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Abstract. In a previous paper we have introduced a method that allows
one to combine decision procedures for unifiability in disjoint equational
theories. Lately, it has turned out that the prerequisite for this method to
apply—namely that unification with so-called linear constant restrictions
is decidable in the single theories—is equivalent to requiring decidabi-
lity of the positive fragment of the first order theory of the equational
theories. Thus, the combination method can also be seen as a tool for
combining decision procedures for positive theories of free algebras defi-
ned by equational theories. Complementing this logical point of view, the
present paper isolates an abstract algebraic property of free algebras—
called combinability—that clarifies why our combination method applies
to such algebras. We use this algebraic point of view to introduce a new
proof method that depends on abstract notions and results from uni-
versal algebra, as opposed to technical manipulations of terms (such as
ordered rewriting, abstraction functions, etc.) With this proof method,
the previous combination results for unification can easily be extended to
the case of constraint solvers that also take relational constraints (such as
ordering constraints) into account. Background information from univer-
sal algebra about free structures is given to clarify the algebraic meaning
of our results.

1 Introduction

In most of the applications of unification modulo an equational theory E, a unifi-
cation algorithm for elementary E-unification (which treats just the terms built
over the signature of F) is not sufficient. Usually, there are at least additional
free function symbols present, or even symbols defined by another equational
theory. For this reason, the combination problem for unification algorithms is an
important research topic in unification theory. Informally, this problem can be
described as follows: Let £ and F' be equational theories over disjoint signatures,
and assume that unification algorithms for £ and for F' are given. How can we
combine these algorithms to obtain a unification algorithm for U F'. Originally,
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the term “unification algorithm” referred to an algorithm that computes a com-
plete set of unifiers (see [SS89, Bou93] for the most recent results on combining
such algorithms). With the development of constraint approaches to theorem
proving [Biir91, NiR94] and term rewriting [KK89], the role of algorithms that
compute complete sets of unifiers is more and more taken on by algorithms that
decide solvability of the unification problems. In this setting, more general con-
straints than the equational constraints s = ¢ of unification problems become
important as well. For example, one might be interested in ordering constraints
of the form s < ¢ on terms [CT94], where the predicate < could be interpreted
as the subterm ordering or as a reduction ordering.

For unification, the problem of combining decision procedures has been sol-
ved in [BS92] in a rather general way. The main tool of this combination method
i1s a decomposition algorithm, which separates a given unification problem I of
the joined theory (i.e., an (E' U F)-unification problem) into pure unification
subproblems I'g and I'r of the single theories. Solutions of these pure problems
must satisfy additional conditions, called linear constant resirictions in [BS92],
to yield a solution of I". The main result of [BS92] is that solvability of unification
problems in the combined theory F U F is decidable, provided that solvability of
unification problems with linear constant restrictions is decidable in £ and F'.
It should be noted that this result can easily be lifted to solvability of (F U F')-
unification problems with linear constant restrictions. This combination result
has been generalized to disunification [BS93a] and to unification in the union
of theories with shared constant symbols [Rin92]. In both cases, the decomposi-
tion algorithm of [BS92] could be adapted to the new problem without serious
modifications. An important goal of the present paper is to give an abstract cha-
racterization of the situations in which this seemingly ubiquitous decomposition
method can be applied. In addition to the better understanding of the under-
lying principles, this could also yield a better basis for further generalizations.
The proof method used in [BS92, BS93a, Rin92]—which depends on an infinite
ordered rewrite system obtained by unfailing completion, term abstraction fun-
ctions, etc.—seems not to facilitate such an abstract view (see, e.g., the rather
technical “shared constructor” condition in [DKR94]).

At first sight, the notion of “unification with linear constant restrictions” is
just a technical notion that makes our combination machinery work, but seems to
have little further significance. In [BS93] it is shown, however, that F-unification
with linear constant restrictions is decidable iff the positive fragment of the
first-order theory of E is decidable. Since the positive theory of F coincides
with the positive theory of the E-free Y-algebra 7(X, X)/—p over infinitely
many generators X, the combination result of [BS92] can be reformulated as
follows: Let F and F be equational theories over disjoint signatures X' and A,
and let X be a countably infinite set of generators. The positive theory of 7 (XU
A, X)/=pup 1s decidable, provided that the positive theories of T(X, X)/—g
and 7(A, X)/=p are decidable.

In the present paper, this observation is used as the starting point of a more
abstract, algebraic approach to formulating and solving the combination pro-



blem. Starting with two algebras over disjoint signatures, the goal is to construct
a “combined” algebra such that validity of positive formulae in this algebra can
be decided by using a decomposition algorithm and decision procedures for the
positive theories of the original algebras. Obviously, this can only be achieved if
the algebras satisfy some additional properties. We well call an algebra A com-
binable iff it is generated by a countably infinite set X such that any mapping
from a finite subset of X to A can be extended to a surjective endomorphism
of A. For combinable algebras .4 and B over disjoint signatures X' and A, we
can construct the so-called free amalgamated product A® B, which is a (YU A)-
algebra.> Now a simple modification of the decomposition algorithm of [BS92]
can be used to show that the positive theory of A® B is decidable iff the positive
theories of A and of B are decidable.

Obviously, the free algebras 7(Z, X) /= and 7 (A, X)/—=p over a countably
infinite set of generators X are combinable. In this case, the free amalgamated
product yields an algebra that is isomorphic to the combined free algebra 7 (XU
A, X)/=pup- Thus, the combination result of [BS92] is obtained as a corollary.
As described until now, the amalgamation of combinable algebras does not yield
a real generalization of this result. Indeed, one can use well-known results from
universal algebra to show that an algebra is combinable (as defined above) iff it
is a free algebra over countably many generators for an equational theory. What
is new, though, is the proof method, which—in contrast to the original proof—
only depends on elementary notions from universal algebra, and thus clarifies
the role played by the combinability condition. This new proof can be seen as an
adaptation of the proof ideas in [SS89] to the combination of decision procedures.
Unlike in [SS89], however, everything is done on the abstract algebraic level
instead of on the term level. Interestingly, on this level it is also very easy to
prove completeness of an optimized version of the decomposition algorithm of
[BS92], which significantly reduces the number of nondeterministic choices.

In addition, the abstract algebraic approach allows for an easier generaliza-
tion of the results. In fact, instead of algebras we will consider algebraic structu-
res in the following. This means that the signatures may contain both function
symbols and predicate symbols, and these additional predicate symbols may
occur in the constraint problems to be solved. With the usual notion of homo-
morphism for structures, most of the results from universal algebra carry over to
structures. The combination result for combinable algebras sketched above thus
holds for free structures as well. This yields a combination method for constraint
solvers of more general constraints than just equational constraints.

The next section recalls some results from universal algebra for free structu-
res. In Section 3 we construct the free amalgamated product of free structures,
and show that it again yields a free structure. Section 4 describes the decompo-
sition algorithm and proves that it is sound and complete for existential positive
input formulae. In Subsection 4.3, this result is extended to positive formulae
with arbitrary quantifier prefix.

? This construction is similar to the one made in [SS89] for free algebras.



2 Free Structures

Let ¥ be a signature consisting of a finite set Y'p of function symbols and a
finite set Y'p of predicate symbols, where each symbol has a fixed arity. We
assume that equality = is an additional predicate symbol that does not occur
in Xp. An atomic X-formula is an equation s = t between Yp-terms s,f, or a
relational atomic formula of the form p[sy, ..., s,] where p is a predicate symbol
in Xp of arity m and sy,..., s, are XYp-terms. A positive Y-matrix is any X-
formula obtained from atomic Y-formulae using conjunction and disjunction
only. A positive Y-formula is obtained from a positive Y-matrix by adding an
arbitrary quantifier prefix, and an existential positive Y-formula is a positive
formula where the prefix consists of existential quantifier only. As usual, we
shall sometimes write ¢(v1,...,vy) (resp. @(v1,...,v,)) to express that ¢ (resp.
¢) is a term (resp. formula) whose (free) variables are a subset of {v1,...,v,}.
Sentences are formulae without free variables.

A Y-structure A has a non-empty carrier set A, and it interprets each f € Yp
of arity n as an n-ary function f4 on A, and each p € Xp of arity m as an m-ary

relation pg. For a formula ¢ = ¢(v1,...,v,), we write A |E ¢(ay,...,ay) to
express that ¢ is true in A under the evaluation {vy — ay, ..., v, — an}.
Usually, X-constraints are formulae of the form (v, .. ., v,) with free varia-

bles. A solution of such a constraint (in a fixed Z-structure A) is an evaluation
{v1 — ay,..., vy — an} such that A = ¢(ay, ..., ay). Obviously, the constraint
o(v1,...,vpy) has a solution in A iff the formula Jv; ... v, @(v1, ..., v,) is valid
in A. In the present paper, we are only interested in solvability of constraints,
and will thus usually take this logical point of view. In the following, tuples of
variables will often be abbreviated by ¢, ¢, %, and tuples of elements of a struc-
ture by @, E, etc. Substructures and direct products of structures are defined in
the usual way. If the Y-substructure B of A is generated by X C A, we write
B = (X)s. Later on, we will consider several signatures simultaneously. If A is
a subset of the signature X', then any Y-structure A can be considered as a A-
structure (called the A-reduct of A) by just forgetting about the interpretation
of the additional symbols. To make clear with respect to which signature a given
Y-structure A is currently considered we will sometimes write A% for the full
Y-structure and A2 for its A-reduct.

A Y-homomorphism is a mapping h between Y-structures A and B such that

h(falar,...,an)) = fe(h(ar),..., h(an))
palar,...,an] = pgalhla1), ..., k(ay)]

forall f € Xp,p € Xp, ay,...,a, € A. A Y-isomorphism is a bijective -
homomorphism whose inverse is also a X-homomorphism.

There is an interesting (well-known) connection between surjective homo-
morphisms and positive formulae. The following lemma (see [Mal73], pp. 143,
144, for a proof), and its relationship to the concept of combinability, turns out
to be crucial for the new proof method introduced in Section 4.



Lemmal. Let h : A — B be a surjective homomorphism between the X-
structures A and B, ¢(v1,...,vm) be a positive X-formula, and ay, ... am be

elements of A. Then A= play,...,am) implies B = o(h(ar),. .., ham)).

As for the case of algebras, Y -varieties are defined as classes of Y-structures
that are closed under direct products, substructures, and homomorphic images.
The well-known Birkhoff Theorem says that a class of Y'p-algebras is a variety iff
it 1s an equational class, 1.e., the class of models of a set of equations. For struc-
tures, a similar characterization is possible [Mal71]: A class V of Y-structures is
a Y-variety if, and only if, there exists a set E of atomic S-formulae? such that
V is the class of models of E. In this situation, we say that V is the YX-variety
defined by F, and we write V = V(E).

As in the case of varieties of algebras, varieties of structures always have free
objects. Recall that a X-structure A is free for the class of X-structures K over
the set X iff (1) A€ K, (2) Ais generated by X, and (8} every mapping from X
into the carrier of a Y-structure B € K can be extended to a X-homomorphism
of A into B.

If A and B are free X-structures for the same class K, and if their sets of
generators have the same cardinality then these structures are isomorphic. Every
non-trivial variety contains free structures with sets of generators of arbitrary
cardinality [Mal71]. Conversely, free structures are always free for some variety

[Mal71, Coh65].

Theorem 2. Let A be a X-structure that is generated by X. Then A is free over
X for {A} iff A is free over X for some X-variely.

In the following, a Z-structure A will be called free (over X) iff it is free
(over X) for {A}. Let us now analyze how free Z-structures look like (see
[Mal71, Wea93] for more information). Obviously, the Z'p-reduct of such a struc-
ture is a free Xp-algebra, and thus it is (isomorphic to) an E-free Yp-algebra
T(Xp,X)/=p for an equational theory E. In particular, the =g-equivalence
classes [s] of Xp-terms constitute the carrier of A. It remains to be shown how
the predicate symbols are interpreted on this carrier. Since A is free over X, any
mapping from X into T(Xr,X)/=f can be extended to a Z-endomorphism of
A. This, together with the definition of homomorphisms of structures, shows
that the interpretation of the predicates must be closed under substitution, i.e.,
for all p € Yp, all substitutions o, and all terms s1,..., sm, if p[[s1],- .., [sm]]
holds in A then p[[si0], ..., [smc]] must also hold in A. Conversely, it is easy to
see that any extension of the Yp-algebra 7(Xp, X)/= to a Z-structure that
satisfies this property is a free X-structure over X.

Erample 1. Let Xp be an arbitrary set of function symbols, and assume that
X'p consists of a single binary predicate symbol <. Consider the (absolutely
free) term algebra 7 (Xp, X). We can extend this algebra to a X-structure by

* As usual, open formulae are here considered as implicitly universally quantified.



interpreting < as subterm ordering. Another possibility would be to take a reduc-
tion ordering [Der87] such as the lexicographic path ordering. In both cases, we
have closure under substitution, which means that we obtain a free J-structure.

Free structures over countably infinite sets of generators are canonical for the
positive theory of their variety in the following sense:

Theorem 3. Let A be free over the countably infinite set X for a X-variety
V(E), and let ¢ be a positive X-formula. Then ¢ is valid in all elements of V(E)
(i.e., ¢ is a logical consequence of E) iff ¢ is valid in A.

For the purpose of this paper, the following characterization of free structures
is useful (see [BS94] for a proof).

Lemma4. Let A be a X-structure that is generated by the countably infinite set
X. Then the following conditions are equivalent:

1. A is free over X.
2. For every finite subset Xg of X, every mapping hg : Xog — A can be extended
to a surjective endomorphism of A.

Condition 2 is the combinability condition mentioned in the introduction.
Thus Theorem 2 shows that a structure is free for some variety iff it is com-
binable. This observation, together with Lemma 1, can be used to obtain the
following lemma, which is the key tool in the new proof of correctness of the
combination method.

Lemma 5. Let A be a free Y-structure over the countably infinite set of ge-
nerators X, and let v = Va3 .. Vupdvy ¢(dy, ¥, ..., 4, U;) be a positive
Y-sentence. Then the following conditions are equivalent:
1. ./4 ': Vﬁﬁlﬁl .. VﬁkEIUk gD(Ul, 171, ey Uk, Uk)
2. There exist tuples ¥1 € )?,é'l € f_l’, CoL Xy € )?,é'k € A and finite subsets
1y, 2y of X such that
(a) Al p(Z1,61,..., %k, ),
(b) all generators occurring in the tuples &1, ..., ¥y are distinet,
(¢) for all j,1 < j < k, the components of €; are generated by Z;, i.e., are
elements of (Z;)x, and
(d) for all j,1 < j <k, no component of &; occurs in Z1 U...UZ;_4.

As an example, assume that A is the (absolutely free) term algebra 7 ({g}, X)
over a signature consisting of a unary symbol g. The formula FvVu g(u) = g(v)
is not valid. In fact, Condition 2 is not satisfied since for all € X and e €
T({g}, X), g(x) = g(e) is only satisfied in 7T ({g}, X) if e = #, and thus » is
contained in any generating set of e.

Readers who are familiar with the notion of “unification with linear constant
restrictions” should note the close connection between (¢) and (d) of Condition 2
(which say that a generator € X must not be contained in the generating set
7 for e € A if e comes before x in the sequence #1,€1,..., %y, €;) and a linear
constant restriction (which says that the constant @ must not occur in the image
e of a variable u if u comes before a in the linear constant restriction).



3 Amalgamation of Free Structures

Let X and A be disjoint signatures, and let X be a countably infinite set (of
generators). Let A be a free Z-structure over X and and let B be a free A-
structure over X. Equivalently, A is free over X for some X-variety V(F) and B is
free over X for some A-variety V(F') (by Theorem 2). The following construction
yields a (XU A)-structure A © B that is free over X for the (X U A)-variety
V(EUF).

We consider two countably infinite supersets X, and Y, of Xp := Yy := X
such that Xo NY,, = X and X, \ Xo and Yo \ Y; are infinite. Let A, be free
for V(F) over X, and let Bo, be free for V(F') over Y. Obviously, A is the
substructure of A., that is generated by Xg C X . Since both structures are
free for the same variety, and since their generating sets Xy and X, have the
same cardinality, A and A, are isomorphic. The same holds for B and B...

We shall make a zig-zag construction that defines ascending towers of X-
structures A,, and A-structures B,,. These structures are connected by bijective
mappings h, and g,. The free amalgamated product .4 @ B will be obtained as
the limit structure, which obtains its functional and relational structure from
both towers by means of the limits of the mappings A, and g,.

n=0: Let Ay := A = (Xy) 5. We interpret the “new” elements in Ag\ Xy as
generators in B, . For this purpose, select a subset Y1 C Y., such that Y1NYy = 0§,
[Y1] = |Ao \ Xol, and the remaining complement Y, \ (Y5 U Y7) is countably
infinite. Choose any bijection hg : Yo UY] — Ao where hyly, = idy,.

Let By := (Yo)a. As for Ag, we interpret the “new” elements in By \ Yy as
generators in A.,. Select a subset X; C X, such that X; N Xy = 0, |X;| =
|Bo \ Yo| and the remaining complement X \ (Xo U X7) is countably infinite.
Choose any bijection go : Xo U Xy — By where go|x, = idx,.

n — n+1: Suppose that A, = (J'_, Xi)x and B, = (J/_, Yi) a are already
defined, and that subsets X, 11 of Xoo and Y, 41 of Y, are already given. We
assume that the complements X, \U?:-I'O1 X; and Y, \U?:-I'O1 Y; are infinite, and
that the sets X; (resp. Y;) are pairwise disjoint. In addition, we assume that
bijections hy, : Bp_1UY, UY,41 — Ay and ¢y 0 A1 U X, U X 41 — B, are
defined such that

(%) gn(hn(b))=bforbe B,_1 UY, and h,(gn(a)) =a fora e Ap_1 UX,
(k) (Y1) = Ap\ (A1 U X)) and gn(Xng1) = Bo \ (Bp—1 UYy).

Note that (##) implies that hp(By_1 UY,) = Ap_1 UX, and ¢go(4n-1 U X,) =
B,_1UY,.

We define A,41 = (U?:-I_Ol X;)y and Bpy, = (U?:-I_Ol YiYa, and select subsets
Yyga C Veo and Xpys C Xoo such that Vo N UM Vi = 0 = Xy nUL X
In addition, the cardinalities must satisfy |Yn42| = [An+1 \ (An U Xp41)| and

Xonto| = |Bnt1 \ (Bn U Yye41)|, and the remaining complements Y "y,
+ + + g =0

and X \ U?:-I'OZ X; must be countably infinite. Let

Upgt1 @ Yoga — An+1 \ (An U Xn+1) and gn-l—l : Xng2 — Bayr \ (Bn U Yn+1)

be arbitrary bijections. We define hp41 1= vpp1 U g;l Uhy, and gn41 :=Epp1 U



h;t' U g,. In more detail:

Un41(b) for b € Y40
hn+1(b) = hn(b) forbe B,_1UY, U Yn+1
g7t (b) for b€ By \ (Bno1UYy)

and
énti1(a) for a € X, 40
gnt1(a) =< gn(a) forae Ap_1UX,UXp4
ht(a) forae A, \ (A1 UX,).

n

Without loss of generality we may assume (for notational convenience) that the
construction eventually covers all generators in X, and Y., ; in other words, we
assume that U?io X; = X and U?ioyi = Y., and thus U?io A; = Ay and
UiZ, Bi = Boo. We define the limit mappings

hoo ::Uhi:Boo—>Aoo, and  goo 1= Ugi:Aoo—>Boo.
=0 =0
It 1s easy to see that h., and g.. are bijections that are inverse to each other.
They may be used to carry the A-structure of B, to A, and to carry the X-
structure of A to Boo: let f (f') be an n-ary function symbol of A (X)), let p (p)
be an n-ary predicate symbol of A (X)), and a1,...,a, € Ao (b1,...,bn € Bs).
We define

fa(ar, ... an) heo (fBo. (9o (@1), -+ goolan))),
S (01, bn) = geo(fu_ (hoo(b1), ..., hoo(bn))),
PAfa1, - an] <= pB[geo(a1), - ., Gool(an)],
P b1, bn] i = Py _lhoo(b1), ..., hoo(bn)].

With this definition, the mappings i, and g, are inverse isomorphisms between
the (X' U A)-structures A, and Bo. Identifying isomorphic structures, we call
AZVA ~ BEZUA the free amalgamated product A©® B of A and B. The layering
of the domain Ae (resp. Boo) of this structure into the sets A, (resp. By) will
become important in the proof of our combination result. As a X-structure,
A © B is isomorphic to A, which is free over X for V(F), and as a A-structure
it is isomorphic to B, which is free over X for V(F'). In [BS94] it is shown that
as a (X U A)-structure it is free over X for V(E U F).

Theorem 6. Let X and A be disjoint signatures, and let A be free over X for
the X-variety V(E) and B be free over X for the A-variety V(F'), where X is
countably infinite. Then AG B is free over X for the (XU A)-variety V(EUF).

4 Combination results

As in the previous section, let V(F) be a X-variety and V(F') be a A-variety,
where X and A are disjoint signatures. For a countably infinite set of generators

X, let A be free for V(E) over X, and let B be free for V(F) over X. We



know that the positive theories of V(E) and A (resp. V(F') and B) coincide (by
Theorem 3), and that the free amalgamated product A® B is free for V(E U F)
over X (by Theorem 6).

In the first part of this section, we consider only existential positive (XU A)-
sentences. The decomposition algorithm described below can be used to reduce
validity of such sentences in A ® B (or, equivalently, in V(E U F')) to validity of
positive sentences in 4 and in B. At the end of the section we shall sketch how
this result can be extended to positive sentences with arbitrary quantifier prefix.

Before we can describe the algorithm, we must introduce some notation.
In the following, V' denotes an infinite set of variables used by the first order
languages under consideration. Let ¢ be a (2'U A)-term. This term is called pure
iff 1t 1s either a X-term or a A-term. An equation is pure iff it is an equation
between pure terms of the same signature. A relational formula p[si, ..., s,,] is
pure iff sq,..., s, are pure terms of the signature of p. Now assume that ¢ is
a non-pure term whose topmost function symbol is in 2. A subterm s of ¢ is
called alien subterm of t iff its topmost function symbol belongs to A and every
proper superterm of s in £ has its top symbol in Y. Alien subterms of terms with
top symbol in A are defined analogously. For a relational formula p[sy, ..., sm],
alien subterms are defined as follows: if s; has a top symbol whose signature is
different from the signature of p then s; itself is an alien subterm; otherwise, any
alien subterm of s; is an alien subterm of p[s1, ..., sm].

4.1 The Decomposition Algorithm

Let @y be a positive existential (X' U A)-sentence. Without loss of generality,
we may assume that g has the form Jiy vy, where ¢ is a conjunction of
atomic formulae. Indeed, since existential quantifiers distribute over disjunction,
a sentence 3ty (y1 V y2) is valid iff Jidy 1 or Jdy vz is valid.

Step 1: Transform non-pure atomic formulae.

(1) Equations s = t of 7y where s and ¢ have topmost function symbols
belonging to different signatures are replaced by (the conjunction of) two
new equations u = s,u = ¢, where u 1s a new variable. The quantifier prefix
is extended by adding an existential quantification for u.

(2) As a result, we may assign a unique label 2 or A to each atomic formula
that is not an equation between variables. The label of an equation s = £ is
the signature of the topmost function symbols of s and/or ¢. The label of a
relational formula p[sy, ..., 5] is the signature of p.

(3) Now alien subterms occurring in atomic formulae are successively repla-
ced by new variables. For example, assume that s = ¢ is an equation in the
current formula, and that s contains the alien subterm s;. Let u be a va-
riable not occurring in the current formula, and let s’ be the term obtained
from s by replacing s; by u. Then the original equation is replaced by (the
conjunction of) the two equations s’ = ¢ and « = s1. The quantifier prefix is
extended by adding an existential quantification for u. The equation s’ = ¢
keeps the label of s = ¢, and the label of u = sy 1s the signature of the top



symbol of s;. Relational atomic formulae with alien subterms are treated
analogously. This process is iterated until all atomic formulae occurring in
the conjunctive matrix are pure. It 1s easy to see that this is achieved after
finitely many iterations.

Step 2: Remove atomic formulae without label.
Equations between variables occurring in the conjunctive matrix are removed
as follows: If © = v is such an equation then one removes Ju from the
quantifier prefix and u = v from the matrix. In addition, every occurrence
of u in the remaining matrix is replaced by v. This step is iterated until the
matrix contains no equations between variables.

Let ¢1 be the new sentence obtained this way. The matrix of ¢ can be
written as a conjunction 1, » A 71,4, Where 7 » is a conjunction of all atomic
formulae from ¢, with label X, and v; 4 is a conjunction of all atomic formulae
from ¢ with label A. There are three different types of variables occurring in
@1: shared variables occur both in 71 » and in v, 4; 2-variables occur only in
71,2 ; and A-variables occur only in 41 4. Let @1 » be the tuple of all X-variables,
@1 a be the tuple of all A-variables, and @; be the tuple of all shared variables.’
Obviously, ¢ is equivalent to the sentence

iy (Fds » y1.2 AFtdr,a 11,4) -

The next two steps of the algorithm are nondeterministic, i.e., a given sen-
tence is transformed into finitely many new sentences. Here the idea i1s that the
original sentence is valid iff at least one of the new sentences is valid.

Step 3: Variable identification.
Choose (nondeterministically) a partition of the set of all shared variables.
The variables in each class of the partition are “identified” with each other
by choosing an element of the class as representative, and replacing in the
sentence all occurrences of variables of the class by this representative. Quan-
tifiers for replaced variables are removed.

Let 3ty (31 5 2,5 A Ttq, 4 72,4) denote one of the sentences obtained by
Step 3.

Step 4: Choose signature labels and ordering.
We choose a label & or A for every (shared) variable in @, and a linear
ordering < on these variables.

For each of the choices made in Step 3 and 4, the algorithm yields a pair
(o, ) of sentences as output.

Step 5: Generate output sentences.
The sentence Ity (Itr 5 72,5 A1 A ¥2,4) is split into two sentences

o = V1715Iu71 .. VﬁkEIu?kEIULE Y2,x and ﬁ = Halvu_ﬁ .. HUkvwkaﬁLA V2,4

® The order in these tuples can be chosen arbitrarily.



Here #10; ... ¥ Wy is the unique re-ordering of @y along <. The variables v;

(@;) are the variables with label A (label X).

Thus, the overall output of the algorithm is a finite set of pairs of sentences.
Note that the sentences o and § are positive formulae, but they need no longer
be existential positive formulae.

This algorithm is a straightforward adaptation of the decomposition algo-
rithm described in [BS92] to existential positive formulae with equations and
relational constraints. Note, however, that 1t optimizes the previous algorithm
in one significant way: the nondeterministic steps—which are responsible for
the NP-complexity of the algorithm—are applied only to shared variables and
not to all variables occurring in the system. For the case of algorithms com-
puting complete sets of unifiers, this optimization is already implicitly present
in [Bou93]. Steps similar to Step 1, 3, and the labelling in Step 4 are present in
most methods for combining unification algorithms. Nelson & Oppen’s combina-
tion method for universal theories [NO79] explicitly uses Step 1, and implicitly,
Step 3 is also present.

4.2 Correctness of the decomposition algorithm

First, we show soundness of the algorithm, i.e., if one of the output pairs 1s valid
then the original sentence was valid.

Lemma7. AGBE vy if A=« and B =8 for some output pair (o, 5).

Proof. Since A% and AZ are isomorphic Y-structures, we know that AZ =
a. Accordingly, we also have B2 |= 3. More precisely, this means

(*) AZ B V8 IG, .. V6303 5 v x (1, W, . . ., U, O, @1 5)
(x%) B = IV, .. 36V 3y A Yo,a(T1, @, .., Th, W, G 0).

Because of the existential quantification over @} in (#*), there exist elements
b1 € By, such that

(x4 %) B2 =V ... 30V i a Yoa(by, @, ..., T, T, d1.4)-

We consider @ := hoo(by1). Because of the universal quantification over 1 in (%)
we have

>, - Yoo o I o oo
A | T YD 5 e, 5 (G0, T, ., Uk, Wy, U 3).

Because of the existential quantification over Wy in this formula there exist ele-
ments ¢; € Ao such that

) N 0o oo o o o R
AL B Y03, . V0,30, x e, x(dy, €1, U, Wo, . . ., Uy, W, U1, x).

We consider di := ¢oo(¢1). Because of the universal quantification over @ in
(s * %) we have

A -\ = - = = T 7T - o R
Bs E 3V .. 30V WEIts A v2,a(by, di, Vo, Wa, ..., Up, Wy, U1 A).



Iterating this argument, we thus obtain
¥ - - - o o
A E T g e m(di, é, ..., dx, Cr, Uh,3),
A . - o - -
Boo ': E|U17A '}/2,A(b1, dl, ey bk, dk, ULA),

where d@; = hoo(l_);) and ci; = 9goo(c) (for 1 < ¢ < k). Since hy is a (XU A)-
isomorphism that is the inverse of ¢.,, we also know that

A2 = Jidy A y2,a(d1, 00, ..., @y, C, 1 0).
It follows that
AZVA =30, 5w e 2 (@1, 81, @k, Gy @ 2 ) AT A Y2, A(@1, ELy - Ak, Ty T 0).
Obviously, this implies that A ® B ~ AZY4 = i, (Fth, 5 2,2 A1 A ¥2,4),

i.e., one of the sentences obtained after Step 3 of the algorithm holds in A ® 5.
It is easy to see that this implies that A ® B &= ¢o. O

Next, we show completeness of the decomposition algorithm; i.e., if the input
sentence was valid then there exists a valid output pair.

Lemma8. If A® B = ¢q then A= o and B = § for some output pair (o, 5).

Proof. Assume that A ® B ~ BZY4 = Jigy,. Obviously, this implies
that BfoUA ': Juiq (36172 7172(61,6172) A HﬁlyA 71,A(61,61,A)), le., BfoUA sa-
tisfies the sentence that is obtained after Step 2 of the decomposition algo-
rithm. Thus there exists an assignment v : V — B, such that BZY4 |
Ads 5 v, 2 (v(th), 41, 5) ATt a 71,4 (U), U1 A).

In Step 3 of the decomposition algorithm we identify two shared variables u
and v’ of @ if, and only if, v(u) = v(v'). With this choice,

B2 | 3y ve,n(v(d2), 1, x) A Ji1 4 v2,a(v(T2), T1,4),

and all components of v(i2) are distinct.

In Step 4, a shared variable u in @» is labeled with A if v(u) € B \ (U2, Y2),
and with X otherwise. In order to choose the linear ordering on the shared
variables, we partition the range B., of v as follows:

BOa Yla Bl\(Bouyl)a Yza BZ\(Bl UYZ)a Y3a B3\(BZUY3)a

Now, let o1, 101, . .., Uk, Wt be a re-ordering of the tuple @y such that the following

holds:

1. The tuple ¥7 contains exactly the shared variables whose v-images are in By.

2. For all i,1 < i < k, the tuple w; contains exactly the shared variables whose
v-images are in Y;.

3. For all i, 1 < i <k, the tuple ¢; contains exactly the shared variables whose
v-images are in B;_1 \ (Bi—2 UY;_1).

Obviously, this implies that the variables in the tuples w; have label ¥, whereas
the variables in the tuples ¥; have label A. Note that some of these tuples may



be of dimension 0. The re-ordering determines the linear ordering we choose in
Step 4. Let

o = V1715Iu71 .. VﬁkEIu?kEIULE Y2,x and ﬁ = Halvu_ﬁ .. HUkvwkaﬁLA V2,4

be the output pair that is obtained by these choices. Let § = v(w;) € %
and b; := v(¥;) € B... The sequence 1;1,371, . ..,Ek,g'k satisfies Condition 2 of
Lemma 5 for ¢ = 341 A 92,4, the structure B4, and appropriate sets Z1, ..., 7
(see [BS94]). Thus, we obtain B ~ B4 | 3. In order to show A | «a, we
use the fact that he @ Be — Ao is a (¥ U A)-isomorphism. Thus, BZY4 =
i1 5 v2 »(v(ty), d1,x) implies that AZ E i1 5 2,5 (heo (V(U2)), U, 5).

-

Let # = hoo(b;) = hoo(v(%)) and @ := heo(#) = heo(v(W;)) (for ¢ =

1,..., k). In [BS94] it is shown that the sequence ¥, d1, ..., &, d; satisfies Con-
dition 2 of Lemma 5 for ¢ = 34 » 72 », the structure AZ | and appropriate sets
Zy, .. Zh. Thus, A~ AJ E a. O

The two lemmas obviously imply the next theorem.

Theorem 9. Let V(E) be a X-variety and V(F) be a A-variety for disjoint
signatures X and A. The positive existential theory of the (XU A)-variety V(E'U
F) is decidable, provided that the positive theories of V(E) and of V(F) are
decidable.

If the signatures contain no predicate symbols, this theorem is a reformulation
of Theorem 2.1 of [BS92]. What is new here is the algebraic proof method and
the fact that relational constraints can be treated as well.

4.3 Decision Procedures for Positive Theories

A disadvantage of Theorem 9 is that it does not show modularity of decidability
of the positive theory of varieties of structures. Indeed, the prerequisites of the
theorem (decidability of the full positive theories of V(F) and V(F)) are stronger
than its consequence (decidability of the existential positive theory of V(EUF)).

In [BS94] we describe an algorithm that can be used to reduce decidability
of the full positive theory of V(E U F) to decision procedures for the positive
theories of V(F) and V(F'). The main idea is to transform positive sentences
(with arbitrary quantifier prefix) into existential positive sentences by Skolemi-
zing the universally quantified variables.® In addition to the theories E and F
one thus obtains a free theory (for the new Skolem functions). In principle, the
decomposition algorithm for existential positive sentences 1s now applied twice
to decompose the input sentence into three positive sentences «, 3, p, whose va-
lidity must respectively be decided in F, F', and the free theory. Note that it is
well-known that the whole first-order theory of absolutely free term algebras is

decidable [Mal71, Mah88, CL89].

5 We are Skolemizing universally quantified variables since we are interested in validity
of the sentence and not in satisfiability.



Correctness of this way of proceeding can be shown with the help of the
following lemma, which exhibits an interesting connection between Skolemization
and amalgamation with an absolutely free algebra (see [BS94] for the proof).

Lemma10. Let A be a X-structure that is free in V(E) over the countably
wmfinite set of generators X, and let v be a positive X-sentence. Suppose that
the (positive) existential sentence ¥ is obtained from v via Skolemization of
the universally quantified variables in v, introducing the set of Skolem function

symbols I'. Then A =~ if, and only if, ACGT(I,X) E~"
Thus, we obtain the desired modularity result:

Theorem 11. Let V(E) be a X-variety and V(F) be a A-variety for disjoint
signatures X and A. The positive theory of the (¥ U A)-variety V(E U F) is
decidable, provided that the positive theories of V(E) and of V(F') are decidable.

5 Conclusion and Outlook

We have presented an abstract algebraic approach to the problem of combining
constraint solvers for constraint languages over disjoint signatures. The con-
straints that can be handled this way are built from atomic equational and rela-
tional constraints with the help of conjunction, disjunction, and both universal
and existential quantifiers. Solvability means validity of such (closed) constraint
formulae in a free structure, or equivalently in a variety of structures.

Simple examples of free structures with a non-trivial relational part are (ab-
solutely free) term algebras that are equipped with an ordering that is invariant
under substitution, such as the lexicographic path ordering or the subterm orde-
ring. For our combination result to apply, however, the positive theory of these
structures must be decidable. For a total lexicographic path ordering, this is not
the case. For the subterm ordering, the existential theory is decidable, but the
full first-order theory is undecidable [CT94]. Decidability of the positive theory is
still an open problem. For partial lexicographic path orderings, even decidability
of the existential theory is unknown.

Combination of constraint solving techniques in the presence of predicate
symbols other than equality have independently been considered by H. Kirchner
and Ch. Ringeissen [KR94]. However, their approach is based on the rewrit-
ing and abstraction techniques mentioned in the introduction (see, e.g., [BS92,
Bou93]). Consequently, the interpretation of the predicate symbols in the com-
bined structure is defined in a rather technical way, and it is not a priori clear
what this definition means in an intuitive algebraic sense. We conjecture that,
for free structures, the combined structure of [KR94] coincides with our free
amalgamated product.

We are currently working on a generalization of the notion of “combinable
structure” that considerably extends the notion of a “free structure.” An ex-
ample of a structure that is not a free structure, but nevertheless satisfies the
generalized combinability condition, is the algebra of rational trees.
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