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Abstract. All applications of equational unification in the area of term
rewriting and theorem proving require algorithms for general E-unifica-
tion, i.e., E-unification with free function symbols. On this background,
the complexity of general E-unification algorithms has been investigated
for a large number of equational theories. For most of the relevant cases,
the problem of deciding solvability of general E-unification problems was
found to be NP-hard. We offer a partial explanation. A criterion is given
that characterizes a large class K of equational theories E where general
E-unification is always NP-hard. We show that all regular equational
theories E that contain a commutative or an associative function symbol
belong to K. Other examples of equational theories in K concern non-
regular cases as well.

The combination algorithm described in [BS92] can be used to reduce
solvability of general E-unification algorithms to solvability of E- and
free (Robinson) unification problems with linear constant restrictions.
We show that for E € K there exists no polynomial optimization of this
combination algorithm for deciding solvability of general E-unification
problems, unless P = N P. This supports the conjecture that for £ €
K there is no polynomial algorithm for combining FE-unification with
constants with free unification.

1 Introduction

Equational unification is used as an important built-in procedure in many deduc-
tive systems in the area of term rewriting [JoK86, Ba91] and resolution-based
theorem proving [Plo72, Sti83, NR94, Ru95]. For all these applications, unifi-
cation algorithms are needed for solving problems that contain not only the
symbols of the signature of the given equational theory E, but also additional
“free” (uninterpreted) function symbols of arbitrary arity. Following common
terminology, such problems are called general E-unification problems here.

On the background of this practical relevance it is natural to ask for the
complexity of general E-unification. For most of the equational theories E that
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have been discussed in the literature the problem of deciding solvability of general
E-unification problems has turned out to be NP-hard (see [KN92, BS94] for
surveys). When looking at the proofs of these intractability results it becomes
clear that some of the encoding techniques that are used are closely related.
Yet, a common background is missing that would explain these results from an
abstract point of view. This yields one motivation for the results of the present
paper, where we characterize general properties of equational theories E that
guarantee that solvability of general E-unification problems is NP-hard. Before
we explain the second motivation let us summarize the main results.

A criterion is given that characterizes a class K of equational theories where
the problem of deciding solvability of general E-unification problems is always
NP-hard. Using the criterion for I we shall prove that general E-unification is
NP-hard for every regular equational theory E/ which contains an associative or a
commutative function symbol. The theories A, C', AC and ACI (where A, C, and
I stand for associativity, commutativity and idempotence of a fixed binary func-
tion symbol respectively) represent instances of such theories. If E € K and there
exists an NP-algorithm for E-unification with “ linear constant restriction?”,
then general E-unification is NP-complete. The main criterion is not restricted
to the case of regular theories. For the sake of exposition, and concentrating
on theories where E-unification with constants is decidable in polynomial time,
we show that the theories ACUN, ACUNL, and AG which have been discus-
sed in recent papers [GN96, HK96] also belong to K. In each case, the proof is
extremely simple.

Let us now explain the second, even more serious motivation for our inve-
stigations, even if it is not simple to judge the full status of our results under
this perspective. We have seen that applications of equational unification require
algorithms for general E-unification. In many cases there is no obvious way to
design such an algorithm directly. Instead it might be much simpler to give
an algorithm for E-unification problems with free constants only.? Fortunately,
there exists a general methodology for obtaining an algorithm for general F-
unification that can be used in most of these cases. General E-unification can be
considered as a combination of “clementary” E-unification with free (Robinson)
unification. Hence it is one instance of the more general problem of combining
unification algorithms for disjoint equational theories. The latter problem has
been considered by many authors ([Ki85, He86, Ti86, Ye87, Sc89, Bo93, BS92]),
general solutions have been given in [Sc89, Bo93, BS92]. On the basis of [BS92]
it is possible to obtain an algorithm for general E-unification problems by com-
bining a given algorithmn for E-unification with linear constant restriction with
an algorithm for free (Robinson) unification with linear constant restriction.

When we use this approach for general E-unification in a practical system,
an efficiency problem arises. The combination algorithm of [B$92] decomposes a
given general E-unification problem into a pair of pure output problems, where

? An inessential generalization of E-unification problems with constants, see Section 3.
® Compare, for example, the remarks on general A- and AC-unification in [BS92].



the two components represent F- and free unification problems with linear con-
stant restriction respectively. This reduction is based on a polynomial number of
non-deterministic steps, which means in practice that an exponential number of
different output pairs has to be considered in the worst case.* The present rese-
arch was started in a project where we tried to optimize the algorithm ([KR96]).
We investigated how structural properties of the theory E (or, in the more ge-
neral situation, of two given theories £ and F' to be combined) can be used to
eliminate parts of the non-determinism of the combination scheme. In order to
see the limitations for such optimizations in the context of general E-unification
it was natural to ask for properties of E that imply intractability in the sense
that there cannot be a polynomial version of the algorithm, assuming P # NP.

We shall show that for E/ € K there exists no polynomial optimization of the
algorithm that reduces solvability of general E-unification problems to solvability
of E- and free unification problems with linear constant restriction respectively,
unless P = NP. For this reason we strongly conjecture that for all equatio-
nal theories E € K there is no polynomial procedure for combining algorithms
that decide solvability of E-unification problems with constants with similar
decision procedures for free (syntactic) unification. Of course our results verify
this conjecture assuming P # NP in all cases where the problem of deciding
solvability of E-unification problems with constants is decidable in polynomial
time, such as, e.g., for the theories ACUN, ACUNh (see [GN96]), and AG.

From the combination perspective, the present research is closely related to
recent work by M. Hermann and P.G. Kolaitis [HK96]. In their paper it was
shown (assuming P # NP) that there cannot be a polynomial algorithm for
combining unification algorithms for arbitrary (disjoint) finitary equational theo-
ries, by proving intractability of the counting problem for general unification in
the theory of abelian groups ( AG-unification). One major difference is that
M. Hermann and P.G. Kolaitis consider unification algorithms that compute
minimal and complete sets of E-unifiers, whereas we concentrate on algorithms
that decide solvability of F-unification problems. Furthermore, M. Hermann and
P.G. Kolaitis only treat unification in abelian groups and in boolean rings, whe-
reas we are primarily interested in abstract properties of theories that lead to
intractability.?

2 Preliminaries

A signature consists of a finite set of function symbols, each of fixed arity. Let X
be a signature, and let Var denote a disjoint countably infinite set of variables.
The set of Y-terms with variables in Var is defined as usual. With T (X, Var)
we denote the free term algebra for the signature Y. A Y-substitution is an
endomorphism o of 7 (X, Var) such that the set {x € Var | o(z) # =} is finite.

* Other combination algorithms for unification algorithms have the same problem.
® M. Hermann (personal communication) pointed out that it is possible to generalize
their results in the same direction.



Symbols o, 7, p, A, possibly with subscripts, always denote substitutions. If ¢ and
T are substitutions, then g o7 denotes their composition, where ¢ is applied first.
If ¢ is a term, then Var(t) denotes the set of variables occurring in t.

A (representation of an) equational theory with signature X is a set E of
equations between Y-terms. With =g we denote the least congruence relation on
T (X, Var) that is closed under substitutions and contains E, and 7 (X, Var)/ =g
denotes the quotient term algebra modulo =4. An equational theory E is called
consistent if v #p y for distinct variables x,y € Var. E is regular if Var(s) =
Var(t) for all equations s =t of E. For a detailled explanation of these notions
and for an introduction to equational unification we refer to [BS94].

Remark 1. The following fact can easily be proved for regular equational theo-
ries: Vs, t € T(X, Var) : s =g t implies Var(s) = Var(t).

Let E be an equational theory with signature Y. An elementary E-unification
problem is a finite set v of equations between Y-terms. Sometimes we shall write
~ as a conjunction of equations. An E-unification problem with constants is a
finite set of equations between (XUI")-terms, where I is a set of “free” constants,
i.e., a set of constants not occurring in ¥. A general E-unification problem is a
finite set of equations between (X U @)-terms, where @ is a set of free function
symbols of arbitrary arity. Note that each general E-unification problem can be
considered as an elementary unification problem in the combined theory EU F
where F' denotes the free (empty) theory over the set of functions symbols .

Let v be an elementary E-unification problem of the form {s; = t,...,s, =
tn}. A solution (or an E-unifier) of v is a Y-substitution ¢ such that o(s;) =
o(t;), for i = 1,...,n. It should be clear that solutions of E-unification pro-
blems with constants, or solutions of general E-unification problems, may use
the additional free symbols occurring in the problem itself.

3 Combination of unification algorithms

In this section we give a brief description of the combination procedure for
unification algorithms for equational theories over disjoint signatures given in
[BS92]. The proof of the central proposition of the following section heavily
depends on the correctness of this combination algorithm. Before we give the
algorithm, we have to introduce a generalization of E-unification problems with
constants.

Let ~ be an elementary E-unification problem, let X' be the signature of F,
and let A be another signature. Let Y be a finite set of variables such that
Var(v) C Y. A linear constant restriction for Y is a pair L = (Lab, <) where
< is a strict linear ordering on Y and where Lab: Y — {¥, A} is a “labelling
function” that assigns to each variable y € Y a signature Lab(y) € {¥, A}. The
pair (v, L) is called an E-unification problem with linear constant restriction. A
Y-substitution ¢ solves (v, L) if ¢ solves the E-unification problem + and if the
following conditions are satisfied:



1. o(y) = y for all y € Y such that Lah(y) = A,
2. for all z,y € Y: if Lab(y) = A,Lab(z) = ¥ and if y occurs in o(z), then
y<uw.

Note that, by condition 1, the variables with alien label A are treated as free
constants in (v, L).

Let E and F be two consistent equational theories over disjoint signatures
Y and A respectively. An elementary (F U F)-unification problem ~ is in de-
composed form if v has the form vg U ~vr where the “pure” subproblems vg and
~vr are built over the signatures ¥ and A respectively. Suppose that we want
to decide solvability of an elementary (E U F)-unification problem ~,. The fol-
lowing Decomposition Algorithm, described in more detail in [BS92], reduces v
non-deterministically to a finite number of output pairs. Each component of an
output pair represents an (E- resp. F-) unification problem with linear constant
restriction.

Decomposition Algorithm. In the first step, the input problem =, is
transformed into an elementary (E U F)-unification problem v which is in de-
composed form vy g A7y o such that - is solvable iff v is solvable. In the second
step, a partition IT of Var(vy, g A1 r) is chosen, and for each equivalence class of
IT a representant is chosen. Now all occurrences of variables are replaced by the
representant, of the equivalence class that contains the variable. We obtain the
new formula 72 g A2 p. Let Y denote the set of representants. In the third and
fourth step, alabelling function Lab: Y — {¥, A} and a strict linear ordering <
on Y are chosen. The output pair determined by the choices in steps 2 — 4, then,
is (72,8, L), (72,p, L)), where L = (Lab, <). In the first (second) component, the
variables with label A (resp. X)) are treated as constants.

The first, deterministic step is based on the technique of “variable abstrac-
tion”. Steps 2-4, then, are non-deterministic. Following common terminology,
the second step will be called “variable identification” in this paper. The main
technical result of [BS92] is the following

Proposition 2. The input problem, ~y, has a solution iff there exists an output
pair of the Decomposition Algorithm, ((v2,p,L),(v2,r. L)), such that both the
E-unification problem with linear constant restriction (vo g, L) has a solution
and the F-unification problem with linear constant restriction (2 p,L) has a
solution.

In the sequel, two details of the correctness proof for Proposition 2 given in
[BS92] will be used.

Remark 3. It was shown ([BS92], p. 58) how given solutions o and o of an
output pair of the Decomposition Algorithm can be combined to a solution o of
the input problem, ~y. This combined solution ¢ has the following property: if y
is a representant of type A, and if the term op(y) does not contain any variable
with label ¥, then o(y) = op(y).



Remark 4. It was described ([BS92], p. 60) how a given solution ¢ of an elemen-
tary (EUF)-problem can be used to define choices in the non-deterministic steps
of the Decomposition Algorithm that lead to an output pair ((v2, g, L), (72,7, L))
where both components are solvable.’ In the second step of this construction,
two variables v1 and vy of the decomposed problem are identified iff o(v1) =pur

o(va).

4 Main Results

In the first subsection we shall give a criterion that can be used to show that for
a given equational theory F the problem of deciding solvability of general E-
unification problems is NP-hard. The power of the criterion will be illustrated in
the second subsection. Eventually we comment on the consequences for attempts
to optimize the combination algorithm given in [BS92] in the context of general
E-unification.

4.1 A criterion for intractability

One notion will be needed before we can state the main technical result of this
section.

Definition 5. Let v be an E-unification problem. Let {zq,..., 2, } C Var(y)
for some m > 0, let # denote the sequence <.’T7|), ... ,;)7,,,,). A solution ¢ of v is
Z-atomic if o(x;) Is a variable or a free constant (i.e., a constant not occurring
in the signature of E), for : =0,....m.

Proposition 6 (Main Proposition). Let E be a consistent equational theory
with signature X. Suppose there exists an E-unification problem with constants,
v, containing three distinct free constants a,b, and ¢ and variables {xo,...,m}
such that for &= {xq,...,xm)

1. v has &-atomic solutions o, 0y and o that map xg to a.b, and ¢ respectively,
and

2. every I-atomic solution of v maps x¢ to one of the constants a,b or c.

Then solvability of general E-unification problems is NP-hard.

Proof. We shall show that so-called 1-in-3 problems over positive literals can
be encoded as general E-unification problems. ” Solvability of 1-in-3 problems is

¢ The solution that is considered in [BS92] is assumed to be normalized in a particular
way. But this point is not relevant for the present discussion.

T A 1-in-3 problem over positive literals is given by a finite set cl;, ..., cl, of clauses,

each clause cl; containing exactly three positive literals. A solution of the problem

is a truth value assignment that maps ezactly one literal of each clause to 1 (true).



well-known to be NP-complete, see [GJ79]. The size of an encoded 1-in-3 problem
will be linear in the size of the 1-in-3 problem, which will give the desired result.

1. In the first step we show how to encode a single clause I = {(p1,p2,p3)
with three positive literals. Let a,b,c, and & as above. For simplicity we shall
assume that v contains just four free constants a, b, c and d. We consider the free
signature A := {0,1, f} where 0 and 1 are distinct constants and f is a ternary
function symbol. Let F' denote the free (empty) theory for signature A. Clearly,
E U F is a consistent equational theory and 1 Zgup 0. Let z1, 29, 23 be three
distinct variables that do not occur in ~. The variables 21, 29, 23 will be used
to represent p1,p2,ps. For each i € {1,...,m}, let Yi1,Yi2,Yi3 be a collection
of three new variables (not occurring in v and distinct from z1, 29, z3). Let vp
denote the elementary F-unification problem

2o = f(z1,22,23) Na= f(1,0,0) Ab= £(0,1,0) Ace= f(0,0,1) Ad = f(1,1,1)
m
A /\ wi = f(Yi1sYiz2sYi3)-
=1
In this problem, a,b, ¢, and d are treated as variables. With vg we denote the
variant of the system ~ where a,b, c,d are treated as variables. Now consider the
elementary (E U F')-unification problem in decomposed form

Y= NP,
We shall verify the following two claims:

Claim 1 For each triple (i, k) € {(1,0,0),(0,1,0),(0,0,1)} there exists a
solution o of v* such that (z1, 22, z3) is mapped to (i. j, k) under o.

Claim 2 Modulo E, each solution of v* maps (z1,22,23) either to (1,0,0),
or to (0,1,0), or to (0,0,1).

Note that these claims can be interpreted in the sense that solutions of ~*
may be used to “select” (via identification with 1) exactly one of the elements
z1, 22 and z3, and that each solution in fact provides for such a unique selection.

* such that

Proof of Claim 1: we show that there exists a solution o of ~
(#1, 22, z3) is mapped to (1,0,0) under o, the other cases can be treated analo-
guosly. By assumption, v has an Z-atomic solution o, that maps zy to a. Consider
the partition IT of Var(y*) where two elements u,v of {a,b,c.d,xqg,..., 2y} be-
long to the same class of IT iff 0,(u) = 04 (v), and where the equivalence classes
of the variables in Var(vy*) \ {a,b,c,d, zg, ...,z } have just one element. Note
that a, b, c, and d belong to distinct equivalence classes of IT since ¢, leaves these
elements fixed. On the other hand, x¢ and a belong to the same class.

We select a set of representants Y for II as follows. Let a,b,c, and d be
the representants of their equivalence classes. Choose any representant for the
variables in & that belong to other classes of II. All the remaining equivalence
classes of II have just one element which is the representant of the class. Let
Lab be the labelling function on Y where the representants occurring in ~vg
receive label A and all the other representants receive label Y. Let < be any



linear ordering on Y such that all representants with label A are smaller than
all the representants with label 3. We consider the linear constant restriction
L := (Lab.<) on Y. Let v2 g and 72 ¢ be the formulae that are obtained from
~vg and yp by replacing each occurrence of a variable by its representant. Now

((A//QJJW L)v (’72,1"1 L))

is a possible output pair of the Decomposition Algorithm.

We claim that both components are solvable problems. First we consider
(72,12, L). The choice of the linear ordering < guarantees that (v2 , L) can be
considered as a usual E-unification problem with constants. In fact, since A-
variables are smaller than Y-variables with respect to <, the linear constant
restriction L does not impose any real restriction on the X-variables of vy g.
The constants occurring in the problem are a, b, ¢, d and the representants of the
variables in 7.

Let 7 be the function that maps each atom g4(x;) to the representant of x;
(0 < ¢ < m). The choice of representants guarantees that 7 leaves a,b, ¢, and d
fixed, hence 7 can be regarded as a Y-substitution. Let op := 0, o 7. We want
to show that og is a solution of (y2 g, L).

We have to verify that oy treats A-variables as constants. This is clear for
a,b,c, and d. Let xj be the representant of x; for some 0 < k,I < m. Then
op(zg) = 7(0u(2k)) = T(0q(x))) is the representant of z;, namely wy.

It remains to show that og solves the equations of v, g. Let s; = sy be an
equation of v2 g, and let t; = t; be the corresponding equation of 7. Recall
that t; is obtained from s; be replacing all occurrences of variables in & by their
representants, for ¢ = 1,2. By assumption o,(t1) =g 04(t2). The choice of the
partition IT shows that o4(s1) =g 04(s2). Hence 7(04(s1)) =p 7(04(s2)) and
op(s1) =g op(s2).

The second system, (72 p, L), does not contain any variable with label ¥,
which means that the linear constant restriction L does not impose a real con-
dition. We may treat the system as an elementary F-unification problem. Recall
also that a,b,c,d are four distinct variables of (72 p, L). Obviously, there exists
a solution ap of (v, p, L) mapping (z1, 2, z3) to (1,0,0).

It follows now from Remark 3 that v* has a solution ¢ such that

(0(z1),0(22),0(23)) = (1,0,0).
This completes the proof of Claim 1.

Proof of Claim 2: Let o be a solution of v*. By Proposition 2 there exists a
solvable output pair ((y2,6.L), (72,4, L)) of the Decomposition Algorithm. An
analysis of v* gives some information on the variable identification step and on
L. First note that the representants of the variables a,b,c,d and zg,...,Z,, ne-
cessarily must receive label A in L since otherwise (72 o, L) would be unsolvable.
For the same reason, the four variables a,b, ¢, d must belong to different equiva-
lence classes of the partition that has been selected. Without loss of generality
we may assume that a,b, c, and d are used as representants of their equivalence



classes. Let o be a solution of (72 g, L). We assume that o g leaves all variables
fixed that do not occur in v, ;. We may now consistently extend oy, mapping
each variable of vg to the image of its representant under og. In this way, we
obtain a solution oy of vg. Note that oy, similarly as og, treats a,b,c,d and
the representants of the variables in # as constants since these elements are
A-variables of v2 p. Therefore o is an Z-atomic solution of 7.

By the assumption of the proposition, o9 maps zg to one of the constants
a, b, ¢. Let us assumne that og(xg) = a. But this implies, by the choice of oy, that
a is the representant of x¢. Let 21,2}, and 2z} denote the representants of the
equivalence classes of z1, z» and z3 respectively. We have seen that the problem
which is reached after the variable identification step contains the equations
a= f(z).,2},24) and a = f(1,0,0).

By Remark 4 we may assume without loss of generality that in the variable
identification step two variables « and v of v* are identified iff o (u) =y o(v). This
means that ¢ solves the equations a = f(z], 25, z3) and @ = £(1,0,0) modulo E.
Hence

£(1,0,0) = o(f(1,0,0)) =p o(f(=],23,23)) = f(o(z)),0(23). 0(23))
=K f((T(Zl),U(ZQ),U(Zg)).

It is well-known that the A-reducts of the joint term algebra 7 (XU A, Var)/ =g
and of the pure term algebra 7 (A, Var) are A-isomorphic. This shows that o
maps (z1, 22, 23) to (1,0,0) modulo E.

2. In the second part of the proof we show how to encode a 1-in-3 problem
with clauses cly, ..., cl, containing the positive literals py,...,pr. Let z1,..., 2
be a fixed set of distinct variables. The clause cl; will be encoded by the ele-
mentary (E U F)-unification problem v} that is obtained from the formula ~*
defined above in the following way. If ¢; has the form (pg, pr, ps). then we use
the variables zy, 2., z, instead of 21, 22, z3. Clearly, 24, 2, 25 encode pg, py, ps just
as zy, z2, z3 encoded py, pa, p3 before. For all other variables occurring in * (in
particular for a,b,c,d and the variables in #) we use a fresh copy for each of

the subproblems 77 (to be denoted a’,b’,zf,...). In this way, the general E-
unification problems ~7, ..., share only variables in {z1,...,z;}. Modulo the
values of these variables they can be solved independently. Now ~{,...,v" is
used for encoding cly, ..., cl,.

Assume that the 1-in-3 problem cly, ..., cl, has a solution. Then there exists
a mapping S : {z1,...,21} = {0,1} such that in each problem ~}, with equa-
tion ) = f(zq, 2r, 25), say, exactly one of the variables z,,z., 25 is mapped
to 1 under S, while the remaining two variables are mapped to 0. It follows
from Claim 1 that v, has a solution o; such that (zq,zmzs) is mapped to
(S(z¢), S(2),5(zs)) under o;. Since the distinct subproblems ~f, ..., v share
only variables in {zj,..., 2} it follows that the general E-unification problem
71 A ... A} has a solution.

Conversely, if v7 A... A7, has a solution, then Claim 2 shows that there exists
amapping S : {z1,..., 2z} = {0,1} respectively " : {p1,...,pr} — {0,1} which



represents a solution of the 1-in-3 problem cl, ..., cl,. O

In the rest of this subsection we consider in more detail the situation where
YiA. .. A is used as the input of the Decomposition Algorithm. We want to show
that from every partition IT of Var(yfA...A%;) in the variable identification step
that leads to a solvable output pair we can read of a solution of cly,...,cl,. In the
sequel, E' and v are as in the Main Proposition and expressions cl;, v;", 1?6, a,b', ¢
etc. refer to the same entities as in the previous proof. If IT is a partition of
X = Var(y; A... AvY), then [z]y denotes the equivalence class of € X with
respect to I1.

Definition 7. A partition IT of Var(7§ A ... A7) is locally correct if, for all
i = 1,...,n, the equivalence classes [a'];,[b{]y and [¢!]; are pairwise distinct
and x} € [a']g U [b]r U] n.

Proposition 8. Assume that we reach, for input vy A... A}, a solvable output
pair of the Decomposition Algorithm, selecting the partition IT of Var(viA. . .AY)
wn the variable identification step. Then IT is locally correct.

Proof. This follows as in the proof of Claim 2 above. O

Given a locally correct partition IT on Var(yy A ... A7), we define, for
each clause cl; = (Z)q,z?r,1)3> in cly,...,cl,, alocal truth value assignment 57, :
{pg,prsps} — {0, 1} in the following way. Assume that 7, contains the equations

2y = f(zgs 2, 25),a' = £(1,0,0),0" = £(0,1,0),¢" = £(0,0,1).

Then 5}1 has the following form, depending on whether (1) 2 € [a']m, (2)
xp € [b']m, or (3) xj € [

‘ Irqu—)l-l ' {quO ' {pw—)(fl
(1)Syi=|{pr—0],(2)Sy:={p-—1,3)S;:={p-—0].
Lp,u—)()J [p,u—)()J [p,ﬂ—)lJ
Let Sy := U~ S§7 denote the union of these local truth value assignments.

Proposition 9. Assume that we reach, for input v A ... A}, the output pair
((ve,L), (vr, L)) of the Decomposition Algorithm, selecting the locally correct
partition IT of Var(y; A ... A~j) in the variable identification step. Let p, €
{p1s.  spet. If, for some 1 < i < n, St(py) =1 (resp. Siz(py) = 0), then the
representant z, of [zq]u is mapped to 1 (resp. 0) under every solution of vy .

Proof. We may assume that cl; has the form (p,, p., ps). Assume first that

1(pg) = 1. Then zj € [a']nr, by definition of Sj,. Let y, 2/, 2], 2] denote the

representants of a’, z¢, zr and z, in yp respectively. Then +r contains the equa-

tions y = flzgs 20 25) and y = f(1, 0 0) apd the r(fsul‘c fpllowxfs. In the other case,

where S° = 0, we know that zf, € [b'];; or ) € |[¢*|z. The rest is as in the
11\Pq 0 0

first case. O
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Proposition 10. Assume that we reach, for input v7 A... A,
put pair ((yp, L), (yr, L)) of the Decomposition Algorithm, selecting the locally
correct partition II of Var(yf A...A~%) in the variable identification step. Then
S solves cly, ..., cl,.

a solvable out-

Proof. Since (yp, L) is solvable it follows from the previous proposition that
two local assignments S;T and S, agree on the common literals in their domain,
for 1 <¢,7 < n. Hence Sy is a truth value assignment on {p1,...,py}. The form
of the S}'Y shows that S solves cly,...,cl,. O

4.2 Intractable EF-unification problems

In this subsection we shall use the criterion given in the Main Proposition to
prove that general F-unification is NP-hard for all the theories mentioned in the
introduction. We begin with the general results. In the following two theorems
we consider theories that have an associative or a commutative function symbol.
It should be clear that these function symbols may have other properties as well.

Theorem 11. Let E be an equational theory that contains an associative func-
tion symbol “o”. If E is reqular, then the problem of deciding solvability of general
E-unification problems is NP-hard.

Proof. Consider the E-unification problem with constants ~ of the form
yoxroz=aoaobococ.

Let # := (x). Since o is associative, it is obvious that v has Z-atomic solutions
that map @ to a,b, and ¢ respectively. Now let ¢ be any #-atomic solution of ~.
We have o(y)oo(x)oo(z) =g aoaobococ. Since E is regular, the atom o(z)
of the left-hand side must occur on the right-hand side (Remark 1). It follows
that o(z) is a,b, or ¢. By Proposition 6, general E-unification is NP-hard. O

Theorem 12. Let E be an equational theory that contains a commutative func-
tion symbol “f 7. If E s regqular, then the problem of deciding solvability of general
E-unification problems is NP-hard.

Proof. Consider the E-unification problem with constants ~ of the form

Ff(.y), flu,v)) = f(f(a,b), f(b.c)).

Let # := (x). Since f is commutative, it is obvious that v has Z-atomic solutions
that map « to «,b, and ¢ respectively. Now let o be any #-atomic solution of ~.
We have f(f(o(z),0(y)), f(o(u),c(v))) =g f(f(a,b), f(b,c)). Since E is regular,
the atom o () of the left-hand side must occur on the right-hand side. It follows
that o(z) is a,b, or ¢. By Proposition 6, general E-unification is NP-hard. O



The theorems show, for example, that general E-unification is NP-hard for
the following equational theories E: the theory A of an associative function
symbol, the theory C' of a commutative function symbol, the theory AC of
an associative and commutative function symbol, and the theory ACI of an
associative, commutative and idempotent function symbol.

The Main Proposition can be strengthened under suitable assumptions on
E. In the sequel, K denotes the class of all equational theories that satisfy the
criterion of the Main Proposition.

Theorem 13. Let E € K. Assume that the problem of deciding solvability of E-
unification problems with linear constant restrictions is in NP. Then the problem
of deciding solvability of general E-unification problems is NP-complete.

Proof. Under the given assumption the Decomposition Algorithm yields an
NP algorithm for deciding solvability of general E-unification problems, see Con-
sequence 5 (pg. 216) of Theorem 2.1 in [BS96]. The result follows immediately
from Proposition 6. O

Corollary 14. Let E be a reqular equational theory that contains an associative
or commutative function symbol. If there exist an NP algorithm for deciding
solvability of E-unification problems with linear constant restrictions, then the
problem of deciding solvability of general E-unification problems is NP-complete.

Let us now look at the non-regular theories mentioned in the introduction
(for which E-unification with constants is polynomially decidable). The results
mentioned below are known, our point is just the simple new proof.

Corollary 15. Solvability of general E-unification problems is NP-hard for the
theories E = ACUN, ACUNL, and AG (to be defined below).

Proof. In each case, we shall give a particular E-unification problem with con-
stants, v, and we shall show that this problem has the properties mentioned in
the Main Proposition.

Associativity, Commutativity, Nilpotency with Unit (ACUN). This theory,
discussed in [GN96], is formulated over the binary nilpotent AC-symbol + and
the constant 0. The axioms for nilpotency and unity are v+ =0 and 2 4+0 = .
We consider the problem ~ of the form z+y+z = a+b+c and choose & = (z,y, z).
It is obvious that v has Z-atomic solutions that map « to a, b, and ¢ respectively.
Conversely, let o be an #F-atomic solution of 7. If the atoms o(z), o(y), and o(z)
are distincet, then {o(2),0(y),0(2)} = {a,b,c} and we are done. But it is easy
to see that an #-atomic solution of v cannot identify two (or three) of the atoms
o(x),0(y), and o(z).

Associativity, Commutativity, Nilpotency with Unit and Homomorphism. This
theory (denoted ACUNA), also discussed in [GN96], is similar to ACUN. There is
one additional function symbol h, the additional axioms are h(z+y) = h(z)+h(y)
and /(0) = 0. We may use the same unification problem as in the case of ACUN.



Theory of Abelian Groups ( AG). The signature of the theory AG, which is
treated in [HK96], has a binary associative and commutative function symbol
+, a unary symbol —, and a constant e. The axioms are x + e = z, 2 + (—z) =
e, v t+y=y+az,and (z+y)+z=2x+ (y+2). We consider the problem 7 of the
form 24+ y+ z = a+b+ ¢ and choose & = (x,y, z). Again it is trivial to see that
this AG-unification problem satisfies the requirements mentioned in the Main
Proposition. O

It is interesting to note that all the problems that we used to verify the
criterion of the Main Proposition are matching problems since the right-hand side
is always ground. We conjecture that the complexity results of this subsection
can be generalized to procedures that decide solvability of general E-matching
problems.

4.3 Impossibility of polynomial combination and limitations for
optimizing the combination algorithm

In view of the complexity results of the previous subsections it is natural to ask
if the following conjecture mentioned in the introduction is true:

Assume that P # NP. Let E € K. Then there exists no polynomial
combination algorithm that reduces solvability of general E-unification
problems to solvability of E-unification problems with constants plus sol-
vability of free (syntactic) unification problems.

When we look carefully at the conjecture, we see that it is difficult to interpret
it in a precise way. In fact, when we are talking here about FE-unification with
constants, we do of course not want to exclude “closely related” output problems
such as, e.g., F-unification with linear constant restriction. Actually, we do not
see any general and convincing definition of the type of output problem that
one would still be willing to accept. Because of this vagueness it seems difficult
either to prove or to refute the conjecture. We shall now introduce one possible
formalization of the conjecture that arises naturally if one tries to optimize
the Decomposition Algorithm in the context of general F-unification. Here the
conjecture can be verified.

Definition 16. A polynomial optimization of the Decomposition Algorithm for
general E-unification is an algorithm that accepts as input an arbitrary general
E-unification problem 7y and computes in polynomial time a finite set M of
output pairs ((vg, L), (e, L)) of E- resp. free unification problems with linear
constant restriction such that vy is solvable iff, for some output pair in M. both
components are solvable. More specifically we demand that each output pair in
M is also a possible output pair of the original Decomposition Algorithm.

Theorem 17. Let EE € K. Then there exists no polynomial optimization of the
Decomposition Algorithm for general E-unification, unless P = NP.



Proof. Assume that there exists a polynomial optimization. We shall then
show how solvability of 1-in-3 problems over positive literals can be decided in
polynomial time, which yields the desired contradiction. We refer to the notati-
ons introduced at the end of Subsection 4.1. Given a 1-in-3 problem cl, ..., cl,,
we encode it into a general E-unification problem v; A ..., Av;: as in the proof
of the Main Proposition. We use 77 A ..., A7, as the input of the polynomial
optimization. The output set M contains only a polynomial number of out-
put pairs. From M, we eliminate all pairs that are based on a partition IT of
Var(~ A ..., Av;) which is not locally correct. Let My be the new set. We claim
that cly, ..., cl, has a solution iff S yields a solution, for some partition IT of
Var(v;i A...,Av") that was used for an output pair in My. In fact, assume that
cli,...,cly is solvable. Then v A ..., A7 is solvable (as we saw in the proof of
the Main Proposition) and M contains a solvable output pair. By Proposition 8,
M contains a solvable output pair. Hence the claim follows from Proposition 10.
Clearly, the computation of all relations Sy for partitions IT used in M, needs

only polynomial time in the size of cly, ..., cl,, under the given assumptions. 0O

5 Conclusion

In this paper we have introduced a criterion that characterizes a large class
K of equational theories E where solvability of general E-unification problems
is always NP-hard. We have seen that for £ € K there exists no polynomial
optimization of the combination algorithm given in [BS92] if applied to general
E-unification, unless P = NP. By and large, the list of equational theories E
that belong to K which was given in Subsection 4.2 indicates that most of the
relevant regular theories belong to K.

The case where we combine a regular equational theory with the free (empty)
theory is one of the simplest situations for combination. On this background,
there cannot be much hope that it is possible to characterize any interesting and
large class of equational theories where a polynomial combination of unification
algorithms is possible. On the other hand, polynomial combination is possible
under strong restrictions. In [Sc96] we have shown that a polynomial combination
algorithm, even for disunification, exists for unitary, regular and collapse-free
theories over disjoint signatures if both theories have polynomial algorithms for
computing most general unifiers, for unification with constants.
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