RWTH AACHEN
LEHR- UND FORSCHUNGSGEBIET THEORETISCHE INFORMATIK

UNIVERSITAT MUNCHEN
CENTRUM FUR INFORMATIONS- UND SPRACHVERARBEITUNG

General A- and AX-Unification via

Optimized Combination Procedures

Franz Baader & Klaus U. Schulz

In: Pecuchet Abdulrab, editor, Word Equations and Related Topics
IWWERTI1, volume 677 of Lecture Notes in Computer Science, pa-
ges 23 42, Rouen, France, 1991. Springer.

General A- and AX-Unification via
Optimized Combination Procedures

Franz Baader! and Klaus U. Schulz?

! DFKI, Stuhlsatzenhausweg 3, 6600 Saarbriicken 11, Germany
2 CIS, University Munich, Leopoldstr. 139, 8000 Miinchen 40, Germany

Abstract. In a recent paper [BS91] we introduced a new unification al-
gorithm for the combination of disjoint equational theories. Among other
consequences we mentioned (1) that the algorithm provides us with a
decision procedure for the solvability of general A- and Al-unification
problems and (2) that Kapur and Narendran’s result about the NP-
decidability of the solvability of general AC- and AC I-unification pro-
blems (see [KN91]) may be obtained from our results. In [BS91] we did
not give detailled proofs for these two consequences. In the present pa-
per we will treat these problems in more detail. Moreover, we will use
the two examples of general A- and Al-unification for a case study of
possible optimizations of the basic combination procedure.

1 Introduction

For a long time, most applications of equational unification presupposed algo-
rithms which solve the enumeration problem, i.e. the problem to enumerate in
a compact way the set of all solutions of a given set of equations modulo an
equational theory E. The recent development of constraint approaches to logic
programming (see e.g., [JL87, C090]), theorem proving (see e.g., [Bi190]) and
term rewriting (see e.g., [KK89]) emphasizes the need for satisfiability checking
and the decision problem received a new status. The decision problem for E is
the problem to decide for a given set of equations whether they have a solution
modulo F or not.

In the first part of this paper we shall study the decision problem in the
context of two equational theories, namely the theories A and Al expressing
associativity respectively associativity plus idempotency of a function symbol.
To be more precise, a distinction has to be made with respect to the signature
which is used to built the terms of a unification problem.

In the simple case only the function symbol occurring in the equational
axiom(s) is used, beside constants and variables. This type of problem will be
called unification with constants. Associative unification problems with constants
may be regarded as finite systems of equations in a free semigroup, often cal-
led word equations. Makanin’s algorithm ([Ma77]) shows that the solvability of

finite systems of word equations is decidable. Decidability of AI-unification pro-
blems with constants follows easily from the fact that idempotent semigroups
are locally finite (see [Mc54]).

However, applications in constraint logic programming and other areas pre-
suppose that terms may contain additional free function symbols. The Prolog
I term

< FF(l,<1>ex,2)>exe < FF(x,y,y),1 >

for example may be regarded as a “generalized word” corresponding to a term
f(l,loz,2)oxo f(x,y,y)ol

where “f” is a free function symbol, “1” and “2” are constants and “o” is an
associative function symbol in infix notation. Constraints over lists as used in
Prolog III stand in a close relationship with general associative unification pro-
blems, i.e., associative unification problems with free function symbols.

The decidability of general A- and Al-unification problems was open for
a long time (compare Kapur and Narendran’s table of known decidability and
complexity results in unification theory [KN91]). A positive answer was obtained
in our paper [BS91] where we used the fact that general F-unification may be
regarded as an instance of the combination problem. The combination problem
(see e.g, [BSI1, Sc89]) is concerned with the question of how to derive unification
algorithms (for the enumeration problem or the decision problem) for unifica-
tion in the union of equational theories over disjoint signatures from unification
algorithms in the single theories. In [BS91] the following general theorem was
proved:

Theorem: Let E1, ..., E, be equational theories over disjoint signatures such
that solvability of E;-unification problems with linear constant restriction is de-
cidable for i = 1,...,n. Then unifiability is decidable for the combined theory
EyU...UE,.

Linear constant restrictions are induced by a linear order “<” on the set
X U C of variables and constants, demanding that, for a unifier 8, the constant
¢ must not occur in #(z) if ¢ > 2. The combination algorithm which is used to
establish this result will be described in section 2. The description — which is the
one given in [BS91] — is conceptually clear, but it is not the most appropriate
one for efficient implementation since it does not try to minimize the number of
possible choices in the non-deterministic steps. For this reason we will discuss
optimized versions of the basic combination procedure in the context of general
A- and Al-unification problems in section 3.

Let us return to the theorem. Obviously, every general A-unification (resp.
general AIunification) problem with set of free function symbols 2 may be
regarded as a combination of the theory A (AI) with the free theory Fp, =
{f(x1,...xn) = f(a1,....x,); f € 22}. For the latter theory unification is simply

unification in the empty theory. As a matter of fact, the solvability of Robinson
unification problems with linear constant restrictions is decidable. If at least
one unifier for such a problem satisfies the constant restrictions, then the most
general unifier will satisfy them, and vice versa.

In order to prove that solvability of general A- (AF) unification problems is
decidable it remains to show that solvability of A- (AI-) unification problems
with linear constant restrictions is decidable. These problems, and the related
problems of A- (AI) unification with partially specified linear constant restric-
tions (which arise from our optimization methods) will be discussed in sections
4 and 5.

Another problem which was solved only recently is the complexity of general
AC- and ACFunification, where AC (ACI) is the theory of one associative and
commutative (and idempotent) function symbol. Kapur and Narendran [IKN91]
could prove that both problems are NP-decidable. In the last section we shall
show that this observation follows easily from our combination result.

2 The Combination Algorithm

For the sake of convenience we shall restrict the presentation of the basic algo-
rithm to the combination of two theories. The combination of more than two
theories can be treated analogously. Before we can start with the description of
the algorithm we have to introduce some notation.

Let E,, E5; be two equational theories built over disjoint signatures (2, {2,
and let F = E; U E, denote their union. Since we are only interested in elemen-
tary E-unification®, we can restrict our attention to terms built from variables
and symbols of 21 U {25. The elements of {21 will be called 1-symbols and the ele-
ments of §25 2-symbols. A term t is called i-term iff it is of the form t = f(t1, ..., t)
for an i-symbol f (i = 1,2). A subterm s of a 1-term ¢ is called alien subterm
of ¢ iff it is a 2-term such that every proper superterm of s in ¢ is a 1-term.
Alien subterms of 2-terms are defined analogously. An i-term s is pure iff it con-
tains only ¢-symbols and variables. An equation s = t is pure iff there exists an
1,1 < ¢ < 2, such that s and t are pure ¢-terms or variables; this equation is
then called an ¢-equation. Please note that according to this definition equations
of the form x = y where x and y are variables are both 1- and 2-equations. In
the following, the symbols «,y, z, with or without indices, will always stand for
variables.

Example 1. Let (21 consist of the binary (infix) symbol “o” and §2; of the unary
symbol “h”, let By := {z o (yoz) = (xoy) oz} be the theory which says that
“0” is assoclative, and let Ey := {h(x) = h(x)} be the free theory for “h”.

% i.e, unification where the terms of the unification problems are built over the signa-
ture of E.

The term y o h(z o h(x)) is a 1-term which has h(z o h(x)) as its only alien
subterm. The equation h(w) oz = y is not pure, but it can be replaced by two
pure equations as follows. We replace the alien subterm h(zy) of h(z1) o2 by a
new variable z. This yields the pure equation zoxs = y. In addition, we consider
the new equation z = h(w). This process of replacing alien subterms by new
variables is called variable abstraction. It will be the first of the five steps of our
combination algorithm.

Combination Algorithm — Basic Form

The input for the combination algorithm is an elementary E-unification problem,
i.e., asystem Iy = {s1 = t1,...,8, = t,,}, where the terms s1,...,#, are built
from variables and the function symbols occurring in 27 U (29, the signature of
E = E; U E,. The first two steps of the algorithm are deterministic, i.e., they
transform the given system of equations into one new system.

Step 1: variable abstraction. Alien subterms are successively replaced by
new variables until all terms occurring in the system are pure. To be more
precise, assume that s = ¢ or ¢ = s is an equation in the current system,
and that s contains the alien subterm s;. Let z be a variable not occurring
in the current system, and let s’ be the term obtained from s by replacing
s1 by x. Then the original equation is replaced by the two equations s’ = ¢
and @ = s;. This process has to be iterated until all terms occurring in the
system are pure. It is easy to see that this can be achieved after finitely many
iterations. Now all the terms in the system are pure, but there may still exist
non-pure equations, consisting of a 1-term on one side and a 2-term on the
other side.

Step 2: split non-pure equations. Each non-pure equations of the form s =
t is replaced by two equations @ = s,x = t where the x are always new
rariables.

It is quite obvious that these two steps do not change solvability of the system.
The result is a system which consists of pure equations. The third and the fourth
step are nondeterministic, i.e., a given system is transformed into finitely many
new systems. Here the idea is that the original system is solvable iff at least one
of the new systems is solvable.

Step 3: variable identification. Consider all possible partitions of the set, of
all variables occurring in the system. Each of these partitions yields one of
the new systems as follows. The variables in each class of the partition are
“identified” with each other by choosing an element of the class as represen-
tative, and replacing in the system all occurrences of variables of the class
by this representative.

Step 4: choose ordering and theory indices. This step doesn’t change a
given system, it just adds some information which will be important in the
next step. For a given system, consider all possible strict linear orderings <
on the variables of the system, and all mappings ind from the set of variables
into the set of theory indices {1, 2}. Each pair (<, ind) yields one of the new
systems obtained from the given one.

The last step is again deterministic. It splits each of the systems already
obtained into a pair of pure systems.

Step 5: split systems. A given system I is split into two systems I7 and
I such that I'y contains only l-equations and I5 only 2-equations. These
systems can now be considered as unification problems with linear constant
restriction. In the system I, the variables with index ¢ are still treated
as variables, but the variables with alien index j # ¢ are treated as free
constants. The linear constant restriction for I is induced by the linear
ordering chosen in the previous step.

The output of the algorithm is thus a finite set of pairs (I1,I%) where the
first component I is an Ej-unification problem with linear constant restriction,
and the second component I is an Es-unification problem with linear constant
restriction.

Proposition 1. The input system Iy is solvable if and only if there exists a pair
(I, o) in the output set such that It and Iy are solvable.

A proof of this proposition was given in [BS91]. It was also shown how the
combination procedure can be used in order to generate a complete set of unifiers
for the combined theory, provided that there are algorithms which enumerate
complete sets of unifiers for unification problems with constant restrictions in
the single theories.

As mentioned in the introduction, the presentation given above is concep-
tually simple but inefficient since no attempt was made to minimize the number
of possible choices in the non-deterministic steps. Let us now give an optimized
version of the combination algorithm in a particular context.

3 Optimization for Combination with the Free Theory

Before we treat the cases of general A- and Al unification let us consider the
situation where an arbitrary equational theory E is combined with an instance
of the free theory

Fo:={f(x1,...,2,) = f(x1,...,2,); f € 2}

in order to obtain a unification algorithm for general E-unification.

We shall assume that the variables occurring in the unification problems are
elements of a countable set Z which has fixed standard linear ordering < . The
following optimized combination algorithm rules out several choices which are
possible in the non-deterministic steps of the non-optimized version.

Optimized Combination Algorithm — Version 1

Context: Combination of an equational theory E with the free theory Fg. De-
cision problem for general E-unification.

The input is a finite system [} of equations between terms built from varia-
bles, free constants and function symbols belonging to {2 or the signature of E.
Without loss of generality we assume that I does not contain an equation of
the form « = y or @ = a where z, y are variables and «a is a free constant. In
the following procedure, [; denotes the system which is reached after step ¢. If
all equations of I are pure, then I'; p denotes the subsystem of all equations
which only contain free function symbols, I g denotes the subsystem with the
equations containing function symbols from the signature of E. The first three
steps are deterministic:

Step 1: variable abstraction. as before.

Step 2: split non-pure equations. as before.

Step 3: first variable identification. We solve the free subsystem I3 p,
treating all variables as variables and using standard unification in the free
theory. If I p is unsolvable, then we stop with failure. In the following
we shall assume that Iy p is solvable, with most general unifier (mgu) 7y,
say. Let Y, be the set of variables occurring in I». The maximal subsets of
variables with same image under 7, define a partition m; of Y,. Based on
this partition we now identify variables in I%, as described in step 3 of the
non-optimized version. We obtain the system I's with set of variables Y3.

The following steps are non-deterministic.

Step 4: second variable identification. We choose a partition 72 of Y5 and
identify variables in I'5. We obtain the system [y with set of variables Yy. If
Iy r is unsolvable, or if the mgu 7 of I'; p identifies two distinct variables
z and y of Yy, then we stop this path with failure and backtrack. In the
following we shall assume that Iy g is solvable with mgu 75 such that 7 (v) #
72(y) for all # y in Y.

Step 5: choose theory indices and ordering. Step 4 of the basic version
is modified, imposing several restrictions on the indices ind and the linear
orderings < which may be selected. We first choose a variable indexing ind
which satisfies the following condition: for every variable x € Y},

— if m(x) = f(t1,...,t,) for a free function f, then ind(z) = F.

Let Y p C Y, denote the set of all variables x with ind(z) = F, let YipCY,y
be the remaining set of variables. We now choose a linear ordering <, on
Y4 r which satisfies the following restriction: for all variables @, = Yy e

— if 72(2’) is a subterm of 7 (), then 2’ <p .

Now <p will be extended to a linear ordering < of Y;. As a consequence
of the following two conditions, this step is completely deterministic: for all
YUty Yk € Yo i,

— if y does not occur in any term 7 (x), for © € Y p, then 2 < y for all
x € Yy p. Otherwise, if # is the minimal element of the ordering < such
that y occurs in 7 (), then y < 2. If 2 has an immediate predecessor 2/
in the ordering <pg, then 2’ < y,

—ify < y2 < ... <y is asequence of consecutive E-variables in < (i.e.,
without F-variables in between), then y; <z y2 <z ... <z Yk,

Eventually we check if the corresponding condition holds also for F-variables:

—if 21 < 29 < ... < 7} is a sequence of consecutive F-variables in <, then
1<z a2<z...<z Tk.

If the last condition is violated, then we stop with failure. In the other case
the equational system is not modified, I} := I}.

Step 6: split systems. as before. We obtain the systems I r and I g with
linear constant restrictions induced by <.

Since, by construction of <, 7 is a solution of [;, the systems of type I
may be regarded as the output of the combination procedure.

Proposition 2. I is solvable iff a system Iy i in the output set is solvable.

Proof. We need a tool which was already introduced in [BS 91], namely unfailing
completion. In the given context it suffices to apply this procedure to the theory
E. This yields a possibly infinite ordered-rewriting system R which is confluent
and terminating on ground terms. As in [BS 91], this system is also applied to
terms containing variables from a fixed countable set of variables Xy — for the
completion these variables can simply be treated like constants. Let T'(12, E, Xo)
be the set of all terms built from function symbols in §2, functions symbols of the
signature of E and variables in Xy. Let T r denote its R-irreducible elements. A
substitution o is called R-normalized on a finite set of variables Y iff o(y) € T\ i
for all variables y € Y.

Since every output of the optimized version 1 is a possible output of the
non-optimized procedure, correctness of the latter procedure implies correctness
of the former.

Let us now prove completeness. Suppose that Iy has a solution 0. We may
assuine that o is also a solution of I3 and that ¢ is E-normalized on the set Y5 of
variables occurring in I3. In [BS 91] it is described how o may be used to deter-
mine choices in the non-deterministic steps of the non-optimized version which

lead to output systems f}n‘o') (free subsystem) and F}En"o') (E-subsystem) which
have solutions J(Fn‘o') and Jg'o‘) which respect the linear constant restrictions.

In more detail, the following choices were made:

(a) in step 3, partition 7(") is chosen in such a way that variables # and y are
identified iff o(x) = o(y),

(b) in step 4 we define ind™°" (z):= E iff o(x) = h(t1,...,t,) where the func-
tion symbol h belongs to the signature of F, and ind(") () := F otherwise,

(¢) the linear ordering <) which is chosen is an arbitrary extension of the
partial ordering < defined by y < z iff o(y) is a strict subterm of o ().

We may also assume that <79 satisfies the following two conditions:

(d) if z; <mo) 2
with ind™°) (v

o <y Tk

)

<o) <o) g a sequence of consecutive variables
1) = ind™o) (x9) = ... = 1'11d(”"o')(wk.), then @1 <z 22 <z

In fact, permutation of elements in the subsequence <(mo) <o) 4 does
not modify the constant restrictions imposed on the output systems.

(e) if ind(™o) () = F, ind(™o) (y) = E and if y <) & is the immediate

. n.o.
predecessor of z, then y occurs in O'(F)(T)

Otherwise we could just change the order of these two variables, leaving all other
order relations untouched. With this modification a new constant restriction for

Fl(,;"‘o') is created, demanding that y must not occur in the value of z. But 05"'1"0')
satisfies this condition and is still a solution of the modified system. For I"L""”'),
(rn.o.)

one constant restriction is erased and o is a solution.

E

We shall now show that some choices in the non-deterministic steps of the
optimized version lead to the same output pair (I, p, Fﬁ.’]-j) = (Z"l(,fl'()'),F]S"“O‘)).
Let us first show that step 3 will not fail. It is not difficult to see that I"l(m”'o')

is just a restricted version of I r: if we disregard constant restrictions, then
r 1(;1.04) may be obtained from I3 r by identification of variables as described in

(a), then treating E-variables as constants. Thus solvability of I’ }n'o’) implies
solvability of I, p. The partition m; of step 3 is a refinement of 7(m9) . we claim
that

(*) mi(2) = 1 (y) implies o(z) =g o(y).

Since ¢ is R-normalized on Y5 we then get o(z) = o(y). Let us consider (¥*)
in more detail, since the same kind of argument will also be used later. When

we solve I, p by a solved form algorithm (see e.g., [BB87, JK90]), then we add
equations which are consequences of the equations in I';. This follows from the
fact that =y is a congruence relation and that we may derive the equations
1= S1,..., T = sy from an equation f(r1,...,rn) = f(s1,...,8,) if [is afree
function symbol. In particular every substitution which solves the equationsin I
will also solve this derived equations. But the solved form contains the equations
z =T11(z) and y = 11 (y). Therefore o(z) =g o(m1(x)) = (11 (y)) =p o(y).

With the right choice in step 4 we will get the same variable identifica-
tion as in the non-optimized procedure. This implies that ¢ is a solution of
I'y. In particular o solves Iy . By assumption (a), o does not identify di-
stinct variables of Yj. It is easy to show that we may stop if m(2) = ™ (y)
for distinct variables @,y € Yj: with the same argument as above we see that
o(x) =p o(r(zr)) = 0(r2(y)) =p o(y). Since ¢ is R-normalized it follows that
o(x) = o(y), a contradiction.

Let us now consider the restrictions of step 5. Note that [y ;o and Fl(,;"‘o')
are identical if we disregard constant restrictions in the latter system and treat
E-variables as variables. If m(z) = f(t1,...,t,) for a free function symbol f,
then J}n‘o')(;z:) has top symbol f. Hence agf'o') replaces & by a complex term. It
does not treat it as a constant, therefore ind(™) (z) = F and our choice in step
4 is conform. If 7 (z') is a subterm of (), then o(z') = o(m(2’)) is a strict
subterm of o(7(x)) = o(x). Thus 2/ <(™°) x. It is now trivial to see that we
may in fact choose ind := ind! and “<” := “<("9)7 in step 5. The rest is
obvious. O

n.o.)

Remark. In version 1 of the optimized combination procedure some trivial
hints were omitted which are relevant for efficient implementation. For example,
the unifier 77 obtained in step 3 should be used when we decide solvability of
I'y p in step 4. Another question which will not be discussed here is the question
of how to determine an optimal order for the non-deterministic choices.

Partially Specified Linear Constant Restrictions

In some cases, one source of indeterminism in version 1 may be completely
eliminated. The choice of a linear ordering in step 3 of version 1 of the optimized
procedure can be avoided if it is possible to solve problems with partially specified
linear constant restrictions for the theory E. Such a problem is given by an E-
unification problem with constants, I', and a partial ordering < on the variables
and constants occurring in . The problem has a solution iff there exists a linear
extension of < such that the unification problem with linear constant restriction
induced by this extension has a solution.

Before we give a new version of the combination algorithin let us add a remark
on the application area, in order to avoid misunderstandings. When we only ask
for decidability per se, then unification problems with linear constant restrictions

and unification problems with partially specified linear constant restrictions have
the same status. If solvability of the former class of problems is decidable, then
the same holds for the latter class of problems, simply because every partial
ordering on a finite set has only a finite number of linear extensions. The interest
in partially specified linear constant restrictions relies on the fact that for various
equational theories I the effort to decide solvability of unification problems
with partially specified linear constant restrictions does not exceed the effort
to decide solvability of unification problems with linear constant restrictions.
Examples are the theories 4 and Al as will be shown. Thus, the “disjunctive”
treatment of several linear orderings becomes superfluous and the corresponding
indeterminism is really eliminated, not only postponed.

Optimized Combination Algorithm — Version 2

Context: Decision problem for general E-unification where decidability of E-
unification problems with partially specified linear constant restrictions is deci-
dable (in “non-disjunctive manner”).

We simply proceed as in version 1 until we reach the point in step 5 where the
variable indexing ind has been chosen. Now we do not choose a linear ordering,
but propagate the partial ordering < defined by

y <z iff 7 (y) is a strict subterm of 7 ()

to the remaining E-subsystem, defining thus a system [;» with partially spe-
cified linear constant restriction.

Proposition 3. I is solvable iff some system I p which is reached in version
2 is solvable.

Proof. Suppose that, I'y g is solvable, let < be a linear extension of < such that
the corresponding unification problem with linear constant restriction Iy , is
solvable. The proof of proposition 2 shows that we may assume without loss of
generality that < is a possible choice in step 5 of version 1. Correctness of version
1 implies correctness of version 2.

Now consider the completeness proof for version 1. Since the linear ordering
< which was chosen for step 5 is a linear extension of the partial ordering <
which is used in version 2, completeness of version 2 follows immediately. a

Let us now counsider the particular case of general unification problems in the
theory

A= {h(h(z,y),z) = h{x,h(y,2))}

expressing associativity of the binary function symbol h.

Optimized Combination Algorithm — Version 3

Context: Decision problem for general A-unification.

We may assume without loss of generality that the input problem does not
contain any equation of the form f(sy,..., 8) = h(t;,t2) where f is a free func-
tion symbol. Since A is collapse-free we could immediately stop with failure in
such a case.

Step 1 remains as in versions 1 and 2. Obviously I7 cannot have non-pure
equations. Thus step 2 may be omitted. Step 3 (first variable identification)
remains almost as in versions 1 and 2. We add, however, a control step: if 7y (z) =
f(s1,...,sn) for a free function symbol f and if I3 4 contains and equation
x = h(ty,ty), then we stop with failure. In step 4 (second variable identification)
we do not identify variables x and y if 7 (2) = f(¢1,...,t,) for a free function
symbol f and if I's 4 contains an equation y = h(si,s2), or vice versa. Step
5 of version 2 is modified, eliminating some indeterminism in the choice of a
variable indexing ind. We define ind(y) = A whenever I') 4 contains an equation
y = h(s1,52).

Correctness and completeness of version 3 follow immediately from the fact
that the theory A is collapse-free. Note that we will get A-unification problems
with partially specified linear constant restrictions as output of version 3. “Non-
disjunctive” decidability of such problems is possible, as we shall sketch in the
next section.

In the context of general Al-unification, where
AL:= {h(h(z,y),z) = h(z,h{y,z)), h(z,z) = a2},

we may again use version 2, as will be shown in section 5. But the additional
modifications which were introduced for general A-unification cannot be used
here since AI contains the collapse equation h(x,x) = .

4 A-Unification with Linear Constant Restriction

We first want to prove the following
Theorem 4. A-unification with linear constant restriction s decidable.

Let us start with a simplified representation of A-unification problems with
linear constant restriction. The associativity axiom h(h(z,y),z) = h(z,h(y, z))
allows to write every term built from variables, free constants and the associative
symbol h in the normalform

h(ﬁ,h(tg, e ./h(f,,,_],tn) ..))

(where every ¢; is either a variable or a free constant) which corresponds to
rightmost-bracketing if infix notation is used. Obviously there is a bijective cor-
respondence between terms of this form and words

tits .. tn_1tn

where variables may be instantiated with non-empty words. This shows that
every A-unification problem may be translated into a finite set of word equati-
ons, preserving unifiability in both directions. Every constant restriction of the
A-unification problem translates directly into a constant restriction of the corre-
sponding systemn of word equations. Thus we arrive at the following reformulation
of our problem.

Theorem 5. Unifiability of systems of word equations with linear constant re-
striction is decidable.

There are two ways how we may prove this theorem. Let us first ignore
matters of efficiency and just concentrate on the decidability result. In this case
we may choose an even simpler formulation of the problem. A system (1) of word
equations

=W

Uy = Vi

may be rewritten into a single equivalent word equation (2)
U,alUy, U DUy = VialVaVibV,

where a and b are arbitrary distinct constants. Every unifier of (1) is a unifier of
(2) and vice versa, thus both systems are also equivalent with respect to unifiabi-
lity under linear constant restrictions. Therefore we may restrict considerations
to single word equations.

Suppose now that a word equation WE is given with variables in X =
{#1,...,2,}, constants in C' and with linear constant restriction induced by
a linear ordering < on X U (. We want to decide whether WE has a unifier
which satisfies the constant restriction.

For technical reasons we would like to use ground unifiers only. Let us consider
an alphabet C’ = C' U {c} where c is a constant not occurring in C for this
purpose. Then WE has a unifier 8 over C'U X which satisfies the linear constant
restriction induced by < if and only if WE has a solution (i.e, a ground unifier) 6’
over C" which satisfies the linear constant restriction induced by “<”: to obtain
6" from 0 we just replace all occurrences of variables by the constant ¢. In the
converse direction, all occurrences of ¢ are replaced by the same variable.

We are now in a position to use the following general result from [Sh90]:

Theorem: If WE is a word equation with variables x,,...,x, and constants
wn the alphabet C', and if Ly,...,L, are reqular languages over C', then it is
decidable whether WE has a solution 6 such that 8(x;) € L; fori=1,...,n.

Let L; := C'j', where
Ci={aeCia<z}U{c}

(t=1,...,n). Obviously a solution 6 of WE satisfies the linear constant restric-
tion induced by < iff 8(x;) € L; for i = 1,...,n. Thus the theorem implies that
unifiability of word equations with linear constant restrictions is decidable, and
thus — by disjunctive treatment — also with partially specified linear constant
restrictions.

The algorithm which was used in [Sh90] in order to establish the theorem
mentioned above is, however, more complicated than it would be necessary for
the special purpose of regular languages of the form C;" In connection with
the initial translation of systems of word equations into a single word equation
and with the disjunctive treatment of different linear orderings for general A-
unification via version 1 of the combination procedure we get a rather inefficient
decision procedure.

For the readers which are familiar with Makanin’s algorithimn let us sketch
how a better solution might look like. In particular we want to show that it is
possible to avoid

— the translation of a system of word equations into a single word equation,
which doubles the data size,

— the disjunctive treatment of linear extensions of the partial ordering < ob-
tained in step 5 of the optimized version 2.

Thus, the prerequisite which is needed for version 3 is in fact available in the
case of A-unification.

First, it is not difficult to show that Makanin’s algorithm for deciding the
solvability of words equations may directly be used for systems of word equations
(see e.g, [Sh90]). Second, by means of simple additional devices it is possible to
modify Makanin’s algorithm in such a way that we keep control over all constants
which will occur in the value of a variable, following a certain path of the search
tree. For this purpose, a sequence of columns of the actual generalized equation
is used to represent an actual value V(z) of a variable # occurring in WE. If a
subcolumn of a column of V(z) contains a constant base of type a € C, then
the constant a will occur in #(z) for every unifier 8 of WE which corresponds to
a successful node which may be found below the actual node of the search tree.
After any transformation step, the values (sequences) of all variables have to be
updated.

We may now run the algorithm with the partial order < used as a “filter”.
This means that we stop a branch of the search tree as soon as the constants
which occur in the (columns which represent the) actual values V(z) of the
variables & of WE show that the relation <y contains a cycle, where

y <y aiff y <woryoccursin V(x).

A detailled description of this algorithm for word equations with partially spe-
cified linear constant restrictions would be rather long.* But most constructions
are straightforward, starting from a modern description of Makanin’s algorithm

(e.g., [ShO1]).

5 Al-Unification with Linear Constant Restriction

Let h be a binary function symbol, and let AI denote the theory of idempotent
semigroups, i.e.,

AL:={h(M(z,y),z) = h(x,h{y,z)), h(z,z) = x}.

As mentioned in the introduction, decidability of Al-unification problems with
constants is an easy consequence of the fact that idempotent semigroups are
locally finite. In fact, McLean has shown as early as 1954 (see [Mc54]) that finitely
generated free idempotent semigroups are finite, and he gave a formula which
can be used to calculate the cardinality ¢, of the free idempotent semigroup in

n generators:
- n\ — . 9i
c,n_g <(T>H(1—z+l))

r=1 i=1

The method used to show this finiteness result can also be employed to get a
decision procedure for the word problem for free idempotent semigroups (see e.g.

[BCT71)).

Putting these facts together one can conclude that, for a given finite set C' of
constant symbols (the generators), one can compute a finite set of representatives
for the =4, classes of all terms built over h and these constants. In addition,
for two such representatives s, t one can effectively find the representative of the
class of h(s,t). Since the theory AI is regular, all the elements of an Al-class
contain the same constants as its representative.

Theorem 6. Al-unification with linear constant restriction is decidable.

* In order to prove termination of this algorithm, a straightforward generalization of
Bulitko’s theorem has to be proved.

Proof. Assume that I is an Al-unification problem with constants, and that <
is a linear ordering on the constants and variables occurring in I'. If I’ does
not contain any constant, then there are no constant restrictions and we have
an elementary Al-unification problem. Thus we may assume that I’ contains
at least one constant. If we ignore the constant restriction induced by <, then
it is easy to see that I’ has an Al-unifier iff it has an Al-unifier such that the
images of variables occurring in I contain only constants from I'. In fact, one can
substitute all other constants and variables occurring in the image of a unifier by
constants from I'; and thus ends up with a unifier satisfying the above condition.
This is no longer possible if one has to fulfill a constant restriction. However, if
we allow for one new constant (i.e., a constant not occurring in I') in the image,
then we may substitute all constants beside the ones from I' and all variables
occurring in the image of a solution of the problem with constant restriction by
this new constant, and end up with a unifier satisfying the constant restriction.

This shows that it is enough to look for a solution in the free idempotent
semigroup in finitely many generators, namely the constants occurring in I plus
one additional new constant. As mentioned above, this semigroup is effectively
given by a finite set of representatives. Thus what we can do is try all possibilities
of replacing the variables in I" by these representatives, under the restriction
imposed by the linear ordering. Depending on whether we find a solution this
way, the problem with linear constant restriction is solvable or not. a

As mentioned in section 3, the number of nondeterministic choices in the
combination procedure can be reduced if it is possible to solve problems with
partially specified linear constant restrictions. Recall that such a problem is
given by a unification problem with constants, I, and a partial ordering < on
the variables and constants occurring in I'. This problem has a solution iff there
exists a linear extension of < such that the unification problem with linear
constant restriction induced by this extension has a solution.

It is easy to modify the procedure described in the proof of Theorem 6 to cope
with such problems. In fact, when choosing a representative s to be substituted
for a given variable x, this tells us that has to be made larger than all constants
from I' occurring in s. If these additional relationships are consistent with the
current partial ordering, we augment the partial ordering with them. Otherwise,
we can discard this choice.

Corollary 7. Al-Unification with partially specified linear constant restriction
1s decidable 1n “non-disjunctive” manner.

It should however be noted that the decision methods we have just described
are only practicable if the number of constants occurring in I' is very small. This
is so because the cardinalities ¢, of finitely generated free idempotent semigroups
are growing very fast,.

6 NP-Decidability of general AC- and ACI-unification

In this section we shall prove NP-decidability of general AC- and AC I-unification
problems. The result is an immediate consequence of the following two claims:

Claim 1: For a given input problem X of size ng,” the (non-optimized)
combination algorithm may be organized in such a way that

— (1) the size njx1 of the system obtained after step i + 1 is polynomial in the
size n; of the system created at the previous step (i =10,...,4).

— (2) the non-deterministic choices of steps 3 and 4 may be computed by means
of a polynomial number of non-deterministic choices between two possibili-
ties,

— (3) the complexity of the deterministic computations in step i + 1 is polyno-
mial inn; (1=0,...,4).

Claim 2: Solvability of AC' and ACI-problems with linear constant restric-
tions may be decided by NP-algorithms.

Proof of claim 1:

Ad (1). In step 1, note that one replacement of an alien subterms introduces
two occurrences of a new variable, but does not introduce any new subterm. The
number of such steps does not exceed the number of (occurrences of) subterms
in the input symbol, thus it does not exceed ng. Thus ny < 3ny. Obviously
n2 < 2ny. In the remaining steps, the size of the system(s) does not grow.

Ad (2). In step 3, the number of variables is n < ny. Suppose that we
have variables {71, ..., 2, }. In order to compute a partition of this set we shall
successively create a partition P; of {zy,...,2;} for i = 1,....,n. Of course P :=
{{z1}}. Suppose that some P; = {p; 1, ..., pi & } has been computed for an i < n.
Obviously k& < 4. To compute Py we may either add x4 to p;j and stop,
or we may continue, considering p; j41, (starting with j = 1). If we reach the
point where p; j, is considered, we may either add ;4 to p; j or we create a new
equivalence class p;t1 g1 := {@it1}. Obviously the final partition P, is reached
after not more than n3 nondeterministic choices between two alternatives. It
is also clear that every partition of {z1,...,a,} is a possible outcome of the
procedure.

Suppose that the variables {1, ..., 2, } are left in the input system for step
4. First we choose nondeterministically a variable which is subtracted from the

° The size of a unification problem is the number n of occurrences of symbols in the
terms of the equations occurring in the problem.

set. This takes at most m non-deterministic decisions between two possibilities.
The variable which is chosen is minimal with respect to the linear order to be
constructed. The next variable is chosen in the remaining system. By iteration,
the linear order is constructed in less than m? non-deterministic choices between
two possibilities. Indexing of variables takes other m non-deterministic steps with

two possibilities.

Ad (3). This is easy for step 1 since every term is only treated once, replacing
all alien subterms. The remaining steps are obvious.

Proof of claim 2:

AC-Unification with Linear Constant Restriction. It is a well-known fact that
solving AC-unification problems with constants can be reduced to solving sy-
stems of linear equations over the nonnegative integers (see e.g., [St81, Fa84]).
As an easy consequence one can show that solvability of AC-unification problems
with linear constant restriction can be expressed as an integer programming pro-
blem, thus establishing NP-decidability. Instead of giving a formal presentation
of this reduction, we shall illustrate it by an example.

Let h be a binary AC-symbol, x,y be variables, and ¢, d be constants. We
consider the AC-unification problem with constants

I = {h(a,h(a. (e, h(e.) = hly. h(y, hly. h(y.d))).
ha b bz, h(y,y)) = hr.o)},

and the constant restriction induced by ¢ < © < d < y. As mentioned before,
it is enough to look for solutions which introduce the constants ¢,d occurring
in I' and one additional constant, say e. For each of these three constants, we
introduce a system of linear equations. The variables occurring in these equations
stand for the number of occurrences of the respective constant in the image of x
and y, respectively, of possible solutions of I'. The coefficients of these variables
in the equations are the number of occurrences of x and y, respectively, in I
Thus we get the three systems

(52) (o) + (5)=(00) (o) + ()
GG =00)+ 0)
(52) (5) = (1) ()

In addition, since we do not have a unit element for h, the variables x,y have to
be substituted by nonempty terms. This is expressed by the inequalities

Te+xg+2x. >0 and y.+yq+y. > 0.

The AC-unification problem with constants, I, has a solution iff the above sy-
stems of equations have nonegative integer solutions satisfying the restriction
imposed by these inequalities.

Now it should be obvious how to express the constant restriction with the
help of some additional equations: If a constant must not occur in the image of
a variable, the corresponding variable in the system of linear equations has to
be zero. In our example, we get the additional equation

rg=0

because x < d means that d must not occur in the image of z.

ACI-Unification with Linear Constant Restriction. Kapur and Narendran
[KNO1] have shown that solvability of ACI-unification problems with constants
can be decided by a (deterministic) polynomial algorithm. This is done by trans-
forming the conditions for solvability of such a unification problem into a set of
propositional Horn clauses. This set of Horn clauses is satisfiable iff the original
problem was unifiable. Since the size of this set of clauses is quadratic in the
size of the unification problem, the fact that satisfiability of propositional Horn
clauses is decidable in linear time (see [DG84]) shows that one ends up with a
quadratic decision procedure for ACI-unifiability with constants.

Now we shall demonstrate that this result can easily be generalized to sol-
vability of ACI-unification with constant restriction. To this purpose we briefly
review Kapur and Narendran’s transformation. Let I' be an ACI-unification
problem with constants, and let X and C' be the variables and constants, re-
spectively, occurring in I'. Let C” be C' augmented by one additional constant
co. As explained in the proof of Theorem 6, it is enough to look for solutions
introducing only these constants. For each pair (z,¢) € X x C', we take a pro-
positional variable P, .. The intended semantics of this variable is that it is true
iff ¢ does not occur in the image of x for the substitution under consideration.

Now counsider an equation s = t. For all constants a occurring in s but not
in ¢, one introduces a Horn clause

/\ P, o = false,
zEV (1)

where V(t) denotes the variables occurring in ¢. The obvious meaning of this
clause is that, in order to get a solution, ¢ must be introduced by some variable of
t, since it already occurs in s. The analogous formulae are built for the constants
occurring in ¢ but not in s. For the additional constant c¢¢, we have to add
formulae saying that if this constant is not introduced on one side of the equation,
it must not be introduced on the other side. Thus we have for all variables y
occurring in s the formula

/\ P=T,Cn = Py,cn‘
zEV (1)

Of course, one also must take the analogous formulae where the role of s and ¢
are exchanged. Finally, the fact that all variables x € X must be replaced by a
nonempty term is expressed by the formulae

/\ P, . = false.

ceC’

If we take these formulae for all the equations in I’ then we have obtained a set
of Horn clauses which is satisfiable iff I" has a unifier.

Obviously, this encoding is very convenient for expressing constant restric-
tions. The fact that ¢ must not occur in the image of x can simply be expressed
by the fact

true = P, ..
To sum up, we have thus shown that solvability of ACT-unification problems

with linear constant restriction can be decided by a (deterministic) quadratic
algorithm.

Conclusion

We have studied general unification problems for the equational theories A, AT
AC and ACI With the combination algorithm which was introduced in [BS91]
it is possible to reduce general unification problems to Robinson unification
plus unification problems with linear constant restrictions in the single theories.
The latter class of problems was shown to be decidable for the four theories.
From the proof for the theories AC and ACI and from the structure of the
combination algorithm we obtained the result that solvability of general AC- and
ACT-unification problems may be decided with NP-algorithms. For the theories
A and AT we showed how to use the information obtained from the solution of
the free subsystem which is separated by the combination algorithm in order
to optimize this procedure, eliminating possible choices in the non-deterministic
steps. The notion of a unification problem with partially specified linear constant
restriction arose from our optimization technique and we demonstrated that this
class of problems is decidable in non-disjunctive manner for the theories A and

AL

References

[BB87] K.H. Blasius, H.-J. Biirckert, “Deduktionssysteme,” Oldenbourg Verlag,
Miinchen Wien (1987).

[BS91] F. Baader, K.U. Schulz, “Unification in the Union of Disjoint Equational Theo-
ries: Combining Decision Procedures,” DFKI-Research Report RR-91-33, to
appear in the Proceedings of the 11th International Conference on Automated
Deduction, LNCS (1992).

[BC71] J.A. Brzozowski, K. Culik, A. Gabrielian, “Classification of Noncounting
Events,” J. Computer and System Science 5, 1971.

[Bii90] H.-J. Biirckert, *A Resolution Principle for Clauses with Constraints,” Procee-
dings of the 10th International Conference on Automated Deduction, LNCS
449, 1990.

[Co90] A. Colmerauer, “An Introduction to PROLOG III,” C. ACM 33, 1990.

[DG84] W.F. Dowling, J. Gallier, “Linear Time Algorithms for Testing Satisfiability
of Propositional Horn Formula,” J. Logic Programming 3, 1984.

[Fa84] F. Fages, “Associative-Commutative Unification,” Proceedings of the 7th In-
ternational Conference on Automated Deduction, LNCS 170, 1984.

[JK90] J.P. Jouannaud, C. Kirchner, “Solving Equations in Abstract Algebras: A
Rule-Based Survey of Unification,” Preprint, 1990. To appear in the Festschrift
to Alan Robinson’s birthday.

[JL87] J. Jaffar, J.L. Lasses, “Constraint Logic Programming,” Proceedings of 14th
POPL Conference, Munich, 1987.

[KN91] D. Kapur, P. Narendran, “Complexity of Unifi-
cation Problems with Associative-Commutative Operators,” Preprint, 1991.
To appear in J. Automated Reasoning.

[KK89] C. Kirchner, H. Kirchner, “Constrained Equational Reasoning,” Proceedings
of SIGSAM 1989 International Symposium on Symbolic and Algebraic Com-
putation, ACM Press, 1989.

[Ma77] G.S. Makanin, “The Problem of Solvability of Equations in a Free Semigroup,”

Mat. USSR Sbornik 32, 1977.
[Mc54] D. McLean, “Idempotent Semigroups,” Am. Math. Mon. 61, 1954.

[Sc89] M. Schmidt-Schauf, “Combination of Unification Algorithms,” J. Symbolic
Computation 8, 1989.

[Sh90] K.U. Schulz, “Makanin’s Algorithm — Two Improvements and a Generaliza-
tion,” Proceedings of the First International Workshop on Word Equations

and Related Topics IWWERT 90, Tiibingen 1990, Springer LNCS 572.

[Sh91] K.U. Schulz, “Word Unification and Transformation of Generalized Equati-
ons,” CIS-Report 91-46, University of Munich, 1991 (see also this issue).

[St81] M. Stickel, “A Unification Algorithm for Associative-Commutative Functions,”
J. ACM 28, 1981.

This article was processed using the INTpX macro package with LLNCS style

