
Bounded Fixed-Point Definability and

Tabular Recognition of Languages⋆

Hans Leiß

Centrum für Informations-
und Sprachverarbeitung
Universität München

leiss@cis.uni-muenchen.de

Abstract. By relating positive inductive definitions to space-bounded
computations of alternating Turing machines, Rounds, Comp. Linguis-

tics 14, 1988, has given uniform grammatical characterizations of the
EXPTIME and PTIME languages. But his proof gives fairly poor bounds
for language recognition with context-free resp. head grammars.
We improve Rounds’ analysis in two respects: first, we introduce a mod-
ified class of language definitions that allow restricted forms of negative
inductions, and second, we show how to build table-driven recognizers
from such definitions. For a wide and natural class of language defini-
tions we thereby obtain fairly efficient recognizers; we can recognize the
boolean closure of context-free resp. head languages in the well-known
O(n3) resp. O(n6) steps on a RAM . Our ‘bounded’ fixed-point formulas
apparently can not define an arbitrary PTIME language.
Our method is based on the existence of fixed-points for a class of oper-
ators that need neither be monotone nor increasing, but assume a norm
or at least a well-founded quasi-ordering on the underlying set.

1 Introduction

Vardi[14] and Immerman[7] have shown that languages L ∈ PTIME are those
that can be defined by a formula ϕ in a first-order relational language (with
ordering) extended by a least-fixed-point operator:

L = L(ϕ) := {w ∈ Σ∗ | Aw |= ϕ(0, |w|) }, (1)

where a word w = a1 · · ·a|w| over a finite alphabet Σ is seen as the finite rela-
tional structure

Aw := (|w| + 1,+, ·, <,Ra)a∈Σ , (2)

an initial segment of the natural numbers N = (IN,+, ·, <) (modulo |w| + 1),
expanded by relations Ra between positions connected by a in w. Rounds[12] has
given a characterization of theEXPTIME languages in the same spirit, implicitly
using ‘initial segments’ of the monoid L = (Σ∗, ·, a)a∈Σ , i.e. finite models

L≤|w| = (Σ≤|w|, ·, a)a∈Σ ,

⋆ Also in: H.Kleine-Büning (ed.) Computer Science Logic, 9th Intl.Workshop, CSL’95,
Selected Papers. Springer LNCS 1092, pp. 388–402

where Σ≤n is the set of words over Σ whose length is at most n. Moreover,
Rounds shows that both the PTIME and his EXPTIME characterization have
a uniform proof: a least fixed-point formula ϕ corresponds to a space-bounded
alternating Turing machine Mϕ (modified to cover fixed-points). For ϕ in the
arithmetical language, a binary representation of numbers (for positions in w)
leads to a log(n)-space-bounded machine Mϕ, hence

L(ϕ) = L(Mϕ) ∈ ASPACE (logn) = PTIME ,

while for ϕ in the language of concatenation, one gets an n-space-bounded ma-
chine Mϕ, and hence

L(ϕ) = L(Mϕ) ∈ ASPACE(n) = EXPTIME .

In both cases, the positive inductive definition ϕ leads to a complexity bound
for recognition of L(ϕ) with deterministic Turing machines: in the PTIME case,

the number of configurations of the corresponding ATM Mϕ is O(|w|p+3
) where

p := |free(ϕ)|+|bound(ϕ)|, and hence, by a result of Chandra e.a.[1], a simulation

of Mϕ by a DTM can be done in O(|w|2(p+3)
) steps.

Rounds counts p = 3 for context-free grammars and hence obtains a DTM -
recognition algorithm of time complexity O(|w|12) for context-free languages.
This is far worse than the well-known algorithms by Cocke, Younger, Kasami,
and Earley that do it in O(|w|3) steps on a RAM or even a Turing machine (see
Harrison[4], p.437 ff). A similar defect of O(n18) versus a known bound of O(n6)
(cf. Joshi and Vijay-Shanker[15]) resulted in the case of head grammars, a class
of grammars studied in theoretical linguistics (c.f. Section 5.1). 2

Our aim was to understand why the method yields very poor bounds in
these cases and what improvement on an abstract level could be made in reading
off the recognition complexity from an inductive language definition. Since the
best known recognition algorithms use a well-formed substring table to store
intermediate results, our second aim was to find a logical characterization of
‘languages that admit a tabular parser’.

First, we observe that the monotonicity of the induction behind least-fixed-
point definitions of context-free languages is not essential – neither for the exis-
tence of fixed points nor for the efficiency of language recognition. Instead, we
use a fixed-point construction for generally non-monotone, ‘bounded’ operators
on sets with a reflexive transitive relation ≤ where < is well-founded.

Second, we give a syntactic characterization of first-order formulas ϕ(x, S)
that define such operators and are invariant under going from structures A to
‘local’ substructures A≤a consisting of all elements b ≤ a in A, in the sense that

A |= ϕ(a,B) ⇐⇒ A≤a |= ϕ(a, { b ∈ B | b < a }).

Interpreting these ‘bounded’ formulas over L and exploiting more closely the
syntactic form of context-free grammars, the construction of recognition tables

2 Rounds’ p = 3 is the quantifier depth of ϕ for a context-free grammar G in Chomsky
normal form, but the number p of bound individual quantifiers of ϕ is 3n, if G has
n nonterminals A with a branching rule A → B C. Thus, one only obtains a bound
of O(|w|2(3n+3)) for context-free and O(|w|2(6n+3)) for head-languages.

2

and the staging of a bounded induction on certain finite substructures L≤w of
L turn out to be essentially the same.

The efficiency of the tabular recognizers of Cocke e.a. depends on two pa-
rameters: the size of the table and the effort to compute a new table entry from
given ones, which reflects a sharing of subcomputations by using stored results.

Restricting a positive induction over L to L≤|w| would in general define a lan-
guage in EXPTIME . To obtain small recognition tables, we interprete bounded
inductive definitions in the smaller finite structures

L≤w = (Σ≤w, ·, a)a∈Σ ,

where Σ≤w is the set of subwords of w: for intuitively context-free language
definitions ϕ(x), we expect the global reading of ϕ in the infinite structure L to
coincide with its local readings in the finite structures L≤w, i.e.

{w ∈ Σ∗ | L |= ϕ(w) } = {w ∈ Σ∗ | L≤w |= ϕ(w) }. (3)

This reflects, we think, the proper logical notion3 of context-independence: gram-
matical properties of a string depend only on the grammatical properties of its
substrings. All our bounded fixed-point formulas satisfy (3) and define opera-

tors Γ which reach their fixed point in O(|w|2) many stages of constant size,

corresponding to a small recognition table with O(|w|2) fields.
The efficiency of computing a table entry is related to a peculiarity of in-

dividual quantification in the language definition that has been overlooked in
Rounds’ analysis. Not only do context-free or head grammars just quantify over
substrings of the input; more restrictively, they decompose it into segments of
non-overlapping consecutive substrings. Restricting individual quantifiers ac-
cordingly, we introduce a class of ‘decomposition grammars’ that contain the
boolean closure of context free ones. For these the tabular recognizers yield
O(n3) recognition algorithms on a RAM , since computing a field can be done
in O(|w|) steps.

Head grammars, which define languages of splitted strings – i.e. binary rela-
tions between strings –, are similar to context-free grammars, except that con-
catenation is replaced by a number of ‘head wrapping’ operations. We generalize
these to a class of operations on m-tuples of strings. Decomposition grammars
using these operations define languages of strings with m segments, and the
table-recognizers we obtain yield O(n3m) recognition algorithms; a subclass has
recently been introduced by Hotz and Pitsch[6]. In particular, a language in the
boolean closure of the head languages is recognized in O(n6) steps.

2 Non-Monotone Operators with Fixed Points

For easier comparison we recall the Tarski/Knaster-fixed-point construction for
monotone operators. An operator Γ : 2A → 2A is monotone, if Γ (S) ⊆ Γ (T)

3 The technical notion of context-freeness can be expressed in second-order logic, cf.
Lautemann and Schwentick[8], or by regular fixed-point expressions, cf. Leiß[9]. We
remark that structures Aw and binary second order quantifieres are used in [8], but
with structures L≤w one can use fixed-point formulas of monadic second order logic.

3

whenever S ⊆ T ⊆ A, and Γ is increasing (or inflationary, see Gurevich and
Shelah[3]), if S ⊆ Γ (S) for each S ⊆ A.

Theorem1 (Tarski/Knaster). If Γ : 2A → 2A is monotone or increasing, then
Γ has a distinguished fixed point Γ∞ ⊆ A, defined in stages Γ<α ⊆ A by

Γ∞ :=
⋃

{Γ (Γ<α) | α an ordinal }, Γ<α :=
⋃

{Γ (Γ<β) | β < α }. (4)

Recall that Γ∞ is the least fixed point if Γ is monotone, but not in general.
A norm on a set S is a function | · | : S → η onto an ordinal η. Each monotone

operator Γ on A gives rise to a norm on its fixed point Γ∞ by associating to
each a ∈ Γ∞ the least ordinal α such that a ∈ Γ (Γ<α). Conversely, in situations
where a norm or just a well-founded transitive relation < on the universe is
given, there are additional (definable) operators that do have fixed points.

Definition 2. Let (A,≤) be a quasi-ordering, i.e. a set A with a reflexive and
transitive relation ≤. For a, b ∈ A, define a < b : ⇐⇒ a ≤ b ∧ b 6≤ a and
a ∼ b : ⇐⇒ a ≤ b ∧ b ≤ a, and for S ⊆ A use

S≤a := { b ∈ S | b ≤ a }, S<a := { b ∈ S | b < a }, Sa := { b ∈ S | b ∼ a }. (5)

We call ≤ a well-founded quasi-ordering on A, if ≤ is a quasi-ordering and < is
well-founded. An operator Γ := (Γ1, . . . , Γn) with Γi : 2A × · · · × 2A → 2A is
called <-bounded , if for each Γi, each a ∈ A and all sets S1, . . . , Sn ⊆ A,

a ∈ Γi(S1, . . . , Sn) ⇐⇒ a ∈ Γi(S
<a
1 , . . . , S<a

n).

Γ is norm-bounded , if (A,≤) is given by a norm | · | : A → η, with a ≤ b iff
|a| ≤On |b|.

Example 1. If A = {a, b, c} with a < b 6≤ c and a < c 6≤ b, the operator Γ (S) :=
if a ∈ S then {b} else {c} is <-bounded, but neither monotone nor increasing.

The relations ≤ and < are invariant under the equivalence ∼, and S<a, S≤a

and Sa depend on the equivalence class [a] of a only. We write S<|a| etc. when
≤ on A comes from a norm. Well-foundedness of < holds trivially in all finite
structures. In the unary case, Γ is <-bounded iff Γ (S)a = Γ (S<a)a for all a ∈ A
and S ⊆ A, whence Γ (S) =

⋃
{Γ (S<a)a | a ∈ A } for all S ⊆ A.

Theorem3. Each <-bounded operator Γ := (Γ1, . . . , Γn) : (2A)n → (2A)n on a
well-founded quasi-ordering (A,≤) has a unique fixed-point Γ∞ = (Γ∞

1 , . . . , Γ∞
n),

where the Γ∞
i are simultaneously defined by

Γ∞
i :=

⋃
{Γi(Γ

<a
1 , . . . , Γ<a

n)a | a ∈ A } and

Γ<a
i :=

⋃
{Γi(Γ

<b
1 , . . . , Γ<b

n)b | b < a }.

In fact, Γi(Γ
<a
1 , . . . , Γ<a

n)a = { b ∼ a | b ∈ Γi(Γ
<b
1 , . . . , Γ<b

n) },

Γ∞
i = { b ∈ A | b ∈ Γi(Γ

<b
1 , . . . , Γ<b

n) }.

4

The difference between the subset S<a of S ⊆ A and the Γ<a = (Γ<a
1 , . . . , Γ<a

n)
obtained from an operator Γ should be clear from the context.

Proof. Consider the unary case. Since < is well-founded, Γ<a is well-defined.
Note that a ∼ b implies Γ<a = Γ<b and so Γ (Γ<a)a = Γ (Γ<b)b. We get

Γ (Γ<a)a = { b ∼ a | b ∈ Γ (Γ<a) } = { b ∼ a | b ∈ Γ (Γ<b) },

from which the characterization for Γ∞ follows. For each a ∈ A we have

(Γ∞)a = Γ∞ ∩ [a] =
⋃

{Γ (Γ<b) ∩ [b] ∩ [a] | b ∈ A }

=
⋃

{Γ (Γ<b)b | b ∼ a } = Γ (Γ<a)a, and so

(Γ∞)<a =
⋃

{ (Γ∞)b | b < a } =
⋃

{Γ (Γ<b)b | b < a } = Γ<a.

Putting these together, we obtain that Γ∞ is a fixed point of Γ :

Γ∞ =
⋃

{Γ (Γ<a)a | a ∈ A } =
⋃

{Γ ((Γ∞)<a)a | a ∈ A }

=
⋃

{Γ (Γ∞)a | a ∈ A } = Γ (Γ∞),

using the <-boundedness of Γ in the third step. If S = Γ (S) is another fixed
point, then Sb = Γ (S)b = Γ (S<b)b for each b, and by well-foundedness of < one
gets Γ<a = S<a for each a ∈ A. This gives Γ∞ =

⋃
{Γ (S<a)a | a ∈ A } = S.

We still have Γ<a ⊆ Γ<b for a ≤ b. The stages are similar to the stages
Γ<α =

⋃
{Γ (Γ<β) | β < α } of Tarski’s construction for monotone operators.

The basic difference is that from Γ (Γ<b) we only select the c ∼ b, while for
elements c 6∼ b, membership in Γ∞ is fixed at other stages. As with monotone
operators, nested recursions can be transformed into simultaneous ones:

Lemma4. Let Γ,∆ : 2A × 2A → 2A be <-bounded on the well-founded quasi-
ordering (A,≤). Then ∆S(T) := ∆(S, T) and Θ(S) := Γ (S,∆∞

S) are <-bounded
operators on 2A, and Θ∞ is the first component Γ∞ of the fixed-point of the
simultaneous <-bounded operator (Γ,∆).

The class of <-bounded operators can be extended somewhat, without loosing
the existence of fixed points. Call Γ : 2A → 2A ≤-bounded , if for each a ∈ A and
S ⊆ A, a ∈ Γ (S) iff a ∈ Γ (S≤a). Fixed points can no longer be constructed via

Γ≤a :=
⋃

{Γ (Γ≤b)b | b ≤ a },

as this would not be well-defined. We have to insist that Γ (S)a monotonically
depends on Sa. We call Γ locally monotone, if Γ (S≤a)a ⊆ Γ (T≤a)a for each
a ∈ A and S, T ⊆ A such that S<a = T<a and Sa ⊆ T a.

Theorem 5. If Γ is ≤-bounded and locally monotone on a well-founded quasi-
ordering (A,≤), then Γ has a fixed point Γ∞, which is defined using

Γ∞ :=
⋃
{Γ (Γ≤a)a | a ∈ A }, Γ<a :=

⋃
{Γ (Γ≤b)b | b < a },

Γ≤a :=
⋃
{Γ<β

a | β ∈ On }, Γ<β
a := Γ<a ∪

⋃
{Γ (Γ<γ

a)a | γ < β },

for elements a ∈ A and ordinals β. In fact, Γ∞ = { a ∈ A | a ∈ Γ (Γ≤a) }.

5

3 Definable Bounded Fixed-Point Operators

To apply the fixed-point constructions of the previous section on first-order struc-
tures A with a norm | · | : A → η, or a well-founded quasi-ordering ≤ on A, we
will consider formulas ϕ(x, S) with a free set variable S such that

A |= ∀S ∀x (ϕ(x, S) ↔ ϕ(x, S<|x|)), resp. A |= ∀S ∀x (ϕ(x, S) ↔ ϕ(x, S<x)).

Each such formula defines a norm- resp. <-bounded operator

Γϕ(S) := { a ∈ A | A |= ϕ(a, S) }

on A whose fixed-point Γ∞
ϕ is taken as the meaning of a new predicate µSλxϕ.

Our intended application is the structure A = L of strings over a finite alphabet
Σ, with | · | being the length of strings and ≤ the substring relation.

Definition 6. Concatenation bounded fixed-point formulas over Σ, or CBFP-
formulas, are given by

ϕ :≡ x = a | x1 = x2 | x1 = x2 · x3 | S(x) (a ∈ Σ)

| ¬ϕ1 | (ϕ1 ∨ ϕ2) | ∃x1 < x2 ϕ (x1 6≡ x2)

| µ(S1, . . . , Sn)(λx1 ϕ1, . . . , λxn ϕn)(x),

where in the last clause, the set variables Si and individual variables xi are pair-
wise distinct, freeIndV (ϕi) ⊆ { xi }, and no ϕi contains an atomic subformula
S(xi) with a set variable S (not necessarily among S1, . . . , Sn).

Remark. Officially, we consider x = a and x = y · z as syntactic sugar for atomic
formulas a(x) and Cat(x, y, z) in a relational language. We use x = ǫ for the
formula saying that x is neither a letter nor composed of strict substrings.

Our ‘bounded fixed point’ formulas are different from those of ‘bounded fixed
point logic’ as described in Ebbinghaus and Flum[2], Section 7.7.

Definition 7. Let L = (Σ∗, ·, {a})a∈Σ be the set of all finite strings over the
alphabet Σ, equipped with the concatenation relation · and predicates for the
letters a. Let < be the relation of strict subword (resp. stricly shorter word).
Satisfaction in L of a bounded formula ϕ(y1, . . . , yn, S1, . . . , Sk) under an envi-
ronment [v,R] = [v1, . . . , vn, R1, . . . , Rk] is defined via

L |= ∃yn+1 < yi ϕ [v,R] < ⇐⇒ there is vn+1 < vi with L |= ϕ[v, vn+1,R]

L |= (µ(Sk+1, . . . , Sk+m).(λx1.ϕ1, . . . , λxm.ϕm))(yi) [v,R] ⇐⇒ vi ∈ Γ∞
1 ,

where Γ = (Γ1, . . . , Γn) with Γi(U) := { v | L |= ϕi[v,R,U] }.

An m-ary relation L between words is definable by a bounded fixed-point for-
mula ϕ(y1, . . . , ym), if L = { (u1, . . . , um) | L |= ϕ(u1, . . . , um) }. Depending on
which relation < on Σ∗ we use, we talk of length-bounded and subword-bounded
formulas.

6

3.1 Bounded Fixed-Point Formulas Define Bounded Operators

The last clause in the definition of satisfaction makes sense only if we can show
that the operator Γ is | · |- or <-bounded. We use bounded fixed-point formulas
over any primitive relations and constants instead of the CBFP -formulas above.

Theorem 8. Let A be a first-order relational structure with a well-founded quasi-
ordering ≤ on A. Let ϕ(x,y,S) := ϕ(x, y1, . . . , ym, S1, . . . , Sn) be a bounded
fixed-point formula such that for no set variable T , T (x) is a subformula of ϕ.
Then for all a ∈ A, b1 < a, . . . , bm < a and sets R1 . . . Rm ⊆ A,

A |= ϕ(a, b1, . . . , bm, R1, . . . , Rn) ↔ ϕ(a, b1, . . . , bm, R
<a
1 , . . . , R<a

n). (6)

Proof. We only consider the case ϕ ≡ µ(T1, . . . , Tk)(λx1 ϕ1, . . . , λxk ϕk)(x): By
definition, for each i we have freeIndV (ϕi) ⊆ { xi } and there is no subformula
Y (xi) in ϕi(xi,S,T) with Y among S,T. By induction, for each a ∈ A and each
sequence U = U1, . . . , Uk of subsets of A we have

A |= ϕi(a,R,U) ↔ ϕi(a,R
<a,U<a). (7)

By taking R<a instead of R and, respectively, U<a instead of U, this gives

A |= ϕi(a,R
<a,U) ↔ ϕi(a,R

<a,U<a),

A |= ϕi(a,R,U
<a) ↔ ϕi(a,R,U).

(8)

Define k-ary operators Γϕ = (Γϕ1
, . . . , Γϕk

) and Γ̃ϕ = (Γ̃ϕ1
, . . . , Γ̃ϕk

) using

Γϕi
(U) := { a ∈ A | A |= ϕi(a,R,U) },

Γ̃ϕi
(U) := { a ∈ A | A |= ϕi(a,R

<a,U) }.

By (8), Γϕ and Γϕ̃ are <-bounded operators and by Theorem 3 have fixed points

Γ∞
ϕ = (Γ∞

ϕ1
, . . . , Γ∞

ϕk
) and Γ̃∞

ϕ = (Γ̃∞
ϕ1
, . . . , Γ̃∞

ϕk
). Thus the formula ϕ(x,S) has a

meaning with respect to both environments [a,R] and [a,R<a], given by

A |= ϕ(a,R) ⇐⇒ a ∈ Γ∞
ϕ1

and A |= ϕ(a,R<a) ⇐⇒ a ∈ Γ̃∞
ϕ1
. (9)

To show A |= ϕ(a,R) ⇐⇒ A |= ϕ(a,R<a), we first show that

Γ<b
ϕ = Γ̃<b

ϕ for all b ≤ a. (10)

Suppose this is false. Since < is well-founded, there is b ≤ a such that for all
c < b, Γ<c

ϕ = Γ̃<c
ϕ , but Γ<b

ϕi
6= Γ̃<b

ϕi
for some i. But then, using (7),

c ∈ Γϕi
(Γ<c

ϕ) ⇐⇒ c ∈ Γϕi
(Γ̃<c

ϕ) ⇐⇒ A |= ϕi(c,R, Γ̃
<c
ϕ)

⇐⇒ A |= ϕi(c,R
<c, Γ̃<c

ϕ) ⇐⇒ c ∈ Γ̃ϕi
(Γ̃<c

ϕ).

This implies Γϕi
(Γ<c

ϕ)c = Γ̃ϕi
(Γ̃<c)c for all c < b, which means Γ<b

ϕi
= Γ̃<b

ϕi
, a

contradiction. Using a for c in the above calculation, the claim follows by

A |= ϕ(a,R) ⇐⇒ a ∈ Γ∞
ϕ1

⇐⇒ a ∈ Γϕ1
(Γ<a

ϕ)

⇐⇒ a ∈ Γ̃ϕ1
(Γ̃<a

ϕ) ⇐⇒ a ∈ Γ̃∞
ϕ1

⇐⇒ A |= ϕ(a,R<a).

7

Corollary 9. On each structure A where ≤ is a well-founded quasi-ordering,
every bounded fixed-point-formula ϕ(x) := µ(S1, . . . , Sn)(λx1 ϕ1, . . . , λxn ϕn)(x)
defines a simultaneous <-bounded operator Γϕ := (Γϕ1

, . . . , Γϕn
) by

Γϕi
(S1, . . . , Sn) := { a ∈ A | A |= ϕi(a, S1, . . . , Sn) }.

In particular, the meaning of ϕ is well defined:

A |= µ(S1, . . . , Sn)(λx1 ϕ1, . . . , λxn ϕn)(a) ⇐⇒ a ∈ Γ∞
ϕ1
.

Fixed points Γ∞
ϕ need not exist if we allow a subformula S(x) in ϕ.4 Positive

inductive definitions ban all negative occurrences of recursively bound relation
variables. Our class of formulas shows that this is unnecessarily restrictive in case
there is a well-founded< available. While we have to exclude µ(S)(λx.¬S(x))(x),
we can allow formulas like µ(S)(λx.∀y < x.¬S(y))(x).

Example 2. Let A be the structure L of words over Σ and ≤ be the subword-
relation or the comparison by word-length.

1. Every context-free language overΣ is definable in L by a bounded fixed-point
formula. The converse is false, since we have negation.

2. The non-context-free language L0 := {www | w ∈ Σ∗ } is explicitly defin-
able using µ(S)(λx (x = ǫ ∨ ∃y < x.x = yyy))(x).
The non-context-free L1 = { anbncn | n < ω } is definable by simultaneously
defining L1 = L2L3∩L4L5, with L2 = { anbn | n < ω }, L3 = { cn | n < ω },
L4 = { an | n < ω }, and L5 = { bncn | n < ω }. This can be done as a
positive induction µ(S1, . . . , S5)(λxϕ1, . . . , λxϕ5)(x) with, for example,

ϕ1(x,S) ≡ x = ǫ ∨ [∃y < x∃z < x (x = yz ∧ S2(y) ∧ S3(z))

∧∃y < x∃z < x (x = yz ∧ S4(y) ∧ S5(z))].

3. Universal quantification and boolean operations could be mixed as in the
formula µ(S) (λxϕ)(x) with

ϕ(x, S) := x = a ∨ ∀y < x∀z < x (x = y · z → (S(y) ↔ ¬S(z)).

Using Theorem 8 and Lemma 4, nested applications of bounded fixed-point
operators can be combined to a single application of a simultaneous bounded
fixed point operator:

Lemma10. (‘Bekič-Scott principle’ for bounded recursion) Let ϕ(x, S, T) and
ϕ̃(x, S, T) be bounded fixed-point formulas, without subformulas U(x) for set vari-
ables U . Then

L |= µ(S, T)(λx.ϕ, λx.ϕ̃)(x) ↔ (µSλx.ϕ[(µTλx.ϕ̃)/T])(x).

4 Positive occurrences of S(xi) in ϕi could be allowed when working with locally
monotone bounded operators (cf. Theorem 5).

8

3.2 An Invariance Property of Bounded Fixed-Point Formulas

Notions of grammaticality should have both a global and a local reading. Glob-
ally, a grammatical property ϕ(x) is used to select a language

L(ϕ) = {w ∈ Σ∗ | L |= ϕ(w) }

from an infinite interpretation L. Locally, ϕ should express a property of w that
depends only on a finite substructure L(w) ⊂ L and is effectively testable.

For example, note that the construction of the fixed point corresponding to
a context free grammar and the construction of a recognition table for input w
are related: the recognition table is a kind of ‘goal oriented’ selection from the
stages of the inductive generation of all strings in the language.

More generally, in ‘intuitively context-free’ languages, grammaticality of a
string w should be an ‘internal’ property of the string, i.e. only depend on prop-
erties of its substrings. Here the local reading of ϕ is its interpretation in the
substructure of L whose universe are the subwords of w. Length-bounded fixed-
point formulas ϕ(x), however, can express properties of w by referring to any
string v with |v| < |w|, and so cover some ‘contextual’ notions of grammaticality.

The bounded formulas all have a local reading in the sense that they are
satisfied by an element w in A iff they are satisfied in a submodel A≤w defined
via the quasi-ordering ≤ on A.

Definition 11. For a first-order relational structure A with a binary relation
≤, let A≤a be the substructure of A with universe A≤a (containing the con-
stants). A formula ϕ(x, y1, . . . , ym, S1, . . . , Sn) is ≤-local in x, if for all A, a ∈ A,
b1, . . . , bm < a and S1, . . . , Sn ⊆ A

A |= ϕ(a, b1, . . . , bm, S1, . . . , Sn) ⇐⇒ A≤a |= ϕ(a, b1, . . . , bm, S
≤a
1 , . . . , S≤a

m).

If A is L, we write L≤w for the substructure of L whose universe consists of
all subwords of w and L≤|w| for the substructure whose universe consists of all
words of Σ∗ of length at most |w|.

Theorem 12 (Local Substructure Invariance). Let ϕ(x) be the bounded fixed-
point formula = µ(S1, . . . , Sn)(λx1 ϕ1, . . . , λxn ϕn)(x). Then for any structure
A with a well-founded quasi-ordering ≤ and any a ∈ A,

A |= ϕ(a) ⇐⇒ A≤a |= ϕ(a).

For ϕ(x) as above, by induction on the well-founded relation < the stages
Γ<a

ϕi
of the induction in A≤a are the intersection of those in A with A≤a. Note

that least fixed-point formulas do not satisfy the ‘local substructure invariance’,
because of their unbounded individual quantifiers.

As one expects, context-free grammars – as fixed-point formulas – are ‘in-
variant under local substructures’ in the sense of Theorem 12, with ≤ as the
subword relation. Theorem 17 below shows that the converse does not hold:
there are more ‘intuitively context-free’ than context-free languages.

9

3.3 Syntactic Characterization of Invariance and <-Boundedness

As is well known, a first-order formula ϕ(x, S) defines a monotone operator Γϕ iff
it is logically equivalent to one where the variable S does not occur negatively. We
give a similar characterization of first-order formulas ϕ(x, S) that both (a) define
<-bounded operators Γϕ and (b) express ‘intuitively context-free’ properties.
Identifying these with properties ‘invariant under going to the substructure of
all subwords’, i.e. the ‘local’ properties in L, (a) and (b) mean

∀w ∈ Σ∗ ∀S ⊆ Σ∗ [L |= ϕ(w, S) ⇐⇒ L≤w |= ϕ(w, S<w)].

In order to replace ∃y ≤ xϕ equivalently by ϕ[x/y] ∨ ∃y < xϕ, our charac-
terization needs ≤ to be antisymmetric, and hence does not cover the case of
norm-bounded operators.

Definition 13. Let a first-order relational language with a binary relation ≤
be given. A formula ϕ(x, y1, . . . , ym, S1, . . . , Sn) is <-bounded in x, if for each
structure A, all w ∈ A, v1, . . . , vm < w and S1, . . . , Sn ⊆ A

A |= ϕ(w, v1, . . . , vm, S1, . . . , Sn) ⇐⇒ A |= ϕ(w, v1, . . . , vm, S
<w
1 , . . . , S<w

n),

and ϕ(x, y1, . . . , ym, S1, . . . , Sn) is (syntactically) <x-bounded , if all individual
quantifiers are of the form ∃y < x or ∀y < x and each Si occurs only in the form
Si(yj) or Si(y) for a bound variable y.

Theorem14 (Preservation Theorem). For a first-order formula ϕ(x, S), the fol-
lowing conditions are equivalent:

(i) On structures with a partial order ≤, ϕ(x, S) is ≤-local and <-bounded in x.
(ii) There is a <x-bounded formula χ(x, S) such that: “≤ is a partial order”

|= ϕ(x, S) ↔ χ(x, S).

Our semantic proof of (i) ⇒ (ii) is too long to be included here. It derives
χ as an interpolant of “≤ is a partial order” ∧ ϕ≤(x, S<x) |= ϕ(x, S). The
assumption ∃T (ϕ≤(x, T) ∧ T = S<) is equivalent on countable structures to a
first-order theory Φ describing a consistency property for constructing T , and χ
is obtained from Φ by compactness.

4 Tabular Recognizers for Bounded Fixed-Point Definitions

To evaluate monotone inductive definitions, Rounds uses an ATM modified by
adding (i) oracle states to handle free relation variables, and (ii) recursion states
that allow arbitrarily many iterations of a recursively defined predicate.

To handle bounded inductions, besides the oracle states our ATM ’s have
two new kinds of states, one for bounded individual quantification and one for
bounded fixed-points.

– M∃y<x.ϕ has an initial ∃-state in which it can write to its work tape y an
arbitrary string u such that u < v, where v is the content of the input tape
x (used as a length bound resp. source for copying); control is then given
to the submachine Mϕ with u on its input tape y. M∃y<x.ϕ returns the
maximum of the acceptance values of these calls to Mϕ.

10

– M(µ(T1,...,Tn)(λy1.ϕ1,...))(x1) is built using the machines M
ϕi(yi,S,T1,...,Tn). We

assume oracle states for all free relation variables of the formula. Let w be the
input on tape x1 and oracles R for S be given. Let Γ∞

ϕ (v) be the bit-vector
of the boolean values of v ∈ Γ∞

ϕ1
, . . . , v ∈ Γ∞

ϕn
.

First, build a ‘table’ Γ<w
ϕ of all Γ∞

ϕ (v) for v < w: in a loop through all v < w,
respecting <, check whether Γ∞

ϕ (v) is already stored; if not, compute its bits
Γ∞

ϕi
(v) = Γϕi

(Γ<v
ϕ) using the submachines Mϕi

with v on its input tape yi

and oracles R for S and Γ<v
ϕ for T, and store the results. Second, evaluate

ϕ1 on input w, using Mϕ1
with w on its input tape y1 and oracles R for S

and the ‘table’ Γ<w
ϕ for T. Finally, return the acceptance value of Mϕ1

.

Thus we first expand the finite structure L≤w by Γ<v
ϕ and then can test L |= ϕ(v)

quickly as L≤w |= ϕ1(v, Γ
<v
ϕ). In contrast to the case of least-fixed points, before

computing Γ<v
ϕ we know its size; this could be relevant for ‘bounded’ queries

in databases with flat quasi-ordering ≤. Note also that the values Γ∞
ϕj

(v) are
computed only once. Whether this is an advantage over recursive computation
(as used by Rounds), depends of course also on the costs of the read/write
operations from/to the table.

Lemma15. If ϕ(x) := µ(S1, . . . , Sn)(λx1 ϕ1, . . . , λxn ϕn)(x) is a bounded fixed-
point formula,

{w ∈ Σ∗ | L≤|w| |= ϕ(w) } ∈ EXPTIME , {w ∈ Σ∗ | L≤w |= ϕ(w) } ∈ PTIME .

Concerning the converse, note that a bounded recursive definition of the set of
configurations that lead to acceptance could recur to accepting configurations of
smaller size only, but related machine configurations have the same length. So
it seems impossible to define all EXPTIME resp. PTIME -languages by length-
resp. subword-bounded fixed-point formulas, even if we allow k-ary relation vari-
ables rather than just set variables. From a language definability point of view,
this might even be expected: ordinary grammars would hardly allow multiple
scanning and arbitrary rewriting(!) of an input string to test its grammaticality.

5 Tabular Recognizers for Decomposition Grammars

We now further restrict bounded inductive language definitions to obtain tabular
recognition algorithms of time complexity O(|w|3) on a RAM . We generalize a
peculiarity of individual quantification in the fixed-point formulation of context-
free grammars which has been overlooked in Rounds’ analysis. It allows to fill a
field of the recognition table for input w in O(|w|) steps (cf. Proposition 20 a)).

Definition 16. A bounded fixed-point definition µ(S1, . . . , Sn)(λxϕ1, . . . , λxϕn)(x)
is a decomposition grammar if each ϕi(x,S) is a boolean combination of formulas

∃x1 < x . . .∃xk < x (x = t(x1, . . . , xk) ∧ ψ(x1, . . . , xk, S1, . . . , Sn)), (11)

where x, x1, . . . , xk are pairwise distinct individual variables, t(x1, . . . , xk) is a
term (here: a word made of xi’s and constants a) in which each variable occurs at

11

most once, and ψ(x,S) is a conjunction of formulas Si(xj) and their negations.
The grammar is in normal form, if in each subformula (11) either k = 0 and
t ≡ a for some a ∈ Σ, or k = 2 and t ≡ x1 · x2.

We can test property (11) by ‘decomposing’ its argument string x into strict sub-
strings x1, . . . , xk according to the pattern t and checking which of the predicates
S1, . . . , Sk hold true of the substrings x1, . . . , xk.

Each language L ⊆ Σ∗ definable by decomposition grammars can also be
defined by decompostion grammars in normal form. We could allow ψ in (11) to
be a boolean combination of Sj(xi)’s; having disjuncts there amounts to delaying
decisions in the parsing process. We could also allow µ-formulas in ψ and have
nested recursive definitions. This is possible since the class of definable languages
is closed under substitution, for which we need Lemma 10.

Theorem17. The class of languages definable by decomposition grammars con-
tains the context-free languages, is closed under the boolean operations ∪,∩,¬,
the regular operations of ·, ∗, and under substitution.

Decomposition grammars seem equally expressive as the hierarchical com-
plement intersection grammars of Heilbunner and Schmitz [5], but we have not
checked the details.

Before turning to the recognition complexity of decomposition grammars, we
generalize these to allow a relational interpretation of the syntactic categories.

5.1 Head Grammars and Languages of Segmented Strings

In the syntax of natural languages, concatenation is not the only primitive used
to combine expressions. Other operations have been studied (cf. [10, 11]), such as
the insertion of one string into another one, or the wrapping of a splitted string
around the ‘head’ (for example: stem) of another one. Technically, one uses string
pairs over Σ and the following wrapping operations ◦i : Σ∗2 ×Σ∗2 → Σ∗2

(v1, v2) ◦1 (w1, w2) := (v1w1, w2v2) (v1, v2) ◦2 (w1, w2) := (v1, w1w2v2)

(v1, v2) ◦3 (w1, w2) := (v1w1w2, v2) (v1, v2) ◦4 (w1, w2) := (v1, v2w1w2)

(v1, v2) ◦5 (w1, w2) := (v1v2w1, w2)

More generally, we consider segmented strings (w1, . . . , wm), i.e. strings w =
w1 · · ·wm segmented into several consecutive substrings w1, . . . , wm. These are
useful at various places in language description: on the word level to decompose
a string w into segments such as verb stem, prefixes, infixes and suffixes, or on
the phrasal level to handle ‘discontinuous constituents’, such as a noun phrase
whose noun and relative clause are separated by the verb. For simplicity, we fix
the number m of segments; but we enlarge the class of operations:

Definition 18. Let Op be the set of operations ◦ : (Σ∗)m × (Σ∗)m → (Σ∗)m

that are definable by

(x1, . . . , xm) ◦ (y1, . . . , ym) := (v1, . . . , vm), (12)

12

where v1, . . . , vm are words over { x1, . . . , xm, y1, . . . , ym } and each xi and yj

occurs exactly once5 in v1 · · · vm. Let the structure of m-fold segmented strings be

Lm := ((Σ∗)m, ◦, (a, ǫ, . . . , ǫ), . . . , (ǫ, . . . , ǫ, a))a∈Σ,◦∈Op .

Definition 19. A normal form decomposition grammar for m-fold segmented
strings is a formula ϕ(x) = µ(S1, . . . , Sn)(λxϕ1, . . . , λxϕn)(x), where each for-
mula ϕi(x, S1, . . . , Sn) is a boolean combination of formulas

∃x1 < x∃x2 < x (x = t(x1, x2) ∧ ψ(x1, x2, S1, . . . , Sn)), (13)

in which either t ≡ a for some a ∈ Σ, or t ≡ (x1 ◦ x2) for some ◦ ∈ Op, and ψ
is a conjunction of formulas Si(xj) and their negations. The language of m-fold
segmented strings defined by ϕ(x) is

L(ϕ) := { (w1, . . . , wm) | Lm |= ϕ((w1, . . . , wm)) }.

To interprete <, use comparison by the length |(w1, . . . , wm)| = |w1|+ · · ·+ |wm|
of segmented strings. A head grammar is a normal form decomposition grammar
for 2-fold segmented strings over the set Op = { ◦1, . . . , ◦5 }, where each ϕi is a
disjunction of formulas (13) in which ψ has no negations.

C. Pollard[10] introduced head grammars, in a more complicated ‘rewriting’
format, as context-free grammars where concatenation is replaced by the (non-
associative) wrapping operations ◦1, . . . , ◦5. Formal properties of head languages
have been studied by K. Roach[11].

5.2 Complexity of Recognition with Decomposition Grammars

Let µ(S1, . . . , Sn)(λx1 ϕ1, . . . , λxn ϕn)(x) be a decomposition grammar, and w ∈
Σ∗. In order to decide whether L |= µ(S1, . . . , Sn)(λx1 ϕ1, . . . , λxn ϕn)(w), one
proceeds as follows:

1. For each subword v of w and each i ≤ n, compute the boolean value Γ∞
ϕi

(v),
and store the bitvector (Γ∞

ϕ1
(v), . . . , Γ∞

ϕn
(v)) as field M(v) of a table with

|subwords(w)| many fields.
2. To compute Γ∞

ϕi
(v), where ϕi(x,S) is a boolean combination of subformulas

ϕ as in (iii), determine the corresponding values Γ∞
ϕ (v) as explained in (iii)

and evaluate the boolean combination of the results.
3. To compute Γ∞

ϕ (v) for ϕ(x,S) = ∃x1 < x . . . ∃xk < x (x = t(x) ∧ ψ(x,S)),
where ψ(x,S) is a boolean combination of formulas Si(xj) with 1 ≤ i ≤ n
and 1 ≤ j ≤ k,
(a) determine all splittings of v into substrings v1, . . . , vk such that v =

t(v1, . . . , vk), and
(b) for each such splitting v, evaluate ψ(v,S) by looking up the values for

Si(vj) in M(vj).

5 After finishing this work, I found the same restriction used in the ‘multiple context-
free grammars’ of Seki e.a.[13] for a complexity result related to Theorem 21.

13

The complexity of computing the table M for an input w is proportional to
the number of substrings v of w times the cost of computing a field M(v). Since
only splittings into strict substrings are allowed in (iii), the table M can be filled
by computing M(v) with subwords v of w of increasing length.

Remark. If Γ = Γϕ for a context-free grammar ϕ(x) in Chomsky normal form
and < is the strict subword relation, Γ (Γ<w) is the familiar recognition table
for w in the algorithm of Cocke-Younger-Kasami. Different ways of computing
Γ (Γ<w) correspond to different versions of the recognizer. In an off-line version,
one can compute Γ (Γ<v) for all subwords v of increasing length. On-line versions
compute Γ (Γ<v) for increasing prefixes v of w: if w = va ends in a letter a we
first determine the table Γ (Γ<v) of the prefix v, then that of the next input
symbol, Γ (Γ<a), and finally compute Γ (Γ<ua) for increasing suffixes u of v.

We now estimate the number of RAM -steps needed to construct a recognition
table M(w1, . . . , wm) for a decomposition grammar for m-segmented strings.

Proposition20. Let ◦ be any such 2m-ary operation as just defined.

a) There are O(maxi |wi|
m

) many decompositions (u1, . . . , um)◦ (v1, . . . , vm) of
(w1, . . . , wm) ∈ (Σ∗)m.

b) The table M(w1, . . . , wm) has O(maxi |wi|
2m

) fields.

Proof. a) Each of the vi that define ◦ contains at least one of the variables
x1, . . . , ym. To consume the remaining m variables one needs m applications
of concatenations (giving adjacent variables in the v1, . . . , vm). To find sub-
strings of w1, . . . , wm that match the variables, we therefore have to find m
splitting positions i0, . . . , im in w1, . . . , wm. There are O(|w|k) many k-tuples

i1 ≤ i2 . . . ≤ ik ≤ |w| in a string w and so O(|w1|
k1 · · · |wm|km) many splittings

with ki splitting positions in wi. It follows that there are at most O(max |wi|
m)

splittings (u1, . . . , um) ◦ (v1, . . . , vm) = (w1, . . . , wm).
b) For a subword (v1, . . . , vm) ≤ (w1, . . . , wm) of (w1, . . . , wm), the vi must

be empty or occur as non-overlapping subwords of the w1, . . . , wm. The total
number of k nonoverlapping subwords of wi is bounded by the beginning and
end positions i1 ≤ j1 ≤ . . . ≤ ik ≤ jk ≤ |wi| of the subwords, which makes

O(|wi|
2k

) possibilities. There areO(|w1|
2k1 · · · |wm|2km) subwords (u1, . . . , um) ≤

(w1, . . . , wm) such that ki out of the u1, . . . , um are nonoverlapping subwords of
wi. Hence the number of all subwords (u1, . . . , um) ≤ (w1, . . . , wm) is bounded

by the sum of values O(|w1|
2k1 · · · |wm|2km) over all k1, . . . , km where

∑
ki = m,

giving O(maxi |wi|
2m). Multiplying a) and b), we get

Theorem21. For any normal form decomposition grammar ϕ(x) for m-seg-
mented strings, a recognition table M for input (w1, . . . , wm) can be constructed

in O(maxi |wi|
3m

) many RAM-steps.

For m = 1, this gives the familiar O(|w|3) bound for language recognition with
respect to context-free grammars in Chomsky normal form. For m = 2, we get
an O(|(w1, w2)|

6
) bound for head grammars in ‘Chomsky’ normal form.

14

6 Open Problems

Bounded fixed-point formulas may be applied on other structures, like the finite
trees with the subtree relation. They might also be useful to develop relational
query languages with low complexities, since the number and size of the inductive
stages depend on the quasi-ordering rather than the size of the domain.

An extension of our monadic bounded inductive definability to the n-ary
case should present no difficulties. We also expect that the (subword-) boundedly
definable languages strictly contain the boolean closure of context-free languages.

We have indicated why the inclusion of subword- resp. length-bounded in-
ductive definability in PTIME resp. EXPTIME should be strict. A precise char-
acterization of the boundedly definable languages in terms of complexity is open.

Acknowledgement: This work has partially been supported by ESPRIT
BRA 7230, GENTZEN.

References

1. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the

Association for Computing Machinery, 28(1):114–133, 1981.
2. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, Berlin 1995.
3. Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. In Proceed-

ings of the 26th IEEE Symposium on Foundations of Computer Science, 1985.
4. M. Harrison. Introduction to Formal Languages. Addison Wesley, Reading 1978.
5. S. Heilbrunner and L. Schmitz. An efficient recognizer for the boolean closure of

context-free languages. Theoretical Computer Science, 80:53–75, 1991.
6. G. Hotz and G. Pitsch. Fast uniform analysis of coupled-context-free languages. In

S. Abiteboul and E. Shamir, editors, 21st International Colloquium on Automata,

Languages and Programming, pages 412–423. Lecture Notes in Computer Science
820, Springer, Berlin 1994.

7. N. Immerman. Relational queries computable in polynomial time. Information

and Control, 68:86–104, 1986.
8. C. Lautemann, T. Schwentick, and D. Thérien. Logics for context-free languages.

In Computer Science Logic ’94, pages 205–216. Lecture Notes in Computer Science
933, Springer, Berlin 1995.

9. H. Leiß. Towards Kleene Algebra with Recursion. In E. Börger e.a., editors, Com-

puter Science Logic ’91, pages 242–256. Lecture Notes in Computer Science 626,
Springer, Berlin 1992.

10. C. Pollard. Generalized Phrase Structure Grammars, Head Grammars, and Natu-

ral Language. PhD thesis, Department of Linguistics, Stanford University, 1984.
11. K. Roach. Formal properties of head grammars. In A. Manaster-Ramer, editor,

Mathematics of Language, pages 293–348. John Benjamins, Amsterdam 1987.
12. W. Rounds. A logic for linguistic descriptions and an analysis of its complexity.

Computational Linguistics, 14(4):1–9, 1988.
13. H. Seki, T. Matsumura, M. Fujii and T. Kasami. On multiple context-free gram-

mars. Theoretical Computer Science, 88(2):191–229, 1991.
14. M. Vardi. Complexity of relational query languages. In 14th ACM Symposium on

the Theory of Computing, pages 137–146, 1982.
15. K. Vijay-Shanker and A. Joshi. Some computational properties of tree adjoining

grammars. In Proceedigs of the 23rd Meeting of the Association for Computational

Linguistics, pages 82–93, Chicago 1988.

15

