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have been discussed in the literature the problem of deciding solvability of generalE-uni�cation problems has turned out to be NP-hard (see [KN92, BS94] forsurveys). When looking at the proofs of these intractability results it becomesclear that some of the encoding techniques that are used are closely related.Yet, a common background is missing that would explain these results from anabstract point of view. This yields one motivation for the results of the presentpaper, where we characterize general properties of equational theories E thatguarantee that solvability of general E-uni�cation problems is NP-hard. Beforewe explain the second motivation let us summarize the main results.A criterion is given that characterizes a class K of equational theories wherethe problem of deciding solvability of general E-uni�cation problems is alwaysNP-hard. Using the criterion for K we shall prove that general E-uni�cation isNP-hard for every regular equational theory E which contains an associative or acommutative function symbol. The theories A;C;AC and ACI (where A;C, andI stand for associativity, commutativity and idempotence of a �xed binary func-tion symbol respectively) represent instances of such theories. If E 2 K and thereexists an NP-algorithm for E-uni�cation with \ linear constant restriction2",then general E-uni�cation is NP-complete. The main criterion is not restrictedto the case of regular theories. For the sake of exposition, and concentratingon theories where E-uni�cation with constants is decidable in polynomial time,we show that the theories ACUN;ACUNh, and AG which have been discus-sed in recent papers [GN96, HK96] also belong to K. In each case, the proof isextremely simple.Let us now explain the second, even more serious motivation for our inve-stigations, even if it is not simple to judge the full status of our results underthis perspective. We have seen that applications of equational uni�cation requirealgorithms for general E-uni�cation. In many cases there is no obvious way todesign such an algorithm directly. Instead it might be much simpler to givean algorithm for E-uni�cation problems with free constants only.3 Fortunately,there exists a general methodology for obtaining an algorithm for general E-uni�cation that can be used in most of these cases. General E-uni�cation can beconsidered as a combination of \elementary" E-uni�cation with free (Robinson)uni�cation. Hence it is one instance of the more general problem of combininguni�cation algorithms for disjoint equational theories. The latter problem hasbeen considered by many authors ([Ki85, He86, Ti86, Ye87, Sc89, Bo93, BS92]),general solutions have been given in [Sc89, Bo93, BS92]. On the basis of [BS92]it is possible to obtain an algorithm for general E-uni�cation problems by com-bining a given algorithm for E-uni�cation with linear constant restriction withan algorithm for free (Robinson) uni�cation with linear constant restriction.When we use this approach for general E-uni�cation in a practical system,an e�ciency problem arises. The combination algorithm of [BS92] decomposes agiven general E-uni�cation problem into a pair of pure output problems, where2 An inessential generalization of E-uni�cation problems with constants, see Section 3.3 Compare, for example, the remarks on general A- and AC-uni�cation in [BS92].



the two components represent E- and free uni�cation problems with linear con-stant restriction respectively. This reduction is based on a polynomial number ofnon-deterministic steps, which means in practice that an exponential number ofdi�erent output pairs has to be considered in the worst case.4 The present rese-arch was started in a project where we tried to optimize the algorithm ([KR96]).We investigated how structural properties of the theory E (or, in the more ge-neral situation, of two given theories E and F to be combined) can be used toeliminate parts of the non-determinism of the combination scheme. In order tosee the limitations for such optimizations in the context of general E-uni�cationit was natural to ask for properties of E that imply intractability in the sensethat there cannot be a polynomial version of the algorithm, assuming P 6= NP.We shall show that for E 2 K there exists no polynomial optimization of thealgorithm that reduces solvability of generalE-uni�cation problems to solvabilityof E- and free uni�cation problems with linear constant restriction respectively,unless P = NP . For this reason we strongly conjecture that for all equatio-nal theories E 2 K there is no polynomial procedure for combining algorithmsthat decide solvability of E-uni�cation problems with constants with similardecision procedures for free (syntactic) uni�cation. Of course our results verifythis conjecture|assuming P 6= NP|in all cases where the problem of decidingsolvability of E-uni�cation problems with constants is decidable in polynomialtime, such as, e.g., for the theories ACUN;ACUNh (see [GN96]), and AG.From the combination perspective, the present research is closely related torecent work by M. Hermann and P.G. Kolaitis [HK96]. In their paper it wasshown (assuming P 6= NP ) that there cannot be a polynomial algorithm forcombining uni�cation algorithms for arbitrary (disjoint) �nitary equational theo-ries, by proving intractability of the counting problem for general uni�cation inthe theory of abelian groups ( AG-uni�cation). One major di�erence is thatM. Hermann and P.G. Kolaitis consider uni�cation algorithms that computeminimal and complete sets of E-uni�ers, whereas we concentrate on algorithmsthat decide solvability of E-uni�cation problems. Furthermore, M. Hermann andP.G. Kolaitis only treat uni�cation in abelian groups and in boolean rings, whe-reas we are primarily interested in abstract properties of theories that lead tointractability.52 PreliminariesA signature consists of a �nite set of function symbols, each of �xed arity. Let �be a signature, and let Var denote a disjoint countably in�nite set of variables.The set of �-terms with variables in Var is de�ned as usual. With T (�;Var)we denote the free term algebra for the signature �. A �-substitution is anendomorphism � of T (�;Var) such that the set fx 2 Var j �(x) 6= xg is �nite.4 Other combination algorithms for uni�cation algorithms have the same problem.5 M. Hermann (personal communication) pointed out that it is possible to generalizetheir results in the same direction.



Symbols �; �; �; �, possibly with subscripts, always denote substitutions. If � and� are substitutions, then ��� denotes their composition, where � is applied �rst.If t is a term, then Var(t) denotes the set of variables occurring in t.A (representation of an) equational theory with signature � is a set E ofequations between �-terms. With =E we denote the least congruence relation onT (�;Var) that is closed under substitutions and contains E, and T (�;Var)= =Edenotes the quotient term algebra modulo =E . An equational theory E is calledconsistent if x 6=E y for distinct variables x; y 2 Var. E is regular if Var(s) =Var(t) for all equations s = t of E. For a detailled explanation of these notionsand for an introduction to equational uni�cation we refer to [BS94].Remark 1. The following fact can easily be proved for regular equational theo-ries: 8s; t 2 T (�;Var) : s =E t implies Var(s) = Var(t).LetE be an equational theory with signature�. An elementary E-uni�cationproblem is a �nite set 
 of equations between �-terms. Sometimes we shall write
 as a conjunction of equations. An E-uni�cation problem with constants is a�nite set of equations between (�[� )-terms, where � is a set of \free" constants,i.e., a set of constants not occurring in �. A general E-uni�cation problem is a�nite set of equations between (� [ �)-terms, where � is a set of free functionsymbols of arbitrary arity. Note that each general E-uni�cation problem can beconsidered as an elementary uni�cation problem in the combined theory E [ Fwhere F denotes the free (empty) theory over the set of functions symbols �.Let 
 be an elementary E-uni�cation problem of the form fs1 = t1; : : : ; sn =tng. A solution (or an E-uni�er) of 
 is a �-substitution � such that �(si) =E�(ti), for i = 1; : : : ; n. It should be clear that solutions of E-uni�cation pro-blems with constants, or solutions of general E-uni�cation problems, may usethe additional free symbols occurring in the problem itself.3 Combination of uni�cation algorithmsIn this section we give a brief description of the combination procedure foruni�cation algorithms for equational theories over disjoint signatures given in[BS92]. The proof of the central proposition of the following section heavilydepends on the correctness of this combination algorithm. Before we give thealgorithm, we have to introduce a generalization of E-uni�cation problems withconstants.Let 
 be an elementary E-uni�cation problem, let � be the signature of E,and let � be another signature. Let Y be a �nite set of variables such thatVar(
) � Y . A linear constant restriction for Y is a pair L = (Lab; <) where< is a strict linear ordering on Y and where Lab : Y ! f�;�g is a \labellingfunction" that assigns to each variable y 2 Y a signature Lab(y) 2 f�;�g. Thepair (
;L) is called an E-uni�cation problem with linear constant restriction. A�-substitution � solves (
;L) if � solves the E-uni�cation problem 
 and if thefollowing conditions are satis�ed:



1. �(y) = y for all y 2 Y such that Lab(y) = �,2. for all x; y 2 Y : if Lab(y) = �;Lab(x) = � and if y occurs in �(x), theny < x.Note that, by condition 1, the variables with alien label � are treated as freeconstants in (
;L).Let E and F be two consistent equational theories over disjoint signatures� and � respectively. An elementary (E [ F )-uni�cation problem 
 is in de-composed form if 
 has the form 
E [ 
F where the \pure" subproblems 
E and
F are built over the signatures � and � respectively. Suppose that we wantto decide solvability of an elementary (E [ F )-uni�cation problem 
0. The fol-lowing Decomposition Algorithm, described in more detail in [BS92], reduces 
0non-deterministically to a �nite number of output pairs. Each component of anoutput pair represents an (E- resp. F -) uni�cation problem with linear constantrestriction.Decomposition Algorithm. In the �rst step, the input problem 
0 istransformed into an elementary (E [ F )-uni�cation problem 
1 which is in de-composed form 
1;E^
1;F such that 
0 is solvable i� 
1 is solvable. In the secondstep, a partition � of Var(
1;E^
1;F ) is chosen, and for each equivalence class of� a representant is chosen. Now all occurrences of variables are replaced by therepresentant of the equivalence class that contains the variable. We obtain thenew formula 
2;E ^ 
2;F . Let Y denote the set of representants. In the third andfourth step, a labelling function Lab : Y ! f�;�g and a strict linear ordering <on Y are chosen. The output pair determined by the choices in steps 2�4, then,is ((
2;E; L); (
2;F ; L)), where L = (Lab; <). In the �rst (second) component, thevariables with label � (resp. �) are treated as constants.The �rst, deterministic step is based on the technique of \variable abstrac-tion". Steps 2-4, then, are non-deterministic. Following common terminology,the second step will be called \variable identi�cation" in this paper. The maintechnical result of [BS92] is the followingProposition 2. The input problem, 
0, has a solution i� there exists an outputpair of the Decomposition Algorithm, ((
2;E; L); (
2;F ; L)), such that both theE-uni�cation problem with linear constant restriction (
2;E; L) has a solutionand the F -uni�cation problem with linear constant restriction (
2;F ; L) has asolution.In the sequel, two details of the correctness proof for Proposition 2 given in[BS92] will be used.Remark 3. It was shown ([BS92], p. 58) how given solutions �E and �F of anoutput pair of the Decomposition Algorithm can be combined to a solution � ofthe input problem, 
0. This combined solution � has the following property: if yis a representant of type �, and if the term �F (y) does not contain any variablewith label �, then �(y) = �F (y).



Remark 4. It was described ([BS92], p. 60) how a given solution � of an elemen-tary (E[F )-problem can be used to de�ne choices in the non-deterministic stepsof the Decomposition Algorithm that lead to an output pair ((
2;E; L); (
2;F ; L))where both components are solvable.6 In the second step of this construction,two variables v1 and v2 of the decomposed problem are identi�ed i� �(v1) =E[F�(v2).4 Main ResultsIn the �rst subsection we shall give a criterion that can be used to show that fora given equational theory E the problem of deciding solvability of general E-uni�cation problems is NP-hard. The power of the criterion will be illustrated inthe second subsection. Eventually we comment on the consequences for attemptsto optimize the combination algorithm given in [BS92] in the context of generalE-uni�cation.4.1 A criterion for intractabilityOne notion will be needed before we can state the main technical result of thissection.De�nition 5. Let 
 be an E-uni�cation problem. Let fx0; : : : ; xmg � Var(
)for some m � 0, let ~x denote the sequence hx0; : : : ; xmi. A solution � of 
 is~x-atomic if �(xi) is a variable or a free constant (i.e., a constant not occurringin the signature of E), for i = 0; : : : ;m.Proposition 6 (Main Proposition). Let E be a consistent equational theorywith signature �. Suppose there exists an E-uni�cation problem with constants,
, containing three distinct free constants a; b, and c and variables fx0; : : : ; xmgsuch that for ~x = hx0; : : : ; xmi1. 
 has ~x-atomic solutions �a; �b and �c that map x0 to a; b, and c respectively,and2. every ~x-atomic solution of 
 maps x0 to one of the constants a; b or c.Then solvability of general E-uni�cation problems is NP-hard.Proof. We shall show that so-called 1-in-3 problems over positive literals canbe encoded as general E-uni�cation problems. 7 Solvability of 1-in-3 problems is6 The solution that is considered in [BS92] is assumed to be normalized in a particularway. But this point is not relevant for the present discussion.7 A 1-in-3 problem over positive literals is given by a �nite set cl1; : : : ; cln of clauses,each clause cli containing exactly three positive literals. A solution of the problemis a truth value assignment that maps exactly one literal of each clause to 1 (true).



well-known to be NP-complete, see [GJ79]. The size of an encoded 1-in-3 problemwill be linear in the size of the 1-in-3 problem, which will give the desired result.1. In the �rst step we show how to encode a single clause cl = hp1; p2; p3iwith three positive literals. Let a; b; c, and ~x as above. For simplicity we shallassume that 
 contains just four free constants a; b; c and d. We consider the freesignature � := f0; 1; fg where 0 and 1 are distinct constants and f is a ternaryfunction symbol. Let F denote the free (empty) theory for signature �. Clearly,E [ F is a consistent equational theory and 1 6=E[F 0. Let z1; z2; z3 be threedistinct variables that do not occur in 
. The variables z1; z2; z3 will be usedto represent p1; p2; p3. For each i 2 f1; : : : ;mg, let yi;1; yi;2; yi;3 be a collectionof three new variables (not occurring in 
 and distinct from z1; z2; z3). Let 
Fdenote the elementary F -uni�cation problemx0 = f(z1; z2; z3) ^ a = f(1; 0; 0) ^ b = f(0; 1; 0)^ c = f(0; 0; 1) ^ d = f(1; 1; 1)^ m̂i=1xi = f(yi;1; yi;2; yi;3):In this problem, a; b; c, and d are treated as variables. With 
E we denote thevariant of the system 
 where a; b; c; d are treated as variables. Now consider theelementary (E [ F )-uni�cation problem in decomposed form
� := 
E ^ 
F :We shall verify the following two claims:Claim 1 For each triple (i; j; k) 2 f(1; 0; 0); (0; 1; 0); (0; 0; 1)g there exists asolution � of 
� such that (z1; z2; z3) is mapped to (i; j; k) under �.Claim 2 Modulo E, each solution of 
� maps (z1; z2; z3) either to (1; 0; 0),or to (0; 1; 0), or to (0; 0; 1).Note that these claims can be interpreted in the sense that solutions of 
�may be used to \select" (via identi�cation with 1) exactly one of the elementsz1; z2 and z3, and that each solution in fact provides for such a unique selection.Proof of Claim 1: we show that there exists a solution � of 
� such that(z1; z2; z3) is mapped to (1; 0; 0) under �, the other cases can be treated analo-guosly. By assumption, 
 has an ~x-atomic solution �a that maps x0 to a. Considerthe partition � of Var(
�) where two elements u; v of fa; b; c; d; x0; : : : ; xmg be-long to the same class of � i� �a(u) = �a(v), and where the equivalence classesof the variables in Var(
�) n fa; b; c; d; x0; : : : ; xmg have just one element. Notethat a; b; c, and d belong to distinct equivalence classes of � since �a leaves theseelements �xed. On the other hand, x0 and a belong to the same class.We select a set of representants Y for � as follows. Let a; b; c, and d bethe representants of their equivalence classes. Choose any representant for thevariables in ~x that belong to other classes of �. All the remaining equivalenceclasses of � have just one element which is the representant of the class. LetLab be the labelling function on Y where the representants occurring in 
Freceive label � and all the other representants receive label �. Let < be any



linear ordering on Y such that all representants with label � are smaller thanall the representants with label �. We consider the linear constant restrictionL := (Lab; <) on Y . Let 
2;E and 
2;F be the formulae that are obtained from
E and 
F by replacing each occurrence of a variable by its representant. Now((
2;E ; L); (
2;F ; L))is a possible output pair of the Decomposition Algorithm.We claim that both components are solvable problems. First we consider(
2;E ; L). The choice of the linear ordering < guarantees that (
2;E; L) can beconsidered as a usual E-uni�cation problem with constants. In fact, since �-variables are smaller than �-variables with respect to <, the linear constantrestriction L does not impose any real restriction on the �-variables of 
2;E .The constants occurring in the problem are a; b; c; d and the representants of thevariables in ~x.Let � be the function that maps each atom �a(xi) to the representant of xi(0 � i � m). The choice of representants guarantees that � leaves a; b; c; and d�xed, hence � can be regarded as a �-substitution. Let �E := �a � � . We wantto show that �E is a solution of (
2;E ; L).We have to verify that �E treats �-variables as constants. This is clear fora; b; c; and d. Let xk be the representant of xl for some 0 � k; l � m. Then�E(xk) = �(�a(xk)) = �(�a(xl)) is the representant of xl, namely xk.It remains to show that �E solves the equations of 
2;E . Let s1 = s2 be anequation of 
2;E , and let t1 = t2 be the corresponding equation of 
. Recallthat ti is obtained from si be replacing all occurrences of variables in ~x by theirrepresentants, for i = 1; 2. By assumption �a(t1) =E �a(t2). The choice of thepartition � shows that �a(s1) =E �a(s2). Hence �(�a(s1)) =E �(�a(s2)) and�E(s1) =E �E(s2).The second system, (
2;F ; L), does not contain any variable with label �,which means that the linear constant restriction L does not impose a real con-dition. We may treat the system as an elementary F -uni�cation problem. Recallalso that a; b; c; d are four distinct variables of (
2;F ; L). Obviously, there existsa solution �F of (
2;F ; L) mapping (z1; z2; z3) to (1; 0; 0).It follows now from Remark 3 that 
� has a solution � such that(�(z1); �(z2); �(z3)) = (1; 0; 0):This completes the proof of Claim 1.Proof of Claim 2: Let � be a solution of 
�. By Proposition 2 there exists asolvable output pair ((
2;E; L); (
2;F ; L)) of the Decomposition Algorithm. Ananalysis of 
� gives some information on the variable identi�cation step and onL. First note that the representants of the variables a; b; c; d and x0; : : : ; xm ne-cessarily must receive label� in L since otherwise (
2;F ; L) would be unsolvable.For the same reason, the four variables a; b; c; d must belong to di�erent equiva-lence classes of the partition that has been selected. Without loss of generalitywe may assume that a; b; c, and d are used as representants of their equivalence



classes. Let �E be a solution of (
2;E; L). We assume that �E leaves all variables�xed that do not occur in 
2;E . We may now consistently extend �E , mappingeach variable of 
E to the image of its representant under �E . In this way, weobtain a solution �0 of 
E . Note that �0, similarly as �E , treats a; b; c; d andthe representants of the variables in ~x as constants since these elements are�-variables of 
2;E . Therefore �0 is an ~x-atomic solution of 
.By the assumption of the proposition, �0 maps x0 to one of the constantsa; b; c. Let us assume that �0(x0) = a. But this implies, by the choice of �0, thata is the representant of x0. Let z01; z02, and z03 denote the representants of theequivalence classes of z1; z2 and z3 respectively. We have seen that the problemwhich is reached after the variable identi�cation step contains the equationsa = f(z01; z02; z03) and a = f(1; 0; 0).By Remark 4 we may assume without loss of generality that in the variableidenti�cation step two variables u and v of 
� are identi�ed i� �(u) =E �(v). Thismeans that � solves the equations a = f(z01; z02; z03) and a = f(1; 0; 0) modulo E.Hencef(1; 0; 0) = �(f(1; 0; 0)) =E �(f(z01; z02; z03)) = f(�(z01); �(z02); �(z03))=E f(�(z1); �(z2); �(z3)):It is well-known that the �-reducts of the joint term algebra T (�[�;Var)= =Eand of the pure term algebra T (�;Var) are �-isomorphic. This shows that �maps (z1; z2; z3) to (1; 0; 0) modulo E.2. In the second part of the proof we show how to encode a 1-in-3 problemwith clauses cl1; : : : ; cln containing the positive literals p1; : : : ; pk. Let z1; : : : ; zkbe a �xed set of distinct variables. The clause cli will be encoded by the ele-mentary (E [ F )-uni�cation problem 
�i that is obtained from the formula 
�de�ned above in the following way. If cli has the form hpq; pr; psi, then we usethe variables zq; zr; zs instead of z1; z2; z3. Clearly, zq; zr; zs encode pq; pr; ps justas z1; z2; z3 encoded p1; p2; p3 before. For all other variables occurring in 
� (inparticular for a; b; c; d and the variables in ~x) we use a fresh copy for each ofthe subproblems 
�i (to be denoted ai; bi; xi0; : : :). In this way, the general E-uni�cation problems 
�1 ; : : : ; 
�n share only variables in fz1; : : : ; zkg. Modulo thevalues of these variables they can be solved independently. Now 
�1 ; : : : ; 
�n isused for encoding cl1; : : : ; cln.Assume that the 1-in-3 problem cl1; : : : ; cln has a solution. Then there existsa mapping S : fz1; : : : ; zkg ! f0; 1g such that in each problem 
�i , with equa-tion xi0 = f(zq; zr; zs), say, exactly one of the variables zq; zr; zs is mappedto 1 under S, while the remaining two variables are mapped to 0. It followsfrom Claim 1 that 
�i has a solution �i such that (zq; zr; zs) is mapped to(S(zq); S(zr); S(zs)) under �i. Since the distinct subproblems 
�1 ; : : : ; 
�n shareonly variables in fz1; : : : ; zkg it follows that the general E-uni�cation problem
�1 ^ : : : ^ 
�n has a solution.Conversely, if 
�1^: : :^
�n has a solution, then Claim 2 shows that there existsa mapping S : fz1; : : : ; zkg ! f0; 1g respectively S0 : fp1; : : : ; pkg ! f0; 1g which



represents a solution of the 1-in-3 problem cl1; : : : ; cln.In the rest of this subsection we consider in more detail the situation where
�1^: : :^
�n is used as the input of the DecompositionAlgorithm.We want to showthat from every partition� of Var(
�1^: : :^
�n) in the variable identi�cation stepthat leads to a solvable output pair we can read of a solution of cl1; : : : ; cln. In thesequel, E and 
 are as in the Main Proposition and expressions cli; 
�i ; xi0; ai; bi; cietc. refer to the same entities as in the previous proof. If � is a partition ofX := Var(
�1 ^ : : : ^ 
�n), then [x]� denotes the equivalence class of x 2 X withrespect to �.De�nition 7. A partition � of Var(
�1 ^ : : : ^ 
�n) is locally correct if, for alli = 1; : : : ; n, the equivalence classes [ai]� ; [bi]� and [ci]� are pairwise distinctand xi0 2 [ai]� [ [bi]� [ [ci]� .Proposition 8. Assume that we reach, for input 
�1 ^ : : :^ 
�n, a solvable outputpair of the Decomposition Algorithm, selecting the partition � of Var(
�1^: : :^
�n)in the variable identi�cation step. Then � is locally correct.Proof. This follows as in the proof of Claim 2 above.Given a locally correct partition � on Var(
�1 ^ : : : ^ 
�n), we de�ne, foreach clause cli = hpq; pr; psi in cl1; : : : ; cln, a local truth value assignment Si� :fpq; pr; psg ! f0; 1g in the following way. Assume that 
�i contains the equationsxi0 = f(zq; zr; zs); ai = f(1; 0; 0); bi = f(0; 1; 0); ci = f(0; 0; 1):Then Si� has the following form, depending on whether (1) xi0 2 [ai]� , (2)xi0 2 [bi]� , or (3) xi0 2 [ci]� :(1) Si� := 24pq 7! 1pr 7! 0ps 7! 035 ; (2) Si� := 24pq 7! 0pr 7! 1ps 7! 035 ; (3) Si� := 24pq 7! 0pr 7! 0ps 7! 135 :Let S� := Sni=1 Si� denote the union of these local truth value assignments.Proposition 9. Assume that we reach, for input 
�1 ^ : : : ^ 
�n, the output pair((
E; L); (
F ; L)) of the Decomposition Algorithm, selecting the locally correctpartition � of Var(
�1 ^ : : : ^ 
�n) in the variable identi�cation step. Let pq 2fp1; : : : ; pkg. If, for some 1 � i � n, Si�(pq) = 1 (resp. Si�(pq) = 0), then therepresentant z0q of [zq ]� is mapped to 1 (resp. 0) under every solution of 
F .Proof. We may assume that cli has the form hpq; pr; psi. Assume �rst thatSi�(pq) = 1. Then xi0 2 [ai]� , by de�nition of Si� . Let y; z0q ; z0r; z0s denote therepresentants of ai; zq ; zr and zs in 
F respectively. Then 
F contains the equa-tions y = f(z0q; z0r; z0s) and y = f(1; 0; 0) and the result follows. In the other case,where Si�(pq) = 0, we know that xi0 2 [bi]� or xi0 2 [ci]� . The rest is as in the�rst case.



Proposition 10. Assume that we reach, for input 
�1 ^ : : : ^ 
�n, a solvable out-put pair ((
E; L); (
F ; L)) of the Decomposition Algorithm, selecting the locallycorrect partition � of Var(
�1 ^ : : :^ 
�n) in the variable identi�cation step. ThenS� solves cl1; : : : ; cln.Proof. Since (
F ; L) is solvable it follows from the previous proposition thattwo local assignments Si� and Sj� agree on the common literals in their domain,for 1 � i; j � n. Hence S� is a truth value assignment on fp1; : : : ; pkg. The formof the Si� shows that S� solves cl1; : : : ; cln.4.2 Intractable E-uni�cation problemsIn this subsection we shall use the criterion given in the Main Proposition toprove that general E-uni�cation is NP-hard for all the theories mentioned in theintroduction. We begin with the general results. In the following two theoremswe consider theories that have an associative or a commutative function symbol.It should be clear that these function symbols may have other properties as well.Theorem 11. Let E be an equational theory that contains an associative func-tion symbol \�". If E is regular, then the problem of deciding solvability of generalE-uni�cation problems is NP-hard.Proof. Consider the E-uni�cation problem with constants 
 of the formy � x � z = a � a � b � c � c:Let ~x := hxi. Since � is associative, it is obvious that 
 has ~x-atomic solutionsthat map x to a; b, and c respectively. Now let � be any ~x-atomic solution of 
.We have �(y) � �(x) � �(z) =E a � a � b � c � c. Since E is regular, the atom �(x)of the left-hand side must occur on the right-hand side (Remark 1). It followsthat �(x) is a; b, or c. By Proposition 6, general E-uni�cation is NP-hard.Theorem 12. Let E be an equational theory that contains a commutative func-tion symbol \f". If E is regular, then the problem of deciding solvability of generalE-uni�cation problems is NP-hard.Proof. Consider the E-uni�cation problem with constants 
 of the formf(f(x; y); f(u; v)) = f(f(a; b); f(b; c)):Let ~x := hxi. Since f is commutative, it is obvious that 
 has ~x-atomic solutionsthat map x to a; b, and c respectively. Now let � be any ~x-atomic solution of 
.We have f(f(�(x); �(y)); f(�(u); �(v))) =E f(f(a; b); f(b; c)). Since E is regular,the atom �(x) of the left-hand side must occur on the right-hand side. It followsthat �(x) is a; b, or c. By Proposition 6, general E-uni�cation is NP-hard.



The theorems show, for example, that general E-uni�cation is NP-hard forthe following equational theories E: the theory A of an associative functionsymbol, the theory C of a commutative function symbol, the theory AC ofan associative and commutative function symbol, and the theory ACI of anassociative, commutative and idempotent function symbol.The Main Proposition can be strengthened under suitable assumptions onE. In the sequel, K denotes the class of all equational theories that satisfy thecriterion of the Main Proposition.Theorem 13. Let E 2 K. Assume that the problem of deciding solvability of E-uni�cation problems with linear constant restrictions is in NP. Then the problemof deciding solvability of general E-uni�cation problems is NP-complete.Proof. Under the given assumption the Decomposition Algorithm yields anNP algorithm for deciding solvability of generalE-uni�cation problems, see Con-sequence 5 (pg. 216) of Theorem 2.1 in [BS96]. The result follows immediatelyfrom Proposition 6.Corollary 14. Let E be a regular equational theory that contains an associativeor commutative function symbol. If there exist an NP algorithm for decidingsolvability of E-uni�cation problems with linear constant restrictions, then theproblem of deciding solvability of general E-uni�cation problems is NP-complete.Let us now look at the non-regular theories mentioned in the introduction(for which E-uni�cation with constants is polynomially decidable). The resultsmentioned below are known, our point is just the simple new proof.Corollary 15. Solvability of general E-uni�cation problems is NP-hard for thetheories E = ACUN;ACUNh, and AG (to be de�ned below).Proof. In each case, we shall give a particular E-uni�cation problem with con-stants, 
, and we shall show that this problem has the properties mentioned inthe Main Proposition.Associativity, Commutativity, Nilpotency with Unit (ACUN). This theory,discussed in [GN96], is formulated over the binary nilpotent AC-symbol + andthe constant 0. The axioms for nilpotency and unity are x+x = 0 and x+0 = x.We consider the problem 
 of the form x+y+z = a+b+c and choose ~x = hx; y; zi.It is obvious that 
 has ~x-atomic solutions that map x to a; b, and c respectively.Conversely, let � be an ~x-atomic solution of 
. If the atoms �(x); �(y); and �(z)are distinct, then f�(x); �(y); �(z)g = fa; b; cg and we are done. But it is easyto see that an ~x-atomic solution of 
 cannot identify two (or three) of the atoms�(x); �(y); and �(z).Associativity, Commutativity, Nilpotency with Unit and Homomorphism. Thistheory (denotedACUNh), also discussed in [GN96], is similar to ACUN. There isone additional function symbol h, the additional axioms are h(x+y) = h(x)+h(y)and h(0) = 0. We may use the same uni�cation problem as in the case of ACUN.



Theory of Abelian Groups ( AG). The signature of the theory AG, which istreated in [HK96], has a binary associative and commutative function symbol+, a unary symbol �, and a constant e. The axioms are x+ e = x; x + (�x) =e; x+ y = y+x, and (x+ y)+ z = x+(y+ z). We consider the problem 
 of theform x+ y+ z = a+ b+ c and choose ~x = hx; y; zi. Again it is trivial to see thatthis AG-uni�cation problem satis�es the requirements mentioned in the MainProposition.It is interesting to note that all the problems that we used to verify thecriterion of theMain Proposition are matching problems since the right-hand sideis always ground. We conjecture that the complexity results of this subsectioncan be generalized to procedures that decide solvability of general E-matchingproblems.4.3 Impossibility of polynomial combination and limitations foroptimizing the combination algorithmIn view of the complexity results of the previous subsections it is natural to askif the following conjecture mentioned in the introduction is true:Assume that P 6= NP. Let E 2 K. Then there exists no polynomialcombination algorithm that reduces solvability of general E-uni�cationproblems to solvability of E-uni�cation problems with constants plus sol-vability of free (syntactic) uni�cation problems.When we look carefully at the conjecture, we see that it is di�cult to interpretit in a precise way. In fact, when we are talking here about E-uni�cation withconstants, we do of course not want to exclude \closely related" output problemssuch as, e.g., E-uni�cation with linear constant restriction. Actually, we do notsee any general and convincing de�nition of the type of output problem thatone would still be willing to accept. Because of this vagueness it seems di�culteither to prove or to refute the conjecture. We shall now introduce one possibleformalization of the conjecture that arises naturally if one tries to optimizethe Decomposition Algorithm in the context of general E-uni�cation. Here theconjecture can be veri�ed.De�nition 16. A polynomial optimization of the Decomposition Algorithm forgeneral E-uni�cation is an algorithm that accepts as input an arbitrary generalE-uni�cation problem 
0 and computes in polynomial time a �nite set M ofoutput pairs ((
E; L); (
F ; L)) of E- resp. free uni�cation problems with linearconstant restriction such that 
0 is solvable i�, for some output pair in M , bothcomponents are solvable. More speci�cally we demand that each output pair inM is also a possible output pair of the original Decomposition Algorithm.Theorem 17. Let E 2 K. Then there exists no polynomial optimization of theDecomposition Algorithm for general E-uni�cation, unless P = NP .



Proof. Assume that there exists a polynomial optimization. We shall thenshow how solvability of 1-in-3 problems over positive literals can be decided inpolynomial time, which yields the desired contradiction. We refer to the notati-ons introduced at the end of Subsection 4.1. Given a 1-in-3 problem cl1; : : : ; cln,we encode it into a general E-uni�cation problem 
�1 ^ : : : ;^
�n as in the proofof the Main Proposition. We use 
�1 ^ : : : ;^
�n as the input of the polynomialoptimization. The output set M contains only a polynomial number of out-put pairs. From M , we eliminate all pairs that are based on a partition � ofVar(
�1 ^ : : : ;^
�n) which is not locally correct. LetM0 be the new set. We claimthat cl1; : : : ; cln has a solution i� S� yields a solution, for some partition � ofVar(
�1 ^ : : : ;^
�n) that was used for an output pair in M0. In fact, assume thatcl1; : : : ; cln is solvable. Then 
�1 ^ : : : ;^
�n is solvable (as we saw in the proof ofthe Main Proposition) andM contains a solvable output pair. By Proposition 8,M0 contains a solvable output pair. Hence the claim follows from Proposition 10.Clearly, the computation of all relations S� for partitions � used in M0 needsonly polynomial time in the size of cl1; : : : ; cln under the given assumptions.5 ConclusionIn this paper we have introduced a criterion that characterizes a large classK of equational theories E where solvability of general E-uni�cation problemsis always NP-hard. We have seen that for E 2 K there exists no polynomialoptimization of the combination algorithm given in [BS92] if applied to generalE-uni�cation, unless P = NP . By and large, the list of equational theories Ethat belong to K which was given in Subsection 4.2 indicates that most of therelevant regular theories belong to K.The case where we combine a regular equational theory with the free (empty)theory is one of the simplest situations for combination. On this background,there cannot be much hope that it is possible to characterize any interesting andlarge class of equational theories where a polynomial combination of uni�cationalgorithms is possible. On the other hand, polynomial combination is possibleunder strong restrictions. In [Sc96] we have shown that a polynomial combinationalgorithm, even for disuni�cation, exists for unitary, regular and collapse-freetheories over disjoint signatures if both theories have polynomial algorithms forcomputing most general uni�ers, for uni�cation with constants.References[BS92] F. Baader, K.U. Schulz, \Uni�cation in the union of disjoint equational theo-ries: Combining decision procedures," in: Proc. CADE-11, LNAI 607, 1992,pp. 50-65.[BS96] F. Baader, K.U. Schulz, \Uni�cation in the union of disjoint equational theo-ries: Combining decision procedures," Journal of Symbolic Computation, 21(1996), pp. 211-243.
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