-dimensional regular
relations is again regular. For k-tape one-letter automata of a specific form that reflects
this condition, any classical algorithm for intersecting the associated 1-tape automata can
be used for computing the intersection of the regular relations recognized by the automata.
Section 5 shows how to implement tape permutations for one-letter automata. Using tape
permutations, the inverse relation to a given k-dimensional regular relation can be realized.
In a similar way, Section 6 treats tape insertion, tape deletion and projection operations
for k-dimensional regular relations. Section 7 shows how to reduce the computation of
composition and cartesian product of regular relations to intersections of the kind discussed
in Section 4 plus tape insertion and projection. In Section 8 we add some final remarks.
We comment on problems that may arise when using k-tape automata and on possible
solutions.

2 Formal Background

We assume that the reader is familar with standard notions from automata theory (see,
e.g., [2, 13]). In the sequel, with Σ we denote a finite set of symbols called the alphabet, ε
denotes the empty word, and Σε := Σ ∪ {ε}. The length of a word w ∈ Σ∗ is written |w|.
If L1, L2 ⊆ Σ∗ are languages, then

L1 · L2 := {w1 · w2 | w1 ∈ L1, w2 ∈ L2}

denotes their concatenation. Here w1 ·w2 is the usual concatenation of words. Recall that
〈Σ∗, ·, ε〉 is the free monoid with set of generators Σ.

If v = 〈v1, . . . , vk〉 and w = 〈w1, . . . , wk〉 are two k-tuples of words, then

v � w := 〈v1 · w1, . . . , vk · wk〉

denotes the coordinate-wise concatenation. With ε̂ we denote the k-tuple 〈ε, . . . , ε〉. The
tuple 〈(Σ∗)k,�, ε̂〉 is a monoid that can be described as the k-fold cartesian product of the
free monoid 〈Σ∗, ·, ε〉. As set of generators we consider

Σ̂k := {〈ε, . . . , a
↑

i

, . . . , ε〉 | 1 ≤ i ≤ k, a ∈ Σ}.

Note that the latter monoid is not free, due to obvious commutation rules for generators.
For relations R ⊆ (Σ∗)k we define

R0 := {ε̂},

Ri+1 := Ri �R,

R∗ :=

∞
⋃

i=0

Ri (Kleene-star).

2

Let k ≥ 2 and 1 ≤ i ≤ k. The relation

R 	 (i) := {〈w1, . . . , wi−1, wi+1, . . . , wk〉 | ∃v ∈ Σ∗ : 〈w1, . . . , wi−1, v, wi+1, . . . , wk〉 ∈ R}

is called the projection of R to the set of coordinates {1, . . . , i−1, i+1, . . . , k}. If R1, R2 ⊆
(Σ∗)k are two relations of the same arity, then

R1 �R2 := {v � w | v ∈ R1, w ∈ R2}

denotes the coordinate-wise concatenation. If R1 ⊆ Σ∗k and R2 ⊆ Σ∗l are two relations,
then

R1 ×R2 := {〈w1, . . . , wk+l〉 | 〈w1, . . . , wk〉 ∈ R1, 〈wk+1, . . . , wk+l〉 ∈ R2}

is the cartesian product of R1 and R2 and

R1 ◦R2 := {〈w1, . . . , wk+l−2〉 | ∃w : 〈w1, . . . , wk−1, w〉 ∈ R1, 〈w, wk, . . . , wk+l−2〉 ∈ R2}

is the composition of R1 and R2. Further well-known operations for relations are union,
intersection, and inversion (k = 2).

Definition 2.1 The class of k-dimensional regular relations over the alphabet Σ is recur-
sively defined in the following way:

• ∅ and {v} for all v ∈ Σ̂k are k-dimensional regular relations.

• If R1, R2 and R are k-dimensional regular relations, then so are

– R1 �R2,

– R1 ∪R2,

– R∗.

• There are no other k-dimensional regular relations.

Note 2.2 The class of k-dimensional regular relations over a given alphabet Σ is closed un-
der union, Kleene-star, coordinate-wise concatenation, composition, projection, and carte-
sian product. For k ≥ 2 the class of regular relations is not closed under intersection,
difference and complement. Obviously, every 1-dimensional regular relation is a regular
language over the alphabet Σ. Hence, for k = 1 we obtain closure under intersection,
difference and complement.

Definition 2.3 Let k be a positive integer. A k-tape automaton is a six-tuple A =
〈k, Σ, S, F, s0, E〉, where Σ is an alphabet, S is a finite set of states, F ⊆ S is a set of
final states, s0 ∈ S is the initial state and E ⊆ S × (Σε)k × S is a finite set of transitions.
A sequence s0, a1, s1, . . . , sn−1, an, sn, where s0 is the initial state, si ∈ S and ai ∈ (Σε)k

for i = 1, . . . , n, is a path for A iff 〈si−1, ai, si〉 ∈ E for 1 ≤ i < n. The k-tape automaton
A recognizes v ∈ (Σ∗)k iff there exists a path s0, a1, s1, . . . , sn−1, an, sn for A such that
sn ∈ F and v = a1 � a2 . . . an−1 � an. With R(A) we denote the set of all tuples in (Σ∗)k

recognized by A, i.e., R(A) := {v ∈ (Σ∗)k | A recognizes v}.

For a given k-tape automaton A = 〈k, Σ, S, F, s0, E〉 the generalized transition relation
E∗ ⊂ S × (Σ∗)k × S is recursively defined as follows:

1. 〈s, 〈ε, . . . , ε〉, s〉 ∈ E∗ for all s ∈ S,

2. if 〈s1, v, s′〉 ∈ E∗ and 〈s′, a, s2〉 ∈ E, then 〈s1, v � a, s2〉 ∈ E∗, for all v ∈ (Σ∗)k,
a ∈ (Σε)k, s1, s

′, s2 ∈ S.

Clearly, if A is a k-tape automaton, then R(A) = {v ∈ (Σ∗)k | ∃f ∈ F : 〈s0, v, f〉 ∈ E∗}.

Note 2.4 By a well-known generalization of Kleene’s Theorem (see [6]), for each k-tape
automaton A the set R(A) is a k-dimensional regular relation, and for every k-dimensional
regular relation R′, there exists a k-tape automaton A′ such that R(A′) = R′.

3

3 Basic Operations for one-letter automata

In this section we introduce the concept of a one-letter automaton. One-letter automata
represent a special form of k-tape automata that can be naturally interpreted as one-tape
automata over the alphabet Σ̂k. We show that basic operations such as union, concate-
nation, and Kleene-star for one-letter automata can be realized using the corresponding
standard constructions for conventional one-tape automata.

Definition 3.1 A k-tape finite state automaton A = 〈k, Σ, S, F, s0, E〉 is a one-letter au-
tomaton iff all transitions e ∈ E are of the form

e = 〈s, 〈ε, . . . , ε
↑

i−1

, a
↑
i

, ε
↑

i+1

, . . . , ε
↑
k

〉, s′〉

for some 1 ≤ i ≤ k and a ∈ Σ.

Proposition 3.2 For every k-tape automaton A we may effectively construct a k-tape
one-letter automaton A′ such that R(A′) = R(A).

Proof. First we can apply the classical ε-removal procedure in order to construct
an ε̂ free k-tape automaton, which leaves the recognized relation unchanged. Let Ā =
〈k, Σ, S, F, s0, E〉 be an ε̂-free k-tape automaton such that R(A) = R(Ā). Then we con-
struct A′ = 〈k, Σ, S′, F, s0, E

′〉 using the following algorithm:
S′ = S, E′ = ∅

FOR s ∈ S DO:

FOR 〈s, 〈a1, a2, . . . , ak〉, s
′〉 ∈ E DO

LET I = {i ∈ N | ai 6= ε} (I = {i1, . . . , it});

LET S′′ = {si1 , . . . , sit−1}, SUCH THAT S′′ ∩ S′ = ∅;

S′ = S′ ∪ S′′;

E′ = E′ ∪ {〈sij
, 〈ε, . . . , ε, aij

↑
ij

, ε, . . . , ε〉, sij+1 〉 | 0 ≤ j ≤ t − 1 , si0 = s and sit =

s′};

END;

END.
Informally speaking, we split each transition with label 〈a1, a2, . . . , ak〉 with t > 1 non-
empty coordinates into t subtransitions, introducing t− 1 new intermediate states.

Corollary 3.3 If R ⊆ (Σ∗)k is a k-dimensional regular relation, then there exists a k-tape
one-letter automaton A such that R(A) = R.

Each k-tape one-letter automaton A over the alphabet Σ can be considered as a one-
tape automaton (denoted by Â) over the alphabet Σ̂k. Conversely, every ε-free one-tape
automaton over the alphabet Σ̂k can be considered as a k-tape automaton over Σ. Formally,
this correspondence can be described using two mappings.

Definition 3.4 The mapping ˆmaps every k-tape one-letter automaton A = 〈k, Σ, S, F, s0, E〉
to the ε-free one-tape automaton Â := 〈Σ̂k, S, F, s0, E〉. The mapping ˇ maps a given ε-
free one-tape automaton A′ = 〈Σ̂k, S, F, s0, E〉 to the k-tape one-letter automaton Ǎ′ :=
〈k, Σ, S, F, s0, E〉.

Obviously, the mappings ˆ and ˇ are inverse. ¿From a computational point of view, the
mappings merely represent a conceptual shift where we use another alphabet for looking
at transitions labels. States and transitions are not changed.

4

Definition 3.5 The mapping

φ : Σ̂∗k → Σ∗
k

: a1 · · · an 7→ a1 � · · · � an, ε 7→ ε̂

is called the natural homomorphism between the free monoid 〈Σ̂∗k, ·, ε〉 and the monoid
〈Σ∗k,�, ε̂〉.

It is trivial to check that φ is in fact a homomorphism. We have the following connection
between the mappingsˆ,ˇand φ.

Lemma 3.6 Let A = 〈k, Σ, S, F, s0, E〉 be a k-tape one-letter automaton. Then

1.
ˇ̂
A = A.

2. R(A) = φ(L(Â)).

Furthermore, if A′ is an ε-free one-tape automaton over Σ̂k, then
ˆ̌
A′ = A′.

Thus we obtain the following commutative diagram:

A

ˇ
←−

ˆ
−→ Â

R







y







y

L

R(A) ←−
φ

L(Â)

We get the following proposition as a direct consequence of Lemma 3.6 and the homomor-
phic properties of the mapping φ.

Proposition 3.7 Let A1 and A2 be two k-tape one-letter automata. Then we have the
following:

1. R(A1) ∪R(A2) = φ(L(Â1) ∪ L(Â2)).

2. R(A1)�R(A2) = φ(L(Â1) · L(Â2)).

3. R(A1)
∗ = φ(L(Â1)

∗).

Algorithmic constructions. ¿From Part 1 of Proposition 3.7 we see the following. Let
A1 and A2 be two k-tape one-letter automata. Then, to construct a one-letter automaton
A such that R(A) = R(A1) ∪ R(A2) we may interpret Ai as a one-tape automaton Âi

(i = 1, 2). We use any union-construction for one-tape automata, yielding an automaton
A′ such that L(A′) = L(Â1)∪L(Â2). Removing ε-transitions and interpreting the resulting
automaton A′′ as a k-tape automaton A := Ǎ′′ we receive a one-letter automaton such
that R(A) = R(A1) ∪ R(A2). Similarly Parts 2 and 3 show that “classical” algorithms
for closing conventional one-tape automata under concatenation and Kleene-star can be
directly applied to k-tape one-letter automata, yielding algorithms for closing k-tape one-
letter automata under concatenation and Kleene-star.

4 Intersection of one-letter automata

It is well-known that the intersection of two k-dimensional regular relations is not nec-
essarily a regular relation. For example, the relations R1 = {〈anbk, cn〉 | n, k ∈ N} and
R2 = {〈asbn, cn〉 | s, n ∈ N} are regular, but R1 ∩R2 = {〈anbn, cn〉 | n ∈ N} is not regular
since its first projection is not a regular language. We now introduce a condition that
guarantees that the classical construction for intersecting one-tape automata is correct if
used for k-tape one-letter automata. As a corollary we obtain a condition for the regularity
of the intersection of two k-dimensional regular relations. This observation will be used
later for explicit constructions that yield composition and cartesian product of one-letter
automata. A few preparations are needed.

5

Definition 4.1 Let v = b1 . . . bn be an arbitrary word over the alphabet Ξ, i.e., v ∈ Ξ∗.
We say that the word v′ is obtained from v by adding the letter b iff v′ = b1 . . . bjbbj+1 . . . bn

for some 0 ≤ j ≤ n. In this case we also say that v is obtained from v′ by deleting the
symbol b.

Proposition 4.2 Let v = a1 . . . an ∈ Σ̂∗k and φ(v) = a1�a2�· · ·�an = 〈w1, . . . , wk〉. Let
also a = 〈ε, . . . , b

↑

i

, . . . , ε〉 ∈ Σ̂k. Then, if v′ is obtained from v by adding the letter a, then

φ(v′) = 〈w1, . . . , wi−1, w
′
i, wi+1, . . . , wk〉 and w′i is obtained from wi by adding the letter b.

Definition 4.3 For a regular relation R ⊆ (Σ∗)k the coordinate i (1 ≤ i ≤ k) is inessential
iff for all 〈w1, . . . , wk〉 ∈ R and any v ∈ Σ∗ we have

〈w1, . . . , wi−1, v, wi+1, . . . , wk〉 ∈ R.

Analogously, if A is a k-tape automaton such that R(A) = R we say that tape i of A is
inessential. Otherwise we call coordinate (tape) i essential.

Definition 4.4 Let A be a k-tape one-letter automaton and assume that each coordinate
in the set I ⊆ {1, . . . , k} is inessential for R(A). Then A is in normal form w.r.t. I iff for
any tape i ∈ I we have:

1. ∀s ∈ S, ∀a ∈ Σ : 〈s, 〈ε, . . . , a
↑
i

, . . . , ε〉, s〉 ∈ E,

2. ∀s, s′ ∈ S, ∀a ∈ Σ : (s′ 6= s)⇒ 〈s, 〈ε
↑
1

, . . . , a
↑
i

, . . . , ε
↑
k

〉, s′〉 /∈ E.

Proposition 4.5 For any k-tape automaton A and any given set I of inessential coor-
dinates of R(A) we may effectively construct a k-tape one-letter automaton A′ in normal
form w.r.t. I such that R(A′) = R(A).

Proof. Let A = 〈k, Σ, S, F, s0, E〉. Without loss of generality we can assume that A is in
one-letter form (Proposition 3.2). To construct A′ = 〈k, Σ, S, F, s0, E

′〉 we use the following
algorithm:
E′ = E
FOR s ∈ S DO

FOR i ∈ I DO

FOR a ∈ Σ DO

IF ((〈s, 〈ε, . . . , ε, a
↑
i

, ε, . . . , ε〉, s′〉 ∈ E′) & (s′ 6= s)) THEN

E′ = E′ \ {〈s, 〈ε, . . . , ε, a
↑
i

, ε, . . . , ε〉, s′〉};

E′ = E′ ∪ 〈s, 〈ε, . . . , ε, a
↑
i

, ε, . . . , ε〉, s〉;

END;

END;

END.
The algorithm does not change any transition on an essential tape. Transitions between

distinct states that affect an inessential tape in I are erased. For each state we add loops
with all symbols from the alphabet for the inessential tapes in I. The correctness of
the above algorithm follows from the fact that for any inessential tape i ∈ I we have
〈w1, . . . , wi, . . . , wn〉 ∈ R(A) iff 〈w1, . . . , ε, . . . , wn〉 ∈ R(A).

6

Corollary 4.6 Let R ⊆ (Σ∗)k be a regular relation with a set I of inessential coordinates.
Then there exists a k-tape one-letter automaton A in normal form w.r.t. I such that
R(A) = R.

The following property of k-tape automata in normal form will be useful when proving
Lemma 4.8.

Proposition 4.7 Let A = 〈k, Σ, S, F, s0, E〉 be a k-tape one-letter automaton in normal
form w.r.t. the set of inessential coordinates I. Let i0 ∈ I and let v = a1 . . . an ∈ L(Â).
Then for any a = 〈ε, . . . , b

↑

i0

, . . . , ε〉 ∈ Σ̂k and any word v′ ∈ Σ̂∗k obtained from v by adding

a we have v′ ∈ L(Â).

Proof. The condition for the automaton A to be in normal form w.r.t. I yields that for
all s ∈ S the transition 〈s, a, s〉 is in E, which proves the proposition.

Now we are ready to formulate and prove the following sufficient condition for the regularity
of the intersection of two regular relations. With K we denote the set of coordinates
{1, . . . , k}.

Lemma 4.8 For i = 1, 2, let Ai be a k-tape one-letter automaton, let Ii ⊆ K denote a
given set of inessential coordinates for Ai. Let Ai be in normal form w.r.t. Ii (i = 1, 2).
Assume that |K\(I1∪I2)| ≤ 1, which means that there exists at most one common essential
tape for A1 and A2. Then R(A1) ∩ R(A2) is a regular k-dimensional relation. Moreover
R(A1) ∩R(A2) = φ(L(Â1) ∩ L(Â2)).

Proof. It is obvious that φ(L(Â1) ∩ L(Â2)) ⊆ R(A1) ∩ R(A2), because if a1 . . . an ∈
L(Â1) ∩ L(Â2), then by Lemma 3.6 we have a1 � · · · � an ∈ R(A1) ∩ R(A2). We give a
detailed proof for the other direction, showing that

R(A1) ∩ R(A2) ⊆ φ(L(Â1) ∩ L(Â2)).

For the proof the reader should keep in mind that the transition labels of the automata
Ai (i = 1, 2) are elements of Σ̂k, which means that the sum of the lengths of the words
representing the components is exactly 1.

Let 〈w1, w2, . . . , wk〉 ∈ R(A1) ∩ R(A2). Let j0 ∈ K be a coordinate such that for each
j0 6= j ∈ K we have j ∈ I1 or j ∈ I2. Let E1 = K \ I1. Recall that for i ∈ E1, i 6= j0
always i ∈ I2 is an inessential tape for A2. Then by the definition of inessential tapes the
tuples 〈w′1, . . . , w

′
k〉 and 〈w′′1 , . . . , w′′k 〉, where

w′i =

{

ε, if i ∈ I1

wi, if i ∈ E1

w′′i =

{

ε, if i ∈ E1 and i 6= j0

wi, otherwise

respectively are in R(A1) and R(A2). Then there are words v′ = a′1 . . . a′n ∈ L(Â1) and
v′′ = a′′1 . . . a′′m ∈ L(Â2) such that φ(v′) = 〈w′1, . . . , w

′
k〉 and φ(v′′) = 〈w′′1 , . . . , w′′k 〉. Note

that n =
∑k

i=1 |w
′
i| and m =

∑k

i=1 |w
′′
i |. Furthermore, wj0 = w′j0 = w′′j0 . Let l = |wj0 |.

We now construct a word a1a2 . . . ar ∈ L(Â1) ∩ L(Â2) such that a1 � a2 � . . . � ar =
〈w1, . . . , wk〉, which imposes that r = n+m−l. Each letter ai is obtained copying a suitable
letter from one of the sequences a′1 . . . a′n and a′′1 . . . a′′m. In order to control the selection,
we use the pair of indices t′i, t

′′
i (0 ≤ i < n + m − l), which can be considered as pointers

to the two sequences. The definition of t′i, t
′′
i and ai proceeds inductively in the following

way. Let t′0 = t′′0 := 1. Assume that t′i and t′′i are defined for some 0 ≤ i < n + m− l. We
show how to define ai+1 and the indices t′i+1 and t′′i+1. We distinguish four cases:

1. if t′i = n + 1 and t′′i = m + 1 we stop; else

7

2. if a′t′
i

= 〈ε, . . . , b
↑
j

, . . . , ε〉 for some j 6= j0, then ai+1 := a′t′
i
, t′i+1 := t′i + 1, t′′i+1 := t′′i ,

3. if a′t′
i

= 〈ε, . . . , b
↑
j0

, . . . , ε〉 or t′i = n + 1, and a′′t′′
i

= 〈ε, . . . , c
↑
j

, . . . , ε〉 for some j 6= j0,

then ai+1 := a′′t′′
i
, t′i+1 := t′i, and t′′i+1 := t′′i + 1.

4. if a′t′
i

= a′′t′′
i

= 〈ε, . . . , b
↑
j0

, . . . , ε〉 for some b ∈ Σ, then ai+1 := a′t′
i
, t′i+1 := t′i + 1 and

t′′i+1 := t′′i + 1.

¿From an intuitive point of view, the definition yields a kind of zig-zag construction. We
always proceed in one sequence until we come to a transition that affects coordinate j0.
At this point we continue using the other sequence. Once we have in both sequences a
transition that affects j0, we enlarge both indices. ¿From w′j0 = w′′j0 = wj0 it follows
immediately that the recursive definition stops exactly when i + 1 = n +m− l. In fact the
subsequences of a′1 . . . a′n and a′′1 . . . a′′m from which wj0 is obtained must be identical.

Using induction on 0 ≤ i ≤ n + m− l we now prove that the word a1 . . . ai is obtained
from a′1 . . . a′t′

i
−1 by adding letters in Σ̂k which have a non-ε symbol in an inessential

coordinate for R(A1). The base of the induction is obvious. Let the statement be true for
some 0 ≤ i < n + m− l. We prove it for i + 1:

The word a1 . . . aiai+1 is obtained from a1 . . . ai by adding the letter ai+1 = 〈ε, . . . b
↑

j

, . . . , ε〉,

and according to the induction hypothesis a1 . . . ai is obtained from a′1, . . . a
′
ti−1 by adding

letters with a non-ε symbol in a coordinate in I1. If j ∈ E1 (Cases 2 and 4), then ai+1 = a′t′
i
,

t′i+1 = t′i + 1 and t′i+1 − 1 = t′i, hence a1 . . . aiai+1 is obtained from a′1, . . . a
′
t′
i
−1a

′
t′
i+1−1 by

adding letters satisfying the above condition. On the other side, if j ∈ I1 (Case 3) we have
ai+1 = a′′t′′

i
and t′i+1 := t′i, which means that a′1 . . . a′t′

i+1−1 = a′1 . . . a′t′
i
−1 and ai+1 is a letter

satisfying the condition. Thus a1 . . . aiai+1 is obtained from a′1 . . . a′t′
i+1−1 adding letters

which have non-ε symbol on an inessential tape for A1, which means that the statement is
true for i + 1.
Analogously we prove for 0 ≤ i ≤ n + m− l that a1 . . . ai is obtained from a′′1 . . . a′′t′′

i
−1 by

adding letters in Σ̂k which have a non-ε symbol in an inessential coordinate for R(A2).
By Proposition 4.7, a1 . . . an+m−l ∈ L(Â1) and a1 . . . an+m−l ∈ L(Â2). From Proposi-
tion 4.2 we obtain that a1 � · · · � an+m−l = 〈u1, . . . , uk〉, where ui = w′i if i ∈ E1 and
ui = w′′i otherwise. But now remembering the definition of w′i and w′′i we obtain that
a1 � · · · � an+m−l = 〈w1, . . . , wk〉, which we had to prove.

Corollary 4.9 If R1 ⊆ (Σ)k and R2 ⊆ (Σ)k are two k-dimensional regular relations with
at most one common essential coordinate i (1 ≤ i ≤ k), then R1 ∩ R2 is a k-dimensional
regular relation.

Algorithmic construction. ¿From Lemma 4.8 we see the following. Let A1 and A2 be
two k-tape one-letter automata with at most one common essential tape i. Assume that
both automata are in normal form w.r.t. the sets of inessential tapes. Then the relation
R(A1)∩R(A2) is recognized by any ε-free 1-tape automaton A′ accepting L(Â1)∩L(Â2),
treating A′ as a k-tape one-letter automaton A = Ǎ′.

5 Tape permutation and inversion for one-letter

automata

In the sequel, let Sk denote the symmetric group of k elements.

8

Definition 5.1 Let R ⊆ (Σ∗)k be a regular relation, let σ ∈ Sk. The permutation of
coordinates induced by σ, σ(R), is defined as

σ(R) := {〈wσ−1(1), . . . , wi
↑

σ(i)

, . . . , wσ−1(k)〉 | 〈w1, . . . , wk〉 ∈ R}.

Proposition 5.2 For a given k-tape one-letter automaton A = 〈k, Σ, S, F, s0, E〉, let
σ(A) := 〈k, Σ, S, F, s0, σ(E)〉 where

σ(E) := {〈s, 〈ε, . . . , ai
↑

σ(i)

, . . . , ε〉, s′〉 | 〈s, 〈ε, . . . , ai
↑
i

, . . . , ε〉, s′〉 ∈ E}.

Then R(σ(A)) = σ(R(A)).

Proof. Using induction over the construction of E∗ and σ(E)∗ we prove that for all
s′ ∈ S and 〈w1, . . . , wk〉 ∈ (Σ∗)k we have

〈s0, 〈w1, . . . , wk〉, s
′〉 ∈ E∗

⇔ 〈s0, 〈wσ−1(1), . . . , wi
↑

σ(i)

, . . . , wσ−1(k)〉, s
′〉 ∈ σ(E)∗.

“⇒”. The base of the induction is obvious since 〈s0, 〈ε, . . . , ε〉, s0〉 ∈ E∗ ∩ σ(E)∗. Now
suppose that there are transitions

〈s0, 〈w1, . . . , wi−1, w
′
i, wi+1, . . . , wk〉, s〉 ∈ E∗

〈s, 〈ε, . . . , a
↑
i

, . . . , ε〉, s′〉 ∈ E.

Then, by induction hypothesis, 〈s0, 〈wσ−1(1), . . . , w′i
↑

σ(i)

, . . . , wσ−1(k)〉, s〉 ∈ σ(E)∗. The defi-

nition of σ(E) shows that 〈s, 〈ε, . . . , a
↑

σ(i)

, . . . , ε〉, s′〉 ∈ σ(E). Hence

〈s0, 〈wσ−1(1), . . . , w
′
ia
↑

σ(i)

, . . . , wσ−1(k)〉, s
′〉 ∈ σ(E)∗,

which we had to prove.
“⇐”. Follows analogously to “⇒”.

Corollary 5.3 Let R ⊆ (Σ∗)k be a k-dimensional regular relation and σ ∈ Sk. Then also
σ(R) is a k-dimensional regular relation.

Algorithmic construction. ¿From Proposition 5.2 we see the following. Let A be a
2-tape one-letter automaton. If σ denotes the transposition (1, 2), then automaton σ(A)
defined as above recognizes the relation R(A)−1.

6 Tape insertion, tape deletion and projection

Definition 6.1 Let R ⊆ (Σ∗)k be a k-dimensional regular relation. We define the inser-
tion of an inessential coordinate at position i (denoted R ⊕ (i)) as

R ⊕ (i) := {〈w1, . . . , wi−1, v, wi, . . . , wk〉 | 〈w1, . . . , wi−1, wi, . . . , wk〉 ∈ R, v ∈ Σ∗}.

9

Proposition 6.2 Let A = 〈k, Σ, S, F, s0, E〉 be a k-tape one-letter automaton. Let A′ :=
〈k + 1, Σ, S, F, s0, E

′〉 where

E′ := {〈s, 〈ε, . . . , a
↑
i

, . . . , ε, ε
↑

k+1

〉, s′〉 | 〈s, 〈ε, . . . , a
↑
i

, . . . , ε
↑
k

〉, s′〉 ∈ E}

∪ {〈s, 〈ε, . . . , ε, a
↑

k+1

〉, s〉 | s ∈ S, a ∈ Σ}.

Then R(A′) = R(A)⊕ (k + 1).

Proof. First, using induction on the construction of E ′∗ we prove that for all s ∈ S and
〈w1, . . . , wk, wk+1〉 ∈ (Σ∗)k+1 we have

〈s0, 〈w1, . . . , wk, wk+1〉, s
′〉 ∈ E′∗ ⇔ 〈s0, 〈w1, . . . , wk, ε〉, s′〉 ∈ E′∗.

“⇒”. The base of the induction is obvious. Assume there are transitions

〈s0, 〈w1, . . . , wi−1, w
′
i, wi+1, . . . , wk, wk+1〉, s〉 ∈ E′∗

〈s, 〈ε, . . . , a
↑
i

, . . . , ε〉, s′〉 ∈ E′.

First assume that i ≤ k. By induction hypothesis,

〈s0, 〈w1, . . . , wi−1, w
′
i, wi+1, . . . , wk, ε〉, s〉 ∈ E′∗.

Using the definition of E′∗ we obtain

〈s0, 〈w1, . . . , wi−1, w
′
ia, wi+1, . . . , wk, ε〉, s′〉 ∈ E′∗.

If i = k + 1, then s = s′. We may directly use the induction hypothesis to obtain
〈s0, 〈w1, . . . , wk, ε〉, s′〉 ∈ E′∗.
“⇐”. Let 〈s0, 〈w1, . . . , wk, ε〉, s′〉 ∈ E′∗. Let wk+1 = v1 . . . vn ∈ Σ∗ where vi ∈ Σ. The defi-
nition of E′ shows that for all vi (1 ≤ i ≤ n) there exists a transition 〈s′, 〈ε, . . . , ε, vi

↑
k+1

〉, s′〉 ∈

E′. Hence 〈s0, 〈w1, . . . , wk, wk+1〉, s
′〉 ∈ E′∗.

To finish the proof observe that the definition of E′ yields

〈s0, 〈w1, . . . , wk〉, s
′〉 ∈ E∗ ⇔ 〈s0, 〈w1, . . . , wk, ε〉, s′〉 ∈ E′∗.

Corollary 6.3 If R ⊆ (Σ∗)k is a regular relation, then R ⊕ (i) is a (k + 1)-dimensional
regular relation.

Proof. The corollary directly follows from Proposition 6.2 and Proposition 5.2 having in
mind that R⊕(i) = σ(R⊕(k+1)) where σ is the cyclic permutation (i, i+1, . . . , k, k+1) ∈
Sk+1.

It is well-known that the projection of a k-dimensional regular relation is again a regular
relation. The following propositions show how to obtain a (k−1)-tape one-letter automaton
representing the relation R	(i) (cf. Section 2) directly from a k-tape one-letter automaton
representing the relation R.

Proposition 6.4 Let A = 〈k, Σ, S, F, s0, E〉 be a k-tape one-letter automaton. Let A′ :=
〈k − 1, Σ, S, F, s0, E

′〉 be the (k − 1)-tape automaton where for i ≤ k − 1 we have

〈s, 〈ε, . . . , a
↑
i

, . . . , ε
↑

k−1

〉, s′〉 ∈ E′ ⇔ 〈s, 〈ε
↑
1

, . . . , a
↑
i

, . . . , ε
↑
k

〉, s′〉 ∈ E

10

and furthermore

〈s, 〈ε, . . . , ε
↑

k−1

〉, s′〉 ∈ E′ ⇔ ∃ ak ∈ Σk : 〈s, 〈ε, . . . , ε
↑

k−1

, ak
↑
k

〉, s′〉 ∈ E.

Then R(A′) = R(A)	 (k).

Note 6.5 The resulting automaton A′ is not necessarily a one-letter automaton because
A′ may have some ε̂-transitions. It could be transformed into a one-letter automaton using
a standard ε-removal procedure.

Proof of Proposition 6.4. It is sufficient to prove that for all 〈w1, . . . , wk−1, wk〉 ∈ (Σ∗)k

and s′ ∈ S we have

〈s0, 〈w1, . . . , wk−1, wk〉, s
′〉 ∈ E∗ ⇔ 〈s0, 〈w1, . . . , wk−1〉, s

′〉 ∈ E′∗.

Again we use an induction on the construction of E∗ and E′∗.
“⇒”. The base is trivial since 〈s0, 〈ε, . . . , ε

↑
k

〉, s0〉 ∈ E∗ and 〈s0, 〈ε, . . . , ε
↑

k−1

〉, s0〉 ∈ E′∗.

Let 〈s0, 〈w1, . . . , w
′
j , . . . , wk〉, s〉 ∈ E∗ and 〈s, 〈ε, . . . , a

↑
j

, . . . , ε〉, s′〉 ∈ E for some 1 ≤ j ≤ k.

First assume that j < k. The induction hypothesis yields 〈s0, 〈w1, . . . , w
′
j , . . . , wk−1〉, s〉 ∈

E′∗. Since 〈s, 〈ε, . . . , a
↑
j

, . . . , ε
↑

k−1

〉, s′〉 ∈ E′ we have 〈s0, 〈w1, . . . , w
′
ja, . . . , wk−1〉, s

′〉 ∈ E′∗.

If j = k, then the induction hypothesis yields 〈s0, 〈w1, . . . , wk−1〉, s〉 ∈ E′∗. We have
〈s, 〈ε, . . . , ε

↑
k−1

〉, s′〉 ∈ E′, hence 〈s0, 〈w1, . . . , wk−1〉, s
′〉 ∈ E′∗.

“⇐”. Similarly as “⇒”.

Corollary 6.6 If R ⊆ (Σ∗)k is a regular relation, then R 	 (i) is (k − 1)-dimensional
regular relation.

Proof. The corollary follows directly from R	 (i) = (σ−1(R))	 (k), where σ is the cyclic
permutation (i, i + 1, . . . , k) ∈ Sk and Proposition 5.2.

Algorithmic construction. The constructions given in Proposition 6.4 and 5.2 together
with an obvious ε̂-elimination show how to obtain a one-letter (k − 1)-tape automaton A′

for the projection R 	 (i), given a one-letter k-tape automaton A recognizing R.

7 Composition and cartesian product of regular

relations

We now show how to construct composition and cartesian product (cf. Section 2) of regular
relations via automata constructions for standard 1-tape automata.

Lemma 7.1 Let R1 ⊆ (Σ∗)n1 and R2 ⊆ (Σ∗)n2 be regular relations. Then the composition
R1 ◦ R2 is a (n1 + n2 − 2)-dimensional regular relation.

Proof. Using Corollary 6.3 we see that the relations

R′1 := (. . . ((R1 ⊕ (n1 + 1))⊕ (n1 + 2))⊕ . . .)⊕ (n1 + n2 − 1)

R′2 := (. . . ((R2 ⊕ (1))⊕ (2))⊕ . . .)⊕ (n1 − 1)

are (n1 + n2 − 1)-dimensional regular relations. Using the definition of ⊕ we see that the
essential coordinates for R′1 are in the set E1 = {1, 2, . . . , n1} and those of R′2 are in the set

11

E2 = {n1, n1+1, . . . , n1+n2−1}. Therefore R′1 and R′2 have at most one common essential
coordinate, namely n1. Corollary 4.9 shows that R = R′1∩R′2 is a (n1+n2−1)-dimensional
regular relation. Since coordinates in E1 (resp. E2) are inessential for R′2 (resp. R′1) we
obtain

〈w′1, . . . , w
′
n1−1, w, w′′n1+1, . . . , w

′′
n1+n2−1〉 ∈ R′1 ∩R′2

⇔ 〈w′1, . . . , w
′
n1−1, w〉 ∈ R1 & 〈w, w′′n1+1, . . . , w

′′
n1+n2−1〉 ∈ R2.

Using the definition of 	 and Corollary 4.6 we obtain that R 	 (n1) is a (n1 + n2 − 2)-
dimensional regular relation such that

〈w′1, . . . , w
′
n1−1, w

′′
n1+1, . . . , w

′′
n1+n2−1〉 ∈ R	 (n1)

⇔ ∃w ∈ Σ∗ : 〈w′1, . . . , w
′
n1−1, w

↑
n1

, w′′n1+1, . . . , w
′′
n1+n2−1〉 ∈ R.

Combining both equivalences we obtain

〈w′1, . . . , w
′
n1−1, w

′′
n1+1, . . . , w

′′
n1+n2−1〉 ∈ R 	 (n1)

⇔ ∃w ∈ Σ∗ : 〈w′1, . . . , w
′
n1−1, w〉 ∈ R1 & 〈w, w′′n1+1, . . . , w

′′
n1+n2−1〉 ∈ R2,

i.e. R	 (n1) = R1 ◦R2.

Lemma 7.2 Let R1 ⊆ (Σ∗)n1 and R2 ⊆ (Σ∗)n2 be regular relations. Then the cartesian
product R1 ×R2 is a (n1 + n2)-dimensional regular relation over Σ.

Proof. Similarly as in Lemma 7.1 we construct the (n1+n2)-dimensional regular relations

R′1 := (. . . ((R1 ⊕ (n1 + 1))⊕ (n1 + 2))⊕ . . .)⊕ (n1 + n2)

R′2 := (. . . ((R2)⊕ (1))⊕ (2))⊕ . . .)⊕ (n1).

The coordinates in {1, 2, . . . , n1} are inessential for R′2 and those in {n1 + 1, . . . , n1 + n2}
are inessential for R′1. Therefore R′1 and R′2 have no common essential coordinate and,
by Corollary 4.9, R := R′1 ∩ R′2 is a (n1 + n2)-dimensional regular relation. Using the
definition of inessential coordinates and the definition of ⊕ we obtain

〈w′1, . . . , w
′
n1

, w′′n1+1, . . . , w
′′
n1+n2

〉 ∈ R

⇔ 〈w′1, . . . , w
′
n1
〉 ∈ R1 & 〈w′′n1+1, . . . , w

′′
n1+n2

〉 ∈ R2,

which shows that R = R1 ×R2.

Algorithmic construction. The constructions described in the above proofs show how
to obtain one-letter automata for the composition R1 ◦ R2 and for the cartesian product
R1 ×R2 of the regular relations R1 ⊆ (Σ∗)n1 and R2 ⊆ (Σ∗)n2 , given one-letter automata
Ai for Ri (i = 1, 2). In more detail, in order to construct an automaton for R1 ◦ R2 we

1. add n2 − 1 final inessential tapes to A1 and n1 − 1 initial inessential tapes to A2 in
the way described above (note that the resulting automata are in normal form w.r.t.
the new tapes),

2. intersect the resulting automata as conventional one-tape automata over the alphabet
Σ̂n1+n2−1, obtaining A,

3. remove the n1-th tape from A and apply an ε-removal, thus obtaining A′, which is
the desired automaton.

In order to construct an automaton for R1 ×R2 we

1. add n2 final inessential tapes to A1 and n1 initial inessential tapes to A2 in the way
described above,

12

2. intersect the resulting automata as normal one-tape automata over the alphabet
Σ̂n1+n2 , obtaining A, which is the desired automaton.

At the end we will discuss the problem of how to represent identity relations as regular re-
lations. First observe that the automaton A := 〈2, Σ, S, F, s0, E〉 where Σ := {a1, . . . , an},
S := {s0, s1, . . . , sn}, F := {s0} and

E := {〈s0, 〈ai, ε〉si〉 | 1 ≤ i ≤ n} ∪ {〈si, 〈ε, ai〉s0〉 | 1 ≤ i ≤ n}

accepts R(A) = {〈v, v〉 | v ∈ Σ∗}. The latter relation we denote with IdΣ.

Proposition 7.3 Let R1 be 1-dimensional regular relation, i.e., a regular language. Then
the set IdR1 := {〈v, v〉 | v ∈ R1} is a regular relation. Moreover IdR1 = (R1 ⊕ (2)) ∩ IdΣ.

8 Conclusion

We introduced the concept of a one-letter k-tape automaton and showed that one-letter
automata can be considered as conventional 1-tape automata over an enlarged alphabet.
Using this correspondence, standard constructions for union, concatenation, and Kleene-
star for 1-tape automata can be directly used for one-letter automata. Furthermore we
have seen that the usual relational operations for k-tape automata can be traced back to
the intersection of 1-tape automata plus straightforward operations for adding, permuting
and erasing tapes.

We have implemented the presented approach for implementation of transducer (2-
tape automata) representing rewrite rules. Using it we have successfuly realized Bulgarian
hyphenation and tokenization.

Still, in real applications the use of one-letter automata comes with some specific prob-
lems, in particular in situations where the composition algorithm is heavily used. In the
resulting automata we sometimes find a large number of paths that are equivalent if per-
mutation rules for generators are taken into account. For example, we might find three
paths with label sequences

〈a, ε〉, 〈a, ε〉, 〈ε, b〉

〈ε, b〉, 〈a, ε, 〉, 〈a, ε, 〉

〈a, ε, 〉, 〈ε, b〉, 〈a, ε, 〉,

all representing the tuple 〈aa, b〉. In the worst case this may lead to an exponential blow-up
of the number of states, compared to the classical construction for n-tape automaton.

We currently study techniques to get rid of superfluous paths. In many cases, equiva-
lences of the above form can be recognized and used for eliminating states and transitions.
The extension and refinement of these methods is one central point of current and future
work.

References

[1] Dale Gerdemann and Gertjan van Noord, Transducers from Rewrite Rules with Back-
references. EACL 99, Bergen Norway, 1999.

[2] John Hopcroft and Jeffrey Ullman, Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 1979.

[3] Lauri Karttunen, Constructing Lexical Transducers, In The Proceedings of the 15th
International Conference on Computational Linguistics. Coling 94, I, pages 406-411.
Kyoto, Japan, August 5-9, 1994.

13

[4] Lauri Karttunen, The Replace Operator, Finite-State language processing, 117-147,
E. Roche, Y. Schabes (Eds.), MIT Press, 1997.

[5] L. Karttunen, J.-P. Chanod, G. Grefenstette, A Schiller, Regular Expressions for
language Engineering, Journal of Natural Language Engineering vol 2 no 4 (1997) pp
307-330, Cambridge University Press, 1997.

[6] Ronald Kaplan and Martin Kay, Regular Models of Phonological Rule Systems, Com-
putational Linguistics, 20(3):331-379, 1994.

[7] Stoyan Mihov and Denis Maurel, Direct Construction of Minimal Acyclic Subsequen-
tial Transducers, Implementation and Application of Automata, S. Yu, A. Pun (Eds.),
LNCS 2088, Springer 2001.

[8] M. Mohri, On Some Applications of Finite-State Automata Theory to Natural Lan-
guage Processing, Natural Language Engineering, Vol. 2(1), 1-20, 1996.

[9] Mehryar Mohri, Finite-State Transducers in Language and Speech Processing. Com-
putational Linguistics, 23(2), 1997.

[10] Mehryar Mohri, Fernando Pereira, Michael Riley, A Rational Design for a Weighted
Finite-State Transducer Library. In Derick Wood and Sheng Yu, editors, Proceedings
of the Second International Workshop on Implementing Automata (WIA ’97). volume
1436 of Lecture Notes in Computer Science, pages 144-158. Springer-Verlag, Berlin-
NY, September 1998.

[11] Mehryar Mohri, Fernando C. N. Pereira, and Michael Riley. Weighted Finite-State
Transducers in Speech Recognition. Computer Speech and Language, 16(1):69-88,
2002.

[12] Gertjan van Noord. FSA Utilities: A Toolbox to Manipulate Finite-state Automata.
In: Darrell Raymond, Derick Wood and Sheng Yu (eds), Automata Implementation.
Lecture Notes in Computer Science 1260, Springer Verlag, 1997.

[13] Emmanuel Roche and Yves Schabes, Deterministic Part-Of-Speech Tagging with Fi-
nite State Transducers, Computational Linguistics, 21(2), 227-253, June 1995.

[14] Emmanuel Roche and Yves Schabes, Introduction, Finite-State language processing,
E. Roche, Y. Schabes (Eds.), MIT Press, 1997.

14

