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Calculus for categories

Glynn Winskel
U Cambridge, UK

This talk will present and motivate a calculus for a fragment of category
theory. Its judgements systematise such categorical arguments as that an ex-
pression is functorial in its free variables and that two functorial expressions are
naturally isomorphic in their free variables. The calculus is particularly use-
ful for showing the continuity (i.e., limit and colimit preserving properties) of
functors and partly arose from work in a form of domain theory where domains
are (special kinds of) categories. The power of the calculus derives from its
liberal use of ends and coends. The talk will only assume a nodding acquain-
tance with category theory and, in particular, will try to give an accessible
introduction to ends and coends. (The talk is based on joint work with Mario
Caccamo—see BRICS report RS-01-27 and the Lecture Notes in Category The-
ory at www.brics.dk/ mcaccamo .)



PARAMETRIC CORECURSION AND COMPLETELY ITERATIVE MONADS

JIRI ADAMEK, STEFAN MILIUS, AND JIRI VELEBIL

One algebraic approach to infinite computations abstracting from the nature of external memory are
iterative algebraic theories, introduced by C. Elgot in [E]. This notion has been extended to the notion of
completely iterative theories by Elgot, Bloom and Tindell, see [EBT]. The latter are infinitary algebraic
theories (or equivalently, monads on the category of sets) that allow for unique solutions of systems of
recursive equations of a certain type.

It has recently been discovered independently by L. Moss [Mo] and P. Aczel and the present authors [AAV],
[AAMYV] that a coalgebraic approach to infinite computations makes it possible to obtain more general
categorical results, where, moreover, the proofs are conceptually clearer than in the setting of algebraic
theories. However, unique solutions of recursive equations can only be obtained for a certain restricted class
of functors. That excludes such important examples as the power-set functor with applications in process
algebra. In recent work [AMV] we have shown how to uniquely solve recursive equations for arbitrary
endofunctors in the category of sets. Here we shall extend those results to all locally presentable categories.
But first we recall the basic results from [AAMV].

In the coalgebraic approach one considers a category A with binary coproducts such that coproduct
injections are monomorphic, and an iteratable endofunctor H on A, i.e., such that for every object X a final
coalgebra

TX

of H(.) 4+ X exists.

Basic example: Given a signature X, consider for a given set X of variables the X-algebra 75 X consisting
of all finite and infinite X-labelled trees over X (i.e., nodes with n children are labelled by n-ary operation
symbols and leaves by constant symbols or variables in X). It is well-known that 75 X is the final Hx(_)+ X
coalgebra, where Hy, : Set — Set is the polynomial endofunctor associated with the signature ¥, see [AK].
Trees admit unique solutions of recursive systems

Iy ~ tl(ml,mz,...,yl,yz,...)

T2 = t2(331;332;--->y1;y2>---)

where X = {z1,22,...} is a set of variables, Y = {y1,y2,...} is a set of parameters, and for each variable z;,
t; is a guarded tree (i.e., a tree in Tx:(X +Y") which is not just a single variable). A solution of such a system
is a sequence z, 1,257, ... of trees in Ty Y such that the trees z;' and ;(z, T, 22T, ... y1,92,...) are identical,
for all i. The existence of unique solutions for trees is an instance of a very general categorical fact.

More precisely, if we start with an iteratable endofunctor H as above, notice first that by the Lambek
Lemma [L] the structure map TX — HTX + X is an isomorphism, i.e., TX is a coproduct of HT'X and
X. Denote the injections as follows:

7x: HTX —TX (“T'X becomes an H-algebra”)
nx: X —TX (“embedding of variables”)

The final coalgebras T'X have rich structure. Firstly, the way how substitution works on trees generalizes
smoothly.

Theorem 1. For any arrow s : X — TY there exists a unique homomorphism of 5 : TX — TY of
H -algebras extending s, i. e., such that 5-nx = s.

It follows that T' carries the structure of a monad (T,7,u). Moreover, recursive equations have unique
solutions. To make this more precise, let us call an arrow e : X — T(X +Y) in A an equation morphism.

Date: June 13, 2002.
Key words and phrases. completely iterative, monad, solution theorem, parametric corecursion.
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2 JIRI ADAMEK, STEFAN MILIUS, AND JIR[ VELEBIL

It is called guarded if it factorizes as follows:

X ——T(X+Y) (1)

S T[TX+Y,77X+Y“"]
A

HT(X +Y)+Y

A solution of an equation morphism e is a morphism ef : X — T'Y such that the following triangle

ef

X TY
l 4777]
T(X+Y)

commutes.
The following result is called Parametric Corecursion in [Mo] and Solution Theorem in [AAMV]:

Theorem 2. Every guarded equation morphism has a unique solution.

The first topic in the present paper are free completely iterative monads. It has been proved in [EBT] that
the algebraic theory of finite and infinite trees is a free completely iterative theory over the given signature.
This result has been extended in [AAMYV] to the setting of iteratable endofunctors.

Informally, monads that admit unique solutions of recursive equations are called completely iterative. It
turns out that for any iteratable endofunctor H the above monad T is a free completely iterative monad on
H, see [AAMV]. More precisely, notice first that the above notions of equation morphism and solution make
sense for any monad on A. To be able to express guardedness of equation arrows the notion of idealized
monad is introduced:

Definition 3. Let (5,7, 1) be a monad. A subfunctor o : §'>——=5 is called a (right) ideal provided that
the multiplication p of the given monad restricts to S’, i. e., there exists a (necessarily unique) p' : S'S — S
such that the following square

515 g1

sl e

SST>S

cominutes.

A monad together with an ideal of it is called an idealized monad. If furthermore we have S = S’ + Id,
with injections o and 7, then S is called an ideal monad.

An idealized-monad morphism between idealized monads S and R with ideals o :S'>—=S and
0 : R'>—=R), respectively, is a monad morphism « : S — R that restricts to the ideals of the monads,
i.e., there exists a (necessarily unique) o' : 8" — R’ such that the following square

S’ il> R
U\L \LQ
S e R
commutes.

Remark 4. Notice that the notion of an ideal of a monad corresponds precisely to the notion of a right
ideal for a monoid. Indeed, a right ideal of a monoid M is a subset I of M such that I - M C I. Now a
monad S is just a monoid in the monoidal category [A, A] of endofunctors on A with tensor product given
by composition of functors.

Recall that the above monad T' is a coproduct of HT and Id. And the ideal 7: HT>—T', where y is
given by Hp, makes T' an ideal monad. Moreover, T’ comes with a natural “embedding of H”:

= g T T
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COMPLETELY ITERATIVE MONADS 3

For idealized monads one easily defines the notion of a guarded equation morphism as an arrow e that
factorizes as follows:

X——=S(X+Y)
T[UX+Y7WX+Y'W]

S(X+Y)+Y.

For the ideal monad T this is precisely the same notion as the one defined above (see (1)).

An idealized monad S is called completely iterative if every guarded equation arrow has a unique solution.
Thus, Theorem 2 says that T' is a completely iterative monad.

The following is the main result of [AAMV]:

Theorem 5. For every iteratable endofunctor H, the monad T is a free completely iterative monad on H.
More precisely, given a completely iterative monad S and an idealized transformation A : H — S (i.e., such
that X factorizes through the ideal S'>—=S ) there exists a unique idealized-monad morphism X\ : T — S
such that X\ - 7% = \:

H——T
|
N
S.

It has been shown in [M] that, conversely, iteratable endofunctors are precisely those that admit free
completely iterative monads.

Theorem 6. If S is a free completely iterative monad on H, then H is iteratable, and SX is a final coalgebra
of H(.) + X.

Thus, for non-iteratable functors there is no free completely iterative monad. However, this does not
imply that recursive equations are not uniquely solvable. It is possible to extend Theorem 2 to arbitrary
endofunctors. For the category of sets this has been shown in [AMV]. We generalize this result to locally
presentable categories. In order to do this, we first need to obtain parametrized final coalgebras for arbitrary
endofunctors. We work in the following setting proposed by M. Barr, see [B]. Fix an inaccessible cardinal,
N, say. A small set is a set X of cardinality less than N.,. These sets form the category Set. A class is
any set with cardinality not greater than R.,. The category of classes is denoted by Set™. This generalizes
as follows: let K be a category that is

(i) cocomplete, i.e., small diagrams have a colimit in X,
(ii) cowellpowered, i.e., each object of K has only a small set of quotients,
(iii) locally small, i.e., X has only a class of objects and each hom-set is small.

We denote by K the free cocompletion of K under small-filtered colimits, i.e., colimits of class-indexed
diagrams that are A-filtered for each infinite cardinal A < R.,. Notice that any endofunctor H on X extends
essentially uniquely to an endofunctor H*° on X preserving small-filtered colimits.

Theorem 7. For any endofunctor H : X — X there exists an initial algebra and a final coalgebra of H™.

Now suppose we have an endofunctor H : X — X, where X is a locally presentable category satisfying
conditions (i)-(iii) above. The extension H> : K> — K is iteratable. Denote by T* the free completely
iterative monad on H>. A small equation morphism is a morphism X — T#(X +Y) in K*°, where X and
Y are objects of K. The notions of guardedness and solution are the same as above. Consider the A-accessible
coreflections Hy : K — X of H given by left Kan extension of HJy along Jy, where Jy : Xy — X denotes
the inclusion of the small category X, of (representatives of all) A-presentable objects of X into XK. Recall
that accessible endofunctors are iteratable (see [AAMV], Example 2.9). Hence, all the Hy are iteratable.
Denote by T\ the completely iterative monad generated by Hj.

Lemma 8. 7% = (;olgm T¥° is a small-filtered colimit.
1<Neo

This allows us to prove the following result:

Theorem 9. (General Solution Theorem) Every small guarded equation morphism e : X — T*(X +Y)
has a unique solution, which can be found in X.
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More precisely, since X is small-presentable in K>, e factorizes through an arrow in K
X —THX 4Y)
N

: T
BN
AN

Th(X +7)

for some A < R, and the solution of e is obtained by solving € in K. In fact, the following triangle

ef
X —TtY

commutes.
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Coalgebraic Approaches to Algebraic Terms

Neil Ghani, Christoph Liith and Federico De Marchi

June 13, 2002

What are Algebraic Terms? If ¥ is a signature, a 3-algebraic system of equations is of the form

¢1($1,...,£L‘n1) = tl(ml,...,mnl)
¢2(x1,...,mn2) = tg(ml,...,mn2) (1)
Om(T1,-e s Tn,) = tm(T1,...,2n,.)
where we regard the ¢; as the constructors of a signature Q and the terms ¢;, where 7 € {1,...,n}, are built
from the signature X U {¢1,...,¢,}. Courcelle [3] proves that algebraic systems in Greibach Normal Form, ie

where the right-hand sides of the equations all start with a X-constructor, have unique solutions in the set of
infinite trees over Y. The proof uses a least fixed point construction relying on the set of infinite trees forming
a complete metric space. For example, if 3 contains a binary symbol A and a unary symbol B while 2 contains
only a unary symbol ¢, then the X-algebraic equation ¢(z) = A(z, #(B(z))) has the following solution

BBz

Note that nested recursion is permitted, eg in the equation ¢(z) = A(z, p(B(4(z)))). Infinite terms which arise
as the solutions of algebraic systems of equations are called algebraic terms. Rational terms [3, 6, 4] arise as a
special case of algebraic terms where, intuitively, the recursive calls of the function symbols ¢; do not involve
any change in the parameters, eg in the equation ¢'(z) = A(z, ¢'(z)).

Generalising Algebraic Terms: This abstract generalises algebraic terms as follows:

e The definition of signature etc is highly correlated to working over the category of Set. We show how
algebraic terms can be defined for other categories and discuss applications.

e Y-algebraic systems of equations can be described as recursion over the initial ¥-algebra since the right
hand side of each equation belongs to the initial -algebra over some set of variables. We generalise
algebraic terms to other algebras and, again, briefly discuss applications.

Related Work: Recently Moss [8], Adamek et al. [1] and ourselves [4] have been looking at categorical,
specifically coalgebraic, approaches to recursion. The general aim has been the same as those given above,
namely to take standard concepts such as rational and algebraic terms and generalise them to a wider setting.
For some time, it has been realised that infinite terms form a final coalgebra in much the same way that



finite terms form an initial algebra. The fact that one can solve generalised forms of rational equations using
coalgebra was proven in the above papers in the order given. Moss also has an unpublished approach [7] to
solving algebraic equations using coalgebra and we are investigating whether his approach generalises in the
directions proposed within this abstract. We are grateful to him for sharing his ideas with us.

A Categorical Reformulation: If N is the discrete category whose objects are the natural numbers thought of
as sets with that cardinality, a signature X is a functor ¥ : N — Set mapping a number to the set of operations
of that arity. This generalises to a locally finitely presentable category [2, 5] C where one defines a signature to
be a functor ¥ : N/ — C where N is the discrete subcategory formed by the set of generators of the category.
(From a signature ¥ one usually constructs an associated functor Fy : Set — Set which can be thought of as
mapping a set of variables X to the set Fi5(X) of X-terms of depth 1 built from variables X. Formally, FY; is
the left Kan extension of ¥ along the inclusion J : N — Set, ie Fs; = Lan;X. Finally, if Ty; is the free monad on
Fy, then T (X) is the usual initial algebra of terms built from variables X. The multiplication and unit of the
monad provide an abstract model of the key concepts of substitution and variables which underly the ability to
solve equations. Within this terminology, a guarded Y.-algebraic system of equations is a natural transformation

Q= (14 FeTsyg)oJ 2)

where () is some signature. Note that we have allowed the mild generalisation in that the signature may declare
an infinite number of operators (all with finite arities) and the right-hand side of an equation may be a variable
(the 1+ part). These generalisations actually make the mathematics easier and hence their inclusion. Also note
how the condition that the right hand side of an equation has a root symbol from X is modelled by applying
the endofunctor Fy, after the monad calculating terms built from the coproduct of ¥ and €.

Since the left Kan extension is left adjoint to precomposition, (2) corresponds to a natural transformation
Fo=LanjQ — 1+ FsTs.q (3)
1+ FsTs g is a monad because we can embed Fy; in Ts o and hence (3) corresponds to a monad morphism
To - 14+ FxTxiq

This achieves our first goal of defining algebraic equations over categories more general than Set. To allow right
hand sides of equations to come from arbitrary terms algebras, we need to replace the initial algebras from the
monad Ts o with something more general. Now, by abstract reasoning [5], Ts+q = Ts + Tq where the latter
coproduct is in the category of monads. It turns out that T can be replaced by any monad whatsoever! For
T, however, we cannot take any monad since the elements of the generalisation of T must be interpreted in
the monad T° of infinite terms. We use the notion of a coalgebraic monad we introduced recently [4].
Coalgebraic Monads: The free monad T% on an endofunctor F satisfies the isomorphism T4 = 1 + FT%,
ie Th is a fixed point of the 1 + F o _ endofunctor on the category of endofunctors. The monad of finite and
infinite terms T% (which is pointwise the final X + F o _ coalgebra) is also a fixed point of 1+ F o _. The same
holds for the term graph monad and the rational monad [4]. Abstracting from these examples, [4] defines:

Definition: Let F' be an endofunctor on a category C. An F-coalgebraic monad on C is a 4-tuple (T,n,u,T)
such that (T,n,un) is a monad on C and T is a natural transformation between F and T for which the monad
morphism [, u.7T|: 1+ FT — T is an isomorphism.

Given a functor F, [4] proves that the free monad T% is the initial F-coalgebraic monad while T is the final
F'-coalgebraic monad. Coalgebraic monads provide suitable right hand sides for algebraic equations:

Definition: Let H be an F-coalgebraic monad. An algebraic system over H consists of a monad E and a
monad morphism e : E — 1+ F(H + E). A solution for e is a monad morphism e : E — Ty making the



following commute (g is the unique monad morphism from H to the final F-coalgebraic monad T¥.)

el
E »T"F
e =
1+ F(H+E) 1+ FT"p
1 +F[!H,6T]

Lemma: Ife: E — 1+ F(H + E) is an algebraic system over H, then e has a unique solution

Space constraints prevents anything but a proof sketch: First, 1+ F(H + E) is a monad since the coalgebraicity
of H allows us to map F' into H. Next, there is a monad morphism 1+ Finl : H 21+ FH — 1+ F(H + E) and
hence a monad morphism [1+F'inl,e] : H+E — 1+ F(H+E). This map endows H + E with a 14+ Fo_-coalgebra
structure and hence there is a monad morphism H + E — T. Precomposition with the second inclusion gives
our candidate solution which is easily seen to make the relevant diagram commute.

We believe the elegance of the categorical formulation of an algebraic equation is matched by the simplicity
of the proof of the existence of a unique solution — in a full paper the details could be fleshed out but the
above sketch illustrates our viewpoint. Having obtained solutions for our monadic reformulation of algebraic
systems, we can specialise these results back to functors and to signatures. Let G : C — C be a functor
and H an F-coalgebraic monad. A functorial algebraic system over H consists of a natural transformation
e: G — 1+ F(H +Tf). The notion of a solution of a functorial algebraic system is as one would expect
although space prevents us from giving it. Solutions for a functorial algebraic system e : G — 1 + F(H + Tf)
then arise as solutions of the algebraic system e* : T — 1+ F(H +T§). Finally, if ¥ : N’ — C is a signature and
H an F-coalgebraic monad, then a algebraic system of equations over H consists of a natural transformation
e:X — (1+ F(H + T*"y)) oJ. Again, solutions are defined as expected and are generated as solutions of the
functorial algebraic system Lanje: Fs, — 1+ F(H + T%).

Applications: We have a number of reasons for solving generalised forms of algebraic equations. Firstly
we want to extend the categorical semantics of rewriting to cover infinite rewriting. Omne possibility is to
consider rewriting over algebraic terms which naturally leads to the idea of infinite rewrites being defined by
algebraic equations which entails working on something like the category Pre of preorders. Secondly, we wish
to understand compilation of functional programming languages such as Haskell where terms are stored as term
graphs so as to increase efficiency by the sharing of common subterms. In particular, recursive equations are
actually modelled as recursively defined term graphs which motivates algebraic equations whose right hand sides
are more general than terms. Finally, and more speculatively, we are interested in a coalgebraic treatment of
recursively defined geometric objects such as Sierpinskis Triangle and other fractal like objects.
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Generalizing Substitution
(Extended Abstract)

Tarmo Uustalu

Inst. of Cybernetics, Tallinn Techn. Univ.
Akadeemia tee 21, EE-12618 Tallinn, Estonia
tarmo@cs.ioc.ee

It is well known that, given an endofunctor H on a category C, the initial (A + H—)-algebras,
i.e., the algebras of wellfounded H-terms over different sets-of-variables A (if existing) give rise to
a monad with substitution as the extension operation (the free monad generated by H). That a
remarkably similar monad, which even enjoys the additional property of having “iterations” for
all guarded substitution rules, arises from the inverses of the final (A + H—)-coalgebras, i.e., the
algebras of non-wellfounded H-terms over different A (if existing) was only recently pointed out
by Moss [4] and Aczel, Addmek, Velebil [1], although the “down-to-earth” universal-algebra case
of H a polynomial endofunctor on Set was settled in the 1970s by Elgot and colleagues, see e.g.,
[2]. We consider the following generalization: if 7" is a endobifunctor on C such that the functors
T'(—,X) uniformly carry a monad structure, then the initial 7"'(A, —)-algebras (if existing) give
rise to a monad and the inverses of the final 7"(A, —)-coalgebras (if existing) yield an “iterative”
monad. Besides wellfounded and non-wellfounded terms, examples include Krsti¢, Launchbury
and Pavlovi¢ hyperfunctions [3] and finitely or potentially infinitely branching wellfounded or
non-wellfounded node-labelled trees. The following is a compressed technical summary.

“Iterative” monads Roughly following [1], we say that a monad (7',n,—*) on C is “iterative” for
a morphism f: A — T(A + B), if there is a unique morphism f': A — T B, denoted f, such that

fr=0fnplof

It is useful to note that this is equivalent to the unique existence of a morphism h : T(A+B) — T'B,
denoted f, such that

h:[hofanB]*
The conversions are: f = [ f,np|*, f=fof = fonarpoinlap.

Substitution in wellfounded and non-wellfounded term algebras Given any endofunctor H on a
category C with finite coproducts. Then, given any assignment of some (A+ H —)-algebra (T'A, a4)
to every object A, we also have, for every object A, morphisms nyg : A - TA, 74 : HTA— TA
defined by na = aa oinla,gra, TA = @a 0inra gra, with the property that [n4,7a] = aa. Say
that (T, ) is substitution-carrying, if, for every morphism f : A — T B, there exists a unique
morphism h : TA — T B, denoted f*, satisfying

A+ HTA™ g
idA—i-th lh
[f,mB]

A+HTB———TB

If (T, @) is substitution-carrying, then, immediately, (T',n, —*) is a monad. Two examples con-
cern us. The first constitutes the starting point of the category-theoretic approach to universal alge-
bra. If the initial (A+ H—)-algebra (the free H-algebra over A, or the algebra of usual, wellfounded
H-terms over A) exists for every A, then (T, a) = (u(A+ H—),ingpm_) is substitution-carrying.
The reason is that the characterizing equation of f* is, for any given morphism f : A — T'B, triv-
ially equivalent to the characterizing equation of the iterative extension of the (A + H—)-algebra
(T'B,[ f,78]). The resulting monad is called the free monad generated by H.
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The other example is that of Moss [4] and Aczel, Addmek, Velebil [1]. Their “substitution the-
orem” states that, if the final (A+ H—)-coalgebra (the coalgebra of non-wellfounded H-terms over
A) exists for every A, then (T, «) defined by (T'A,a4) = (v(4A + H—),outZiH_) is substitution-
carrying. This is smoothly proved by noting the equivalence for any f : A — T'B of the character-
izing equation of the primitive corecursive extension of the (B + H(— + T'B))-coalgebra

(T'A,[(iddg + Hinrra,TB) © agl o f,inrg geratrsy]e (ida +inlrarp)o 04;1)

to that of f*. The “solution theorem” states that the resulting monad (T',n, —*) is “iterative” for
all morphisms f : A — T'(A + B) which factor in the canonical way

f=[natpoinrap,Tayplop

through some morphism ¢ : A — B + HT(A + B) (which intuitively means that all guarded
substitution rules can be iterated). For a proof, one can show, e.g., the equivalence for any such f
of the characterizing equation of the coiterative extension of the (B + H —)-coalgebra

(T(A+ B),[[¢,inlg yrasn) ), ints urars) | © 0y p)
to the characterizing equation of f.

The generalization of this paper The monads resulting from substitution-carrying assignments of
an (A+ H—)-algebra to every object A are, by the explicitly defining and characterizing equations
of their constituent data, very similar to the monads that the object mappings 7'(—, X) given
by T'(A,X) = A+ HX carry uniformly in X. Indeed, setting 77147X =inlagx, TaA,x = inragx
and f°=[f, 8] (f : A= T'(B, X)), we get that (T"(—, X),n_ y,—°) is a monad for every X.
This observation leads to the questions: Is this a hint about some “causality”? Can it be used to
modularize the proofs of the statements above and to generalize them? The answer is: yes.

Say that a parametrized monad on a category C is a mapping 7" : |C| x C — C functorial in the
2nd argument together with a |C| x |C|-indexed family " of morphisms 7y y : A — T"(A, X) and an
operation —° taking every morphism f: A — T'(B, X) to a morphism f°:7T'(4,X) - T'(B, X)
such that (i) f° o'y x = f (f : A - T'(B, X)), (ii) 7'y x° = idro(ax), (i) (g° f)° = g° o °
(f:A—T'(B,X),g: B T'(C,X)), (v) T'(4,)ony x = fyy (€: X > Y), (v) T'(B,6)of =
(T'(B,&)o f)°oT(AE) (f: A= T'(B,X), ¢: X = Y). (A parametrized monad is essentially
just a functor from C to Monad(C), but it is more convenient to use an “uncurried” equivalent
notion here.)

Given now any parametrized monad (7",7', —°) on any category C. Then, given any assignment
of some T'(A, —)-algebra (T'A,a4) with a4 iso! to every object A, we also have, for every object
A, a morphism 74 : A — T'A defined by 74 = @ ° 1y 14, and, for every morphism f: A — T'B,
a morphism {f} : T"(A,TB) — TB defined by {f} = ap o (aj" o f)°, so that {na} = as. We
choose to say that (T, «) is substitution-carrying, if, for every f : A — T B, there is a unique
h:TA — TB, denoted f*, such that

TI(A,TA) " 7g

T’(A,h)l lh
, ()
T'(A,TB) —~ > TR

Clearly, the previous definition for the special case T'(A, X) = A+ HX is an instance of this new
more general definition. But, pleasantly, everything we stated for the special concept generalizes.
Moreover, the proofs become simpler, since the presence of a parametrized monad structure on T"
is used consciously, not proven over and over again without noticing.

! The iso requirement can be avoided at the cost of switching to a somewhat less intuitive setup of
definitions and statements.
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Firstly and foremostly, if (T, @) is substitution-carrying, then (7,7, —*) is a monad. Further, if
the initial 7T'(A,—)-algebra exists for every A, then (7,a) defined by (TA,a4)
= (u(T"(A, —)),ingr(a,—)) is substitution-carrying, with f* constructed, for any given morphism
f: A — TB, as the iterative extension of the T'(A, —)-algebra (T'B,{f}). If the final T"(A, —)-
coalgebra exists for every A, then (T, a) defined by (TA,au) = (V(T’(A,—)),out;,l(Aﬁ)) is
substitution-carrying, with f* equal for any f : A — T'B to the primitive corecursive extension of
the T"(B, — + T B)-coalgebra

(TA,(T'(B,inrparp)oag' o f)°oT'(Ainlrars)oay,’)

and, finally, the resulting monad (7, n,—*) is “iterative” for all morphisms f : A — T(A + B)
which factor in the canonical way

f=A{naypoinraplop

through some morphism ¢ : A — T'(B,T(A+B)), with f constructible as the coiterative extension
of the T'(B, —)-coalgebra

(T(A+ B),[¢.np rarp) ] ° aiip)
Ezxamples

1. If C has finite coproducts, then the parametrized monad structure on 7" given by 7"(A4, X) =
A+ HX where H : C — C yields a monad structure on 7' given by TA = u(A+ H-)
and TA = v(A + H-), meaning that T'A is the object of wellfounded resp. non-wellfounded
H-terms over A).

2. If C is cartesian closed, then the parametrized monad structure on 7" given by T"(4,X) =
HX = A where H : C°? — C yields a monad structure on T given by TA = p(H— = A)
and TA = v(H— = A). In the special case HX = X = E where E is a C-object, T'A is
the inductive resp. coinductive object of hyperfunctions from F to A in the sense of Krstié,
Launchbury and Pavlovi¢ [3].

3. If C has finite products, then the parametrized monad structure on 7" given by T'(4, X) =
A x U(HX) where H : ¢ — Mon(C) yields a monad structure on 7' given by TA =
(A x U(H=-)) and TA = v(A x U(H-)). If C has (finite) list objects, then, in the spe-
cial case HX = (ListX, nilx,appendy), T A is the object of wellfounded resp. non-wellfounded
A-labelled finitely branching trees, which may, e.g., be thought of as Bohm trees correspond-
ing to lambda-terms without lambdas (purely applicative terms). The substitution operation
delivered by our construction agrees with substitution as defined for Béhm trees.
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Abstract

Motivated by some examples from functional programming,
we propose a generalisation of the notion of trace to sym-
metric premonoidal categories and of Conway operators to
Freyd categories. We show that, in a Freyd category, these
notions are equivalent, generalising a well-known theorem of
Hasegawa and Hyland.

1 Introduction

Monads were introduced into computer science by Moggi
[18] as a structuring device in denotational semantics and
soon became a popular abstraction for writing actual pro-
grams, particularly for expressing and controlling side-
effects in ‘pure’ functional programming languages such as
Haskell [25, 17]. Power and Robinson subsequently intro-
duced premonotdal categories as a generalisation of Moggi’s
computational models [21], whilst Hughes developed arrows,
which are the equivalent programming abstraction [12].

Some uses of monads in functional programming seem
to call for a kind of recursion operator on computations for
which, informally, the recursion ‘only takes place over the
values’. For example, the Haskell Prelude defines the (inter-
nally implemented) ST and I0 monads for, respectively, po-
tentially state-manipulating and input/output-performing
computations. These come equipped with polymorphic
functions

fixST :: (a -> ST a) -> ST a
£fixI0 :: (a -> I0 a) -> I0 a

which allow computations to be recursively defined in terms
of the values they produce. For example, the following pro-
gram uses £ixI0' to extend a cunning cyclic programming
trick due to Bird [1] to the case of side-effecting computa-
tions. replacemin computes a tree in which every leaf of
the argument has been replaced by the minimum of all the
leaves. It does this in a single pass over the input and prints
out each leaf as it encounters it:?

1We should note that £ixI0 does not actually satisfy the axioms
we will propose. However, the basic pattern would remain the same,
though the code would be a little longer, if we had performed side-
effects involving state instead.

2The tilde ~ on the last line specifies ‘lazy’ pattern matching for the
pair (m,r). Haskell’s tuples are actually lifted products and pattern
matching is, by default, strict. Without the tilde the function would
diverge.

Martin Hyland
University of Cambridge

Department of Pure Mathematics
and Mathematical Statistics
M.Hyland@dpmms.cam.ac.uk

data Tree a = Leaf a | Branch (Tree a) (Tree a)

f :: Tree Int -> Int -> I0 (Int,Tree Int)
f (Leaf n) m = do print n
return (n, Leaf m)
f (Branch tl1 t2) m =
do (ml,rl) <- f t1m
(m2,r2) <- f t2 m
return (min ml m2, Branch rl r2)

replacemin :: Tree Int -> I0 (Int, Tree Int)
-- m is argument to and part of the result of f
replacemin t = £fixI0 (\ "(m,r) -> f t m)

As another (though still somewhat contrived) example,
consider modelling the heap of a fictitious pure Scheme-like
language at a fairly low level. One might interpret heap-
manipulating computations using a monad T which is an
instance of a type class something like this

class Monad T => HeapMonad T where

alloc :: (Int, Int) -> T Int
lookup :: Int -> T (Int,Int)
free ::Int > T ()

The intention is that alloc takes two integers and returns
a computation which finds a free cons cell in the heap, fills
it with those two integers and returns the (strictly positive)
address of the allocated cell. lookup takes an integer ad-
dress and returns the contents of that cons cell, whilst free
marks a particular address as available for future allocations.
Since the values in the car and cdr of cells can be used as
the addresses of other cells, we can intepret programs which
build data structures such as lists in the heap. What if
the language we are interpreting can create cyclic structures
(for example, closures for recursive functions)? At the ma-
chine level, cyclic structures are created by allocating cells
containing dummy values and then ‘tying the knot’ by over-
writing those dummy values with the addresses returned by
the allocator. Hence we could just provide destructive up-
date operations

Int -> Int > T ()
Int -> Int > T ()

setcar ::
setcdr ::

and use those to create cycles. However, if the interpreted
language itself does not include destructive assignment, but
only creates cycles using higher-level constructs, then adding
assignment operations to the monad breaks an abstraction
barrier. One solution is to add a recursion operation to the
monad
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fixT :: (a > T a) > T a

with a definition such that the following code creates a two-
element cyclic list (and returns the addresses of both cells):

onetwocycle :: T (int,int)
onetwocycle = fixT (\"(x,y)->
do { x’ <- alloc(l,y)
y’ <- alloc(2,x)
return (x’,y’)

1))

Observe that although the computation is recursively de-
fined, it should only perform the two allocation side-effects
once.

Many of the real uses of this kind of recursion have the
flavour of the previous example: they involve computations
which create cyclic structures for which the identity, order
of creation or multiplicity of creation of the objects in the
structure is significant. An interesting example arises in
work on using Haskell to model hardware. Early versions of
both Lava [2] and Hawk [16] specified circuits in a monadic
style, instantiating the monad differently for different ap-
plications (such simulating the circuit, generating a netlist
or interfacing with a theorem prover). Cyclic circuits (i.e.
those with feedback) were defined in essentially the style
used to define onetwocycle above. Lava has moved away
from that style, in part because it is syntactically awkward.?
Launchbury et al. [16] also noted that programming in a
monadic style with £ixT is awkward, and suggested extend-
ing Haskell’s do notation to allow recursive bindings. That
suggestion was followed up by Launchbury and Erkdk, who
proposed an axiomatisation of operators like fixT (which
they call mfix) and showed how the do notation can be
extended to allow recursive bindings in the case that the
underlying monad supports such an mfix operation [15].

Launchbury and Erkdk’s axiomatisation of mfix is partly
in terms of equations and partly in terms of inequations, in-
tended to be interpreted in the ‘usual’ (slightly informal)
concrete domain theoretic model of Haskell. One striking
feature of [15] is that it does not appear to build on any
of the large body of existing work on axiomatic/categorical
treatments of recursion, even those (such as [7]) which con-
sider fixed points in terms of monads. The authors cite
some of this work but state, quite correctly, that the non-
standard kind of recursion in which they are interested is
different from that covered in the literature. Although the
presence of a fixpoint object [7], for example, allows an op-
erator with the same type as mfix to be defined, it is not of
the kind we want.

From a categorical perspective, we seem to want a no-
tion of recursion or feedback on the Kleisli category of a
CCC with a strong monad. There is a special case of this
situation in which earlier work does provide an answer. Al-
though none of Launchbury and Erkok’s examples are of
commutative monads, in that case the Kleisli category will
be symmetric monoidal and Joyal, Street and Verity’s notion
of trace seems to fit the bill [14].

In the general case of a mnon-commutative monad,
however, the Kleisli category will only be symmetric
premonoidal. The work described here grew firstly from the
natural mathematical question of what the right definition

3Lava now uses a modified version of Haskell with ‘observable shar-
ing’: allowing new name generation as an implicit side-effect of every
expression and hence changing the equational theory of the language

(6]-

of traced premonoidal category might be, and secondly from
wondering whether an answer might provide a sensible cate-
gorical semantics for the kind of fixpoint operators described
in [15]. We give a natural, straightforward and well-behaved
answer to the first question, though it only accounts for a
rather special subset of the cases considered by Launchbury
and Erkok.

2 Background

2.1 Premonoidal Categories

For a careful definition of the notion of (symmetric) pre-
monoidal category and (symmetric) premonoidal functor,
see Power and Robinson’s paper [21]. Briefly, a premonoidal
category is a monoidal category except that the tensor prod-
uct ® need only be a functor in each of the two variables
separately. Thus if f : A - Band g : A - B in a
premonoidal category K then the two evident morphisms
AR A - B®B

1 fRA 1 B®g

fxg = AA =5 BA' —3 BB
fxg = AvA 2% AeB 2% Be B

are not generally equal.

We generally write I for the unit of the tensor in a
(pre)monoidal category, o for the symmetry if there is one,
and A, p, « for the natural isomorphisms

A IQRA—-A
p  ARI— A
a : (A®B)®C = A® (B®C)

However, since we have coherence theorems for (symmet-
ric) (pre)monoidal categories [21], we will usually elide the
structural isomorphisms.

Definition 2.1. A morphism f: A — B in a premonoidal
category K is central ifforallg: A" — B'in K fxg= fxg.
If at least one of f and g is central, then we may unambigu-
ously write f®g. The centre Z(K) of a premonoidal category
K is the momnoidal subcategory of K with the same objects
but only the central morphisms.

The inclusion functor Z(K) — K is a strict, identity-
on-objects premonoidal functor (and symmetric if K is). In
more recent work Power in particular has stressed the impor-
tance from the algebraic point of view in having an explicit
choice of centre. That is, one is interested in the situation
where one has a functor J : M — K from a specified (sym-
metric) monoidal subcategory of a (symmetric) premonoidal
K; J factors through Z(K), so this amounts to specifying a
particular subcategory of central morphisms. (For many re-
sults J does not even need to be faithful, but we do not
consider that generality here.) We call a J : M — K as
above a centred premonoidal category, but since this is our
preferred notion we usually drop the ‘centred’. In this con-
text, by central morphisms we shall mean the morphisms of
M. One should think of M as a category of values and K as
a category of possibly-effectful computations. An important
special case is the following:

Definition 2.2. A Freyd category [22] is specified by a
cartesian category C, a symmetric premonoidal category
K and an identity-on-objects strict symmetric premonoidal
functor J : C - K
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Note that morphisms in the specified centre of a Freyd
category are ‘pure’ not merely in the sense of commut-
ing with arbitrary effectful computations, but also in being
copyable and discardable.

Example 2.1. If T is a strong monad on a symmetric
monoidal category M, then the Kleisli category Mr is sym-
metric premonoidal and the canonical functor from M to My
is strict symmetric premonoidal. Thus in the case that M is
cartesian, we have a Freyd category. If the monad is com-
mutative, then My is symmetric monoidal and J : M — Mz
is strict symmetric monoidal.

2.2 Traces and Fixpoints

The notion of traced monoidal category was introduced in
[14]. The use of traces to interpret recursion in programiming
languages and the relationship between traces and fixpoints
have attracted much attention in recent years, beginning
with Hasegawa’s thesis [11]. Categorical axiomatisations of
fixpoint operators have been extensively studied, see [7, 19,
4] for example; a particularly crisp and up-to-date account
appears in [24].

Definition 2.3. A trace on a symmetric monoidal category
(M, ®,I, X\, p,,0) is a family of functions

trY 5 : M(A ® U, B®U) — M(A, B)
satisfying the following conditions

e Naturality in A (Left Tightening).
Iff:A®U—>B®U,g: A— A’ then

tra,s((g@U); f) = gitra w(f) : A= B

e Naturality in B (Right Tightening).
Iff: AU - B'®U, g: B — B then

tra s(f;(g®@U)) =trh p(f);g: A—> B

e Dinaturality (Sliding).
Iff:AQU -B®V,g:V —= U then

tras(f;(Bog) =tras(A®g);f): A> B
e Action (Vanishing). If f : A — B then
trap(pfip ) =f: A= B

andif f: AQ(U®V)—= B® (U®YV) then

trg%v(f) = trg,B(trX@)U,B@U(a; g 0171))

e Superposing. If f: AQU — B®U then

tréga,con(C® fat)
=Cotrhp(f) : C®¥A—-C®B

e Yanking. For all U, trf ,(ov,v) =U:U = U.

Monoidal categories provide a formal basis for reasoning
about many of the graphical ‘boxes and wires’ notations
used in computer science. The trace axioms are presented
graphically in Figure 1, though we do not consider the formal
semantics of such diagrams here.

Definition 2.4. A parameterized fizpoint operator on a
cartesian category C is a family of functions

()" C(A x U, U) = C(A, U)
satisfying
e Naturality. If f: Bx U — U and g: A — B then

gf'=(g=xUsNH AU
e Fixed point property. If f: A x U — U then
A fMf=fa-U

The above definition is rather weak. Well-behaved fix-
point operators typically satisfy other interesting conditions.

Definition 2.5. A Conway operator is a parameterized fix-
point operator which additionally satisfies

e Parameterized Dinaturality. If f : A xV — U and
g:AxU —V then

(A, (o, £ 0))s f = ((m )i HT - A= U
e Diagonal Property. If f: Ax U x U — U then

(AxAyH =N a-U

Parameterized dinaturality is easily seen to imply the
parameterized fixed point property and, in some concrete
categories of domains, is sufficient to characterize the least
fixed point operator uniquely [23]. Conway operators satisfy
various other useful identities, including the ‘Beki¢ prop-
erty’, which allows simultaneous fixed points to be reduced
to sequential ones.

There are also further ‘uniformity’ properties which a
fixpoint operator may have [24], but we shall not consider
those in the present paper.

An important theorem about traces and fixpoints is the
following, which is due (independently) to Hasegawa and to
Hyland, though its essential combinatorial content had been
observed earlier in a slightly different context [3, 5]:

Theorem 2.1 (Hasegawa, Hyland). To give a trace on a
cartesian category C is to give a Conway operator on C. O

3 Traces and Fixpoint Operators on Premonoidal
Categories

So, what is an appropriate generalisation of the notions of
trace and fixpoint operator to the premonoidal case? We
want definitions which make sense, have useful concrete in-
stances, give the monoidal versions as special cases and lead
to a generalisation of Theorem 2.1.

3.1 Symmetric Premonoidal Traces

We start by trying to generalise the definition of trace to a
centred symmetric premonoidal category J : M — K. Al-
though none of the conditions in Definition 2.3 are expressed
in terms of temsoring arbitrary morphisms (in which case
we’d certainly have to reexamine them), we cannot simply
leave the definition unchanged:
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Figure 1: Trace Axioms

Proposition 3.0.1. A symmetric premonoidal category
with a trace as defined in Definition 2.3 1is actually
monotdal. O

The key step in the proof of the previous Proposition uses
the Sliding axiom to commute the side-effects of two compu-
tations. This observation motivates the following definition:

Definition 3.1. A frace on a centred symmetric pre-
monoidal category J : M — K is is a family of functions

trh 5 K(A®U,BaU) - K(A, B)

satisfying the same conditions given in Definition 2.3 except
that the Sliding axiom is replaced by

e Premonoidal Sliding. If f : AQU — B®V and if
g:V = U is a central morphism then

tra5(f; (B®g) =trap(A®g);f): A= B

and we impose the further requirement

e Centre Preservation. If f: AU — B® U is central
then so is trX,B f:A— B.

Clearly, if J : M — K has a premonoidal trace on K the
restriction of that trace to M is a trace operator in the tra-
ditional sense of Definition 2.3. In particular, Definition 3.1
really is a generalisation of Definition 2.3.

Requiring the trace to preserve the distinguished centre
M is largely a matter of taste: we prefer to keep our equa-
tions algebraic. Even without the condition it is still easy
to see that the trace preserves Z(K):

Proposition 3.0.2. If f: AQU —» B®U is in Z(K) and
g:C — D then g x tr'y g(f) = g x try 5(f). O

It might also be remarked that the premonoidal sliding
condition appears somewhat asymmetric, since it requires
that g, rather than one of f and g, be central. However, a
little calculation shows that the symmetric case is a conse-
quence:

Proposition 3.0.3. Assume f: AQU — BQ®V is central
and g :V — U, then terB((A®g);f) = trgyB(f;B@)g). O

3.2 Symmetric Premonoidal Fixpoints

We now turn to generalising the notion of fixpoint operator
to the premonoidal case. Since some of the axioms involve
duplication and discarding, we will assume that we are work-
ing in a Freyd category J : C — K. We also use A, 71, (-, ),
etc. as shorthand notation for the lifting of the appropriate
operations from C to K (i.e. we elide uses of J). The nota-
tion (f, g) is ambiguous unless we specify the order in which
the components are computed, but we shall only use it in
the case one of the maps is central.

Definition 3.2. A parameterized fizpoint operator on a
Freyd category J : C — K is a family of functions

()" T KARU,U) > KA,U)
which satisfies

e Centre Preservation. If f : A® U — U is central then
sois ff: A—>U.
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e Naturality. If f: BQU — U and g : A — B then
g =(gaU);f) :A=U

e Central Fixed Point Property. If f : AQU — U is
central, then

Afhf=f:A->U

Just as in the cartesian case, this is the bare minimum
one might require of a fixpoint operator. We are interested in
rather stronger conditions, and propose the following as an
appropriate generalisation of Conway operators on cartesian
categories:

Definition 3.3. A parameterized fixpoint operator (-)* on
a Freyd category is a Conway operator if it satisfies the
following conditions:

1. Parallel Property. f f : AQU - U andg: BQV =V
with one of f and g central then
(ARoeV;fog) =f®g : AB->UQV
2. Withering Property. If f: AQU — BQU and g: B —
C then

(1, m3); £ gRU)* = ({m1,m3); £) 590U : A— CQU

3. Diagonal Property. If f: AU @ U — U then
(ARA)f) =) :A=U

The axioms of a premonoidal Conway operator are shown
graphically in Figure 3.2, where we follow Jeffrey [13] in
using a heavy line to indicate the sequencing of effects in K
(and that line runs outside those boxes intended to represent
central morphisms). The diagonal property is essentially the
same as in the cartesian case, but the parallel and withering
properties are more unusual.

There is a natural generalization of the dinaturality con-
dition to Freyd categories:

Definition 3.4. A parameterized fixpoint operator (-)* on
a Freyd category satisfies parameterized central dinaturality
if, given f: AQU -V and g: A®V — U with g central

((Wl’f>;g)* = <A7 (<7r17g>; f)*>;g

As in the cartesian case, parameterized central dinatu-
rality clearly implies the central fixed point property. But
in the case of Freyd categories, the dinaturality condition
does not seem sufficient (along with the diagonal property)
to establish the equivalence between traces and Conway op-
erators, which is what motivated our parallel and withering
axioms. These do imply dinaturality, however:

Proposition 3.0.4. A Conway operator on a Freyd cate-
gory satisfies parameterized central dinaturality. O

Furthermore, our definition of a Conway operator on a
Freyd category does generalise the standard one:

Proposition 3.0.5. Definition 3.3 is equivalent to Defini-
tion 2.5 in the case that the category is cartesian. O

3.3 Relating Fixpoints and Traces in Freyd Cate-
gories

We now show our main result: in a Freyd category, to give
a premonoidal trace is equivalent to giving a premonoidal
Conway operator.

Theorem 3.1. Let J : C — K be a Freyd category such that
K is traced, as in Definition 3.1. Then the operation

()" KA®UU) = K(A,U)
defined by, for f: AQU — U:

fr=ulu(f;A)
is a Conway operator in the sense of Definition 3.3. O

Remark 3.1. Hasegawa has also given a construction for
a fixpoint operator from a trace in the special case of the
Kleisli category of a commutative strong monad on a carte-
sian category (a case in which the premonoidal structure
is monoidal) [11, Theorem 7.2.1]. However, restricting our
construction to this special case does not generally give the
same fixpoint operator. Hasegawa’s construction uses the
adjunction in an essential way and repeats side-effects.

Theorem 3.2. Let J : C — K be a Freyd category where
K has a Conway operator (-)* as defined in Definition 3.3.
Then the operation
trh 5(1) : KA ®U,B®U) - K(A, B)
defined by, for f: AU - BU
tr'a,5(f) = ((m1,m3); )75 m

is a premonoidal trace in the sense of Definition 3.1. O

: A—> B

Proposition 3.2.1. The constructions of trace from Con-
way operator and of Conway operator from trace given in
Theorems 3.2 and 3.1 respectively are mutually inverse. [

Thus we have succeeded in establishing a premonoidal
generalization of Theorem 2.1.

Remark 3.2. Starting from a fixpoint operator, there is
another candidate for the definition of a trace, viz

tr' (f) = (A, (f;m)"); f;m : A— B

where f: AQU — B®U. If K is monoidal this is the same
as the construction used in Theorem 3.2, but in the general
premonoidal case they are different, and tr’ does not seem
to have useful properties.

4 Examples

4.1 Monoids

Let M be a traced symmetric monoidal category as in Def-
inition 2.3 and (M,p : M @ M — M,n : I — M) be a
monoid in M. Let K be the Kleisli category of the monad
TA=M® Aon M, so K(A, B) =M(A, M ® B). Then the
tensor on M lifts so that J : M — K is a centred symmetric
premonoidal category (it is monoidal iff M is a commutative
monoid).
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Figure 2: Premonoidal Conway Axioms

Proposition 4.0.2. In the above situation, the operation
tra 5 K(A®U,B®U) — K(A, B)

defined by tArZ,B(f) = t1% mep(f) is a premonoidal trace.
O

Notions of computation based on monoids are fairly com-
mon. Commutative monoids such as the natural numbers
under addition can be used for modelling resource usage (e.g.
timed computations) whereas non-commutative monoids
model, for example, side-effecting output. In Haskell syntax,
the signature could look like this:

class Monoid m where
mult :: (m,m) -> m
unit :: m
newtype Cross m a = Cross (m,a) deriving Show
instance Monoid m => Monad (Cross m) where
return a = Cross (unit,a)
Cross(m,a) >>= f = let Cross(m’,b) = f a
in Cross(mult (m,m’), b)

instance Monoid [a] where
mult (s,t) = s ++ t
unit = []

-- command which writes to the output
output s = Cross(s,())

If we then apply our construction of a premonoidal Conway
operator from the trace defined in Proposition 4.0.2 then

(=]

we end up with an mfix operation of the type described by
Launchbury and Erkok:

instance Monoid m => MonadRec (Cross m) where
mfix f = let Cross(m,a) = f a
in Cross(m,a)

And this does have the expected behaviour:

nats_output =
mfix (\ys -> do output "first "
output "second."
return (0 : map succ ys))

> nats_output
Cross ("first second.",[0,1,2,3,4,5,6,7,8,9,...

The two side effects have happened once only and in the
order specified.

4.2 State

Let M be a traced symmetric monoidal category, S be an
object of M and K be the category with the same objects
as M and K(A, B) = M(S ® A,S ® B) with the evident
composition. If M is closed then K is equivalent to the Kleisli
category of the state monad TA =S - S® A. Then J :
M — K is premonoidal.

Proposition 4.0.3. In the above situation, the operation
frap: K(A®U,B®U) - KA, B)

defined by tArZ,B(f) = tr$ga sop(f) is a premonoidal trace.
|
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Again, the derived fixed point operator on the Kleisli
category is easily defined in Haskell:

newtype State s a = State (s -> (s,a))

instance Monad (State s) where
return a = State (\s ->(s,a))

State m >>= f = State (\s -> let (s’,a) =m s
State m’ = f a
in m’ s’)

instance MonadRec (State s) where
mfix f = State (\s -> let State m = f a
(s’,a) =m s

in (s’,a))

Note how the final value, a is recursively defined, but the
final state s’ is not — operationally, each time we go around
the loop, the initial state is ‘snapped back’ to s.

5 Related Work

Compared with Launchbury and Erkok’s work on axioma-
tising mfix, our definitions and results are in a rather more
general setting, but account for rather fewer concrete exam-
ples. The axioms in [15] are almost identical to our definition
of a premonoidal Conway operator except that they weaken
some of our equations to inequations (interpreted in a con-
crete category of domains), add a strictness condition on one
and regard some as additional properties which may hold in
some cases (i.e. not part of the basic definition of what they
call a ‘recursive monad’). These weaker conditions admit
definitions of mfix for monads such as Maybe (1 + (-)), lazy
lists and Haskell’s I0 monad [8] which do not have Conway
operators satisfying our conditions.

Paterson has designed a convenient syntax for program-
ming with Hughes’s arrows (just as Haskell adds do to sim-
plify programming with monads). Paterson’s recent paper
[20] gives axioms for an ArrowLoop operation which are the
same as our definition of a premonoidal trace; our results
thus prove an equivalence between ArrowLoop and a partic-
ular (newly identified) class of mfixs.

Jeffrey [13] has also considered a variant of traces in a
premonoidal setting, though his construction is rather differ-
ent from ours: he considers a partial trace (only applicable
to certain maps) on the category of values rather than on
that of computations.

Friedman and Sabry have also recently looked at defining
an mfix operation [9], though their approach is rather dif-
ferent from the axiomatic one which we and the others cited
here have taken. They view the ability to define computa-
tions recursively as an additional effect and give a ‘monad
transformer’ which adds a state-based updating implemen-
tation of recursion to an arbitrary monad. Lifting the oper-
ations of the underlying monad to the new one is left to the
programmer (and can generally be done in different ways).

6 Conclusions and Further Work

We have formulated and proved a natural generalisation of
the theorem relating traces and Conway operators to the
case of premonoidal categories. This has applications to
the semantics of some non-standard recursion and feedback
operations on computations which have been found useful
in functional programming.

It would be interesting to see if one could explain Launch-
bury and Erkok’s weaker axiomatisation in a more general
setting. The natural thing to try here is to be more explicit
about the presence of an abstract lifting monad, along the
lines of [10]. This may also help establish a connection with
the partial trace operation used by Jeffrey [13]. We would
also like to have some more examples.

We are in the process of investigating the premonoidal
version of the ‘geometry of interaction’ construction, which
traditionally embeds a traced monoidal category into a com-
pact closed one. This is interesting from a mathematical
view and may also have some connection to the building of
layered protocol stacks from stateful components.
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Kleene Through the Process Algebraic Glass
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Process algebras are prototype specification languages for reactive systems.
These languages usually consist of a collection of operators to build new pro-
cesses from existing ones, and of facilities for the description of recursive be-
haviours, e.g., terms of the form px. t to denote some distinguished solution of
the equation x = t. Alternatively, one may use variations on the Kleene star
operation—first introduced in [4]—to define iterative processes in a purely alge-
braic syntax. The latter approach has been advocated by Bergstra, Bethke and
Ponse in [1, 2], and subsequently followed by several authors, notably Fokkink
and his co-workers.

My aim in this talk will be to present a survey of some of the results that
I have contributed with Wan Fokkink and Anna Ing6lfsdéttir to the study of
semantic theories of process algebras incorporating variations on the Kleene star
operation. In particular, I shall focus on variations on the language of Basic
Process Algebra [3] with the original binary Kleene star. Starting from basic
principles, I shall review results, both of a positive and a negative nature, on
the equational axiomatization of behavioural equivalences over variations on
this language, and mention some small, but hopefully interesting, results on the
expressive power of variations on the binary Kleene star modulo bisimulation
equivalence [5]—the prime example in the menagerie of behavioural equivalences
between reactive systems that have been considered in the literature.
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A NOTE ON GLOBAL INDUCTION MECHANISMS IN A pu-CALCULUS
WITH EXPLICIT APPROXIMATIONS

CHRISTOPH SPRENGER AND MADS DAM

1. INTRODUCTION

The first-order u-calculus 7] provides a useful setting for semi-automatic program verification.
It is expressive enough to encode, from the bottom up, a range of program logics (e.g. LTL, CTL,
CTL*, Hoare Logic) as well as process calculi and programming languages including their data
types and operational semantics. A framework based on this idea is described in [4] and has been
applied to a substantial part of a real concurrent programming language Erlang in the Erlang
Verification Tool [1].

A key aspect in the design of such a framework is proof search, in particular the handling of
fixed point formulas. The standard approach, Park’s fixed point induction rule (cf. [5]), is not
suitable for proof search in practice. An alternative is to admit cyclic proof structures (cf. [6, 10, 3])
and look for sound discharge conditions which will ensure the well-foundedness of the inductive
reasoning. In this paper, we study such discharge conditions in the context of a Gentzen-style
proof system for the first-order p-calculus, which is a variant of previous systems [3, 4, 8, 9]. In
particular, it shares with [3, 4, 8] the technique, first proposed for the modal p-calculus in [3],
of introducing explicit approximation ordinal variables and ordering constraints between them
into the proof system. Discharge conditions then rely on these ordering constraints. The use
of approximation ordinals considerably simplifies earlier treatments (cf. [2]). A simple semantic
condition was proposed in [3] expressing in a natural way the requirement of well-foundedness of
all inductive reasoning. Due to its semantical nature it is not suitable for the purpose of practical
proof. However, it serves as a useful reference to which other, more syntactical conditions may be
compared.

Previous syntactic discharge conditions [3, 4, 8] turn out to be strictly stronger than the semantic
condition. The main contribution of the present paper is the formulation of a syntactic condition
that precisely matches the semantic one. We introduce ¢races which are non-increasing (w.r.t.
the ordering constraints) sequences of dependent ordinal variables running along a path in the
proof structure. They can be seen as a generalisation of the p- and v-traces in [6] to the setting
of explicit approximants. The characterisation result is then obtained by introducing the notion
of progress for traces and by establishing its close correspondence with the semantic notion of
well-foundedness. For practical application we then give an automata-theoretic formulation of our
discharge condition in terms of an inclusion of the languages recognised by two Biichi automata.

Finally, we remark that this work is part of a larger programme aiming at clarifying the relation
between the global, lazy induction mechanism used here and an eager induction discipline as
implemented in a local proof rule for well-founded induction on the ordinals.

2. LoGIc

The logic we consider augments first-order logic with two fixed point operators, a standard and
an approximated one parametrised by an ordinal variable. Formulas ¢ and abstractions ® x of the
p-calculus over a first-order signature X are inductively defined as follows

pu=t=t|-¢|p Vs |Iw.d| Px(7) and Oy =X | pX(T).¢ | uW*X(T).¢
where ¢ ranges over Y-terms, x over individual variables, x over ordinal variables and X over
predicate variables. Each abstraction ® x has the arity of X which is required to match the lengths
of the vectors T and t of individual variables and terms, respectively. Fixed point abstraction

formation is subject to the usual syntactic monotonicity condition.
1
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A model M is a pair (A, p) where A is a first-order X-structure with support set A and p is
an A-environment interpreting each variable according to its type. Formulas are interpreted as
elements of the two-point lattice 2 = {0, 1} and n-ary abstractions as elements of Pred(A") = 24"
the lattice n-ary predicates over A under the pointwise ordering. For first-order formulas the
semantics is as expected. For abstractions and their application we have

X170 = p(X) X @)-0ll;' = n¥ || X@)-gll)' = " ex @)l = [12x]l; ()
where ¥ = )\P.)\E.quH:f‘[P/X /7 ; Pred(A™) — Pred(A™), pu¥ is the least fixed point of the (mono-
tone) function ¥ and p?(®) ¥ is the approximation p(x) of p¥, both defined as usual.

3. PROOF RULES

Sequents of the proof system are of the form I' Fp A, where I" and A are finite multi-sets of u-
calculus formulas and O = (||, <) is a strict partial order on a finite set |O| of ordinal variables.
Following [8] the latter is used to record constraints between ordinal variables. An environment p
respects O if p(1) < p(k) whenever ¢ <p k. A sequent I' Fo A is walid if the formula AT — \/ A
is satisfied in all models M = (A4, p), where p respects O.

The proof system extends the standard Gentzen-style rules for first-order logic with the following
rules for the fixed point operators (we omit an ordinal constraint strengthening rule [8] for brevity):

L (n"X(@).9)(F) For A

) EELBADIOS  kgl0] 0'=(0]U k). <o)
I'kFo (i)[,U*X(f)d)/Xv f/f],A
N D E KGR
ey DAEIDBRITATOR g j0], 0/ = (01U ), (<0 V(. MN)
R LrodwX@e/X HmA

['to (nX(Z).9)(F), A

4. DISCHARGE CONDITIONS

A derivation may be stopped at a leaf node IV if N is a substitution instance of some node M
in the derivation tree. It is worth noting that M need not lie on the path from the root node to N.
We write N(I' Fo A) to mean that NN is labeled by the sequent I' Fo A. Given a node M(I' Fp A)
and a leaf N(I'" ko A") of a derivation tree and a substitution o, we say that R = (M, N,0) is a
repeat, if I'c C TV, Ac C A’ and Oc C @', where o is order-preserving in the latter inclusion. We
assume that o maps predicate variables to predicate variables. IV is called a repeat node and M its
companion. A pre-proof P = (D,R) for I' Fp A is a derivation tree D whose root node is labeled
by I' Fo A together with a set of repeats R such that each non-axiom leaf of D belongs to exactly
one repeat in R. A path @ = Ng---N;--- of P is a (finite or infinite) sequence of nodes of D
starting in the root Ny of D such that for any two successive nodes N; and N;4q either (N;, Nit1)
is an edge of D or there is a substitution ¢ such that (N;11,N;,0) € R is a repeat.

Intuitively, each repeat should correspond to the application of an induction hypothesis, but
we need to make sure that the inductive reasoning embodied in each individual repeat and their
combinations is indeed well-founded. This requires a (necessarily global) discharge condition that
identifies the legal proofs. We present three such conditions, the semantical one from [3], a new
syntactical condition as well as its automata-theoretic formulation and establish their equivalence.

Let P = (D, R) be a pre-proof, A a T-structure and II = (Ng,po)--- (Ni, pi) - - - a (finite or
infinite) sequence of pairs of nodes N;(I'; Fo, A;) of D and A-environments p;. Then II is called
a run of P if Ny is the root of D, each p; respects O; and for each pair (N;, N;y1) either

(1) (IVi;, Niy1) is an edge of D and p;11, p; agree on free variables common to N; and N;4q, or
(2) (Nig1,N;,0) € R is a repeat and p;4+1 = p; 0 0.
The run II is said to follow the path # = Ny -+ N; - - -. A pre-proof P for I' o A satisfies discharge

condition (R-DC) if all runs of P are finite, in which case P is called a proof for I' Fp A.
2
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Theorem 1. (Soundness) If there is a proof for [ Fo A then ' Fo A is valid.

As condition (R-DC) captures the well-foundedness of the reasoning in a pre-proof in a very
natural way, it serves as our reference discharge condition. Due to its semantical nature it is, how-
ever, hardly usable in practical proofs and we therefore introduce an alternative, purely syntactical,
discharge condition.

Let 7 = (No,wp) - - - (N;,w;) - - - be a (finite or infinite) sequence of pairs of nodes N;(I'; Fo, A;)
of D and non-empty words w; over the alphabet of ordinal variables. Then 7 is called a trace of
P if wi(j) € |O;] and w;(j + 1) <o, wi(j) for all i and j and for each pair (N;, N;41) either

(1) (i, Niy1) is an edge of D and w;(*) = w;4+1(0), or

(2) (Niy1,N;,0) is arepeat in R and w;(x) = (w41 (0)),
where w;(*) denotes the last letter of w;. Intuitively, a trace 7 records a sequence of vertical
dependencies (w; is a descending chain in O;) and horizontal dependencies (linking O; and O; 41
as in (1), (2)) between ordinal variables. So 7 roughly associates a non-increasing chain of ordinal
variables with (a suffix of) a path. We say that a trace 7 progresses at position @ if |w;| > 1 and
that 7 is progressive if it progresses at infinitely many positions. A path 7 of P is said to be
progressive if there is a progressive trace 7 = (Ng, wo)(N1,w;) - - - such that NgNy - -+ is a suffix of
7. Our syntactic discharge condition (T-DC) requires that all infinite paths of P are progressive.
If an infinite path 7 is progressive, as witnessed by some 7, then it cannot be followed by an infinite
run, as respecting the dependencies in 7 would lead to an infinite decreasing chain of ordinals.
Conversely, 7 can be extended to an infinite run if there is no progressive trace following 7. Thus,

Theorem 2. A pre-proof satisfies (R-DC) if and only if it satisfies (T-DC).

We now turn to an automata-theoretic formulation of these conditions, which is more suitable
for the practical application in a proof tool. Let P = (D,R) be a pre-proof. Since O; C O;11
whenever (N;, N;y1) is an edge of D, we may without loss of generality for condition (T-DC) restrict
our attention to the normal traces of P making progress at most at repeat nodes. Based on this
observation we construct two Biichi automata over the alphabet R. Automaton B; recognises
sequences of repeats that are traversed on paths of P. Automaton By recognises sequences of
repeats that are from some point on connected through the ordinal variables they preserve. More
precisely, let s = RgR; --- be a sequence of repeats with R; = (M;, N;,0;) and N;(T; Fo, A;).
Then r = Oj(lﬁj, Rj, Iij+1)(l€j+1,Rj+1, Iij+2)(l€j+2,Rj+2, Klj+3) -« 1is a run of B2 on s lf] Z 0 and
0i(kit1) <o, K for all i > j. It is accepting if 0;(k;+1) <o, k; for infinitely many i. Note that if
u € L(B;) then r induces a normal trace, which is progressive precisely if 7 is accepting. Hence,

Theorem 3. A pre-proof satisfies (T-DC) if and only if L(B1) C L(Bs).
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Abstract. We study the model checking problem for finitely-generated
one-way infinite synchronous/asynchronous traces for fusion of propo-
sitional logics of knowledge, common knowledge, branching time and
fixpoint calculus.

1 Introduction and Motivation

Program logics are modal logics for reasoning about programs and systems.
Traditionally they comprise dynamic logics, temporal logics and their variants
with explicit fixpoints [14, 8]. A more recent addition to the family of the program
logics is logic of knowledge [9].

At the same time the computer science community begins to understand
better the importance of study of combined propositional program logics on
traces. For example, several logics of this kind have been studied in the static
analysis context [7]. The most powerful logic of these new logics is a so called

reversible fixpoint calculus ((EC) This calculus can be considered as a ”fusion”
of a propositional fixpoint logic and a propositional logic of knowledge for the
single agent. It is defined on two-way backward/forward (past/future) infinite
traces.

We study the model checking problem for fusion of propositional logics of
knowledge with propositional dynamic and state-based temporal logics extended

by fixpoints. But (in contrast to (EC) we exploit one-way (future) traces. Nev-
ertheless we hope, that our research, suggested technique, and presented results
are a step towards a full-scale study of the reversible fixpoint calculus (EC.

In particular we examine the model checking problem for combinations of

(1) Elementary Propositional Dynamic Logic (EPDL),
(2) branching time Computation Tree Logic extended by actions (Act-CTL),
(3) the propositional p-Calculus (uC)

with

(a) Propositional Logic of Knowledge for n agents (PLK,,),
(b) Propositional Logic of Common Knowledge for n agents (PLC,,).
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We are especially interested in two extreme cases: Forgetful Asynchronous
finite systems (FAS) vs. Synchronous finite systems with Perfect Recall (PRS).
“Trace-based” means that possible worlds incorporate sequences of states, ac-
tions, etc. “Perfect recall” means that in every possible the history of the world
is represented, while “forgetful” means that the information of this kind is not
available in any world. “Synchronous” means that traces of different lengths can
be distinguished, while “asynchronous” means that some traces with different
lengths can be indistinguishable.

An importance of study combined logics in a framework of trace-based se-
mantics in synchronous perfect recall settings rely upon characteristic of them
as logics of knowledge acquisition. Let us illustrate this by the following False
Coin Puzzle! FCP(N,M):

A set of coins consists of (N + 1) enumerated coins. The last coin is
valid. A single coin with a number in [1..V] is false, all other coins with
numbers in [1..NV] are valid. All valid coins have one and the same weight
while the false coin has a different weight. Is it possible to identify a false
coin by balancing coins M times at most?

Let us refer a person who has to solve the problem as an agent. The agent
knows neither a number in [1..N] of a false coin, nor whether it is lighter or
heavier than valid coins. The agent can make balancing queries and read balanc-
ing results after every query. A balancing query by g) is an action. It consists in
balancing two disjoint sets L and R of coins in [1..N + 1] on the left and on the
right pan. There are three possible balancing results: <, >, and =, which mean
that the left pan is lighter, heavier than or equal to the right pan respectively.
Of course, there are initial states (marked by ini) which represent a situation in
which no query has been done.

Let us summarize. The agent acts in a space [1..N] x {l,h} x {<, >, =,ini}.
His/her admissible actions for a moving between states are all bz g) for disjoint
L,R C [1.N + 1] with |L| = |R|. The agent has information about the last
balancing only. The agent should acquire knowledge about the number of the
false coin from a sequence which begins from the initial state and then consists
of M queries and M corresponding results. The combination of Propositional
Dynamic Logic and Propositional Logic of Knowledge seems to be a very natural
framework for expressing this quest:

(U“,b(LR))...(Ub(L,R))< \/ K (a false coin number is f)),

~ 1.N
M times rel ]

where all non-deterministic choices U, . range over all L, R C [1..N + 1] such that
LNR=0and |L| =|R|.

It is natural to assume that the agent remembers a sequence of balancing
queries and a sequence of corresponding balancing results. Moreover, the agent

! A knowledge-based analysis of muddy children puzzle, synchronous attack and
Byzantine agreement is very popular in literature on logic of knowledge, ex., [9].
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false coin
number is 1

——  b{1.2},{5,6} bi1y {23

——  b{1.2},{5,6} b{1y, {23 fal :
2 Lini | 1% —

——  b{1,2},{5.6} bi1y {23

false coin num-
ber is in [1..N]

false coin
number is 5

[E [ 1

~ v

~-
false coin is lighter with number 1 or 2,
xor it is heavier with number 5

-~

knowledge of false coin number

Fig. 1. Evolving knowledge in synchronous system with perfect recall

can not distinguish two sequences of states iff he/she made equal sequences of
queries and read equal results along these sequences. We would like to refer this
property as a synchronous perfect recall hypothesis. In general, a synchronous
perfect recall hypothesis is a ability of an agent to remember sequences of ex-
ecuted actions and corresponding distinguishing items of information for inter-
mediate states, and to distinguish sequences of states in accordance with these
“memories”. An agent knows some fact iff this fact holds in all indistinguish-
able situations. Fig. 1 illustrates knowledge evolution and acquisition under an
assumption of synchronous prefect recall for FCP(5, 2).

The rest of the paper is organized as follows. A survey of background logics
is presented in the section 2. Combined logics are introduced in the section 3.
The expressive power, the model checking problem and decidability for these
logics are examined (in the general settings) in the section 3 too. In the section
4 forgetful asynchronous systems are defined and algorithmic properties of the
combined logics are investigated in forgetful asynchronous settings. In the section
5 we determine synchronous systems with perfect recall and study simulation
power of synchronous perfect recall semantics. The model checking problem in
synchronous perfect recall settings is explored in the section 6. In the section 7
we refine time bounds for the model checking problem for branching time logic
of knowledge with actions (Act-CTL-K) in the synchronous environments with
perfect recall, using techniques with k-trees. Related papers and research topics
are discussed in the concluding section 8.

2 Background Logics

All logics which we are going to discuss are some propositional polymodal logics.
Let {true, false} be boolean constants, Prp and Rlt be disjoint finite alphabets
of propositional variables and relational symbols. Formulae of our logics are
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constructed from boolean constants, propositional variables, and connectives?
-, A, V and necessity/eventuality modalities associated with relation symbols:
if r € RIt and ¢ is a formula then (D¢) and (©¢) are formulae®. Semantics
of logics is defined in Kripke structures. A model M is a triple (Das, Ing, Var)
where the domain Dj; is a nonempty set of possible worlds, the interpretation
Iy maps relation symbols into binary relations on Dy, and the valuation Vi,
maps propositional variables into subsets of D,;. For every model M and every
formula ¢, M(¢) is the set of all possible worlds which satisfy the formula ¢ in
the model M and let us write w |=ps ¢ iff w € M(¢). For propositional variables
we have: w = p iff w € Vg (p). For boolean constants and connectives |=ps is
defined in the standard way. Semantics of modalities is:

—w Epm (©p) iff (w,w') € Ing(r) and w' =pr ¢ for some w',
— w Ep (B9) iff (w,w') € In(r) implies w' |=pr ¢ for every w'.

A very useful general notion is abstraction for polymodal logics. Let @ be a set
of formulae, My = (I, D) and My = (I, D5) be two models and g : D1 — Dy
be a mapping. The model M, is called an abstraction * of the model M; with
respect to formulae in @ iff for every formula ¢ € @ and every state s € D; the
following fact holds: s =1 ¢ < g(s) =2 ¢.

A particular example of propositional polymodal logics is Propositional Logic
of Knowledge for n agents (PLK,,, n > 1) [9]. In this framework a special termi-
nology, a notation and models are used. The alphabet of relational symbols con-
sists of agents [1..n] (an integer number n > 0). Another notation for modalities
is adopted: if i € [1..n] and ¢ is a formula then (K;¢) and (S;¢) are formulae,
read as “agent ¢ knows” and “agent i supposes”, instead of (& ¢) and (& ¢).
Agents are interpreted in models by equivalence relations: Iy (i) is a symmet-
ric, reflexive, and transitive binary relation for every i € [1..n] and every model
M = (D, I, Var). Every model M is denoted as (D, ~ <, Vi) instead of
(D, I, Var) with In (i) =~ for every i € [1..n].

Common knowledge of several agents is a very important notion for dis-
tributed systems [9]. Let us define Propositional Logic with Common knowledge
for n agents (PLC,,, n > 1). This time the alphabet of relational symbols con-
sists of sets of agents 211! (an integer number n > 0). Another notation for
modalities is adopted: if G C [1..n] and ¢ is a formula then (Cg¢) and (Jg¢)
are formulae, read as “¢ is common knowledge of agents in G” and “¢ is joint
hypothesis of agents in G”, instead of @¢ and ©¢. Agents are interpreted in
models by equivalence relations ~, LR (as in PLK,,) and groups of agents are
also interpreted by equivalence relations: I, (G) is a reflexive-transitive closure

(UieG IM(i)) for every G C [1..n] and every model M = (Dys, Ins, Var). Now
every model M is denoted as (DM,rL, .. ~, Vi) instead of (Dyy, I, Vi) with
In (i) =~ for every i € [1..n].

2  and ¢ are admissible too but as standard abbreviations only
% which are read as “box/diamond r ¢” or “after r always/sometimes ¢” respectively
1 g is called an abstraction mapping in this case.
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Elementary Propositional Dynamic Logic (EPDL) [11] is another well-known
particular propositional polymodal logic. This time the alphabet of relational
symbols consists of action symbols Act. Another notation for modalities is adopt-
ed: if a € Act and ¢ is a formula then ([a]¢) and ((a)¢) are formulae, read
as “after a always ¢” and ”after a sometimes ¢”, instead of (E¢) and (@¢)
respectively. But in contrast to PLK, no restriction on relations in models is
imposed.

Another propositional polymodal logic, which we would like to define, is the
basic propositional branching time temporal logic Computational Tree Logic
(CTL) [8,3,5] extended by action symbols, which is referred as CTL with ac-
tions (Act-CTL). Syntax of Act-CTL exploits special constructors associated
with action symbols: if @ € Act, ¢ and ¢ are formulae, then (AX%¢), (EX“¢),
(AG“¢), (AF"¢), (EG"¢), (EF*¢), (ApU%), and (E¢pU*))> are formulae
too. Semantics of these formulae coincides with semantics of CTL formulae, but
a-trace are used instead of next-trace.

The propositional p-Calculus (uC) [13,14] is an extension of EPDL by fix-
points. Syntax of uC expands EPDL syntax: if p € Prp and ¢ is a formula
with positive instances® of p, then (up.¢) and (vp.¢) are formulae, read as
“mu/nu p ¢’ and “the least/greatest fixpoint p of ¢” respectively. Seman-
tics of p and v is defined in the following way. For every model M, every
set S C Dy, every p € Prp and every formula ¢ without negative instances
of p, Mg, is a model which agrees with A everywhere but Vis(p) = S and
AS. Mg/p(#) : S+ Mg/p(¢) is a monotonous non-decreasing mapping on 20
In accordance with Tarski-Knaster theorem [20], this function has the least and
the greatest fixed points (with respect to set inclusion C): u(AS. Mg,,(4)) and
v(AS. Mg/p(¢)). In these settings

— w =pr (pp-¢) ff w e p(AS. Mg, (4)) (or iff w € S for every S C Mg/, (¢)),
— w = (vp.g) iff w e v(AS. Mg/p(¢)) (or iff w € S for some S 2 Mg,,(6)).

3 Algorithmic Problems for Combined Logics

We are going to define a combined Propositional Logic with fixpoints and Com-
mon knowledge (uPLC). Let [1..n] be a set of agents (n > 0), and Act be a finite
alphabet of action symbols. Syntax of this logic admits all knowledge modalities
Cg, and Jg for G C [1..n], all action modalities [a] and (a) for a € Act, all
fixpoints up and vp for p € Prp (which are applicable to formulae with non-
negative instances of p). Semantics is defined in terms of satisfiability and is a
combination of formal semantics for 4pC and PLC. Models for this combined logic
are called environments (it is the single terminology specifics). An environment

is a tuple £ = (DE,mla,.. ~,Ip,Vg) such that (DE,L,.. ~,Vg) is a model for

5 A is read as “for all futures”, E — as “for some futures”, X — as “next time”, G —
as “always”, F — as “sometime”, U — as “until”, and a sup-index ¢ is read as “in
a-run”

% i.e., in range of even amount of negations (otherwise it is negative instance)
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PLC,, and (Dg, Ig,Vg) is a model for uC. For every environment E and every
formula ¢, E(¢) is the set of all possible worlds which satisfy formula ¢ in E. For
every environment E, every possible world w and every formula ¢ let us write
w g ¢ iff we E(¢). Other combined logics EPDL-K, EPDL-C, Act-CTL-K,
Act-CTL-C and pPLK can be defined in the same way.

Proposition 1. All expressibilities between listed logics are presented below:

n=1: EPDL-C,, < Act-CTL-C,, < uPLC,
I I I
EPDL-K,, < Act-CTL-K, < uPLK,
n>1: EPDL-C,, < Act-CTL-C,, < uPLC,
Vv \% |

EPDL-K,, < Act-CTL-K,, < uPLK,

All expressibilities have linear complexity. All non-expressibilities can be justified
in finite environments representing finite games of two players.

The model checking is a problem to check whether w g ¢ for an input
world w, a finite environment E, and a formula ¢ of combined logics EPDL-
K,, EPDL-C,, ACT-CTL-K,,, ACT-CTL-C,,, puPLK,,, or yPLC,,. Let mg be
the overall complexity (dg + rg) of the finite environment E, presented as a
finite graph, where dg and rg be the amount of nodes and the amount of edges
(including knowledge). If ¢ is a formula then let f; be a size of ¢. if ¢ is a formula
then let an alternating fixpoint depth ay be 1 plus the amount of alternations in
nesting p and v with respect to the syntactical dependence and positive/negative
instances.

Proposition 2. There exists a model checking algorithm for worlds of finite
environments which runs

— in the linear time O(m x f) for formulae of fixpoini-free logics with (common)
knowledge EPDL-K,,, EPDL-C,,, Act-CTL-K,,, and Act-CTL-C,;

— in the exponential time O(m x f) X (%)“_1. for formulae of logics with
fizpoints and (common) knowledge nPLK,, and uPLC,,.

The above proposition is proved by reducing the model checking problem for
all listed logics in finite models to the model checking problem for pC in finite
models.

The decidability problem is to check whether there exist an environment E
and a world w such that w =g ¢ for an input formula ¢ of a combined logic
EPDL-K,, EPDL-C,,, ACT-CTL-K,,, ACT-CTL-C,,, uPLK,,, or uPLC,,.

Proposition 3. (1) EPDL-K,, is PSPACE-complete, but (2) EPDL-C,,, Act-
CTL-K,, Act-CTL-C,,, uPLK,, and nPLC,, are EX PTIM E-complete.

The first part of the proposition is proved by reduction of EPDL-K,, to
PLK,, (where m = (n + 2|Act|)) which is in PSPACE (PLK,, can be reduced
to the polymodal S5 in linear time). The second part follows from reduction of
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the listed logics to the propositional u-Calculus with converse (uC~) which is
EXPTIM E-complete [22].
Let us summarize propositions 1, 2, and 3:

Theorem 1. The expressive power (E), model checking upper bounds (M) and
decidability complexities (D) of the combined logics EPDL-K, EPDL-C, Act-
CTL-K, Act-CTL-C, pnPLK and pPLC in general settings enjoy the following

properties:
EXPTIME-complete D

linear M linear M exp

EPDL-C, < Act-CTL-C, < ,uPLC
n=1 n>1 n=1 n>1
(Y (Y% I

linear M linear M E exp. M
EPDL-K, < Act CTL-K, < uPLK,
%,_/

PSPACE- EXPTIME—complete D
complete D

4 Forgetful Asynchronous Systems

In this section we examine trace-based forgetful asynchronous environments gen-

n

erated from background environments. Let E be an environment (Dg, i,7 e~

,Ig,VE). A trace-based Forgetful Asynchronous environment generated by E is

another environment FAS(E) = (DFAS(E),{;L;, . &,IFAS(E),VFAS(E)), where

— Dpas(p) is DE, i.e. the set of all non-empty sequences of states;
— for every i € [1..n] and for all wrid',wrld" € Dpas(g),
wrld' gwrld" iff w' ~ w",
where w' and w' are the last elements in wrld’ and wrld" respectively;
— for every a € Act and for all wrld',wrid" € DFAS(E),
(wrld’ wrld") € Ipas(p)(a) iff” wrld" = wrld ™", (w',w") € Ig(a), where
w’ and w' are the last elements in wrld’ and wrld" respectively;
— for every p € Prp and for every wrld € Dpa5(g),
wrld € VFAS(E) (p) iff IUTld‘wrld| € VE(p).

Let us exploit some special notation in study of forgetful asynchronous sys-
tems. Let D be a set of elements. For this D let

— last-D : DT — D be a function which maps every non-empty finite sequence
of elements of D to the last element of this sequence;

— D-past : D — 20" be a function which maps every element d € D to the
set of all finite sequences with this last element d.

Both functions can be extended on power-sets in the standard manner:

— last-D : 2P" — 20 be a function which maps every set of non-empty finite
sequences to the set of last elements of these sequences;

7 where ” is concatenation of words
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— D-past : 2P — 20" be a function which maps every set of elements to the

set of all finite sequences with these last elements.
We do not distinguish these functions and their extensions.

Proposition 4. For every formula ¢ of the combined Propositional Logic with
fizpoints and Knowledge uPLK, for every environment E the following holds:

— FAS(E)(¢) = Dpg-past(E(¢)),
~ E(¢) = last-Dg(FAS(E)(¢))

(i.e., the formula ¢ holds on a mon-empty finite sequence of worlds in the cor-
responding forgetful asynchronous environment FAS(E) iff ¢ holds on the last
world of the sequence in the background environment E ).

For “simple” formulae® a proof of the proposition follows from definitions, but for
fixpoints the theory of an abstract interpretation [6,7] is used. This proposition
implies the next one.

Proposition 5. Fvery environment E is an abstraction of the corresponding
forgetful asynchronous environment F AS(E) with respect to formulae of the com-
bined Propositional Logic with fizpoints and Common knowledge uPLC. The cor-
responding abstraction function maps every non-empty finite sequence of states
to the last element of the sequence.

This proposition together and the theorem 1 imply the following theorem.

Theorem 2. The expressive power, the model checking problem and decidabil-
ity of the combined logics EPDL-K,, EPDL-C,,, Act-CTL-K,,, Act-CTL-C,,
uwPLK,, and pPLC,, in forgetful asynchronous settings are equivalent to the ez-
pressive power, the model checking problem and decidability of listed logics in
general settings.

Let us remark, that if agents do not distinguish two traces iff their last states
are indistinguishable (as in the original settings) and both traces are generated
by some (may be different) sequences of actions, propositions 4, 5 and theorem
2 hold also.

5 Synchronous Systems with Perfect Recall

We are especially interested in trace-based perfect recall synchronous environ-

ments generated from background finite environments. Let E be an environ-
ment (Dg, i, .. ~.Ig,Vg). A trace-based Perfect Recall Synchronous environ-
ment generated by E is another environment PRS(E) = (DPRS(E),%;S, e
Iprs(e), Vprs(k)), where

8 i.e., propositional variables and combinations, formulae which begin with modalities
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— Dprs(g) is the set of all pairs (wrld,acts) where
wrld € D}, acts € Act*, |wrld| = |acts| + 1, and
(wrld;,wrldj;1) € Ig(acts;) for every j € [1..|acts]];

— for every i € [1..n] and for all (wrld',acts'), (wrld",acts") € Dprs(g),
(wrld', acts') gx (wrld”  acts") iff
acts' = acts" and wrld; ~ wrld" for every component j;

— for every a € Act and for all (wrld',acts'), (wrld",acts") € Dprs(g),
((wrld', acts"), (wrld",acts")) € Iprsr)(a)
iff? acts'"a = acts”, and wrld" = wrld " w", (w',w") € Ig(a), where w' and
w' are last elements in wrld' and wrld"” respectively;

— for every p € Prp and for every (wrld,acts) € Dpgrs(g),
(wrld,acts) € Vprs(p)(p) iff wrld)ypq) € Vi(p).

Simulation power of the class of synchronous environments with perfect recall
generated by finite environments is very high (as follows from the propositions
6 and 7 below). We utilize these propositions for study of the model checking
problem in perfect recall settings.

The following proposition is inspirited by [15].

Proposition 6.

Let ‘next’ be a fived action symbol. There exists a PLCy formula ¢ which enjoys
the following property: for every machine M € CL there exists a finite envi-
ronment E such that for every m > 0, and every input o for M there exists a
sequence of worlds wrld with |wrld| = m and

M halts on o utilizing m cells < (wrld, next™ 1) FPRS(E) ¢

The formula ¢ can be constructed in the constant time, the environment E — in
time O(|M|), the sequence wrld — in time O(|a|).

The Weak Second-Order logic of 1 Successor W.S(1)S can be defined in different
manners [2,18,17,19,1]. The following proposition is inspirited by [16]:

Proposition 7.

Let ‘next’ be a fized action symbol. For every formula ¢ of WS(1)S, there exist
a finite environment E and a set of worlds T such that for every m >0

(1) there is a one-to-one correspondence vt between evaluations in [0..(m — 1)]
of variables in ¢ and next-traces of the length m in E that finish in T,

(2) there is a translation tr of subformulae of ¢ into formulae of Act-CTL-K>
with the single action symbol ‘next’

such that:

for every evaluation ev in [0..m — 1] of variables occurring in ¢ and every sub-
formula v of ¢ the following holds:

ev v & (vt(ev), neat™ D) Epuss) tr().

The environment E and the set T can be constructed in time exp(|4|), the cor-
respondence vt — in time O(m X |@|), and the translation tr — in time O(|¢@)).

9 where " is concatenation of words
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6 Model Checking Knowledge Acquisition in
Synchronous Systems with Perfect Recall

In this section we examine the model checking problem for combined logics
EPDL-K,,, EPDL-C,,, Act-CTL-K,,, Act-CTL-C,,, uPLK,,, and puPLC,, in per-
fect recall synchronous environments generated from finite environments. Name-
ly we study the complexity of the set CHECK(L) = {(E , (wrld,acts) , ¢) :
E is a finite environment, (wrld,acts) € Dprsg), ¢ isa formula of L, and
(wrld, acts) =prs(p) ¢}, where L is a particular combined logic.

Proposition 8.

For alln > 1 and Act # 0, CHECK (EPDL-C,,) is PSPACE-complete.

In accordance with the proposition 6, every polynomial computation of every
Turing machine M can be represented as the model checking problem for some
fixed formula ¢ of PLC, in the environment E (which can be constructed in
time O(|M])) on some (wrld,acts) € Dpgrsr)y (of a polynomial length). It
implies that CHECK (EPDL-C,,) is PSPACE-hard. CHECK (EPDL-C,,) is
in PSPACE due to the opportunity to check formulae of EPDL-C,, in PRS
environments by alternating Turing machines with the polynomial space and
bounded amount of alternations, and the generalised Savich’s theorem for PSPA-
CE-alternating computations[4].

If E = (Dg, rL, Q,IE,VE) is a finite background environment presented
as a finite graph, then let mp be an overall complexity (dg + rg), where dg
and rg be amount of worlds in Dy and total amount of pairs of worlds in
Ig. If (wrld,acts) € Dprsp) then let liyrq,acts) be |wrld] = |acts| + 1. If
¢ is a formula then let fy be the size of ¢. A complexity measure for triples
(E, (wrld,acts) , ¢), where E is a finite environment, (wrld, acts) € Dprs(g),
and ¢ is a formula, is (Mg + l(wrid,acts) T fo)-

Proposition 9.
For alln > 1 and Act # 0, CHECK (Act-CTL-K,,) is decidable with the upper
2

and the lower bounds 2% }O(”, where t is the overall complexity of the input
triple.

It is known that the Weak Second-Order logic of 1 Successor WS(1)S is decid-
2

able with a non-elementary lower bound 22 }O(f ), where f is the size of the

input formula [17] (see also [18,19,1]). In accordance with the proposition 7,

WS(1)S can be encoded in the model checking problem for CTL-K, in perfect

recall synchronous settings. Complexity of this encoding is exponential. These

arguments imply a non-elementary lower bound for CHECK (Act-CTL-K,,).

A principle decidability of CH EC K (Act-CTL-K,,) with a non-elementary upper
2

bound 22 }O(” is based on reduction of Act-CTL-K,, to the Chain Logic with
Equal-length predicate CLE [21].
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Proposition 10.
CHECK (Act-CTL-C,), CHECK (uPLK,,), and CHECK (uPLC,,) are unde-
cidable for all n > 1 and Act # (.

Proof. In accordance with the proposition 6, every computation of every
Turing machine M which exploits a fixed space can be represented as the
model checking problem for some fixed formula ¢ of PLC,. Hence the halting
problem for Turing machines can be represented as the model checking prob-
lem for the CTL-Cy formula EF¢. It implies undecidability of CHECK (Act-
CTL-C,). In accordance with the proposition 1, it implies undecidability of
CHECK (pPLK,,) and CHECK (uPLC,,). The proof is over.

7 Formulae with a bounded knowledge depth

Let us fix a finite environment £ = (D, i, o I, Vk). Thus the corresponding

synchronous environment with perfect recall PRS(E) = (DPRS(E),%,;S, .

Iprs(e), Vprs(p)) is also fixed. Let us call it PRS. The knowledge depth of
a formula is the maximal nesting of knowledge operators in that formula. Let
Act-CTL-K¥ be a sublogics of Act-CTL-K,, with a bounded knowledge depth
k > 0. Naturally, Act-CTL-K,, = J;> Act-CTL-KE.

For every integer k > 0 we define by a mutual recursion the set Ty of k-trees
over E, and the set Fy of forests of k-trees over E. Let Ty be the set of all
tuples of the form (w, (), ...)) where w is a world and the number of copies of the
empty set () is equal to the number of agents n. Once T has been defined, let
Fi. be the set of all subsets of 7. Let Tr+1 be the set of all tuples of the form
(w,Uy,...Uy), where w is a world and U; # 0 is in F}, for each i € {1..n}. Let
us denote J;,~o T by 7. Let exp(a,b) be the following function: exp(a,0) = a,

exp(a,b) = a x 2¢7P(@b=1) when b > 0.

Proposition 11. Let k > 0 be an integer and E be a finite environment for n
agents with d states. The number of k-trees over E Cy is < M and the
number of nodes in every (k + 1)-tree over E is < C% (forn <d).

Let (wrld,acts) be a world of PRS(E). Knowledge available in this world
can be represented as an infinite sequence treeg(wrld, acts) ... treey(wrld, acts)
.. where each treey(wrld,acts), k > 0, is a k-tree which is defined as follows.
Let treeo(wrld, acts) be (wrldjya), 0, ...0) and for every k > 0 let treegq1 (wrld,

acts) be (wrld|wrld‘, {treey(wrld' ,acts") : (wrld', acts") {,;S(wrld, acts)}, ..

{treey(wrld',acts') : (wrld',acts') g (wrld, acts)} )

Let us define knowledge update functions for k-trees. The similar functions
has been used in [15] to provide an algorithm for the model checking prob-
lem for formulae of PLK,, in synchronous environments with perfect recall. Let
Dg and Ig be a domain and an interpretation of relation symbols from Acts
in the environment E. For every number k& > 0, act € Acts and i € {l..n}

the functions GgCt :Te X D — T, and H,‘jcf . Fr X D — Fy, are defined
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by induction on k and mutual recursion. Let Ga(tr,wrld) = (wrld,?,...0)
iff (root(tr),wrld) € Ig(act). Once G§°* has been defined, we can define for
each i € {1..n} the function HY by setting H¢S (U, wrld), to be the set of k-

trees G4 (tr, wrld') where tr € U and wrld’ ~ wrld. Using the functions H,
i € {1.n}, we can define G}, by setting G, ((wrld, Uy, ...Uy), wrld’) to be
(wrld , HR Uy, wrld'], ... HES U, wrld] ) iff (wrid, wrld') € Ip(act).

The following proposition is inspirited by [15]:

Proposition 12. For every k > 0, every act € Act, every finite environment
E, every (wrlds,acts) € Dpgrs(g), every wrld € Dg, and every act € Act, the
following incremental knowledge update property holds'®:

treey ((wrlds, acts){(wrld, act)}) = G (treeg(wrlds,acts), wrld).

Let Act be an alphabet of action symbols and [1..n] be agents. Let Act™ be
Act extended by new action symbols associated with agents [1..n].

A natural translation of formulae of Act-CTL-K,, to the formulae of Actt"-
CTL is simple: just replace every instance of K; and S; by corresponding AX’
and EX' respectively (i € [1..n]). For every formula ¢ of Act-CTL-K,, let us de-
note by ¢ the resulting formula of Act™™-CTL. This translation is supported
by the corresponding transformation of environments for Act-CTL-K,, to the

models for Act™-CTL: the environment E = (D, rlv, w. ~, I, Vi) can be pre-
sented as the model E*" = (Dg,I1", Vg), where I}}™ is equal to I; on action
symbols, but I5" (i) =~ for every agent i € [1..n]. The following proposition is
straightforward.

Proposition 13. E(¢) = ET"(¢1™) for every environment E and every for-
mula ¢ of Act-CTL-K,. In particular, PRS(E)(¢) = (PRS(E))™(¢*") for
every environment E and every formula ¢ of Act-CTL-K,,.

Now we define a class of associated models based on k-trees. For every k > 0
let TRk (E) be the fOHOWing model (DTRk (E)> ITRk- (E)> VTRk- (E)) for Act+n—CTL:

— Dyg, () is the set of all 0-,... k-trees over E for n agents;
— e for every act € Act, Iyp, (g (act) = {(tr',tr") € Drg,(p) :
tr'" = G4t (tr',wrld) for some j € [0..k] and some wrld € Dg };
e for every i € [L..n], Irg, () (i) = {(tr',tr") € Drgr,(p) :
tr'" € U; and tr' = (wrld, Uy, ...U,) for some wrld € Dg };
— Vg, (g)(p) = {tr : root(tr) € Vi(p)} for every p € Prp.

The following proposition can be proved by induction on formulae structure with
help of the proposition 12.

Proposition 14. For all integers k > 0 and n > 1, for every environment E,
the model TRy, (E) is an abstraction of the model (PRS(E))™" with respect to
formulae of Actt™-CTL which correspond to the formulae of Act-CTL-K,, with
knowledge depth k at most. The corresponding abstraction function maps every
trace to the k-tree of this trace.

10 where " is concatenation of words
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In accordance with the proposition 2, the complexity of model checking of an
Act-CTL formula in a finite model is O(m X f), where m is the overall model
complexity and f is the complexity of a formula. But the cited proposition has
been proved under the assumption that all worlds of the model have some con-
stant complexity. This assumption does not hold for models where worlds are
k-trees, since (in accordance with the proposition 11) the complexity of these
trees is a non-elementary function of k and n. We should add the correspond-
ing world-complexity factor to complexity bound. In these settings the above
propositions 2, 11 and 14 lead to the following proposition.

Proposition 15. For every integers k > 1 and n > 1, for every finite envi-
ronment E, for every formula ¢ of Act-CTL-K—n with knowledge depth k at
most, the model checking problem for synchronous environment with perfect re-
call PRS(E) and the formula ¢ is decidable with the upper bound

exp(n x d, k) x (exp(n x d, k —1))?
(5 S X k) s )
where [ is the size of the formula, d is the amount of states in Dg, and the
function exp(a,b) is defined by induction as follows: exp(a,0) = a and exp(a,b+
1) = q x 2600(00),

The above propositions 8, 9, 10 and 15 lead to the following theorem.

Theorem 3.
For alln > 1 and Act # 0, the model checking problem for synchronous finitely
generated environments with perfect recall for

— EPDL-C, is PSPACE-complete;
— Act-CTL-K,, is decidable with the non-elementary upper and lower bounds
(which linearly depend on a formula size and non-elementary depend on

amount of states, agents and a knowledge depth);
— Act-CTL-C,,, uPLK,,, and uPLC,, are undecidable.

8 Related papers and Conclusion

In the paper algorithmic problems for several combinations of propositional pro-
gram logics have been studied from the theoretical point of view. The focus of
the paper is model checking problem in synchronous perfect recall settings for
logics, which combine knowledge, actions, and fixpoints. The paper contributes
to model checking researches for logics of knowledge acquisition and extends the
results of the paper [16], where the model checking problem in synchronous per-
fect recall settings has been examined for fusion of logics PLK and PLC with
the Propositional Logic of Linear Time (PLLT). It has been proven in the cited
paper that the problem is

(1) undecidable for PLLT-C;

(2) non-elementary decidable for PLLT-K;

(3) PSPACE-complete for UNTIL-free PLLT-C,,.
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A tree-like data structure for the model checking linear time and knowledge
with bounded nesting has been suggested in the paper [16]. This data structure is
very convenient for presentation of knowledge evolution and update. It comprises
the trees which depth is equal to knowledge nesting. The paper [16]demonstrated
that the model checking problem for PLLT-K, in synchronous perfect recall
semantics can be reduced to the emptiness of a Biichi automata, whose inputs
are infinite sequences of these trees. We develop a similar data structure but
exploit an abstraction and a reduction to the model checking problem for the
variant of CTL and models where states are trees.

A natural related problem is: whether an automatic model checking is feasible
for PLLT-K,, and Act-CTL-K,, ? Some experience with tree-like data structures
(which are similar to the data structure mentioned in the previous paragraph) is
reported in [10]. In the cited experimental research, (1) input finite environments
are specified on a Multi Agent System Language, (2) input PLLT-K,, formulae
should not have negative/positive instances of knowledge modalities K;/S; for
any agent ¢ € [l..n], (3) a model checking engine is finite-state PLLT model
checker SMV [3, 5].

Another related paper is [12]. It has studied the decidability problem for
combinations of temporal logics PLLT and CTL with logics PLK and PLC in
synchronous perfect recall and forgetful settings. In particular, it has demon-
strated completeness of the problem in the following complexity classes

PRS FAS
CTL-C,,, n >2 I} EXPTIME
CTL-K,, n > 2 nonelementary time EXPTIME

CTL-K; = CTL-C; doubly-exponentially time EXPTIME

Our paper extends the above table on some other combined logics in forgetful
asynchronous settings.
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1 Introduction

Multiple-valued logics [2] provide an interesting alterna-
tive to classical boolean logic for modeling and reasoning
about systems. By allowing additional truth values, they
support the explicit modeling of uncertainty and disagree-
ment.

In order to do temporal reasoning over multiple-valued
systems, we must extend a classical temporal logic to
the multiple-valued case. For instance, the branching-
time temporal logic CTL is a fragment of the modal p-
calculus [5]: it has conjunction, disjunction, negation, two
next-time operators, weak (EX) and strong (AX) [4], and
several additional temporal operators described as least or
greatest fixpoints. For example, the property EF¢, “even-
tually ¢ may become true”, is the least fixpoint:

EFp 2 uZ. (p Vv (EXZ))
and AGe, “p holds everywhere”, is the greatest fixpoint:

AGp £ vZ.(p A (AXZ))

The necessary conditions for finite-time convergence of
fixpoint computations are the finiteness of the state-space,
the finiteness of the set of state valuations, and the mono-
tone increasing property of EX and AX.

The intuitive idea of the weak next-time operator EX¢
is “there exists a successor state where ¢ holds”. If S
is the (finite) state-space, and R the system’s transition
relation, then for any state s:

(EXg)(s) 235" € S (R(s,s") Ap(s"))

The sense of AX, however, involves causation: “if there
is a transition to state s, then ¢ holds there”, and is de-
fined using implication:

(AXp)(s) £Vs' € S - (R(s,5") = ¢(s))

In this work, we focus on possible multiple-valued gen-
eralizations of AX. We begin with a review of multiple-
valued model-checking, described in greater detail else-
where [3]. We choose to use finite sets of truth values,
in order to guarantee finite-time convergence of fixpoints.
Following that, we state the conditions for implication op-
erators which both correspond to intuition, and allow a
monotone increasing AX to be defined, which is needed
to prove the existence of fixpoints. As an example, we
choose three implications for a particular multiple-valued
logic, and discuss the relationships between them, and
with EX. Finally we show a structural condition on both
multiple-valued models and implications that allows us to
guarantee that AX is stronger than EX, while still permit-
ting flexibility in modelling partial systems.

2 Background

Let £ be a finite set of logic values, partially ordered
by truth degree. We use sets of truth values that have
the structure of a De Morgan algebra [6] (L£,C,M, U, =):
a distributive lattice with an antimonotonic and involute
negation operator —: if x C y, then -y C -z, and
x = ——x. The least element of the lattice is denoted
L, and the highest element T. Figure 1(a) shows the truth
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Figure 1: (a) Lattice for 3-valued logic, and (b) table for
its De Morgan negation.

ordering for a 3-valued logic, and Figure 1(b) defines the
De Morgan negation. Here T=T and L=F.

A XKripke structure [3] is a tuple (S, so,R,I, A, L)
where:

1. S is a finite state space, S¢ an initial state;

2. L=(L,C,M,U,~) is a De Morgan algebra;

3. R:S xS — Lis a (valued) transition relation, as-
signing degrees of truth to transitions between states;

4. A is a finite set of state variables;

5. 1:5 x A — L is the interpretation function assign-
ing values to variables in states.

Some examples of XKripke structures are shown in Fig-
ure 2. The form of R is constrained to ensure that states
have successors. In classical Kripke structures, this total-
ity condition is formalized as Vs - 3s' - R(s, s"). There
are three possible ways to generalize this condition for
XKripke structures:

Vs-3s'-R(s,s') =T (strong totality)
Vs« (lyeg R(s,s")) =T (join totality)
Vs-3s' - R(s,s') # L (weak totality)

All of these definitions collapse to ordinary totality in the
classical case; and in the three-valued case, strong total-
ity and join totality coincide. For example, the XKripke
structures of Figure 2 satisfy weak totality, but not strong.

A temporal logic formula is interpreted in a given
XKripke structure as a map S — L. For p € A, and
formulas ¢ and v, some of the connectives are defined as
follows:

p(s) = I(s,p)
(e AP)(s) =2 p(s)Ne(s)
(EXe)(s) £ |yes(R(s,s) Ap(s))

For example, EX¢ in state s of Figure 2(b) is computed as
(R(s, )M (1) U(R(s, u)ip(u) = (MAM)L(MF) =
M UF = M. The other connectives are defined similarly,
and fixpoints have the standard definition.

(a) b)

Figure 2: Example multiple-valued Kripke structures.

3 Multi-Valued Implications

A common approach to defining implication for multiple-
valued logics is through residuation of a monoid opera-
tion on the logic values [1]. We take a simpler approach:
defining the criteria for an implication, and then exploring
the space of candidates for applicability.

We propose the following criteria for a useful implica-
tion operator —, for all z,y,z € L:

(Loz)=T (vacuity)
ifx Cythen (2 —» ) C (2 — y) (monotonicity)
(T—ox)Czx (sub-identity))

(T=T)=T,(L->T)=T
(LoL)=T,(T>1)=1

The reason for the vacuity condition is as follows: sup-
pose, for some state s € S, AX¢p has a computed value.
Now we adjoin some new state ¢ to .S, with no transition
from s to t (R(s,t) = L). The value of AX¢p in s should
not change!

Monotonicity guarantees that AX, as defined using —,
is also monotonic, which is required for the existence of
a fixpoint. The sub-identity rule formalizes the intuition
that the statement T — z indicates that “under any condi-
tions, x holds”, and it does not make sense for this expres-
sion to be any more true than the truth value of z. Finally,
we want the implication to behave classically when only
classical truth-values are used, since if we define a system
using only T and _L as values, then analysis should yield
the same results as classical model-checking.

Under these conditions, a 3-valued logic yields 33 pos-
sible implication operators, so we restrict our attention to
three: material implication, defined as z — jy y = —zly;
Godel implication, where t - y = T ifz C y, and y

(reduction to classical)



42

- | T M F ¢ | T M F
T | T M F T | T M F
M |T M M M |T T F
F (T T T F |T T T

= | T M F

T |T M F

M | T T M

F |T T T

Figure 3: Material (— »s), Godel (— ), and Lukasiewicz
(— ) implication tables for the 3-valued logic of Figure 1.

otherwise; and fukasiewicz implication, which is defined
on an n-valued, totally ordered logic by mapping truth
values into the fractions k/n. The tables for these impli-
cations are shown in Figure 3.

4 Strong Next-time Operators

In this section, we define three different AX operators
using multi-valued implications, and give some of their
properties. We also discuss the ordering between these
operators: for one operator to be stronger than another
corresponds to the intuitive notion that it is a more con-
servative definition of “in all next states”.

For an implication operator —, we define a strong next-
time operator as follows:

(AXp)(s) £ T1 (R(s,5") = ¢(s")
s'esS

Using the three implication operators, we define three
next-time operators, AX s, AXqg, and AXy. Since the
monotonicity rule holds for all three implications, the AX
operators are monotonic as well:

Proposition 1 If ¢ T 1), then AX p4o T AX 49, for A €
{M,G, L}.

Any ordering between implication operations is inher-
ited by the AX operators defined using them:

Proposition 2 For any —a,—p,AX4,AXp, with

A,B € {M,G, L}, and any formula p:
ifVe,y-(x 24 y) C (x »p y) then AX 40 C AXpyp

By inspection, it is easy to see that the following relation-
ship holds:

AXppUAXgp = AXpp (1

In general, for n-valued logics, Equation 1 does not
hold; a simple counterexample in the 5-valued totally-
ordered logic can be found.

S Relationships Between Next-time
Operators

We are interested in how AX relates to EX, and also to
its dual “EX—. Under strong totality, AXp C EX¢; un-
der weak totality, this ordering does not necessarily hold.
In the 3-valued case, join totality is equivalent to strong
totality, but whether join totality guarantees the correct
ordering remains an open question in the general case.
We state the result for strong totality more formally:

Proposition 3 For all states s, if strong totality holds,
then AXp C EXep.

Proof:
By strong totality, for any state s, there is s’ € S such that
R(s,s') =T. Then:

(AXp)(s) E (R(s,5") = ¢(s)) C (s
by sub-identity. In turn:
(s') = R(s,s') Np(s') C EXgp

and thus the desired property holds:
O
Looking at the proof of Proposition 3, we can see that
a weaker condition is possible. In order to define this in a
simple manner, we need to state that if our next-time op-
erators are correctly ordered in all propositional variables
p and their negations —p, then they are also correctly or-
dered for any temporal logic formula:

Lemma 1 Let EX and AX be monotonic operators. If,
forallp € A, AXp C EXp, and AX—p C EX—p, then:

AXyp C EXp

for all temporal logic formulas .
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We can also define a weaker condition ensuring
AXp C EX¢p. We call this condition sufficient totality,
and it is defined relative to the AX operator being used.

Theorem 1 Ifforallp € A, ands € S:
Jt,u €S- R(s,t) = p(t) C R(s,u) N p(u)

with t # u, and
Jt,u € S - R(s,t) = —p(t) C R(s,u) M —p(u)

then AXp C EXy in all states.

Proof:
Direct, and by Lemma 1. O

In Figure 2(a), we have a XKripke structure which is
only weakly total. It is sufficiently total for AX , but not
for either of the other strong next-times: here EX¢ = F
and AXprp = AXpe = M. In this case, our analysis
seems to say that, on the one hand, there is no transition
to a state where ¢ holds; but, on the other hand, maybe
o holds in any next state! By contrast, the structure in
Figure 2(b) is sufficiently total for all three AX opera-
tors. In this case, AX ¢ = AXpp = EXp = M, and
AXG(p =F.

We conclude with observations about the connec-
tion between —EX— and AX operators. By definition,
AXprp = “EX—¢, and thus:

Proposition 4 —FE X — is stronger than AXp:
—EX-p C AX @
and incomparable with AX .

We might say that AX, is the most “optimistic” strong
next-time operator.

6 Summary and Future Work

This work reports on our first investigations of the space
of strong next-time operators for multiple-valued tempo-
ral logic. We have stated axioms for implications that can
be used to define an AX operator, and discussed the rela-
tionships among candidate operations and their relation-
ship to EX. Finally, we have given a weaker totality con-
dition for XKripke structures which is parameterized in
the choice of AX.

In the future, we plan to generalize this work to any
(finite) multiple-valued logic, and discover more general
relationships between classes of multiple-valued implica-
tions, and thus between the AX operators they define. As
well, we hope to find applications in verification for the
different AX operators, and incorporate them into our ver-
ification framework [3].
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Abstract

If A is a context-free language over a two-letter alphabet, then the set of
all words obtained by sorting words in A and the set of all permutations of
words in A are context-free. This is false over alphabets of three or more
letters. Thus these problems illustrate a difference in behavior between two-
and three-letter alphabets.

The following problem appeared on a recent exam at Cornell:

Let 3 be a finite alphabet with a fixed total ordering on the letters.
For a string z € X*, let sort = be the string obtained by sorting
the letters in increasing order. For example, if a < b < ¢, then
sort abacbaa = aaaabbe. For A C ¥* letsort A = {sortz | z € A}.
Of the following three statements, two are false and one is true. Give
counterexamples for the two false ones and a proof of the true one.

(i) If A is regular, then so is sort A.
(ii) If A is context-free, then so is sort A.
(iii) If A is context-sensitive, then so is sort A.

One might also ask the same questions about perm A, the set of all permutations
of words in A.

Of course, it is (i) and (ii) that are false, since
sort (abc)™ = perm (abc)™ N a™b*c* = {a"b"c" | n > 0}.

Interestingly, (ii) is true for both sort and perm over a two-letter alphabet. This is
quite surprising: whereas a two-letter alphabet is exponentially more succinct than
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a one-letter alphabet, one does not normally think of a break in behavior between
two- and three-letter alphabets. In many applications, three letters (or for that
matter any fixed finite number of letters) can be coded into two with only a linear
loss of efficiency. Not so, apparently, in this case.

In this short note we give an elementary proof of these facts. The proof for
sort is a fairly straightforward construction relying on Parikh’s theorem and Pilling
normal form, but the proof for perm is somewhat more involved, requiring a bit of
linear algebra over integer lattices.

LetY = {a1,... ,aq}, and let 7 : ©* — N be the Parikh map

def

m(z) = (#a(z),... #aa(2)),

where #a(x) is the number of a’s in z. Define

r(4) Y {r(@) o€ A}
perm A & 7~ (n(A))
sort A & perm ANaf ---ay.

Theorem 1 For d < 2, if A is a context-free language, then so are perm A and
sort A.

This is trivial for d = 1 and false for d > 3. The interesting case is d = 2.

Lemma 1 It suffices to prove Theorem 1 for A regular. When manipulating regular
expressions, we can also use the commutativity axiom xy = yzx.

Proof. This is a consequence of Parikh’s theorem (the commutative image of
any context-free language is the commutative image of some regular set), observing
that the definitions of perm A and sort A depend only on the commutative image
m(A) of A. O

Lemma 2 It suffices to prove Theorem I for A of the form xy - --y;:, where
TyYls-- 5 Yk € I

Proof. Under commutativity, every regular expression is equivalent to a sum of
expressions of this form. This is known as Pilling normal form (see [1]). O

Here is a direct construction for sort A. This result will also follow from the
result for perm A by intersecting with a*b™*, but the proof for perm A is somewhat
harder.
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Without loss of generality, assume A is of the form of Lemma 2. Let m =
#a(z), n = #b(x), m; = #a(y;), and n; = #b(y;), 1 < i < k. A context-free
grammar for sort A is

S — amT1 b"
T, = a™T Ty, 1<i<k—1
T, — am’“ka"’f | E.
For perm A, we will need to use some linear algebra on integer lattices.
Lemma 3 Let vy, ... ,yn be nontrivial. The following are equivalent:

(i) m(y1),-... ,7w(ypn) are linearly dependent over Q.

(i) 7w(y1),... ,m(yn) are linearly dependent over 7.
(iii) There exists a partition of yi, . . . , yp into two nonempty disjoint sets iy, . .. , Yg
and Y41, - - - , Yn (renumbering if necessary) and coefficients g; € N, 1 <

1 <mn,such thatnotall a; = 0,1 <1< k,notalla; =0, k+1<1i<n,
and H?:1 yi' =1l v
The property in (iii) regarding the vanishing of the coefficients follows from the
observation that we cannot have Hle y?* = 1 with a; € N unless all a; = 0.

7
The following lemma gives a stronger version of Pilling normal form.

Lemma 4 (Conway [1, Theorem 2, p. 92]) Any regular subset of N* can be writ-

ten as a sum of terms of the form xy; - -y with w(y1), ... ,7(yn) linearly inde-
pendent over Q.

Proof. Suppose 7(y1),...,7(yn) are linearly dependent. Let Hle i
[Ty witha; € N, 1 < 4 < n, not all ar,...,a, = 0 and not all
ak+1,--- ,ay = 0. Using the Kleene algebra identities

n—1
v = Ol
1=0

k
¥k = (ggl...xn)*(z H x;’f)

i=11<j<k
J#i

(the second one requires commutativity), rewrite 3 - - -y as a(y;")™ -+ (y*)*,
where
k a;—1

« = I

i=1 j=0
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and then (y{)* --- (y*)* as

k
(i) O B,
i=1
where

a; .
g = [[w?H*, 1<i<k
JF
Note « contains no starred terms, so it can be expressed as a finite sum of products
of the y;. Then 4 - - - y¥ can be written as a sum of terms of the form

w(yt -y ) Bt Y-

Now we can replace [TF_, y% with [T" ., 4% to get

Ak+1

W \¥ gk *
U’(yk;_|_1 . yg ) /Biyk:-i-l Yn-
Since this is contained in 3 - - - /¥, we have u € y{ - - - ¥, thus

a n) ¥ * * * *

where

g = [lvj, 1<i<k
J#i

Thus the original term zy; - - -y, can be written as a sum of terms of the same
form but with one fewer starred y;.

We can continue decreasing the number of starred terms inductively until the
1; are linearly independent. O

By this lemma, to prove Theorem 1 for the case perm A, it suffices to consider
A of the form zu™* or zu*v*, where 7(u) and 7 (v) are linearly independent. Note
that the dimension is at most two since we are over a two-letter alphabet. We
can get rid of the = without loss of generality by |x| applications of the following
lemma:

Lemma 5 Leta € X. If A is context-free, then so is {zay | zy € A}. It follows
that if perm A is context-free, then so is perm a A, since perm aA = {zay | xy €
perm A}.
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Proof. Consider a Chomsky normal form grammar for perm A. For every
nonterminal X, add a new nonterminal X,, which is meant to generate all the
strings that X generates but with an extra ¢ somewhere. For every production X —
Y Z, add the productions X, — Y,Z | Y Z,. For every production X — b, add
the productions X, — ba | ab. For every production X — ¢, add the production
Xq — a. The new start symbol is S,, where S was the old start symbol. O

Now we show that perm u*v™ is context-free. (We leave the easier case,

perm u™*, as an exercise for the interested reader.) Suppose #a(u) = uy, #b(u) =
ug, #a(v) = vy, #a(v) = vg; thus m(u) = (u1,us2) and 7(v) = (v1, v2). Arrange
m(u) and w(v) in a 2 X 2 matrix

A d:ef |:U1 ’01:|
U2 U2

with positive determinant A = u3v9 — ugvy > 0. (The sign of the determinant is
determined by the orientation of u and v; exchange if necessary to make it positive.)
The adjoint (pseudo-inverse) of A is

A, déf |: V2 —U1:|

—U2 U1

and satisfies the property

/ / A0
AA" = A'A = [ 0 A ] .

Now we give a nondeterministic one-way automaton with an integer counter
accepting perm u*v*. The machine actually keeps three counters, ¢, ¢z, c3, but
the counters c¢; and c3 hold only finitely many values and can be stored in the finite
control. The counter ¢ holds an integer. We can simulate this with a pushdown
automaton with a single-letter stack, keeping the sign in the finite control.

The automaton starts in the state ¢ = c; = c3 = 0 and takes the following

actions on each input symbol: on input a,

c1 = (c1+wv2) mod A

Cy) = Co — U2

c3 := min(ez + 1,v1)
and on input b,

cp = (c1 —wv;)modA

co = c2+up.
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In addition, it may nondeterministically choose to take the following reset step
whenever c3 = v; without reading an input symbol.

cg = ¢ — A

Cc3 = 0.
Thus after scanning a prefix y of the input string,

c1 = (v2#a(y) —vi#bd(y)) mod A
co = —ugftaly) +ui#b(y) — Ag,

where ¢ is the number of resets that have occurred, and ¢ contains the number of
a’s seen since the last reset, up to a maximum of . The automaton accepts if
Cl = C = 0.

Now we show that the automaton accepts perm «*v*. For s, t € Z2, note that
As = tiff At = As. Applying this with s = (p, q) and t = (#a(zx), #b(z)), we
have

(1)

#a(r) = uip+vig 2)
#b(r) = wuzp+vaq
iff
voFa(z) —vi#b(z) = Ap

—us#a(z) +u#b(z) = Aq. (3)

This implies that the following are equivalent:
(i) = € perm u*v*
(ii) there exist p,q € N such that x € perm vPv?

(iii) there exist p, g € N satisfying either of the equivalent conditions (2) or (3).

Now suppose z € perm u*v* and condition (iii) holds with p,q € N. Let

the automaton choose to perform the reset step at its earliest opportunity while
scanning x (i.e., as soon as the counter ¢ reaches v1), but only ¢ times. It has the
opportunity to perform a reset at least ¢ times, since by (2), #a(z) > uq. By (1),
the final values of ¢; and ¢y are

(vo#a(r) — v1#b(z)) mod A =
—us#a(z) + ur#b(z) — Aq = 0,

respectively, so the machine accepts.
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Conversely, suppose the machine accepts. Let g be the number of times the
reset occurred. By (1), there exists p € Z such that (3) holds, and we need only
show that p > 0. Since the reset occurred g times, we have #a(z) > v q. Then

uvep = Ap -+ ugvip

= wvo#a(z) — vi#b(z) + uguip
vou1q — vy (u2p + v2q) + uv1p
0.

Y

But ujv9 = A 4 usvy > 0, therefore p > 0.
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Abstract. Viewing a Kleenean algebra K as an idempotent semiring with an iter-
ation * as axiomatized by D. Kozen[4], we consider left semimodules (A4, +,0) over
K. Kleenean semimodules are those where each linear equation ¢ = a+r : ¢ < x
has a least solution, where : is the product from K x A to A. The linear context-free
languages can be viewed as a Kleenean semimodule A over a Kleenean algebra R of
binary regular word relations. Thus, the simultaneous linear fixed-point operator p
on languages can be reduced to iteration * on R and the scalar product :.

Definition 1. Let K = (K, +,-,*,0,1) be a Kleenean algebra and A = (A, +,0) an idem-
potent commutative semigroup. M = (K, A,:) is a left semimodule over K, if : is a mapping
from K x A to A, such that for all r,s € K and a,b € A:

r:0=0 1
r:(a+b =r:a+r:b, 2
0:a=0, 3

(r+s):a=r:a+s:aq,
1:a=a,

(r-s):a=r:(s:a),
The semimodule M is a Kleenean semimodule, if we also have
r:b+a<b = r":a<b (7
for all r € K and a,b € A, using ¢ <y : <= z+y =y. We often omit K from M and call

(A,:) or (4,+,0,:) a K-semimodule.

The distributivity properties imply that the scalar multiplication : is monotone in both
arguments. In particular, one has ™ : a < r* : a. The dynamic algebras of Kozen[3] are like
semimodules over a *-continuous Kleenean algebra: instead of (7) one there has r* : a =
L{r":a | n€e N}, and A is a Boolean algebra.

Proposition 1. In any Kleenean semimodule (K, A,:), for any r € K and a € A the
element r* : a is the least solution of the right-linear equation T =r : x + a.

Ezample 1. If K is a Kleenean algebra, then M = (K, A4, -) with A = (K, +,0) is a Kleenean
semimodule over K, where 0, + and - are the corresponding operations from K.
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In particular, let £%, be the Kleenean algebra of all n-ary relations between words over
the alphabet X', where + is union and - is the lifting of componentwise concatenation to
relations. Then £% is a Kleenean module over itself. For n = 3 and A = {(a, b, ¢)}, the least
solution of X = A: X +11is A* = {(a™, 0", c™) | m€ IN }.

By Reg(L%), the n-ary regular word relations over X, we mean the Kleenean subalgebra of
L% generated by the finite (or: singleton) elements of L%

Definition 2. The linear and the regular expressions over the finite sets I, A of constants
are defined by the grammar

pg = 0 | ¢ | (p+q [ r:p (8)
s = 0 | 1 | d | (r+s) | (r-s) | r", 9)

where ¢ ranges over I" and d ranges over A.

In a semimodule M = (K, A,:) with given elements ¢* € A, d* € K for each ¢ € I’
and d € A these expressions are interpreted as elements p* € A and 7* € K, using the

corresponding operations of M; in particular (r : p)4 =% : pA.

Example 2. The following two standard interpretations are actually continuous Kleenean
modules. (They are also reducts of Boolean modules in the sense of Brink e.a.[1]). We only
give - and :, since then * follows from R* = |J{ R" | n € IN }.

(i) (C.S. Peirce, ~1870) Let K = (2M>*M ‘U, 0, 0, 1,) be the algebra of binary relations
on aset M # 0, A= (2M U, ) the algebra of subsets of M, and - and : be the relation
composition and inverse image of a set under a relation:

RoS={(m,n) | 3k € M (R(m,k) AS(k,n))} (10)
R:A={m | Ja€ A R(m,a)}. (11)

(i) (J. Gruska, 1971) Let K = (2¥*¥" U, -,* ,0,{(e,€)}) consist of the binary word-relations
over the alphabet ¥ and A = (2*",U, ) of the word sets (languages), and let - and : be
the (pointwise) infization of a word relation (resp. a set) into a word relation:

R-S= { (Ulwl,’wgvg) | (Ul,’Uz) € R, (wl,wg) € S} (12)
R:A={viwvs | (v1,v2) € R,we A}. (13)

Ezxample 3. Not every semimodule over a Kleenean algebra is a Kleenean semimodule.
Let My, m(A) be the n x m matrices with entries from A.

Theorem 1. Let (A,:) be a (Kleenean) semimodule over the Kleenean algebra K. Then
My 1(A) is a (Kleenean) semimodule over the Kleenean algebra My, n(K), under the scalar
multiplication

ot Tin a Vi cag
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Definition 3. Let A = (4,+,0,:) be a Kleenean semimodule over K. The submodule of A
generated by B C A consists of the set

Byt =({{M|BCMCA M+MCM, K:MCM}
together with the restrictions of the operations from A to (B)*.

Clearly, (B)* consists of the linear combinations Xm, r; « by of elements b; € B with
coefficients r; € K.

Definition 4. A system of linear equations (or a linear context-free grammar) over the
alphabet X is an equation system

1(Z1, .o, Ton)

21
: . (14)
Ty, = ry(T1,... %)
where each r; is a sum of words w or uzv in which u,v,w € ¥+ U{0,1} and x is one of the

recursion variables &1, ..., &, A language L C X* is linear if it is a component of the least
solution (in the language interpretation) of a linear equation system over Y.

A summand uzjv of rj(z1,...,2,) can be written as an insertion (u,v) : x; of the variable
x; into the ‘context’ (u,v). Hence it is natural to relate linear languages to Example 2 (ii).

Let A = (2%7,U,0,:) be the Kleenean Reg(L%)-semimodule of languages over X, where R : A
is the infixation (13) of a language A C X* into a regular(!) word relation R C X* x X*.
Let I'y ;== YU {e} and Ay :={(e,a) | a € ¥} U{(a,e) | a € X'}. The linear and regular
expressions over Iy, Ay can be interpreted in A, using the corresponding singleton sets of
A resp. K as interpretation of the constants of I's; resp. Ay.

Note that the languages in the submodule (X U {e})* are those that can be generated from
0, {e} and {a}, for a € X, by (finite) union and infixation into regular word relations. We
obtain the following result, essentially due to Gruska[2]:

Theorem 2. Suppose L C X*. The following conditions are equivalent:

(i) L e (ZU{eh?,
(ii) L = p™ for some linear expression p over I's, Ay,
(iii) L is a component of the least solution of a linear equation system over X.

Proof. (Sketch) Obviously, (i) and (ii) are equivalent. Claim (ii) = (iii) is shown by induction
on the linear expressions. For (iii) = (i), the equation system for L is considered as a matrix
equation X = @ : X + B in the semimodule M,, 1 (A). By Proposition 1, its least solution is

uX(Q:X+B)=Q":B.

The entries of @Q* are regular expressions in the entries of , hence give regular word relations
over X', while the components of B are finite languages over Y. This implies (i). O
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Abstract

Domain mu-calculus. Propositional domain logic (a.k.a. Abramsky logic),
based on the view of types as topological spaces, properties as open sets, and
computational processes as points (Smyth 83), provides a smooth integration
among three relatively independent approaches to programming semantics: op-
erational, denotational, and axiomatic. In addition to proof systems for higher-
order strict-analysis and concurrent processes, it has also been adapted to rea-
soning about imperative parallel programs (Brookes 86, Zhang 91). The beauty
of this approach is that one can pass from the denotation of a computational
process to its properties, with harmony guaranteed by Stone-style-duality. More-
over, higher-order objects are treated exactly the same way as first-order objects.
The domain p-calculus (Zhang 91) is a natural least fixed-point extension
of propositional domain logic. This extension is a necessary step to increase the
expressive power of propositional domain logic, since propositional formulas rep-
resent compact Scott open sets only. The domain logic consists of three syntactic
categories: a language of types, a language of formulas, together with equational
proof rules indexed over the types. In the domain p-calculus, every closed type
expression determines a canonical domain, and hence a topological space of Scott
open sets. The semantics of a u-formula is a fized Scott open set of the corre-
sponding domain (some standard restrictions are necessary for function space
to work properly). The equational proof system is intended to capture the con-
tainment of Scott open sets; it uses Park’s rules (Park 81) for least fixed-point
induction at each closed type. It is said to be sound and complete if “theorems”
of the form ¢ < 1) coincide with their semantic counterparts [¢] C [¢]. It is
important to note that for each closed type there is a corresponding u-calculus;
therefore, by “domain p-calculus” we refer to a spectrum of p-calculi which may
or may not share the same properties, such as completeness and decidability.

Modal mu-calculus and domain mu-calculus. Many properties of hardware
and software systems can be expressed concisely in the propositional modal -
calculus (Kozen 83). The modal u-calculus has attracted a great deal of attention
in the last decade. Although decidability and finite-model properties have been
established early on, the difficult completeness problem was settled only recently
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(Walukiewicz 00). Classification of expressive power of the p-calculus has been
obtained (Bradfield 98), establishing the strictness of the alternation hierarchy
based on rather sophisticated results of definability (Lubarsky 93).

Domain p-calculus and modal p-calculus share at least two common ideas.
One is that they are intended to capture infinitary behavior of a system. The
other is that fixed-point formulas serve as a uniform way to approzrimate ideal
infinitary properties in the end. However, what domain p-calculus provides that
modal p-calculus does not is the integration of types, higher-order objects, and
denotational semantics and program logics, all in the same framework. This
offers a uniform and yet highly flexible set of logical tools.

While much progress has been made for the modal mu-calculus, not much
is known about the domain mu-calculus. The following table provides a picture
of the situation. It also gives an indication that reducing domain p-calculus to
modal p-calculus may be hard, if not impossible, due to the lack of finite-model
property for the domain p-calculus. (The reason boils down to the fact that
Scott open sets are not necessarily compact.)

Modal p-calculus | Domain p-calculus
“fragment” means |restriction on formulas|restriction on types
finite model property yes no
decidability yes open
completeness yes open
duality results yes open

Main results. The main idea of this work is to establish a relationship between
domain logic and automata theory in order to gain insights into decidability
properties of the domain p-calculus. The idea may work in two directions. If a
(type) fragment of p-formulas can be encoded as a class of formal languages,
and this class of formal languages is decidable, then the domain pu-calculus is
decidable (for emptiness, containment). If, on the other hand, an undecidable
class of formal languages (such as context-free languages) can be emdeded as
p-formulas of a specific type, then the p-calculus for that type (and any type
more expressive than it) is undecidable. The results reported here are of the first
kind. We show that (here + is for coalesced-sum, and x is for smash-product)

1. the domain p-calculus for N = 1, + N, the domain of natural numbers, is
decidable. It is equivalent in expressive power to Presburger arithmetic.

2. the domain p-calculus for P = X'} + 3| x P is decidable, where X is a
non-empty, finite set, and X'| the corresponding flat domain. It is equivalent
in expressive power to regular languages not containing the empty string.

3. the domain p-calculus for @ = X, + (¥, x Q@ x X|) is decidable. It is
equivalent in expressive power to even linear languages which do not contain
the empty string.

Automata theory and domain mu-calculus. The expressiveness result for
natural numbers has been given in (Zhang 91). For the second type, consider
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P ={0,1}, + {0,1}1 x P, to be specific. We first show that each A-free u-
formula can be encoded as a regular expression over {0,1} as illustrated by the
following table, assuming some standard notational conventions.

p-Formula Regular expression
0x1v1x0 01 +10
pux.(0V 0 x ) 0F
uz.(0Vv1)v(0V1) xz (04+1)*

Since regular languages are closed under intersection, we know that every u-
formula can be encoded as a regular language. The interpretation of p-formulas
ensures that [¢] C [¢] if and only if set containment in the corresponding regular
languages holds. Therefore, entailment of the form [¢] C [¢] is decidable, by
the classical result of Rabin and Scott.

The situation with respect to @ = X' 4+ (X x @ x X'} ) is more intriguing.
A simple-minded analysis shows that the u-formulas here should be encoded
as the standard linear grammars (which determine linear languages). However,
containment between linear languages is undecidable, by a text-book style re-
duction of PCP (Post’s Correspondence Problem) to it. Our solution involves (a
rediscovery of) the so-called even linear grammars of Amar and Putzolu (64, 65).
An even linear grammar is a context-free grammar, each production of which
is of the form A — w with w € X*, or A — wiBws, with wy,ws € X* and
w1, ws being of equal length. The class of languages determined by even linear
grammars strictly contains the class of regular languages (e.g. {a"bc™ | n > 1}).
However, containment of even linear languages is decidable, by a technique sim-
ilar to Nerode’s right-invariant relation. For each L C X* and x,y € X*, define
x Epy if for each a,b € X axzb € L iff ayb € L. The equivalence relation Ey, has
finitely many equivalence classes exactly when L is an even linear language. The
fact that even linear languages form a Kleene algebra with respect to a mon-
standard monoidal product and the fact that they are closed under set union
and intersection hold the remaining missing pieces for this reduction to work.

Concluding remarks. One can use a notion of proportional linear grammar to
provide decidability results for a larger fragment of domain p-calculus, with small
variations on the type definitions. Our results so far remain somewhat limited,
although similar ideas and techniques may work for a bigger segment. Reduction
to tree languages of certain kind seems to be a plausible way to perhaps com-
pletely resolve the decidability issue. However, we feel that the current restricted
sense of achievement is due in large part to the inherent combinatorial nature
of the problem. It suffices to note that the restricted star-height problem had
been open for more than two decades, and the generalized star-height problem
remains open even today. Completeness issues are expected to be harder.

For related work, connections between fixed-point logics and languages have
been explored by many researchers in various contexts in the past. The special
character of our work is that it brings the notions of types and topology into the
picture, enriching the interplay among logic, topology, and languages.
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The aim of the paper is to present a study of definability properties of fixed
points of effective operators on abstract structures without the equality test,
in particular, on the real numbers. The question of definability of fixed points
of Y-operators on abstract structures with equality was first studied in [1,3,
2]. One of the most fundamental theorems in the area is Gandy theorem which
states that the least fixed point of any positive X-operator is X-definable. This
theorem allows us to treat recursive definitions using X-formulas. It turns out
that in some cases it is natural to consider languages without equality, for ex-
ample, in computable analysis [4,5,10]. Indeed, in all effective approaches to
exact real number computation via concrete representations, the equality test is
undecidable. This is not surprising, because infinite amount of information must
be checked in order to decide that two given numbers are equal.

Until now there have been no Gandy-type theorem for such structures. We
prove that Gandy theorem holds for abstract structures without the equality
test.

The concept of X-definability is closely related to the generalised computabil-
ity over abstract structures [1, 3,9, 11], in particular over the real numbers [7, 8,
11].

Notions of X-definable sets or relations on abstract structures generalise those
of computable enumerable sets of natural numbers, and play leading role in the
specification theory that is used in the higher order computation theory over ab-
stract structures. Considering an abstract structure A without the equality test,
we investigate properties of XY-operators defined on the set of subsets of A™. Let
us consider an arbitrary structure U = (A, o), where o is a finite language with-
out equality. Clearly, very little computability theory can be developed within a
completely arbitrary structure U.

In order to do any kind of computation or computability theory one has to
work within a structure rich enough for information to be coded and stored.
For this purpose we extend the structure U by the set of hereditarily finite
sets HF(A). Note that such extensions of structures with equality are rather well
studied in the theory of admissible sets [1] and used in the theory of abstract state
machines [6]. We will construct the set of hereditarily finite sets over structures

* Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
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without equality. The hereditarily finite sets permit us to define the natural
numbers, and to code and store information via formulas.
We construct the set of hereditarily finite sets, HF(A), as follows:

1. So(A) = A, Sp+1(4) = Pu(Sn(A)) US,(A), where n € w and for every
set B, P, (B) is the set of all finite subsets of B.
2. HF(A) =, Sn(A).

new

We define HF(A) as the following structure:
HF(A) = (HF(A), A, 0,0ur4), €HF(4)) »

where the constant () stands for the empty set and the binary predicate sym-
bol €xpv) has the set-theoretic interpretation.

The notions of terms and atomic formulas can be introduced in the standard
manner.

The set of Ag-formulas is the closure of the set of atomic formulas un-
der A,V,—, and bounded quantifiers (3x € s), (Vx € s), where (3x € 5) ¢ de-
notes dz(x € s A ¢) and (Va € s) ¢ denotes Va(z € s — ¢).

The set of X-formulas is the closure of the set of Ay formulas under A, V,
(Fz € s), (Vo €s),and 3.

Definition 1. A set B C A™ is X-definable , if there exists a X-formula P(x)
such that © € B < HF(A) = &(x).

Let &(x,P) be a Y-formula, where the arity of the new predicate symbol P
coincides with the length of x, P occurs positively in ¢ and x ranges over A™.
We think of @ as defining a positive Y-operator I" : P(A™) — P(A™) given
by
I'(S) = {x| (HF(A),5) = @(x, P)}.

Theorem 1. Let us consider a structure A in a finite language without the
equality test. Then the least fized-point of any positive X'-operator is X -definable.

Let us note, that if we consider the real numbers in the language of strictly
ordered rings then Gandy theorem can be used to derive X-definability of the
truth of X-sentences and to obtain a universal X-relation. It leads to a topological
characterisation of X-relations on IR.

Corollary 1. Let IR be the real numbers in the language of strictly ordering
rings. The sets B C IR that are X-definable in HF(IR) are exactly the effective
unions of open semialgebraic sets.
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Recursion in the Call-by-Value \-Calculus (*)

Gérard Boudol and Pascal Zimmer

INRIA Sophia Antipolis
BP 93 — 06902 Sophia Antipolis Cedex, France

Abstract

We propose an abstract machine to run the call-by-value A-calculus extended with a call-by-value
fixed-point, and we show that this provides us with a correct implementation of our calculus.

1. Introduction

It is a well-known fact that the call-by-value A-calculus is the functional core of programming
languages like Scheme or ML, and that the ability to use fixed-points in this calculus is essential
for the expressivity of such programming languages. However, in a language like ML, recursion is
usually syntactically restricted to

(let rec f =AzM in --+)

so that in particular one can only define functions recursively. A reason for this is that it would be
dangerous to use an unrestricted recursion construct (let rec f = M in --+), where one evaluates the
expression M before binding (recursively) its value to f. Indeed, the evaluation of this construct
gets stuck if in evaluating M one needs the value of f. An example is

(let rec f =F(fI)in ---) where F=MArAyy and I=X\zz

Nevertheless, one may wish to have the ability to define recursive non-functional values, like mu-
tually recursive modules (cf. [3, 4]), or objects as recursive records (cf. [1, 2]), that is

(let rec 0o = (Aself R)o in ---)

where R is a record of fields and methods. In [1] we have shown that one can determine, by a static
analysis — namely, a type system — that some unrestricted recursions are actually safe. However,
the question remained of how to implement this unrestricted recursion, in a more effective (and
provably correct) way than what is done in the interpreter built by the second author. For instance,
since in an implementation a A-calculus variable is not a value, one may wonder how we can compute
(Aself R)o without having a value for o. In this paper we introduce an abstract machine for such
unrestricted — but typable in our system — recursion, and we show that this implementation is
correct. For simplicity reasons, we do this for a minimal calculus, the call-by-value A-calculus
with (call-by-value) recursion, and we do not consider non-functional values like pairs, records or
modules. Indeed, we have shown in [1] that the difficulties with recursion lie in this functional core,
and that adding more types and related constructs does not cause any particular trouble.

™) Work partially supported by the CTI “Objets Migrants: Modélisation et Vérification”, France Télécom R&D
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2. The Calculus

Assuming that a denumerable set Var of variables, ranged over by x, y, z..., is given, the syntax
of our calculus is the following:

M,N... uz= V | (MN) | pzM expressions
Vi u= x| AaM values

where paM is the standard fixed-point construct, here computed in a call-by-value regime. Another
possible syntax would be (let rec x = N in M), which stands for (let x = pxN in M) — that is, as far
as polymorphism is not concerned, (AxM)(uxzN) —, since pazM may be read (let rec x = M in z).
We could also consider as a primitive a combinator fix (which is \fux(fx)), since pzM could then
be defined as fix(AzM ), but, as we said in the Introduction, it would not suit our purposes to use
the call-by-value fixed-point combinator Y, (cf. [7]), defined by

Y, = (G\G,) where G, = Agf.f(Ax.(g9g)fx)

Denoting by {x+—N}M the capture avoiding substitution of # by N in M, the reduction — or
better, evaluation — relation is given by

ANeMV) — {z—V}IM
pxV o — A{r—paViv
M—M = E[M]—E[M

where the evaluation contexts E are
E = [| | (BN) | (VE) | paE

As we said in the Introduction, we use a type discipline to rule out unsafe recursion. This is briefly
presented in the Appendix. Our type discipline here is more generous than the one of [1], in the
sense that it actually does not impose any restriction on A-terms — without recursion:

REMARK 2.1. If M is a A\-term, that is an expression written without using i, then M is typable.

In [1], we proved that the following holds:

THEOREM (TYPE SAFETY) 2.2. Let M be a closed expression. If M is typable, then its evaluation
either diverges, or ends with a value.

Moreover, we have characterized the behaviour of the recursive variables, which can only be “passed
around”, as argument of functions, or be put inside a value:

LEMMA 2.3, If uxM is typable and M = E[z], where = is not bound by E, then E = E'[(AyN [))].

This is the key property that allows us to design a correct abstract machine for our calculus: we
know that if a recursive variable comes to be evaluated, that is if we have to evaluate pxE[z]|, we
actually do not need its value, since we can continue with paE'[{y—x}N].

3. The Abstract Machine

Our machine builds upon standard stack machines for evaluating A-expressions. As such, it has a
control stack S, to record the current evaluation context, and an environment part o, to hold the
values of the free variables occurring in the code, that is, the sub-expression currently evaluated.
The stack is made up of frames, that are basic evaluation contexts (cf. [6]). As usual, substitution
of terms for variables is not performed; instead, the machine deals with closures [5], that are pairs of
an environment and an expression, that we denote oM. As regards recursion, we use the standard



63

trick of Landin’s imperative fixpoint: to compute uxM, allocate a new address ¢, evaluate M in an
environment where x is bound to ¢, and assign to ¢ the result of this evaluation. As noted in [5],
this works correctly if M is a function, that is M = AyV, though in that case we may have a more
direct implementation, binding (circularly) x to AyN in the environment. Then, assuming that a
set L of locations is given, our machine has an extra component &, which is a memory to store the
evaluated recursion’s bodies. A configuration of the machine is therefore a tuple

M = (S7U7M7§)

where the control stack and environment are built according to the following syntax:

S u= e | S:F
F oz ([oN) | (oA | ul]

o, p... u= e | ou{x—pA} | ou{x—A} | on{x—l}
A n= AxM

In o:: {z—A}, the abstraction A is the value of the recursive variable x, and is in the scope of o
(except for what regards x). In a concrete implementation the store ¢ simply is a partial mapping
assigning values to locations; however, for the correctness proof it is more convenient to have a
syntactic description of it, as follows:

§ u= 0| Su{le} | ([l:=0A4]
The domain of a store ¢ is defined in the obvious way:
dom(0) = 0
dom(f W {l+—e}) = dom(¢)U{(}
dom(¢[l := 0 A]) = dom(¢)
The operation ¢ W {{+—e} is the extension of ¢ with a new location ¢ to which is assigned a

“dummy” value, while £[¢ := 0 A] is the updating operation. Then a store ¢ represents a partial
function, defined as:

L o if /=1
(EW{l—e})(l") = { (") otherwise
, o'A lf gl == E
(&l = A])(C) { £(') otherwise

To evaluate a closed expression M, we start from the configuration (g,2, M, D). Now we describe
the behaviour of the machine, that is the transition relation M — M’ between configurations. The
first three rules for evaluating an application (M N) are standard: first, we record the closure of
the argument N on the control stack and evaluate the function M. Then we record (the closure of)
its value A = Az M’ on the stack, and turn to the evaluation of the argument. When a value for it
is computed, we update the environment of the function with a binding for « to this value, and we
compute M'. There is a special case when the argument is a recursive variable, whose value is not
yet computed: this is dealt with by a fourth rule for application, which is new. Here are the rules:

(S,0,(MN),
(S:([pN),0,4,¢
(S:: (oAzM]), p, A ¢
(S (oAyM ), pr: {o— L}, €

Su([JoN),0,M,¢)
S (oAl]), p,N,§)

yo:{x—pA}, M, )

§)
)
)
) ox{y= ), M,6) £l =

L

(
(
(S
(5,

w
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As we said, to evaluate a recursion we use Landin’s imperative fixpoint technique, except that we
make a special case when the body of the recursion is known to be a function:

(S,o,pxM, &) — (Supll),ox{z—},M, W {l—e}) M # A\yN, ( ¢ dom(¢)
(S plll,0,4,8) — (5,0,4,¢[(:=04])

Finally we have rules to fetch the value of a variable from the environment o. These rules are
standard: one discards the bindings that do not concern the given variable, and then, depending
on the value of the variable in the environment, one fetches the appropriate closure, which is
unravelled, or the abstraction that is the recursive value of the variable.

(S,o:{y—2Z},2,¢
(S,o:{x—pA}, x,&
(S,ou{z—A}, x,&

(S,o:{x—l},2,¢

S,0,,§) r#Fy
S7p7 A?é.)

S,o:{x—A}, A€

S,p, A,€) §(0) = pA

bl

(
(
(
(

For instance, the reader can check that if M = pz(K z) where K = Az Ay x, then

(e,5,M,0) 5 (e pl[) (oK [),pr2,€)  where p = =i: {210}, € = 06 {¢rse}
— (euxpll],o, \yx,§) where 0 = p:: {z+—(}
— (5,0, Ay, {[l =0y x])
A final state of the machine is a configuration of the form M = (¢, 0, A, ), and we may define the
result of the computation as the expression Val(M) = (£) o (o) A associated with this configuration,

where (o) is a simultaneous substitution for the variables, defined in such a way that it satisfies in
particular:

(0 {wpAl)r = (o)A
(0gu:{e—Ab)z = (o)pzA
(ou{o—lhx = (
where we assume for convenience that the language is extended so that locations are a new kind of
variables, and (£) is a substitution for locations, such that

(€ll:=pANt = pa{l=a}({) o (p))A

where x is fresh. Then we define a partial function Eval from closed expressions to closed values
as follows: for any closed expression M, Eval(M) is defined if there exists a (unique, since the
machine is deterministic) final configuration M such that (e,£,M,0) = M, and in this case
Eval(M) = Val(M). Then our main result is:

THEOREM (CORRECTNESS) 3.1. Let M be a closed expression. Then

(i) if Eval(M) is defined then M = Eval(M);

(ii) if M is typable and M = A then Eval(M) is defined and Eval(M) = A.

To see that the typing is needed, one can check for instance that pa(K(uz x)), which is not typable,
reduces to AypxAyx, while the evaluation of this expression in the machine gets stuck in the
configuration

(el (pK) e pl' ], py 2,0 W {l—0} W {{ —e}) where p=cu{z—(}
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The abstract machine we presented, being based on named variables, is well-suited for establishing
a correspondance with the calculus. However, it should not be difficult to built a more concrete,
nameless version of the machine, based on de Bruijn’s indices.
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Appendix: The Type System

Our notion of type is a refinement of the usual one, featuring boolean degrees 0 or 1, to discriminate
which variables are certainly safe (having degree 1) or potentially unsafe (degree 0) for recursion.
For lack of space, we shall not comment in detail here on our type system. The interested reader
is referred to [1, 4]. The degrees and types are respectively given by

| (aAp)

0% — 1)

(& ﬂ e = 0 | 1
T, 9 . = * | (
We consider types up to an equality asserting that * is, as a data type, Scott’s Dy domain of

functions:

*:(*0—>*)

Then our type system will accept any A-term. We also counsider types up to equality of degrees
a = f3, defined as o« < f & B < «, where the preorder < satisfies the following laws:

0<ax<l
a<aNf and a< A
alag&asa = a<agha
The typing judgements are I'V = M : 7 where I' is a typing assumption, that is a mapping from

a finite set of variables to types, and v is a degree assumption, from the same set of variables to
degrees. We use the following notations:
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e we abusively denote by 0 and 1 the degree assumptions (of any appropriate domain) that
uniformly assign respectively 0 and 1 to any variable.

e for any degree a and expression IV, we denote by ay the degree assumption defined by ay(x) =
aif x € fv(N), and ay(z) =1 otherwise.

e § < von X, where 6 and v are degree assumptions with the same domain and X is a set of
variables, means that 6(x) < y(z) for all x € X.

e O A~ isthe degree assumption pointwise defined by (6 A~)(x) = 6(z) A y(x).

The typing rules are as follows:

MM-M:7 6 < v on fv(M) [Mx:0FM:7
-M:r Mo ba:r I EAoM: (0% — 1)
M"F-M:04—r M"-N:0 it N=u
where 6(z) = .
TOMAS - (MN): 7 (any Ay)(x) otherwise
Mot - M:r
' paM:1

The only constraint that may not be satisfied in typing a term is that any recursive variable must
have degree 1 in the typing context for its body. There are three ways in which a variable may
get degree 1 in the typing context for an expression M: either it does not occur in M, or x occurs
either within abstractions in M or in arguments of “protective” functions, that are expressions of
type ' — 7. For instance the function K = Az\y « is protective, since it puts its argument within
an abstraction, and therefore puz(Kz) is typable.
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Kleene’s (unary) star in nondeterministic context

Anna Labella
U Rome I (La Sapienza)
Italy
(joint work with Rocco De Nicola)

Trees represent w.r.t. non deterministic processes what languages are w.r.t.
automata. This statement can be quite easily formalized in enriched category
theory. Hence it seems natural and important to investigate the behaviour of
the (unary) Kleene star operator in this context. From an algebraic point of
view it amounts to drop idempotency of sum and left distributivity from the
usual properties that hold for Kleene algebras. It can be proved that star-regular
trees (i.e. trees corresponding to regular expressions), differently from regular
languages, are finitely equationally axiomatizable, provided that a sort of non
empty word property is required. On the other hand one can finitely present
every such a tree as minimal solution (fixed point) of a hierarchical right-linear
equation system. This property holds also in the case where the non empty
word property above is not satisfied, i.e. when in the equation system there are
variables essentially non guarded. We can prove that in the category of star
regular trees, Tree*, we can define a ”"natural numbers object” (and, therefore,
recursion) as minimal solution of a very simple equational system. The purpose
is achieved by introducing a simple method of representing morphisms by hier-
archical right-linear equational systems as well. The same method can be used
to prove many properties of the category Tree*, in particular the existence of a
subobject classifier. It must be remarked that the natural numbers object, as
well as the subobject classifier trivially collapse into the terminal object when
translated in the category of regular languages.
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Abstract

We report on work whose overall aim is to obtain a template fixed point algorithm that
can be used to compare existing algorithms such as work-set algorithms, top-down solvers,
local solvers etc. for calculating solutions of monotone systems of equations over lattices.
The approach taken here is to focus on the dependency graph between the variables of
the system and exploit this graph to schedule the iteration of the system. The resulting
iteration scheme reduces the number of expressions to be re-evaluated both in theory and
in practice (up to 50 % in certain cases).

1 Introduction

Data flow analysis usually involves a phase of fixed point computation whose algorithmics is
largely independent of the particular property analysed for [4, 9]. This has lead to the search
for generic fixed point algorithms that can serve as “back ends” in program analyzers. A
common feature of these algorithms is a dependency relation that describes how the value
of one variable depends on the value of another variable. However, the algorithms are often
expressed in a manner that makes it difficult to compare how the dependency relation is
exploited. The aim of the work reported here is

1. to make clear how the dependency relation can be exploited to implement and optimise
a fixed point computation,

2. to provide a framework (in the form of a template algorithm plus accompanying data
structures) that enables a comparative study of iteration-based fixed point algorithms.

The paper is organised as follows. After introducing the basic notation we define a theoretical
iteration scheme (Section 3) based on the notion of minimal elements of a dependency relation.
The theoretical algorithm defines an ideal iteration scheme but is defined in terms of an
exact dependency relation which makes it unfeasible in practice. Section 4 shows how to
calculate a safe approximation to the exact dependency relation based on a syntactic notion
of dependency. This leads to a basic iteration scheme for which we then present benchmarks
comparing it with other iteration schemes in terms of space, time and number of iterations.
Section 6 draws some conclusions and outlines further issues to be investigated.

*This work was partially supported by the IST FET/Open project “Secsafe”.
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Figure 1: A toy dependency graph and domain

2 Notation

In this section we briefly define the notation to be used in the paper. For a much more
comprehensive introduction to fixed points, see the recent textbook by Arnold and Niwinski
[1]. In the following, i, j range over the integers 1,...,n. Let E,..., E, be finite lattices and
let e; be an expression satisfying that all free variables in e; are included in {fi,..., f,}, that
e; defines a monotone function in all variables, and that evaluating e; in an environment ¢
satisfying ¢(f;) € E; yields a value in E;. We write e; ¢ for the value of e; in environment ¢.
A solution to a system of equations of the form

{fl :61;---afn:€n}
can be characterised as a fixed point of the function
e:(Eyx...x E,) — (E1 X...x Ey)

induced by the e; and defined by ep = (e1 ¢, ..., e, ¢) The least solution to the system of
equations can be found as the limit of the ascending Kleene chain (AKC)

{ei(J-Ela"'vJ-En)}ioiO (1)

We do not put any restrictions on the type of the expressions e;. In particular, these expres-
sions can denote functions.

Example 1 (A toy example) We will use as a running example the following equation
system

B =incr(A)
C = maz(B,A)
A=C

where the variable domain is as in Figure 1 and incr is the mapping {L +— e, e — T T — T}.
The syntactic dependency graph (to be defined in Section 4 of this equation system is as in
Figure 1. Figure 2 shows the AKC for this example.
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Figure 2: The AKC for Example 1: 21 evaluations

3 Scheduling for an ideal fixed point algorithm

A somewhat less naive method for calculating the limit of an AKC consists in iterating all
equations in order (the round-robin algorithm). However, this is still an inefficient approach
and is in general only feasible for the simplest dataflow problems [7]. The inefficiency stems
from the possibility that an equation may be iterated even though the value of its defining
expression will not change. This may happen either because there have been no changes in
the variables occurring in the expression or because these changes do not have any impact on
its value. Thus, only expressions that are guaranteed to change value should be re-evaluated
during an iteration. This set of equations depends on the current approximation ¢ and is
given by
Wy =A{fil¢i #eio}

Not all equations in W should necessarily be scheduled for iteration. If the value of f; depends
on the value of f; then it is usually wasted effort to re-evaluate f; before having found the
new value of f;. The only exception to this is when f; and f; are mutually dependent. The
dynamic dependency relation is defined relative to the current values of variables ¢ by

L fi=edTedlfy— e gl

The notation “f; 2, fi” should be read as “f; depends on f; under the valuation ¢”.

3.1 Minimality

The equations in W that should be iterated can now be characterised as the minimal elements
of Wy with respect to the dynamic dependency relation. We define for a set S C {1,...,n}
and relation — its set of “minimal” elements as follows:

min(S,—)={j € S :if Fi € Si —Tj then j —7T i}.

where —7 is the transitive closure of —.

The notion of minimality corresponds to the intuitive notion of minimality when there
are no cycles in the graph induced by —. However, in case of a cycle in S, all elements of the
cycle will belong to the min-set. In that case, Algorithm 1 can be further improved by only
iterating one (arbitrarily chosen) element from each cycle. We leave it as an open problem to
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Figure 3: Trace of the ideal algorithm (Example 1): 6 evaluations

find a better definition of minimality that takes cycles into account—perhaps as an iterative
definition starting from elements without predecessors.

3.2 Theoretical algorithm

The above considerations lead to the following iterative algorithm for calculating the limit of
the sequence (1).

Algorithm 1

forallie {1,...,n}¢; := L;
repeat
I:= mz’n(W(b,g);
forallv e 1
bi=¢€ ¢ ;
until I =)

Theorem 3.1 Algorithm 1 terminates with ¢ a fixed point of e

ProOF: If I = () implies that W = () and hence, by definition of Wy, we have ¢ = e(¢). O
This algorithm is mainly of theoretical interest since it is in general not possible to calculate

Wy and LA exactly without evaluating the defining expression of each equation and thus
no work is saved. Hence approximations of these entities are needed to obtain practical
algorithms.

Figure 3 shows the trace of the ideal algorithm applied to the toy example from Figure 1.
We assume that every time a set of variables is selected for evaluation (I in the sequel) the
corresponding expressions are evaluated in parallel.
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Figure 4: Trace of the workset algorithm (Example 1): 11 evaluations

4 Scheduling for work-set algorithms

A common approach to calculating the limit of an AKC is to employ a work-set algorithm
[8] that keeps a work-set W of equations to be iterated next. The algorithm continues to
select a set of equations from the work-set for iteration according to some strategy and adds
elements that are liable to have changed value to the work-set after each such iteration. The
process ends when the work-set is empty. The following is a template work-set algorithm,
parameterised on the strategies for selecting the next equation to iterate and for modifying
the work-set.

Algorithm 2 (The template work-set algorithm)

forallie {1,...,n} ¢j, 7, := L;
W = ity ;
repeat
I := strategy (¢, W);
forallv e 1
T =€ ¢ ;
W := modify (W, ¢, T);
0i=7;
until I =

The naive method mentioned above is obtained by always keeping the whole set of equa-
tions in the work-set W and using a strategy that after evaluation of equation 4 selects
equation 7 + 1 mod n. The theoretical iteration algorithm is obtained by setting

strategy (¢, W) = min(Wy, g),

replacing 7 with ¢ and removing the last two assignments to W and ¢ since these no longer
play any roéle in the algorithm.

A standard approximation, dating back at least to Kildall [8], of the set W, of equations
that will change value amounts to replacing it with the set of equations in which a variable
has changed value [8]. More precisely, the system of equations defines a syntactic dependency
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Figure 5: Trace of the basic algorithm (Example 1): 10 evaluations

relation, denoted by —, between the variables: variable f; depends on variable f; if f; occurs
in the expression e;:
fj — fi = f; occurs textually in e;.

From the — relation we define the “image-under-—” operation !

N={j|3el:fi—f}

that yields the set of indices of the equations containing an z; with ¢ € I. This is used to
define “modify”, as shown in Algorithm 3 below. Figure 4 shows the trace of applying a
work-set algorithm to the toy example from Figure 1.

The set I! over-estimates the set of variables that change value as a result of changes in the
fi, and it is this set that is added to the work-set after each iteration. As noticed in Section 3,
it is possible that there are dependencies between the elements in a set I! of equations to
be iterated and only the minimal elements (with respect to —) are scheduled for evaluation.
Instantiating the work-set algorithm above, we arrive at the basic iteration scheme:

Algorithm 3 (Basic iteration scheme)

forallie {1,... ,n}¢;, 7 := L;
W:={1,...,n}
repeat
I := min(W,—); % strategy
foralliel
T; ‘= €5 ¢;
W:=WN\ILHuliel:¢; #7}! % modify
¢:=T;
until I =0

Proposition 4.1 If W, C W holds on entry to the loop then it also holds on exit.
Theorem 4.2 Algorithm 3 terminates with a fixed point of e

Proor: Since Wy € W trivially holds initially, it also holds when the algorithm terminates.
Then I = () implies W = () hence W, = () which implies that ¢ is a fixed point. O
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In Figure 5 we show the trace of the basic iteration scheme applied to the example from
Figure 1.

5 Experiments

The Basic Iteration Scheme has been used to implement a series of program analyses rang-
ing from pointer analysis of C programs [6] over polyhedral analysis of synchronous SIGNAL
programs [2] to class analysis of Java programs. We here report some experimental figures
to show that the number of equations evaluated in the different iteration schemes do indeed
decrease as we exploit the dependency relation better. For each program analysed we give
the number of equations evaluated with the three different iteration schemes presented in the

paper.

Analysis No. of eqns. | Naive | Workset | Basic
C pointer analysis | 42 eqs 1050 120 60
Java class analysis | 49 eqgs 147 75 44
Java class analysis | 188 eqs 1692 272 158

As can be seen from the table, the basic algorithm obtained a 40-50 % reduction in the
number of expressions that were evaluated during iteration, compared to a standard work-set
algorithm. The impact of avoiding superfluous evaluations on the overall running time varies
with the type of analysis. We observed significant savings only for the C pointer analysis. This
is due to the fact that the expression in the C pointer analysis are all rather complex matrix
manipulations whereas the expressions in the Java class analysis are simple set manipulations.
Another point is that the computation of the transitive dependency relation is in itself costly.
No attempt has been made to optimise this part of the computation, so for the moment the
Basic Iteration Scheme only improves the overall running time of the C pointer analysis.

6 Conclusions

The Basic Iteration Scheme (BIS) constitutes a simple algorithm for implementing a fixed
point solver. It relies on the dependency relation between variables to improve the stan-
dard work-set algorithm by only scheduling variables that do not depend on other variables
ready for evaluation. This theoretical improvement in the number of expressions to evaluate
manifests itself in practical experiemnts. There are further related issues that we have not
addressed here:

e The BIS exploits the dependency relation — to avoid certain useless re-evaluations of
expressions and has been used to implement several program analyzers. The practical
experiments reported in Section 5 show that the overhead incurred by calculating the
sets min(W, —) in certain cases exceeds the savings obtained. Thus, it is necessary to
experiment with cheaper approximations to these sets.

e The top-down solvers [3, 5] will suspend evaluation of an expression if some of its
variables need re-evaluation, and instead schedule these variables for evaluation. The
top-down solvers use an evaluation stack combined with cycle detection to implement
this. We obtain an effect similar to this by calculating the min (W, —)-sets, by which
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we suspend evaluation of a variable if it depends on other variables that migt evolve. A
precise comparison between the two algorithms is challenging future work.

Finally, we remark that in certain cases, we are only interested in the value of some of the
variables in the system of equations. An algorithm for calculating such a local fized point was
given in [10]. This algorithm can be expressed quite naturally as an extension to the BIS. We
will show this extension in a longer version of the paper.
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If f(y) is an order preserving endofunction of a closed ordered monoid, then the two inequations

flg(x)) @z < g(x) g(f(x) —z) <w

determine an order preserving endofunction g(x) as py.(f(y) ® x), the parameterized least prefixed
point of f(y) ® x. This observation is the core of a method to axiomatize by equations the least
prefixed point [7]. When this method is applied to the propositional Boolean modal p-calculus, it
shows that Kozen’s axiomatization [4] can be turned into an equivalent equational axiomatization
that is complete with respect to Kripke frames by Walukiewicz’s theorem [9].

Being able to equationally axiomatize the propositional Boolean modal u-calculus implies that
its algebraic models form a variety of algebras, in the usual sense [3]. We call these models modal
p-algebras. The main characteristic that distinguishes a variety from a quasivariety — i.e. a class
of models that can be axiomatized by equational implications — is that such a class is closed under
homomorphic images defined from congruences. Thus, in a variety of algebras, there is always a
bijection between quotients of an algebra (categorically, strong epimorphisms) and congruences on
the algebra.

Modal p-algebras are therefore closed under homomorphic images; we have investigated con-
gruences of modal u-algebras and found a characterization suitable for algebraic computations. In
this talk we will present this characterization and illustrate its use by lifting some classical results
from modal logic and modal algebras [5] to the setting of modal p-algebras.

The characterization of congruences can also be exploited in the context of verification of
systems, as these results can be reformulated in a logical framework. For example, it could be useful
to analyze a restricted class of transition systems where given subsets of states are known to satisfy
a finite number of algebraic relations. Some propositions of the modal u-calculus could hold true
in these models, and it would be desirable to know whether their truth is a consequence of Kozen’s
axiomatization and of those algebraic relations. This is a particular instance of a common problem
in logic: is a proposition derivable from a finite set of propositions that are assumed as axioms?
Among the results that we present is a deduction theorem for the propositional Boolean modal
p-calculus; this theorem allows to reduce derivability from a finite set of axioms to derivability
from no axioms. As the latter problem is well known to be decidable for the modal p-calculus, then
derivability from a finite set of propositions becomes decidable as well.

1 Definitions

In the following X' is a finite non empty alphabet of actions and X is a countable set of variables.

Definition 1.1. We define by induction a set T(Y) of u-terms in context Y, for each finite subset
Y of X.

—IfzeY, thenx € T(Y).
- Te€ T(Y), and if t1,t2 € T, then t1 A2 € T(Y)
—IfteT(Y), then -t T(Y),

* This work was developed at the Department of Computer Science, University of Calgary. The author
aknowledge financial support from Canada’s NSERC, the Pacific Institute for the Mathematical Sciences,
and from the European Community through a Marie Curie Individual Fellowship.
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—IfteT(Y)ando € X, then [o]t € T(Y).
— IfteT(Y) and x € Y is a variable that occurs in t in the scope of an even number of symbols
-, then p,t € T(Y \ {z}).

Definition 1.2. A modal p-algebra is a pair (A, |—1), where A = (A, T,A, 7, {[0]}sex) is a modal
algebra, see [5, §2.2.2], and | —| is an interpretation of termst € T (Y) as functions |t| : AY — A
with the following properties:

— |x| is the projection on the z-coordinate.
— | — | agrees with the structure of the modal algebra A, that is, |T| = T, |t1 Ata] = |t1| A |t2],
[~t| = =], and |[o]t] = [o]|¢]-
— The function
o t] - AYMEH 4

is the parameterized least prefixed point of
It - AL} x AYMar 5 4

Note that if A is a modal algebra, then there exists at most one interpretation |—| such that (A, |—|)
is a modal p-algebra. Thus we can leave the interpretation | — | in the background and, by saying
that A is a modal u-algebra, we mean that A is a modal algebra and that such interpretation | — |
can be found. Accordingly, if t € 7(Y'), we simply write ¢ for the function |t|. An homomorphism
of modal p-algebras from A to B is a function f between the underlying sets such that for all
t € T(Y) fot=tofY. Other operations on modal u-algebras can be defined in terms of the given
operations, for example:

x—y=-(xA-y) reoy=(@—-y Ay —x)
(o) = —[o]~x Ve t(z,y) = —pemt(—z,y)

Definition 1.3. A congruence on a modal p-algebra A is an equivalence relation ~C A x A such
that, for every p-term t € T(Y) and every pair a,b € AY, if a, ~ b, for each y € Y, then
t(a) ~ t(b) as well.

Given a modal p-algebra A4 and a congruence ~ on A, we can define the homomorphic image
A/ ~ as follows. Its elements are equivalence classes under ~; we denote by [a] the equivalence
classof a € A. If t € T(Y) and {[ay] }yev is a collection of equivalence classes, then we can define

t({lay]}yer) = [t({ay }yev )]

This is well defined, as usual, and A/ ~ is certainly a modal algebra. By the results in [7] this is
also a modal pu-algebra.

2 The Characterization

On every modal p-algebra we define the operation
2z =vy.(x A )\ [oly).
[4<P)

Recall that a filter on a modal p-algebra A is a subset F' of A such that T € F and a Ab € F if
and only if a,b € F. We say that a filter F' is open if f € F implies that [X*]f € F.

Theorem 2.1. There is a bijection between congruences on a modal p-algebra A and open filters

of A.
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The bijection is as follows: a congruence ~C A x A is sent to the filter F.. defined as:
rEeEF. iff ~T.

The filter F. is open, since if z ~ T, then [X*]z ~ [Y*]T = T. Conversely, given an open filter F
we define the relation ~p as follows:

a~pbiff abeF.

This is an equivalence relation, as it is usual in the context of Boolean algebras. To prove that this
is also a congruence we use the following lemma:

Lemma 2.2. For all c € A, t € T(Y) and a,b € AY, if for all x € Y [Y*]c < a, ¢ by, then
[Z*]e < t(a) + t(b) as well.

A filter F is principal if it is of the form {b|a < b} for some a; in this case we say that F is
generated by a and write F' = F,. Remark that a principal filter F} is open if and only if it is
generated by some element of the form [X*]b. Indeed, if Fj, is open, then a = [Y*]a since [X*]a < a
and [Y*]a € F,. On the other hand, a filter of the form Fjy-.), is open since [X*]b is a fixed point
of [X*].

Let now ~ be the principal congruence generated by the pair (a,b). From the above discussion,
it follows that ¢ ~ d if and only if ¢ <> d € Fly+)(a), 1-€. if and only if

[X*(a < b) <c+ed.
Thus, we have observed that:

Corollary 2.3. The variety of modal p-algebras has equationally definable principal congruences.

See [1], for a general study of varieties with this property. As noted there, this property corresponds
to a deduction theorem for Kozen’s axiomatization of the Boolean modal p-calculus. Indeed, write
I' - pif it is possible to derive the proposition p by adding to the set of axioms all the propositions
in I'. Then, from I'U {q} F p, it follows that I" - [X¥*]¢ — p.

As Fiz«j(anp) is the least filter containing both F|g-, and F{g-};, we can argue that every
finitely generated congruence is principal. It follows that if ~ is the congruence generated by the
pairs (a;,b;), i = 1,...,n, then [¢] < [d] in A/~ if and only if [Y*](A\,,  ,ai ¢ b) <ce din
A. Thus:

Corollary 2.4. If ~ is a finitely generated congruence on A, then the order relation of A/ ~ is
decidable, provided the one of A is decidable.

Since it is easily argued that [Y*] L = L and that the greatest open filter contained in both Fis+},
and Fy-}, is the principal filter generated by [X*]([2*]a V [X*]b), it follows that:

Corollary 2.5. The set of finitely generated congruences of A is a sublattice of the lattice of
congruences on A. Moreover it is a dual Heyting algebra.

The last statement can be seen as follows. The signature of modal p-algebras extends the one
of Boolean algebras, thus the variety of modal p-algebras is congruence distributive. Moreover it
was shown in [1] that in a variety with equationally definable principal congruences the lattice of
finitely generated congruences of an algebra is a dual Brouwerian semilattice.

3 Subdirectly Irreducible Algebras

Recall that an algebra is subdirectly irreducible if it has a least proper congruence. Subdirectly
irreducible algebras are interesting as any algebra can be represented as a subdirect product of
subdirectly irreducible algebras. The following proposition is easily derived:
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Proposition 3.1. A modal p-algebra A is subdirectly irreducible if and only if there exists an
element a € A, distinct from T, such that if b€ A and b # T then [X*]b < a.

A frame F is a pair (X, {R;}secx), where X is a set and, for each 0 € ¥, R, is a relation on
X. The powerset P(X), with the modal operators

[g]S={ze X|Vye X(zR,y=>y€S)},

is then a modal p-algebra. The graph of a frame F is the pair (X,J,cy Rs). A source in F is an
element x € X such that every y € X is reachable from x in the graph of F. A frame is connected
if every element is a source.

Proposition 3.2. The algebra of a frame is subdirectly irreducible if and only if the frame has a
source. The algebra of a frame is simple if and only if the frame is connected.

The above statements are easily derived when the characterization of congruences is dualized in
terms of ideals. Observe that the analogous statements fail for modal algebras. They are true for
modal p-algebras since reachability is algebraically expressible.

Corollary 3.3. The variety of modal p-algebras is not residually small.
See [8] for the definition of a residually small variety. To prove the corollary it is enough to construct

connected frames of arbitrary cardinality.

4 Congruence Extension and Amalgamation

Among the consequences of corollary 2.3 is that the variety of modal p-algebras has the congruence
extension property. This property also holds for modal algebras and states that if (i,B8) is an
extension of a modal u-algebra A and (p,C) is an homomorphic image of A, then it is possible to
find an extension j of C and an homomorphic image g of B such that goi = jop:

i

A B
p :’1
.
O

Using the finite model theorem for the modal p-calculus, the fact that the variety of modal p-
algebras has equationally definable principal congruences, and the congruence extension property,
the following fact can easily be proved:

Proposition 4.1. Let V be the variety of modal p-algebras with additional constants subject to a
finite number of given algebraic relations. Then V is residually finite, that is, if an equation holds
in every finite member of V, then it holds in every member of V.

The congruence extension property equivalently states that the pushout of a monomorphism
along a quotient is again a monomorphism. As monomorphisms and homomorphic images form a
factorization system in any category of algebras, it becomes interesting to investigate the analogous

property:

Definition 4.2. A wvariety of algebras V has the amalgamation property, if for any algebra A
in'V and any two extensions (i1,B1) and (ia, Ba) of A, there exists extensions ji,jo such that
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J1 oty = jz20is:
i

A B
Y

at Jz
L
Bl = N >C

Equivalently, the amalgamation property states that the pushout of a monomorphism along
a monomorphism is again a monomorphism. The congruence extension property and the amal-
gamation property together imply the transferability property which states that the pushout of a
monomorphism along any homomorphism is again a monomorphism.

The characterization of congruences given here is of help in relating amalgamation to interpo-
lation, a property of a syntactical nature. This has been done for modal algebras and modal logic
[6] and can be generalized to modal p-algebras, as follows.

Definition 4.3. A variety of modal u-algebras V has the strong amalgamation property if it has
the amalgamation property as in 4.2 and moreover there exists a € A such that by < i;(a) and
iz(a) < by, whenever by € By, by € By and j1(b1) < ja(ba).

In the following definition F),(X) denotes the modal u-algebra in the variety V freely generated
by the set X.

Definition 4.4. A wvariety of modal p-algebras V has the interpolation property if and only if,
whenever p € Fy(X), g € Fy(Y) and p < q in Fy(X UY), then there exists r € Fy,(X NY) such
that p < r in Fy(X) and r < q in Fy(Y).

Thus:

Proposition 4.5. A variety of modal p-algebras has the interpolation property if and only if it
has the strong amalgamation property.

Recently the interpolation property of modal logic has been extended to the propositional
Boolean modal p-calculus [2]. It follows that the variety of modal p-algebras has the interpolation
property, as we have defined it in 4.4, and therefore the amalgamation property.
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