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The need to correct garbled strings arises in many areas of natural language processing. If

a dictionary is available that covers all possible input tokens, a natural set of candidates

for correcting an erroneous input P is the set of all words in the dictionary for which

the Levenshtein distance to P does not exceed a given (small) bound k. In this paper

we describe methods for efficiently selecting such candidate sets. After introducing as a

starting point a basic correction method based on the concept of a “universal Levenshtein

automaton”, we show how two filtering methods known from the field of approximate text

search can be used to improve the basic procedure in a significant way. The first method,

which uses standard dictionaries plus dictionaries with reversed words, leads to very short

correction times for most classes of input strings. Our evaluation results demonstrate that

correction times for fixed distance bounds depend on the expected number of correction

candidates, which decreases for longer input words. Similarly the choice of an optimal

filtering method depends on the length of the input words.1
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1 Introduction

In this paper, we face a situation where we receive some input in the form of strings that
may be garbled. A dictionary that is assumed to contain all possible correct input strings
is at our disposal. The dictionary is used to check if a given input is correct. If this is
not the case, we would like to select the most plausible correction candidates from the
dictionary. We are primarily interested in applications in the area of natural language
processing where the background dictionary is very large and where fast selection of an
appropriate set of correction candidates is important. By a “dictionary”, we mean any
regular (finite or infinite) set of strings. Some possible concrete application scenarios are
the following.

•The dictionary describes the set of words of a highly inflectional or

1 This work was funded by a grant from VolkswagenStiftung.
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agglutinating language (e.g., Russian, German, Turkish, Finnish, Hungarian),
or a language with compound nouns (German). The dictionary is used by an
automated or interactive spelling checker.

•The dictionary is multi-lingual and describes the set of all words of a family of
languages. It is used in a system for postcorrection of OCR-results where
scanned texts have a multi-lingual vocabulary.

•The dictionary describes the set of all indexed words and phrases of an internet
search engine. It is used to determine the plausibility that a new query is
correct and to suggest “repaired” queries when the answer set returned is
empty.

•The input is a query to some bibliographic search engine. The dictionary
contains titles of articles, books, etc.

The selection of an appropriate set of correction candidates for a garbled input P is
often based on two steps. First, all entries W of the dictionary are selected where the
distance between P and W does not exceed a given bound k. Popular distance measures
are the Levenshtein distance (Levenshtein, 1966; Wagner and Fischer, 1974; Owolabi
and McGregor, 1988; Weigel, Baumann, and Rohrschneider, 1995; Seni, Kripasundar,
and Srihari, 1996; Oommen and Loke, 1997) or n-gram distances (Angell, Freund, and
Willett, 1983; Owolabi and McGregor, 1988; Ukkonen, 1992; Kim and Shawe-Taylor,
1992; Kim and Shawe-Taylor, 1994). In a second step, statistical data, such as frequency
information, may be used to compute a ranking of the correction candidates. In this
paper, we ignore the ranking problem and concentrate on the first step. For selection of
correction candidates we use the standard Levenshtein distance (Levenshtein, 1966). In
most of the above-mentioned applications, the number of correction candidates becomes
huge for large values of k. Hence small bounds are more realistic. In the light of this
background, the algorithmic problem discussed in the paper can be described as follows:

Given a pattern P , a dictionary D, and a small bound k, efficiently
compute the set of all entries W in D such that the Levenshtein distance
between P and W does not exceed k.

We describe a basic method and two refinements for solving this problem. The basic
method depends on the new concept of a universal deterministic Levenshtein automaton
of fixed degree k. The automaton of degree k may be used to decide for arbitrary words
U and V if the Levenshtein distance between U and V does not exceed k. The automa-
ton is “universal” in the sense that it does not depend on U and V . The input of the
automaton is a sequence of bitvectors computed from U and V . Though universal Lev-
enshtein automata have not been discussed before, deciding Levenshtein-neighbourhood
using universal Levenshtein automata is closely related to a more complex table-based
method described by the authors (2002). Hence the main advantage of the new notion is
its conceptual simplicity. In order to use the automaton for solving the above problem,
we assume that the dictionary is given as a determininistic finite state automaton. The
basic method may then be described as a parallel backtracking traversal of the universal
Levenshtein automaton and the dictionary automaton. Backtracking procedures of this
form are well-known and have been used earlier, e.g., by Oflazer (1996) and the authors
(2002).
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For the first refinement of the basic method, a filtering method used in the field of
approximate text search is adapted to the problem of approximate search in a dictionary.
In this approach, an additional “backwards” dictionary D−R (representing the set of all
reverses of the words of a given dictionary D) is used to reduce approximate search in
D with a given bound k ≥ 1 to related search problems for smaller bounds k′ < k in D
and D−R. As for the basic method, universal Levenshtein automata are used to control
the search. Ignoring very short input words and correction bound k = 1, this approach
leads to a drastic increase in speed. Hence the “backwards dictionary method” can be
considered the central contribution of this paper.

The second refinement, which is only interesting for bound k = 1 and short input
words, also uses a filtering method from the field of approximate text search (Muth
and Manber, 1996; Mor and Fraenkel, 1981). In this approach, “dictionaries with single
deletions” are used to reduce approximate search in a dictionary D with bound k = 1
to a conventional look-up technique for finite state transducers. Dictionaries with single
deletions are constructed by deleting the symbol at a fixed position n in all words of a
given dictionary.

For the basic method and the two refinements, detailed evaluation results are given
for three dictionaries that differ in terms of the number and average length of entries:
a dictionary of the Bulgarian language with 965,339 entries (average length 10.23), a
dictionary of German with 3,871,605 entries (dominated by compound nouns, average
length 18.74), and a dictionary representing a collection of 1,200,073 book titles (average
length 47.64). Tests were restricted to distance bounds k = 1, 2, 3. For the approach
based on backwards dictionaries, the average correction time for a given input word –
including the displaying of all correction suggestions – is between a few microseconds and
a few milliseconds, depending on the dictionary, the length of the input word, and the
bound k. Correction times over one millisecond only occur in a few cases for bound k = 3
and short input words. For bound k = 1, which is important for practical applications,
average correction times did not exceed 40 microseconds.

As a matter of fact, correction times are a joint result of hardware improvements
and algorithmic solutions. In order to judge the quality of the correction procedure in
absolute terms, we introduce an “idealized” correction algorithm where any kind of blind
search and superfluous backtracking is eliminated. Based on an analysis of this algorithm,
we believe that using purely algorithmic improvements, our correction times can only be
improved by a factor of 50-250, depending on the kind of dictionary used. This factor
represents a theoretical limit in the sense that the idealized algorithm probably cannot
be realized in practice.

This paper is structured as follows. In Section 2, we collect some formal preliminaries.
In Section 3, we briefly summarize some known techniques from approximate string search
in a text. In Section 4, we introduce universal deterministic Levenshtein automata of
degree k and describe how the problem to decide if the Levenshtein distance between two
strings P and W does not exceed k can be efficiently solved using this automaton. Since
the method is closely related to a table-based approach introduced by the authors (2002),
most of the formal details have been omitted. Sections 5, 6 and 7 respectively describe the
basic method, the refined approach based on backwards dictionaries, and the approach
based on dictionaries with single deletions. Evaluation results are given for the three
dictionaries mentioned above. In Section 8 we briefly comment on the difficulties that we
found when trying to combine dictionary automata and similarity keys (Davidson, 1962;
Angell, Freund, and Willett, 1983; Owolabi and McGregor, 1988; Sinha, 1990; Kukich,
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1992; Anigbogu and Belaid, 1995; Zobel and Dart, 1995; de Bertrand de Beuvron and
Trigano, 1995). Theoretical bounds for correction times are discussed in the Conclusion.

The problem considered in this paper is well-studied. Since the number of contri-
butions is enormous, a complete review of related work cannot be given here. Relevant
references with an emphasis on spell checking and OCR-correction are Blair (1960),
Riseman and Ehrich (1971), Ullman (1977), Angell, Freund, and Willett (1983), Srihari,
Hull, and Choudhari (1983), Srihari (1985), Takahashi et al. (1990), Kukich (1992), Zo-
bel and Dart (1995), Dengel et al. (1997). Exact or approximate search in a dictionary
is discussed, e.g., in Wells et al. (1990), Sinha (1990), Bunke (1993), Oflazer (1996),
Baeza-Yates and Navarro (1998). Some relevant work from approximate search in texts
is described in Section 3.

2 Formal Preliminaries

We assume that the reader is familiar with the basic notions of formal language theory
as described, e.g., by Hopcroft and Ullman (1979) or Kozen (1997). As usual, finite state
automata (FSA) are treated as tuples of the form A = 〈Σ, Q, q0, F, ∆〉 where Σ is the
input alphabet, Q is the set of states, q0 ∈ Q is the initial state, F is the set of final
states, and ∆ ⊆ Q×Σε ×Q is the transition relation. Here “ε” denotes the empty string
and Σε := Σ∪{ε}. The generalized transition relation ∆̂ is defined as the smallest subset
of Q × Σ∗ × Q with the following closure properties:

• for all q ∈ Q we have (q, ε, q) ∈ ∆̂.

•For all q1, q2, q3 ∈ Q and W1, W2 ∈ Σ∗: if (q1, W1, q2) ∈ ∆̂ and (q2, W2, q3) ∈ ∆,
then also (q1, W1W2, q3) ∈ ∆̂.

We write L(A) for the language accepted by A. We have L(A) = {W ∈ Σ∗ | ∃q ∈
F : (q0, W, q) ∈ ∆̂}. Given A as above, the set of active states for input W ∈ Σ∗ is
{q ∈ Q | (q0, W, q) ∈ ∆̂}.

A finite state automaton A is deterministic if the transition relation is a function
δ : Q × Σ → Q. Let A = 〈Σ, Q, q0, F, δ〉 be a deterministic FSA, let δ∗ : Q × Σ∗ → Q
denote the generalized transition function, which is defined in the usual way. For q ∈ Q,
we write LA(q) := {U ∈ Σ∗ | δ∗(q, U) ∈ F} for the language of all words that lead from
q to a final state.

The length of a word W is denoted by |W |. Regular languages over Σ are defined in
the usual way. With L1 · L2 we denote the concatenation of the languages L1 and L2. It
is well-known that for any regular language L, there exists a deterministic FSA AL such
that L(A) = L and AL is minimal (w.r.t. number of states) among all deterministic FSA
accepting L. AL is unique up to renaming of states.

A p-subsequential transducer is a tuple T = 〈Σ, Π, Q, q0, F, δ, λ, Ψ〉, where:

• 〈Σ, Q, q0, F, δ〉 is a deterministic finite state automaton;

•Π is a finite output alphabet;

• λ : Q × Σ → Π∗ is a function called the transition output function;
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• the final function Ψ : F → 2Π∗

assigns to each f ∈ F a set of strings over Π,
where |Ψ(f)| ≤ p.

The function λ is extended to the domain Q × Σ∗ by the following definition of λ∗:

∀q ∈ Q (λ∗(q, ε) = ε),

∀q ∈ Q ∀U ∈ Σ∗ ∀a ∈ Σ (λ∗(q, Ua) = λ∗(q, U)λ(δ∗(q, U), a)).

The input language of the transducer is L(T ) := {U ∈ Σ∗ | δ∗(q0, U) ∈ F}. The
subsequential transducer maps each word from the input language to a set of at most
p output words. The output function OT : L(T ) → 2Π∗

of the transducer is defined as
follows:

∀U ∈ L(T ) (OT (U) = λ∗(q0, U) · Ψ(δ∗(q0, U))).

By a dictionary, we mean a regular (finite or infinite) set of strings over a given alpha-
bet Σ. Using the algorithm described by Daciuk et al. (2000), the minimal deterministic
FSA AD accepting a finite dictionary D can be effectively computed.

By a dictionary with output sets, we mean a regular (finite or infinite) set of input
strings over a given alphabet together with a function that maps each of the input
strings to a finite set of output strings. Given a finite dictionary with output sets, we can
effectively compute the minimal subsequential transducer that maps each input string to
its set of output strings using the algorithm described by Mihov and Maurel (2001).

3 Background

In this section, we describe some established work that is of help in understanding the
following parts from a non-technical, conceptual point of view. After introducing the
Levenshtein distance, we describe methods for computing the distance, for checking if the
distance between two words does not exceed a given bound, and for approximate search
of a pattern in a text. The similarities and differences between approximate search in a
text on the one hand and approximate search in a dictionary on the other hand described
below should help to understand the contents of the following sections from a broader
perspective.

3.1 Computation of Levenshtein distance

The most prominent metric for comparing strings is the Levenshtein distance, which is
based on the notion of a primitive edit operation. In this paper, we consider the standard
Levenshtein distance. Here the primitive operations are the substitution of a symbol by
another symbol, the deletion of a symbol, and the insertion of a symbol. Obviously, given
two words W and V in the alphabet Σ, it is always possible to rewrite W into V using
primitive edit operations.

Definition 1

Let P , W be words in the alphabet Σ. The (standard) Levenshtein distance between P
and W , denoted dL(P, W ), is the minimal number of primitive edit operations (substi-
tutions, deletions, insertions) that are needed to transform P into W .
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Figure 1
Computation of the Levenshtein distance using dynamic programming and filling table
TL(chold, hchold). Shaded regions represent diagonals in Ukkonen’s approach, cf. Section 3.2.

The Levenshtein distance between two words P and W can be computed using the
following simple dynamic programming scheme, described, e.g., by Wagner and Fischer
(1974):

dL(ε, W ) = |W |

dL(P, ε) = |P |

dL(Pa, Wb) =

{

dL(P, W ) if a = b
1 + min(dL(P, W ), dL(Pa, W ), dL(P, Wb)) if a 6= b

for P, W ∈ Σ∗ and a, b ∈ Σ. Given P = p1 . . . pm and W = w1 . . . wn (m, n ≥ 0), a
standard way to apply the scheme is the following. Proceeding top-down and from left
to right, the cells of an (m + 1) × (n + 1) table TL(P, W ) are filled where entry (i, j) of
T (P, W ) is dL(p1 . . . pi, w1 . . . wj) (0 ≤ i ≤ m, 0 ≤ j ≤ n) (Wagner and Fischer, 1974).
The first two clauses above are used for initialization and respectively yield the first
column and the first row. The third clause is used to compute the remaining entries. The
table for the strings “chold” and “hchold” is shown in Figure 1.

3.2 Testing Levenshtein neighbourhood

The algorithm of Wagner and Fischer, which has time complexity O(m · n), has been
improved and generalized in many aspects. See, e.g, (Stephen, 1994) for a survey. We
briefly sketch a more efficient variant that can be used for the restricted problem of
deciding if the Levenshtein distance between two words P and W does not exceed a fixed
bound, k. Ukkonen (1985a) shows that in this case only the values of 2k+1 “diagonals” of
TL(P, W ) are essential for the above mentioned test. See Figure 1 for an illustration in the
situation where k = 2. He obtained an algorithm with time complexity O(k ·min(m, n)).
Ukkonen used this test in order to derive an algorithm for computing the edit distance
with complexity O(min(m, n) · dL(P, W )).

3.3 Approximate search for a pattern in a text

A problem closely related to approximate search in a dictionary is approximate search
for a pattern in a text (AST): Given two strings P and T , respectively called the pattern
and the text, find all occurrences T ′ of substrings of T that are sufficiently similar to P .
Each occurrence T ′ is called a hit. In the following discussion, we consider the case where
a fixed bound k for the Levenshtein distance between P and potential hits is specified.
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Figure 2
Approximate search of pattern “chold” in a text using dynamic programming.
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Figure 3
Nondeterministic automaton AAST (chold, 2) for approximate search with pattern “chold” and
distance bound k = 2. Active states after reading symbols t and h are highlighted.

Adapting the dynamic programming scheme. A simple adaptation of the Wagner-
Fischer algorithm may be used for approximate search for a pattern P = p1 · · · pm in a
text T = t1 · · · tn. As before, we compute an (m + 1) × (n + 1)-table TAST (P, T ). Entry
(i, j) of TAST (P, T ) has value h if h is the minimal Levenshtein distance between p1 · · · pi

and a substring of T with last symbol (position) tj (j). From the definition, we see that
all cells in line 0 have to be initialized with 0. The remaining computation proceeds as
above. For a given bound k, the output consists of all positions j such that entry (m, j)
does not exceed k. Note that we receive the end points of approximate matches of P in
T in this way. See Figure 2 for an illustration.

Automaton approach. Several more efficient methods for approximate search of a
pattern P in a text T take as their starting point a simple non-deterministic finite state
automaton, AAST (P, k), which accepts the language of all words with Levenshtein dis-
tance ≤ k to some word in Σ∗ · P (Ukkonen, 1985b; Wu and Manber, 1992; Baeza-Yates
and Navarro, 1999). The automaton for pattern “chold” and distance bound k = 2 is
shown in Figure 3. States are numbered in the form be. The “base number” b determines
the position in the pattern. The “exponent” e indicates the error level, i.e. the number
of edit errors that have been observed. Horizontal transitions encode “normal” transi-
tions where the text symbol matches the expected next symbol of the pattern. Vertical
transitions represent insertions, non-empty (resp. empty) diagonal transitions represent
substitutions (resp. deletions). In our example, final states are 50, 51, 52. It is obvious
that when using a given text T as input, we reach a final state of AAST (P, 2) exactly
at those positions where a substring T ′ of T ends such that dL(P, T ′) ≤ 2. For other
bounds k, we just have to vary the number of levels. Note that a string can be accepted
in AAST (P, k) at several final states. In order to determine the optimal distance between
P and a substring T ′ of T ending at a certain position, it is necessary to determine the
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Figure 4
Nondeterministic automaton A(chold, 2) for testing Levenshtein distance with bound k = 2 for
pattern “chold”. Triangular areas are highlighted. Dark states are active after reading symbols
h and c.

final state with the smallest exponent that can be reached.

In the remainder of the paper, the set of all states with base number i is called the
i-th column of AAST (P, k).

Remark 1

There is a direct relationship between the entries in column j of the dynamic program-
ming table TAST (P, T ) and the set of active states of AAST (P, k) that are reached with
input t1 · · · tj . Entry (i, j) of TAST (P, T ) has the value h ≤ k iff h is the exponent of the
bottom-most active state in the i-th column of AAST (P, k). For example, in Figure 3 the
set of active states of AAST (child, k) reached after reading the two symbols t and h is
highlighted. The bottom-most elements 00, 11, 21, 32 correspond to the entries 0, 1, 1, 2
in the upper part of the third column of the table shown in Figure 2.

The direct use of the non-deterministic automaton AAST (P, k) for conducting ap-
proximate searches is inefficient. Furthermore, depending on the length m of the pattern
and the error bound k, the explicit construction and storage of a deterministic version of
AAST (P, k) might be difficult or impossible. In practice, simulation of determinism via
bit-parallel computation of sets of active states gives rise to efficient and flexible algo-
rithms. See (Navarro, 2001; Navarro and Raffinot, 2002) for surveys of algorithms along
this line.

4 Testing Levenshtein neighbourhood with universal deterministic Leven-

shtein automata

In our approach, approximate search of a pattern P in a dictionary D is traced back
to the problem of deciding whether the Levenshtein distance between P and an entry
W of D does not exceed a given bound k. A well-known method for solving the latter
problem is based on a non-deterministic automaton A(P, k) similar to AAST (P, k). A
string W is accepted by A(P, k) iff dL(P, W ) ≤ k. The automaton A(P, k) does not have
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the initial Σ-loop that is needed in AAST (P, k) to traverse the text. The automaton for
pattern “chold” and distance bound k = 2 is shown in Figure 4. Columns of A(P, k) with
numbers 0, . . . , m = |P | are defined as for AAST (P, k). In A(P, k), we use as final states
all states q from which we can reach one of the states in column m using a (possibly
empty) sequence of ε-transitions. The reason for this modification – which obviously does
not change the set of accepted words – will become visible later.

We now show that for fixed small error bounds k, the explicit computation of A(P, k),
in a deterministic or non-deterministic variant, can be completely avoided. In our ap-
proach, a comparison between pattern P and entry W = w1 · · ·wn is used to produce a
sequence of n bitvectors ~χ1, . . . , ~χn. This sequence is used as input for a fixed automaton
A∀(k). The automaton A∀(k) is deterministic and “universal” in the sense that it does
not depend on a given pattern P . For each bound k, there is just one fixed automaton
A∀(k) which is precomputed once and used for arbitrary patterns P and words W . A∀(k)
accepts input ~χ1, . . . , ~χn iff dL(P, W ) ≤ k. The efficiency of this method relies on the
fact that, given A∀(k), we need only one operation for each transition of the recognition
phase after the initial computation of the bitvectors ~χ1, . . . , ~χn.

It is worth mentioning that the possibility of using a fixed universal automaton A∀(k)
instead of a specific automaton A(P, k) for each pattern P is based on special features of
the automata A(P, k) (cf. Remark 2 below), a similar technique for AAST (P, k) appears
to be impossible. For defining states, input vectors and transitions of A∀(k), the following
two concepts are essential.

Definition 2

The characteristic vector ~χ(w, V ) of a symbol w ∈ Σ in a word V = v1 · · · vn ∈ Σ∗ is the
bitvector of length n where the i-th bit is set to 1 iff w = vi.

Definition 3

Let P denote a pattern of length m. The triangular area of a state p of A(P, k) consists
of all states q of A(P, k) that can be reached from p using a (potentially empty) sequence
of u upward transitions and, in addition, h ≤ u horizontal or reverse (i.e., leftward)
horizontal transitions. Let 0 ≤ i ≤ m. By triangular area i, we mean the triangular area
of state i0. For j = 1, . . . , k, by triangular area m + j, we mean the triangular area of
the state mj .

For example, in Figure 4 triangular areas 0, . . . , 7 of A(chold, 2) are shown.

In Remark 1, we pointed to the relationship between the entries in column i of
table TAST (P, T ) and the set of active states of AAST (P, k) that are reached with input
w1 · · ·wi. A similar relationship holds between the entries in column i of table TL(P, T )
and the set of active states of the automaton A(P, k) that are reached with input w1 · · ·wi.
Triangular area i corresponds to the i-th column of the subregion of TL(P, T ) given
by the 2k + 1 diagonals used in Ukkonen’s apporach (Ukkonen, 1985a). The left-to-
right orientation in A(P, k) corresponds to a top-down orientation in TL(P, T ). As an
illustration, the active states of A(chold, 2) after consuming symbols h and c are marked
in Figure 4. The exponents 2, 1, 2, 2 of the bottom-most active states in columns 1, 2, 3, 4
are found in the shaded region of the third column of the table in Figure 1.
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Remark 2

It is simple to see that for any input string W = w1 . . . wn, the set of active states of
A(P, k) reached after reading the i-th symbol wi of W is a subset of triangular area i
(0 ≤ i ≤ min{n, m + k}). For i > m + k, the set is empty. Furthermore, the set of active
states that is reached after reading symbol wi only depends

1. on the previous set of active states (the set reached after reading
w1 . . . wi−1, a subset of the triangular area i − 1), and

2. on the characteristic vector ~χ(wi, pl · · · pi · · · pr) where l = max{1, i− k}
and r = min{m, i + k}.

The following description of A∀(k) proceeds in three steps where input vectors, states
and the transition function are introduced in this order. The description of states and
transition function will be informal.

1. Input vectors. Basically we want to use the vectors χ(wi, pl · · · pi · · · pr), which
are of length ≤ 2k + 1, as input for A∀(k). For technical reasons, we introduce two
modifications. First, in order to standardize the length of the characteristic vectors that
are obtained for the initial symbols w1, w2, . . ., we define p0 = p−1 = . . . = p−k+1 := $.
In other words, we attach to P a new prefix with k symbols $. Here “$” is a new symbol
that does not occur in W . For the second modification, imagine that we focus triangular
area i after reading the i-th letter wi (cf. Remark 2). As long as i ≤ m− k − 1, we know
that we cannot reach a triangular area containing final states after reading wi. In order
to encode this information in the input vectors, we enlarge the relevant subword of P for
input wi and consider one additional position i + k + 1 on the right-hand side (whenever
i + k + 1 ≤ m). This means that we use the vectors ~χi := ~χ(wi, pi−k · · · pi · · · pr) where
r = min{m, i + k + 1} as input for A∀(k), for 1 ≤ i ≤ min{n, m + k}. Consequently, for
0 ≤ i ≤ m−k−1 the length of ~χi is 2k+2, for i = m−k (resp. m−k+1, . . . , m, . . . , m+k)
the length of ~χi is 2k + 1 (resp. 2k, . . . , k + 1, . . . , 1).

Example 1

Consider Figure 4 where P is “chold” and k = 2. Input “hchold” is translated into the
vectors

~χ1 = ~χ(h, $$chol) = 000100,

~χ2 = ~χ(c, $chold) = 010000,

~χ3 = ~χ(h, chold) = 01000,

~χ4 = ~χ(o, hold) = 0100,

~χ5 = ~χ(l, old) = 010,

~χ6 = ~χ(d, ld) = 01.

The computation of the vectors ~χi for input W = w1 . . . wn is based on a preliminary
step in which we compute for each σ ∈ Σ the vector ~κ(σ) := ~χ(σ, $ . . . $p1 · · · pm) (using
k copies of $). The latter vectors are initialized in the form ~κ(w) := 0k+m. We then
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Figure 5
Symbolic triangular areas and symbolic final positions for bound k = 2, cf. Example 2.

compute for i = 1 . . . , n the value ~κ(wi) := ~κ(wi) | 0k+i−110m−i. Here the symbol “|”
denotes bitwise OR. Once we have obtained the values ~κ(wi), which are represented as
arrays, the vectors ~χi := ~χ(wi, pi−k · · · pi · · · pr) can be accessed in constant time.

2. States. Henceforth, states of automata A(P, k) will be called positions. Recall
that a position is given by a base number and an exponent e, 0 ≤ e ≤ k representing the
error count. By a symbolic triangular area we mean a triangular area where “explicit”
base numbers (like 1, 2, . . .) in positions are replaced by “symbolic” base numbers of
a form described below. Two kinds of symbolic triangular areas are used. A unique
“I-area” represents all triangular areas of automata A(P, k) that do not contain final
positions. The “integer variable” I is used to abstract from possible base numbers i,
0 ≤ i ≤ m− k − 1. Furthermore, k + 1 “M -areas” are used to represent triangular areas
of automata A(P, k) that contain final positions. Variable M is meant to abstract from
concrete values of m, which differ for distinct P . Symbolic base numbers are expressions
of the form I, I +1, I − 1, I +2, I − 2 . . . (I-area) or M, M − 1, M − 2, . . . (M -areas). The
elements of the symbolic areas, which are called symbolic positions, are symbolic base
numbers together with exponents indicating an error count. Details should become clear
with the following example. The use of expressions such as (I + 2)2 simply enables a
convenient labeling of states of A∀(k), cf. Figure 6. Using this kind of labeling, it is easy
to formulate a correspondence between derivations in automata A(P, k) and in A∀(k),
cf. properties C1, C2 below.

Example 2

The symbolic triangular areas for bound k = 1 are

(I-area) {I0, (I − 1)1, I1, (I + 1)1},

(1st M -area) {M0, (M − 1)1, M1},

(2nd M -area) {(M − 1)0, (M − 2)1, (M − 1)1, M1}.

Symbolic final positions for k = 1 are M 1, M0, and (M − 1)0. The symbolic triangular
areas for k = 2 are indicated in Figure 5. Symbolic final positions are marked using
ellipses in boldface.

States of A∀(k) are merely subsets of symbolic triangular areas. Subsets containing
symbolic final positions are final states of A∀(k) and {I0} is the start state. A special
technique is used to reduce the number of states: returning to automata of the form
A(P, k), it is simple to see that triangular areas often contain positions p = ge and

11



q = hf where p “subsumes” q in the following sense: if, for some fixed input rest U , it
is possible to reach a final position of A(P, k) starting from q and consuming U , then
we may also reach a final position starting from p using U . A corresponding notion of
subsumption can be defined for symbolic positions. States of A∀(k) are then defined as
subsets of symbolic triangular areas that are free of subsumption in the sense that a
symbolic position of a state is never subsumed by another position of the same state.

Example 3

The states of automaton A∀(1) are shown in Figure 6. Due to the above reduction
technique, the only state containing the symbolic position I0 is {I0}, the start state.
Each of the symbolic positions (I − 1)1, I1, (I + 1)1 is subsumed by I0.

3. Transition function. It remains to define the transition function δ∀ of A∀(k). We
only describe the basic idea. Imagine an automaton A(P, k) where the pattern P has
length m. Let W = w1 . . . wn denote an input word. Let SP

i denote the set of active
positions of A(P, k) that are reached after reading the i-th symbol wi (1 ≤ i ≤ n).
For simplicity, we assume that in each set, all subsumed positions are erased. In A∀(k)
we have a parallel acceptance procedure where we reach, say, state S∀

i after reading
~χi := ~χ(wi, pi−k · · · pi · · · pr) (where r = min{m, i + k + 1} as above), for 1 ≤ i ≤ n.
Transitions are defined in such a way that

C1 for all parallel sets SP
i and S∀

i of the two sequences

SP
0 SP

1 . . . SP
i . . . SP

n

S∀
0 S∀

1 . . . S∀
i . . . S∀

n

the set SP
i is obtained from S∀

i by instantiating the letter I by i whenever S∀
i

uses variable I , and instantiating M by m in the other cases.

C2 whenever SP
i contains a final position, then S∀

i is final.

Given properties C1, C2, it follows immediately that A(P, k) accepts w1 . . . wn iff A∀(k)
accepts ~χ1, . . . , ~χn.

Example 4

The universal deterministic automaton A∀(1) is shown in Figure 6. Some redundant
transitions departing from nonfinal states S 6= {I0} and using vectors of length ≤ 3 have
been omitted. A symbol “ ” stands for either 1 or 0. Moreover, ~χ( ) is shorthand for ~χ
or ~χ. In order to illustrate the use of A∀(1), consider the pattern P of the form “chold”.
Input “child” is translated into the sequence

~χ1 = ~χ(c, $cho) = 0100,

~χ2 = ~χ(h, chol) = 0100,

~χ3 = ~χ(i, hold) = 0000,

~χ4 = ~χ(l, old) = 010,

~χ5 = ~χ(d, ld) = 01.
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Figure 6
The universal deterministic Levenshtein automaton A∀(1). See Example 4 for notation.

Starting from state {I0}, we successively reach {I0}, {I0}, {(I − 1)1, I1}, {I1}, {M1}.
Hence “child” is accepted. In a similar way the input word “cold” is translated into the
sequence 0100−0010−0010−001. Starting from {I0} we reach {I0}, {(I−1)1, I1, (I+1)1},
{(I + 1)1}, {M1}. Hence “cold” is accepted. Third, input “hchold” is translated into
0010−1000−1000−100−10−1. We reach {(I −1)1, I1, (I +1)1}, {(I−1)1}, {(I −1)1},
{(I − 1)1}, {(I − 1)1}, {M1}. Hence “hchold” is accepted as well.

For larger values of k, the number of states of A∀(k) grows rapidly. A∀(2) has 50 non-
final states and 40 final states. The automaton A∀(3) has already 563 states. When we
tried to minimize the automata A∀(1), A∀(2) and A∀(3) we found that the three automata
are already minimal. However, we do not have a general proof that our construction
always leads to minimal automata.

5 Approximate search in dictionaries using universal Levenshtein automata

We now describe how to use the universal deterministic Levenshtein automaton A∀(k)
for approximate search of a pattern in a dictionary.
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5.1 Basic correction algorithm

Let D denote the background dictionary, let P = p1 . . . pm denote a given pattern. Recall
that we want to compute for some fixed bound k the set of all entries W ∈ D such that
dL(P, W ) ≤ k. We assume that D is implemented in the form of a deterministic finite
state automaton AD = 〈Σ, QD, qD

0 , F D, δD〉, the dictionary automaton. Hence L(AD)
represents the set of all correct words.

Let A∀(k) = 〈Γ, Q∀, q∀0 , F ∀, δ∀〉 denote the universal deterministic Levenshtein au-
tomaton for bound k. We assume that we can access, for each symbol σ ∈ Σ and
each index 1 ≤ i ≤ m + k, the characteristic vector ~χ(σ, pi−k · · · pi · · · pr) (where r =
min{m, i + k + 1}) in constant time (cf. Section 4.) We traverse the two automata A∀(k)
and AD in parallel, using a standard backtracking procedure. At each step, a symbol σ
read in AD representing the i-th symbol of the current dictionary path is translated into
the bitvector ~χ(σ, pi−k · · · pi · · · pr) (r = min{m, i + k + 1}), which is used as input for
A∀(k).

push (<0,ε, qD
0 , q∀0>);

while not empty(stack) do begin

pop (<i, W, qD, q∀>);
for σ in Σ do begin

~χ := ~χ(σ, pi−k · · · pi · · · pr);
qD
1 := δD(qD , σ);

q∀1 := δ∀(q
∀, ~χ);

if (qD
1 <> NIL) and (q∀1 <> NIL) then begin

W1 := concat(W, σ);
push(<i + 1, W1, q

D
1 , q∀1>);

if (qD
1 ∈ F D) and (q∀1 ∈ F ∀) then output(W1);

end;

end;

end;

Starting with the pair of initial states 〈qD
0 , q∀0 〉, position i = 0 and the empty word

ε, each step of the traversal adds a new symbol σ ∈ Σ to the actual word W and leads
from a pair of states 〈qD , q∀〉 ∈ QD ×Q∀ to 〈δD(qD, σ), δ∀(q∀, ~χ)〉. We proceed as long as
both components are distinct from the empty failure state2 NIL. Whenever a final state
is reached in both automata, the actual word W is added to the output.

It is trivial to see that the list of all output words represents exactly the set of all
dictionary entries W such that dL(W, P ) ≤ k.

The computational cost of the above algorithm is bounded by the size of the dic-
tionary automaton AD and depends on the bound k used. If k reaches the length of
the longest word in the dictionary, then in general (e.g., for the empty input word), the
algorithm will result in a complete traversal of AD. In practice, small bounds are used
and only a small portion of AD will be visited. For bound 0, the algorithm validates in
time O(|P |) if the input pattern P is in the dictionary.

2 A failure state is a state q whose language LA(q) is empty.
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5.2 Evaluation results for basic correction algorithm

Experimental results were made using a Bulgarian lexicon BL with 965, 339 word entries
(average length 10.23 symbols), a German dictionary GL with 3, 871, 605 entries (domi-
nated by compound nouns, average length 18.74 symbols), and a “lexicon” TL containing
1, 200, 073 bibliographic titles from the Bavarian National Library (average length 47.64
symbols). The German dictionary and the title dictionary are non-public. We received
these dictionaries from Prof. Guenthner and from the Bavarian National Library for the
tests. The following table summarizes the dictionary automaton statistics for the three
dictionaries.

BL GL TL

Number of words 956,339 3,871,605 1,200,073
Automaton states 39,339 4,068,189 29,103,779
Automaton transitions 102,585 6,954,377 30,252,173
Size (Bytes) 1,191,548 90,206,665 475,615,320

The basic correction algorithm was implemented in C and tested on a 1.6 GHz
Pentium IV machine under Linux.

A baseline Before we present our evaluation results we give a simplified baseline. Let
a garbled word W be given. In order to find all words from the dictionary within Leven-
shtein distance k we can use two simple methods:

1.For each dictionary word V check if dL(V, W ) ≤ k.

2.For each string V such that dL(V, W ) ≤ k check if V is in the dictionary.

We consider input words W of length 10. Visiting a state in an automaton takes
about 0.1µs. When using Method 1, the time needed to check if dL(V, W ) ≤ k for a
dictionary word V using the universal Levenshtein automaton can be estimated as 1 µs
(a crude approximation). When using Method 2 we need about 1 µs for the dictionary
lookup of a word with 10 symbols. Assume that the alphabet has 30 symbols. Given the
input W we have 639 strings within Levenshtein distance 1, about 400,000 strings within
distance 2 and about 260,000,000 strings within distance 3. Assuming that the dictionary
has 1,000,000 words we get the following table of correction times:

Distance 1 Distance 2 Distance 3
Method 1 1000 ms 1000 ms 1000 ms
Method 2 0.639 ms 400 ms 260 000 ms

Correction with BL To test the basic correction algorithm with the Bulgarian lexicon
BL, we used a Bulgarian word list containing randomly introduced errors. In each word,
we introduced between 0 and 4 randomly selected symbol substitutions, insertions or
deletions. The number of test words created for each length is shown in the following
table.
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Length 3 4 5 6 7 8
] words 3,563 11,066 27,196 53,763 90,202 128,620

Length 9 10 11 12 13 14
] words 155,888 163,318 148,879 117,783 81,481 50,291

Length 15 16 17 18 19 20
] words 28,481 15,079 8,048 4,350 2,526 1,422

Table 1 lists the results of the basic correction algorithm using BL and standard
Levenshtein distance with bounds k = 1, 2, 3. Column 1 shows the length of the input
words. Column 2 (CT1) describes the average time needed for the parallel traversal of
the dictionary automaton and the universal Levenshtein-automaton using Levenshtein
distance 1. The time needed to output the correction candidates is always included, hence
the column represents the total correction time. Column 3 (NC1) shows the average num-
ber of correction candidates (dictionary words within the given distance bound) per input
word. (For k = 1, there are cases where this number is below 1. This shows that for some
of the test words, no candidates were returned: these words were too seriously corrupted
to find correction suggestions within the given distance bound.) Similarly Columns 4
(CT2) and 6 (CT3) respectively yield the total correction times per word (averages)
for distance bounds 2 and 3, and Columns 5 (CT2) and 7 (CT3) respectively yield the
average number of correction candidates per word for distance bounds 2 and 3. Again
the time needed to output all corrections is included.

Correction with GL To test the correction times when using the German lexicon GL,
we again created a word list with randomly introduced errors. The number of test words
of each particular length is shown in the following table.

Length 1-14 15-24 25-34 35-44 45-54 55-64
] words 100,000 100,000 100,000 9,776 995 514

The average correction times and number of correction candidates for GL are sum-
marized in Table 2, which is organized as Table 1.

Correction with TL To test the correction times when using the title “lexicon” TL,
we again created a word list with randomly introduced errors. The number of test words
of each length is presented in the following table.

Length 1-14 15-24 25-34 35-44 45-54 55-64
] words 91,767 244,449 215,094 163,425 121,665 80,765

Table 3 lists the results for correction with TL and standard Levenshtein distance
with bounds k = 1, 2, 3. The organisation is as for Table 1.

Summary For each of the three dictionaries, evaluation times strongly depend on the
tolerated number of edit operations. When fixing a distance bound, the length of the
input word does not have a significant influence. In many cases, correction works faster
for long input words, due to the effect that the number of correction candidates decreases.
When using GL, the large number of entries leads to increased correction times.
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Length (CT1) (NC1) (CT2) (NC2) (CT3) (NC3)

3 0.107 12.03 0.974 285.4 4.589 2983.2
4 0.098 8.326 1.048 192.1 5.087 2426.6
5 0.085 5.187 1.086 105.0 5.424 1466.5
6 0.079 4.087 0.964 63.29 5.454 822.77
7 0.079 3.408 0.853 40.95 5.426 466.86
8 0.081 3.099 0.809 30.35 5.101 294.84
9 0.083 2.707 0.824 22.36 4.631 187.12
10 0.088 2.330 0.794 16.83 4.410 121.73
11 0.088 1.981 0.821 12.74 4.311 81.090
12 0.088 1.633 0.831 9.252 4.277 51.591
13 0.089 1.337 0.824 6.593 4.262 31.405
14 0.089 1.129 0.844 4.824 4.251 19.187
15 0.089 0.970 0.816 3.748 4.205 12.337
16 0.087 0.848 0.829 3.094 4.191 9.1752
17 0.086 0.880 0.805 2.970 4.138 8.1250
18 0.087 0.809 0.786 2.717 4.117 7.1701
19 0.087 0.810 0.792 2.646 4.078 6.6544
20 0.091 0.765 0.795 2.364 4.107 5.7686

Table 1
Evaluation results for the basic correction algorithm, Bulgarian dictionary BL, standard
Levenshtein distance, and distance bounds k = 1, 2, 3. Times in milliseconds.

Length (CT1) (NC1) (CT2) (NC2) (CT3) (NC3)

1 − 14 0.225 0.201 4.140 0.686 23.59 2.345
15 − 24 0.170 0.605 3.210 1.407 19.66 3.824
25 − 34 0.249 0.492 4.334 0.938 24.58 1.558
35 − 44 0.264 0.449 4.316 0.781 24.06 1.187
45 − 54 0.241 0.518 3.577 0.969 20.18 1.563
55 − 64 0.233 0.444 3.463 0.644 19.03 0.737

Table 2
Evaluation results for the basic correction algorithm, German dictionary GL, standard
Levenshtein distance, and distance bounds k = 1, 2, 3. Times in milliseconds.

Length (CT1) (NC1) (CT2) (NC2) (CT3) (NC3)

1 − 14 0.294 0.537 3.885 2.731 19.31 24.67
15 − 24 0.308 0.451 4.024 0.872 19.50 1.703
25 − 34 0.321 0.416 4.160 0.644 19.98 0.884
35 − 44 0.330 0.412 4.225 0.628 20.20 0.844
45 − 54 0.338 0.414 4.300 0.636 20.44 0.857
55 − 64 0.344 0.347 4.340 0.433 20.61 0.449

Table 3
Evaluation results for the basic correction algorithm, title dictionary TL, standard Levenshtein
distance, and distance bounds k = 1, 2, 3. Times in milliseconds.
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6 Using backwards dictionaries for filtering

In the related area of pattern matching in strings, various filtering methods have been
introduced that help to find portions of a given text where an approximate match of
a given pattern P is not possible. See (Navarro, 2001; Navarro and Raffinot, 2002) for
surveys. In this section, we show how one general method of this form (Wu and Manber,
1992; Myers, 1994; Baeza-Yates and Navarro, 1999; Navarro and Baeza-Yates, 1999)
can be adapted to approximate search in a dictionary, improving the basic correction
algorithm.

For approximate text search, the crucial observation is the following: if the Leven-
shtein distance between a pattern P and a portion of text T ′ does not exceed a given
bound k, and if we cut P into k + 1 disjoint pieces P1, . . . , Pk+1, then T ′ must contain
at least one piece. Hence the search in text T can be started with an exact multipattern
search for {P1, . . . , Pk+1}, which is much faster than approximate search for P . When
finding one of the pieces Pi in the text, the full pattern P is searched for within a small
neighbourhood around the occurrence, returning now to approximate search. General-
izations of this idea rely on the following lemma (Myers, 1994; Baeza-Yates and Navarro,
1999; Navarro and Raffinot, 2002).

Lemma 1

Let T ′ match P with ≤ k errors. Let P be represented as the concatenation of j words
P1, . . . , Pj . Let a1, . . . , aj denote arbitrary integers and define A =

∑j

i=1 ai. Then, for
some i ∈ {1, . . . , j}, Pi matches a substring of T ′ with ≤ baik/Ac errors.3

In our experiments, which were limited to distance bounds k = 1, 2, 3, we used the
following three instances of the general idea. Let P denote an input pattern, let W denote
an entry of the dictionary D. Assume we cut P into two pieces, representing it in the
form P = P1P2.

1.If dL(P, W ) ≤ 3, then W can be represented in the form W = W1W2 where we
have the following mutually exclusive cases:

(a)dL(P1, W1) = 0 and dL(P2, W2) ≤ 3,
(b)1 ≤ dL(P1, W1) ≤ 3 and dL(P2, W2) = 0,
(c) dL(P1, W1) = 1 and 1 ≤ dL(P2, W2) ≤ 2
(d)dL(P1, W1) = 2 and dL(P2, W2) = 1.

2.If dL(P, W ) ≤ 2, then W can be represented in the form W = W1W2 where we
have the following mutually exclusive cases:

(a)dL(P1, W1) = 0 and dL(P2, W2) ≤ 2,
(b)dL(P2, W2) = 0 and 1 ≤ dL(P1, W1) ≤ 2,
(c) dL(P1, W1) = 1 = dL(P2, W2).

3 As usual, brc denotes the largest integer ≤ r.
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3.If dL(P, W ) ≤ 1, then W can be represented in the form W = W1W2 where we
have the following mutually exclusive cases:

(a)dL(P1, W1) = 0 and dL(P2, W2) ≤ 1,
(b)dL(P1, W1) = 1 and dL(P2, W2) = 0.

In order to make use of these observations, we compute, given dictionary D, the back-
wards dictionary D−R := {W−R | W ∈ D}.4 Dictionary D and backwards dictionary
D−R are respectively compiled into deterministic finite state automata AD and AD−R . If
the dictionary is infinite and directly given as a finite state automaton AD, the automa-
ton AD−R may be computed using standard techniques from formal language theory.
Further steps depend on the bound k. We will only describe approximate search with
bound k = 3, the methods for bounds k = 1, 2 are similar.

Let P denote the given pattern. P is cut into two pieces P1, P2 of approximately the
same length. We compute P−R

2 and P−R
1 . We then start four subsearches, corresponding

to the Cases (1a) - (1d) mentioned above.

For subsearch (1a), we first traverse AD using input P1. Let q denote the state that
is reached. Starting from q and the initial state {I0} of A∀(3), we continue with a parallel
traversal of AD and A∀(3). Transition symbols in AD are translated into input bitvectors
for A∀(3) by matching them against appropriate subwords of $$$P2 as described in
Section 5. The sequence of all transition labels of the actual paths in AD is stored as
usual. Whenever we reach a pair of final states, the current sequence - which includes the
prefix P1 - is passed to the output. Clearly, each output sequence has the form P1P

′
2 where

dL(P2, P
′
2) ≤ 3. Conversely, any dictionary word of this form is found using subsearch

(1a).

For subsearch (1b), we first traverse AD−R using P−R
2 . Let q denote the state that

is reached. Starting from q and the initial state {I0} of A∀(3), we continue with a paral-
lel traversal of AD−R and A∀(3). Transition symbols in AD−R are translated into input
bitvectors for A∀(3) by matching them against appropriate subwords of $$$P−R

1 . When-
ever we reach a pair of final states, the inversed sequence is passed to the output. Clearly,
each output sequence has the form P ′

1P2 where dL(P1, P
′
1) ≤ 3. Conversely, any dictio-

nary word of this form is found using this form of search. For a given output, a closer
look at the final state S that is reached in A∀(3) may be used to exclude cases where
P1 = P ′

1. Simple details are omitted.

For subsearch (1c), we start with a parallel traversal of AD and A∀(1). Transition
symbols in AD are translated into input bitvectors for A∀(1) by matching them against
appropriate subwords of $P1. For each pair of states (q, S) that are reached where S
represents a final state of A∀(1), we start a parallel traversal of AD and A∀(2), departing
from q and the initial state {I0} of A∀(2). Transition symbols in AD are translated
into input bitvectors for A∀(2) by matching them against appropriate subwords of $$P2.
Whenever we reach a pair of final states, the current sequence is passed to the output.
Clearly, each output sequence has the form P ′

1P
′
2 where dL(P1, P

′
1) ≤ 1 and dL(P2, P

′
2) ≤

2. Conversely, any dictionary word of this form is found using this form of search. A
closer look at the final states that are respectively reached in A∀(1) and A∀(2) may be
used to exclude cases where P1 = P ′

1 or P2 = P ′
2. Again simple details are omitted.

4 W−R denotes the reverse of W .
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For subsearch (1d) we start with a parallel traversal of AD−R and A∀(1). Transition
symbols in AD−R are translated into input bitvectors for A∀(1) by matching them against
appropriate subwords of $P−R

2 . For each pair of states (q, S) that are reached where
S represents a final state of A∀(1) we start a parallel traversal of AD−R and A∀(2),
departing from q and the initial state {I0} of A∀(2). Transition letters in AD−R are
translated into input bitvectors for A∀(2) by matching them against appropriate subwords
of $$P−R

1 . Whenever we reach a pair of final states the inversed sequence is passed to
the output. Clearly, each output sequence has the form P ′

1P
′
2 where dL(P1, P

′
1) ≤ 2 and

dL(P2, P
′
2) ≤ 1. Conversely, any word in the dictionary of this form is found using this

form of search. A closer look at the final states that are respectively reached in A∀(1)
and A∀(2) may be used to exclude cases where P2 = P ′

2 or dL(P1, P
′
1) ≤ 1. Again simple

details are omitted.

It should be noted that the output sets obtained from the four subsearches (1a) -
(1d) are not necessarily disjoint. This is due to the fact that a dictionary entry W may
have more than one partition W = W1W2 of the form described in the cases (1a) - (1d)
above.

6.1 Evaluation results

The following table summarizes the statistics of the automata for the three backwards
dictionaries.

BL GL TL

Number of words 956,339 3,871,605 1,200,073
Automaton states 54,125 4,006,357 29,121,084
Automaton transitions 183,956 7,351,973 30,287,053
Size (Bytes) 2,073,739 92,922,493 475,831,001

Note that the size of the backwards dictionary automata is approximately the same
as the size of the forwards dictionary automata.

Tables 4, 5 and 6 respectively present the evaluation results for the backwards dic-
tionary filtering method using dictionaries BL, GL, TL. We have constructed additional
automata for the backwards dictionaries.

For the tests, we used the same lists of input words as in Section 5.2 in order to allow a
direct comparison to the basic correction method. The horizontal bar found in the tables
means that the correction times were too small to be measured with sufficient confidence.
In columns 3, 5, 7 we represent the speed-up factor, i.e., the ratio (quotient) between the
times respectively taken by the basic algorithm and by the backwards dictionary filtering
method.

6.2 Backwards dictionary method for Levenshtein distance with transposi-

tions

Universal Levenshtein automata can also be constructed for the modified Levenshtein
distance where character transpositions count as a primitive edit operation along with
insertions, deletions and substitutions. This kind of distance is preferable when correcting
typing errors. A generalization of the techniques presented by Schulz and Mihov (2002)

20



Length (CT1) Speed-up 1 (CT2) Speed-up 2 (CT3) Speed-up 3

3 0.031 3.45 0.876 1.11 6.466 0.71
4 0.027 3.63 0.477 2.2 4.398 1.16
5 0.018 4.72 0.450 2.41 2.629 2.06
6 0.016 4.94 0.269 3.58 2.058 2.65
7 0.011 7.18 0.251 3.4 1.327 4.09
8 0.012 6.75 0.196 4.13 1.239 4.12
9 0.009 9.22 0.177 4.66 0.828 5.59
10 0.010 8.8 0.159 4.99 0.827 5.33
11 0.008 11.0 0.147 5.59 0.603 7.15
12 0.008 11.0 0.142 5.85 0.658 6.5
13 0.006 14.8 0.128 6.44 0.457 9.33
14 0.006 14.8 0.123 6.86 0.458 9.28
15 0.005 17.8 0.112 7.29 0.321 13.1
16 0.005 17.4 0.111 7.47 0.320 13.1
17 0.005 17.2 0.108 7.45 0.283 14.6
18 0.005 17.4 0.108 7.28 0.280 14.7
19 0.004 21.8 0.103 7.69 0.269 15.2
20 — — 0.105 7.57 0.274 15.0

Table 4
Evaluation results using the backwards dictionary filtering method, Bulgarian dictionary BL,
distance bounds k = 1, 2, 3. Times in milliseconds and speed-up factors (ratio of times) w.r.t.
basic algorithm.

for modified Levenshtein distances - using either transpositions or merges and splits as
additional edit operations - has been described in (Schulz and Mihov, 2001). It is assumed
that all edit operations are applied in parallel, which implies, e.g., that insertions between
transposed letters are not possible. If we want to apply the filtering method using back-
wards dictionaries for the modified Levenshtein distance d′

L(P, W ) with transpositions
we are faced with the following problem:

Assume that the pattern P = a1a2 . . . amam+1 . . . an is split into P1 = a1a2 . . . am

and P2 = am+1am+2 . . . an. When we apply the above procedure, the case is not covered
where am and am+1 are transposed. In order to overcome this problem, we can draw on
the following observation:

If d′L(P, W ) ≤ 3, then W can be represented in the form W = W1W2, where there
are the following seven alternatives:

1.d′L(P1, W1) = 0 and d′
L(P2, W2) ≤ 3,

2.1 ≤ d′L(P1, W1) ≤ 3 and d′
L(P2, W2) = 0,

3.d′L(P1, W1) = 1 and 1 ≤ d′
L(P2, W2) ≤ 2

4.d′L(P1, W1) = 2 and d′
L(P2, W2) = 1.

In the remaining cases, W1 = W ′
1am+1 ends with the symbol am+1, W2 = amW ′

2 starts
with am, and for P ′

1 := a1a2 . . . am−1 and P ′
2 := am+2am+3 . . . an we have
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Length (CT1) Speed-up 1 (CT2) Speed-up 2 (CT3) Speed-up 3

1 − 14 0.007 32.1 0.220 18.8 0.665 35.5
15 − 24 0.010 17.0 0.175 18.3 0.601 32.7
25 − 34 0.009 27.7 0.221 19.6 0.657 37.4
35 − 44 0.007 37.7 0.220 19.6 0.590 40.8
45 − 54 — — 0.201 17.8 0.452 44.6
55 − 64 — — 0.195 17.8 0.390 48.8

Table 5
Evaluation results using the backwards dictionary filtering method, German dictionary GL,
distance bounds k = 1, 2, 3. Times in milliseconds and speed-up factors (ratio of times) w.r.t.
basic algorithm.

Length (CT1) Speed-up 1 (CT2) Speed-up 2 (CT3) Speed-up 3

1 − 14 0.032 9.19 0.391 9.94 1.543 12.5
15 − 24 0.019 16.2 0.247 16.3 0.636 30.7
25 − 34 0.028 11.5 0.260 16.0 0.660 30.3
35 − 44 0.029 11.4 0.295 14.3 0.704 28.7
45 − 54 0.037 9.14 0.332 13.0 0.759 26.9
55 − 64 0.038 9.05 0.343 12.7 0.814 25.3

Table 6
Evaluation results using the backwards dictionary filtering method, title dictionary TL,
distance bounds k = 1, 2, 3. Times in milliseconds and speed-up factors (ratio of times) w.r.t.
basic algorithm.
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Length (CT3 GL) Speed-up GL (CT3 TL) Speed-up TL

1 − 14 1.154 23.0 2.822 7.7
15− 24 1.021 21.3 1.235 17.5
25− 34 1.148 23.7 1.261 17.7
35− 44 1.096 24.3 1.283 17.6
45− 54 0.874 25.5 1.326 17.3
55− 64 0.817 25.7 1.332 17.4

Table 7
Evaluation results using the backwards dictionary filtering method for the modified
Levenshtein distance d′

L with transpositions, for German dictionary GL and title dictionary
TL, distance bound k = 3. Times in milliseconds and speed-up factors (ratio of times) w.r.t.
basic algorithm.

5.d′L(P ′
1, W

′
1) = 0 and dL(P ′

2, W
′
2) ≤ 2, or

6.d′L(P ′
1, W

′
1) = 1 and d′

L(P ′
2, W

′
2) ≤ 1, or

7.d′L(P ′
1, W

′
1) = 2 and d′

L(P ′
2, W

′
2) = 0.

The cases for distance bounds k = 1, 2 are solved using similar extensions of the original
subcase analysis. In each case, it is straightforward to realize a search procedure with
subsearches corresponding to the new subcase analysis, using an ordinary dictionary and
a backwards dictionary, generalizing the above ideas. We have tested the new search pro-
cedure for the modified Levenshtein distance d′

L. In Table 7 we present the experimental
results with the German dictionary GL and the title dictionary TL for distance bound
k = 3.

Summary The filtering method using backwards dictionaries drastically improves cor-
rection times. The increase in speed depends both on the length of the input word and
on the error bound. The method works particularly well for long input words. For the
German dictionary GL, a drastic improvement can be observed for all subclasses. In con-
trast, for very short words of BL only a modest improvement is obtained. When using the
Bulgarian dictionary BL and the modified Levenshtein distance d′

L with transpositions,
the backwards dictionary method only improved the basic search method for words of
length ≥ 9. For short words, a large number of repetitions of the same correction can-
didates was observed. The analysis of this problem is a point of future work. Variants
of the backwards dictionary method also can be used for the Levenshtein distance d′′

L

where insertions, deletions, substitutions, merges and splits are treated as primitive edit
operations. Here, the idea is to split the pattern at two neighbouring positions, which
means that the number of subsearches is doubled. We did not evaluate this variant.

7 Using dictionaries with single deletions for filtering

The final technique that we describe here is again an adaptation of a filtering method
from pattern matching in strings (Muth and Manber, 1996; Navarro and Raffinot, 2002).
When restricted to the error bound k = 1, this method is very efficient. The method can
only be used for finite dictionaries. Assume that the pattern P = p1 . . . pm matches a
portion of text, T ′, with one error. Then m−1 letters of P are found in T ′ in the correct
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order. This fact can be used to compute m + 1 derivatives of P that are compared with
similar derivatives of a window T ′ of length m that is slid over the text. A derivative
of a word V can be V or a word that is obtained by deleting exactly one letter of V .
Coincidence between derivatives of P and T ′ can be used to detect approximate matches
of P of the above form. For details we refer to Navarro and Raffinot (2002). In what
follows we describe an adaptation of the method to approximate search of a pattern P
in a dictionary D.

Let i be an integer. With V [i] we denote the word that is obtained from a word V by
deleting the i-th symbol of V . For |V | < i we define V [i] = V . By a dictionary with output
sets, we mean a list of strings where each string W is associated with a set of output
strings O(W ). Each string W is called a key. Starting from the conventional dictionary
D, we compute the following dictionaries with output sets Dall, D1, D2, . . ., Dn0

where
n0 is the maximal length of an entry in D.

•The set of keys of Dall is D ∪ {V | ∃i ≥ 1, W ∈ D s.th. V = W [i]}. The output
set for key V is Oall(V ) := {W ∈ D | W = V ∨ V = W [i] for some i ≥ 1}.

•The set of keys for Di is D ∪ {V | ∃W ∈ D s.th. V = W [i]}. The output set for
a key V is Oi(V ) := {W ∈ D | W = V ∨ V = W [i]}.

Lemma 2

Let P denote a pattern, let W ∈ D. Then dL(P, W ) ≤ 1 iff either W ∈ Oall(P ) or there
exists i, 1 ≤ i ≤ |P | such that W ∈ Oi(P

[i]).

The proof is simple and so has been omitted.

In our approach, the dictionaries with output sets Dall, D1, D2, . . ., Dn0
are re-

spectively compiled into minimal subsequential transducers Aall, A1, A2, . . ., An0
. Given

a pattern P , we compute the union of the output sets Oall(P ),O1(P
[1]),. . .,O|P |(P

[|P |])
using these transducers. It follows from Lemma 2 that we obtain as result the set of all
entries of W of D such that dL(P, W ) ≤ 1. It should be noted that the output sets are
not necessarily disjoint. For example, if P itself is a dictionary entry, then P ∈ Oi(P

[i])
for all 1 ≤ i ≤ |P |.

After we implemented the above procedure for approximate search, we found that
a similar approach based on hashing had been described as early as 1981 in a technical
report of Mor and Fraenkel (1981).

7.1 Evaluation results

Table 8 presents the evaluation results for edit distance 1 using dictionaries with single
deletions obtained from BL. The total size of the constructed single deletion dictionary
automata is 34.691 megabytes. The word lists used for tests are those described in Sec-
tion 5.2. Dictionaries GL and TL are not considered here since the complete system of
subdictionaries needed turned out to be too large. For a small range of input words of
length 3-6, filtering using dictionaries with single deletions behaves better than filtering
using the backwards dictionary method.
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8 Similarity keys

A well-known technique for improving lexical search not mentioned so far is the use of
similarity keys. A similarity key is a mapping κ that assigns to each word W a simplified
representation κ(W ). Similarity keys are used to group dictionaries into classes of “sim-
ilar” entries. Many concrete notions of “similarity” have been considered, depending on
the application domain. Examples are phonetic similarity (e.g. SOUNDEX system, cf.
(Odell and Russell, 1918; Davidson, 1962)), similarity in terms of word shape and geo-
metric form (e.g. “envelope representation”, (Sinha, 1990; Anigbogu and Belaid, 1995))
or similarity under n-gram analysis (Angell, Freund, and Willett, 1983; Owolabi and
McGregor, 1988). In order to search for a pattern P in the dictionary the “code” κ(P ) is
computed. The dictionary is organized in such a way that we may efficiently retrieve all
regions containing entries with code (similar to) κ(P ). In this way, only small parts of the
dictionary must be visited, which speeds up search. Many variants of this basic idea have
been discussed in the literature (Kukich, 1992; Zobel and Dart, 1995; de Bertrand de
Beuvron and Trigano, 1995).

In our own experiments we first considered the following simple idea. Given a similar-
ity key κ, each entry W of the dictionary D is equipped with an additional prefix of the
form κ(W )&. Here “&” is a special symbol that marks the border between codes and orig-
inal words. The enhanced dictionary D̂ with all entries of the form κ(W )&W is compiled
into a deterministic finite state automaton A

D̂
. Approximate search for pattern P in D is

then reorganized in the following way. The enhanced pattern κ(P )&P is used for search in
A

D̂
. During the backtracking process, we distinguish two phases. In Phase 1, which ends

when reading the special symbol &, we compute an initial path of A
D̂

where the corre-
sponding sequence of transition labels represent a code α such that dL(κ(P ), α) ≤ k. All
paths of this form are visited. Each label sequence α& of the above form defines a unique
state q of the automaton A

D̂
such that LA

D̂
(q) = {W ∈ D | κ(W ) = α}. In Phase 2,

starting from q, we compute all entries W with code κ(W ) = α such that dL(W, P ) ≤ k.
In both phases the automaton A∀(k) is used to control the search, transition labels of
A

D̂
are translated into characteristic vectors. In order to guarantee completeness of the

method, the distance between codes of a pair of words should not exceed the distance
between the words themselves.

It is simple to see that in this way the backtracking search is automatically restricted
to the subset of all dictionary entries V such that dL(κ(V ), κ(P )) ≤ k. Unfortunately,
despite this, the approach does not lead to reduced search times. A closer look at the
structure of (conventional) dictionary automata AD for large dictionaries D shows that
there exists an enormous number of distinct initial paths of AD of length 3 − 5. During
the controlled traversal of AD , most of the search time is spent visiting paths of this
initial “wall”. Clearly, most of these paths do not lead to any correction candidate.
Unfortunately, however, these “blind” paths are recognized too late. Using the basic
method described in Section 5, we have to overcome one single wall in AD for the whole
dictionary. In contrast, when integrating similarity keys in the above form, we have to
traverse a similar wall for the subdictionary Dκ(W ) := {V ∈ D | κ(V ) = κ(W )} for each
code κ(W ) found in Phase 1. Even if the sets Dκ(W ) are usually much smaller than D,
the larger number of walls that are visited leads to increased traversal times.

As an alternative, we tested a method where we attached to each entry W of D all
prefixes of the form α& where α represents a possible code such that dL(κ(W ), α) ≤ k.
Using a similar procedure as the one described above, we have to traverse only one wall
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Length (CT1) Speed-up 1 Length (CT1) Speed-up 1

3 0.011 9.73 12 0.026 3.38
4 0.011 8.91 13 0.028 3.18
5 0.010 8.50 14 0.033 2.70
6 0.011 7.18 15 0.035 2.54
7 0.013 6.08 16 0.039 2.23
8 0.015 5.40 17 0.044 1.95
9 0.017 4.88 18 0.052 1.67
10 0.020 4.40 19 0.055 1.58
11 0.022 4.00 20 0.063 1.44

Table 8
Results for BL, using dictionaries with single deletions for filtering, distance bound k = 1.
Times in milliseconds and speed-up factors (ratio of times) w.r.t. basic algorithm.

in Phase 2. With this method, we obtained a reduction in search time. However, with this
approach, enhanced dictionaries D̂ are typically much larger than original dictionaries
D. Hence the method can only be used if both dictionary D and bound k are not too
large and if the key is not too fine. Since the method is not more efficient than filtering
using backwards dictionaries, evaluation results are not presented here.

9 Concluding remarks

In this paper we showed how filtering methods can be used to improve finite-state tech-
niques for approximate search in large dictionaries. As a central contribution we intro-
duced a new correction method, filtering based on backwards dictionaries and partitioned
input patterns. Though this method generally leads to very short correction times, we be-
lieve that further improvements could possibly be gained using refinements and variants
of the method, or introducing other filtering methods. There are, however, reasons to
assume that we are not too far from a situation where further algorithmic improvements
become impossible for fundamental reasons. The following considerations show how an
“optimal” correction time can be estimated that cannot be improved without altering
the hardware, or using faster access methods for automata.

We used a simple backtracking procedure to realize a complete traversal of the dic-
tionary automaton AD . During a first traversal, we counted the total number of visits
to any state. Since AD is not a tree, states may be passed through several times during
the complete traversal. Each such event counts as one visit to a state. The ratio between
the number of visits and the total number of symbols in the list of words D gives the
average number of visits per symbol, denoted v0. In practice, the value of v0 depends
on the compression rate that is achieved when compiling D into the automaton AD. It
is smaller than 1 due to many prefixes of dictionary words that are shared in AD . We
then used a second traversal of AD - not counting visits to states - to compute the total
traversal time. The ratio between the total traversal time and the number of visits yields
the time t0 that is needed for a single visit.

For the three dictionaries, the following values were obtained:
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BL GL TL

Average number v0 of visits per symbol 0.1433 0.3618 0.7335
Average time t0 for one visit (in µs) 0.0918 0.1078 0.0865

Given an input V , we may consider the total number nV of symbols in the list of correction
candidates. Then nV ·v0 · t0 can be used to estimate the optimal correction time for V . In
fact, in order to achieve this correction time we need an oracle that knows how to avoid
any kind of useless backtracking. Each situation where we proceed on a dictionary path
that does not lead to a correction candidate for V would need some extra time that is
not included in the above calculation. From another point of view, the above idealized
algorithm essentially just copies the correction candidates into a resulting destination.
The time that is consumed is proportional to the sum of the length of the correction
candidates.

For each of the three dictionaries, we estimated the optimal correction time for one
class of input words. For BL we looked at input words of length 10. The average number
of correction candidates for Levenshtein distance 3 is 121.73 (cf. Table 1). Assuming that
the average length of correction candidates is 10, we obtain a total of 1217.3 symbols
in the complete set of all correction candidates. Hence the optimal correction time is
approximately

1217.3 · 0.0000918 ms · 0.1433 = 0.0160 ms.

The actual correction time using filtering with the backwards dictionary method is 0.827
ms, which is 52 times slower.

For GL, we considered input words of length 15-24 and distance bound 3. We have on
average 3.824 correction candidates of length 20, i.e., 76.48 symbols. Hence the optimal
correction time is approximately

76.48 · 0.0001078 ms · 0.3618 = 0.003 ms.

The actual correction time using filtering with the backwards dictionary method is 0.601
ms, which is 200 times slower.

For TL we used input sequences of length 45-54 and again distance bound 3. We
have on average 0.857 correction candidates of length 50, i.e., 42.85 symbols. Hence the
optimal correction time is approximately

42.85 · 0.0000865 ms · 0.7335 = 0.003 ms.

The actual correction time using filtering with the backwards dictionary method is 0.759
ms, which is 253 times slower.

These numbers coincide with our basic intuition that further algorithmic improve-
ments are simpler for dictionaries with long entries. For example, variants of the back-
wards dictionary method could be considered where a finer subcase analysis is used to
improve filtering.
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