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General A- and AX-Uni�cation viaOptimized Combination ProceduresFranz Baader1 and Klaus U. Schulz21 DFKI, Stuhlsatzenhausweg 3, 6600 Saarbr�ucken 11, Germany2 CIS, University Munich, Leopoldstr. 139, 8000 M�unchen 40, GermanyAbstract. In a recent paper [BS91] we introduced a new uni�cation al-gorithm for the combination of disjoint equational theories. Among otherconsequences we mentioned (1) that the algorithm provides us with adecision procedure for the solvability of general A- and AI-uni�cationproblems and (2) that Kapur and Narendran's result about the NP-decidability of the solvability of general AC- and ACI-uni�cation pro-blems (see [KN91]) may be obtained from our results. In [BS91] we didnot give detailled proofs for these two consequences. In the present pa-per we will treat these problems in more detail. Moreover, we will usethe two examples of general A- and AI-uni�cation for a case study ofpossible optimizations of the basic combination procedure.1 IntroductionFor a long time, most applications of equational uni�cation presupposed algo-rithms which solve the enumeration problem, i.e. the problem to enumerate ina compact way the set of all solutions of a given set of equations modulo anequational theory E. The recent development of constraint approaches to logicprogramming (see e.g., [JL87, Co90]), theorem proving (see e.g., [B�u90]) andterm rewriting (see e.g., [KK89]) emphasizes the need for satis�ability checkingand the decision problem received a new status. The decision problem for E isthe problem to decide for a given set of equations whether they have a solutionmodulo E or not.In the �rst part of this paper we shall study the decision problem in thecontext of two equational theories, namely the theories A and AI, expressingassociativity respectively associativity plus idempotency of a function symbol.To be more precise, a distinction has to be made with respect to the signaturewhich is used to built the terms of a uni�cation problem.In the simple case only the function symbol occurring in the equationalaxiom(s) is used, beside constants and variables. This type of problem will becalled uni�cation with constants. Associative uni�cation problems with constantsmay be regarded as �nite systems of equations in a free semigroup, often cal-led word equations. Makanin's algorithm ([Ma77]) shows that the solvability of



�nite systems of word equations is decidable. Decidability of AI-uni�cation pro-blems with constants follows easily from the fact that idempotent semigroupsare locally �nite (see [Mc54]).However, applications in constraint logic programming and other areas pre-suppose that terms may contain additional free function symbols. The PrologIII term < FF (1; < 1 > �x; 2) > �x� < FF (x; y; y); 1 >for example may be regarded as a \generalized word" corresponding to a termf(1; 1 � x; 2) � x � f(x; y; y) � 1where \f" is a free function symbol, \1" and \2" are constants and \�" is anassociative function symbol in in�x notation. Constraints over lists as used inProlog III stand in a close relationship with general associative uni�cation pro-blems, i.e., associative uni�cation problems with free function symbols.The decidability of general A- and AI-uni�cation problems was open fora long time (compare Kapur and Narendran's table of known decidability andcomplexity results in uni�cation theory [KN91]). A positive answer was obtainedin our paper [BS91] where we used the fact that general E-uni�cation may beregarded as an instance of the combination problem. The combination problem(see e.g, [BS91, Sc89]) is concerned with the question of how to derive uni�cationalgorithms (for the enumeration problem or the decision problem) for uni�ca-tion in the union of equational theories over disjoint signatures from uni�cationalgorithms in the single theories. In [BS91] the following general theorem wasproved:Theorem: Let E1; : : : ; En be equational theories over disjoint signatures suchthat solvability of Ei-uni�cation problems with linear constant restriction is de-cidable for i = 1; : : : ; n. Then uni�ability is decidable for the combined theoryE1 [ : : : [En.Linear constant restrictions are induced by a linear order \<" on the setX [C of variables and constants, demanding that, for a uni�er �, the constantc must not occur in �(x) if c > x. The combination algorithm which is used toestablish this result will be described in section 2. The description| which is theone given in [BS91] | is conceptually clear, but it is not the most appropriateone for e�cient implementation since it does not try to minimize the number ofpossible choices in the non-deterministic steps. For this reason we will discussoptimized versions of the basic combination procedure in the context of generalA- and AI-uni�cation problems in section 3.Let us return to the theorem. Obviously, every general A-uni�cation (resp.general AI-uni�cation) problem with set of free function symbols 
 may beregarded as a combination of the theory A (AI) with the free theory F
 =ff(x1; :::; xn) = f(x1; :::; xn); f 2 
g. For the latter theory uni�cation is simply



uni�cation in the empty theory. As a matter of fact, the solvability of Robinsonuni�cation problems with linear constant restrictions is decidable. If at leastone uni�er for such a problem satis�es the constant restrictions, then the mostgeneral uni�er will satisfy them, and vice versa.In order to prove that solvability of general A- (AI-) uni�cation problems isdecidable it remains to show that solvability of A- (AI-) uni�cation problemswith linear constant restrictions is decidable. These problems, and the relatedproblems of A- (AI-) uni�cation with partially speci�ed linear constant restric-tions (which arise from our optimization methods) will be discussed in sections4 and 5.Another problem which was solved only recently is the complexity of generalAC- and ACI-uni�cation, where AC (ACI) is the theory of one associative andcommutative (and idempotent) function symbol. Kapur and Narendran [KN91]could prove that both problems are NP-decidable. In the last section we shallshow that this observation follows easily from our combination result.2 The Combination AlgorithmFor the sake of convenience we shall restrict the presentation of the basic algo-rithm to the combination of two theories. The combination of more than twotheories can be treated analogously. Before we can start with the description ofthe algorithm we have to introduce some notation.Let E1; E2 be two equational theories built over disjoint signatures 
1; 
2,and let E = E1 [E2 denote their union. Since we are only interested in elemen-tary E-uni�cation3, we can restrict our attention to terms built from variablesand symbols of 
1[
2. The elements of 
1 will be called 1-symbols and the ele-ments of
2 2-symbols. A term t is called i-term i� it is of the form t = f(t1; :::; tn)for an i-symbol f (i = 1; 2). A subterm s of a 1-term t is called alien subtermof t i� it is a 2-term such that every proper superterm of s in t is a 1-term.Alien subterms of 2-terms are de�ned analogously. An i-term s is pure i� it con-tains only i-symbols and variables. An equation s := t is pure i� there exists ani; 1 � i � 2, such that s and t are pure i-terms or variables; this equation isthen called an i-equation. Please note that according to this de�nition equationsof the form x := y where x and y are variables are both 1- and 2-equations. Inthe following, the symbols x; y; z, with or without indices, will always stand forvariables.Example 1. Let 
1 consist of the binary (in�x) symbol \�" and 
2 of the unarysymbol \h", let E1 := fx � (y � z) = (x � y) � zg be the theory which says that\�" is associative, and let E2 := fh(x) = h(x)g be the free theory for \h".3 i.e, uni�cation where the terms of the uni�cation problems are built over the signa-ture of E.



The term y � h(z � h(x)) is a 1-term which has h(z � h(x)) as its only aliensubterm. The equation h(x1) � x2 := y is not pure, but it can be replaced by twopure equations as follows. We replace the alien subterm h(x1) of h(x1) �x2 by anew variable z. This yields the pure equation z �x2 := y. In addition, we considerthe new equation z := h(x1). This process of replacing alien subterms by newvariables is called variable abstraction. It will be the �rst of the �ve steps of ourcombination algorithm.Combination Algorithm | Basic FormThe input for the combination algorithm is an elementaryE-uni�cation problem,i.e., a system �0 = fs1 := t1; : : : ; sn := tng, where the terms s1; : : : ; tn are builtfrom variables and the function symbols occurring in 
1 [
2, the signature ofE = E1 [ E2. The �rst two steps of the algorithm are deterministic, i.e., theytransform the given system of equations into one new system.Step 1: variable abstraction. Alien subterms are successively replaced bynew variables until all terms occurring in the system are pure. To be moreprecise, assume that s := t or t := s is an equation in the current system,and that s contains the alien subterm s1. Let x be a variable not occurringin the current system, and let s0 be the term obtained from s by replacings1 by x. Then the original equation is replaced by the two equations s0 := tand x := s1. This process has to be iterated until all terms occurring in thesystem are pure. It is easy to see that this can be achieved after �nitely manyiterations. Now all the terms in the system are pure, but there may still existnon-pure equations, consisting of a 1-term on one side and a 2-term on theother side.Step 2: split non-pure equations. Each non-pure equations of the form s :=t is replaced by two equations x := s; x := t where the x are always newvariables.It is quite obvious that these two steps do not change solvability of the system.The result is a system which consists of pure equations. The third and the fourthstep are nondeterministic, i.e., a given system is transformed into �nitely manynew systems. Here the idea is that the original system is solvable i� at least oneof the new systems is solvable.Step 3: variable identi�cation. Consider all possible partitions of the set ofall variables occurring in the system. Each of these partitions yields one ofthe new systems as follows. The variables in each class of the partition are\identi�ed" with each other by choosing an element of the class as represen-tative, and replacing in the system all occurrences of variables of the classby this representative.



Step 4: choose ordering and theory indices. This step doesn't change agiven system, it just adds some information which will be important in thenext step. For a given system, consider all possible strict linear orderings <on the variables of the system, and all mappings ind from the set of variablesinto the set of theory indices f1; 2g. Each pair (<; ind) yields one of the newsystems obtained from the given one.The last step is again deterministic. It splits each of the systems alreadyobtained into a pair of pure systems.Step 5: split systems. A given system � is split into two systems �1 and�2 such that �1 contains only 1-equations and �2 only 2-equations. Thesesystems can now be considered as uni�cation problems with linear constantrestriction. In the system �i, the variables with index i are still treatedas variables, but the variables with alien index j 6= i are treated as freeconstants. The linear constant restriction for �i is induced by the linearordering chosen in the previous step.The output of the algorithm is thus a �nite set of pairs (�1; �2) where the�rst component �1 is an E1-uni�cation problem with linear constant restriction,and the second component �2 is an E2-uni�cation problem with linear constantrestriction.Proposition 1. The input system �0 is solvable if and only if there exists a pair(�1; �2) in the output set such that �1 and �2 are solvable.A proof of this proposition was given in [BS91]. It was also shown how thecombination procedure can be used in order to generate a complete set of uni�ersfor the combined theory, provided that there are algorithms which enumeratecomplete sets of uni�ers for uni�cation problems with constant restrictions inthe single theories.As mentioned in the introduction, the presentation given above is concep-tually simple but ine�cient since no attempt was made to minimize the numberof possible choices in the non-deterministic steps. Let us now give an optimizedversion of the combination algorithm in a particular context.3 Optimization for Combination with the Free TheoryBefore we treat the cases of general A- and AI- uni�cation let us consider thesituation where an arbitrary equational theory E is combined with an instanceof the free theoryF
 := ff(x1; : : : ; xn) = f(x1; : : : ; xn); f 2 
g



in order to obtain a uni�cation algorithm for general E-uni�cation.We shall assume that the variables occurring in the uni�cation problems areelements of a countable set Z which has �xed standard linear ordering <Z . Thefollowing optimized combination algorithm rules out several choices which arepossible in the non-deterministic steps of the non-optimized version.Optimized Combination Algorithm | Version 1Context: Combination of an equational theory E with the free theory F
. De-cision problem for general E-uni�cation.The input is a �nite system �0 of equations between terms built from varia-bles, free constants and function symbols belonging to 
 or the signature of E.Without loss of generality we assume that �0 does not contain an equation ofthe form x := y or x := a where x, y are variables and a is a free constant. Inthe following procedure, �i denotes the system which is reached after step i. Ifall equations of �i are pure, then �i;F denotes the subsystem of all equationswhich only contain free function symbols, �i;E denotes the subsystem with theequations containing function symbols from the signature of E. The �rst threesteps are deterministic:Step 1: variable abstraction. as before.Step 2: split non-pure equations. as before.Step 3: �rst variable identi�cation. We solve the free subsystem �2;F ,treating all variables as variables and using standard uni�cation in the freetheory. If �2;F is unsolvable, then we stop with failure. In the followingwe shall assume that �2;F is solvable, with most general uni�er (mgu) �1,say. Let Y2 be the set of variables occurring in �2. The maximal subsets ofvariables with same image under �1 de�ne a partition �1 of Y2. Based onthis partition we now identify variables in �2, as described in step 3 of thenon-optimized version. We obtain the system �3 with set of variables Y3.The following steps are non-deterministic.Step 4: second variable identi�cation. We choose a partition �2 of Y3 andidentify variables in �3. We obtain the system �4 with set of variables Y4. If�4;F is unsolvable, or if the mgu �2 of �4;F identi�es two distinct variablesx and y of Y4, then we stop this path with failure and backtrack. In thefollowing we shall assume that �4;F is solvable with mgu �2 such that �2(x) 6=�2(y) for all x 6= y in Y4.Step 5: choose theory indices and ordering. Step 4 of the basic versionis modi�ed, imposing several restrictions on the indices ind and the linearorderings < which may be selected. We �rst choose a variable indexing indwhich satis�es the following condition: for every variable x 2 Y4,



{ if �2(x) = f(t1; : : : ; tn) for a free function f , then ind(x) = F .Let Y4;F � Y4 denote the set of all variables x with ind(x) = F , let Y4;E � Y4be the remaining set of variables. We now choose a linear ordering <F onY4;F which satis�es the following restriction: for all variables x; x0 2 Y4;F :{ if �2(x0) is a subterm of �2(x), then x0 <F x.Now <F will be extended to a linear ordering < of Y4. As a consequenceof the following two conditions, this step is completely deterministic: for ally; y1; : : : ; yk 2 Y4;E ,{ if y does not occur in any term �2(x), for x 2 Y4;F , then x < y for allx 2 Y4;F . Otherwise, if x is the minimal element of the ordering <F suchthat y occurs in �2(x), then y < x. If x has an immediate predecessor x0in the ordering <F , then x0 < y,{ if y1 < y2 < : : : < yk is a sequence of consecutive E-variables in < (i.e.,without F -variables in between), then y1 <Z y2 <Z : : : <Z yk,Eventually we check if the corresponding condition holds also for F -variables:{ if x1 < x2 < : : : < xk is a sequence of consecutive F -variables in <, thenx1 <Z x2 <Z : : : <Z xk.If the last condition is violated, then we stop with failure. In the other casethe equational system is not modi�ed, �5 := �4.Step 6: split systems. as before. We obtain the systems �6;F and �6;E withlinear constant restrictions induced by <.Since, by construction of <, �2 is a solution of �6;F , the systems of type �6;Emay be regarded as the output of the combination procedure.Proposition 2. �0 is solvable i� a system �6;E in the output set is solvable.Proof. We need a tool which was already introduced in [BS 91], namely unfailingcompletion. In the given context it su�ces to apply this procedure to the theoryE. This yields a possibly in�nite ordered-rewriting system R which is conuentand terminating on ground terms. As in [BS 91], this system is also applied toterms containing variables from a �xed countable set of variables X0 | for thecompletion these variables can simply be treated like constants. Let T (
;E;X0)be the set of all terms built from function symbols in 
, functions symbols of thesignature of E and variables in X0. Let T#R denote its R-irreducible elements. Asubstitution � is called R-normalized on a �nite set of variables Y i� �(y) 2 T#Rfor all variables y 2 Y .Since every output of the optimized version 1 is a possible output of thenon-optimized procedure, correctness of the latter procedure implies correctnessof the former.Let us now prove completeness. Suppose that �0 has a solution �. We mayassume that � is also a solution of �2 and that � is R-normalized on the set Y2 ofvariables occurring in �2. In [BS 91] it is described how � may be used to deter-mine choices in the non-deterministic steps of the non-optimized version which



lead to output systems � (n:o:)F (free subsystem) and � (n:o:)E (E-subsystem) whichhave solutions �(n:o:)F and �(n:o:)E which respect the linear constant restrictions.In more detail, the following choices were made:(a) in step 3, partition �(n:o:) is chosen in such a way that variables x and y areidenti�ed i� �(x) = �(y),(b) in step 4 we de�ne ind(n:o:)(x) := E i� �(x) = h(t1; : : : ; tn) where the func-tion symbol h belongs to the signature of E, and ind(n:o:)(x) := F otherwise,(c) the linear ordering <(n:o:) which is chosen is an arbitrary extension of thepartial ordering � de�ned by y � x i� �(y) is a strict subterm of �(x).We may also assume that <(n:o:) satis�es the following two conditions:(d) if x1 <(n:o:) x2 <(n:o:) : : : <(n:o:) xk is a sequence of consecutive variableswith ind(n:o:)(x1) = ind(n:o:)(x2) = : : : = ind(n:o:)(xk), then x1 <Z x2 <Z: : : <Z xk.In fact, permutation of elements in the subsequence x1 <(n:o:) : : : <(n:o:) xk doesnot modify the constant restrictions imposed on the output systems.(e) if ind(n:o:)(x) = F , ind(n:o:)(y) = E and if y <(n:o:) x is the immediatepredecessor of x, then y occurs in �(n:o:)F (x).Otherwise we could just change the order of these two variables, leaving all otherorder relations untouched. With this modi�cation a new constant restriction for� (n:o:)F is created, demanding that y must not occur in the value of x. But �(n:o:)Fsatis�es this condition and is still a solution of the modi�ed system. For � (n:o:)E ,one constant restriction is erased and �(n:o:)E is a solution.We shall now show that some choices in the non-deterministic steps of theoptimized version lead to the same output pair (�6;F ; �6;E ) = (� (n:o:)F ; � (n:o:)E ).Let us �rst show that step 3 will not fail. It is not di�cult to see that � (n:o:)Fis just a restricted version of �2;F : if we disregard constant restrictions, then� (n:o:)F may be obtained from �2;F by identi�cation of variables as described in(a), then treating E-variables as constants. Thus solvability of � (n:o:)F impliessolvability of �2;F . The partition �1 of step 3 is a re�nement of �(n:o:): we claimthat (*) �1(x) = �1(y) implies �(x) =E �(y).Since � is R-normalized on Y2 we then get �(x) = �(y). Let us consider (*)in more detail, since the same kind of argument will also be used later. When



we solve �2;F by a solved form algorithm (see e.g., [BB87, JK90]), then we addequations which are consequences of the equations in �2. This follows from thefact that =E is a congruence relation and that we may derive the equationsr1 = s1; : : : ; rn = sn from an equation f(r1; : : : ; rn) = f(s1; : : : ; sn) if f is a freefunction symbol. In particular every substitution which solves the equations in �2will also solve this derived equations. But the solved form contains the equationsx = �1(x) and y = �1(y). Therefore �(x) =E �(�1(x)) = �(�1(y)) =E �(y).With the right choice in step 4 we will get the same variable identi�ca-tion as in the non-optimized procedure. This implies that � is a solution of�4. In particular � solves �4;F . By assumption (a), � does not identify di-stinct variables of Y4. It is easy to show that we may stop if �2(x) = �2(y)for distinct variables x; y 2 Y4: with the same argument as above we see that�(x) =E �(�2(x)) = �(�2(y)) =E �(y). Since � is R-normalized it follows that�(x) = �(y), a contradiction.Let us now consider the restrictions of step 5. Note that �4;F and � (n:o:)Fare identical if we disregard constant restrictions in the latter system and treatE-variables as variables. If �2(x) = f(t1; : : : ; tn) for a free function symbol f ,then �(n:o:)F (x) has top symbol f . Hence �(n:o:)F replaces x by a complex term. Itdoes not treat it as a constant, therefore ind(n:o:)(x) = F and our choice in step4 is conform. If �2(x0) is a subterm of �2(x), then �(x0) = �(�2(x0)) is a strictsubterm of �(�2(x)) = �(x). Thus x0 <(n:o:) x. It is now trivial to see that wemay in fact choose ind := ind(n:o:) and \<" := \<(n:o:)" in step 5. The rest isobvious. utRemark. In version 1 of the optimized combination procedure some trivialhints were omitted which are relevant for e�cient implementation. For example,the uni�er �1 obtained in step 3 should be used when we decide solvability of�4;F in step 4. Another question which will not be discussed here is the questionof how to determine an optimal order for the non-deterministic choices.Partially Speci�ed Linear Constant RestrictionsIn some cases, one source of indeterminism in version 1 may be completelyeliminated. The choice of a linear ordering in step 5 of version 1 of the optimizedprocedure can be avoided if it is possible to solve problems with partially speci�edlinear constant restrictions for the theory E. Such a problem is given by an E-uni�cation problem with constants, � , and a partial ordering � on the variablesand constants occurring in � . The problem has a solution i� there exists a linearextension of � such that the uni�cation problem with linear constant restrictioninduced by this extension has a solution.Before we give a new version of the combination algorithm let us add a remarkon the application area, in order to avoid misunderstandings. When we only askfor decidability per se, then uni�cation problems with linear constant restrictions



and uni�cation problems with partially speci�ed linear constant restrictions havethe same status. If solvability of the former class of problems is decidable, thenthe same holds for the latter class of problems, simply because every partialordering on a �nite set has only a �nite number of linear extensions. The interestin partially speci�ed linear constant restrictions relies on the fact that for variousequational theories E the e�ort to decide solvability of uni�cation problemswith partially speci�ed linear constant restrictions does not exceed the e�ortto decide solvability of uni�cation problems with linear constant restrictions.Examples are the theories A and AI, as will be shown. Thus, the \disjunctive"treatment of several linear orderings becomes superuous and the correspondingindeterminism is really eliminated, not only postponed.Optimized Combination Algorithm | Version 2Context: Decision problem for general E-uni�cation where decidability of E-uni�cation problems with partially speci�ed linear constant restrictions is deci-dable (in \non-disjunctive manner").We simply proceed as in version 1 until we reach the point in step 5 where thevariable indexing ind has been chosen. Now we do not choose a linear ordering,but propagate the partial ordering � de�ned byy � x i� �2(y) is a strict subterm of �2(x)to the remaining E-subsystem, de�ning thus a system �6;E with partially spe-ci�ed linear constant restriction.Proposition 3. �0 is solvable i� some system �6;E which is reached in version2 is solvable.Proof. Suppose that �6;E is solvable, let < be a linear extension of � such thatthe corresponding uni�cation problem with linear constant restriction � 06;E issolvable. The proof of proposition 2 shows that we may assume without loss ofgenerality that < is a possible choice in step 5 of version 1. Correctness of version1 implies correctness of version 2.Now consider the completeness proof for version 1. Since the linear ordering< which was chosen for step 5 is a linear extension of the partial ordering �which is used in version 2, completeness of version 2 follows immediately. utLet us now consider the particular case of general uni�cation problems in thetheory A := fh(h(x; y); z) = h(x; h(y; z))gexpressing associativity of the binary function symbol h.



Optimized Combination Algorithm | Version 3Context: Decision problem for general A-uni�cation.We may assume without loss of generality that the input problem does notcontain any equation of the form f(s1; :::; sm) := h(t1; t2) where f is a free func-tion symbol. Since A is collapse-free we could immediately stop with failure insuch a case.Step 1 remains as in versions 1 and 2. Obviously �1 cannot have non-pureequations. Thus step 2 may be omitted. Step 3 (�rst variable identi�cation)remains almost as in versions 1 and 2. We add, however, a control step: if �1(x) =f(s1; : : : ; sn) for a free function symbol f and if �3;A contains and equationx := h(t1; t2), then we stop with failure. In step 4 (second variable identi�cation)we do not identify variables x and y if �1(x) = f(t1; : : : ; tn) for a free functionsymbol f and if �3;A contains an equation y := h(s1; s2), or vice versa. Step5 of version 2 is modi�ed, eliminating some indeterminism in the choice of avariable indexing ind. We de�ne ind(y) = A whenever �4;A contains an equationy := h(s1; s2).Correctness and completeness of version 3 follow immediately from the factthat the theory A is collapse-free. Note that we will get A-uni�cation problemswith partially speci�ed linear constant restrictions as output of version 3. \Non-disjunctive" decidability of such problems is possible, as we shall sketch in thenext section.In the context of general AI-uni�cation, whereAI := fh(h(x; y); z) = h(x; h(y; z)); h(x; x) = xg;we may again use version 2, as will be shown in section 5. But the additionalmodi�cations which were introduced for general A-uni�cation cannot be usedhere since AI contains the collapse equation h(x; x) = x.4 A-Uni�cation with Linear Constant RestrictionWe �rst want to prove the followingTheorem 4. A-uni�cation with linear constant restriction is decidable.Let us start with a simpli�ed representation of A-uni�cation problems withlinear constant restriction. The associativity axiom h(h(x; y); z) = h(x; h(y; z))allows to write every term built from variables, free constants and the associativesymbol h in the normalformh(t1; h(t2; : : : ; h(tn�1; tn) : : :))



(where every ti is either a variable or a free constant) which corresponds torightmost-bracketing if in�x notation is used. Obviously there is a bijective cor-respondence between terms of this form and wordst1t2 : : : tn�1tnwhere variables may be instantiated with non-empty words. This shows thatevery A-uni�cation problem may be translated into a �nite set of word equati-ons, preserving uni�ability in both directions. Every constant restriction of theA-uni�cation problem translates directly into a constant restriction of the corre-sponding system of word equations. Thus we arrive at the following reformulationof our problem.Theorem 5. Uni�ability of systems of word equations with linear constant re-striction is decidable.There are two ways how we may prove this theorem. Let us �rst ignorematters of e�ciency and just concentrate on the decidability result. In this casewe may choose an even simpler formulation of the problem. A system (1) of wordequations U1 := V1U2 := V2may be rewritten into a single equivalent word equation (2)U1aU2U1bU2 := V1aV2V1bV2where a and b are arbitrary distinct constants. Every uni�er of (1) is a uni�er of(2) and vice versa, thus both systems are also equivalent with respect to uni�abi-lity under linear constant restrictions. Therefore we may restrict considerationsto single word equations.Suppose now that a word equation WE is given with variables in X =fx1; : : : ; xng, constants in C and with linear constant restriction induced bya linear ordering < on X [ C. We want to decide whether WE has a uni�erwhich satis�es the constant restriction.For technical reasons we would like to use ground uni�ers only. Let us consideran alphabet C 0 = C [ fcg where c is a constant not occurring in C for thispurpose. ThenWE has a uni�er � over C [X which satis�es the linear constantrestriction induced by < if and only ifWE has a solution (i.e, a ground uni�er) �0over C 0 which satis�es the linear constant restriction induced by \<": to obtain�0 from � we just replace all occurrences of variables by the constant c. In theconverse direction, all occurrences of c are replaced by the same variable.We are now in a position to use the following general result from [Sh90]:



Theorem: If WE is a word equation with variables x1; : : : ; xn and constantsin the alphabet C 0, and if L1; : : : ; Ln are regular languages over C 0, then it isdecidable whether WE has a solution � such that �(xi) 2 Li for i = 1; : : : ; n.Let Li := C+i , where Ci := fa 2 C; a < xig [ fcg(i = 1; : : : ; n). Obviously a solution � ofWE satis�es the linear constant restric-tion induced by < i� �(xi) 2 Li for i = 1; : : : ; n. Thus the theorem implies thatuni�ability of word equations with linear constant restrictions is decidable, andthus | by disjunctive treatment | also with partially speci�ed linear constantrestrictions.The algorithm which was used in [Sh90] in order to establish the theoremmentioned above is, however, more complicated than it would be necessary forthe special purpose of regular languages of the form C+i . In connection withthe initial translation of systems of word equations into a single word equationand with the disjunctive treatment of di�erent linear orderings for general A-uni�cation via version 1 of the combination procedure we get a rather ine�cientdecision procedure.For the readers which are familiar with Makanin's algorithm let us sketchhow a better solution might look like. In particular we want to show that it ispossible to avoid{ the translation of a system of word equations into a single word equation,which doubles the data size,{ the disjunctive treatment of linear extensions of the partial ordering � ob-tained in step 5 of the optimized version 2.Thus, the prerequisite which is needed for version 3 is in fact available in thecase of A-uni�cation.First, it is not di�cult to show that Makanin's algorithm for deciding thesolvability of words equations may directly be used for systems of word equations(see e.g, [Sh90]). Second, by means of simple additional devices it is possible tomodify Makanin's algorithm in such a way that we keep control over all constantswhich will occur in the value of a variable, following a certain path of the searchtree. For this purpose, a sequence of columns of the actual generalized equationis used to represent an actual value V (x) of a variable x occurring in WE. If asubcolumn of a column of V (x) contains a constant base of type a 2 C, thenthe constant a will occur in �(x) for every uni�er � of WE which corresponds toa successful node which may be found below the actual node of the search tree.After any transformation step, the values (sequences) of all variables have to beupdated.



We may now run the algorithm with the partial order � used as a \�lter".This means that we stop a branch of the search tree as soon as the constantswhich occur in the (columns which represent the) actual values V (x) of thevariables x of WE show that the relation �V contains a cycle, wherey �V x i� y � x or y occurs in V (x):A detailled description of this algorithm for word equations with partially spe-ci�ed linear constant restrictions would be rather long.4 But most constructionsare straightforward, starting from a modern description of Makanin's algorithm(e.g., [Sh91]).5 AI-Uni�cation with Linear Constant RestrictionLet h be a binary function symbol, and let AI denote the theory of idempotentsemigroups, i.e.,AI := fh(h(x; y); z) = h(x; h(y; z)); h(x; x) = xg:As mentioned in the introduction, decidability of AI-uni�cation problems withconstants is an easy consequence of the fact that idempotent semigroups arelocally �nite. In fact, McLean has shown as early as 1954 (see [Mc54]) that �nitelygenerated free idempotent semigroups are �nite, and he gave a formula whichcan be used to calculate the cardinality cn of the free idempotent semigroup inn generators: cn = nXr=1 �nr� rYi=1 (r � i+ 1)2i! :The method used to show this �niteness result can also be employed to get adecision procedure for the word problem for free idempotent semigroups (see e.g.[BC71]).Putting these facts together one can conclude that, for a given �nite set C ofconstant symbols (the generators), one can compute a �nite set of representativesfor the =AI classes of all terms built over h and these constants. In addition,for two such representatives s; t one can e�ectively �nd the representative of theclass of h(s; t). Since the theory AI is regular, all the elements of an AI-classcontain the same constants as its representative.Theorem 6. AI-uni�cation with linear constant restriction is decidable.4 In order to prove termination of this algorithm, a straightforward generalization ofBulitko's theorem has to be proved.



Proof. Assume that � is an AI-uni�cation problem with constants, and that <is a linear ordering on the constants and variables occurring in � . If � doesnot contain any constant, then there are no constant restrictions and we havean elementary AI-uni�cation problem. Thus we may assume that � containsat least one constant. If we ignore the constant restriction induced by <, thenit is easy to see that � has an AI-uni�er i� it has an AI-uni�er such that theimages of variables occurring in � contain only constants from � . In fact, one cansubstitute all other constants and variables occurring in the image of a uni�er byconstants from � , and thus ends up with a uni�er satisfying the above condition.This is no longer possible if one has to ful�ll a constant restriction. However, ifwe allow for one new constant (i.e., a constant not occurring in � ) in the image,then we may substitute all constants beside the ones from � and all variablesoccurring in the image of a solution of the problem with constant restriction bythis new constant, and end up with a uni�er satisfying the constant restriction.This shows that it is enough to look for a solution in the free idempotentsemigroup in �nitely many generators, namely the constants occurring in � plusone additional new constant. As mentioned above, this semigroup is e�ectivelygiven by a �nite set of representatives. Thus what we can do is try all possibilitiesof replacing the variables in � by these representatives, under the restrictionimposed by the linear ordering. Depending on whether we �nd a solution thisway, the problem with linear constant restriction is solvable or not. utAs mentioned in section 3, the number of nondeterministic choices in thecombination procedure can be reduced if it is possible to solve problems withpartially speci�ed linear constant restrictions. Recall that such a problem isgiven by a uni�cation problem with constants, � , and a partial ordering � onthe variables and constants occurring in � . This problem has a solution i� thereexists a linear extension of � such that the uni�cation problem with linearconstant restriction induced by this extension has a solution.It is easy to modify the procedure described in the proof of Theorem 6 to copewith such problems. In fact, when choosing a representative s to be substitutedfor a given variable x, this tells us that x has to be made larger than all constantsfrom � occurring in s. If these additional relationships are consistent with thecurrent partial ordering, we augment the partial ordering with them. Otherwise,we can discard this choice.Corollary 7. AI-Uni�cation with partially speci�ed linear constant restrictionis decidable in \non-disjunctive" manner.It should however be noted that the decision methods we have just describedare only practicable if the number of constants occurring in � is very small. Thisis so because the cardinalities cn of �nitely generated free idempotent semigroupsare growing very fast.



6 NP-Decidability of general AC- and ACI-uni�cationIn this section we shall prove NP-decidability of generalAC- andACI-uni�cationproblems. The result is an immediate consequence of the following two claims:Claim 1: For a given input problem � of size n0,5 the (non-optimized)combination algorithm may be organized in such a way that{ (1) the size ni+1 of the system obtained after step i+ 1 is polynomial in thesize ni of the system created at the previous step (i = 0; : : : ; 4).{ (2) the non-deterministic choices of steps 3 and 4 may be computed by meansof a polynomial number of non-deterministic choices between two possibili-ties,{ (3) the complexity of the deterministic computations in step i+ 1 is polyno-mial in ni (i = 0; : : : ; 4).Claim 2: Solvability of AC and ACI-problems with linear constant restric-tions may be decided by NP-algorithms.Proof of claim 1:Ad (1). In step 1, note that one replacement of an alien subterms introducestwo occurrences of a new variable, but does not introduce any new subterm. Thenumber of such steps does not exceed the number of (occurrences of) subtermsin the input symbol, thus it does not exceed n0. Thus n1 � 3n0. Obviouslyn2 � 2n1. In the remaining steps, the size of the system(s) does not grow.Ad (2). In step 3, the number of variables is n � n2. Suppose that wehave variables fx1; :::; xng. In order to compute a partition of this set we shallsuccessively create a partition Pi of fx1; :::; xig for i = 1; :::; n. Of course P1 :=ffx1gg. Suppose that some Pi = fpi;1; :::; pi;kg has been computed for an i < n.Obviously k � i. To compute Pi+1 we may either add xi+1 to pi;j and stop,or we may continue, considering pi;j+1, (starting with j = 1). If we reach thepoint where pi;k is considered, we may either add xi+1 to pi;k or we create a newequivalence class pi+1;k+1 := fxi+1g. Obviously the �nal partition Pn is reachedafter not more than n22 nondeterministic choices between two alternatives. Itis also clear that every partition of fx1; :::; xng is a possible outcome of theprocedure.Suppose that the variables fx1; :::; xmg are left in the input system for step4. First we choose nondeterministically a variable which is subtracted from the5 The size of a uni�cation problem is the number n of occurrences of symbols in theterms of the equations occurring in the problem.



set. This takes at most m non-deterministic decisions between two possibilities.The variable which is chosen is minimal with respect to the linear order to beconstructed. The next variable is chosen in the remaining system. By iteration,the linear order is constructed in less thanm2 non-deterministic choices betweentwo possibilities. Indexing of variables takes otherm non-deterministic steps withtwo possibilities.Ad (3). This is easy for step 1 since every term is only treated once, replacingall alien subterms. The remaining steps are obvious.Proof of claim 2:AC-Uni�cation with Linear Constant Restriction. It is a well-known fact thatsolving AC-uni�cation problems with constants can be reduced to solving sy-stems of linear equations over the nonnegative integers (see e.g., [St81, Fa84]).As an easy consequence one can show that solvability of AC-uni�cation problemswith linear constant restriction can be expressed as an integer programming pro-blem, thus establishing NP-decidability. Instead of giving a formal presentationof this reduction, we shall illustrate it by an example.Let h be a binary AC-symbol, x; y be variables, and c; d be constants. Weconsider the AC-uni�cation problem with constants� = fh(x; h(x; h(c; h(c; c)))) := h(y; h(y; h(y; h(y; d))));h(x; h(x; h(x; h(y; y)))) := h(x; c)g;and the constant restriction induced by c < x < d < y. As mentioned before,it is enough to look for solutions which introduce the constants c; d occurringin � and one additional constant, say e. For each of these three constants, weintroduce a system of linear equations. The variables occurring in these equationsstand for the number of occurrences of the respective constant in the image of xand y, respectively, of possible solutions of � . The coe�cients of these variablesin the equations are the number of occurrences of x and y, respectively, in � .Thus we get the three systems�2 03 2��xcyc �+ �30� = �0 41 0��xcyc �+�01��2 03 2��xdyd � = �0 41 0��xdyd �+�10��2 03 2��xeye� = �0 41 0��xeye �In addition, since we do not have a unit element for h, the variables x; y have tobe substituted by nonempty terms. This is expressed by the inequalitiesxc + xd + xe > 0 and yc + yd + ye > 0:



The AC-uni�cation problem with constants, � , has a solution i� the above sy-stems of equations have nonegative integer solutions satisfying the restrictionimposed by these inequalities.Now it should be obvious how to express the constant restriction with thehelp of some additional equations: If a constant must not occur in the image ofa variable, the corresponding variable in the system of linear equations has tobe zero. In our example, we get the additional equationxd = 0because x < d means that d must not occur in the image of x.ACI-Uni�cation with Linear Constant Restriction. Kapur and Narendran[KN91] have shown that solvability of ACI-uni�cation problems with constantscan be decided by a (deterministic) polynomial algorithm. This is done by trans-forming the conditions for solvability of such a uni�cation problem into a set ofpropositional Horn clauses. This set of Horn clauses is satis�able i� the originalproblem was uni�able. Since the size of this set of clauses is quadratic in thesize of the uni�cation problem, the fact that satis�ability of propositional Hornclauses is decidable in linear time (see [DG84]) shows that one ends up with aquadratic decision procedure for ACI-uni�ability with constants.Now we shall demonstrate that this result can easily be generalized to sol-vability of ACI-uni�cation with constant restriction. To this purpose we brieyreview Kapur and Narendran's transformation. Let � be an ACI-uni�cationproblem with constants, and let X and C be the variables and constants, re-spectively, occurring in � . Let C 0 be C augmented by one additional constantc0. As explained in the proof of Theorem 6, it is enough to look for solutionsintroducing only these constants. For each pair (x; c) 2 X � C 0, we take a pro-positional variable Px;c. The intended semantics of this variable is that it is truei� c does not occur in the image of x for the substitution under consideration.Now consider an equation s := t. For all constants a occurring in s but notin t, one introduces a Horn clausêx2V (t)Px;a =) false,where V (t) denotes the variables occurring in t. The obvious meaning of thisclause is that, in order to get a solution, amust be introduced by some variable oft, since it already occurs in s. The analogous formulae are built for the constantsoccurring in t but not in s. For the additional constant c0, we have to addformulae saying that if this constant is not introduced on one side of the equation,it must not be introduced on the other side. Thus we have for all variables yoccurring in s the formula ^x2V (t)Px;c0 =) Py;c0 :



Of course, one also must take the analogous formulae where the role of s and tare exchanged. Finally, the fact that all variables x 2 X must be replaced by anonempty term is expressed by the formulae^c2C0 Px;c =) false:If we take these formulae for all the equations in � then we have obtained a setof Horn clauses which is satis�able i� � has a uni�er.Obviously, this encoding is very convenient for expressing constant restric-tions. The fact that c must not occur in the image of x can simply be expressedby the fact true =) Px;c:To sum up, we have thus shown that solvability of ACI-uni�cation problemswith linear constant restriction can be decided by a (deterministic) quadraticalgorithm.ConclusionWe have studied general uni�cation problems for the equational theories A, AI,AC and ACI. With the combination algorithm which was introduced in [BS91]it is possible to reduce general uni�cation problems to Robinson uni�cationplus uni�cation problems with linear constant restrictions in the single theories.The latter class of problems was shown to be decidable for the four theories.From the proof for the theories AC and ACI and from the structure of thecombination algorithm we obtained the result that solvability of generalAC- andACI-uni�cation problems may be decided with NP-algorithms. For the theoriesA and AI we showed how to use the information obtained from the solution ofthe free subsystem which is separated by the combination algorithm in orderto optimize this procedure, eliminating possible choices in the non-deterministicsteps. The notion of a uni�cation problem with partially speci�ed linear constantrestriction arose from our optimization technique and we demonstrated that thisclass of problems is decidable in non-disjunctive manner for the theories A andAI.References[BB87] K.H. Bl�asius, H.-J. B�urckert, \Deduktionssysteme," Oldenbourg Verlag,M�unchen Wien (1987).[BS91] F. Baader, K.U. Schulz, \Uni�cation in the Union of Disjoint Equational Theo-ries: Combining Decision Procedures," DFKI-Research Report RR-91-33, toappear in the Proceedings of the 11th International Conference on AutomatedDeduction, LNCS (1992).



[BC71] J.A. Brzozowski, K. Culik, A. Gabrielian, \Classi�cation of NoncountingEvents," J. Computer and System Science 5, 1971.[B�u90] H.-J. B�urckert, \A Resolution Principle for Clauses with Constraints," Procee-dings of the 10th International Conference on Automated Deduction, LNCS449, 1990.[Co90] A. Colmerauer, \An Introduction to PROLOG III," C. ACM 33, 1990.[DG84] W.F. Dowling, J. Gallier, \Linear Time Algorithms for Testing Satis�abilityof Propositional Horn Formula," J. Logic Programming 3, 1984.[Fa84] F. Fages, \Associative-Commutative Uni�cation," Proceedings of the 7th In-ternational Conference on Automated Deduction, LNCS 170, 1984.[JK90] J.P. Jouannaud, C. Kirchner, \Solving Equations in Abstract Algebras: ARule-Based Survey of Uni�cation," Preprint, 1990. To appear in the Festschriftto Alan Robinson's birthday.[JL87] J. Ja�ar, J.L. Lassez, \Constraint Logic Programming," Proceedings of 14thPOPL Conference, Munich, 1987.[KN91] D. Kapur, P. Narendran, \Complexity of Uni�-cation Problems with Associative-Commutative Operators," Preprint, 1991.To appear in J. Automated Reasoning .[KK89] C. Kirchner, H. Kirchner, \Constrained Equational Reasoning," Proceedingsof SIGSAM 1989 International Symposium on Symbolic and Algebraic Com-putation, ACM Press, 1989.[Ma77] G.S. Makanin, \The Problem of Solvability of Equations in a Free Semigroup,"Mat. USSR Sbornik 32, 1977.[Mc54] D. McLean, \Idempotent Semigroups," Am. Math. Mon. 61, 1954.[Sc89] M. Schmidt-Schau�, \Combination of Uni�cation Algorithms," J. SymbolicComputation 8, 1989.[Sh90] K.U. Schulz, \Makanin's Algorithm { Two Improvements and a Generaliza-tion," Proceedings of the First International Workshop on Word Equationsand Related Topics IWWERT '90, T�ubingen 1990, Springer LNCS 572.[Sh91] K.U. Schulz, \Word Uni�cation and Transformation of Generalized Equati-ons," CIS-Report 91-46, University of Munich, 1991 (see also this issue).[St81] M. Stickel, \A Uni�cation Algorithm for Associative-CommutativeFunctions,"J. ACM 28, 1981.This article was processed using the LaTEX macro package with LLNCS style


