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the term \uni�cation algorithm" referred to an algorithm that computes a com-plete set of uni�ers (see [SS89, Bou93] for the most recent results on combiningsuch algorithms). With the development of constraint approaches to theoremproving [B�ur91, NiR94] and term rewriting [KK89], the role of algorithms thatcompute complete sets of uni�ers is more and more taken on by algorithms thatdecide solvability of the uni�cation problems. In this setting, more general con-straints than the equational constraints s = t of uni�cation problems becomeimportant as well. For example, one might be interested in ordering constraintsof the form s � t on terms [CT94], where the predicate � could be interpretedas the subterm ordering or as a reduction ordering.For uni�cation, the problem of combining decision procedures has been sol-ved in [BS92] in a rather general way. The main tool of this combination methodis a decomposition algorithm, which separates a given uni�cation problem � ofthe joined theory (i.e., an (E [ F )-uni�cation problem) into pure uni�cationsubproblems �E and �F of the single theories. Solutions of these pure problemsmust satisfy additional conditions, called linear constant restrictions in [BS92],to yield a solution of � . The main result of [BS92] is that solvability of uni�cationproblems in the combined theory E[F is decidable, provided that solvability ofuni�cation problems with linear constant restrictions is decidable in E and F .It should be noted that this result can easily be lifted to solvability of (E [ F )-uni�cation problems with linear constant restrictions. This combination resulthas been generalized to disuni�cation [BS93a] and to uni�cation in the unionof theories with shared constant symbols [Rin92]. In both cases, the decomposi-tion algorithm of [BS92] could be adapted to the new problem without seriousmodi�cations. An important goal of the present paper is to give an abstract cha-racterization of the situations in which this seemingly ubiquitous decompositionmethod can be applied. In addition to the better understanding of the under-lying principles, this could also yield a better basis for further generalizations.The proof method used in [BS92, BS93a, Rin92]|which depends on an in�niteordered rewrite system obtained by unfailing completion, term abstraction fun-ctions, etc.|seems not to facilitate such an abstract view (see, e.g., the rathertechnical \shared constructor" condition in [DKR94]).At �rst sight, the notion of \uni�cation with linear constant restrictions" isjust a technical notion that makes our combinationmachinery work, but seems tohave little further signi�cance. In [BS93] it is shown, however, that E-uni�cationwith linear constant restrictions is decidable i� the positive fragment of the�rst-order theory of E is decidable. Since the positive theory of E coincideswith the positive theory of the E-free �-algebra T (�;X)==E over in�nitelymany generators X, the combination result of [BS92] can be reformulated asfollows: Let E and F be equational theories over disjoint signatures � and �,and let X be a countably in�nite set of generators. The positive theory of T (�[�;X)==E[F is decidable, provided that the positive theories of T (�;X)==Eand T (�;X)==F are decidable.In the present paper, this observation is used as the starting point of a moreabstract, algebraic approach to formulating and solving the combination pro-



blem. Starting with two algebras over disjoint signatures, the goal is to constructa \combined" algebra such that validity of positive formulae in this algebra canbe decided by using a decomposition algorithm and decision procedures for thepositive theories of the original algebras. Obviously, this can only be achieved ifthe algebras satisfy some additional properties. We will call an algebra A com-binable i� it is generated by a countably in�nite set X such that any mappingfrom a �nite subset of X to A can be extended to a surjective endomorphismof A. For combinable algebras A and B over disjoint signatures � and �, wecan construct the so-called free amalgamated product A�B, which is a (� [�)-algebra.3 Now a simple modi�cation of the decomposition algorithm of [BS92]can be used to show that the positive theory of A�B is decidable i� the positivetheories of A and of B are decidable.Obviously, the free algebras T (�;X)==E and T (�;X)==F over a countablyin�nite set of generators X are combinable. In this case, the free amalgamatedproduct yields an algebra that is isomorphic to the combined free algebra T (�[�;X)==E[F . Thus, the combination result of [BS92] is obtained as a corollary.As described until now, the amalgamation of combinable algebras does not yielda real generalization of this result. Indeed, one can use well-known results fromuniversal algebra to show that an algebra is combinable (as de�ned above) i� itis a free algebra over countably many generators for an equational theory. Whatis new, though, is the proof method, which|in contrast to the original proof|only depends on elementary notions from universal algebra, and thus clari�esthe role played by the combinability condition. This new proof can be seen as anadaptation of the proof ideas in [SS89] to the combination of decision procedures.Unlike in [SS89], however, everything is done on the abstract algebraic levelinstead of on the term level. Interestingly, on this level it is also very easy toprove completeness of an optimized version of the decomposition algorithm of[BS92], which signi�cantly reduces the number of nondeterministic choices.In addition, the abstract algebraic approach allows for an easier generaliza-tion of the results. In fact, instead of algebras we will consider algebraic structu-res in the following. This means that the signatures may contain both functionsymbols and predicate symbols, and these additional predicate symbols mayoccur in the constraint problems to be solved. With the usual notion of homo-morphism for structures, most of the results from universal algebra carry over tostructures. The combination result for combinable algebras sketched above thusholds for free structures as well. This yields a combination method for constraintsolvers of more general constraints than just equational constraints.The next section recalls some results from universal algebra for free structu-res. In Section 3 we construct the free amalgamated product of free structures,and show that it again yields a free structure. Section 4 describes the decompo-sition algorithm and proves that it is sound and complete for existential positiveinput formulae. In Subsection 4.3, this result is extended to positive formulaewith arbitrary quanti�er pre�x.3 This construction is similar to the one made in [SS89] for free algebras.



2 Free StructuresLet � be a signature consisting of a �nite set �F of function symbols and a�nite set �P of predicate symbols, where each symbol has a �xed arity. Weassume that equality = is an additional predicate symbol that does not occurin �P . An atomic �-formula is an equation s = t between �F -terms s; t, or arelational atomic formula of the form p[s1; : : : ; sm] where p is a predicate symbolin �P of arity m and s1; : : : ; sm are �F -terms. A positive �-matrix is any �-formula obtained from atomic �-formulae using conjunction and disjunctiononly. A positive �-formula is obtained from a positive �-matrix by adding anarbitrary quanti�er pre�x, and an existential positive �-formula is a positiveformula where the pre�x consists of existential quanti�er only. As usual, weshall sometimes write t(v1; : : : ; vn) (resp. '(v1; : : : ; vn)) to express that t (resp.') is a term (resp. formula) whose (free) variables are a subset of fv1; : : : ; vng.Sentences are formulae without free variables.A �-structure A has a non-empty carrier set A, and it interprets each f 2 �Fof arity n as an n-ary function fA on A, and each p 2 �P of arity m as an m-aryrelation pA. For a formula ' = '(v1; : : : ; vn), we write A j= '(a1; : : : ; an) toexpress that ' is true in A under the evaluation fv1 7! a1; : : : ; vn 7! ang.Usually, �-constraints are formulae of the form '(v1; : : : ; vn) with free varia-bles. A solution of such a constraint (in a �xed �-structure A) is an evaluationfv1 7! a1; : : : ; vn 7! ang such that A j= '(a1; : : : ; an). Obviously, the constraint'(v1; : : : ; vn) has a solution in A i� the formula 9v1 : : :9vn '(v1; : : : ; vn) is validin A. In the present paper, we are only interested in solvability of constraints,and will thus usually take this logical point of view. In the following, tuples ofvariables will often be abbreviated by ~v; ~u; ~w, and tuples of elements of a struc-ture by ~a;~b, etc. Substructures and direct products of structures are de�ned inthe usual way. If the �-substructure B of A is generated by X � A, we writeB = hXi� . Later on, we will consider several signatures simultaneously. If � isa subset of the signature �, then any �-structure A can be considered as a �-structure (called the �-reduct of A) by just forgetting about the interpretationof the additional symbols. To make clear with respect to which signature a given�-structure A is currently considered we will sometimes write A� for the full�-structure and A� for its �-reduct.A �-homomorphism is a mapping h between �-structures A and B such thath(fA(a1; : : : ; an)) = fB(h(a1); : : : ; h(an))pA[a1; : : : ; an] ) pB[h(a1); : : : ; h(an)]for all f 2 �F , p 2 �P , a1; : : : ; an 2 A. A �-isomorphism is a bijective �-homomorphism whose inverse is also a �-homomorphism.There is an interesting (well-known) connection between surjective homo-morphisms and positive formulae. The following lemma (see [Mal73], pp. 143,144, for a proof), and its relationship to the concept of combinability, turns outto be crucial for the new proof method introduced in Section 4.



Lemma1. Let h : A ! B be a surjective homomorphism between the �-structures A and B, '(v1; : : : ; vm) be a positive �-formula, and a1; : : : ; am beelements of A. Then A j= '(a1; : : : ; am) implies B j= '(h(a1); : : : ; h(am)).As for the case of algebras, �-varieties are de�ned as classes of �-structuresthat are closed under direct products, substructures, and homomorphic images.The well-known Birkho� Theorem says that a class of �F -algebras is a variety i�it is an equational class, i.e., the class of models of a set of equations. For struc-tures, a similar characterization is possible [Mal71]: A class V of �-structures isa �-variety if, and only if, there exists a set E of atomic �-formulae4 such thatV is the class of models of E. In this situation, we say that V is the �-varietyde�ned by E, and we write V = V(E).As in the case of varieties of algebras, varieties of structures always have freeobjects. Recall that a �-structure A is free for the class of �-structures K overthe set X i� (1) A 2 K, (2) A is generated by X, and (3) every mapping fromXinto the carrier of a �-structure B 2 K can be extended to a �-homomorphismof A into B.If A and B are free �-structures for the same class K, and if their sets ofgenerators have the same cardinality then these structures are isomorphic. Everynon-trivial variety contains free structures with sets of generators of arbitrarycardinality [Mal71]. Conversely, free structures are always free for some variety[Mal71, Coh65].Theorem2. Let A be a �-structure that is generated by X. Then A is free overX for fAg i� A is free over X for some �-variety.In the following, a �-structure A will be called free (over X) i� it is free(over X) for fAg. Let us now analyze how free �-structures look like (see[Mal71, Wea93] for more information). Obviously, the �F -reduct of such a struc-ture is a free �F -algebra, and thus it is (isomorphic to) an E-free �F -algebraT (�F ; X)==E for an equational theory E. In particular, the =E -equivalenceclasses [s] of �F -terms constitute the carrier of A. It remains to be shown howthe predicate symbols are interpreted on this carrier. Since A is free over X, anymapping from X into T (�F ; X)==E can be extended to a �-endomorphism ofA. This, together with the de�nition of homomorphisms of structures, showsthat the interpretation of the predicates must be closed under substitution, i.e.,for all p 2 �P , all substitutions �, and all terms s1; : : : ; sm, if p[[s1]; : : : ; [sm]]holds in A then p[[s1�]; : : : ; [sm�]] must also hold in A. Conversely, it is easy tosee that any extension of the �F -algebra T (�F ; X)==E to a �-structure thatsatis�es this property is a free �-structure over X.Example 1. Let �F be an arbitrary set of function symbols, and assume that�P consists of a single binary predicate symbol �. Consider the (absolutelyfree) term algebra T (�F ; X). We can extend this algebra to a �-structure by4 As usual, open formulae are here considered as implicitly universally quanti�ed.



interpreting � as subterm ordering. Another possibility would be to take a reduc-tion ordering [Der87] such as the lexicographic path ordering. In both cases, wehave closure under substitution, which means that we obtain a free �-structure.Free structures over countably in�nite sets of generators are canonical for thepositive theory of their variety in the following sense:Theorem3. Let A be free over the countably in�nite set X for a �-varietyV(E), and let � be a positive �-formula. Then � is valid in all elements of V(E)(i.e., � is a logical consequence of E) i� � is valid in A.For the purpose of this paper, the following characterization of free structuresis useful (see [BS94] for a proof).Lemma4. Let A be a �-structure that is generated by the countably in�nite setX. Then the following conditions are equivalent:1. A is free over X.2. For every �nite subset X0 of X, every mapping h0 : X0 ! A can be extendedto a surjective endomorphism of A.Condition 2 is the combinability condition mentioned in the introduction.Thus Theorem 2 shows that a structure is free for some variety i� it is com-binable. This observation, together with Lemma 1, can be used to obtain thefollowing lemma, which is the key tool in the new proof of correctness of thecombination method.Lemma5. Let A be a free �-structure over the countably in�nite set of ge-nerators X, and let 
 = 8~u19~v1 : : :8~uk9~vk '(~u1; ~v1; : : : ; ~uk; ~vk) be a positive�-sentence. Then the following conditions are equivalent:1. A j= 8~u19~v1 : : :8~uk9~vk '(~u1; ~v1; : : : ; ~uk; ~vk).2. There exist tuples ~x1 2 ~X;~e1 2 ~A; : : : ; ~xk 2 ~X;~ek 2 ~A and �nite subsetsZ1; : : : ; Zk of X such that(a) A j= '(~x1; ~e1; : : : ; ~xk; ~ek),(b) all generators occurring in the tuples ~x1; : : : ; ~xk are distinct,(c) for all j; 1 � j � k, the components of ~ej are generated by Zj , i.e., areelements of hZji� , and(d) for all j; 1 < j � k, no component of ~xj occurs in Z1 [ : : :[ Zj�1.As an example, assume that A is the (absolutely free) term algebra T (fgg; X)over a signature consisting of a unary symbol g. The formula 9v8u g(u) = g(v)is not valid. In fact, Condition 2 is not satis�ed since for all x 2 X and e 2T (fgg; X), g(x) = g(e) is only satis�ed in T (fgg; X) if e = x, and thus x iscontained in any generating set of e.Readers who are familiar with the notion of \uni�cation with linear constantrestrictions" should note the close connection between (c) and (d) of Condition 2(which say that a generator x 2 X must not be contained in the generating setZ for e 2 A if e comes before x in the sequence ~x1; ~e1; : : : ; ~xk; ~ek) and a linearconstant restriction (which says that the constant a must not occur in the imagee of a variable u if u comes before a in the linear constant restriction).



3 Amalgamation of Free StructuresLet � and � be disjoint signatures, and let X be a countably in�nite set (ofgenerators). Let A be a free �-structure over X and and let B be a free �-structure overX. Equivalently,A is free overX for some�-variety V(E) and B isfree over X for some�-variety V(F ) (by Theorem 2). The following constructionyields a (� [ �)-structure A � B that is free over X for the (� [ �)-varietyV(E [ F ).We consider two countably in�nite supersets X1 and Y1 of X0 := Y0 := Xsuch that X1 \ Y1 = X and X1 nX0 and Y1 n Y0 are in�nite. Let A1 be freefor V(E) over X1, and let B1 be free for V(F ) over Y1. Obviously, A is thesubstructure of A1 that is generated by X0 � X1. Since both structures arefree for the same variety, and since their generating sets X0 and X1 have thesame cardinality, A and A1 are isomorphic. The same holds for B and B1.We shall make a zig-zag construction that de�nes ascending towers of �-structures An and �-structures Bn. These structures are connected by bijectivemappings hn and gn. The free amalgamated product A� B will be obtained asthe limit structure, which obtains its functional and relational structure fromboth towers by means of the limits of the mappings hn and gn.n = 0: Let A0 := A = hX0i�. We interpret the \new" elements in A0 nX0 asgenerators in B1. For this purpose, select a subset Y1 � Y1 such that Y1\Y0 = ;,jY1j = jA0 n X0j, and the remaining complement Y1 n (Y0 [ Y1) is countablyin�nite. Choose any bijection h0 : Y0 [ Y1 ! A0 where h0jY0 = idY0 .Let B0 := hY0i�. As for A0, we interpret the \new" elements in B0 n Y0 asgenerators in A1. Select a subset X1 � X1 such that X1 \ X0 = ;, jX1j =jB0 n Y0j and the remaining complement X1 n (X0 [X1) is countably in�nite.Choose any bijection g0 : X0 [X1 ! B0 where g0jX0 = idX0 .n! n+1: Suppose that An = hSni=0Xii� and Bn = hSni=0 Yii� are alreadyde�ned, and that subsets Xn+1 of X1 and Yn+1 of Y1 are already given. Weassume that the complements X1 nSn+1i=0 Xi and Y1 nSn+1i=0 Yi are in�nite, andthat the sets Xi (resp. Yi) are pairwise disjoint. In addition, we assume thatbijections hn : Bn�1 [ Yn [ Yn+1 ! An and gn : An�1 [Xn [Xn+1 ! Bn arede�ned such that(�) gn(hn(b)) = b for b 2 Bn�1 [ Yn and hn(gn(a)) = a for a 2 An�1 [Xn(��) hn(Yn+1) = An n (An�1 [Xn) and gn(Xn+1) = Bn n (Bn�1 [ Yn):Note that (��) implies that hn(Bn�1 [ Yn) = An�1 [Xn and gn(An�1 [Xn) =Bn�1 [ Yn.We de�ne An+1 = hSn+1i=0 Xii� and Bn+1 = hSn+1i=0 Yii�, and select subsetsYn+2 � Y1 and Xn+2 � X1 such that Yn+2 \Sn+1i=0 Yi = ; = Xn+2 \Sn+1i=0 Xi.In addition, the cardinalities must satisfy jYn+2j = jAn+1 n (An [ Xn+1)j andjXn+2j = jBn+1 n (Bn [ Yn+1)j, and the remaining complements Y1 n Sn+2i=0 Yiand X1 nSn+2i=0 Xi must be countably in�nite. Let�n+1 : Yn+2 ! An+1 n (An [Xn+1) and �n+1 : Xn+2 ! Bn+1 n (Bn [ Yn+1)be arbitrary bijections. We de�ne hn+1 := �n+1 [ g�1n [ hn and gn+1 := �n+1 [



h�1n [ gn. In more detail:hn+1(b) = 8<:�n+1(b) for b 2 Yn+2hn(b) for b 2 Bn�1 [ Yn [ Yn+1g�1n (b) for b 2 Bn n (Bn�1 [ Yn)and gn+1(a) =8<: �n+1(a) for a 2 Xn+2gn(a) for a 2 An�1 [Xn [Xn+1h�1n (a) for a 2 An n (An�1 [Xn):Without loss of generality we may assume (for notational convenience) that theconstruction eventually covers all generators in X1 and Y1; in other words, weassume that S1i=0Xi = X1 and S1i=0 Yi = Y1, and thus S1i=0Ai = A1 andS1i=0Bi = B1. We de�ne the limit mappingsh1 := 1[i=0hi : B1 ! A1; and g1 := 1[i=0 gi : A1 ! B1:It is easy to see that h1 and g1 are bijections that are inverse to each other.They may be used to carry the �-structure of B1 to A1 and to carry the �-structure of A1 to B1: let f (f 0) be an n-ary function symbol of� (�), let p (p0)be an n-ary predicate symbol of � (�), and a1; : : : ; an 2 A1 (b1; : : : ; bn 2 B1).We de�ne fA1(a1; : : : ; an) := h1(fB1 (g1(a1); : : : ; g1(an)));f 0B1(b1; : : : ; bn) := g1(f 0A1(h1(b1); : : : ; h1(bn)));pA1 [a1; : : : ; an] :() pB1 [g1(a1); : : : ; g1(an)];p0B1 [b1; : : : ; bn] :() p0A1 [h1(b1); : : : ; h1(bn)]:With this de�nition, the mappings h1 and g1 are inverse isomorphisms betweenthe (� [�)-structures A1 and B1. Identifying isomorphic structures, we callA�[�1 ' B�[�1 the free amalgamated product A � B of A and B. The layeringof the domain A1 (resp. B1) of this structure into the sets An (resp. Bn) willbecome important in the proof of our combination result. As a �-structure,A � B is isomorphic to A, which is free over X for V(E), and as a �-structureit is isomorphic to B, which is free over X for V(F ). In [BS94] it is shown thatas a (� [�)-structure it is free over X for V(E [ F ).Theorem6. Let � and � be disjoint signatures, and let A be free over X forthe �-variety V(E) and B be free over X for the �-variety V(F ), where X iscountably in�nite. Then A�B is free over X for the (� [�)-variety V(E [F ).4 Combination resultsAs in the previous section, let V(E) be a �-variety and V(F ) be a �-variety,where � and � are disjoint signatures. For a countably in�nite set of generatorsX, let A be free for V(E) over X, and let B be free for V(F ) over X. We



know that the positive theories of V(E) and A (resp. V(F ) and B) coincide (byTheorem 3), and that the free amalgamated product A�B is free for V(E [F )over X (by Theorem 6).In the �rst part of this section, we consider only existential positive (�[�)-sentences. The decomposition algorithm described below can be used to reducevalidity of such sentences in A� B (or, equivalently, in V(E [F )) to validity ofpositive sentences in A and in B. At the end of the section we shall sketch howthis result can be extended to positive sentences with arbitrary quanti�er pre�x.Before we can describe the algorithm, we must introduce some notation.In the following, V denotes an in�nite set of variables used by the �rst orderlanguages under consideration. Let t be a (�[�)-term. This term is called purei� it is either a �-term or a �-term. An equation is pure i� it is an equationbetween pure terms of the same signature. A relational formula p[s1; : : : ; sm] ispure i� s1; : : : ; sm are pure terms of the signature of p. Now assume that t isa non-pure term whose topmost function symbol is in �. A subterm s of t iscalled alien subterm of t i� its topmost function symbol belongs to � and everyproper superterm of s in t has its top symbol in �. Alien subterms of terms withtop symbol in � are de�ned analogously. For a relational formula p[s1; : : : ; sm],alien subterms are de�ned as follows: if si has a top symbol whose signature isdi�erent from the signature of p then si itself is an alien subterm; otherwise, anyalien subterm of si is an alien subterm of p[s1; : : : ; sm].4.1 The Decomposition AlgorithmLet '0 be a positive existential (� [ �)-sentence. Without loss of generality,we may assume that '0 has the form 9~u0 
0, where 
0 is a conjunction ofatomic formulae. Indeed, since existential quanti�ers distribute over disjunction,a sentence 9~u0 (
1 _ 
2) is valid i� 9~u0 
1 or 9~u0 
2 is valid.Step 1: Transform non-pure atomic formulae.(1) Equations s = t of 
0 where s and t have topmost function symbolsbelonging to di�erent signatures are replaced by (the conjunction of) twonew equations u = s; u = t, where u is a new variable. The quanti�er pre�xis extended by adding an existential quanti�cation for u.(2) As a result, we may assign a unique label � or � to each atomic formulathat is not an equation between variables. The label of an equation s = t isthe signature of the topmost function symbols of s and/or t. The label of arelational formula p[s1; : : : ; sm] is the signature of p.(3) Now alien subterms occurring in atomic formulae are successively repla-ced by new variables. For example, assume that s = t is an equation in thecurrent formula, and that s contains the alien subterm s1. Let u be a va-riable not occurring in the current formula, and let s0 be the term obtainedfrom s by replacing s1 by u. Then the original equation is replaced by (theconjunction of) the two equations s0 = t and u = s1. The quanti�er pre�x isextended by adding an existential quanti�cation for u. The equation s0 = tkeeps the label of s = t, and the label of u = s1 is the signature of the top



symbol of s1. Relational atomic formulae with alien subterms are treatedanalogously. This process is iterated until all atomic formulae occurring inthe conjunctive matrix are pure. It is easy to see that this is achieved after�nitely many iterations.Step 2: Remove atomic formulae without label.Equations between variables occurring in the conjunctive matrix are removedas follows: If u = v is such an equation then one removes 9u from thequanti�er pre�x and u = v from the matrix. In addition, every occurrenceof u in the remaining matrix is replaced by v. This step is iterated until thematrix contains no equations between variables.Let '1 be the new sentence obtained this way. The matrix of '1 can bewritten as a conjunction 
1;� ^ 
1;�, where 
1;� is a conjunction of all atomicformulae from '1 with label �, and 
1;� is a conjunction of all atomic formulaefrom '1 with label �. There are three di�erent types of variables occurring in'1: shared variables occur both in 
1;� and in 
1;�; �-variables occur only in
1;� ; and �-variables occur only in 
1;�. Let ~u1;� be the tuple of all �-variables,~u1;� be the tuple of all �-variables, and ~u1 be the tuple of all shared variables.5Obviously, '1 is equivalent to the sentence9~u1 (9~u1;� 
1;� ^ 9~u1;� 
1;�) :The next two steps of the algorithm are nondeterministic, i.e., a given sen-tence is transformed into �nitely many new sentences. Here the idea is that theoriginal sentence is valid i� at least one of the new sentences is valid.Step 3: Variable identi�cation.Choose (nondeterministically) a partition of the set of all shared variables.The variables in each class of the partition are \identi�ed" with each otherby choosing an element of the class as representative, and replacing in thesentence all occurrences of variables of the class by this representative. Quan-ti�ers for replaced variables are removed.Let 9~u2 (9~u1;� 
2;� ^ 9~u1;� 
2;�) denote one of the sentences obtained byStep 3.Step 4: Choose signature labels and ordering.We choose a label � or � for every (shared) variable in ~u2, and a linearordering < on these variables.For each of the choices made in Step 3 and 4, the algorithm yields a pair(�; �) of sentences as output.Step 5: Generate output sentences.The sentence 9~u2(9~u1;� 
2;� ^ 9~u1;� 
2;�) is split into two sentences� = 8~v19~w1 : : :8~vk9~wk9~u1;� 
2;� and � = 9~v18~w1 : : :9~vk8~wk9~u1;� 
2;�:5 The order in these tuples can be chosen arbitrarily.



Here ~v1 ~w1 : : :~vk ~wk is the unique re-ordering of ~u2 along <. The variables ~vi(~wi) are the variables with label � (label �).Thus, the overall output of the algorithm is a �nite set of pairs of sentences.Note that the sentences � and � are positive formulae, but they need no longerbe existential positive formulae.This algorithm is a straightforward adaptation of the decomposition algo-rithm described in [BS92] to existential positive formulae with equations andrelational constraints. Note, however, that it optimizes the previous algorithmin one signi�cant way: the nondeterministic steps|which are responsible forthe NP-complexity of the algorithm|are applied only to shared variables andnot to all variables occurring in the system. For the case of algorithms com-puting complete sets of uni�ers, this optimization is already implicitly presentin [Bou93]. Steps similar to Step 1, 3, and the labelling in Step 4 are present inmost methods for combining uni�cation algorithms. Nelson & Oppen's combina-tion method for universal theories [NO79] explicitly uses Step 1, and implicitly,Step 3 is also present.4.2 Correctness of the decomposition algorithmFirst, we show soundness of the algorithm, i.e., if one of the output pairs is validthen the original sentence was valid.Lemma7. A� B j= '0 if A j= � and B j= � for some output pair (�; �).Proof. Since A� and A�1 are isomorphic �-structures, we know that A�1 j=�. Accordingly, we also have B�1 j= �. More precisely, this means(�) A�1 j= 8~v19~w1 : : :8~vk9~wk9~u1;� 
2;�(~v1; ~w1; : : : ; ~vk; ~wk; ~u1;�)(��) B�1 j= 9~v18~w1 : : :9~vk8~wk9~u1;� 
2;�(~v1; ~w1; : : : ; ~vk; ~wk; ~u1;�):Because of the existential quanti�cation over ~v1 in (��), there exist elements~b1 2 ~B1 such that(� � �) B�1 j= 8~w1 : : :9~vk8~wk9~u1;� 
2;�(~b1; ~w1; : : : ; ~vk; ~wk; ~u1;�):We consider ~a1 := h1(~b1). Because of the universal quanti�cation over ~v1 in (�)we have A�1 j= 9~w1 : : :8~vk9~wk9~u1;� 
2;�(~a1; ~w1; : : : ; ~vk; ~wk; ~u1;�):Because of the existential quanti�cation over ~w1 in this formula there exist ele-ments ~c1 2 ~A1 such thatA�1 j= 8~v29~w2 : : :8~vk9~wk9~u1;� 
2;�(~a1; ~c1; ~v2; ~w2; : : : ; ~vk; ~wk; ~u1;�):We consider ~d1 := g1(~c1). Because of the universal quanti�cation over ~w1 in(� � �) we haveB�1 j= 9~v28~w2 : : :9~vk8~wk9~u1;� 
2;�(~b1; ~d1; ~v2; ~w2; : : : ; ~vk; ~wk; ~u1;�):



Iterating this argument, we thus obtainA�1 j= 9~u1;� 
2;�(~a1; ~c1; : : : ;~ak; ~ck; ~u1;�);B�1 j= 9~u1;� 
2;�(~b1; ~d1; : : : ;~bk; ~dk; ~u1;�);where ~ai = h1(~bi) and ~di = g1(~ci) (for 1 � i � k). Since h1 is a (� [ �)-isomorphism that is the inverse of g1, we also know thatA�1 j= 9~u1;� 
2;�(~a1; ~c1; : : : ;~ak; ~ck; ~u1;�):It follows thatA�[�1 j= 9~u1;� 
2;�(~a1; ~c1; : : : ;~ak; ~ck; ~u1;�)^9~u1;� 
2;�(~a1; ~c1; : : : ;~ak; ~ck; ~u1;�):Obviously, this implies that A � B ' A�[�1 j= 9~u2 (9~u1;� 
2;� ^ 9~u1;� 
2;�),i.e., one of the sentences obtained after Step 3 of the algorithm holds in A � B.It is easy to see that this implies that A� B j= '0.Next, we show completeness of the decomposition algorithm, i.e., if the inputsentence was valid then there exists a valid output pair.Lemma8. If A � B j= '0 then A j= � and B j= � for some output pair (�; �).Proof. Assume that A � B ' B�[�1 j= 9~u0
0. Obviously, this impliesthat B�[�1 j= 9~u1 (9~u1;� 
1;�(~u1; ~u1;�) ^ 9~u1;� 
1;�(~u1; ~u1;�)), i.e., B�[�1 sa-tis�es the sentence that is obtained after Step 2 of the decomposition algo-rithm. Thus there exists an assignment � : V ! B1 such that B�[�1 j=9~u1;� 
1;�(�(~u1); ~u1;�) ^ 9~u1;� 
1;�(�(~u1); ~u1;�).In Step 3 of the decomposition algorithm we identify two shared variables uand u0 of ~u1 if, and only if, �(u) = �(u0). With this choice,B�[�1 j= 9~u1;� 
2;�(�(~u2); ~u1;�) ^ 9~u1;� 
2;�(�(~u2); ~u1;�);and all components of �(~u2) are distinct.In Step 4, a shared variable u in ~u2 is labeled with� if �(u) 2 B1n(S1i=1 Yi),and with � otherwise. In order to choose the linear ordering on the sharedvariables, we partition the range B1 of � as follows:B0; Y1; B1 n (B0 [ Y1); Y2; B2 n (B1 [ Y2); Y3; B3 n (B2 [ Y3); : : :Now, let ~v1; ~w1; : : : ; ~vk; ~wk be a re-ordering of the tuple ~u2 such that the followingholds:1. The tuple ~v1 contains exactly the shared variables whose �-images are in B0.2. For all i; 1 � i � k, the tuple ~wi contains exactly the shared variables whose�-images are in Yi.3. For all i; 1 < i � k, the tuple ~vi contains exactly the shared variables whose�-images are in Bi�1 n (Bi�2 [ Yi�1).Obviously, this implies that the variables in the tuples ~wi have label �, whereasthe variables in the tuples ~vi have label �. Note that some of these tuples may



be of dimension 0. The re-ordering determines the linear ordering we choose inStep 4. Let� = 8~v19~w1 : : :8~vk9~wk9~u1;� 
2;� and � = 9~v18~w1 : : :9~vk8~wk9~u1;� 
2;�be the output pair that is obtained by these choices. Let ~yi := �(~wi) 2 ~Yand ~bi := �(~vi) 2 ~B1. The sequence ~b1; ~y1; : : : ;~bk; ~yk satis�es Condition 2 ofLemma 5 for ' = 9~u1;� 
2;�, the structure B�1, and appropriate sets Z1; : : : ; Zk(see [BS94]). Thus, we obtain B ' B�1 j= �. In order to show A j= �, weuse the fact that h1 : B1 ! A1 is a (� [ �)-isomorphism. Thus, B�[�1 j=9~u1;� 
2;�(�(~u2); ~u1;�) implies that A�1 j= 9~u1;� 
2;�(h1(�(~u2)); ~u1;�).Let ~xi := h1(~bi) = h1(�(~vi)) and ~ai := h1(~yi) = h1(�(~wi)) (for i =1; : : : ; k). In [BS94] it is shown that the sequence ~x1;~a1; : : : ; ~xk;~ak satis�es Con-dition 2 of Lemma 5 for ' = 9~u1;� 
2;� , the structure A�1, and appropriate setsZ 01; : : : ; Z0k. Thus, A ' A�1 j= �.The two lemmas obviously imply the next theorem.Theorem9. Let V(E) be a �-variety and V(F ) be a �-variety for disjointsignatures � and �. The positive existential theory of the (�[�)-variety V(E[F ) is decidable, provided that the positive theories of V(E) and of V(F ) aredecidable.If the signatures contain no predicate symbols, this theorem is a reformulationof Theorem 2.1 of [BS92]. What is new here is the algebraic proof method andthe fact that relational constraints can be treated as well.4.3 Decision Procedures for Positive TheoriesA disadvantage of Theorem 9 is that it does not show modularity of decidabilityof the positive theory of varieties of structures. Indeed, the prerequisites of thetheorem (decidability of the full positive theories of V(E) and V(F )) are strongerthan its consequence (decidability of the existential positive theory of V(E[F )).In [BS94] we describe an algorithm that can be used to reduce decidabilityof the full positive theory of V(E [ F ) to decision procedures for the positivetheories of V(E) and V(F ). The main idea is to transform positive sentences(with arbitrary quanti�er pre�x) into existential positive sentences by Skolemi-zing the universally quanti�ed variables.6 In addition to the theories E and Fone thus obtains a free theory (for the new Skolem functions). In principle, thedecomposition algorithm for existential positive sentences is now applied twiceto decompose the input sentence into three positive sentences �; �; �, whose va-lidity must respectively be decided in E, F , and the free theory. Note that it iswell-known that the whole �rst-order theory of absolutely free term algebras isdecidable [Mal71, Mah88, CL89].6 We are Skolemizing universally quanti�ed variables since we are interested in validityof the sentence and not in satis�ability.



Correctness of this way of proceeding can be shown with the help of thefollowing lemma,which exhibits an interesting connection between Skolemizationand amalgamation with an absolutely free algebra (see [BS94] for the proof).Lemma10. Let A be a �-structure that is free in V(E) over the countablyin�nite set of generators X, and let 
 be a positive �-sentence. Suppose thatthe (positive) existential sentence 
0 is obtained from 
 via Skolemization ofthe universally quanti�ed variables in 
, introducing the set of Skolem functionsymbols � . Then A j= 
 if, and only if, A� T (�;X) j= 
0.Thus, we obtain the desired modularity result:Theorem11. Let V(E) be a �-variety and V(F ) be a �-variety for disjointsignatures � and �. The positive theory of the (� [ �)-variety V(E [ F ) isdecidable, provided that the positive theories of V(E) and of V(F ) are decidable.5 Conclusion and OutlookWe have presented an abstract algebraic approach to the problem of combiningconstraint solvers for constraint languages over disjoint signatures. The con-straints that can be handled this way are built from atomic equational and rela-tional constraints with the help of conjunction, disjunction, and both universaland existential quanti�ers. Solvability means validity of such (closed) constraintformulae in a free structure, or equivalently in a variety of structures.Simple examples of free structures with a non-trivial relational part are (ab-solutely free) term algebras that are equipped with an ordering that is invariantunder substitution, such as the lexicographic path ordering or the subterm orde-ring. For our combination result to apply, however, the positive theory of thesestructures must be decidable. For a total lexicographic path ordering, this is notthe case. For the subterm ordering, the existential theory is decidable, but thefull �rst-order theory is undecidable [CT94]. Decidability of the positive theory isstill an open problem. For partial lexicographic path orderings, even decidabilityof the existential theory is unknown.Combination of constraint solving techniques in the presence of predicatesymbols other than equality have independently been considered by H. Kirchnerand Ch. Ringeissen [KR94]. However, their approach is based on the rewrit-ing and abstraction techniques mentioned in the introduction (see, e.g., [BS92,Bou93]). Consequently, the interpretation of the predicate symbols in the com-bined structure is de�ned in a rather technical way, and it is not a priori clearwhat this de�nition means in an intuitive algebraic sense. We conjecture that,for free structures, the combined structure of [KR94] coincides with our freeamalgamated product.We are currently working on a generalization of the notion of \combinablestructure" that considerably extends the notion of a \free structure." An ex-ample of a structure that is not a free structure, but nevertheless satis�es thegeneralized combinability condition, is the algebra of rational trees.
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