Combining Recursive and Dynamic Types*

Hans Leif3
internet: leiss@cis.uni-muenchen.de
CIS, Universitat Munchen
Leopoldstrafie 139
D-8000 Minchen 40

Germany

Abstract. A denotational semantics of simply typed lambda calculus with
a basic type Dynamic, modelling values whose type is to be inspected at run-
time, has been given by Abadi e.a.[1]. We extend this interpretation to cover
(formally contractive) recursive types as well. Soundness of typing rules and
freeness of run-time type errors for well-typed programs hold.

The interpretation works also for implicitly polymorphic languages like ML
with Dynamic and recursive types, and for explicitly polymorphic languages
under the types-as-ideals interpretation.

1 Introduction

Static typing of programming languages has well known advantages like error de-
tection at compile time and efficient object code free of type-checking at run-time.
However, for programs that interact with storage media, other programs, or humans,
it 1s often impossible to determine all relevant type information at compile time.

For example, consider a program operating on data that are modified after it
has been compiled, are provided by a user interactively, or are fetched from external
storage media. One would like the running program to inspect the type of the data,
continue computation if this type is compatible with the type expected by the pro-
gram, and terminate computaion or raise an exception, otherwise. Clearly, the use
of such dynamic type checking should not compromise the soundness of the typing
system.

In the last few years, several attempts have been made to make restricted use of
dynamic typing in statically typed programming languages. A. Mycroft[13], building
on ideas of M. Gordon to model dynamic typing by pairs (v, 7} of values v with their
types 7, introduced a type Dynamic, henceforth called dyn, as an infinite disjoint sum
of types, each summand containing values tagged with their type. Inspection of these
“dynamic values” 1s accomplished by a case-statement that branches according to
finitely many type patterns, which exhaust the infinitely many types a dynamic
value could have.

Mycroft proposed an extension of ML[6] by dynamic values. Actually, a version
of dyn has been built into CAML[5]. The background of this implementation and al-
ternative designs for adding dynamics to ML are treated by Leroy/Mauny[8]. Other

* This work has been supported by the Esprit Working Group BRA 7232, GENTZEN.

languages like L. Cardelli’s[3] AMBER also have dynamic values. In fact, the im-
plementation of AMBER took advantage of treating compiled modules as dynamic
values.

M. Abadi, L. Cardelli, B. Pierce and G. Plotkin[l] investigated dynamic typing
in a systematic way. They gave operational and denotational semantics of the simply
typed lambda calculus with a basic type dyn. Additionally, they presented some ideas
on polymorphically typed languages with dyn, focussing on difficulties in matching
polymorphic types against patterns. This last aspect has been further investigated
very recently by M. Abadi, L. Cardelli, B. Pierce and D. Remy[2], with extensions
to languages with subtyping and abstract data types. A rather different study of
dynamic type checking has been given by F. Henglein[7].

To give a denotational semantics for dyn, one has to establish

(v,7) € [dyn] if and only if v € [7],

for arbitrary values v and (closed) types 7, including 7 = dyn. In the case of simply
typed A-calculus, Abadi e.a.[1] work in the ideal model of D. MacQueen, G. Plotkin
and R. Sethi[9], and define [dyn] recusively by mimicking the construction of types
over the set of pairs (v, 7). However, for the combinations of dyn with polymorphic
languages, suggested in [1, 2] and [8], no denotational semantics was known so far.

Our main concern is to extend the model of Abadi e.a.[1] to cover recursive types
po.7 as well) such as the trees and lists of real programming languages. When recur-
sive types are present, the method of defining [dyn] by mimicking the construction
of types seems impossible: v € [pa.7] cannot be characterized by conditions of the
form u € [o] for types o simpler than 7.

A more general approach is needed in order to define the meaning of types
when dyn and recursive types are combined. The main contribution of this paper
is that while -in this situation- the recursive equations for type interpretations do
not constitute a well-founded recursion on types, we can solve them simultaneously
for all types, using Banach’s fixed point theorem on an infinite product space of the
metric space of ideals.

An advantage of our method is that it allows to give a denotational semantics
for dynamic (and recursive) types in polymorphic languages as well. On the other
hand, in this case we have neglected somewhat the semantics of terms in that only
closed type-tags and first-order pattern-variables in typecase-expressions have been
treated.

In Section 2.1 we present the syntax of simply typed A-calculus with dynamic
and recursive types, and in Section 2.2 review the construction of the ideal model
and some preliminaries for our extension. In Section 2.3 we will construct the ideal
interpretation for simply typed A-calculus with dyn and recursive types. Section 3
extends this to an interpretation of dynamic and recursive types combined with
explicit and implicit polymorphism.

2 Dynamic and recursive types in a simply typed language

Followingideas of M. Gordon, we view dynamic types as sets of pairs (v, 7) containing
a value v of type 7 together with its type. Programs are allowed to access the type-
tag and make their actions depend on it. Compared with sum types (7 + 72), whose

elements (v,7) contain a tag ¢ indicating that v is of type 7, dynamic types are
more flexible in that their tags range over an infinite set. They can be modelled as
infinite sums, with the restriction that the infinite set of tags has some algebraic
structure that allows programs to use branching according to finitely many tag-
patlerns, instead of an infinite distinction on tags. A. Mycroft[12] first considered
dynamic types as infinite sums of this kind.

Instead of working with different dynamic types, it is sufficient to consider one
type dyn containing all these (value,tag)-pairs, with the type as the algebra of tags.

2.1 Simply typed A-calculus with dyn and recursive types

In this section we give the syntax of a simply typed A-calculus with recursive types
and a basic type dyn. It is similar to that of [1], to which we also refer for exam-
ple programs. The types we consider are basic types including dyn, disjoint sums,
product, function space, and recursive types.

Definition1. Types 7 and terms t are defined by the following grammar:

T=a|bool |nat |dyn | (r+7) | (rx7) | (T —=71) | pe.T

=z | wrong

|# | ff | (case t of # then t, ff then)
| 0]S(t) | (case t of 0 then ¢, S(z) then ?)
| (dynamic ¢ : 1) | (typecase t of {o1,...,a,} 2 : 7 then t else t)
| i 747 (f) | in2r4-(t) | (case t of (x,1) then ¢, (z,2) then t)
| (¢,8) | mat | wot
| Az :rt | (t-1)

The intended meaning of an expression (dynamic ¢ : 7) is to create a dynamic
value {v,7), which may then be stored to external media or otherwise brought out
of the control of the running program.

Conversely, the meaning of (typecase d of {a1,...,a,} 2 : 7 then r else s) is
to match the type o of (v, o), the value of d, against the pattern 7, and if the match
succeeds, then continue with r —using v for « and the types found by the match for the
pattern-variables «;—, else with s. If the value of d is not a dynamic, an error occurs.
(C.f. Section 2.4 and 2.5 for details.) The variables and «; are bound variables
with scope « : 7 and 7.2 To handle embedded patterns, the distinction between free
and bound pattern-variables is made explicit by binding guards {«1, ..., a,}, as in

Az :dyn.Af :dyn. (typecasez of {a} y:a X «a
then (typecase fof {8} g:axa—f
then (dynamic gy : 5)
else (dynamic my : o))
else (dynamic “not a nice pair” : string))

2 A more flexible syntax, (typecase d of {z1,...,&m,a1,...,a,} p:7 then r else s)
with a term-pattern p, would allow to inspect the value component as well. Essentially,
the case (typecase d of {z1,...,z»} p: 7 then r else s) is available in CAML.

To simplify notation, from now on we will only use typecase-expressions binding a
single pattern-variable.

The meaning of the remaining expressions is fairly standard and omitted. (See
also [1] for operational and denotational semantics of terms.) It may be sufficient to
mention that the variable x in the case-statements is a pattern-variable bound in
the corresponding then-branch.

From the terms generated by the above grammar, a subclass of well-typed terms
is defined using a type inference system. We only give those rules of the system in
Abadi e.a.[1] that deal with dynamics3, those of [9] that deal with recursive types,
and those for function types.

A type basis is a finite sequence I' of typing statements x : 7, assigning types 7
to object variables x. If I' contains several assumptions « : o for the same object
variable #, then I'(z), —the type assigned to » by I'- is the type o of the rightmost
of these. When writing I > ¢ : 7, we always assume that I" a typing assumption for
each free variable of ¢.

Definition2 (Typing Rules).

(Var) I'> x:I'(x)
I'>t: 7 I
(Dyn De I' > (dynamic ¢ : 7) : dyn’ if 7 is closed
(Dyn E)” I'>d:dyn, I z:7[p/a] > rlp/a]:oforallclosed p, T'v> s:0
v I' > (typecase d of {a} z: 7 then r else s) : o

I' v i par I' v t:r[par/d]
(1) I' > i 7lpat/o (n E) "> t:poer

lNe:ovt:T I'vit:co—71, I'p s:o
(= De ' Xe:ot:(c—1) (—E) e (t-s):r

Note that rule (Dyn E)~ has an infinite number of premisses; these capture what
is needed in the soundness Theorem 18. For practical purposes, it is more natural
to use the following more restrictive rule:

(DynE)FDd:dyn, I z:1T0v>r: o, I'> s:0o

I' > (typecase d of {a} x: 7 then r else s) : ¢’ o not free in I', 0.

This demands that there is a uniform proof of I', « : 7[p/a] > r[p/a]: o for all p.

Frample 1. Assuming a further base type Unit with single element (), one can define
the type of lists of naturals as the recusive type nat-1list := pa.(Unit + (nat x «)).
From assumptions

I'mat = () : Unit, in; : Unit — (Unit 4 (nat x nat-list)),
ins : nat x nat-list — (Unit + (nat x nat-list))

® The added restriction on closed types in (Dyn Ie is needed to define the semantics for
types as in Theorem 13.

we can derive typings like I'nat > [0,1,3]: nat-1list, using [] := iny(), [n,2] :=
ing(n, z), 1 := S(0) etc. Indirectly, we can also define a type of inhomogeneous lists
as dyn-list := pa.(Unit + (dyn x «)). With corresponding typing basis, one can
derive type dyn-1list for the list

[(dynamic # : bool), (dynamic Az : nat.S(S(z)) : nat — nat)].

2.2 Preliminaries for the ideal model

A domain is a complete partial order (D, <, L) with least element L such that (i)
every bounded subset X C D has a least upper bound, | |X € D, (ii) D has only
countably many finite elements, and (iii) for any d € D, {e | e finite, e < d} is
directed and d is its least upper bound. An element d € D is finite, if for all directed
X C D with d <| | X there is some # € X such that d < x.

In the following we will work in a domain V satisfying the recursion equation

V= Dpool + Pnat +(V4+V)+(VxV)+(V — V) +(V*clType)+ {error} i, (1)

where Dygo1 and Dpat are the flat domains of the booleans and natural numbers,
{error}) the flat domain of an element error modelling run-time errors of programs,
+ denotes the digjoint sum, x the cartesian product and — the space of continuous
functions of two domains. Finally, * constructs from a domain D and a set A the
domain with universe

{{(v,a) |veD—{L}, ac A}U{L}

and the natural partial ordering inherited from D. If D is one of the summands of
V, we write d for the injection of d € D into V, and use

] d, ifv=d" andde D
vlp = Lp,else

Definition 3. Let ¥V = (V, <, L) be a complete partial order. I C V is an ideal of
V,iff (i) Ly € I, (ii) the supremum of every directed subset of I belongs to 7, and
(iii) I is downward closed, i.e. « < b € T implies a € I. Let Z be the set of all ideals
of V.

Definition4. Let [and J be ideals of V, and 7 a single and A a set of closed types.
Define the following subsets of V:

(I+7) ={G)" [iel—{Lv}}u{(,2)" |jeJ —{Lv}}U{Llv}
(IxJ) ={)V iel, jeJtu{ly}
(I—T):={f" | fe(V—=V), f(I) CT}U{Lyv}

IxA ={@En)V |iel, reAju{lyv}

These subsets are partially ordered as follows. Take Ly as least element, com-
pare pairs (v, 7)Y of I+ A with the same type component according to their value
component, compare f'’s of (I — J) according to the ordering on V — V, and
on (I x J)let (i,5)V < (k,)V be true iff i < kand j <lon [and J. On I + J,
elements with the same tag are compared as their value components are on I or J.

Propositions. ([1]) (I+J), (I xJ), (I —=J) and I« A are ideals.

Definition6. From now on we assume that the domain solution V of equation (1)
we are working in 1s the limit of domains

Vo ={Llv}
Va4l = Dpool + Dnat + (Vo + Vo) + (Vo x Vi)
+ (Vo = Vo) + (Vi * elType) + {error} .

The rank rk(v) of v € V is the least n € w such that v € V,,. The distance d(I,.J) of
ideals I,J € T is

o fo 1=
(1,J) = g=min{rk(v) | v€IMI} if £ [bq]

where I X J := {v | v a finite element of T — J or J — I}.

Lemma 7. ([1]) (Z,d) is a complete metric space. In fact, d is an ultrametric, i.e.
satisfies d(I,J) < maz{d(I, K),d(K,J)} rather than just the triangle inequality of
a metric.

A function f: (X,dx) — (Y, dy) between metric spaces is c-contractive (resp.
non-expansive), if dy (f(x1), f(x2)) < ¢ -dx(x1,22) for all #;, 29 € X, where 0 <
¢ < 1 (resp. 0 < ¢ < 1). Recall that by Banach’s theorem, every c-contractive
mapping f : (X,dx) — (X,dx) on a complete metric space has a unique fixed
point, fizxz. f(x). Moreover, we will need the following facts:

Lemma8. Let (X;,d;)jer be a family of complete ultra-metric spaces, such that
dj(z,y) <1 forallj€J and x,y € Xj. Let (X,d) := (lljesXj,sup;je;d;) be their
cartesian product, equipped with d(< x; >je5,< y; >jer) = sup{d;(z;,y;) | j €
J} <1

1. (X,d) is a complete ultra-metric space.

2. If{fi - X; — X | j € J} a family of c-contractive mappings (for fized ¢), then
X — X, defined by f(< x; >jer) =< fij(2;) >jer, is c-contractive.

3. If, for some ¢ < 1, f is c-contractive in xp when keeping the others components
z; fized, then Az € X. fix 2. < f;(x;) >je5 is c-contractive.

4. hog) is contractive if g is contractive and h is non-expanding, or vice versa.

Proposition9. (1]} On (I,d), +, x, — and {7} are 1/2-contractive functions.

The intersection of an arbitrary nonempty set J of ideals is an ideal. Since its
union in general is not, one has to consider | |[J :=({I[€Z | UJ C I}.

Proposition10. Let {I; | k € K} and {J | k € K} be nonempty families of ideals.
Then (1) d((Nyex Ter Miex) < supperd(le, Ji) and (@) d([Uyeg In ek J2) <
supperd(Iy, Ji).

Proof. (i) Since Y := ({1 |k € K} X [({Ji | k € K} C Uper(r M Ji), we have
gmin rk(Y) > gminge frmin rk(IeJx) — mingex 2™ HINT) which implies the claim.
(ii) Similarly, we use that X := [[{I; |k € K} X | [{Jpx | k€ K} CUjper (I X Jz).
For this, note that a finite element of | |{I} | k¥ € K} already belongs to some Ij.

2.3 Semantics of types as ideals

Following MacQueen e.a.[9], we use Banach’s fixed point theorem to define the mean-
ing [pe.7]n of a recursive type pa.7 as the fixed-point of AJ € Z.[r]n[J/«]. Since
only contractive mappings are guaranteed to have (unique) fixed points, we have to
restrict ourselves to a subclass of all types.

Definition11. ([9]) Well-formed types are the following subclass of types:

T=a|bool |nat |dyn | (r4+7) | (rx7) | (T— 1) |
| pee.7, provided 7 is formally contractive in a.

A type 7 is formally contractive in «, if either (i) 7 is atomic and « is not free in 7,
or (ii) 7 is of the form (1 4+ 1), (11 X ™) or (11 — 72), or (iii) 7 is of the form puf.c
and ¢ 1s contractive in «, or « = 5.

From now on, “type” means “well-formed type”. We write clType for the set of closed
types, containing no free variables, and Type for the set of all types.

Well-formed types are those not containing a subtype of the form pay . .. pog, .oy,
1 < ¢ < n. They form a rich class of type expressions which define contractive
mappings on (Z, d).

According to the informal discussion of dynamic values in Section 1, the type
dyn should be interpreted by the collection of all pairs (v, 7)¥ where v € [r] and
7 € clType. Abadi e.a.[l1] give such an interpretation by mimicking the ordinary
type constructors +, x and — by new “dynamic” constructors +, x, and -+ on the
universe V * clType of dynamic values. These constructors combine dynamic types
I,J C(V * clType)V as follows (but also work for arbitrary ideals):

(I+J) =GV o+ 7V | (3,0)Y € 1,7 € clType}
U{{(,2)V, o+ 1)V | o€ clType, (j,7)V €J} U {Ly}.
(i) oxn)V [{i,o) €L,(j,n)V €T} U {Lv}.
(fYoo—=nV | felV-=V),
(f(&), 7)YV € J for alli € V with (i,0)V € I} U{Ly},

(IxJ) =
(I=J):=

—_—

Since these fucntions are contractive on Z, [dyn] can recursively be defined by

[dyn] = [bool] * {bool} U [nat]=*{nat} U [dyn]* {dyn}
U ([dyn] + [dyn]) U ([dyn] x [dyn]) U ([dyn] = [dyn]).
In the presence of recursive types, however, this method seems no longer be applica-

ble, as it relies on the fact that for non-basic 7, (v, 7}V € [dyn] is characterized by
elements (u, o)V € [dyn] with simpler types o. This is not the case when choosing

(1) = {{v,par)V | (v, 7lpar/al) € I} U {1y}

Also, d(f([bool] * {bool}), ji([nat] * {nat})) = d([bool] * {bool}, [nat] * {nat})
shows that we would not get a contractive mapping.

So we take a more general approach to define [dyn] that is fairly independent of
the choice of type constructors, and formalizes the intuitive meaning directly.

Definition12. Let Env be the set of all assignments n : TypeVar — Z. A meaning
of lypes as ideals in V is a function [-]-, such that the following conditions hold for
all types 7 and assignments n € Enuv:

[eln = n(e) [(r1+7)]n = (Indn + [rIn)
[bool]n = Dpoo1 U{Lv} [(r1 x m2)]n = ([ndn x [r2]n)
[nat]ly = Dpat U{lv} [(r1 — 72)In = ([n]n — [=In)
[aynln = U, ccrmype [7In+ {7} [parln = Irlnllpe.rln/al

Without the clause for dyn, it is easily seen by induction on 7 that [7]n exists
for all n, once it is clear that the fixed point of AJ € Z.[r]n[I/«] is an ideal of V.
However, with the clause for dyn we can no longer apply induction on 7 to ensure the
existence of [r]n: the above equations specify [dyn]n using the values of arbitrarily
complicated types - possibly containing the type dyn.

The main point of this paper is to show that, in spite of the apparently non-
well-founded recursion in the clauses of Definition 12, [7]n makes perfect sense.* An
infinite simultaneous recursion and the uniqueness of fixed-points in complete metric
spaces is used to ensure that [-]- exists.

Theorem 13. There is a mapping [-]- : Type x Env — T salisfying the condilions
of Definition 12, i.e. [7]n is well-defined for all T and 7.

Proof. Let 1T = Il cpype I;, with I, = I, be the product space of the space of
ideals of V, indexed by all types. Define F' =< F)rcmype : IIZ X Env — 7 as follows,
where I € IIT is written as a function I(7):

Fo(l,n) =mn(a) Forigry(Lim) = Fr (Lm) + Fry(1,m)
Fpoo1(1;1) = Dpoo1 U{Lv} Foysry(Lm) = Fr (L) x Fr,(1,n)
Frat(I,n) = Dpat U{Llv} F(Tl—*Tz)(I’n):FTl(I’n)_>FT2(I’77)

Fayn(I,n) =U{I(r) {7} | 7 € clType} Fuar(I,n) = firJ € L. F-(I,n[J/a]).
Claim 1. For each type 7 and n € Env, d(F-(I,n), Fy(I',n)) < 1/2- d(I,I').
Proof by induction on 7:

T € {e, bool, nat}: Then d(F,(I,n), F-(I',n)=0<1/2-d(I,I').
7 = dyn : First note that Fgyn(I,7) € 7, because if any two ideals of an arbitrary

union of ideals have incomparable non-bottom elements only, then this union is an
ideal. Next, we have

d(den(Ia n), den(I/a 1)

sup{d(I(r)« {7}, I'()«{7}) | 7 € clType} (by Proposition 10)
< 1/2-sup{d(I(7),I'(1)) | T € clType}

<1/2-d(1,1).

A IA

* Without recursive types, we might add a clause for variables like
[dyn]n = U{[[a]]n * {a} | @ a type variable} U ...

to the definition and still show that [7]n exists. But then if 7 contains dyn, 7]y depends
on all the [a]n and hence the substitution lemma below fails for such 7.

T = (71 0 T2), where o is one of 4+, x, or —: We can use Proposition 9.

7 = pa.o : By induction, we have d(F, (1, 8), F,(I',8)) < 1/2-d(I,I'), for each 0,
in particular for each 8 = n[J/«a], where J € Z. It is sufficient to show the following
claim, whose proof by induction on ¢ is standard.

Claim 2. Suppose o is formally contractive in ey, ..., . The map (I, Jy, ..., Jp) —
Fo(InlJi/a, ..., Jn/ay]) is 1/2-contractive.

Using Claim 2 and Lemma 8, we get that I — fiz.J. F,(I,n[J/a])is 1/2-contractive,
and hence

d(FNCY~U(I’ 77)’ FNwU(I/’ 77)) = d(ﬁ:l?]. FU(I’ U[J/a])’ﬁ‘r‘]' FU(I/a 77[‘]/0‘]))
<1/2.d(1.T)

which finishes the proof of Claim 1.

From Claim 1 we conclude that on the product space IIZ, d(F(I,n), F(I',n)) <
1/2- d(1,I'), and so F' is contractive, for fixed . By Banach’s theorem, for each n
there is a (unique) element I, € II7 such that F(I,,n) = I,. We now define

Irln := L (1) = F:(1,,n).

Note that induction on types cannot be used to show that [-]- satisfies the conditions
of Definition 12.

Claim 3. (I, p) only depends on p(«), with « free in 7, and on (o) for closed o.

This is easily seen by induction on 7, since the case for 7 = dyn is obvious. Next we
use the uniqueness of fixed points to show:

Claim4. If I,, = F(I,,n) and Iy = F(Iy,0), then I, (o) = Iy(o) for all closed o.

Proof: By Claim 3, I,(¢0) = F,(I,,n) depends only on all the I,(¢') for closed o'.
Note that this dependency is contractive, so

d(I,(0), Ig(0)) < 1/2 - sup{d(I,(c'), Is(c")) | o' € clType}.
Since this holds for all closed types, the right hand side must be 0.
Claim 5. [-] satisfies the conditions of Definition 12.

Proof: This is obvious for all types except the recursive ones. For these, use

[pe7n = Fua.-(1y,n)
=firJ € I.F.(I,,n[J/a])
=firJ € L. Fr(Ly5/a1,nlJ/@]) (by Claims 3 and 4)
=firJ € I.[rInl7/]
= [rInllpa.rIn/a].

Corollary 14. (i) [r]n does not depend on n(«) for o not free in v. (i) If T is
contractive in «, then AJ € I. [tn[J/«] is 1/2-contractive.

Corollary 15. (Substitution Lemma) [o]n[[7In/e] = [o[r/a]ln.

Proof. By induction on o. The claim is obvious if ¢ is a type variable, and immediate
by Proposition 9 if ¢ is (o1 + 02), (61 X 62), or (61 — 02). Let 6 be n[[r]n/«].

o € {bool,nat,dyn}: [o]d = Is(0) = I,,(0) = [o]ln = [o[r/a]]n, using Claim 4.

o = pfB.p: We may assume o Z 3 and free(7) N bound(c) = §, and hence

o]0 = [u3.16 = firJ € T 1007/]
=firJ € T.[pInlJ/B[7In/] (by disjointness of variables)
= firJ € T.[p[r/]nlJ/5] (by induction and Cor. 14 (i))
= [pB.plr/a]ln
= [(uB.p)[r/c]ln = [o[r/a]ln (by disjointness of variables).

Immediate consequences are theorems 18 and 19 of the following sections, extending
those of Abadi e.a.[1] for the corresponding type system without recursive types.

2.4 Soundness of typing rules

The meaning of terms is defined along Milner’s[11] original description of the ideal
model. We only give the clauses for wrong and dynamics:

Definition16. Let matchiy, o,1(0,7) = 5 say that S : {a1,...,an} — Typeis
a substitution such that ¢ = 75.

[wrong]n := errorV

v
[(dynamic ¢ : 7)]n := {

error’ , if [t]n = error
([tIn, 7)Y, otherwise

v

[(typecase d of {a} x : 7 then r else s)[n =
[rlpfallale/e], if (v,) = [0 (v ecinypey and match oy (o, 7) = [p/a] % fui

[s]n, if (v,0) = [dIn[(vscirypey and matchioy(o, 7) = fail,
or [d]n = Ly
error” else

The typing rules (including the familiar ones not given) can be shown to be sound
with respect to the denotational meanings of types and terms. We have to restrict
type assignments to have values in the set of semantic types of V,

T :={I1€T|errory ¢1}.

The typing rules are chosen such that wrong is untypable. It is easily seen that no
type contains error” :

Lemma17. Ifn: TypeVar — T, then [7]ln € T for each type 7.

Note that we cannot use induction on types to prove Lemma 17. Instead, observe
that in the metric space (7, d), a Cauchy sequence contained in 7 never converges
to an ideal [€ 7.

The following theorem, which can be shown by induction on the proofof I'>s : o,

implies that no typable term denotes error? .

Theorem 18. (c.f. [1]}) Suppose n(x) € I'(x) € T whenever I'(x) is defined. If
I' > t:7 is provable, then [t]n € [7]n.

2.5 Soundness of evaluation

There is an operational notion of evaluation, as defined in Abadi e.a.[1], which is
correct with respect to the denotational one. Only closed expressions are evaluated,
and the result is a term in canonical form. Terms in canonical form, or (operational)
values v, are given by the grammar

v =wrong | u (values)
u=t | ff | n (proper values)
| (u,u)

| it rqo w | N2 540 u

| Az 7d, if T is closed and free(t) C {x}
| (dynamic u : 1), if T is closed
n=0 | S(n) (natural values).

Inductively, it is defined when closed term t reduces to canonical form v, written
as { = v. Again, we only give the rules for expressions dealing with wrong and
dynamics (with « and v as above):

(=>wrong) wrong = wrong

t = u
(Zdyn,1) (dynamic ¢ : 7) = (dynamic u : 1)

t = wrong
dynamic ¢ : 7) = wrong

(=dyn,2) (

d = (dynamic u: o), rlp/a]lu/z]=v

(Stc,1) (typecase d of {a} x: 7 then r else s) = v’ matchyay (7, 7) = [p/o]
d = (dynamic u : o), s = L
(Stc2) (typecase d of {a} x: 7 then r else s) = v’ matchiay (o, 7) = fail
d=w v # (dynamic u : o
(=tc,3) zdy)

(typecase d of {a} z: 7 then r else s) = wrong’

Next one can show that operational evaluation preserves types and denotational
value. Together with the results of the previous section, this ensures that well-typed
expressions ¢ “do not cause run-time errors”, i.e. { = wrong is impossible.

Theorem19. (c.f. [1]) Let t be closed with respect to object- and typevariables. If
t = v, then (a) [t] = [v] and (b) if 1t :0 is provable, sois > v :o.

3 Dynamic and recursive types in polymorphic languages

We can extend the combination of recursive and dynamic types from simply to
polymorphically typed A-calculus.

3.1 Explicit polymorphism
The set of types for explicit polymorphism is given by the grammar
T=a|bool |nat |dyn | (r+7) | (rx 1) | (r = 7) | po.7 | Va1 | JavT.

The intended meaning of type quantifiers in the ideal model is given by

Varly= () [7Inl7/a] and [Barly= || [F]nlJ/al, (2)

JeT JeT

where 7 is the set of ideals of V that do not contain error’ . Define V3.7 and 35.7
to be formally contractive in « just as for p3.7 in Section 2.3, and let V3.7 and 348.7
be well-formed if 7 1s. Restricting to well-formed types, we obtain:

Theorem 20. There is a meaning function [t]n for the ideal interpretation of poly-
morphic types satisfying the conditions of Definition 12 and the equations (2).

Proof. We modify the function F' from the proof of Theorem 13 by adding component
functions Fy, ., and F3, ., defined by

Fyar(I,n) = () F-(J,nlJ/al), and Faa-(I,n):= | | F-(J,nlJ/a]).
JeT JeT

The proof of Theorem 13 carries over, once we have shown:
Claim 6. Iy, , and I3, , are 1/2-contractive in their first arguments.

For F54.7, the proof is similar to the one for Fyq ;:

d(Fyar(1,n), Fyar(I', 1))

= d(ﬂJeT FT(I’ 77[‘]/0‘])’ mJeT FT(I/’ 77[‘]/0‘]))

< supjer d(Fr(I1,n[J/al), F-(I',n[J/a])) (by Proposition 10)
<supjer 1/2-d(1,1')=1/2-d(1,I) (by induction).

The following is shown exactly as for the case puf.p in Proposition 15.

Proposition21. (Substitution Lemma)
[ve.rInlleln/al = [(V8.7)o/alln and [38.7Inlleln/o] = [(38.7)[o/a]ln.

3.2 Implicit polymorphism

We now present an interpretation of dynamic and recursive types in a language with
implicit polymorphism in the style of ML. This gives a denotational interpretation
of A. Mycroft’s[12] proposal to extend the functional language ML. He pointed out
that functions one would like to have for ML, like

print :dyn — string or eval :expression X environment — dyn,

could be defined when ML had a type dyn.

The previous notion of {ypes 1s modified by adding universal type quantifiers in
prenex form only, according to the grammar
7 = « | bool | nat | dyn
|(r+7) | (rx1)|(r—=7)| po.T (monotypes)
T=17|Va.7, (polytypes).

Let MType and PType be the set of well-formed mono- and polytypes, respec-
tively. By c¢IMType and clPType we mean the closed well-formed mono- and poly-
types, respectively.

Terms are modified in that (dynamic ¢ : 7) is replaced by (dynamic ¢), and
Az . 1.t by Az.t, and so terms do not contain type information any more, except in
type patterns.

Semantics of types According to Milner’s[11] interpretation for implicit polymor-
phism, type quantifiers are meant to range over closed monotypes only. In the ideal
model, separate a universe M7 of monotypes from the universe 7 of all types by

MT ={[r] | 7 € ciMType} C T ={J €L | error’ & J}.

The meaning of polytypes is reduced to that of monotypes by induction on the
quantifier-rank, using

[Va. 5]y = ﬂ{[[ﬁ[r/a]]]n | 7 € clMType}. (3)
In order to cover type-tags with quantifiers, Definition 12 is changed by
[aynln = ({[e]n * {7} | 7 € clPType}. (4)

Theorem 22. There is a meaning function [ty for implicitly polymorphic types
satisfying the conditions of Definition 12 and equation (3).

Proof. Again, we modify the function F' from the proof of Theorem 13 by adding

component functions Fy, 7 for polytypes @. The former ¢lType has to be replaced
by ¢lPType everywhere. We define

Fyow(1,n) = {Fstrja)(L,n) | 7 € clMType}. (5)
Claim 7. Py, 7 is 1/2-contractive in its first argument.
The proof of this is analogous to that of Claim 6, using Proposition 10. It follows
that AT € ITZ.F(I,n) is contractive, whence the meaning of types can again be
defined by [7]n := I,(7), using the unique fixed point I,, = F(I,,n) of F.

The substitution lemma holds in the following form:

Proposition23. For each monotype 7, [an[[r]n/] = [elr/]]n.

Proof. By induction on the quantifier-rank of @. Let 6 be g[[7]n/«]. In the case of
V3.7, we may assume « Z 3 and free(7) N bound(V3.7) = 0, and thus

[ve.alnllrIn/o] = Fvss(1s,0)
= (W Fatpra1(1e,0) | p € clMType }

= [elp/B110 | p € cIMType }

= [elp/Bllr/alln | p € clMType }

= elr/allp/B1n | p € clMType } since p is closed,

= [Vo@([r/aDIn B & free(r))

= [(VB.7)[r/a]n. (by variable disjointness)

by definition)
by definition)
by induction)

o~

Corollary 24. [Va.o]n = (e [T /a].

Remark. In the absence of recursive types, one can avoid to define the meaning
function for types by approximations, by using the (finite) recursive definition

[dyn]n = [bool]n * {bool} U [nat]n+{nat} U [dyn]n* {dyn}
U ([dyn]y + [dyn]n) U ([dyn]n x [dyn]n) U ([dyn]n — [dyn]n)
U V([ayn]y)

For an ideal I over V, we define V(I) to be
{(i,Ya.3)V | Ya.7 € clPType, (i,a[r/a])¥ €1 for all 7 € clMType} U{Ly}.

In contrast to 4, x, and -+, the operation V is not a contractive mapping on the
space (Z,d) of ideals of V — it is just non-expanding. To ensure that the recursion
equation for [dyn] has a solution, we modify the metric d on V as follows:

For polytypes 7, let ¢rk(7), the quantifier-rank of 7, be the number of (leading)
quantifiers in . For v € V and I, J € 7, define a modified rank and distance by

k() = rk(v) + qrk(@) if v[(vscimype)= (i, 7)
. rk(v), otherwise,

d([,]) = Q—mm{;“vk(v) | veImJ}

The reader may check that the functions +, x, —, 4+, x,—, *{r}, and YV are

contractive on (Z, d).

Semantics of terms One might wish to define the meaning of (dynamic €) in
terms of the principal type of e, but e need not have a principal type: for example,
e = Az.(dynamic z) is of type dyn — dyn and nat — dyn, but has no principal
type. For type inference, use the rules of ML together with the implicit version
(Dyn E) of dyn-elimination and the following implicit version of dyn-introduction:

I'>e:T e =T
(Dyn 1) T 5 (dynamic ¢) - dyn’ if 7 is closed.

Since terms t lack principal types, the meaning [{]n can only be given relative to a
typing derivation D for ¢. For each subterm (dynamic e) of ¢, D uniquely fixes a
closed type 7' that can be used for tagging the value of e. To do so, we assign to
each subterm r of ¢ a sequence 7 of numbers i € {1,2,3}, coding the branch leading
from the root to r in the tree representation of ¢. Then we can define

error if [e™]n = error

[(dynamic ™)] := < ([e™]y, 77)V,if I'>e™ : 7 is the inference step of D
that assigns a type to e™!.

v

To define the meaning of typecase-terms, we match polytypes as follows. For & =

V1o o(Y1s oy vn) € cdType and T(a) = VG ... Bm.T(e, 1, ..., Bm) € PType,
define

matchyo}(7,7) = [p/a] : <= pis closed and o[p1/71, ..., pn/7n] = T[p/],

where [p/e, p1/71, - - -, pa/7n] is the most general unifier of monotypes o and 7 when
considering the f; in 7 as constants. Since every instantiation of 7[p/a] by closed
monotypes is an instance of o by closed monotypes as well, [a] C [V ... Bm-T[p/]]-

Leaving out the path annotation which relativize the meaning to D, we can now
define the meaning of typecase-expressions just as in Section 2.4:

[(typecase d of {a} z : T then r else s)]y :=
[rlp/a]lnlv/=], if (v,@) = [dIn[(v<cimype)y and matchiqy (7, 7) = [p/a]
[s]n, if (v,7) = [dIn[(vsciypey and matchioy(T,7T) = fail,
or [d]n = Ly

error” else.
Observe that pattern-variables « in patterns range over closed types p only; if p were
allowed to contain free variables (bound by the quantifiers of the pattern or the type-
tag), it would be unclear what o means in the then-branch of the typecase-statement.
Compared with the treatment of non-closed patterns in Section 3 of [8], the above
corresponds to their case of patterns with existential type quantifier prefixes.

In the presence of recursive types, it seems preferable that in the definition of
the match-function obove we read = not as syntactical identity of type expressions,
but rather as identity of the rational trees obtained by infinite unfolding of the
p-operator (c.f. [4]). The fold and unfold-rules for recursive types should then be
replaced by the stronger rule of equality for recursive types, see [4].

4 Open problems

By providing an interpretation in the ideal model, it has been shown that dynamic
types can be combined with recursive types and explicit or implicit polymorphism
in a sound way. This gives a partial answer to questions of Abadi e.a.[1], and adds
semantical support to implementations integrating dynamic types into polymorphic

languages like CAML[5].

The main drawbacks of the extension of ML by dynamic typing sketched in
Section 3.2 and the similar ones of [2] and [8] are the failure of the principal types
property and the restriction to closed type-tags. For languages where types can be
passed as parameters, models for dynamics with open type-tags are needed.

An open point is to remove the well-formedness restriction on types. Domains
with a notion of approximation were introduced by Cardone and Coppo[4] in order
to give meanings to arbitrary —not just contractive— recursive types. We believe that
dyn can be added to the simple and recursive types of [4]. But we do not know
whether the completeness result of [4] carries over to the system of Section 2.1.

For typecase-expressions with higher-order matching as in [2], or just the systems
of Section 3 above, even soundness theorems have not yet been given.

Acknowledgement I wish to thank the referees for some very helpful proposals
to improve the results and presentation. Thanks also to Fritz Henglein for sending
a copy of Mycroft’s papers and for a hint to [4].

References

1. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically-typed
language. In 16th POPL, pages 213-227, 1989.

2. M. Abadi, L. Cardelli, B. Pierce, and D. Remy. Dynamic typing in polymorphic lan-
guages. In ACM SIGPLAN Workshop on ML and its Applications. San Francisco,
California, June 20-21, 1992, pages 92-103, 1992.

3. L. Cardelli. Amber. In G. Cousineau, P. L. Curien, and B. Robinet, editors, Comb:-
nators and Functional Programming Languages. Springer LNCS 242, 1986.

4. F. Cardone and M. Coppo. Type inference with recursive types: Syntax and semantics.
Information and Computation, 92(1):48-80, May 1991.

5. G. Cousineau and G. Huet. The CAML Primer. Version 2.6. Project Formel, INRIA-
ENS, April 1989.

6. R. Harper, R. Milner, and M. Tofte. The definition on Standard ML - Version 2. LFCS
Report Series ECS-LFCS-88-62; Dept. of Computer Science, Univ. of Edinburgh, 1988.

7. F. Henglein. Dynamic typing. In FEuropean Symposium on Programming (ESOP).
Rennes, France, pages 233-253. Springer LNCS, vol. 582, 1992.

8. X. Leroy and M. Mauny. Dynamics in ML. In Conf. on Functional Programming
Languages and Computer Architecture. Cambridge, Massachusetts, August 1991, pages
406-426. Springer LNCS 523.

9. D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymorphic
types. In Proceedings of the 11th ACM Symposium on Principles of Programming
Languages, 1984.

10. D. C. J. Matthews. Static and Dynamic Type-Checking. In: Papers on Poly/ML.
Technical Report 161, Computer Laboratory, University of Cambridge, February 1989.

11. R. Milner. A theory of type polymorphism in programming. Journal of Computer and
System Sciences, 17:348-375, 1978.

12. A. Mycroft. Dynamic types in statically typed languages (preliminary draft). Unpub-
lished typescript, December 1983.

13. A. Mycroft. Dynamic types in statically typed languages (2nd draft version). Unpub-
lished typescript, August 1984.

This article was processed using the IATpX macro package with LLNCS style

