
A visual and interactive tool for optimizing lexical postcorrection of OCR results

Christian Strohmaier
SfS – Univ. of Tübingen

strohmai@sfs.uni-tuebingen.de

Christoph Ringlstetter, Klaus U. Schulz∗

CIS – Univ. of Munich
{kristof,schulz}@cis.uni-muenchen.de

Stoyan Mihov∗

LPDP – Bulgarian Academy of Sciences
stoyan@lml.bas.bg

Abstract

Systems for postcorrection of OCR-results can be fine
tuned and adapted to new recognition tasks in many re-
spects. One issue is the selection and adaption of a suit-
able background dictionary. Another issue is the choice of
a correction model, which includes, among other decisions,
the selection of an appropriate distance measure for strings
and the choice of a scoring function for ranking distinct cor-
rection alternatives. When combining the results obtained
from distinct OCR engines, further parameters have to be
fixed. Due to all these degrees of freedom, adaption and
fine tuning of systems for lexical postcorrection is a diffi-
cult process. Here we describe a visual and interactive tool
that semi-automates the generation of ground truth data,
partially automates adjustment of parameters, yields active
support for error analysis and thus helps to find correction
strategies that lead to high accuracy with realistic effort.

1 Introduction

The quality of recognition results that are achieved with
actual commercial OCR engines is generally high. Still,
a non-neglectable number of errors occur even for docu-
ment layouts with simple fonts and normal font sizes. The
number of errors often grows in a significant way for docu-
ment parts where small font sizes and italic style are used.
In this situation, techniques for lexical postcorrection may
help to reduce the error rate and to achieve high accuracy
[9, 17, 6, 2, 3, 11, 16].

Unfortunately, in most cases no real benefits are achieved
with a naive postcorrection strategy. The success of tech-
niques for lexical postcorrection crucially depends on a con-
siderable number of design decisions and parameter set-
tings, and a correction strategy that works well for a given

∗Funded by VolkswagenStiftung

recognition task may fail to produce satisfactory results
when treating another group of documents. Since a whole
bunch of design decisions and parameters may influence the
quality of the final correction result, the adaption of a given
correction algorithm to a new application is a complex and
time consuming task.

A first crucial decision is the selection of a suitable back-
ground dictionary. Since scanned corpora often belong to
specific thematic areas, general purpose dictionaries usually
fail to reflect vocabulary and word frequencies of a given
text. A partial improvement is obtained by using an appro-
priate selection of specialized dictionaries. Examples are
dictionaries for proper names, geographic names, for termi-
nological expressions from fixed thematic areas, acronyms,
etc. Another suggestion, discussed in [15], is to derive for
each application an additional “dynamic” dictionary that is
obtained via analysis of web pages from the given thematic
area retrieved by web search engines. In a given application
we may then look for an optimal combination of a base dic-
tionary with special dictionaries and a dynamic dictionary.
Note that it would be naive to expect optimal results from a
dictionary with maximal size, e.g., due to “false friend” er-
rors (s.b.). The question arises of how to find a good selec-
tion of dictionaries within the complete set of dictionaries
that are at our disposal.

A second step is the design of a scoring function that
may be used to rank correction candidates retrieved from
the joint dictionary for a given garbled word. A natural way
to achieve such a ranking is based on a combination of a dis-
tance value and a frequency information. The distance value
measures the similarity between the garbled word and a
given lexicon entry. The frequency value describes the num-
ber of occurrences of a given dictionary entry in a very large
standard corpus. Many different options exist for defining
a suitable distance function. For example, various variants
of the Levenshtein (edit) distance can be used. A second
task is to find a good balance between distance values and

frequency values.
It is not realistic to assume that the dictionary contains

each token of the text. For example, in earlier experiments
with German documents we only reached a lexical coverage
between 93.07% and 98.42% even with very large dictio-
naries that are enriched with vocabulary from thematic web
pages ([15]). Hence, for automated correction tasks a cor-
rection candidate should only be used to replace the original
OCR result in the presence of additional confidence. In our
approach, the correction candidate is only used if its rank-
ing value exceeds a given threshold. The problem arises of
how to select an optimal threshold.

If several OCR engines are at our disposal, the question
arises of how to combine the recognition/postcorrection re-
sults that are achieved with the single engines. In our case
we would like to combine the results on the level of words
(tokens) that are recognized. Again this process typically
evolves several design decisions and fine tuning of parame-
ters.

In this paper we describe a visual and interactive tool
that helps to find a good path through the labyrinth of se-
lections, design decisions and parameter adaptions that are
needed to fine tune a given system for a new application.
For this process we use ground truth data. Hence, in terms
of machine learning, the tool facilitates training. For a fixed
sample of the document the original text is reconstructed.
The sample is analyzed with each OCR engine. Using these
data we first search for an optimal postcorrection model for
each single OCR engine (Phase 1). Afterwards the mod-
els obtained for the single OCR engines are combined into
a joint postcorrection model (Phase 2) which is then used
(application phase) for analyzing the complete text.

Phase 1 is further divided into three steps. In Step 1 the
original text of the sample is automatically aligned with the
output of the given OCR engine on the sample. In Step 2 a
set of files is created where potential correction candidates
for each token recognized by the OCR engine are listed.
The correction candidates are selected in the given dictio-
naries, ignoring that we know the original word. Step 3 is
used to search a good postcorrection model for the output
of the given OCR engine. This process, which is partially
automated and supported by visual tools, includes the selec-
tion of dictionaries, the selection of a distance measure, the
definition of a scoring function for correction candidates,
an interactive error analysis and further points. In order to
measure the quality of a given model in terms of correction
accuracy we make use of the fact that we know the correct
tokens of the original text. Details are described below.

The correction models obtained at the end of Phase 1
produce for each token recognized by an OCR engine a list
of correction suggestions where each correction suggestion
comes with a confidence value. In Phase 2, which repre-
sents work in progress, the correction candidates and the

confidence values obtained for the distinct OCR engines are
combined, and a joint list of correction candidates is built
which is finally used for automated or interactive correc-
tion.

Our tool is based on an open architecture. This means
that it can deal with any number of dictionaries, computable
distance measures for strings, OCR engines, etc.

In the following sections, after a brief discussion of the
kind of resources that are needed in our approach, each of
the three steps of Phase 1 is described in more detail. The
emphasis is on the central Step 3. Section 6 briefly com-
ments on Phase 2. Section 7 describes implementation de-
tails and visualization techniques. Section 8 gives evalua-
tion results that were achieved when analyzing texts from
distinct thematic areas.

2 Basic resources

We face a situation where several OCR engines are used
to recognize a printed text. OCR software is considered as
a black box with textual output. For postcorrection of the
recognition results, a collection D of dictionaries is at our
disposal. In these dictionaries, each entry v comes with a
value f(v) ∈ [0, 1] representing a normalized frequency
information. Furthermore we assume that a collection M
of distance measures for strings is available, together with
suitable algorithms for computing these distances. One dis-
tance function, the basic distance measure d0, is distin-
guished. It is used for preselecting correction candidates
(cf. Section 4).

Usually D and M are fixed. However, the interactive
error analysis in Step 3 of Phase 1 (s.b.) might indicate
that better correction results can be expected from a new
kind of dictionary, or from another distance measure. In
such a situation we may decide to extend/modify the initial
ressources.

In our actual system, two commercial OCR engines are
integrated. The collection of dictionaries contains large-
scale lexica for English, German and Bulgarian language,
special subdictionaries for proper names, geos, abbrevia-
tions and acronyms. We also use dynamic dictionaries ob-
tained via analysis of web vocabulary, cf. [15]. The stan-
dard Levenshtein distance1 is used as basic distance mea-
sure. Furthermore we use the length-sensitive Levenshtein
distance1. We can also use variants where edit costs depend
on specific symbols. However, the implementation of algo-
rithms for optimizing weights is not finished, hence we do
not have evaluation results for these distances.

1The standard Levenshtein distance [13] between two words W and V ,
denoted dL(V, W), is the minimal number of letter insertions, deletions
and substitutions that are needed to transform V into W . The length-
sensitive Levenshtein distance is d′

L
(V, W) := dL(V, W)/(|V | + |W |)

where |U | denotes the length of the word U .

3 Step 1 of Phase 1: Alignment

In Phase 1, as a first step the output received from the
OCR engine is aligned with the reproduced original text of
the sample. We compute the alignment file AF which con-
tains tuples of the form 〈w, wocr〉. Here w is a correct token
of the original sample, wocr represents the recognition re-
sult for this token obtained with the given OCR engine. For
automated alignment we use a modified version of the usual
dynamic programming approach. The alignment problem
becomes more difficult for multi-column documents if the
natural reading order of the original sample is permuted in
the output of the OCR engine. In this case, an analysis of lo-
cal neighbourhoods is used to reconstruct the proper align-
ment with the original text. As a matter of fact also this
method is limited and there are cases where an automated
alignment is impossible. Even for single column texts in
general we do not reach a complete alignment of all tokens
due to recognition errors of the OCR engine where tokens
are merged or split. In the following discussion, alignment
problems are ignored.

4 Step 2 of Phase 1: Computation of correc-
tion files

For each token wocr recognized by the given OCR en-
gine and each dictionary D ∈ D we preselect a list of n
correction candidates in D. Here n is an (adjustable) pa-
rameter. For preselection, the basic distance measure d0 is
used. Entries v of D where d0(w

ocr, v) is small are pre-
ferred. If d(wocr , v) = d(wocr, v′) for two distinct entries
v, v′ of Di, then the more frequent entry is preferred. Pres-
election of correction candidates only represents a filtering
step that narrows down the search for good correction sug-
gestions in Step 3. The choice of the value n yields a com-
promise between recall and computational efficiency. From
an algorithmic point of view, techniques described in [14]
are used to preselect correction candidates, cf. Section 7.

Using the alignment file and the preselected correction
candidates we produce for each dictionary D ∈ D a cor-
rection file CF D. Let M = {d1, . . . , dm} denote the
set of distances. CFD contains all tuples of the form
〈w, wocr, χ, v1, ~d[1], f(v1), . . . , vn, ~d[n], f(vn)〉 where w
represents a correct token of the original sample, wocr re-
presents the recognition result of the OCR engine, the vl

represent the preselected correction candidates for wocr in
D, the boolean value χ indicates if w occurs in D, f(v) de-
scribes the normalized frequency of v, and ~d[l] is shorthand
for d1(w

ocr, vl), . . . , dm(wocr, vl) (1 ≤ l ≤ n). The set of
correction files for all dictionaries represents the basis for
the interactive computations in Step 3.

• • •
w1 w2 wr

ocr ocr ocr

D1

D2

D3

d1

d2

d1

d2

d1

d2

CFD1

CFD2

CFD3

Correction Files

• • •
w1 w2 wr

ocr ocr ocr

D1

D2

D3

d1

d2

d1

d2

d1

d2

CFD1

CFD2

CFD3

Selection of distance and
active dictionaries

...

...

...

... ...

...

...

...

Figure 1. Selection of a configuration.

5 Step 3 of Phase 1: Interactive optimization
of correction model and error analysis

Step 3 is split into rounds. Each round begins with the
selection of a configuration. A configuration is given by a
subcollection D′ ⊆ D of active dictionaries and an active
distance measure d ∈ M. In order to select a configu-
ration, a subcollection D′ and a distance measure d ∈ M
may be activated using buttons of the graphical user inter-
face. Figure 1 illustrates the selection of a configuration in
a situation where three dictionaries D1, D2 and D3 and two
string distances d1, d2 are at our disposal. Measure d1 is
used and dictionaries D1 and D3 are activated.

For a given configuration (D′, d), an interactive and
semi-automated process is used to determine a unary cor-
rection model which leads to optimal correction accuracy.
With a unary correction model we mean any deterministic
procedure that computes for each recognized token wocr a
unique correction suggestion wcor which is wocr itself or
an (other) entry of an active dictionary. Correction accu-
racy is defined as the percentage of tokens wocr where wcor

coincides with the correct token w. At this point it should
perhaps be stressed that the selection of a unique correction
suggestion primarily serves as a basis for comparing correc-
tion accuracy. Values for the correction accuracy reached
for distinct configurations are compared in order to deter-
mine a configuration that leads to optimal accuracy. Any
unary model obtained in this way can be extended to a k-
ary model (s.b.).

In our system, unary correction models are completely
determined by the actual configuration (D′, d) and values
for two parameters α, τ that are described below. In the
sequel we assume that distance values d(v, wocr) are trans-

lated into similarity values s(v, wocr) ∈ [0, 1] where high
values mean high similarity.

Balance. The score of a correction candidate v for a to-
ken wocr is sc(v) := αs(v, wocr) + (1− α)f(v). Balance
parameter α is a value in [0, 1] that determines the relative
weight of similarity versus frequency. Since frequency and
distance values are of distinct nature and normalized in dis-
tinct ways, this gives only a basic intuition. For selecting a
value for α the graphical user interface offers two options.
The value can be defined interactively, using a scroll bar.
Alternatively we may automatically compute a value α that
leads to optimal correction accuracy (s.b.).

Threshold. Assume that a balance parameter α has been
fixed. Consider a recognized token wocr. Using the cor-
rection files, among all correction candidates for wocr that
have been preselected in active dictionaries we select the
entry vcand with the highest score. Collecting the entries
vcand for all tokens wocr we create a list Cands with tuples
of the form 〈w, wocr , vcand, sc(vcand)〉. Cands is sorted in
descending score order, The sorted list is divided into two
parts. The “active part” contains an initial interval where
entries have high scores. For the tokens wocr of tuples in
the active part we define wcor := vcand. As a matter of
fact, very often wocr is found in an active dictionary and we
get wcor := vcand = wocr. The remaining “passive part”
contains tuples with low scores. Here we generally define
wcor := wocr. The threshold parameter τ defines the
minimal score for elements of the sorted list Cands that be-
long to the active part. The value of the threshold parameter
can be assigned interactively, using a scroll bar. Alterna-
tively we may automatically determine a value τ that leads
to optimal correction accuracy.

Optimization. Appropriate values for the parameters α
and τ can be computed using a simple hill climbing proce-
dure. For an initial pair of values (α0, τ0), which is selected
arbitrarily, the system automatically computes the correc-
tion accuracy that is obtained. Fixing the value for τ0 we
use the system to compute a value α1 that leads to optimal
correction accuracy for the given threshold τ0. Fixing then
α1 we compute a value τ1 that leads to optimal correction
accuracy for the given value of the balance parameter, α1.
In this way we continue until a local maximum is found. We
have started to fully automatize the complete procedure.

Error analysis. Consider a situation where we have
fixed a unary correction model in terms of a configuration
(D′, d) and suitable values for the parameters α, τ . Let D̂
denote the union of all active dictionaries. For simplicity we
assume that wcor = wocr as soon as wocr ∈ D̂, which holds
in all realistic cases. With a correction error we mean any
triple (w, wocr, wcor) where w 6= wcor. In our system, cor-
rection errors are classified using seven disjoint categories:

1. “false friends”: w 6= wocr ∈ D̂ and wcor = wocr.

2. The OCR-result is actively corrected, with wrong re-
sult: wocr 6∈ D̂ and wcor 6= wocr. We distinguish
three subcategories:

(a) “wrong candidate” errors where w ∈ D̂ (here
w 6= wocr),

(b) “infelicitous correction” errors where w 6∈ D̂ and
w = wocr, and

(c) “no chance I” errors where w 6∈ D̂ and w 6=
wocr.

3. The OCR-result is left unmodified, with wrong result:
wocr 6∈ D̂ and wcor = wocr. We distinguish three
subcategories:

(a) “too cautious” errors where vcand = w,

(b) “wrong candidate and threshold” errors where
vcand 6= w but w ∈ D̂, and

(c) “no chance II” errors where vcand 6= w and w 6∈
D̂.

Our system automatically provides the user with an error
analysis where for each of the seven categories the num-
ber (and percentage) of correction errors is depicted. These
kind of statistics can be used to recognize deficits of the cur-
rent correction model. For example, “false friend” errors
can only be avoided with a smaller dictionary. In contrast, a
large number of “no chance” errors indicates that the cover-
age obtained by the set of active dictionaries is yet insuffi-
cient. A large number of “wrong candidate” errors typically
indicates that the selected distance measure is not optimal or
the number n of preselected correction candidates per dic-
tionary is too small. “Too cautious” errors can be avoided
with a more liberal threshold. However, if the threshold is
already optimal a larger value will lead to more “infelici-
tous corrections”. For any combination of error categories,
the list of all errors triples (w, wocr , wcor) of the given er-
ror types can be displayed, separating triples from the active
part from triples in the passive part, which may yield further
insights about error sources and possible improvements.

Extension to k-ary model. Assume that eventually we
have found a configuration (D′, d) and values for the pa-
rameters α, τ that lead to optimal correction accuracy. As
a final step that prepares the combination of the correction
models obtained for the single OCR engines into a global
correction model, the unary correction model for the cur-
rent OCR engine is automatically extended. With a k-ary
correction model with confidence values we mean a de-
terministic procedure that computes, given wocr, a ranked
list of k correction suggestions with confidence values. In
our approach, possible correction suggestions are wocr it-
self and the correction candidates that have been preselected
in active dictionaries. Among the latter elements we select
the k elements with the highest score. Let C0(w

ocr) denote

the resulting set. For the final selection of correction sug-
gestions, where wocr may replace an element of C0(w

ocr),
we use confidence values.

As a preparatory step we compute the border score
sc0 := (sca + scb)/2 where sca = τ (resp. scb) is the
score of the last (first) tuple of the active (passive) part of
the sorted list Cands. Note that the border score does not
depend on a given token wocr. The confidence conf(vi)
of a correction suggestion vi in a list C0(w

ocr) is defined
as sc(vi)/sc0. Note that conf(vcand) > 1 for all entries
〈w, wocr, vcand, sc(vcand)〉 in the active part of Cands. The
elements vcand occurring in Cands represent the top-scored
correction suggestions of the lists C0(w

ocr). For the en-
tries in the passive part we receive confidence values < 1.
For all tokens wocr that do not occur in C0(w

ocr) we define
conf(wocr) := 1. Eventually we select for each token wocr

as our set of correction suggestions the k elements in the set
C0(w

ocr) ∪ {wocr} with the best confidence values.
The rational behind this choice of a confidence value can

be explained as follows. Since we use a limited amount of
training data we can only approximate an optimal value for
the threshold parameter τ . If a correction suggestion v has
small confidence > 1, then already a minor change of the
value for τ can lead to a situation where v is positioned in
the passive part where we use wocr instead of v as correc-
tion suggestion in the unary model. In contrast, a large con-
fidence value for v indicates that even with major changes
of the value of τ we will still prefer v (as opposed to wocr)
in the unary model.

6 Phase 2: Combining the correction models
derived for single OCR engines

Phase 2 starts with the computation of the global
alignment file GAF : the alignment files for the single
OCR engines are used to compute all tuples of the form
〈w, wocr

1
, . . . , wocr

ne

〉 where w is a correct token of the orig-
inal sample and the wocr

i represent the recognition results
for this token obtained with the distinct OCR engines. Here
ne denotes the number of OCR engines.

Using the output of the k-ary correction models for the
single OCR engines and GAF , a file with entries of the form
〈w, L1, . . . , Lne

〉 is computed. Here Li denotes the list of
correction suggestions and confidence values obtained for
recognized token wocr

i using the k-ary correction model for
the i-th OCR engine (1 ≤ i ≤ ne).

The final task is now to compute a corresponding list
of the form 〈w, L〉 where L is a list of k correction sug-
gestions that represent an optimal subcollection of the cor-
rection suggestions in the lists L1, . . . , Lne

. Furthermore,
each suggestion v in L should have a combined confi-
dence value that takes into account all confidence values
for v in the lists Li. In the literature, combination prob-

lems of a similar abstract form have been intensively stud-
ied [4, 5, 18, 8, 12, 7, 1, 10]. Most work on combination
problems in the area of OCR recognition is devoted to the
combination of symbol classifiers. Here we combine results
on the level of words. We are confident that the combina-
tion techniques developed in this area can be adapted to the
present situation and will lead to good solutions. The ex-
tension of the actual tool to combination of OCR engines
represents ongoing work.

7 Implementation and visualization tech-
niques

Following the steps described above, our software cur-
rently consists of five main modules: (1) alignment, (2) pre-
selection of correction candidates in dictionaries and com-
putation of correction files CF D, (3) computation of lists
Cands with parameter optimization and error analysis, (4)
graphical user interface (GUI), and (5) OCR combination.
For preselection of correction candidates in dictionaries we
use a technique based on so-called “Levenshtein-automata”
introduced in [14].

For efficiency reasons, Levenshtein-automata are imple-
mented in C. The calculation of correction suggestions only
takes around 5 milliseconds per token even for dictionaries
with more than one million entries. Because of the large
number of calls the selection of correction candidates still
represents a bottleneck in the software architecture. We ac-
tually try to accelerate this process using precalculation and
caching techniques. Furthermore we look at variants of the
techniques in [14] that further reduce access times.

All other (sub)modules of the system are developed in
a strictly object oriented style in Java. Java offers optimal
support for programming GUIs. Using the Java Native In-
terface (JNI) we were able to build a wrapper around the
C-tools that describe Levenshtein-automata.

Given an OCRed document our modules have the fol-
lowing time requirements: With a conventional PC (1GHz
Pentium processor with 256 MByte main memory) we need
ca. 2 seconds per page for alignment, which means that
a corpus with 8000 tokens takes ca. 40 seconds. Selec-
tion of correction candidates for the same corpus using nine
dictionaries takes about 6 minutes. Manipulation of model
parameters via the GUI can be done interactively. In order
to avoid a long loading time at the beginning of each inter-
active session we separated alignment and computation of
correction files CFD from interactive parameter optimiza-
tion and error analysis. Computation of correction files is
organized as a batch job. Both correction files CF D and lists
Cands are basic data structures, hence they are formulated
as aggregated Java classes. For passing CF D-contents from
Module 2 to Module 3, CFD-files are represented as XML-
files that are conform to a fixed DTD. The list Cands is com-

Figure 2. Selection of active dictionaries and
threshold parameter.

puted in real-time from the parsed XML files. The inter-
active part of the software follows the model-view-control
design pattern. Currently the OCR combination module is
in an early development stage.

The complete source code of the system consists of ap-
prox. 5000 lines of code.

A small collection of screen-shots should give some
ideas of the current options for visualization and interac-
tivity that are offered by the tool. Figure 2 shows the
window that is used for selecting active dictionaries. The
items “Holocaust E/korrekt.abk” etc. stand for the cor-
rection files CF D that have been computed for a docu-
ment entitled “Holocaust E” using nine distinct dictionar-
ies D (abk,...,perf). Dictionaries, or the associated correc-
tion files, can be activated using the buttons on the left-hand
side. The picture shows seven activated dictionaries. For
the threshold parameter τ the value 0.9937 . . . has been se-
lected. The maximal distance of a correction candidate in
the unary model is indicated, as well as the frequency of the
last entry of the active part. We may change the value us-
ing the scroll bar. We may also automatically compute the
value for τ that leads to maximal accuracy.

In parallel we may open the window depicted in Figure 3
and see the correction accuracy and error statistics for the
given selection of dictionaries and values (unary correction
model). Correction accuracy is computed both with refer-

Figure 3. Statistics for correction accuracy
and error frequencies.

ence to all tokens and for the subset of normal tokens. A
token is normal if it is composed of standard letters only.
When modifying τ or the selection of dictionaries, new ac-
curacy values and error values are computed and displayed
in real-time.

Figure 4 shows the window that is used for fixing the
balance parameter α. The same window is used to select a
string distance. For the actual session, the length-sensitive
Levenshtein distance has been selected (score component
0). Score component 1 is the normalized frequency value. If
distinct frequency values from several ressources are avail-
able we may also select the type of frequency information
that is used. We may modify the value of α using the scroll
bar. When modifying α, new values for the error statistics
are only computed by demand. We may use the system to
compute an optimal value. In this case we automatically
receive a new statistics for accuracy and error frequencies.

8 Evaluation results

In one experiment we used the tool for postcorrection
of an English text TBot from the field of botany. The text
contained 4478 tokens. As to layout, a single standard font
without small letters was used. TBot was split into two dis-
joint parts, a training text T tr

Bot of 896 tokens and an applica-
tion text T appl

Bot with 3582 tokens. Both parts were processed
with a single OCR engine.

Figure 4. Selection of distance measure and
balance parameter.

We used the tool in order to find an optimal selection of
dictionaries and parameter values for T tr

Bot. In this experi-
ment, optimal results were obtained using one single “dy-
namic” subdictionary which was obtained via automated
analysis of the vocabulary of web pages associated with the
field of botany. Details of the general method for dynamic
dictionary construction are described in [15]. For defining
an optimal score, small values of α turned out to be useful.
This effect is mainly due to the current normalization of fre-
quency values that leads to small differences of normalized
values. Still, it indicates that frequency information plays
an important role. With the optimal threshold score, 86%
of the list Cands belonged to the active part. ¿From these
parameters we derived a unary correction model.

The model was then applied to T appl

Bot . For T appl

Bot we ob-
served a correction accuracy of 96.89% for normal tokens
using plain OCR results without postcorrection. Since cor-
rection accuracy measures the percentage of correctly rec-
ognized tokens (as opposed to symbols) this result is im-
pressive and represents a serious challenge for any kind of
automated lexical postcorrection with a unary model. In our
case, after lexical postcorrection we obtained a correction
accuracy of 97.43%.

We then repeated the experiment and excluded the dy-
namic dictionary from our set of ressources. Among the
remaining dictionaries we had a dictionary with conven-
tional English words with 315, 300 entries and a dictionary
of proper names with 372, 628 entries. In this situation, re-
gardless of the selection of active dictionaries and parameter
values we could not reach a correction accuracy exceeding
96.89%. This illustrates the importance of the dictionary.

In a second experiment we treated another English text
TRE about the Roman Empire. TRE contains 10000 tokens,
layout is of the same form as above. TRE was split into a

training part with T tr
RE with 2000 tokens and an application

part T aapl
RE with 8000 tokens. Both texts were scanned and

analyzed with a single OCR engine. Our tool was used in
order to find an optimal selection of dictionaries and pa-
rameter values for T tr

RE . As before, optimal results were
obtained using one single dynamic dictionary with vocabu-
lary from web pages with contents associated with the his-
tory of the Roman empire. The optimal value for α was
again small. With an optimal choice of the threshold score
τ , 84% of the list Cands belonged to the active part. ¿From
these parameters we derived a unary correction model.

We then applied the model to T appl

RE . For T appl

RE we ob-
served a correction accuracy of 98.8% for normal tokens
using plain OCR results without postcorrection. The value
is close to optimal. In such a situation, most unary mod-
els for automated postcorrection will in fact lead to reduced
accuracy. In this case, after lexical postcorrection we ob-
tained a correction accuracy of 98.94%. We then looked at
other values of α. For most values it turned out to be im-
possible to reach a correction accuracy beyond 98.8% on
T appl

RE . This result again illustrates the importance of fre-
quency information.

The results, which are of course only preliminary, show
that already in the actual form the tool helps to find good
models for lexical postcorrection. We hope that better re-
sults can be obtained when using a variant of the Leven-
shtein distance where edit costs depend on the particular
symbols that are used in the edit operations. Even more
significant improvements can probably be obtained when
combining results from several OCR engines. Both points
represent work in progress.

As a matter of fact, fully automated postcorrection is al-
ways difficult in situations where OCR already yields bril-
liant results. In these cases suitable techniques for inter-
active correction are more relevant. We briefly comment
on an experiment that illustrates the potential power of ap-
proaches based on multiple OCR engines. When using a
single OCR engine, the problem of detecting false friends
- a kernel problem for interactive OCR correction - is very
difficult. Here the use of a second OCR engine turns out to
be extremely helpful. Table 1 shows the number of false
friends that have been obtained as the result of a lexical
postcorrection of a text from the area of neurology with
5691 tokens. We used four dictionaries D1, . . . , D4 of as-
cending size and coverage. The first line FF(1) counts the
number of false friends for OCR engine 1 (the number of
false friends for OCR engine 2 was slightly higher). The
second line counts the number of tokens that led to false
friends for both OCR engines. The last line counts the
number of tokens that led to identical false friends for both
OCR engines. The dramatic reduction shows that most false
friends can be found simply by comparing the results of
both OCR engines.

Dictionaries D1 D2 D3 D4

FF(1) 22 27 28 32
FF(1) ∧ FF(2) 2 4 6 7
FF(1) = FF(2) 1 2 3 4

Table 1. Single and double false friends using
two OCR engines.

9 Concluding remarks

We described a tool that helps to optimize lexical post-
correction of OCR results, both for automated and inter-
active correction scenarios. In our description we concen-
trated on the steps and routines that are applied during the
training phase. At the end of this phase, once an optimal
configuration is selected and the correction model is fixed,
all active dictionaries can be compiled into a single dictio-
nary, which simplifies the actual computation of correction
suggestions during the application. For each token wocr

recognized by an OCR engine we may directly select k cor-
rection candidates with optimal scores, which means that
the preselection step is not necessary. Generalizing ideas
from [14] we are currently working on a fast algorithm that
traverses a given dictionary and selects the k best correction
suggestions subject to a given score.

Our experiments, which describe training and applica-
tion phase, show that with the models derived for fully au-
tomated postcorrection in the training phase we can achieve
an improvement w.r.t. correction accuracy even in cases
where a single OCR engine is used and the plain OCR result
is already excellent. Further progress can be expected from
suitable techniques for combining postcorrection results for
several OCR engines and from the use of improved distance
measures. Additional work will be necessary to develop an
extension of the current tool that provides optimal support
for visual and interactive error correction.

References

[1] K. Chen, L. Wang, and H. Chi. Methods of combining mul-
tiple classifiers with different features and their applications
to text-independent speaker identification. Int. J. of Pattern
Recognition and Artificial Intelligence, 1997.

[2] A. Dengel, R. Hoch, F. Hönes, T. Jäger, M. Malburg, and
A. Weigel. Techniques for improving OCR results. In
H. Bunke and P. Wang, editors, Handbook of Character
Recognition and Document Image Analysis. World Scien-
tific, 1997.

[3] G. Ford, S. Hauser, D. X. Le, and G. R. Thoma. Pattern
matching techniques for correcting low confidence OCR
words in a known context. In Proceedings of SPIE, Vol.

4307, Document Recognition and Retrieval VIII, pages 241–
249, 2001.

[4] T. Ho. A theory of multiple classifier systems and its appli-
cation to visual word recognition. Technical Report Techni-
cal Report 92-12, State University of New York at Buffalo,
1992.

[5] T. Ho, J. Hull, and S. Srihari. On multiple classifier systems
for pattern recognition. IEEE Trans. Patt. Anal. Machine
Intell. PAMI, 16(1):66–75, 1994.

[6] R. Hoch and T. Kieninger. On virtual partitioning of large
dictionaries for contextual post-processing to improve char-
acter recognition. International Journal of Pattern Recogni-
tion and Artificial Intelligence, 10(4):273–289, 1996.

[7] Y. Huang, K. Liu, and C. Suen. The combination of multiple
classifiers by a neural network approach. Int. J. of Pattern
Recognition and Artificial Intelligence, 9:579–597, 1995.

[8] Y. Huang and C. Suen. Combination of multiple classifiers
with measurement values. In Proc. of the Second Interna-
tional Conference on Document Analysis and Recognition
(ICDAR 93), pages 598–601, 1993.

[9] K. Kukich. Techniques for automatically correcting words
in texts. ACM Computing Surveys, pages 377–439, 1992.

[10] L. Lam, Y.-S. Huang, and C. Suen. Combination of mul-
tiple classifier decisions for optical character recognition.
In H. Bunke and P. Wang, editors, Handbook of Character
Recognition and Document Image Analysis. World Scien-
tific, 1997.

[11] T. A. Lasko and S. E. Hauser. Approximate string matching
algorithms for limited-vocabulary OCR output correction.
In Proceedings of SPIE, Vol. 4307, Document Recognition
and Retrieval VIII, pages 232–240, 2001.

[12] D. Lee and S. Srihari. A theory of classifier combination:
The neural network approach. In Proc. of the Third Interna-
tional Conference on Document Analysis and Recognition
(ICDAR 95), pages 42–45, 1995.

[13] V. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals. Sov. Phys. Dokl., 1966.

[14] K. U. Schulz and S. Mihov. Fast String Correction with
Levenshtein-Automata. International Journal of Document
Analysis and Recognition, 5(1):67–85, 2002.

[15] C. Strohmaier, C. Ringlstetter, K. U. Schulz, and S. Mihov.
Lexical postcorrection of OCR-results: The web as a dy-
namic secondary dictionary? Technical report, University
of Munich, 2003. submitted to ICDAR 03.

[16] K. Taghva and E. Stofsky. OCRSpell: an interactive spelling
correction system for OCR errors in text. International
Journal of Document Analysis and Recognition, 3:125–137,
2001.

[17] F. Weigel, S. Baumann, and J. Rohrschneider. Lexical post-
processing by heuristic search and automatic determination
of the edit costs. In Proc. of the Third International Confer-
ence on Document Analysis and Recognition (ICDAR 95),
pages 857–860, 1995.

[18] L. Xu, A. Krzyzak, and C. Suen. Methods of combining
multiple classifiers and their application to handwritten nu-
meral recognition. IEEE Trans. on Systems, Man, and Cy-
bernetics, 22:418–435, 1992.

