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Abstract

Makanin’s algorithm [Ma77] shows that it is decidable whether a word
equation has a solution. The original description was hard to under-
stand and not designed for implementation. Since words represent a
fundamental data type, various authors have given improved descriptions
[Pé81, Ab87, Sc90, Ja90]. In this paper we present a version of the algo-
rithm which probably cannot be further simplified without fundamentally
new insights which exceed Makanin’s original ideas. We give a transforma-
tion which is efficient, conceptually simple and applies to arbitrary gene-
ralized equations. No further subprocedure is needed for the generation of
the search tree. Particular attention is then given to the proof that proper
generalized equations are transformed into proper generalized equations.
This point, which is important for the termination argument, was treated
erroneously in other papers. We also show that a combination of the basic
algorithm for string-unification (see [P172, Le72, Si75, Si78] and Makanin’s
algorithm offers a simple solution to the problem of terminating minimal
and complete word unification.

Introduction

One of the simpler tasks which a text editing system has to solve again and again
is the problem to determine whether a particular string W occurs in a given
text T'. This problem may be expressed by means of an equation T == =Wy,
where @ and y are variables and T and W are strings of constants. Obviously W
occurs in 1" if and only if there exists words X and Y in the text alphabet which



solve this equation, i.e., words X and Y such that 7" and XWY are identical.
What we have to solve is a particular word equation. A word equation is an
expression of the form W, == W,, where W; € (C U V)" are non-empty words
in a mixed alphabet C UV of constants and variables respectively. Of course
the set of constants C and the set of variables V are disjoint. A solution of the
word equation W == W, is an assignment of values X; € C* to the variables x;
occurring in the equation such that W; and W, become identical if all variables
are replaced by the corresponding values. When the values X; are allowed to be
words in the mixed alphabet (CUX)", then we get the notion of a unifier of the
word equation.

The importance of the problem to decide whether a word equation has a so-
lution /unifier becomes apparent if other formulations are used. Word equations
may be called equations in a free semigroup, equations over lists (of atomic ele-
ments) with concatenation, or associative unification problems with constants,
stressing their role in mathematical logic (e.g., [Hm71, Ma77], constraint logic
programming (e.g., [Col88]) or universal unification theory ([Ba90, Si89]).!

Historically A.A. Markov, at the end of the 1950’s, was probably the first to
ask whether it is decidable if a word equation has a solution. Markov noted that
every word equation over a two-letter constant alphabet may be translated into a
finite system of diophantine equations, preserving solvability in both directions.
He hoped to obtain a proof for the unsolvability of Hilbert’s tenth problem by
showing that solvability of word equations is an undecidable problem (see [Ma81]
for more details). Approximately at the same time Lentin and Schiitzenberger
[LeSc67] independently considered word equations.

In the following period, in the western countries the main attention was given
to the (relatively simple) problem to enumerate in a compact form the set of all
solutions of a word equation. Plotkin [P172], in the context of resolution based
theorem proving, gave a simple algorithm to generate a minimal and complete
set of unifiers (see section 5 for these notions) for a given word equation (see also
[Le72, Si7h, Si78].% In the eastern countries, the much harder decision problem
was addressed. Hmelewskﬁ7 [Hm71] obtained a partial solution, showing that
the solvability of word equations with three variables is decidable. Later G.S.
Makanin showed in his epochal paper [Ma77] that the solvability of arbitrary
word equations is decidable.

! As a matter of fact it is simple to decide solvability of matching equations like T == Wy,
and efficient algorithis are known for these restricted problems (see, e.g., [AL90]).

?Plotkin’s algorithm was able to deal with a more general problem, namely unification of
first order terms modulo associativity of a given function symbol. Plotkin [P172], in contrast
to Siekmann [Si78] does not prove that this algorithm is correct.



The Problem of an Optimal Form

Makanin’s algorithm is based on the new data type of generalized equations. It
starts translating a word equation into a finite set of generalized equations. Then
two subprocedures, “transformation” and “normalization,” are used to generate
a finitely branching search tree. In general, this subtree generation process does
not stop, and Makanin uses an ingenious idea for termination.

The original decision procedure was not designed for implementation and is
hard to understand. Several attempts have been made to find a better description
[Pé81, Sc90, Ja90] and the algorithm has now been implemented [Ab87]. In this
paper we shall present a version of Makanin’s algorithm which probably cannot
be further simplified without fundamentally new insights into the problem — in-
sights which essentially exceed Makanin’s original ideas. Our presentation will be
based on J. Jaffar’s [Ja90] modified notion of generalized equations which replaces
Makanin’s concept of a “boundary connection” by the concept of a “boundary
equation.” With this step, various important improvements are obtained: the
normalization subprocedure which occurs in [Ma77, Pé81, Ab87, AbPe89, Sc90]
is avoided and transformation of generalized equations becomes simpler since no
boundary connections have to be updated. This source of complexity has been
removed from the algorithm and is now situated in the correctness proof.

Jaffar’s algorithm may be described as a tree generation process which is based
on the iteration of two subprocedures, completion and transformation (= reduc-
tion). The former  trivial  algorithm transforms every generalized equation
in an equivalent set of completed generalized equations. The latter procedure
transforms a completed generalized equation into a simpler generalized equation.
Jaffar, as well as [Ma77, Pé81, Ab87, AbPe89], distinguishes several types of
completed generalized equations. For each type a special transformation rule is
given.

In this paper we present an improved version of the transformation algorithm
which has a built-in completion and consists of just one rule which applies to
arbitrary completed generalized equations®. Thus, with the new transformation
algorithm, the search tree generation process is based on one subprocedure only.
From a conceptual point of view, the effect of a transformation step may be
described very easily:

o At a transformation step, a non-empty left part of the generalized equation
is semultaneously carried towards the right side of the generalized equation.

3A similar procedure was introduced in [Sc90], based on Pécuchet’s notion of a position
equation. But it turns out that the procedure is much simpler if based on Jaffar’s representation.



With this property the new transformation is very similar to the transformation
steps which are used in Plotkin’s (Lentin’s) procedure. Our main aim, however,
was to reduce generalized equations as efficient as possible, even for the price
that proofs become more complex.

o In essence, one step of our algorithm combines all those steps of Jaffar’s
algorithm that are made with the same “carrier”. Thus, a maximal number
of bases and boundaries are transported simultaneously. In comparison
with sequences of case dependent transformations a lot of redundant work
is avoided. The permanent encoding and decoding of information in and
from boundary equations is widely avoided and new boundary equations
are only introduced in specific cases.

The simplicity of the new transformation makes it very natural and easy to
implement.

The Problem of a Complete and Correct Proof

The proof that Makanin’s algorithm is correct and complete has its own history.
It has turned out that the definition of a generalized equation has to contain two
subtle conditions (see [Sc90], pg. 126) whose sense becomes only clear when tech-
nical details of the transformation algorithm are considered. Unfortunately, this
point was not treated correctly in the “classical” papers on Makanin’s algorithm.
Already Makanin's description [Ma77] (at least in its English version) contained
a misprint in the definition of a boundary connection*. Supported by the subse-
quent formulations in [Ma77], most readers were led to a real misinterpretation of
this definition. In particular, Pecuchet’s and Abdulrab’s definition of a position
equation in [Pé81, Ab87, AbPe89] follows such a misinterpretation and does not
lead to a correct proof. Similar difficulties arise from Jaffar’s [Ja90] notion of a
proper generalized equation.

In the meantime, these points are more or less wellknown among the experts
in the field. But, to my knowledge, there is no journal publication which con-
tains a complete and error-free proof showing that transformation of generalized
equations behaves as it should behave. Such a proof will (hopefully) be given in
the appendix of this paper where we show that proper generalized equations are
transformed into proper generalized equations with our transformation rule.

The structure of the paper is as follows. In section 1 we shall first describe the
basic algorithm for word unification which goes back to [Le72, P172, Si75, Si7§].

4In [Ma77], the last inequality of (3.11) should be Lo 2 laa(ry))- In later, less known
papers [Ma80, Ma81], this misprint was eliminated but the notion of “convexity” given there
was not quite correct.



The behaviour of this algorithm in a particular subcase will be helpful to un-
derstand one of the main ideas behind the definition of a generalized equation.
This definition is given afterwards. In the third part of section 1 we will sketch
how word equations are translated into sets of generalized equations. In section 2
we introduce some notation, and in section 3 we define the transformation algo-
rithm and show that transformation preserves unifiability in both directions. We
obtain a correct and complete procedure testing unifiability of word equations.
In section 4 we discuss termination. For this purpose, the notion of a proper
generalized equation is introduced. In section 5 we shall prove — following an
idea of F. Baader — that a combination of Plotkin’s and Makanin’s algorithms
gives a simple solution to the problem of terminating minimal and complete word
unification which was first solved in [Ja90]. This is the problem to find an algo-
rithm which generates a minimal and complete set of unifiers for a given word
equation and terminates if this set is finite.

1 Word Equations and Generalized Equations

In this section we want to introduce the concept of a generalized equation and
to show how word equations are translated into sets of generalized equations. As
mentioned above we shall start with a description of the basic algorithm for word
unification which was independently found by several authors [Le72, P172, Si78,
Si75]. Later, in section 5, we shall prove that the algorithm computes a disjoint
and complete set of unifiers, for every word equation WEy. For the moment we
are only interested in the general structure.

The Basic Algorithm

For given word equation WEy, a finitely branching search tree T, p( WEy) is gene-
rated, using non-deterministic transformation rules based on ”variable-splitting”
techniques. With Succ(WE) we will denote the set of successors of the word
equation WE under transformation. If WE has the form uWW, == vW, (where u
and v are constants or variables and Wy, W5 are possibly empty words), then we
say that WE has the “head” (u,v) and the tail Tai WE) := W, == W,. Expres-
sions (v — W) denote substitutions which simultaneously replace all occurrences
of v by W if applied to any word equation.

Transformation:

(i) If WE has head (a,b) with two distinct constants, then Succ(WE) is empty.



(ii) If WE has head (u,u) with two identical constants or variables, then

Succ(WE) := {Tail WE)}.

(iii) If WE has head (a, z) or (. a) with one constant and one variable, then let
St = (x + a), S5 = (v + ax). Now
Succ(WE) := { Tail(S}* (WE)), Tail(Ss"(WE)) }.

(iv) If WE has head (z,y) with two distinct variables, then let
SiP = (y = x), S = (v = yx) and SE = (y — 2y). Now
Suce(WE) := { Tail(SL” (WE)), Tail(SL? (WE)), Tail(SL (WE))}.

Successor elements may have one or two empty sides. Every node labelled with
a “word equation” with two empty sides is a successful leaf. Every node labelled
with a “word equation” with exactly one empty side is a blind leaf.

In this version the algorithm defines a semi-decision procedure: it is straight-
forward to see that WE, has a solution iff 7, p(WE)) has a successful leaf (see
section D).

The Explosion of the Data Size

In general, the basic algorithm does not terminate since the size of the word equa-
tions which are created via transformation may grow. As an example, consider
the word equation ryry == axyxrzb. We may apply the transformation WE —
Tail(SEP (W E)). The resulting word equation vyary == aryaxzb has again head
(x,a). After k iterations we obtain the word equation xya*ry == avya*xzb. In
some cases, termination arguments may be given based on splitting techniques
(see [LiSi75]). In general, however, there is no simple additional technique to
decide solvability by deciding when an infinite branch can be cut.

A Decidable Subcase

In a particular case it is simple to obtain a terminating algorithm by means of
loop-checking methods: a trivial inspection of the transformation rules shows
that the size of word equations cannot grow if no variable occurs more than
twice. Thus, in this case there is only a finite number of word equations which
may occur in the search tree. Suppose that we have reached — at node v —
a word equation which has occurred earlier in the same path, at node v;. In
this case we may stop with failure: if any sequence of transformations leads to a
successful leaf, starting from 15, then we may apply the same sequence starting
from v; and we will again find a successful leaf. This shows that we may ignore



the subtree below 1, for matters of decidability. More generally we may stop
when we have found a word equation WEs which is isomorphic to a predecessor
WE; in the same path. This means that WEs; may be obtained from WE; by
a permutation of the variable alphabet and a permutation of the alphabet of
constants.

With this pruning method we obtain a finite subtree 7-Lf ]in(W’E(,) and thus a
decision procedure: WEy has a unifier iff 7,/)"(WE;) has a successful leaf.

Generalized Equations

The observation that unifiability of word equations is decidable if variables occur
at most twice does not solve the general problem. We cannot translate an arbi-
trary word equation into an equivalent word equation where every variable has at
most two occurrences. But, with a more complex data type, it is in fact possible
to get an artificial duality of variables. This is one of the important ideas behind
the following concept.

Definition 1.1: A generalized equationis a quadrupel GE = (BS,BD,Col, BE)
with four entities:

(1) A finite set of bases: BS = {bsy,...,bsy}, N > 1.
Every base is either a variable base or a constant base. Each constant base
bs; is associated with exactly one letter a in the alphabet C, we say that
bs; has type a. Each variable base bs; is paired off with exactly one other
variable base bs; € BS; bs; and bs; are called duals of each other. Letters
x,Y, z,... denote variable bases. We write T for the dual of the variable
base x.

(2) A finite set of boundaries: BD ={1,2,.... M}, M > 1.
Letters ¢, j, k, ... denote boundaries. A pair (¢, j) of boundaries with ¢ < j
is called a column of GE. Columus (i, i) are called empty, columns (¢,7+ 1)
are called indecomposable. For 1 < j < k we say that boundary j is in

(i, k).

(3) A column-function Col:
A function which assigns a column of GE to every base of BS such that
Col(bs;) is indecomposable for every constant base bs; € BS and that
Col(z) # Col(T) if x is a non-empty variable base®. For convenience,
we introduce the two functions Left and Right: if Col(bs;) = (j,k), then
Left(bs;) = j and Right(bs;) = k.

°i.e., a variable base with non-empty column.

~1



(4) A finite set BE of boundary equations:
A boundary equations is a quadrupel of the form (¢, x,j, ) where i and j
are boundaries, x and ¥ are dual variable bases, 7 is in Col(x) and j is in
Col(z). Symbols F, E, ... denote boundary equations.

The role of parts (1)-(3) of the definition will become clear in a moment when we
have given the definition of a unifier of a generalized equation and when we show
how word equations are translated into sets of generalized equations. In order to
understand the role of the boundary equations (4), more background is needed.
For the moment, imagine that a boundary equation (7, z, j, r) expresses that the
position of 7 in x corresponds to the position of j in T.

For readers which are familiar with Jaffar’s [Ja90] corresponding definition
let us point out two differences: by (2), boundaries are naturally ordered and
our generalized equations are completed in the sense of [Ja90]. The condition
Col(x) # Col(T) for non-empty variable bases 2 may be regarded as a normaliza-
tion condition in the sense of [Ma77]. It will guarantee later that the “carrier” of
a non-trivial generalized equation and its dual never have the same position.

Definition 1.2: Every assignment S of non-empty words S(i,i+1) € (CUV)*
to the indecomposable columns of GE has via concatenation a unique
extension which assigns a (non-) empty word to every (non-) empty column of
GE. We identify S with this extension. S is a unifier of GFE if three conditions
are satisfied:

(i) S(Col(bs;)) = a for every constant base bs; of type a (a € C),

(ii) S(Col(x)) = S(Col(x)) for all variable bases x of GE,

(iii) S(Left(x),1) = S(Left(T), j) for every boundary equation (i,x, j,7) in GE.
The index of S is the number |S(1, M)|, where M is the maximal boundary
and [W] denotes the length of the word W. The exponent of periodicity of S
is the maximal number e such that S(Col(x)) may be represented in the form

S(Col(z)) = UVW, V non-empty, for a variable base x of GE. S is a solution
of GE'if S(1,M) e C™.

Translation

The following example shows how word equations WE are translated into sets
> (WE) of generalized equations. We visualize one generalized equation which is
assigned to the word equation WEj of the form axxbyr == vayyxry with variables



xr and y:

1 2 3 4 5 6 7 8 9 10 11
a T U
xy b Ty
€T3
U3 Y1
a Y2 U3
Ty Y2 T4
Ys

The vertical lines are the boundaries 1,2,....11 of GEy which fix the relative
extension of variables. GE, contains a certain “variant” of the left side axrzbyx
of WEy in the upper part and a similar variant of the right side rayyry in
the lower part.® In GE,, multiple occurrences of the same symbol are formally
distinguished. For this reason bases are introduced (horizontal lines). For the
sake of simplicity we did not use distinct names for the two coefficient bases of
type a in our figure. More important is the variable part. In word equations, a
variable may have an arbitrary number of occurrences. In a generalized equation,
every variable base has exactly two “dual” occurrences which are notationally
distinguished by means of a bar “”. By 1.2 (ii), dual bases have to get the same
value. With this dualism it will be possible to transform a generalized equation
without any enlargement of the number of bases. Exactly for this reason the
variable dualism is introduced.”

When we translate WE, we must store the information that all columns of
GEy which correspond to the four occurrences of x in WE, have to get the same
value. We may only use pairs of dual variable bases. But we may also identify
distinct variable bases by writing them into the same column. In our example
every solution of GEy will assign the same value to r; and to w9, similarly to 7o
and x3 and also to T3 and x4 because they have the same column. In combination
with the equality of dual bases this will ensure that the four “a”-columns (2,4),
(4,6), (9,11) and (1, 3) will get the same value under an arbitrary solution. The
same holds for the “y”-columns (7,9), (4,5), (5,8) and (10,11).

The remaining elements of > (WEy), the set of all generalized equations cor-
responding to WEy, only differ from the one given above in the relative position

6The vertical position is, however, irrelevant — it was just chosen for the sake of readability.
‘Later we shall see that this does not mean that we have avoided the “explosion of the data
size” — generalized equation may start growing in another part.



of bases. In order to preserve solvability the elements of > (WE,) must repre-
sent every possible distribution for the relative length of the bases. The formal
definition of the translation algorithm is not difficult and therefore omitted. We
refer to [Ja90].

The following lemma summarizes some properties of the translation which are
trivial but become important later. If S is a solution of the word equation WE,
the exponent of periodicity of S is the maximal number e such that S(x) may be
represented in the form S(x) = UVCW, V non-empty, for a variable = of WE.

Lemma 1.3: There exists an algorithm which computes for every word equa-
tion WEy a finite set > (WEy) of generalized equations with the following pro-
perties:

(a) WEy has a unifier with exponent of periodicity e if and only if some GE €>
(WEy) has a unifier with exponent of periodicity e.

(b) The elements of > (WEy) do not contain boundary equations. Every boun-
dary is the right or left boundary of a base.

(c) For GE €> (WE,). the number of bases of GE does not exceed 21(WEy),
where [(WEy) is the notational length® of WE,.

As in [Ja90], a generalized equation GE is called trivially true, if all variable
bases of GE are empty and if GE has a unifier. GFE is true, if it is trivially true
or if all constant bases of GE have the same type and GE has a unifier. (If all
constant bases of GE have the same type, then unifiability reduces to a set of
length restrictions which may be represented by an existential formula of first-
order arithmetic without multiplication (Presburger arithmetic). The validity of
such formulas is decidable, see [Coo72]). GE'is trivially false if two constant bases
of distinct type have the same column. GE is false, if it is trivially false or if the
generalized equation GE® which we get when we assign the same type a € C to
all constant bases has no unifier (in this case some inherent length restrictions
cannot be satisfied). GE is trivial if it is either trivially true or trivially false.

Since empty variable bases cannot be involved in boundary equations it is
trivial to decide the unifiability of GE if all variable bases are empty.

Lemma 1.4: [t is decidable whether a generalized equation is trivial (true,

false).

®i.e., the number of symbol occurrences.
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2 Transformation — Notions

Suppose that GFE is a non-trivial generalized equation. Let [* denote the leftmost
boundary among all left boundaries of non-empty variable bases. The carrier of
GE is the largest? base among all variable bases with left boundary I* (if there
are several candidates, any may be chosen). The symbol x. will be used to denote
the carrier. The basic idea of the transformation procedure is to carry a part of
the structure of Col(x..) to Col(Z.) and to erase a left part of GE afterwards. In
general there are various ways how the structures of the two columns Col(x.) and
Col(Z.) can be superposed and transformation is non-deterministic. In order to
maintain unifiability downwards and upwards, all relevant information on iden-
tical subwords has to be preserved at a transformation step. As it turns out, it
is possible to transport simultaneously the complete structure of Col(x..) up to a
certain critical boundary. From now on, (I*,r*) and (I**,7**) always denote the
columns of z. and x, respectively.

Definition 2.1: The critical boundary of GFE is the leftmost boundary among
all left boundaries of variables bases y such r* is in Col(y), if such a base exists,
and 7* in the other case. The symbol cr denotes the critical boundary.

Remark 2.2: In any non-trivial generalized equation GE, I* < cr < ™.

Up to z. and Z., the bases and boundaries of GE will now be partitioned
in three classes of superfluous objects, transport objects and fixed objects. The
superfluous objects will be erased at a transformation step. The transport entites
are carried to Col(Z.), the fixed entities keep their position. Roughly, the clas-
sification may be seen in the following figure, but details will become important
later.

1 e cr r* M
transport

superfluous transport or fixed fixed

bases/boundaries | bases/boundaries | bases/boundaries | bases/boundaries

Definition 2.3: The transport bases of GE are all bases bs # x. such that
I* < Left(bs) < cr and the empty bases with column (cr,cr). A base bs with
Col(bs) = (i,7), i < I* is called superfluous. A base bs # wx.,T. which is not
superfluous and not a transport base is called a fized base.

%i.e., the one with the largest right boundary.
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Note that all bases bs with Left(bs) < [* are necessarily empty, by definition
of the carrier.

Remark 2.4: It will be frequently used that columns (i,j) of non-empty
transport bases are always subcolumuns of (/*, 7*) with ¢ < cr. On the other hand,
if (¢, 7) is the column of a fixed base, then cr <7 and cr < j.

Definition 2.5: A boundary i of GE is a transport boundary in three cases:

(i) if I* <i < er,
(ii) if er <@ <* and i = Right(x) where @ is a transport base,

(iii) if er < @ < r* and 7 occurs in a boundary equation (i,x,j,%) or (J, T,i,x)
where x is a transport base.

A boundary ¢ < [* is called superfluous. A boundary is fized if it is neither
superfluous nor a transport boundary.

When we carry the transport entities from Col(x.) to Col(Z.) we have to
superpose the structures of both columns. The following definition excludes su-
perpositions which are trivially wrong, contradicting information about equal
subparts of the two columns which are encoded in boundary equations of the
form (i, 2,7, %) or (j,Te, i, x.).

Definition 2.6: Let I*'" (I*+ 1), ...,7*"" be a sequence of symbols not occur-
ring in GFE, representing a copy of all boundaries between [* and r*. An extended
print is a linear order < on the set'® BD U {I*'", (I* + 1), ..., 7*'"} satisfying the
following conditions:

(1> I*tr — l**,, ,r*fr — gx

9

(i1) < extends the natural order of BD and k" < {7 for I* < k < [ < r*,

(iii) if I* < i and (i,7) = Col(bsy) for a constant base, then 7 and j are conse-

cutive with respect to <. Similarly, if I* < i < 7 <r* and (i, ) = Col(bsy)
for a constant base, then also ™" and j are consecutive with respect to <,

(iv) if I* < i < r* and GE has a boundary equation (i, x.,J,Z.) or (J, T, 1, x.),
then " = 4,

(v) if x is a transport base, T a fixed base and if GE has a boundary equation
(i,2,7,%) or (j,&,i,x), then i'" = j iff Left(x)"" = Left(z) iff Right(x)" =
Right(z) (equalities with respect to <).

0For pure formalists: since elements of M := BDU{I*", (I*+ 1) ...,7*'"} may be identified
with respect to <, this linear order is formally an order on a partition of M.

12



A print is the restriction of an extended print to the set

BD = {cr, cr+1, ...,,AM:} U {527‘1 o 1,[7?7“}

T

where {iy,..., 7.} is the set of all transport boundaries of GE.

Lemma 2.7: The set of all prints of GE is finite and may effectively be
computed.

Definition 2.8: The boundary equations of the form E = (i,x,,7),x #
X, T, are called standard equations. The natural image E' of E is the quadrupel
which we get from E, replacing the entry ¢ (entry j) by ' (by j) if x (vesp. T) is
a transport base and leaving it unchanged in the other case. Of course both bases
x and T may be transport bases in which case both ¢ and j have to be replaced
to obtain the natural image. If < is a print, £’ is degenerate with respect to < if
the two boundaries occurring in E’ coincide with respect to <.

Remark 2.9: According to 2.4 and 2.6 (ii), i"" < cr'" if i is the left boundary
of a non-empty transport base, for any print <.

3 Transformation — Algorithm

The following Transformation procedure assigns a finite set Transf{GE) (of non-
false generalized equations) to every non-trivial generalized equation GE:

e Transformation of GE = (BS,BD,Col,BE).
Step 1. Compute the set of all prints for GE.

Step 2: For every print < of GE let GE< be the generalized equation
(BS', BD', Col’, BE') with components as defined below. GE< is — modulo a
trivial renaming of boundaries
of all resulting structures GE<.

a generalized equation. Transfl(GE) is the set

3.1 BS' is the set of all non-superfluous bases of GE.

3.2 BD' contains
3.2.1: all boundaries 1, cr <z,

3.2.2: a new boundary " for every transport boundary i of GE.

3.3 Col’ is defined as follows:

13



3.3.1: Col’(bs) = Col(bs) if bsis a fixxed base of GE, with the exception described
in 3.3.4,

3.3.2: Col'(bs) = (Left(bs)!", Right(bs)'") if bs is a transport base of GE, with

the exception described in 3.3.4,

Col'(x.) = (cr,r*) and Col'(z )z(cr ),

If x is a non-empty variable base and if Col’ () = Col'(z) according

to 3.3.1 and 3.3.2, then this value is corrected: Col'(x) = Col'(z) =

(Right'(x), Right'(x)).

ww

3.4: BE' contains:

3.4.1: every non-degenerate natural image £’ of a standard equation E of GE,

3.4.2: all boundary equations of GE of the form (i,x.,j,%.) or (j,Z.,i,x.) for
cr <1,

3.4.3: a new equation E' = (i,x.,i'", %) for every transport boundary ¢ > cr.

Step 3: Erase all false elements of TransfI(GE). In the remaining structures,
rename boundaries using natural numbers 1,...,M’, according to their order
with respect to <. The resulting set is TransflGE).

Example 3.5: To get a better picture of the algorithm it is useful to distin-
guish three levels of growing complication. In the first situation the boundary
r* 1s not inside the column of another base. Then ¢r = r*, the complete struc-
ture of Col(x,.) is transported to Col(Z.) and z., 7. become empty bases. The
transformation does not introduce any new boundary equation. In the following
example, x is the carrier of GE, r* = c¢r = 4.

a

(2,2,7,7),(3,2,6,2)

=l
=

The first boundary equation is used to determine the new position 7 of 2" and
erased afterwards. Here is one element of Transfl(GE). It is the only successor
in this case  the empty variable bases x and r are omitted. Boundary names
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1" and 4 are only added in order to facilitate the reading.

4 5 61t |72t | 30| 84t | 9
r b
a
_ . _
Z (3",2,6,2)
r a
b

The corresponding element of Transf{ GE) woud be obtained using standardized
boundary names 1,...,7.

The second typical situation occurs if there exists a base y, Left(y) < 1™,
which exceeds the carrier, but if there is no transport base whose right boundary
falls into the column (cr,7*). The subpart of Col(z.) up to the critical boundary
is transported and ¢r becomes the new initial boundary. As a consequence of
the second condition, no new boundary equations are introduced. The following
generalized equation GE is an example — the carrier is @, ¢r = 3:

1 2 3 4 5 6 7 8 9

I

el

a

b

Again Transfl(GE) has only one element:

3 4 5 6,1t | 7,2t7 | 3tr g4tr | 9
v T
r
a
z Y (3", 2,6, 7)
a 7
b

Y




In the third and most complex situation we have a transport boundary between
cr and r*. In our example it is the boundary 4 = Right(s).

1 2 3 4 5 6 7 8 9 10

a

]|
=

(2,2,8,%),(3,2,7,2)

In this case we need a new boundary equation (4, z, 4" Z) after the transfor-
mation in order to store all information on identical subcolumns:

3 4 5 6 7,1t | 82tr | 3t | 4ir 9,5tr 10
v T
,
a
z Uy - _
_ Y (3",2,7,2), (4, 2,4, )
a T
S b
Yy
S

Remark 3.6: (a) Suppose that GE' = GE. € Transf{GE). If the natural
image of a boundary equation E = (i,x,7,%) of GE is degenerate in GE', then
we are in the case described in 3.3.4 and vice versa, by 2.6 (v).

(b) Note that the boundary equations of GE which are erased in GE' are ex-
actly the degenerate boundary equations and the boundary equations of the form
(i, 2., 7, %) or (J, T, 1,x.) where i < cr.

As a matter of fact, functions Left’ and Right' may be defined in 3.3. In
the following it is convenient to distinguish occurrences of the same base in GE
and in GE' := GE. if their position is changed. We allow to write bs"" for an
occurrence of the transport base bs in GE', similarly we often write 2/, and 7/, for
occurrences of . and 7. in GE'. We also allow to write I*'" (#*'") for [** (1*).
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Theorem 3.7: For every print =, the structure GE< s - modulo renaming
of boundaries - a generalized equation. The number N' of bases of GE< does not
exceed the number N of bases of GE.

Proof: The only nontrivial part is to show that all elements E’ of BE' are in
fact boundary equations of GE'. If E' is the (non-degenerate) natural image of
E = (i,x,j,%), suppose, for example, that z is a transport base while T is fixed.
Thus E' = (i'", 2", j,z). Clearly j is in Col’(z) = Col(z), by 2.6 (ii) since E is
a boundary equation. Again by condition (ii) of 2.6, ¢'" is in Col’(2'") and E’ is
in fact a boundary equation. If £’ has one of the types of 3.4.2 or 3.4.3, then it
follows from Col’(x)) = (cr,r*) and Col’(Z.) = (cr'",r**) that E’ is a boundary
equation, using 2.6 (ii) and, for 3.4.3, 2.6 (iv) to get c1'" < j. O

Before we continue the formal analysis of the transformation procedure
we have to add a general remark: it is clear that the non-false elements of
Transtl(GE) and the elements of Transf{ GE) are identical modulo a trivial stan-
dardization of boundary names. We want to establish various results concerning
Transf{ GE). For the proofs it is much more convenient to use the correspon-
ding structures of Transfl(GE). Thus we shall henceforth ignore this notational
distinction.

Theorem 3.8: (a) If GE has a unifier S with index I and exponent of peri-
odicity e, then Transf(GE) has an element GE' which has a unifier S’ with index
I' < I and exponent of periodicity ¢ < e.

(b) If an element of TransflGE) has a unifier, then GE is unifiable.

Proof: (a) Let S be a unifier of GE. For all i in (I*,7*) and all j in (I**,r**)
define

laok7

o " < jiff S(I*,i) is a proper prefix of S(I**, j),

o i = jiff S(I*,i) = S(I*,j),

o j <" iff S(I**,j) is a proper prefix of S(I*,1).

Obviously < determines a unique extended print for GE. We may use the same
symbol < for the corresponding print. We show that GE' = GE< has a unifier
S’. We have to consider the indecomposable columns of GE'. All such columns
of the form (7,7 + 1) which have an empty intersection with (I**,7**) are columns
of GE. We define S’(i,i + 1) = S(i,7 + 1). There are at most the following four
types of indecomposable subcolumns of (I**,7**) in GE":

,(i) (7,7 + 1) where I'* < j < r**,

(i) (¢'",j) where 7 in (I*,7*) is a transport boundary and I** < j < r**,
(iii) (4,4"") where 7 in (I*,7*) is a transport boundary and I** < j < r**,
(iv) (¢, ') where I* < i < j < r* and both i and j are transport boundaries.
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We define S'(j,7 +1) = S(j,7 + 1) in case (i), S'(:",j) = S(I*,4)~'S(I**,j) in
case (i), S'(j,¢") = S(I**,7)7'S(I*,i) in case (iii) and S'(i'",j) = S(i,j) in
case (iv). The following claim may be proved by induction on the number of
indecomposable subcolumns. The technical proof is omitted:

Claim: For all common columns (7, ) of GE and GE": S'(i,j) = S(i,); for all
columns of the form (i'", j'") of GE': S'(i'", j'") = S(4, j).

With 3.3.1 and 3.3.2 it follows immediately that S’(Col’(bs;)) = S(Col(bs;)) = a
for all constant bases bs; of GE of type a, and that S’(Col’(x)) = S'(Col’(z))

for all fixed and transport bases x of GE. Moreover, by the claim we get
S'(er,r*) = S(er,r*) = S (er' ™7y = S (e’ r™)

and therefore S'(Col’(2!)) = S’(Col’(Z!)). Thus S’ satisfies conditions (i) and
(ii) of definition 1.2.

Suppose now that E’ is a boundary equation of GE'. Recall 3.4. We have
to show that S” satisfies condition (iii) of 1.2 for E'. In the first case E’ is the
(non-degenerate) natural image of E = (i, 2, j,7) € BE. Assume first that x is a
transport base while 7 is fixed. Thus E' = (i"", 2", j, 7). By 3.3.2, the claim, 1.2
(iii) and 3.3.1 we have

S'(Left' (2),i") = S'(Left(x)" ') = S(Left(x),1)
S(Left(x),j) = S (Left' (%), 7).
Similarly condition (iii) of definition 1.2 may be verified for the remaining sub-
cases.
In the second case E' has the form (4,27, 7, 7)) or (j,7.,4,2%) where ¢r < i and

where F = (i,2.,7,%.) or (j,ZTe,1,2.) € BE. Recall 3.3.3. Here ' = j, by 2.6
(iv). By the claim,

S'(cr,i) = S(er,i) = S (er'",i") = S'(c1', 5)

as demanded.
In the third case, E' = (i,2,i'", 7.) is new and cr < i, by 3.4.3. By the claim,

S'(er' iy = S(er, i) = S(er,i).

Thus condition (iii) of definition 1.2 is always satisfied.

We have shown that S’ is a unifier of GE'. Obviously the index of S is strictly
smaller than the index of S since I* < cr. The exponent of periodicity ¢ of S’
does not exceed the exponent of periodicity e of S since S’(Col (x)) is always a

suffix of S(Col(x)), for any variables base x of GE'.
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(b) Assume now that S’ is a unifier of the structure GE' = GE<. All inde-
composable columns (7,7 + 1) of GE with cr < i are columns of GE'. We define
S(i,t4+1) = S'(¢,i+ 1) in these cases. For the indecomposable columns (¢, ¢ + 1)
of GE with i + 1 < I* we define S(i,i + 1) = a if (i,7 + 1) = Col(bs;) for a
constant base of type a (remember that GE is nontrivial, hence a is unique).
In the other cases, an arbitrary non-empty word S(i,7 + 1) may be assigned

S, x4+ 1) = S, (I* + 1)'),...S(cr — 1,cr) = S'((er — D), er'"). Tt follows
immediately that S’(i,j) = S(i,7) for all common columns (¢,7) of GE and
GE. Furthermore, for all [* < i < j < cr we have S(i,j) = S'(i"", j'). Since
S'(er,j) = S'(er'", j) for all transport boundaries j > cr of GE (compare 3.4.3,
3.3.3 and 1.2 (ii)) it is possible to prove that S(i,7) = S'(:'", j7") for arbitrary
transport boundaries ¢ < j of GE. Similarly as in (a) it is now easy to verify that
S is in fact a unifier of GE. O

For word equation WEy the tree Tyr.x(WEy) has WEy as top element and
> (WEy) as first level (compare lemma 1.3). For every GE €> (WEy), the dow-
nward tree is the unordered, finitely branching tree which results form iterated
transformation.

Corollary 3.9: WEy has a unifier if and only if Tyyar.(WEy) has a node which
15 labelled with a trivially true generalized equation.

Proof: "only if”: Suppose that WEj, has a unifier. By 1.3 some element
of > (GE) has a unifier, of index I, say. By 3.8 there is a downward branch
in Tarax( WEp) labelled with unifiable generalized equations where the index de-
creases at every step. Since the index is non-negative, the length of this branch
cannot exceed I. The generalized equation GE which labels the last node can-
not have a non-empty variable base since otherwise the transformation algorithm
would apply again. The rest is obvious.
7if”: by Lemma 1.3 (a) and Theorem 3.8, with a trivial induction. O

4 Proper Generalized Equations and Termina-
tion

In most cases Tyrap(WEp) will be an infinite tree. The previous results show
that it offers a correct and complete semi-decision procedure. In order to obtain
termination we need two additional arguments. The first is simple: similarly as
for the basic algorithm we may eliminate some branches by means of loop checking
methods. Let us call two generalized equations GE and GE' isomorphic if the
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latter equation differs from the former only by means of a “consistent renaming
of bases” , i.e., if GE' may be obtained from GE by a bijection between the sets of
bases which maps coefficient bases of the same type again into coefficient bases
of the same type. Obviously we may stop a branch if we have found a generalized
equation GE which is isomorphic to a predecessor GE in the same branch.

Even with this pruning method we will get an infinite tree in general: ge-
neralized equations may have an arbitrary number of boundaries and boundary
equations, thus there is an infinite number of non-isomorphic generalized equati-
ons even for a fixed number of bases. The second argument is much more difficult
and may be regarded as the main idea behind Makanin’s decidability result. It is
based on the following theorem which was first proved in Bulitko [Bul]. A second
version occurs in [Mak], recently Koscielski and Pacholski [KoP] found the bound
which is used in the following formulation:

Theorem: Let WEy be a word equation with notational length [. If WEy has
any solution, then it has a solution where the exponent of periodicity e satisfies

e S eppma:r(l) — 21.071'

Recall that translation into generalized equations and subsequent transfor-
mation steps preserve solvability under a given upper bound for the exponent of
periodicity in the downward direction (1.3 and 3.8). Thus, for a mere decision
procedure it suffices to consider in Ty (WEy) the generalized equations which
possibly have a “tame” solution, i.e. a solution where the exponent of periodicity
does not exceed epp™*“(1).

Makanin’s main technical result — now adapted to the present terminology
— was the proof that for the generalized equations GE which are generated via
transformation the number of boundaries determines a lower bound for the expo-
nent of periodicity of an arbitrary solution. If the number of boundaries is very
large, GE cannot have a tame solution and may be treated as a failure leaf.

A similar result for arbitrary generalized equations can not be proved. The
relevant properties which guarantee that a lower bound for the exponent of peri-
odicity in terms of the number of boundaries may be given are captured by the
concept of a proper generalized equation. This notion will be introduced below.
We will also show that all generalized equations in Ty ( WEy) are proper.

Let us continue with the decidability argument. Note that for all generalized
equations in Tarar (WEp) the number N’ of bases does not exceed the number
N = 2I(WEy) where [(WE,) is the notational length of WE, (1.3 (c) and 3.7).

Theorem: There exists a recursive function NBD™*(N,b) such that every
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proper generalized equation with N' < N bases and M' > NBD™*(N,b) bounda-
ries has only solutions S where the exponent of periodicity exceeds b.

This is essentially Jaffar’s Main Lemma ([Ja90], pg. 75). Now obviously the
number of nonisomorphic proper generalized equations with N’ bases and M’
boundaries, where N < N and M’ < NBD"““(N, epp™**(1)), is finite. Thus
there is only a finite number of generalized equations to consider. Summarizing
we arrive at the following

First Decision Procedure

Suppose the word equation WEy of length [ is given. Let epp™®*(l) be the bound
given in the theorem of Bulitko, Makanin and Koscielski-Pacholski. Translate
WE, into > (WE,), erasing false generalized equations. Iterate transformation.
A node labelled with the generalized equation GFE is a leaf in the following cases:

e GEis trivial: since GE is non-false, it is trivially true and solvable (success).
e GE is isomorphic to a predecessor equation (failure).

o If GE has M' > NBD™*(N, epp™®(l)) boundaries, where N = 2[ (failure).

Let 7}’;21,\(“]30) be the resulting tree. It is finitely branching (2.7) and every
path is of finite length. Thus T (WEy) is finite. WEy is unifiable if and only if
7}’;21,\( WEy) has a leaf which is labelled with a trivially true generalized equation
GE.

Proper Generalized Equations

If £ = (i,z,j,%) is a boundary equation of the generalized equation GE, then
it is obviously possible to replace it by E~! = (4, 7,4, 2) without affecting sol-
vability. We shall say that both E and E~! are oriented versions of E and both
are oriented boundary equations of GE in this case. Throughout this subsection
GE = (BS,BD,Col,BE) denotes a nontrivial generalized equation. If not men-
tioned otherwise, all bases, boundaries and boundary equations are always from

GE.
Definition 4.1: A chain of GE is a sequence 1 = Ey, Ey, ..., E,,,w (m > 0)

where the E; are oriented boundary equations of the form (i, x, 141, jr;)” (1<

" Thus, the second boundary of E; and the first boundary of E;y; must always be identical.
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Figure 1: A “domino-tower”.

I < m) and w is a witness, i.e. a base w = bs; with Right(w) = i,,1,. The leading
base of m 1s x7.

Definition 4.2: Let 7 = FE|,..., E,,,w be a chain, suppose that E; has
the form (i, x7,441,7) (1 < 1 < m). To m we assign the word y(m) of
m symbols s; in the alphabet {>.=.<} defined by Left(z;) s; Left(xj1)
(1 < j < m) and Left(Z,,) s, Left(w). The chain 7 is called convex if
x(m) € {>,=}" o {<,=}*. A convex chain 7 is adaptive if x(7) € {<,=}".

For every unifier of GE, the values of the variable bases occurring in a convex
chain m may be arranged to a “domino-tower” of the form indicated in figure 1.
Here parts which have vertical contact are identical. If 7 is adaptive, then the
upper part — the part which has a frontier growing leftwards — is empty. This
means that we may put any additional “pair of stones” on top of the given tower
without destroying the convex form.

Later we shall consider sequences " = E{, ..., E/  w' where the E] are boun-

dary equations of GE' = GE< € Transf{GE) and w’ is a base of GE'. Then
Y (7') € {>,=,=<}™ is defined accordingly.

Definition 4.3: The left (right) boundaries of GE are the boundaries ¢ such
that Left(bs;) = i (Right(bs;) = i) for a base bs; of GE. The involved boundaries
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Figure 2:

are the boundaries i which occur in an oriented boundary equation (7, x, j, ¥) of
GE. A boundary 7 of GE is abandoned if it is neither left nor right nor involved.
In the following LB(GE) denotes the number of left boundaries of non-empty
bases of GE and AB(GE) the number of abandoned boundaries of GE.

Definition 4.4: The generalized equation GE with N bases and M bounda-
ries is proper, if the following two conditions are satisfied:

(i) LB(GE) + AB(GE) < N.

(i1) For every boundary equation E of GE there exists a convex chain
E\Es, ..., E,, w where E; is an oriented version of F.

Let us briefly sketch the argument which shows that for proper generalized
equations with N/ < N bases the number of boundaries determines a lower bound
for the exponent of periodicity of an arbitrary solution. Condition (i) trivially
implies that proper generalized equations with a large number of boundaries have
a large number of boundary equations, for fixed number of bases. Condition (ii)
implies that these boundary equations may be ordered to long convex chains m
such that y(m) contains a large number of symbols “>" or “<” (this is non-
trivial). Such chains show that some solution component S(Col(x;)) (here
is a variables base occurring in 7) may be arranged to a high “domino-tower”,
as indicated in figure 2. But such arrangements are only possible if S(Col(x;))
has a large number of periodical, consecutive repetitions of the same nonempty
subword. For details we refer to [Ma77, Ja90].

By 1.3 (b), all generalized equations in > (WE,) are proper, for any word
equation WE,. We shall prove the following theorem:

Theorem 4.5: If GE is a non-trivial proper generalized equation, then all
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generalized equations in Transf{GE) are proper.

It follows that all generalized equations occurring in Tyrqr(WEy) are proper.
The proof of theorem 4.5 will be divided two parts. We shall first show that
transformation preserves condition (i) of definition 4.4. In the appendix it will
be shown that transformation also preserves condition (ii).

Definition 4.6: A convex chain E,..., F,,,w of GE is clean, if it does not
contain a subsequence E;, F;yy of the form (i, z, 7, %), (j, 7,1, x).

Lemma 4.7: Suppose that GE is a proper. If E € BE, then there exists a
clean convex chain Ey, Es, ..., E,,, w such that E is an oriented version of E.

Proof: Since GE is proper there exists a convex chain F£y,..., F,,, w star-
ting with £ or E~'. We show that every subsequence Ej, E;.; of the form
(¢,2,7,7),(j,2,1,2) may be replaced by a shorter sequence. The result follows
then by induction.

Case 1, [ = 1: Note that Fy = Efl. The chain E5, Ej, ..., E,, w is again convex
and starts with E or E~%.

Case 2: I+ 1 = m: The case m = 2 reduces to case 1, thus let m > 2
and E,_» = (k,y.i,y). Now Ei,..,E,_o,w is a chain since Right(w) = i
and thus w is a witness for Ey,...,E,,_o. Convexity is trivial for m = 3, or

if \(Ey,...,E,_3, E,_») does not contain a symbol "<”. If m > 3 and if
X(EY, ..., E,_3, E,_») contains a symbol " <" then Left(y) < Left(x) < Left(w),
by convexity of 7.

Case 3: 1 <[ < m —1: In this case E, ..., E,, has a subsequence

= (A,y,z,g)(z,z,],f)(]fﬂz,l)(z,z,h,é)
We replace it by @' = (k,y,4,9)(i,2,h,z). The new chain is convex (it is trivial

to see that in a convex “domino-tower” some “stones” may be omitted without
destroying the convex form). O

Corollary 4.8: A clean convex chain m of GE does not have a subsequence
of the form (i.2e, j, 2}, (joTosky2e) o8 (. Tori ), (is20 b, 2,).

Proof: Since GE is non-false this would imply that &k = resp. k = J. O

Of course this property does not only hold for the carrier x., but also for
arbitrary bases. But we need this corollary only in the present form.

24



Lemma 4.9: Suppose that GE is proper. Then every GE € Transf{GE)
satisfies condition (i) of definition 4.4.

Proof: Remember that the boundaries of GE' are cr,cr+ 1...., M and the
boundaries of the form ¢'", where [* < i < r* is a transport boundary of GE.
Assume first, for simplicity, that the situation of 3.3.4 does not occur. We show
that LB(GE') < LB(GE): let CI(i) (CI'(i)) be the set of all non-empty bases bs
with left boundary ¢ in GE (GE'). Thus we want to show that the number of
non-empty classes of GE' does not exceed the number of non-empty classes of GE.
If x € Cl(7) is a fixed (transport) base, then all elements of this class are fixed
(transport) bases, with the possible exception Z,. (x.). Thus distinct non-empty
classes of GE' have distinct non-empty parent classes in GE with the possible
exception CI'(er), CI'(cr’") and the inequality is trivial if er = +* and 2/, 7, are
empty. In the other case, Cl(cr) # ) and the members of CI(I*) are distributed
over CI'(cr) (element 2”) and CI'(I**) (all others). Thus three non-empty classes
of GE CI(I*), Cl(cr) and CI(I**) become two non-empty classes CI (cr),
CI(I**) of GE'. On the other hand, we have at most one new non-empty class,
namely CI(cr'"). Thus in fact LB(GE') < LB(GE).

Let us now consider the abandoned boundaries. We shall prove the following
claims:

Claim 1: If cr < 7 is a left or right boundary of GE. ¢ # I**. then ¢ is left, right
or involved in GE'.

Claim 2: If ¢ is a transport boundary of GE and 7 is left, right or involved in GFE,
then ¢'" is left, right or involved in GE'.

Claim 3: If er < ¢ is neither left nor right in GE, but involved in a boundary
equation E of GE, then ¢ is left, right or involved in GE'.

Proofs are given below. Since cris left in GE' claims 1-3 show that GE' may only
have the following abandoned boundaries beside [**: some boundaries ¢ € BD,
cr < 1, but then ¢ was already abandoned in GE, moreover some boundaries of
the form i'", but then I* < i < cr, i was abandoned in GE and ¢ ¢ BD'. Thus,
beside I**, distinct abandoned boundaries of GE' have distinct abandoned parents
in GE. This shows that AB(GE') < AB(GE)+1, and if AB(GE') = AB(GE) +1,
then ** is abandoned in GE'. But in the latter case cr # I**, Cl(I*) = {x.}
and CI(I**) = {z.}. Then CI'(I**) is empty and LB(GE') < LB(GE) — 1. Thus
LB(GE') + AB(GE') < LB(GE) + AB(GE) < N.

Proof of claim 1: If I** # ¢ = Left(x), then x is fixed and Left'(x) = i holds
in GE'. If i = Right(x) and z is fixed, then ¢ = Right'(x) holds in GE'. If
i = Right(x) and x is a transport base, then i is involved in GE', by 2.5 (ii)

and 3.4.3. If i = Right(x,), then ¢ = Right'(«)) in GE', if i = Right(7.), then



i = Right'(z!) in GE'.

Proof of claim 2: This is clear if i = cr (3.3.3). If cr < 7, then ' is involved in
GE' by 3.4.3. Suppose now that I* < ¢ < cr. If i is the left or right boundary
of a base x, then x is a transport base and i is a left or right boundary in
GE'. Thus assume that ¢ is involved in GE. If ¢ occurs in (i, z, j, Z) or (j,7,1, x),
then x is a transport base or v = x.. In the first case " is involved in GE',
by 2.8 and 3.4.1. Thus assume that (i, 2., Jj, T.) or (j, Z.,i,2.) € BE. Note that
cr < j # I*. If j is left or right in GE, then j is left, right or involved in GE',
by claim 1. But " = j, by 2.6 (iv). Thus it remains to consider the case where
both ¢ and j are neither left nor right. Since GE is proper we have a clean convex
chain (¢, x.,J,%.), (j,y. k,§), ..., (case 1) or (j,Z.,1,x.), (i,y,k,G),... (case 2) of
length m > 1 in GE (for length 1, 7 or j would be the right boundary of the
witness base). In case 1, y # T., by 4.8. If y is fixed or y = x., then i"" = j
(2.6 (iv)) is involved in GE', by 2.8, 3.4.1 or 3.4.2. If y is a transport base, then
j is a transport boundary, by 2.5 (iii) and (j, 2%, 7", 7.) € BE, by 3.4.3, thus '
is involved in GE'. In case 2, the subcases y = ., y fixed and y = 7, can be
excluded, by 4.8 or since i < cr. Thus y is a transport base and ' is involved in
GE', by 2.8 and 3.4.1.

Proof of claim 3: Assume that ¢ occurs in (i,2,7,%) or in (j,7,i,x2) € BE. If
is fixed, then i is involved in GE' by 2.8 and 3.4.1. If 2 is a transport base, then
i is involved in GE' by 2.5 (iii) and 3.4.3. If ¢ occurs in (i, z.,j,7.) € BE, then
i is involved in GE' by 3.4.2. If i occurs in (¢,Z.,j,7.) € BE for cr < j, then
(¢,7.,j,2.) € BE, by 3.4.2. If j < cr, then j is a transport boundary, by 2.5 (i)
and involved. By claim 2, j" is left, right or involved in GE'. But j =i, by 2.6

(iv).

Agsume now that the situation of 3.3.4 happens to be true for the base x of
GE. Then exactly one of the bases © and T — x, say — is a transport base. The
transformation of x and r may be described in two steps. First x is transported to
the position (7, j) of Z. This step does not leave the simplified situation described
above. Then both & and Z are compressed to the column (j, 7). If i becomes
abandoned, then there is no other base bs; such that : = L(:ft’(l’)s[). Thus the
number of left boundaries of non-empty variable bases decreases at this step.
This compensates the enlargement of the number of abandoned boundaries, we

still have LB (GE') + AB'(GE') < LB(GE) + AB(GE) < N. O
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5 Terminating Minimal and Complete Word
Unification

The decision procedure of the preceding section could in principle be turned into
an algorithm which computes a minimal and complete set of unifiers for a given
word equation WE, terminating if this set is finite, using the same construction
as in Jaffar [Jaf]. A detailed proof is however rather tedious. Following an idea of
F. Baader we shall now describe an algorithm which does the same and is concep-
tually simpler. The basic idea is the following: we shall use the basic algorithm
for word unification described in section 1 in order to generate a minimal and
complete set of unifiers for a given word equation WE,. With some additional
amount of work these substitutions may be displayed at the successful leaves of
Top(WEy) (see below). The tree T;,p(WEy) will be generated in breadth first
manner, i.e., level for level, and we shall just collect all substitutions associa-
ted with successful leaves. As a matter of fact, each level contains only a finite
number of word equations. Thus Makanin’s decision procedure may be used as a
subprocedure which decides for every level whether it contains a solvable equa-
tion or not. As soon as we have found a level where all equations are unsolvable
we shall stop. We shall now show that the sequence of all substitutions which are
displayed at the successful leaves of T, p(WEp) is in fact a minimal and complete
set of unifiers for WEy. Thus it is trivial that our algorithm generates such a set
and terminates if this set is finite.

To be precise, let us recall several definitions. If .S is a substitution and WE is
a word equation of the form Wy == W), then S(WE) denotes the word equation
S(Wy) == S(Wy). Let W C V, let S, T be substitutions. Then S is more
general than T with respect to W, S < T (W), iff there exists a substitution R
such that R(S(z)) = T'(x) for all 2 € W. A set ¥ of unifiers for a word equation
WE, is complete if for every unifier T of WE, there exists an S € ¥ such that
S <T (W,) where W, is the set of variables occurring in WEj. A complete set
Y of unifiers for WEy is minimal if it does not contain two elements S; # S,
such that S} < .Sy (W), A stricter condition than minimality is disjointness. A
complete set X of unifiers for WEy is disjoint with respect to Wy if two distinct
unifiers in ¥ cannot be brought together: for all S| # S, € X: there are no
substitutions Ty, Ty such that T} (S1(x)) = To(Ss(x)) for all € Wy. So R denotes
the product of two substitutions, S being applied first. Var(WE) denotes the set
of variables occurring in WE.

We shall now describe how unifiers may be displayed at successful leaves of
Tp(WEy). For this purpose, let us associate with every word equation WE in
Ti.p(WEp) the substitution S which is the product of all the substitutions SZLP
which were applied at the transformation steps which led to WE. A convenient
way to compute this substitution is to enrich WE, with a list (xy,...,24) of its
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variables, representing the trivial substitution. At every transformation step the
respective substitution S** is not only applied to the word equation, but also to
the actual substitution list. Let ¥ denote the set of all substitutions which are
associated with successful leaves of T;,p(WEy) in this way.

Theorem 6.1: ¥ is a disjoint and complete set of unifiers for WEj.

A proof was given in Siekmann’s thesis [Si78], but the notation used there is
more complicated. For the convenience of the reader we include a rather compact
argument.

It is trivial that the elements of ¥ are unifiers for WE,. Let W, denote the set
of variables occurring in WE,. The following lemma immediately implies that X
is a complete set of unifiers for WEj.

Lemma 6.2: FEvery unifier T' of WEy recursively defines a path © through
Top(WEy) with the following property: if WE is a word equation occurring in m
with associated substitution S, then S < T (Wy).

Proof: The topmost node of m contains WEy, and it is clear that Id (identity)
satisfies Id < T (W)). Suppose now for the induction hypothesis that WE is in
7 with associated substitution S satisfying the condition of the lemma. Thus
there exists a substitution R such that R(S(z)) = T(z) for all = € W). For the
induction step let us consider the case where WE has the head (a,z). To find
the successor of WE with respect to T’

(1) we apply Sip if R(z) = a,

(2) we apply S2¥if R(x) = aV, with V € (YU C)*.
This subcase analysis is complete: R unifies WE since .S o R is a unifier for WEj
and WE is a suffix of S(WE;) which may be reached by iterated deletion of
identical head-symbols form both sides. In the first case we define T7 : y — R(y)
for x # y € Var(WE), in the second case we define T : 2 +— V and y — R(y) for
v # y € Var(WE). Now T} and T} show that S/ < R (i = 1,2).
The substitution associated with the successor is So S/ in case (i),1 = 1,2. Let
2z € Wy. We have T/(SFP(S(z))) = R(S(z)) = T(z). Thus So SIF <T (W,).
The proof for the situation where WE has head of type (x,y) is completely
analogous. O

If WE is any word equation in 77 p( WEj) it is straightforward to show that the
substitutions S which may be applied are disjoint with respect to the variables
occurring in the actual equation WE. However, in order to prove that ¥ is a
disjoint set of unifiers for WE; we have to show that the substitutions associated
with word equations in distinct paths are disjoint with respect to the variables
Wy of WEy. For this purpose we shall introduce the notion of a D-preserving
(disjointness-preserving) substitution:

Definition 6.3: A substitution S is D-preserving with respect to a set W of
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variables iff the following holds: for any two substitution 7} and 7, which are
disjoint with respect to U{Var(S(x));x € W} the substitutions So T} and SoTh
are disjoint with respect to W.

Lemma 6.4: The transformation substitutions S;I"P) are D-preserving with
respect to the variables occurring in the actual word equation WE to be transfor-
med (i=1,..,5).

Proof: Let us treat the situation where WE has head of type (w,y). Let us
consider S4LP. Let 77 and T, be two substitutions. Assume that S4LP o717 and
'LP 0Ty are not disjoint with respect to Var(WE). Then there exist substitutions
Ry and Ry such that Ry (T (S (2))) = Ry(To(SEF(2))) for all z € Var(WE). In

particular,

Ri(Ti(Si"(2))) = Rao(To(S{"()))
Ri(Ty(S{"(y) = Rao(To(Si"(y)).

Thus

Ri(Ti(yx))) = Ro(Tr(yx))
Ri(Ti(y))) = Ra(Ta(y))

and thus Ry(T1(x))) = Ro(To(x)). Since for z # & always Sf¥(z) = z, this shows
that Ty and T are not disjoint with respect to Var(SEP(WE). Thus SI” is in
fact D-preserving. The proof for S&” is symmetric, the proof for Si” is trivial,
the proof for head (a, ) is analogous. O

Lemma 6.5: The set ¥ is disjoint with respect to W.

Proof: The transformation substitutions S*¥ which may be applied are dis-
joint with respect to the actual variable set. Suppose that S; and S, are substitu-
tions associated with distinct successful leaves of T, p(WEy). A simple induction
on the length of the common part of the paths leading to the respective leaves
based on the preceding lemma shows that S; and Sy are disjoint with respect to

W. O

Improved Decision Procedure

Let us conclude with an improved decision procedure where some ideas from the
basic algorithm are used for a pre-analysis of word equations which always sim-
plifies the decision procedure described in section 4 and makes it even dispensable
in some cases. We have to choose a slightly modified representation of a word
equation.
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Example 6.6: The word equation axrbzxr == zczyyy is translated into the
following matrix

, YA
axribzirs | x
Y2 || =2
22CZ3Y1Y2Y3 112 1| .
Ys || =3
representing the four multi-equations ax1bz129 == zocz3y yoys (principal multi-
equation), xy == X9, Yy == Yo == y3 and z; == 2z == z3.

Note that every new indexed variable has exactly two occurrences. Thus the
new structure lies half on the way between word equations and generalized equa-
tions. We may now apply the Lentin/Plotkin transformation strategy in order
to resolve all columns with two lines only — it is simple to see that the num-
ber of symbols cannot grow! The first two successors are the following systems
(simplifying the first system in the straightforward way):

hn hn 2]
ribaxy || x4 y x1bz1209 21 Y

. Y2 | @2

cay1y2y3 1| T2 22CZ3Y1Y2Y3 | | X2 N

<3

Similar transformation steps are applied as long as there is any column with two
lines left. We stop if a system is reached which is isomorphic to a predecessor
in the same path. Eventually, when we reach a system where all columns have
at least three lines, the matrix is translated into an equivalent set of generalized
equations, introducing boundaries between all symbols occurring in a line of a
column and choosing a linear order between the boundaries of the same column.

The use of such multi-equation systems has various advantages (see [Sc90]
for a detailed discussion). For all word equations where every variable occurs
at most twice the translation into generalized equations is completely avoided.
Perhaps the most important point is the following: when the principal multi-
equation is resolved, the number of additional transformation steps which lead
to a unifier S cannot exceed the number | XX, ... X, | where X; = S(x;) and
x1,...,&, are the variables occurring in WEy, due to the vertical orientation of
non-principal columns. Thus the maximal number of such transformation steps
is wndependent from the number of occurrences of each variable, in contrast to
the situation in the first decision procedure. The resolution of principal multi-
equation corresponds to the computation of the possible linear orders between
boundaries for the structures in > (WEy) in the standard approach. This amount
of work cannot be avoided in either case.
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Appendix

We prove that transformation of proper non-false generalized equations preserves
condition (ii) of the definition of properness (4.4). Let us introduce a notational
convention: in GE = (BS,BD,Col,BE), three types of oriented boundary equati-
ons may be distinguished:

(i) the standard equations (see 2.8),

(ii) the boundary equations of the form (i, ., j, Z.) or
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(iii) of the reverse form (7, Z., 1, x.).

Equations of type (ii) will be called print equations, equations of type (iii)
reverse equations. In the following, these types will play a distinct role. Thus,
instead of using symbols E, Ey,... for arbitrary boundary equations of GE we
shall sometimes use symbols S, Sy, ... for standard equations, symbols P, P, ...
for print equations and symbols R, R, ... for reverse equations.

When we consider a successor GE' = GE< € Transf{GE), then S’ denotes the
natural image of S with respect to < (see Def. 2.8). If P = (i,x.,j,T.) € BE
(R = (j,Z.,1,x.) € BE), then it is convenient to call P’ = (i,27,5,7.) (R =
(4,7.,4,2%)) the natural image of P (R) with respect to <. Note that S’ € BE'
iff S” is non-degenerate (3.4.1) and that P’ (R') is a boundary equation of GE'
iff cr < (3.4.2).

Lemma 1: Assume that GE is proper. Let Py, ..., P.,m (Ry,...,Rp,m) be a
convezx chain and GE' = (BS',BD', Col ,BE') € Transf{(GE). Then Py, ..., P} €
BE (R!,...R)_, € BE).

Proof: Let Py, Po = (h,z.,1,%.),(i,2, ], %.). Then cr < isince ¢ is in Col(Z.).
Thus Pj € BE', by 3.4.2. Similarly it is clear that P4, ..., P, and R},..., R, are
in BE'. O

Lemma 2: Let GE be a proper, non-trivial generalized equation and let GE' €
TransflGE). Assume that no natural image S" of a standard boundary equation
S € BE is degenerate in GE' = (BS', BD,Col', BE'). There ewists a recursive
translation which assigns to every clean conver chain m = Ky, ..., E,,,w of GE
such that B} € BE' a convex chain 7' of GE' starting with E|. Moreover, if 7 is
adaptive, then the following properties hold:

(i) if By = Sy is a standard equation, then ©' is adaptive,

(ii) if m = Py, p (where p is a chain of GE), then ' = P|, p' where p' is adaptive
and the leading base = of p' satisfies I'* =< Left (z).

(1ii) if T = Ry, p (where p is a chain of GE) then n' is adaptive or has the
form R, R™' ~ where ~ is an adaptive chain of GE with leading base =

/

satisfying ' < Left'(2).

Proof: For the translation we shall use the following notational convention:
if S1 = (i,2,7,7) is an oriented boundary equation of GE (if w is a base of GE),
then an index S (w) indicates that  (w) is a fixed base, similar indices @
indicate that the respective bases are transport bases. A right upper index S{j‘)
(Sft)) indicates that 7 is a fixed (transport) base. The proof is now by induction
on the length m of 7.
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(I) For m = 1, we distinguish three subcases, depending on the type of the
equation Fj.

Case 1: By =S| = (1,2,7,7) is a standard equation.

(@) (S0 w) = S},

(b) (S0 w) = Si. (a7, e

)
)

(c) (S 2) =St a!
) (S 5.) =8, 7
)

If 7 has the form 7 = 51(”7 w, then the cases w = x. and w = T. cannot occur
since j is in Col(x..), compare 2.4. Let us show that the translation satisfies the
conditions of the lemma. First note that (j,2.,7",7.) € BE in cases (b) and
(e), by 3.4.3: in case (b), cr < j since j is in Col(7) and 7 is fixed, compare 2.4.
Moreover, j = Right(w) is a transport base, by 2.5 (ii). Case (e) is similar, using
2.5 (iii). In all cases it is now trivial to verify that 7’ is a chain of GE'. For
the cases (a), (¢), (d) and (f) the convexity of 7’ is trivial. In case (b), \/(7') is
the word =, by 2.912. In case (e), \'(7’) is the word <=, by 2.9. Now assume
that 7 is adaptive. In cases (a) and (f) it is trivial that 7" is adaptive, following
directly from 2.6 (ii), 2.8 and 3.3. In cases (b) and (c) 7 cannot be adaptive, by
2.4. In case (d) Left(T) < I** (by assumption) and ** < Left'(Z.,) imply that 7’
is adaptive, by 2.2, 2.6 (ii) and 3.3.3. In case (e) we saw that 7' is adaptive.

Case 2: By = P, = (i,2.,],%.) is a print equation.
(a) (P, w) =P, w

(b) (P, w) =P, (5,28, 3, 2), w'

(¢) (Pr,a.) = P],a.

The case w = T, cannot occur since Right(w) = j is in Col(T.). Recall that
P € BE', by the assumption of the lemma. In case (b), (j, 2%, 7", ¥.) € BE' since

12 A symbol ”>” indicates that the respective letter may be = or >.
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cr < j (jisin Col(z.)) and j = Right(w) is a transport boundary, by 2.5 (ii). It
is trivial to show that 7’ is always a chain of GE'. The convexity of 7’ is trivial
for (a) and (c). In case (b), \/(7’) is the word >, by 2.9. Note that 7 does not
have the form m = Py, p presupposed in (ii), since every chain has at least one
boundary equation. Thus there is nothing to show with respect to (ii) here.

Case 3: By = Ry = (J, %¢, 1, x.) 18 a reverse equation.
Here cr < i since R] € BE', by assumption:

(a) (R, w) =R}, w

(b) (R,Dw) =R, (6,28, 47, 7)), w

The cases w = z, or w = Z. cannot occur since Right(w) = i is in Col(x,).
In case (b), er < ¢ = Right(w) is a transport boundary, by 2.5 (ii). Thus
(¢,2L,4"",7.) € BE', by 3.4.3. In both cases it is now trivial that 7’ is a chain of
GE'. In case (b), \/(7') is the word == (2.9), thus 7' is always convex. Note that
7 does not have the form m = Ry, p presupposed in (iii). Thus there is nothing
to show with respect to (iii). But, for later purposes note that 7’ is adaptive in
case (a) since Left'(2!,) = cr < Left' (w) (2.4, w is fixed), and that [** < Left'(w'")
in case (b).

(IT) For m > 1, @ = Ey, p where p is a chain of GE and we distinguish again
the three subcases where F is a standard equation, a print equation or a reverse
equation. For the rest of the proof, greek letters p, 0, ... always denote chains.

Case 1: m = Sy,p. Let Sy = (h, 7,1, 2). We consider the two subcases where
x is a fixed base (1.1) or a transport base (1.2).

Case 1.1, m = Sl('f)7p.
Here cr < ¢, by 2.4, since ¢ is in Col(x). Chain p may start with a standard
equation, with a print equation or with a reverse equation. Accordingly we treat
subcases 1.1.1, 1.1.2 and 1.1.3.
Case 1.1.1: m = S](f),SQ,H orm = S]('f),S%w. Let Sy = (4,9,7,9).
() (S0 80,0) = 1, (8,0) vesp. (S0 Sy, w)! = S1. (S5, w)

(b) (S{.1085.0) = S, (i,a%.i" 7). (S2.0)
resp. (Sf”f“ So,w) =81, (¢, 2%, ", 7), (S, w)’



Case (a): By induction hypothesis, 7’ is a chain and (S, 8)" or (Sy, w)" are convex.
This implies that @’ is convex: if Left' (z) < Left' (y), then Left(x) < Left(y) and
7 is adaptive. Thus Sy, 60 (resp. Sy, w) is adaptive. By induction hypothesis (i)
also (Sq,0) (resp. (Sy,w)’) is adaptive. Therefore 7’ is convex and adaptive, in
this case. If Left'(x) = Left'(y), then 7’ is convex by induction hypothesis.

Case (b): Note that (i,2.,:¢", &) € BE', by 3.4.3 since cr < i is a transport
boundary, by 2.5 (iii). Thus 7’ is a chain of GE', by induction hypothesis. Now
2.4 and 2.9 show that \/(7’) has the form >> ... in both cases. Thus 7’ is convex
by induction hypothesis. Since 7 cannot be adaptive (see 2.4) there is nothing
to show with respect to (i).

Case 1.1.2: (Sfj.)7Pl,,9)' = S1, (P, 0) resp. (S{jl),Pl7 w) =87, (Pr,w).

Let Py = (i, 2., j,%.). Here P| = (i,2.,7,7.) € BE since cr < i. The induction
hypothesis shows that 7’ is a chain of GE' in both cases. Since Left' (2)) = cr <
Left(x) it is clear that 7’ is convex, by induction hypothesis. Since 7 cannot be
adaptive there is nothing to show with respect to (i).

Case 1.1.3: m = S](f),RbH or = Sl(f),Rl7 w. Let Ry = (i, %, J, x¢).
(a) If p= Ry,w and j < cr (R] € BE), then 7’ = S}, w'".

In this subcase witness w is necessarily a transport base since Right(w) = j is in
Col(x.) and j < cr (2.3). By 2.6 (iv), j'" = ¢ and 7’ is a chain of GE". Clearly
7' is convex. If 7 is adaptive, then Left(x) < I**. Thus Left' (x) < Left' (w'") (see
3.3.1, 3.3.2, 2.6 (i) and (ii)) and 7’ is adaptive.

(b) If p= Ry, w and cr < j (R} € BE'), then we have two subcases:

(b-1) If p = R, w, then 7' = S}, R}, w.
(b-2) If p= R, w, then «’ = S, w'.

The cases w = z. and w = T, cannot occur in (b) since Right(w) = j is in
Col(z.). By 2.6 (iv), j/ = i and it follows that 7’ is a chain of GE'. Convexity
is trivial for (b-2) and follows for (b-1) since \/(7’) has last symbol “<”. Now
suppose that 7 is adaptive. Then Left(x) < I**. In case (b-1) Left'(x) < c'", in
case (b-2) Left'(x) < Left'(w'). Thus 7' is adaptive.

(¢) If p = Ry,0 and j < cr (R} ¢ BE'), then p has necessarily the form
p=R.DS,. 0 (or p=R, S, w): 0 cannot start with a reverse equation
since j is not in Col(Z.); by 4.8, # cannot start with a print equation
since 7 is clean; € cannot start with /)S, since j < cr (2.4). We define

n =51, (Ss,0) (resp. @' =S}, (Sa,w)).
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By 2.6 (iv), j' =i and it is clear that 7’ is a chain of GE'. To show that 7’ is
convex, we distinguish two subcases: if Ry, Sy, 0 (resp. Ry, Ss, w) is adaptive, then
(Sz,0) (resp. (S, w)'") is adaptive, by induction hypothesis, and 7’ is convex. In
the other case, if Ry, Sy, 0 (resp. Ry, S, w) is not adaptive, let Sy = (4,4, k, 7).
Then Left(y) = I* and Left(x) > I**. Thus Left'(x) = " = Left(y") and 7’
is convex. Now suppose that 7 is adaptive. Then Left(xr) < [I**. By induction
hypothesis, (Ss, o) (resp. (S2,w)’) is adaptive. Since Left'(x) < I** < Left'(y'")
also 7’ is adaptive.

(d) If p= Ry,0 and cr < j (R| € BE'), then we distinguish two subcases:

(d-1) Ry, is adaptive. According to the induction hypothesis, two subcases

may occur:

If (Ry,0)" is adaptive, then 7' = S|, (R1,0)".

If (Ry,0) = R}, R["", v where 7 is adaptive with leading base z satis-
fying I** < Left (z), then 7’ = S, ~.

(d-2) If Ry,0 is not adaptive, then I** < Left(x), by convexity of 7. In this
subcase, # has necessarily the form § = S, 0 or § = U8, w: if 6
would start with a reverse equation, then Ry, 0 would be adaptive, 0
cannot start with a print equation since 7 is clean and 6 cannot start
with (1)Sy since Ry, is not adaptive. We define 7/ = 57, (Ss,0) or
' =57, (S, w).

Subcases (d-1): Tt is clear for both subcases that 7’ is a convex chain of GE'. If
7 is adaptive, then Left(x) < I** and Left'(x) < I**. In both cases, 7’ is adaptive
by induction hypothesis.

Subcase (d-2): Let Sy = (j,y, k, 7). Here Left(y) = I* since Ry, 0 is not adaptive.
Thus Left (y'") = I** < Left'(x) and 7’ is convex by induction hypothesis. There
is nothing to show with respect to (i) here.

Case 1.2, m = Sf”,/). Let Sy = (h, T, i, x).

Since p may start with a standard equation, with a print equation or with a
reverse equation we treat three subcases.

Case 1.2.1, 7 = SE”,Sgﬁ or m= Sf”, Sy, w. Let Sy = (i,y, k, 7).

(a) (1, (NS, 0 =S, (it 7 i,a"), (S, 0)

resp. (Sft),msbw)’ = S0, (", 7,0, 20), (So, w)

‘¢

(b) (S8, ) = 8! (S5, 8) resp. (S0 8, w) = 8], (Sy, w)
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Case (a): By 3.4.3, (i"",Z.,i,2.) € BE since cr < ¢ (i is in Col(y), y is fixed, 2.4)
and ¢ is a transport boundary, by 2.5 (iii). Thus it is clear that 7’ is a chain of
GE'. Here 7 is adaptive, by 2.4. Thus (Ss.6) (resp. (Sy, w)’) is adaptive, by
induction hypothesis. Now 2 4 and 2.9 show that 7’ is adaptive.

Case (b): It is clear that ' is a chain of GE'. (Ss,0)" (resp. (Ss,w)’) is convex,
by induction hypothesis. If Left' (x) < Left'(y), then Left(x) < Left(y) (2.6 (ii))
and 7 is adaptive. Thus 7’ is convex and adaptive, by induction hypothesis. If
Left'(x) = Left (y), then 7' is convex, by induction hypothesis. If 7 is adaptive
clearly 7’ is adaptive, by 2.6 (ii) and induction hypothesis.

Case 1.2.2, 1 = Sl(L)7P1,(9 (resp. ™ = Sil),Pl,'w) Let Py = (i,00, 7, T0).
Note that '" = j, by 2.6 (iv). We distinguish several subcases:

(a) (SV", Pi. Po.0) = S, (Pa,0) tesp. (S, P, Py.w) = S, (P, w)’
(note that P, € BE', by Lemma 1).

(b) (S\, P Sy, 0) =5, (Ss.0) resp. (S, P, D Sy, w) =S, (S, w)

(C’) (Sy)* Plv(t) 527 O-)/ = Siﬂ (]7 *Ti;:jtr? ?{)* (527 U)/
resp. (Sy), P Sy w) =S, (5, 2k, 57, 7). (Se, w)

() (S, P w) = 8w
(¢) (S, P10 w) = S, (.l j7, 2L, w'”

(f) (Sl([')ﬁPl7:1/'Lf)' =S,

In cases (a), (b), (d) and (f) it is clear that 7’ is a chain of GE' since i"" = j. In
cases (¢) and (e) j isin Col(Z ) Thus cr < j. Moreover, j is a fldnsp()lf boundary,
by 2.5 (iii) and (ii), thus (j, 2, ', 7.) € BE, by 3.4.3, and 7’ is a chain of GE.
In case (a), 7 is convex by mdu(?tlon hy pothesrs since 2/, is the leading base of
(Py,0) (resp. (Py,w)"). Let Sy = (j,y,k,y) in cases (b) and (c¢). For (b), we
distinguish two cases: if Py, Sy, 0 (or Py, Sy, w) is adaptive, then 7’ is convex, by
induction hypothesis. If Py, Sy, 0 (or Py, Sy, w) is not adaptive, then Left(y) < I**,
thus Left (y) < I'* < Left' (x'") and 7' is convex. In case (c) it follows from 2.2
and 2.9 and the induction hypothesis that 7’ is convex. In cases (d) and (f) it is
trivial that 7’ is convex. In case (e) 7’ is convex, by 2.9.

Suppose that 7 is adaptive. This may only occur in case (b) and (d). If 7 is
adaptive in case (b), then Left(x) = [* and I** < Left(y). Thus Left'(2'") <
Left'(y) and 7’ is adaptive by induction hypothesis. If 7 is adaptive in case (d),
then Left(x) = I* and I** < Left(w) and it follows that 7’ is adaptive.

Case 1.2.3, 1 = Sl(L)7Rl,(9 (or m= Si[)7Rl721') Let Ry = (i, T¢, J, 20)-
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Note that 7 is adaptive in this case. We have cr < ¢ since ¢ is in Col(Z,) and ¢ is
a transport boundary, by 2.5 (iii). Thus (i",2’,4,2!) € BE', by 3.4.3. Moreover,
J'"m =1, by 2.6 (iv).

(a) If er < j (R} € BE) and p = Ry, 0, then
=S, ("2, 2l), (Ry,0) if (Ry,0)" is adaptive and

=S, (", 7,0, 2l),y if (Ry,0) = R}, R\, v where 7 is adaptive

C

note that one of these cases must occur, by induction hypothesis).

It is clear in both cases that 7 is a chain of GE'. We have Left(x) < cr and
Left(2') < cr'". This implies that 7’ is adaptive in both cases since cr is
minimal with respect to <.

(b) If er < j (R} € BE) and p = Ry, w, then
=Sy, ("2l ial), (4,2, j.2l), w if w is a fixed base and
"= 5, (", 7,0, al), w' if w is a transport base.

C

=

=

{

Note that the cases w = x. and w = . cannot occur here since j = Right(w) is
in Col(z.). Since (i'",z!,i,2.) € BE clearly 7’ is a chain of GE in both cases.
In the first case, \'(7') is the word <<= and in the second case \'(7’) is <=, by
2.9 and since Left'(x)) = cr. It follows that 7’ is convex and adaptive.

(c) If j < cr (R| ¢ BE'), then 7 necessarily has one of the following forms:
(c-1) 7 =S R, W w, and we define 7 = Sy, T i), wtt
(c-2) m= SY), R1,WS,. 0 (orm= 5’@, R, Sy, w), and we define

=S, (", T 0, xl), (S, o) (vesp. w' = S, (7, T, 0, 2), (So, w)').

In fact m cannot have the form S{”,Rh(f) w or S{L),Rhfﬂc or Si['),,Rl,;T'c since
Right(w) = j < cr. Similarly 7 cannot have the form Sf”, RSy 0 0rm =
Sy), Ry Sy, w since j < cr, 7 cannot have the form Sy)ﬁRl7 Ry, ... by Lemma
1 and 7 cannot have the form Sl(”, Ry, P, ... since it is clean. In both cases (¢-1)
and (c-2) it is clear that 7' is a chain of GE' since j'" = i, by 2.6 (iv). In case
(c-1) we have Left'(2]) = cr X I** < Left'(w'). Now 7' is convex and adaptive,

by 2.9. Similarly, 2.9 shows that 7’ is adaptive in case (c-2).

Case 2: m = Py, p, where p is a chain of GE. Let P, = (i, 2., j, Z.).
Note that cr < ¢, by assumption.

Case 2.1: (P, S1,0) = P[,(S1,0) resp. (P,Y)) S, w) = P, (S, w)
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It is clear that 7’ is a chain of GE'. Let S} = (7, z, k, 7). By induction hypothesis,
(S1,0) is convex. If \'(7') starts with <", then Left' (2) < Left'(z) and I** <
Left(z). Thus w is adaptive, (S1,8) (resp. (Sp,w)’) is adaptive by induction
hypothesis and 7’ is convex. We prove (ii): if 7 is adaptive, then I** < Left(z).
Thus I** < Left'(z). By induction hypothesis, (S;,0)" (resp. (S;,w)’) is adaptive.

Case 2.2: (P, 81,0) = P, (j, 2!, ", 7). (5,6
resp. (P1 7(” Sl ) w)l = Pl,ﬂ (J I,mj”"/ jj,c)ﬂ (Slv w)/)

Here cr < j since j is in Col(Z,.), and j is a transport boundary, by 2.5 (iii) or
(ii). Thus (j,a., j'",2.) € BE', by 3.4.3. It is clear that 7 is a chain of GE'. Tt
follows from 2.9 that 7’ is convex. Since 7 is not adaptive, by 2.2 and 2.4, there
is nothing to show with respect to (ii).

Case 2.3: (P, P5,0) = P|, (P, 0) resp. (P, Py, w) = P, (P2, w)).

Note that P, € BE', by Lemma 1. Thus 7’ is a chain of GE, by induction
hypothesis. It is clear that 7' is convex, by induction hypothesis. Since 7 is not
adaptive, there is nothing to show with respect to (ii).

Remark: Since 7 is clean, the subcase analysis for case 2 is complete.

Case 3: m = Ry, p where p is a chain of GE. Let Ry = (J, Z¢, 1, x.).
Note that cr < 7, by assumption.
Case 3.1: (R;,\) S1,0) = R, (S1,0) resp. (R, Sy, w) = R, (S, w)'.

It is clear that 7’ is a chain of GE'. Since 7 is necessarily adaptive, (Sy,6)" (resp.
(S1,w)") is adaptive, by induction hypothesis. It follows that 7’ is adaptive. Thus
condition (iii) is satisfied.

Case 3.2: (317(0 5179)' — ’173'/1_17 (517(9)’ resp.
(R1.W Sp,w) = Ry R (Sy,w).

Note that R™ = (i, 2., 5,7.) = (i,2,4"", %) € BE (2.5 (iii), 3.4.3) since i'" = j,
by 2.6 (iv). It is clear that 7’ is a chain of GE'. Tt follows from 2.9 that 7’ is
convex. Suppose now that 7 is adaptive. Then v = (S1,6)" (resp. v = (Sy,w)’)
is adaptive, by induction hypothesis. If S} = (i,y,k,y), then the leading base of
vis 2 = y'". Thus I** < Left'(z) and condition (iii) is verified.

Case 3.3: For m = Ry, Ry,0 or m = Ry, Ry, w we distinguish several cases. Let

Ry = (1,7, k,x,.).
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(a) If k < er (R, € BE') and m = Ry, Ro,w, then w is a transport base since
Right(w) = k. We define 7’ = R}, w'".

(b) If k < cr (R € BE) and m = Ry, R, S, 0 (or m = Ry, Ry,") S, w), then
w = R, (Sy.0) (resp. 7' = By (51, )

Remark: For k& < cr all other cases may be excluded: the leading base of # cannot
be a fixed base, by 2.4, it cannot be Z., it cannot be x,. since 7 is clean (4.8).

(¢) If er < k (R, € BE'), m = Ry, Ry,0 and (R»,0)" is adaptive, then 7’ =
R/l (Rb 0)/

(d) If er < k (Ry, € BE), 7 = Ry, Ry,0 and (Ry,0)" has the form R, Ry ' ~
where 7 is adaptive with leading base z satisfying I** < Left'(z), then
=Ry

Remark: chains of the form R;, R.,... are adaptive. Thus the case analysis for
cr <k (R, € BE'), = Ry, Ry,0 is complete, by induction hypothesis (iii).

(e) If er <k (R, € BE), m = Ry, Ry, w, then 7' = R/, (Ro, w)'.

(f) If er < k (Ry € BE), 7 = Ry, Ry, w, then 7 = R}, w'.

It is trivial to show that 7’ is a chain of GE in all cases. For (a), (b) and (f)
note that & =4, by 2.6 (iv). In all cases 7 is adaptive. Let us show that 7’ is
adaptive, too. In case (a), 7' is adaptive since Left'(z)) = cr < I** < Left' (w').
In case (b) (S1,0) (or (S1,w)") is adaptive, by induction hypthesis, and it follows
that 7’ is adaptive. Cases (¢) and (d) are similar. In case (e), (R2, w)’ is adaptive,
as mentioned in case 3 of (I). It follows that ' is adaptive. In case (f) we see as
in case (a) that 7' is adaptive.

Remark: since 7 is clean, the case 7 = Ry, P, ... does not occur. O

Lemma 3: Suppose that GE is proper, let GE' = GE< € Transf{GE). If all
natural images S" of standard equations S € BE are non-degenerate with respect
to =X, then GE' satisfies condition (i) of definition 4.4.

Proof: We have to show that for any boundary equation £’ of GE' there exists
a convex chain of GE' with first element £’ or E'~!. By Lemma 2 this is clear for
all boundary equations £’ of GE which are natural images of boundary equations
E of GE. Now let £’ be a new boundary equation of GE', i.e. an equation of
the form E' = (i,2,i",¥) where cr < i is a transport boundary of GE. If ¢ =
Right(w) where w is a transport base of GE (see 2.5 (ii)), then (i, 2., 7.), w'
is a convex chain of GE'. In the other case, i occurs in a boundary equation
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S = (i,x,7,7) or S™t = (j,7,i,x) of GE where x is a transport base (2.5 (iii)).
Since GE is proper, there exists a clean convex chain 7 of GE which starts with
S (case 1) or with S™! (case 2). In case 1, GE' has a convex chain 7’ with first
element S” according to Lemma 2. Now (i, 2/, ), 7’ is a convex chain of GE',
by 2.9. In case 2, we distinguish several subcases. In every subcase we shall
give a convex chain p of GE' starting with (¢,27,i"", z.) or (¢'", 2., i,2%). We use
notation and result of Lemma 2:

(a) If 7 = (5. 7,i,2), w, then p = (7,22, 1", 70), w'.

(b) If 7 = (j,7,i,2), S5, ..., then we replace S~! by S, and are in case 1
described above.

(c) If 7= (4, 2,i,2),0S,,... (or 7 = (j,2,4,2),) w), then
/

p=(i" 2 1,2,),(Sa,...)" (vesp. p=(i", 2, i,2)), w).

Remark: Since i is a transport boundary it is in Col(xz.) and convex chains
(j,x,i,2),x. or (j,7,i,7),T,. cannot occur.

(d) the case where m = (j, 7,4, 2), (i, 2., k,Z.),... need not to be considered
since here k = ¢'". Thus (¢, 2/, ¢"", 7.) is a natural image of (i, z., k, T.) € BE.

(e) If 7 = (§,7,4,2), (i, %, k,2.),) Sy, . ..
(or 7= (j,7,i,2), (i, %, k,2.),) w), then
/

p= (" i 2l), (So,...) (vesp. p= (i, i), wl"),

» e

(f) If 7= (4, 7,4,2), (i, Te, b, 20), ) S,
(or 7 = (j, 7,4, 2), (i, T, k, 2.),) w), then
cr < k and (1,2, k,2!) € BE'. We define
p= ("2, i), (i,7 Kk 2),(Se,...) or
p= ("2, i), (1,7, k o), w.
Remark: Since k is in Col(z.) convex chains (j, 7,1, ), (i,Z., k,x.), 2, or
(j,z,4,2),(i,%0, k,2.), T, cannot exist.

g) If # = (j,2,4,2), Ry, Ry, ..., then 7 is adaptive, R| € BE' (Lemma 1) and
1 ,

we define
p= ("7, 4,2,), (R, Ry, ...)" if (R, Ry,...)" is adaptive and
p = (i, % ,i,2),7 if (Ry,Ro,...)" has the form R}, R{"' v, where v is

adaptive (see Lemma 2 (iii)).

It is not difficult to see that this subcase analysis is complete. In case (a) and
(c) it is trivial that p is a chain of GE'. In case (e) this follows from A" = i, see
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2.6 (iv). The convexity of p is trivial in case (a). In cases (c). (e), (f) and (g) the
convexity of p follows from Lemma 2 since 7 is adaptive, by 2.4. O

Theorem 4: If GE is non-trivial and proper and if GE' = GE- €
TransflGE), then GE' satisfies condition (ii) of definition 4.4.

Proof: If all natural images of standard equations S of GE are non-degenerate
with respect to =<, then the result follows from Lemma 3. If some standard
equations of GE of have degenerate natural images with respect to <, then the
transformation may be divided into two steps: first, all bases get columns as
described in 3.3.1-3.3.3, ignoring the exceptional situation (degenerate boundary
equations are not yet erased). We may introduce a column-function Col ’(0) and
functions L()ft'w) and Right'(()) to describe this situation. Then the bases are
contracted, as described in 3.3.4, and degenerate boundary equations are erased.
Consider now any boundary equation E’ of GE'. We may apply the construction
of Lemma 2 and Lemma 3 in order to construct a chain WEO) with witness w
which starts with £’ or E'~! and is convex with respect to Colly. Now, in a
second step, we erase all degenerate boundary equations of 7, (note that the
first element is not erased). We still have a chain since the two boundaries of
degenerate boundary equations coincide and since Right'(w) = Right{y (w). The
resulting chain 7’ is again convex: when we ignore last entries, \'(7’) is obtained
from \'(m(y) by erasing some letters or contracting two letters =< to =. This
follows from the fact that in a degenerate boundary equation both boundaries
are identical and both bases have the same position with respect to Co]’(o), by
2.6 (v). Since Left(y (w) < Left'(w) still \'(7') € {>=,=}*o {=,<}*. O



