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Word Uni�cation and Transformation ofGeneralized EquationsKlaus U. SchulzCIS, University of MunichLeopoldstr. 139, D-8000 Munich 40October 11, 1994AbstractMakanin's algorithm [Ma77] shows that it is decidable whether a wordequation has a solution. The original description was hard to under-stand and not designed for implementation. Since words represent afundamental data type, various authors have given improved descriptions[P�e81, Ab87, Sc90, Ja90]. In this paper we present a version of the algo-rithm which probably cannot be further simpli�ed without fundamentallynew insights which exceed Makanin's original ideas. We give a transforma-tion which is e�cient, conceptually simple and applies to arbitrary gene-ralized equations. No further subprocedure is needed for the generation ofthe search tree. Particular attention is then given to the proof that propergeneralized equations are transformed into proper generalized equations.This point, which is important for the termination argument, was treatederroneously in other papers. We also show that a combination of the basicalgorithm for string-uni�cation (see [Pl72, Le72, Si75, Si78] and Makanin'salgorithm o�ers a simple solution to the problem of terminating minimaland complete word uni�cation.IntroductionOne of the simpler tasks which a text editing system has to solve again and againis the problem to determine whether a particular string W occurs in a giventext T . This problem may be expressed by means of an equation T == xWy,where x and y are variables and T and W are strings of constants. ObviouslyWoccurs in T if and only if there exists words X and Y in the text alphabet which1



solve this equation, i.e., words X and Y such that T and XWY are identical.What we have to solve is a particular word equation. A word equation is anexpression of the form W1 == W2, where Wi 2 (C [ V)+ are non-empty wordsin a mixed alphabet C [ V of constants and variables respectively. Of coursethe set of constants C and the set of variables V are disjoint. A solution of theword equation W1 ==W2 is an assignment of values Xi 2 C+ to the variables xioccurring in the equation such that W1 and W2 become identical if all variablesare replaced by the corresponding values. When the values Xi are allowed to bewords in the mixed alphabet (C [X )+, then we get the notion of a uni�er of theword equation.The importance of the problem to decide whether a word equation has a so-lution/uni�er becomes apparent if other formulations are used. Word equationsmay be called equations in a free semigroup, equations over lists (of atomic ele-ments) with concatenation, or associative uni�cation problems with constants,stressing their role in mathematical logic (e.g., [Hm71, Ma77], constraint logicprogramming (e.g., [Col88]) or universal uni�cation theory ([Ba90, Si89]).1Historically A.A. Markov, at the end of the 1950's, was probably the �rst toask whether it is decidable if a word equation has a solution. Markov noted thatevery word equation over a two-letter constant alphabet may be translated into a�nite system of diophantine equations, preserving solvability in both directions.He hoped to obtain a proof for the unsolvability of Hilbert's tenth problem byshowing that solvability of word equations is an undecidable problem (see [Ma81]for more details). Approximately at the same time Lentin and Sch�utzenberger[LeSc67] independently considered word equations.In the following period, in the western countries the main attention was givento the (relatively simple) problem to enumerate in a compact form the set of allsolutions of a word equation. Plotkin [Pl72], in the context of resolution basedtheorem proving, gave a simple algorithm to generate a minimal and completeset of uni�ers (see section 5 for these notions) for a given word equation (see also[Le72, Si75, Si78].2 In the eastern countries, the much harder decision problemwas addressed. Hmelevski�i, [Hm71] obtained a partial solution, showing thatthe solvability of word equations with three variables is decidable. Later G.S.Makanin showed in his epochal paper [Ma77] that the solvability of arbitraryword equations is decidable.1As a matter of fact it is simple to decide solvability of matching equations like T == xWy,and e�cient algorithms are known for these restricted problems (see, e.g., [Ah90]).2Plotkin's algorithm was able to deal with a more general problem, namely uni�cation of�rst order terms modulo associativity of a given function symbol. Plotkin [Pl72], in contrastto Siekmann [Si78] does not prove that this algorithm is correct.2



The Problem of an Optimal FormMakanin's algorithm is based on the new data type of generalized equations. Itstarts translating a word equation into a �nite set of generalized equations. Thentwo subprocedures, \transformation" and \normalization," are used to generatea �nitely branching search tree. In general, this subtree generation process doesnot stop, and Makanin uses an ingenious idea for termination.The original decision procedure was not designed for implementation and ishard to understand. Several attempts have been made to �nd a better description[P�e81, Sc90, Ja90] and the algorithm has now been implemented [Ab87]. In thispaper we shall present a version of Makanin's algorithm which probably cannotbe further simpli�ed without fundamentally new insights into the problem | in-sights which essentially exceed Makanin's original ideas. Our presentation will bebased on J. Ja�ar's [Ja90] modi�ed notion of generalized equations which replacesMakanin's concept of a \boundary connection" by the concept of a \boundaryequation." With this step, various important improvements are obtained: thenormalization subprocedure which occurs in [Ma77, P�e81, Ab87, AbPe89, Sc90]is avoided and transformation of generalized equations becomes simpler since noboundary connections have to be updated. This source of complexity has beenremoved from the algorithm and is now situated in the correctness proof.Ja�ar's algorithmmay be described as a tree generation process which is basedon the iteration of two subprocedures, completion and transformation (= reduc-tion). The former | trivial | algorithm transforms every generalized equationin an equivalent set of completed generalized equations. The latter proceduretransforms a completed generalized equation into a simpler generalized equation.Ja�ar, as well as [Ma77, P�e81, Ab87, AbPe89], distinguishes several types ofcompleted generalized equations. For each type a special transformation rule isgiven.In this paper we present an improved version of the transformation algorithmwhich has a built-in completion and consists of just one rule which applies toarbitrary completed generalized equations3. Thus, with the new transformationalgorithm, the search tree generation process is based on one subprocedure only.From a conceptual point of view, the e�ect of a transformation step may bedescribed very easily:� At a transformation step, a non-empty left part of the generalized equationis simultaneously carried towards the right side of the generalized equation.3A similar procedure was introduced in [Sc90], based on P�ecuchet's notion of a positionequation. But it turns out that the procedure is much simpler if based on Ja�ar's representation.3



With this property the new transformation is very similar to the transformationsteps which are used in Plotkin's (Lentin's) procedure. Our main aim, however,was to reduce generalized equations as e�cient as possible, even for the pricethat proofs become more complex.� In essence, one step of our algorithm combines all those steps of Ja�ar'salgorithm that are made with the same \carrier". Thus, a maximal numberof bases and boundaries are transported simultaneously. In comparisonwith sequences of case dependent transformations a lot of redundant workis avoided. The permanent encoding and decoding of information in andfrom boundary equations is widely avoided and new boundary equationsare only introduced in speci�c cases.The simplicity of the new transformation makes it very natural and easy toimplement.The Problem of a Complete and Correct ProofThe proof that Makanin's algorithm is correct and complete has its own history.It has turned out that the de�nition of a generalized equation has to contain twosubtle conditions (see [Sc90], pg. 126) whose sense becomes only clear when tech-nical details of the transformation algorithm are considered. Unfortunately, thispoint was not treated correctly in the \classical" papers on Makanin's algorithm.Already Makanin's description [Ma77] (at least in its English version) containeda misprint in the de�nition of a boundary connection4. Supported by the subse-quent formulations in [Ma77], most readers were led to a real misinterpretation ofthis de�nition. In particular, P�ecuchet's and Abdulrab's de�nition of a positionequation in [P�e81, Ab87, AbPe89] follows such a misinterpretation and does notlead to a correct proof. Similar di�culties arise from Ja�ar's [Ja90] notion of aproper generalized equation.In the meantime, these points are more or less wellknown among the expertsin the �eld. But, to my knowledge, there is no journal publication which con-tains a complete and error-free proof showing that transformation of generalizedequations behaves as it should behave. Such a proof will (hopefully) be given inthe appendix of this paper where we show that proper generalized equations aretransformed into proper generalized equations with our transformation rule.The structure of the paper is as follows. In section 1 we shall �rst describe thebasic algorithm for word uni�cation which goes back to [Le72, Pl72, Si75, Si78].4In [Ma77], the last inequality of (3.11) should be l�(�k) � l�(�(�k)). In later, less knownpapers [Ma80, Ma81], this misprint was eliminated but the notion of \convexity" given therewas not quite correct. 4



The behaviour of this algorithm in a particular subcase will be helpful to un-derstand one of the main ideas behind the de�nition of a generalized equation.This de�nition is given afterwards. In the third part of section 1 we will sketchhow word equations are translated into sets of generalized equations. In section 2we introduce some notation, and in section 3 we de�ne the transformation algo-rithm and show that transformation preserves uni�ability in both directions. Weobtain a correct and complete procedure testing uni�ability of word equations.In section 4 we discuss termination. For this purpose, the notion of a propergeneralized equation is introduced. In section 5 we shall prove | following anidea of F. Baader | that a combination of Plotkin's and Makanin's algorithmsgives a simple solution to the problem of terminating minimal and complete worduni�cation which was �rst solved in [Ja90]. This is the problem to �nd an algo-rithm which generates a minimal and complete set of uni�ers for a given wordequation and terminates if this set is �nite.1 Word Equations and Generalized EquationsIn this section we want to introduce the concept of a generalized equation andto show how word equations are translated into sets of generalized equations. Asmentioned above we shall start with a description of the basic algorithm for worduni�cation which was independently found by several authors [Le72, Pl72, Si78,Si75]. Later, in section 5, we shall prove that the algorithm computes a disjointand complete set of uni�ers, for every word equation WE0. For the moment weare only interested in the general structure.The Basic AlgorithmFor given word equationWE0, a �nitely branching search tree TLP (WE0) is gene-rated, using non-deterministic transformation rules based on "variable-splitting"techniques. With Succ(WE) we will denote the set of successors of the wordequation WE under transformation. If WE has the form uW1 == vW2 (where uand v are constants or variables and W1;W2 are possibly empty words), then wesay thatWE has the \head" (u; v) and the tail Tail(WE) :=W1 ==W2. Expres-sions (v 7! W ) denote substitutions which simultaneously replace all occurrencesof v by W if applied to any word equation.Transformation:(i) IfWE has head (a; b) with two distinct constants, then Succ(WE) is empty.5



(ii) If WE has head (u; u) with two identical constants or variables, thenSucc(WE) := fTail(WE)g.(iii) If WE has head (a; x) or (x; a) with one constant and one variable, then letSLP1 = (x 7! a), SLP2 = (x 7! ax). NowSucc(WE) := fTail(SLP1 (WE));Tail(SLP2 (WE))g.(iv) If WE has head (x; y) with two distinct variables, then letSLP3 = (y 7! x), SLP4 = (x 7! yx) and SLP5 = (y 7! xy). NowSucc(WE) := fTail(SLP3 (WE));Tail(SLP4 (WE));Tail(SLP5 (WE))g.Successor elements may have one or two empty sides. Every node labelled witha \word equation" with two empty sides is a successful leaf. Every node labelledwith a \word equation" with exactly one empty side is a blind leaf.In this version the algorithm de�nes a semi-decision procedure: it is straight-forward to see that WE0 has a solution i� TLP (WE0) has a successful leaf (seesection 5).The Explosion of the Data SizeIn general, the basic algorithm does not terminate since the size of the word equa-tions which are created via transformation may grow. As an example, considerthe word equation xyxy == axyxzb. We may apply the transformation WE !Tail(SLP2 (WE)). The resulting word equation xyaxy == axyaxzb has again head(x; a). After k iterations we obtain the word equation xyakxy == axyakxzb. Insome cases, termination arguments may be given based on splitting techniques(see [LiSi75]). In general, however, there is no simple additional technique todecide solvability by deciding when an in�nite branch can be cut.A Decidable SubcaseIn a particular case it is simple to obtain a terminating algorithm by means ofloop-checking methods: a trivial inspection of the transformation rules showsthat the size of word equations cannot grow if no variable occurs more thantwice. Thus, in this case there is only a �nite number of word equations whichmay occur in the search tree. Suppose that we have reached | at node �2 |a word equation which has occurred earlier in the same path, at node �1. Inthis case we may stop with failure: if any sequence of transformations leads to asuccessful leaf, starting from �2, then we may apply the same sequence startingfrom �1 and we will again �nd a successful leaf. This shows that we may ignore6



the subtree below �2 for matters of decidability. More generally we may stopwhen we have found a word equation WE2 which is isomorphic to a predecessorWE1 in the same path. This means that WE2 may be obtained from WE1 bya permutation of the variable alphabet and a permutation of the alphabet ofconstants.With this pruning method we obtain a �nite subtree T finLP (WE0) and thus adecision procedure: WE0 has a uni�er i� T finLP (WE0) has a successful leaf.Generalized EquationsThe observation that uni�ability of word equations is decidable if variables occurat most twice does not solve the general problem. We cannot translate an arbi-trary word equation into an equivalent word equation where every variable has atmost two occurrences. But, with a more complex data type, it is in fact possibleto get an arti�cial duality of variables. This is one of the important ideas behindthe following concept.De�nition 1.1: A generalized equation is a quadrupelGE = (BS,BD,Col,BE)with four entities:(1) A �nite set of bases: BS = fbs1; :::; bsNg, N � 1.Every base is either a variable base or a constant base. Each constant basebsi is associated with exactly one letter a in the alphabet C, we say thatbsi has type a. Each variable base bsi is paired o� with exactly one othervariable base bsj 2 BS; bsi and bsj are called duals of each other. Lettersx; y; z; : : : denote variable bases. We write �x for the dual of the variablebase x.(2) A �nite set of boundaries: BD = f1; 2; : : : ;Mg, M � 1.Letters i; j; k; : : : denote boundaries. A pair (i; j) of boundaries with i � jis called a column of GE. Columns (i; i) are called empty, columns (i; i+1)are called indecomposable. For i < j < k we say that boundary j is in(i; k).(3) A column-function Col:A function which assigns a column of GE to every base of BS such thatCol(bsi) is indecomposable for every constant base bsi 2 BS and thatCol(x) 6= Col(�x) if x is a non-empty variable base5. For convenience,we introduce the two functions Left and Right: if Col(bsi) = (j; k), thenLeft(bsi) = j and Right(bsi) = k.5i.e., a variable base with non-empty column.7



(4) A �nite set BE of boundary equations:A boundary equations is a quadrupel of the form (i; x; j; �x) where i and jare boundaries, x and �x are dual variable bases, i is in Col(x) and j is inCol(�x). Symbols E;E1; ::: denote boundary equations.The role of parts (1)-(3) of the de�nition will become clear in a moment when wehave given the de�nition of a uni�er of a generalized equation and when we showhow word equations are translated into sets of generalized equations. In order tounderstand the role of the boundary equations (4), more background is needed.For the moment, imagine that a boundary equation (i; x; j; �x) expresses that theposition of i in x corresponds to the position of j in �x.For readers which are familiar with Ja�ar's [Ja90] corresponding de�nitionlet us point out two di�erences: by (2), boundaries are naturally ordered andour generalized equations are completed in the sense of [Ja90]. The conditionCol(x) 6= Col(�x) for non-empty variable bases x may be regarded as a normaliza-tion condition in the sense of [Ma77]. It will guarantee later that the \carrier"ofa non-trivial generalized equation and its dual never have the same position.De�nition 1.2: Every assignment S of non-empty words S(i; i+1) 2 (C[V)+to the indecomposable columns of GE has | via concatenation | a uniqueextension which assigns a (non-) empty word to every (non-) empty column ofGE. We identify S with this extension. S is a uni�er of GE if three conditionsare satis�ed:(i) S(Col(bsi)) = a for every constant base bsi of type a (a 2 C),(ii) S(Col(x)) = S(Col(�x)) for all variable bases x of GE,(iii) S(Left(x); i) = S(Left(�x); j) for every boundary equation (i; x; j; �x) in GE.The index of S is the number jS(1;M)j, where M is the maximal boundaryand jW j denotes the length of the word W . The exponent of periodicity of Sis the maximal number e such that S(Col(x)) may be represented in the formS(Col(x)) = UV eW , V non-empty, for a variable base x of GE. S is a solutionof GE if S(1;M) 2 C+.TranslationThe following example shows how word equations WE are translated into sets� (WE) of generalized equations. We visualize one generalized equation which isassigned to the word equationWE0 of the form axxbyx == xayyxy with variables8
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The vertical lines are the boundaries 1; 2; : : : ; 11 of GE0 which �x the relativeextension of variables. GE0 contains a certain \variant" of the left side axxbyxof WE0 in the upper part and a similar variant of the right side xayyxy inthe lower part.6 In GE0, multiple occurrences of the same symbol are formallydistinguished. For this reason bases are introduced (horizontal lines). For thesake of simplicity we did not use distinct names for the two coe�cient bases oftype a in our �gure. More important is the variable part. In word equations, avariable may have an arbitrary number of occurrences. In a generalized equation,every variable base has exactly two \dual" occurrences which are notationallydistinguished by means of a bar \�". By 1.2 (ii), dual bases have to get the samevalue. With this dualism it will be possible to transform a generalized equationwithout any enlargement of the number of bases. Exactly for this reason thevariable dualism is introduced.7When we translate WE0 we must store the information that all columns ofGE0 which correspond to the four occurrences of x in WE0 have to get the samevalue. We may only use pairs of dual variable bases. But we may also identifydistinct variable bases by writing them into the same column. In our exampleevery solution of GE0 will assign the same value to �x1 and to x2, similarly to �x2and x3 and also to �x3 and x4 because they have the same column. In combinationwith the equality of dual bases this will ensure that the four \x"-columns (2; 4),(4; 6), (9; 11) and (1; 3) will get the same value under an arbitrary solution. Thesame holds for the \y"-columns (7; 9), (4; 5), (5; 8) and (10; 11).The remaining elements of � (WE0), the set of all generalized equations cor-responding to WE0, only di�er from the one given above in the relative position6The vertical position is, however, irrelevant | it was just chosen for the sake of readability.7Later we shall see that this does not mean that we have avoided the \explosion of the datasize" { generalized equation may start growing in another part.9



of bases. In order to preserve solvability the elements of � (WE0) must repre-sent every possible distribution for the relative length of the bases. The formalde�nition of the translation algorithm is not di�cult and therefore omitted. Werefer to [Ja90].The following lemma summarizes some properties of the translation which aretrivial but become important later. If S is a solution of the word equation WE,the exponent of periodicity of S is the maximal number e such that S(x) may berepresented in the form S(x) = UV eW , V non-empty, for a variable x of WE.Lemma 1.3: There exists an algorithm which computes for every word equa-tion WE0 a �nite set � (WE0) of generalized equations with the following pro-perties:(a) WE0 has a uni�er with exponent of periodicity e if and only if some GE 2�(WE0) has a uni�er with exponent of periodicity e.(b) The elements of � (WE0) do not contain boundary equations. Every boun-dary is the right or left boundary of a base.(c) For GE 2� (WE0), the number of bases of GE does not exceed 2l(WE0),where l(WE0) is the notational length8 of WE0.As in [Ja90], a generalized equation GE is called trivially true, if all variablebases of GE are empty and if GE has a uni�er. GE is true, if it is trivially trueor if all constant bases of GE have the same type and GE has a uni�er. (If allconstant bases of GE have the same type, then uni�ability reduces to a set oflength restrictions which may be represented by an existential formula of �rst-order arithmetic without multiplication (Presburger arithmetic). The validity ofsuch formulas is decidable, see [Coo72]). GE is trivially false if two constant basesof distinct type have the same column. GE is false, if it is trivially false or if thegeneralized equation GEa which we get when we assign the same type a 2 C toall constant bases has no uni�er (in this case some inherent length restrictionscannot be satis�ed). GE is trivial if it is either trivially true or trivially false.Since empty variable bases cannot be involved in boundary equations it istrivial to decide the uni�ability of GE if all variable bases are empty.Lemma 1.4: It is decidable whether a generalized equation is trivial (true,false).8i.e., the number of symbol occurrences. 10



2 Transformation | NotionsSuppose that GE is a non-trivial generalized equation. Let l? denote the leftmostboundary among all left boundaries of non-empty variable bases. The carrier ofGE is the largest9 base among all variable bases with left boundary l? (if thereare several candidates, any may be chosen). The symbol xc will be used to denotethe carrier. The basic idea of the transformation procedure is to carry a part ofthe structure of Col(xc) to Col(�xc) and to erase a left part of GE afterwards. Ingeneral there are various ways how the structures of the two columns Col(xc) andCol(�xc) can be superposed and transformation is non-deterministic. In order tomaintain uni�ability downwards and upwards, all relevant information on iden-tical subwords has to be preserved at a transformation step. As it turns out, itis possible to transport simultaneously the complete structure of Col(xc) up to acertain critical boundary. From now on, (l?; r?) and (l??; r??) always denote thecolumns of xc and �xc respectively.De�nition 2.1: The critical boundary of GE is the leftmost boundary amongall left boundaries of variables bases y such r? is in Col(y), if such a base exists,and r? in the other case. The symbol cr denotes the critical boundary.Remark 2.2: In any non-trivial generalized equation GE, l? < cr � l??.Up to xc and �xc, the bases and boundaries of GE will now be partitionedin three classes of superuous objects, transport objects and �xed objects. Thesuperuous objects will be erased at a transformation step. The transport entitesare carried to Col(�xc), the �xed entities keep their position. Roughly, the clas-si�cation may be seen in the following �gure, but details will become importantlater. ���������������� 1 superuousbases/boundaries ���������������� l? transportbases/boundaries ���������������� cr transportor �xedbases/boundaries ���������������� r? �xedbases/boundaries ���������������� MDe�nition 2.3: The transport bases of GE are all bases bs 6= xc such thatl? � Left(bs) < cr and the empty bases with column (cr; cr). A base bs withCol(bs) = (i; i), i < l? is called superuous. A base bs 6= xc; �xc which is notsuperuous and not a transport base is called a �xed base.9i.e., the one with the largest right boundary.11



Note that all bases bs with Left(bs) < l? are necessarily empty, by de�nitionof the carrier.Remark 2.4: It will be frequently used that columns (i; j) of non-emptytransport bases are always subcolumns of (l?; r?) with i < cr. On the other hand,if (i; j) is the column of a �xed base, then cr � i and cr < j.De�nition 2.5: A boundary i of GE is a transport boundary in three cases:(i) if l? < i � cr,(ii) if cr < i < r? and i = Right(x) where x is a transport base,(iii) if cr < i < r? and i occurs in a boundary equation (i; x; j; �x) or (j; �x; i; x)where x is a transport base.A boundary i � l? is called superuous. A boundary is �xed if it is neithersuperuous nor a transport boundary.When we carry the transport entities from Col(xc) to Col(�xc) we have tosuperpose the structures of both columns. The following de�nition excludes su-perpositions which are trivially wrong, contradicting information about equalsubparts of the two columns which are encoded in boundary equations of theform (i; xc; j; �xc) or (j; �xc; i; xc).De�nition 2.6: Let l?tr; (l?+1)tr; :::; r?tr be a sequence of symbols not occur-ring in GE, representing a copy of all boundaries between l? and r?. An extendedprint is a linear order � on the set10 BD [ fl?tr; (l? + 1)tr; :::; r?trg satisfying thefollowing conditions:(i) l?tr = l??; r?tr = r??,(ii) � extends the natural order of BD and ktr � ltr for l? � k < l � r?,(iii) if l? � i and (i; j) = Col(bsk) for a constant base, then i and j are conse-cutive with respect to �. Similarly, if l? � i < j � r? and (i; j) = Col(bsk)for a constant base, then also itr and jtr are consecutive with respect to �,(iv) if l? < i < r? and GE has a boundary equation (i; xc; j; �xc) or (j; �xc; i; xc),then itr = j,(v) if x is a transport base, �x a �xed base and if GE has a boundary equation(i; x; j; �x) or (j; �x; i; x), then itr = j i� Left(x)tr = Left(�x) i� Right(x)tr =Right(�x) (equalities with respect to �).10For pure formalists: since elements of M := BD[fl?tr; (l?+1)tr; :::; r?trg may be identi�edwith respect to �, this linear order is formally an order on a partition of M .12



A print is the restriction of an extended print to the setBD0 = fcr; cr+ 1; :::;Mg [ fitr1 ; : : : ; itrr gwhere fi1; :::; irg is the set of all transport boundaries of GE.Lemma 2.7: The set of all prints of GE is �nite and may e�ectively becomputed.De�nition 2.8: The boundary equations of the form E = (i; x; j; �x); x 6=xc; �xc; are called standard equations. The natural image E 0 of E is the quadrupelwhich we get from E, replacing the entry i (entry j) by itr (by jtr) if x (resp. �x) isa transport base and leaving it unchanged in the other case. Of course both basesx and �x may be transport bases in which case both i and j have to be replacedto obtain the natural image. If � is a print, E 0 is degenerate with respect to � ifthe two boundaries occurring in E 0 coincide with respect to �.Remark 2.9: According to 2.4 and 2.6 (ii), itr � crtr if i is the left boundaryof a non-empty transport base, for any print �.3 Transformation | AlgorithmThe following Transformation procedure assigns a �nite set Transf(GE) (of non-false generalized equations) to every non-trivial generalized equation GE:� Transformation of GE = (BS,BD,Col,BE).Step 1: Compute the set of all prints for GE.Step 2: For every print � of GE let GE� be the generalized equation(BS0;BD0;Col 0;BE0) with components as de�ned below. GE� is | modulo atrivial renaming of boundaries | a generalized equation. Transf1(GE) is the setof all resulting structures GE�.3.1 BS 0 is the set of all non-superuous bases of GE.3.2 BD0 contains3.2.1: all boundaries i, cr � i,3.2.2: a new boundary itr for every transport boundary i of GE.3.3 Col 0 is de�ned as follows: 13



3.3.1: Col 0(bs) = Col(bs) if bs is a �xxed base ofGE, with the exception describedin 3.3.4,3.3.2: Col 0(bs) = (Left(bs)tr;Right(bs)tr) if bs is a transport base of GE, withthe exception described in 3.3.4,3.3.3: Col 0(xc) = (cr; r?) and Col 0(�xc) = (crtr; r??),3.3.4: If x is a non-empty variable base and if Col 0(x) = Col 0(�x) accordingto 3.3.1 and 3.3.2, then this value is corrected: Col 0(x) = Col 0(�x) =(Right0(x);Right0(x)).3.4: BE 0 contains:3.4.1: every non-degenerate natural image E 0 of a standard equation E of GE,3.4.2: all boundary equations of GE of the form (i; xc; j; �xc) or (j; �xc; i; xc) forcr < i,3.4.3: a new equation E 0 = (i; xc; itr; �xc) for every transport boundary i > cr.Step 3: Erase all false elements of Transf1(GE). In the remaining structures,rename boundaries using natural numbers 1; : : : ;M 0, according to their orderwith respect to �. The resulting set is Transf(GE).Example 3.5: To get a better picture of the algorithm it is useful to distin-guish three levels of growing complication. In the �rst situation the boundaryr? is not inside the column of another base. Then cr = r?, the complete struc-ture of Col(xc) is transported to Col(�xc) and xc; �xc become empty bases. Thetransformation does not introduce any new boundary equation. In the followingexample, x is the carrier of GE, r? = cr = 4.�����������������������
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9 (2; x; 7; �x); (3; z; 6; �z)
The �rst boundary equation is used to determine the new position 7 of 2tr anderased afterwards. Here is one element of Transf1(GE). It is the only successorin this case | the empty variable bases x and �x are omitted. Boundary names
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1tr and 4tr are only added in order to facilitate the reading.���������������������
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9 (3tr; z; 6; �z)The corresponding element of Transf(GE) woud be obtained using standardizedboundary names 1; : : : ; 7.The second typical situation occurs if there exists a base y, Left(y) < r?,which exceeds the carrier, but if there is no transport base whose right boundaryfalls into the column (cr; r?). The subpart of Col(xc) up to the critical boundaryis transported and cr becomes the new initial boundary. As a consequence ofthe second condition, no new boundary equations are introduced. The followinggeneralized equation GE is an example | the carrier is x, cr = 3:��������������������������
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9 (2; x; 7; �x); (3; z; 6; �z)
Again Transf1(GE) has only one element:��������������������������
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9 (3tr; z; 6; �z)
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In the third and most complex situation we have a transport boundary betweencr and r?. In our example it is the boundary 4 = Right(s).����������������������������
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9�y ����������������������������
10 (2; x; 8; �x); (3; z; 7; �z)

In this case we need a new boundary equation (4; x; 4tr; �x) after the transfor-mation in order to store all information on identical subcolumns:����������������������������
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10 (3tr; z; 7; �z); (4; x; 4tr; �x)
Remark 3.6: (a) Suppose that GE0 = GE� 2 Transf(GE). If the naturalimage of a boundary equation E = (i; x; j; �x) of GE is degenerate in GE0, thenwe are in the case described in 3.3.4 and vice versa, by 2.6 (v).(b) Note that the boundary equations of GE which are erased in GE0 are ex-actly the degenerate boundary equations and the boundary equations of the form(i; xc; j; �xc) or (j; �xc; i; xc) where i � cr.As a matter of fact, functions Left0 and Right0 may be de�ned in 3.3. Inthe following it is convenient to distinguish occurrences of the same base in GEand in GE0 := GE� if their position is changed. We allow to write bstr for anoccurrence of the transport base bs in GE0, similarly we often write x0c and �x0c foroccurrences of xc and �xc in GE0. We also allow to write l?tr (r?tr) for l?? (r??).16



Theorem 3.7: For every print �, the structure GE� is - modulo renamingof boundaries - a generalized equation. The number N 0 of bases of GE� does notexceed the number N of bases of GE.Proof: The only nontrivial part is to show that all elements E 0 of BE0 are infact boundary equations of GE0. If E 0 is the (non-degenerate) natural image ofE = (i; x; j; �x), suppose, for example, that x is a transport base while �x is �xed.Thus E 0 = (itr; xtr; j; �x). Clearly j is in Col 0(�x) = Col(�x), by 2.6 (ii) since E isa boundary equation. Again by condition (ii) of 2.6, itr is in Col 0(xtr) and E 0 isin fact a boundary equation. If E 0 has one of the types of 3.4.2 or 3.4.3, then itfollows from Col 0(x0c) = (cr; r?) and Col 0(�x0c) = (crtr; r??) that E 0 is a boundaryequation, using 2.6 (ii) and, for 3.4.3, 2.6 (iv) to get crtr � j.Before we continue the formal analysis of the transformation procedurewe have to add a general remark: it is clear that the non-false elements ofTransf1(GE) and the elements of Transf(GE) are identical modulo a trivial stan-dardization of boundary names. We want to establish various results concerningTransf(GE). For the proofs it is much more convenient to use the correspon-ding structures of Transf1(GE). Thus we shall henceforth ignore this notationaldistinction.Theorem 3.8: (a) If GE has a uni�er S with index I and exponent of peri-odicity e, then Transf(GE) has an element GE0 which has a uni�er S 0 with indexI 0 < I and exponent of periodicity e0 � e.(b) If an element of Transf(GE) has a uni�er, then GE is uni�able.Proof: (a) Let S be a uni�er of GE. For all i in (l?; r?) and all j in (l??; r??)de�ne� itr � j i� S(l?; i) is a proper pre�x of S(l??; j),� itr = j i� S(l?; i) = S(l??; j),� j � itr i� S(l??; j) is a proper pre�x of S(l?; i).Obviously � determines a unique extended print for GE. We may use the samesymbol � for the corresponding print. We show that GE0 = GE� has a uni�erS 0. We have to consider the indecomposable columns of GE0. All such columnsof the form (i; i+1) which have an empty intersection with (l??; r??) are columnsof GE. We de�ne S 0(i; i + 1) = S(i; i + 1). There are at most the following fourtypes of indecomposable subcolumns of (l??; r??) in GE0:(i) (j; j + 1) where l?? � j < r??,(ii) (itr; j) where i in (l?; r?) is a transport boundary and l?? < j � r??,(iii) (j; itr) where i in (l?; r?) is a transport boundary and l?? � j < r??,(iv) (itr; jtr) where l? < i < j < r? and both i and j are transport boundaries.17



We de�ne S 0(j; j + 1) = S(j; j + 1) in case (i), S 0(itr; j) = S(l?; i)�1S(l??; j) incase (ii), S 0(j; itr) = S(l??; j)�1S(l?; i) in case (iii) and S 0(itr; jtr) = S(i; j) incase (iv). The following claim may be proved by induction on the number ofindecomposable subcolumns. The technical proof is omitted:Claim: For all common columns (i; j) of GE and GE0: S 0(i; j) = S(i; j); for allcolumns of the form (itr; jtr) of GE0: S 0(itr; jtr) = S(i; j).With 3.3.1 and 3.3.2 it follows immediately that S 0(Col 0(bsi)) = S(Col(bsi)) = afor all constant bases bsi of GE0 of type a, and that S 0(Col 0(x)) = S 0(Col 0(�x))for all �xed and transport bases x of GE. Moreover, by the claim we getS 0(cr; r?) = S(cr; r?) = S 0(crtr; r?tr) = S 0(crtr; r??)and therefore S 0(Col 0(x0c)) = S 0(Col 0(�x0c)). Thus S 0 satis�es conditions (i) and(ii) of de�nition 1.2.Suppose now that E 0 is a boundary equation of GE0. Recall 3.4. We haveto show that S 0 satis�es condition (iii) of 1.2 for E 0. In the �rst case E 0 is the(non-degenerate) natural image of E = (i; x; j; �x) 2 BE. Assume �rst that x is atransport base while �x is �xed. Thus E 0 = (itr; xtr; j; �x). By 3.3.2, the claim, 1.2(iii) and 3.3.1 we haveS 0(Left0(xtr); itr) = S 0(Left(x)tr; itr) = S(Left(x); i)= S(Left(�x); j) = S 0(Left0(�x); j):Similarly condition (iii) of de�nition 1.2 may be veri�ed for the remaining sub-cases.In the second case E 0 has the form (i; x0c; j; �x0c) or (j; �x0c; i; x0c) where cr < i andwhere E = (i; xc; j; �xc) or (j; �xc; i; xc) 2 BE. Recall 3.3.3. Here itr = j, by 2.6(iv). By the claim,S 0(cr; i) = S(cr; i) = S 0(crtr; itr) = S 0(crtr; j)as demanded.In the third case, E 0 = (i; x0c; itr; �x0c) is new and cr < i, by 3.4.3. By the claim,S 0(crtr; itr) = S(cr; i) = S 0(cr; i):Thus condition (iii) of de�nition 1.2 is always satis�ed.We have shown that S 0 is a uni�er of GE0. Obviously the index of S 0 is strictlysmaller than the index of S since l? < cr. The exponent of periodicity e0 of S 0does not exceed the exponent of periodicity e of S since S 0(Col0(x)) is always asu�x of S(Col(x)), for any variables base x of GE0.18



(b) Assume now that S 0 is a uni�er of the structure GE0 = GE�. All inde-composable columns (i; i + 1) of GE with cr � i are columns of GE0. We de�neS(i; i+1) = S 0(i; i+1) in these cases. For the indecomposable columns (i; i+1)of GE with i + 1 � l? we de�ne S(i; i + 1) = a if (i; i + 1) = Col(bsi) for aconstant base of type a (remember that GE is nontrivial, hence a is unique).In the other cases, an arbitrary non-empty word S(i; i + 1) may be assignedto (i; i + 1) for i < l?. The indecomposable columns (l?; l? + 1),...,(cr � 1; cr)of GE have images (l??; (l? + 1)tr),...,((cr � 1)tr; crtr) in GE0 (3.2.2). We de�neS(l?; l? + 1) = S 0(l??; (l? + 1)tr),...,S(cr � 1; cr) = S 0((cr � 1)tr; crtr). It followsimmediately that S 0(i; j) = S(i; j) for all common columns (i; j) of GE0 andGE. Furthermore, for all l? � i < j � cr we have S(i; j) = S 0(itr; jtr). SinceS 0(cr; j) = S 0(crtr; jtr) for all transport boundaries j > cr of GE (compare 3.4.3,3.3.3 and 1.2 (ii)) it is possible to prove that S(i; j) = S 0(itr; jtr) for arbitrarytransport boundaries i < j of GE. Similarly as in (a) it is now easy to verify thatS is in fact a uni�er of GE.For word equation WE0 the tree TMak(WE0) has WE0 as top element and� (WE0) as �rst level (compare lemma 1.3). For every GE 2� (WE0), the dow-nward tree is the unordered, �nitely branching tree which results form iteratedtransformation.Corollary 3.9: WE0 has a uni�er if and only if TMak(WE0) has a node whichis labelled with a trivially true generalized equation.Proof: "only if ": Suppose that WE0 has a uni�er. By 1.3 some elementof � (GE) has a uni�er, of index I, say. By 3.8 there is a downward branchin TMak(WE0) labelled with uni�able generalized equations where the index de-creases at every step. Since the index is non-negative, the length of this branchcannot exceed I. The generalized equation GE which labels the last node can-not have a non-empty variable base since otherwise the transformation algorithmwould apply again. The rest is obvious."if ": by Lemma 1.3 (a) and Theorem 3.8, with a trivial induction.4 Proper Generalized Equations and Termina-tionIn most cases TMak(WE0) will be an in�nite tree. The previous results showthat it o�ers a correct and complete semi-decision procedure. In order to obtaintermination we need two additional arguments. The �rst is simple: similarly asfor the basic algorithmwe may eliminate some branches by means of loop checkingmethods. Let us call two generalized equations GE and GE0 isomorphic if the19



latter equation di�ers from the former only by means of a \consistent renamingof bases", i.e., if GE0 may be obtained from GE by a bijection between the sets ofbases which maps coe�cient bases of the same type again into coe�cient basesof the same type. Obviously we may stop a branch if we have found a generalizedequation GE0 which is isomorphic to a predecessor GE in the same branch.Even with this pruning method we will get an in�nite tree in general: ge-neralized equations may have an arbitrary number of boundaries and boundaryequations, thus there is an in�nite number of non-isomorphic generalized equati-ons even for a �xed number of bases. The second argument is much more di�cultand may be regarded as the main idea behind Makanin's decidability result. It isbased on the following theorem which was �rst proved in Bulitko [Bul]. A secondversion occurs in [Mak], recently Ko�scielski and Pacholski [KoP] found the boundwhich is used in the following formulation:Theorem: Let WE0 be a word equation with notational length l. If WE0 hasany solution, then it has a solution where the exponent of periodicity e satis�ese � eppmax(l) = 21:07l:Recall that translation into generalized equations and subsequent transfor-mation steps preserve solvability under a given upper bound for the exponent ofperiodicity in the downward direction (1.3 and 3.8). Thus, for a mere decisionprocedure it su�ces to consider in TMak(WE0) the generalized equations whichpossibly have a \tame" solution, i.e. a solution where the exponent of periodicitydoes not exceed eppmax(l).Makanin's main technical result | now adapted to the present terminology| was the proof that for the generalized equations GE which are generated viatransformation the number of boundaries determines a lower bound for the expo-nent of periodicity of an arbitrary solution. If the number of boundaries is verylarge, GE cannot have a tame solution and may be treated as a failure leaf.A similar result for arbitrary generalized equations can not be proved. Therelevant properties which guarantee that a lower bound for the exponent of peri-odicity in terms of the number of boundaries may be given are captured by theconcept of a proper generalized equation. This notion will be introduced below.We will also show that all generalized equations in TMak(WE0) are proper.Let us continue with the decidability argument. Note that for all generalizedequations in TMak(WE0) the number N 0 of bases does not exceed the numberN = 2l(WE0) where l(WE0) is the notational length of WE0 (1.3 (c) and 3.7).Theorem: There exists a recursive function NBDmax(N; b) such that every20



proper generalized equation with N 0 � N bases and M 0 � NBDmax(N; b) bounda-ries has only solutions S where the exponent of periodicity exceeds b.This is essentially Ja�ar's Main Lemma ([Ja90], pg. 75). Now obviously thenumber of nonisomorphic proper generalized equations with N 0 bases and M 0boundaries, where N 0 � N and M 0 � NBDmax(N; eppmax(l)), is �nite. Thusthere is only a �nite number of generalized equations to consider. Summarizingwe arrive at the followingFirst Decision ProcedureSuppose the word equationWE0 of length l is given. Let eppmax(l) be the boundgiven in the theorem of Bulitko, Makanin and Ko�scielski-Pacholski. TranslateWE0 into � (WE0), erasing false generalized equations. Iterate transformation.A node labelled with the generalized equation GE is a leaf in the following cases:� GE is trivial: sinceGE is non-false, it is trivially true and solvable (success).� GE is isomorphic to a predecessor equation (failure).� If GE hasM 0 � NBDmax(N; eppmax(l)) boundaries, where N = 2l (failure).Let T finMak(WE0) be the resulting tree. It is �nitely branching (2.7) and everypath is of �nite length. Thus T finMak(WE0) is �nite. WE0 is uni�able if and only ifT finMak(WE0) has a leaf which is labelled with a trivially true generalized equationGE.Proper Generalized EquationsIf E = (i; x; j; �x) is a boundary equation of the generalized equation GE, thenit is obviously possible to replace it by E�1 = (j; �x; i; x) without a�ecting sol-vability. We shall say that both E and E�1 are oriented versions of E and bothare oriented boundary equations of GE in this case. Throughout this subsectionGE = (BS,BD,Col,BE) denotes a nontrivial generalized equation. If not men-tioned otherwise, all bases, boundaries and boundary equations are always fromGE.De�nition 4.1: A chain of GE is a sequence � = E1; E2; : : : ; Em; w (m > 0)where the El are oriented boundary equations of the form (il; xl; il+1; �xl)11 (1 �11Thus, the second boundary of El and the �rst boundary of El+1 must always be identical.21



Figure 1: A \domino-tower".l � m) and w is a witness, i.e. a base w = bsj with Right(w) = im+1. The leadingbase of � is x1.De�nition 4.2: Let � = E1; : : : ; Em; w be a chain, suppose that El hasthe form (il; xl; il+1; �xl) (1 � l � m). To � we assign the word �(�) ofm symbols sj in the alphabet f>;=; <g de�ned by Left(�xj) sj Left(xj+1)(1 � j < m) and Left(�xm) sm Left(w). The chain � is called convex if�(�) 2 f>;=g? � f<;=g?. A convex chain � is adaptive if �(�) 2 f<;=g?.For every uni�er of GE, the values of the variable bases occurring in a convexchain � may be arranged to a \domino-tower" of the form indicated in �gure 1.Here parts which have vertical contact are identical. If � is adaptive, then theupper part | the part which has a frontier growing leftwards | is empty. Thismeans that we may put any additional \pair of stones" on top of the given towerwithout destroying the convex form.Later we shall consider sequences �0 = E 01; :::; E 0m; w0 where the E 0l are boun-dary equations of GE0 = GE� 2 Transf(GE) and w0 is a base of GE0. Then�0(�0) 2 f�;=;�gm is de�ned accordingly.De�nition 4.3: The left (right) boundaries of GE are the boundaries i suchthat Left(bsj) = i (Right(bsj) = i) for a base bsj of GE. The involved boundaries22



Figure 2:are the boundaries i which occur in an oriented boundary equation (i; x; j; �x) ofGE. A boundary i of GE is abandoned if it is neither left nor right nor involved.In the following LB(GE) denotes the number of left boundaries of non-emptybases of GE and AB(GE) the number of abandoned boundaries of GE.De�nition 4.4: The generalized equation GE with N bases and M bounda-ries is proper, if the following two conditions are satis�ed:(i) LB(GE) + AB(GE) � N .(ii) For every boundary equation E of GE there exists a convex chainE1; E2; :::; Em; w where E1 is an oriented version of E.Let us briey sketch the argument which shows that for proper generalizedequations with N 0 � N bases the number of boundaries determines a lower boundfor the exponent of periodicity of an arbitrary solution. Condition (i) triviallyimplies that proper generalized equations with a large number of boundaries havea large number of boundary equations, for �xed number of bases. Condition (ii)implies that these boundary equations may be ordered to long convex chains �such that �(�) contains a large number of symbols \>" or \<" (this is non-trivial). Such chains show that some solution component S(Col(xl)) (here xlis a variables base occurring in �) may be arranged to a high \domino-tower",as indicated in �gure 2. But such arrangements are only possible if S(Col(xl))has a large number of periodical, consecutive repetitions of the same nonemptysubword. For details we refer to [Ma77, Ja90].By 1.3 (b), all generalized equations in � (WE0) are proper, for any wordequation WE0. We shall prove the following theorem:Theorem 4.5: If GE is a non-trivial proper generalized equation, then all23



generalized equations in Transf(GE) are proper.It follows that all generalized equations occurring in TMak(WE0) are proper.The proof of theorem 4.5 will be divided two parts. We shall �rst show thattransformation preserves condition (i) of de�nition 4.4. In the appendix it willbe shown that transformation also preserves condition (ii).De�nition 4.6: A convex chain E1; :::; Em; w of GE is clean, if it does notcontain a subsequence Ei; Ei+1 of the form (i; x; j; �x); (j; �x; i; x).Lemma 4.7: Suppose that GE is a proper. If E 2 BE, then there exists aclean convex chain E1; E2; :::; Em; w such that E1 is an oriented version of E.Proof: Since GE is proper there exists a convex chain E1; :::; Em; w star-ting with E or E�1. We show that every subsequence El; El+1 of the form(i; x; j; �x); (j; �x; i; x) may be replaced by a shorter sequence. The result followsthen by induction.Case 1, l = 1: Note that E2 = E�11 . The chain E2; E3; :::; Em; w is again convexand starts with E or E�1.Case 2: l + 1 = m: The case m = 2 reduces to case 1, thus let m > 2and Em�2 = (k; y; i; �y). Now E1; :::; Em�2; w is a chain since Right(w) = iand thus w is a witness for E1; :::; Em�2. Convexity is trivial for m = 3, orif �(E1; : : : ; Em�3; Em�2) does not contain a symbol "<". If m > 3 and if�(E1; : : : ; Em�3; Em�2) contains a symbol "<", then Left(�y) � Left(x) � Left(w),by convexity of �.Case 3: 1 < l < m� 1: In this case E1; :::; Em has a subsequence� = (k; y; i; �y)(i; x; j; �x)(j; �x; i; x)(i; z; h; �z):We replace it by �0 = (k; y; i; �y)(i; z; h; �z). The new chain is convex (it is trivialto see that in a convex \domino-tower" some \stones" may be omitted withoutdestroying the convex form).Corollary 4.8: A clean convex chain � of GE does not have a subsequenceof the form (i; xc; j; �xc); (j; �xc; k; xc) or (j; �xc; i; xc); (i; xc; k; �xc).Proof: Since GE is non-false this would imply that k = i resp. k = j.Of course this property does not only hold for the carrier xc, but also forarbitrary bases. But we need this corollary only in the present form.24



Lemma 4.9: Suppose that GE is proper. Then every GE0 2 Transf(GE)satis�es condition (i) of de�nition 4.4.Proof: Remember that the boundaries of GE0 are cr; cr + 1; : : : ;M and theboundaries of the form itr, where l? < i < r? is a transport boundary of GE.Assume �rst, for simplicity, that the situation of 3.3.4 does not occur. We showthat LB(GE0) � LB(GE): let Cl(i) (Cl0(i)) be the set of all non-empty bases bswith left boundary i in GE (GE0). Thus we want to show that the number ofnon-empty classes ofGE0 does not exceed the number of non-empty classes of GE.If x 2 Cl(i) is a �xed (transport) base, then all elements of this class are �xed(transport) bases, with the possible exception �xc (xc). Thus distinct non-emptyclasses of GE0 have distinct non-empty parent classes in GE with the possibleexception Cl0(cr), Cl0(crtr) and the inequality is trivial if cr = r? and x0c, �x0c areempty. In the other case, Cl(cr) 6= ; and the members of Cl(l?) are distributedover Cl0(cr) (element x0c) and Cl0(l??) (all others). Thus three non-empty classesof GE | Cl(l?), Cl(cr) and Cl(l??) | become two non-empty classes Cl0(cr),Cl0(l??) of GE0. On the other hand, we have at most one new non-empty class,namely Cl0(crtr). Thus in fact LB(GE0) � LB(GE).Let us now consider the abandoned boundaries. We shall prove the followingclaims:Claim 1: If cr < i is a left or right boundary of GE, i 6= l??, then i is left, rightor involved in GE0.Claim 2: If i is a transport boundary of GE and i is left, right or involved in GE,then itr is left, right or involved in GE0.Claim 3: If cr < i is neither left nor right in GE, but involved in a boundaryequation E of GE, then i is left, right or involved in GE0.Proofs are given below. Since cr is left in GE0 claims 1-3 show that GE0 may onlyhave the following abandoned boundaries beside l??: some boundaries i 2 BD,cr < i, but then i was already abandoned in GE, moreover some boundaries ofthe form itr, but then l? < i < cr, i was abandoned in GE and i 62 BD0. Thus,beside l??, distinct abandoned boundaries of GE0 have distinct abandoned parentsin GE. This shows that AB(GE0) � AB(GE)+1, and if AB(GE0) = AB(GE)+1,then l?? is abandoned in GE0. But in the latter case cr 6= l??, Cl(l?) = fxcgand Cl(l??) = f�xcg. Then Cl0(l??) is empty and LB(GE0) � LB(GE) � 1. ThusLB(GE0) +AB(GE0) � LB(GE) + AB(GE) � N .Proof of claim 1: If l?? 6= i = Left(x), then x is �xed and Left0(x) = i holdsin GE0. If i = Right(x) and x is �xed, then i = Right0(x) holds in GE0. Ifi = Right(x) and x is a transport base, then i is involved in GE0, by 2.5 (ii)and 3.4.3. If i = Right(xc), then i = Right0(x0c) in GE0, if i = Right(�xc), then25



i = Right0(�x0c) in GE0.Proof of claim 2: This is clear if i = cr (3.3.3). If cr < i, then itr is involved inGE0 by 3.4.3. Suppose now that l? < i < cr. If i is the left or right boundaryof a base x, then x is a transport base and itr is a left or right boundary inGE0. Thus assume that i is involved in GE. If i occurs in (i; x; j; �x) or (j; �x; i; x),then x is a transport base or x = xc. In the �rst case itr is involved in GE0,by 2.8 and 3.4.1. Thus assume that (i; xc; j; �xc) or (j; �xc; i; xc) 2 BE. Note thatcr < j 6= l??. If j is left or right in GE, then j is left, right or involved in GE0,by claim 1. But itr = j, by 2.6 (iv). Thus it remains to consider the case whereboth i and j are neither left nor right. Since GE is proper we have a clean convexchain (i; xc; j; �xc); (j; y; k; �y); : : : ; (case 1) or (j; �xc; i; xc); (i; y; k; �y); : : : (case 2) oflength m > 1 in GE (for length 1, i or j would be the right boundary of thewitness base). In case 1, y 6= �xc, by 4.8. If y is �xed or y = xc, then itr = j(2.6 (iv)) is involved in GE0, by 2.8, 3.4.1 or 3.4.2. If y is a transport base, thenj is a transport boundary, by 2.5 (iii) and (j; x0c; jtr; �x0c) 2 BE0, by 3.4.3, thus itris involved in GE0. In case 2, the subcases y = xc, y �xed and y = �xc can beexcluded, by 4.8 or since i < cr. Thus y is a transport base and itr is involved inGE0, by 2.8 and 3.4.1.Proof of claim 3: Assume that i occurs in (i; x; j; �x) or in (j; �x; i; x) 2 BE. If xis �xed, then i is involved in GE0 by 2.8 and 3.4.1. If x is a transport base, theni is involved in GE0 by 2.5 (iii) and 3.4.3. If i occurs in (i; xc; j; �xc) 2 BE, theni is involved in GE0 by 3.4.2. If i occurs in (i; �xc; j; xc) 2 BE for cr < j, then(i; �x0c; j; x0c) 2 BE0, by 3.4.2. If j � cr, then j is a transport boundary, by 2.5 (i)and involved. By claim 2, jtr is left, right or involved in GE0. But jtr = i, by 2.6(iv).Assume now that the situation of 3.3.4 happens to be true for the base x ofGE. Then exactly one of the bases x and �x | x, say | is a transport base. Thetransformation of x and �xmay be described in two steps. First x is transported tothe position (i; j) of �x. This step does not leave the simpli�ed situation describedabove. Then both x and �x are compressed to the column (j; j). If i becomesabandoned, then there is no other base bsl such that i = Left0(bsl). Thus thenumber of left boundaries of non-empty variable bases decreases at this step.This compensates the enlargement of the number of abandoned boundaries, westill have LB0(GE0) + AB0(GE0) � LB(GE) + AB(GE) � N .
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5 Terminating Minimal and Complete WordUni�cationThe decision procedure of the preceding section could in principle be turned intoan algorithm which computes a minimal and complete set of uni�ers for a givenword equation WE0, terminating if this set is �nite, using the same constructionas in Ja�ar [Jaf]. A detailed proof is however rather tedious. Following an idea ofF. Baader we shall now describe an algorithm which does the same and is concep-tually simpler. The basic idea is the following: we shall use the basic algorithmfor word uni�cation described in section 1 in order to generate a minimal andcomplete set of uni�ers for a given word equation WE0. With some additionalamount of work these substitutions may be displayed at the successful leaves ofTLP (WE0) (see below). The tree TLP (WE0) will be generated in breadth �rstmanner, i.e., level for level, and we shall just collect all substitutions associa-ted with successful leaves. As a matter of fact, each level contains only a �nitenumber of word equations. Thus Makanin's decision procedure may be used as asubprocedure which decides for every level whether it contains a solvable equa-tion or not. As soon as we have found a level where all equations are unsolvablewe shall stop. We shall now show that the sequence of all substitutions which aredisplayed at the successful leaves of TLP (WE0) is in fact a minimal and completeset of uni�ers for WE0. Thus it is trivial that our algorithm generates such a setand terminates if this set is �nite.To be precise, let us recall several de�nitions. If S is a substitution andWE isa word equation of the form W1 ==W2, then S(WE) denotes the word equationS(W1) == S(W2). Let W � V, let S, T be substitutions. Then S is moregeneral than T with respect to W, S � T (W), i� there exists a substitution Rsuch that R(S(x)) = T (x) for all x 2 W. A set � of uni�ers for a word equationWE0 is complete if for every uni�er T of WE0 there exists an S 2 � such thatS � T (W0) where W0 is the set of variables occurring in WE0. A complete set� of uni�ers for WE0 is minimal if it does not contain two elements S1 6= S2such that S1 � S2 (W0). A stricter condition than minimality is disjointness. Acomplete set � of uni�ers for WE0 is disjoint with respect to W0 if two distinctuni�ers in � cannot be brought together: for all S1 6= S2 2 �: there are nosubstitutions T1, T2 such that T1(S1(x)) = T2(S2(x)) for all x 2 W0. S�R denotesthe product of two substitutions, S being applied �rst. Var(WE) denotes the setof variables occurring in WE.We shall now describe how uni�ers may be displayed at successful leaves ofTLP (WE0). For this purpose, let us associate with every word equation WE inTLP (WE0) the substitution S which is the product of all the substitutions SLPiwhich were applied at the transformation steps which led to WE. A convenientway to compute this substitution is to enrich WE0 with a list hx1; :::; xki of its27



variables, representing the trivial substitution. At every transformation step therespective substitution SLPi is not only applied to the word equation, but also tothe actual substitution list. Let � denote the set of all substitutions which areassociated with successful leaves of TLP (WE0) in this way.Theorem 6.1: � is a disjoint and complete set of uni�ers for WE0.A proof was given in Siekmann's thesis [Si78], but the notation used there ismore complicated. For the convenience of the reader we include a rather compactargument.It is trivial that the elements of � are uni�ers for WE0. Let W0 denote the setof variables occurring in WE0. The following lemma immediately implies that �is a complete set of uni�ers for WE0.Lemma 6.2: Every uni�er T of WE0 recursively de�nes a path � throughTLP (WE0) with the following property: if WE is a word equation occurring in �with associated substitution S, then S � T (W0).Proof: The topmost node of � containsWE0, and it is clear that Id (identity)satis�es Id � T (W0). Suppose now for the induction hypothesis that WE is in� with associated substitution S satisfying the condition of the lemma. Thusthere exists a substitution R such that R(S(z)) = T (z) for all z 2 W0. For theinduction step let us consider the case where WE has the head (a; x). To �ndthe successor of WE with respect to T(1) we apply SLP1 if R(x) = a,(2) we apply SLP2 if R(x) = aV , with V 2 (V [ C)+.This subcase analysis is complete: R uni�es WE since S �R is a uni�er for WE0and WE is a su�x of S(WE0) which may be reached by iterated deletion ofidentical head-symbols form both sides. In the �rst case we de�ne T 01 : y 7! R(y)for x 6= y 2 Var(WE), in the second case we de�ne T 02 : x 7! V and y 7! R(y) forx 6= y 2 Var(WE). Now T 01 and T 02 show that SLPi � R (i = 1,2).The substitution associated with the successor is S �SLPi in case (i), i = 1,2. Letz 2 W0. We have T 0i (SLPi (S(z))) = R(S(z)) = T (z). Thus S � SLPi � T (W0).The proof for the situation where WE has head of type (x; y) is completelyanalogous.IfWE is any word equation in TLP (WE0) it is straightforward to show that thesubstitutions SLPi which may be applied are disjoint with respect to the variablesoccurring in the actual equation WE. However, in order to prove that � is adisjoint set of uni�ers for WE0 we have to show that the substitutions associatedwith word equations in distinct paths are disjoint with respect to the variablesW0 of WE0. For this purpose we shall introduce the notion of a D-preserving(disjointness-preserving) substitution:De�nition 6.3: A substitution S is D-preserving with respect to a set W of28



variables i� the following holds: for any two substitution T1 and T2 which aredisjoint with respect to SfV ar(S(x));x 2 Wg the substitutions S �T1 and S �T2are disjoint with respect to W.Lemma 6.4: The transformation substitutions S(LP )i are D-preserving withrespect to the variables occurring in the actual word equation WE to be transfor-med (i = 1; :::; 5).Proof: Let us treat the situation where WE has head of type (x; y). Let usconsider SLP4 . Let T1 and T2 be two substitutions. Assume that SLP4 � T1 andSLP4 �T2 are not disjoint with respect to V ar(WE). Then there exist substitutionsR1 and R2 such that R1(T1(SLP4 (z))) = R2(T2(SLP4 (z))) for all z 2 V ar(WE). Inparticular, R1(T1(SLP4 (x))) = R2(T2(SLP4 (x)))R1(T1(SLP4 (y))) = R2(T2(SLP4 (y))):Thus R1(T1(yx))) = R2(T2(yx))R1(T1(y))) = R2(T2(y))and thus R1(T1(x))) = R2(T2(x)). Since for z 6= x always SLP4 (z) = z, this showsthat T1 and T2 are not disjoint with respect to V ar(SLP4 (WE). Thus SLP4 is infact D-preserving. The proof for SLP5 is symmetric, the proof for SLP3 is trivial,the proof for head (a; x) is analogous.Lemma 6.5: The set � is disjoint with respect to W0.Proof: The transformation substitutions SLPi which may be applied are dis-joint with respect to the actual variable set. Suppose that S1 and S2 are substitu-tions associated with distinct successful leaves of TLP (WE0). A simple inductionon the length of the common part of the paths leading to the respective leavesbased on the preceding lemma shows that S1 and S2 are disjoint with respect toW0.Improved Decision ProcedureLet us conclude with an improved decision procedure where some ideas from thebasic algorithm are used for a pre-analysis of word equations which always sim-pli�es the decision procedure described in section 4 and makes it even dispensablein some cases. We have to choose a slightly modi�ed representation of a wordequation. 29



Example 6.6: The word equation axbzx == zczyyy is translated into thefollowing matrix ���� ax1bz1x2z2cz3y1y2y3 ���� ���� x1x2 ���� ������� y1y2y3 ������� ������� z1z2z3 �������representing the four multi-equations ax1bz1x2 == z2cz3y1y2y3 (principal multi-equation), x1 == x2, y1 == y2 == y3 and z1 == z2 == z3.Note that every new indexed variable has exactly two occurrences. Thus thenew structure lies half on the way between word equations and generalized equa-tions. We may now apply the Lentin/Plotkin transformation strategy in orderto resolve all columns with two lines only | it is simple to see that the num-ber of symbols cannot grow! The �rst two successors are the following systems(simplifying the �rst system in the straightforward way):���� x1bax2cay1y2y3 ���� ����x1x2 ���� ������� y1y2y3 ������� ���� x1bz1x2z2cz3y1y2y3 ���� ����x1x2 ���� ������� y1y2y3 ������� ������� z1az2z3 ������� :Similar transformation steps are applied as long as there is any column with twolines left. We stop if a system is reached which is isomorphic to a predecessorin the same path. Eventually, when we reach a system where all columns haveat least three lines, the matrix is translated into an equivalent set of generalizedequations, introducing boundaries between all symbols occurring in a line of acolumn and choosing a linear order between the boundaries of the same column.The use of such multi-equation systems has various advantages (see [Sc90]for a detailed discussion). For all word equations where every variable occursat most twice the translation into generalized equations is completely avoided.Perhaps the most important point is the following: when the principal multi-equation is resolved, the number of additional transformation steps which leadto a uni�er S cannot exceed the number jX1X2 : : : Xnj where Xi = S(xi) andx1; : : : ; xn are the variables occurring in WE0, due to the vertical orientation ofnon-principal columns. Thus the maximal number of such transformation stepsis independent from the number of occurrences of each variable, in contrast tothe situation in the �rst decision procedure. The resolution of principal multi-equation corresponds to the computation of the possible linear orders betweenboundaries for the structures in � (WE0) in the standard approach. This amountof work cannot be avoided in either case.References[Ab87] H. Abdulrab, \R�esolution d'�equations sur les mots: Etude et30
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AppendixWe prove that transformation of proper non-false generalized equations preservescondition (ii) of the de�nition of properness (4.4). Let us introduce a notationalconvention: in GE = (BS,BD,Col,BE), three types of oriented boundary equati-ons may be distinguished:(i) the standard equations (see 2.8),(ii) the boundary equations of the form (i; xc; j; �xc) or32



(iii) of the reverse form (j; �xc; i; xc).Equations of type (ii) will be called print equations, equations of type (iii)reverse equations. In the following, these types will play a distinct role. Thus,instead of using symbols E;E1; : : : for arbitrary boundary equations of GE weshall sometimes use symbols S; S1; : : : for standard equations, symbols P; P1; : : :for print equations and symbols R;R1; : : : for reverse equations.When we consider a successor GE0 = GE� 2 Transf(GE), then S 0 denotes thenatural image of S with respect to � (see Def. 2.8). If P = (i; xc; j; �xc) 2 BE(R = (j; �xc; i; xc) 2 BE), then it is convenient to call P 0 = (i; x0c; j; �x0c) (R0 =(j; �x0c; i; x0c)) the natural image of P (R) with respect to �. Note that S 0 2 BE0i� S 0 is non-degenerate (3.4.1) and that P 0 (R0) is a boundary equation of GE0i� cr < i (3.4.2).Lemma 1: Assume that GE is proper. Let P1; :::; Pk; � (R1; :::; Rk; �) be aconvex chain and GE0 = (BS0;BD0;Col0;BE0) 2 Transf(GE). Then P 02; :::; P 0k 2BE0 (R01; :::; R0k�1 2 BE0).Proof: Let P1; P2 = (h; xc; i; �xc); (i; xc; j; �xc). Then cr < i since i is in Col(�xc).Thus P 02 2 BE0, by 3.4.2. Similarly it is clear that P 03; :::; P 0k and R01; :::; R0k�1 arein BE0.Lemma 2: Let GE be a proper, non-trivial generalized equation and let GE0 2Transf(GE). Assume that no natural image S 0 of a standard boundary equationS 2 BE is degenerate in GE0 = (BS0;BD0;Col 0;BE0). There exists a recursivetranslation which assigns to every clean convex chain � = E1; :::; Em; w of GEsuch that E 01 2 BE0 a convex chain �0 of GE0 starting with E 01. Moreover, if � isadaptive, then the following properties hold:(i) if E1 = S1 is a standard equation, then �0 is adaptive,(ii) if � = P1; � (where � is a chain of GE), then �0 = P 01; �0 where �0 is adaptiveand the leading base z of �0 satis�es l?? � Left0(z).(iii) if � = R1; � (where � is a chain of GE) then �0 is adaptive or has theform R01; R0�11 ;  where  is an adaptive chain of GE0 with leading base zsatisfying l?? � Left0(z).Proof: For the translation we shall use the following notational convention:if S1 = (i; x; j; �x) is an oriented boundary equation of GE (if w is a base of GE),then an index (f)S1 ((f)w) indicates that x (w) is a �xed base, similar indices (t)indicate that the respective bases are transport bases. A right upper index S(f)1(S(t)1 ) indicates that �x is a �xed (transport) base. The proof is now by inductionon the length m of �. 33



(I) For m = 1, we distinguish three subcases, depending on the type of theequation E1.Case 1: E1 = S1 = (i; x; j; �x) is a standard equation.(a) (S(f)1 ;(f) w)0 = S 01; w(b) (S(f)1 ;(t) w)0 = S 01; (j; x0c; jtr; �x0c); wtr(c) (S(f)1 ; xc)0 = S 01; x0c(d) (S(f)1 ; �xc)0 = S 01; �x0c(e) (S(t)1 ;(f) w)0 = S 01; (jtr; �x0c; j; x0c); w(f) (S(t)1 ;(t) w)0 = S 01; wtr.If � has the form � = S(t)1 ; w, then the cases w = xc and w = �xc cannot occursince j is in Col(xc), compare 2.4. Let us show that the translation satis�es theconditions of the lemma. First note that (j; x0c; jtr; �x0c) 2 BE0 in cases (b) and(e), by 3.4.3: in case (b), cr < j since j is in Col(�x) and �x is �xed, compare 2.4.Moreover, j = Right(w) is a transport base, by 2.5 (ii). Case (e) is similar, using2.5 (iii). In all cases it is now trivial to verify that �0 is a chain of GE0. Forthe cases (a), (c), (d) and (f) the convexity of �0 is trivial. In case (b), �0(�0) isthe word ��, by 2.912. In case (e), �0(�0) is the word ��, by 2.9. Now assumethat � is adaptive. In cases (a) and (f) it is trivial that �0 is adaptive, followingdirectly from 2.6 (ii), 2.8 and 3.3. In cases (b) and (c) � cannot be adaptive, by2.4. In case (d) Left(�x) � l?? (by assumption) and l?? � Left0(�x0c) imply that �0is adaptive, by 2.2, 2.6 (ii) and 3.3.3. In case (e) we saw that �0 is adaptive.Case 2: E1 = P1 = (i; xc; j; �xc) is a print equation.(a) (P1;(f) w)0 = P 01; w(b) (P1;(t) w)0 = P 01; (j; x0c; jtr; �x0c); wtr(c) (P1; xc)0 = P 01; x0cThe case w = �xc cannot occur since Right(w) = j is in Col(�xc). Recall thatP 01 2 BE0, by the assumption of the lemma. In case (b), (j; x0c; jtr; �x0c) 2 BE0 since12A symbol "�" indicates that the respective letter may be = or �.34



cr < j (j is in Col(�xc)) and j = Right(w) is a transport boundary, by 2.5 (ii). Itis trivial to show that �0 is always a chain of GE0. The convexity of �0 is trivialfor (a) and (c). In case (b), �0(�0) is the word ��, by 2.9. Note that � does nothave the form � = P1; � presupposed in (ii), since every chain has at least oneboundary equation. Thus there is nothing to show with respect to (ii) here.Case 3: E1 = R1 = (j; �xc; i; xc) is a reverse equation.Here cr < i since R01 2 BE0, by assumption:(a) (R1;(f) w)0 = R01; w(b) (R1;(t) w)0 = R01; (i; x0c; itr; �x0c); wtrThe cases w = xc or w = �xc cannot occur since Right(w) = i is in Col(xc).In case (b), cr < i = Right(w) is a transport boundary, by 2.5 (ii). Thus(i; x0c; itr; �x0c) 2 BE0, by 3.4.3. In both cases it is now trivial that �0 is a chain ofGE0. In case (b), �0(�0) is the word =� (2.9), thus �0 is always convex. Note that� does not have the form � = R1; � presupposed in (iii). Thus there is nothingto show with respect to (iii). But, for later purposes note that �0 is adaptive incase (a) since Left0(x0c) = cr � Left0(w) (2.4, w is �xed), and that l?? � Left0(wtr)in case (b).(II) For m > 1, � = E1; � where � is a chain of GE and we distinguish againthe three subcases where E1 is a standard equation, a print equation or a reverseequation. For the rest of the proof, greek letters �; �; : : : always denote chains.Case 1: � = S1; �. Let S1 = (h; �x; i; x). We consider the two subcases wherex is a �xed base (1.1) or a transport base (1.2).Case 1.1, � = S(f)1 ; �.Here cr < i, by 2.4, since i is in Col(x). Chain � may start with a standardequation, with a print equation or with a reverse equation. Accordingly we treatsubcases 1.1.1, 1.1.2 and 1.1.3.Case 1.1.1: � = S(f)1 ; S2; � or � = S(f)1 ; S2; w. Let S2 = (i; y; j; �y).(a) (S(f)1 ;(f) S2; �)0 = S 01; (S2; �)0 resp. (S(f)1 ;(f) S2; w)0 = S 01; (S2; w)0(b) (S(f)1 ;(t) S2; �)0 = S 01; (i; x0c; itr; �x0c); (S2; �)0resp. (S(f)1 ;(t) S2; w)0 = S 01; (i; x0c; itr; �x0c); (S2; w)035



Case (a): By induction hypothesis, �0 is a chain and (S2; �)0 or (S2; w)0 are convex.This implies that �0 is convex: if Left0(x) � Left0(y), then Left(x) < Left(y) and� is adaptive. Thus S2; � (resp. S2; w) is adaptive. By induction hypothesis (i)also (S2; �)0 (resp. (S2; w)0) is adaptive. Therefore �0 is convex and adaptive, inthis case. If Left0(x) � Left0(y), then �0 is convex by induction hypothesis.Case (b): Note that (i; x0c; itr; �x0c) 2 BE0, by 3.4.3 since cr < i is a transportboundary, by 2.5 (iii). Thus �0 is a chain of GE0, by induction hypothesis. Now2.4 and 2.9 show that �0(�0) has the form �� : : : in both cases. Thus �0 is convexby induction hypothesis. Since � cannot be adaptive (see 2.4) there is nothingto show with respect to (i).Case 1.1.2: (S(f)1 ; P1; �)0 = S 01; (P1; �)0 resp. (S(f)1 ; P1; w)0 = S 01; (P1; w)0.Let P1 = (i; xc; j; �xc). Here P 01 = (i; x0c; j; �x0c) 2 BE0 since cr < i. The inductionhypothesis shows that �0 is a chain of GE0 in both cases. Since Left0(x0c) = cr �Left(x) it is clear that �0 is convex, by induction hypothesis. Since � cannot beadaptive there is nothing to show with respect to (i).Case 1.1.3: � = S(f)1 ; R1; � or � = S(f)1 ; R1; w. Let R1 = (i; �xc; j; xc).(a) If � = R1; w and j � cr (R01 62 BE0), then �0 = S 01; wtr.In this subcase witness w is necessarily a transport base since Right(w) = j is inCol(xc) and j � cr (2.3). By 2.6 (iv), jtr = i and �0 is a chain of GE0. Clearly�0 is convex. If � is adaptive, then Left(x) � l??. Thus Left0(x) � Left0(wtr) (see3.3.1, 3.3.2, 2.6 (i) and (ii)) and �0 is adaptive.(b) If � = R1; w and cr < j (R01 2 BE0), then we have two subcases:(b-1) If � = R1;(f) w, then �0 = S 01; R01; w.(b-2) If � = R1;(t) w, then �0 = S 01; wtr.The cases w = xc and w = �xc cannot occur in (b) since Right(w) = j is inCol(xc). By 2.6 (iv), jtr = i and it follows that �0 is a chain of GE0. Convexityis trivial for (b-2) and follows for (b-1) since �0(�0) has last symbol \�". Nowsuppose that � is adaptive. Then Left(x) � l??. In case (b-1) Left0(x) � crtr, incase (b-2) Left0(x) � Left0(wtr). Thus �0 is adaptive.(c) If � = R1; � and j � cr (R01 62 BE0), then � has necessarily the form� = R1;(t) S2; � (or � = R1;(t) S2; w): � cannot start with a reverse equationsince j is not in Col(�xc); by 4.8, � cannot start with a print equationsince � is clean; � cannot start with (f)S2 since j � cr (2.4). We de�ne�0 = S 01; (S2; �)0 (resp. �0 = S 01; (S2; w)0).36



By 2.6 (iv), jtr = i and it is clear that �0 is a chain of GE0. To show that �0 isconvex, we distinguish two subcases: ifR1; S2; � (resp. R1; S2; w) is adaptive, then(S2; �)0 (resp. (S2; w)0) is adaptive, by induction hypothesis, and �0 is convex. Inthe other case, if R1; S2; � (resp. R1; S2; w) is not adaptive, let S2 = (j; y; k; �y).Then Left(y) = l? and Left(x) � l??. Thus Left0(x) � l?? = Left0(ytr) and �0is convex. Now suppose that � is adaptive. Then Left(x) � l??. By inductionhypothesis, (S2; �)0 (resp. (S2; w)0) is adaptive. Since Left0(x) � l?? � Left0(ytr)also �0 is adaptive.(d) If � = R1; � and cr < j (R01 2 BE0), then we distinguish two subcases:(d-1) R1; � is adaptive. According to the induction hypothesis, two subcasesmay occur:If (R1; �)0 is adaptive, then �0 = S 01; (R1; �)0.If (R1; �)0 = R01; R0�11 ;  where  is adaptive with leading base z satis-fying l?? � Left0(z), then �0 = S 01; .(d-2) If R1; � is not adaptive, then l?? � Left(x), by convexity of �. In thissubcase, � has necessarily the form � = (t)S2; � or � = (t)S2; w: if �would start with a reverse equation, then R1; � would be adaptive, �cannot start with a print equation since � is clean and � cannot startwith (f)S2 since R1; � is not adaptive. We de�ne �0 = S 01; (S2; �)0 or�0 = S 01; (S2; w)0.Subcases (d-1): It is clear for both subcases that �0 is a convex chain of GE0. If� is adaptive, then Left(x) � l?? and Left0(x) � l??. In both cases, �0 is adaptiveby induction hypothesis.Subcase (d-2): Let S2 = (j; y; k; �y). Here Left(y) = l? since R1; � is not adaptive.Thus Left0(ytr) = l?? � Left0(x) and �0 is convex by induction hypothesis. Thereis nothing to show with respect to (i) here.Case 1.2, � = S(t)1 ; �. Let S1 = (h; �x; i; x).Since � may start with a standard equation, with a print equation or with areverse equation we treat three subcases.Case 1.2.1, � = S(t)1 ; S2; � or � = S(t)1 ; S2; w. Let S2 = (i; y; k; �y).(a) (S(t)1 ; (f)S2; �)0 = S 01; (itr; �x0c; i; x0c); (S2; �)0resp. (S(t)1 ; (f)S2; w)0 = S 01; (itr; �x0c; i; x0c); (S2; w)0(b) (S(t)1 ;(t) S2; �)0 = S 01; (S2; �)0 resp. (S(t)1 ;(t) S2; w)0 = S 01; (S2; w)037



Case (a): By 3.4.3, (itr; �xc; i; xc) 2 BE0 since cr < i (i is in Col(y), y is �xed, 2.4)and i is a transport boundary, by 2.5 (iii). Thus it is clear that �0 is a chain ofGE0. Here � is adaptive, by 2.4. Thus (S2; �)0 (resp. (S2; w)0) is adaptive, byinduction hypothesis. Now 2.4 and 2.9 show that �0 is adaptive.Case (b): It is clear that �0 is a chain of GE0. (S2; �)0 (resp. (S2; w)0) is convex,by induction hypothesis. If Left0(x) � Left0(y), then Left(x) < Left(y) (2.6 (ii))and � is adaptive. Thus �0 is convex and adaptive, by induction hypothesis. IfLeft0(x) � Left0(y), then �0 is convex, by induction hypothesis. If � is adaptiveclearly �0 is adaptive, by 2.6 (ii) and induction hypothesis.Case 1.2.2, � = S(t)1 ; P1; � (resp. � = S(t)1 ; P1; w). Let P1 = (i; xc; j; �xc).Note that itr = j, by 2.6 (iv). We distinguish several subcases:(a) (S(t)1 ; P1; P2; �)0 = S 01; (P2; �)0 resp. (S(t)1 ; P1; P2; w)0 = S 01; (P2; w)0(note that P 02 2 BE0, by Lemma 1).(b) (S(t)1 ; P1;(f) S2; �)0 = S 01; (S2; �)0 resp. (S(t)1 ; P1;(f) S2; w)0 = S 01; (S2; w)0(c) (S(t)1 ; P1;(t) S2; �)0 = S 01; (j; x0c; jtr; �x0c); (S2; �)0resp. (S(t)1 ; P1;(t) S2; w)0 = S 01; (j; x0c; jtr; �x0c); (S2; w)0(d) (S(t)1 ; P1;(f) w)0 = S 01; w(e) (S(t)1 ; P1;(t) w)0 = S 01; (j; x0c; jtr; �x0c); wtr(f) (S(t)1 ; P1; xc)0 = S 01; x0c.In cases (a), (b), (d) and (f) it is clear that �0 is a chain of GE0 since itr = j. Incases (c) and (e) j is in Col(�xc), thus cr < j. Moreover, j is a transport boundary,by 2.5 (iii) and (ii), thus (j; x0c; jtr; �x0c) 2 BE0, by 3.4.3, and �0 is a chain of GE0.In case (a), �0 is convex by induction hypothesis since x0c is the leading base of(P2; �)0 (resp. (P2; w)0). Let S2 = (j; y; k; �y) in cases (b) and (c). For (b), wedistinguish two cases: if P1; S2; � (or P1; S2; w) is adaptive, then �0 is convex, byinduction hypothesis. If P1; S2; � (or P1; S2; w) is not adaptive, then Left(y) � l??,thus Left0(y) � l?? � Left0(xtr) and �0 is convex. In case (c) it follows from 2.2and 2.9 and the induction hypothesis that �0 is convex. In cases (d) and (f) it istrivial that �0 is convex. In case (e) �0 is convex, by 2.9.Suppose that � is adaptive. This may only occur in case (b) and (d). If � isadaptive in case (b), then Left(x) = l? and l?? � Left(y). Thus Left0(xtr) �Left0(y) and �0 is adaptive by induction hypothesis. If � is adaptive in case (d),then Left(x) = l? and l?? � Left(w) and it follows that �0 is adaptive.Case 1.2.3, � = S(t)1 ; R1; � (or � = S(t)1 ; R1; w). Let R1 = (i; �xc; j; xc).38



Note that � is adaptive in this case. We have cr < i since i is in Col(�xc) and i isa transport boundary, by 2.5 (iii). Thus (itr; �x0c; i; x0c) 2 BE0, by 3.4.3. Moreover,jtr = i, by 2.6 (iv).(a) If cr < j (R01 2 BE0) and � = R1; �, then�0 = S 01; (itr; �x0c; i; x0c); (R1; �)0 if (R1; �)0 is adaptive and�0 = S 01; (itr; �x0c; i; x0c);  if (R1; �)0 = R01; R0�11 ;  where  is adaptive(note that one of these cases must occur, by induction hypothesis).It is clear in both cases that �0 is a chain of GE0. We have Left(x) < cr andLeft(xtr) � crtr. This implies that �0 is adaptive in both cases since cr isminimal with respect to �.(b) If cr < j (R01 2 BE0) and � = R1; w, then�0 = S 01; (itr; �x0c; i; x0c); (i; �x0c; j; x0c); w if w is a �xed base and�0 = S 01; (itr; �x0c; i; x0c); wtr if w is a transport base.Note that the cases w = xc and w = �xc cannot occur here since j = Right(w) isin Col(xc). Since (itr; �x0c; i; x0c) 2 BE0 clearly �0 is a chain of GE0 in both cases.In the �rst case, �0(�0) is the word ��� and in the second case �0(�0) is ��, by2.9 and since Left0(x0c) = cr. It follows that �0 is convex and adaptive.(c) If j � cr (R01 62 BE0), then � necessarily has one of the following forms:(c-1) � = S(t)1 ; R1;(t) w, and we de�ne �0 = S 01; (itr; �x0c; i; x0c); wtr(c-2) � = S(t)1 ; R1;(t) S2; � (or � = S(t)1 ; R1;(t) S2; w), and we de�ne�0 = S 01; (itr; �x0c; i; x0c); (S2; �)0 (resp. �0 = S 01; (itr; �x0c; i; x0c); (S2; w)0).In fact � cannot have the form S(t)1 ; R1;(f) w or S(t)1 ; R1; xc or S(t)1 ; R1; �xc sinceRight(w) = j � cr. Similarly � cannot have the form S(t)1 ; R1;(f) S2; � or � =S(t)1 ; R1;(f) S2; w since j � cr, � cannot have the form S(t)1 ; R1; R2; : : : by Lemma1 and � cannot have the form S(t)1 ; R1; P; : : : since it is clean. In both cases (c-1)and (c-2) it is clear that �0 is a chain of GE0 since jtr = i, by 2.6 (iv). In case(c-1) we have Left0(x0c) = cr � l?? � Left0(wtr). Now �0 is convex and adaptive,by 2.9. Similarly, 2.9 shows that �0 is adaptive in case (c-2).Case 2: � = P1; �, where � is a chain of GE. Let P1 = (i; xc; j; �xc).Note that cr < i, by assumption.Case 2.1: (P1;(f) S1; �)0 = P 01; (S1; �)0 resp. (P1;(f) S1; w)0 = P 01; (S1; w)039



It is clear that �0 is a chain of GE0. Let S1 = (j; z; k; �z). By induction hypothesis,(S1; �)0 is convex. If �0(�0) starts with "�", then Left0(�x0c) � Left0(z) and l?? <Left(z). Thus � is adaptive, (S1; �)0 (resp. (S1; w)0) is adaptive by inductionhypothesis and �0 is convex. We prove (ii): if � is adaptive, then l?? � Left(z).Thus l?? � Left0(z). By induction hypothesis, (S1; �)0 (resp. (S1; w)0) is adaptive.Case 2.2: (P1;(t) S1; �)0 = P 01; (j; x0c; jtr; �x0c); (S1; �)0resp. (P1;(t) S1; w)0 = P 01; (j; x0c; jtr; �x0c); (S1; w)0).Here cr < j since j is in Col(�xc), and j is a transport boundary, by 2.5 (iii) or(ii). Thus (j; x0c; jtr; �x0c) 2 BE0, by 3.4.3. It is clear that �0 is a chain of GE0. Itfollows from 2.9 that �0 is convex. Since � is not adaptive, by 2.2 and 2.4, thereis nothing to show with respect to (ii).Case 2.3: (P1; P2; �)0 = P 01; (P2; �)0 resp. (P1; P2; w)0 = P 01; (P2; w)0).Note that P 02 2 BE0, by Lemma 1. Thus �0 is a chain of GE0, by inductionhypothesis. It is clear that �0 is convex, by induction hypothesis. Since � is notadaptive, there is nothing to show with respect to (ii).Remark: Since � is clean, the subcase analysis for case 2 is complete.Case 3: � = R1; � where � is a chain of GE. Let R1 = (j; �xc; i; xc).Note that cr < i, by assumption.Case 3.1: (R1;(f) S1; �)0 = R01; (S1; �)0 resp. (R1;(f) S1; w)0 = R01; (S1; w)0.It is clear that �0 is a chain of GE0. Since � is necessarily adaptive, (S1; �)0 (resp.(S1; w)0) is adaptive, by induction hypothesis. It follows that �0 is adaptive. Thuscondition (iii) is satis�ed.Case 3.2: (R1;(t) S1; �)0 = R01; R0�11 ; (S1; �)0 resp.(R1;(t) S1; w)0 = R01; R0�11 ; (S1; w)0.Note that R0�11 = (i; x0c; j; �x0c) = (i; x0c; itr; �x0c) 2 BE0 (2.5 (iii), 3.4.3) since itr = j,by 2.6 (iv). It is clear that �0 is a chain of GE0. It follows from 2.9 that �0 isconvex. Suppose now that � is adaptive. Then  = (S1; �)0 (resp.  = (S1; w)0)is adaptive, by induction hypothesis. If S1 = (i; y; k; �y), then the leading base of is z = ytr. Thus l?? � Left0(z) and condition (iii) is veri�ed.Case 3.3: For � = R1; R2; � or � = R1; R2; w we distinguish several cases. LetR2 = (i; �xc; k; xc). 40



(a) If k � cr (R02 62 BE0) and � = R1; R2; w, then w is a transport base sinceRight(w) = k. We de�ne �0 = R01; wtr.(b) If k � cr (R02 62 BE0) and � = R1; R2;(t) S1; � (or � = R1; R2;(t) S1; w), then�0 = R01; (S1; �)0 (resp. �0 = R01; (S1; w)0).Remark: For k � cr all other cases may be excluded: the leading base of � cannotbe a �xed base, by 2.4, it cannot be �xc, it cannot be xc since � is clean (4.8).(c) If cr < k (R02 2 BE0), � = R1; R2; � and (R2; �)0 is adaptive, then �0 =R01; (R2; �)0.(d) If cr < k (R02 2 BE0), � = R1; R2; � and (R2; �)0 has the form R02; R0�12 ; where  is adaptive with leading base z satisfying l?? � Left0(z), then�0 = R01; .Remark: chains of the form R1; R2; : : : are adaptive. Thus the case analysis forcr < k (R02 2 BE0), � = R1; R2; � is complete, by induction hypothesis (iii).(e) If cr < k (R02 2 BE0), � = R1; R2;(f) w, then �0 = R01; (R2; w)0.(f) If cr < k (R02 2 BE0), � = R1; R2;(t) w, then �0 = R01; wtr.It is trivial to show that �0 is a chain of GE0 in all cases. For (a), (b) and (f)note that ktr = i, by 2.6 (iv). In all cases � is adaptive. Let us show that �0 isadaptive, too. In case (a), �0 is adaptive since Left0(x0c) = cr � l?? � Left0(wtr).In case (b) (S1; �)0 (or (S1; w)0) is adaptive, by induction hypthesis, and it followsthat �0 is adaptive. Cases (c) and (d) are similar. In case (e), (R2; w)0 is adaptive,as mentioned in case 3 of (I). It follows that �0 is adaptive. In case (f) we see asin case (a) that �0 is adaptive.Remark: since � is clean, the case � = R1; P1; : : : does not occur.Lemma 3: Suppose that GE is proper, let GE0 = GE� 2 Transf(GE). If allnatural images S 0 of standard equations S 2 BE are non-degenerate with respectto �, then GE0 satis�es condition (ii) of de�nition 4.4.Proof: We have to show that for any boundary equationE 0 ofGE0 there existsa convex chain of GE0 with �rst element E 0 or E 0�1. By Lemma 2 this is clear forall boundary equations E 0 of GE which are natural images of boundary equationsE of GE. Now let E 0 be a new boundary equation of GE0, i.e. an equation ofthe form E 0 = (i; x0c; itr; �x0c) where cr < i is a transport boundary of GE. If i =Right(w) where w is a transport base of GE (see 2.5 (ii)), then (i; x0c; itr; �x0c); wtris a convex chain of GE0. In the other case, i occurs in a boundary equation41



S = (i; x; j; �x) or S�1 = (j; �x; i; x) of GE where x is a transport base (2.5 (iii)).Since GE is proper, there exists a clean convex chain � of GE which starts withS (case 1) or with S�1 (case 2). In case 1, GE0 has a convex chain �0 with �rstelement S 0 according to Lemma 2. Now (i; x0c; itr; �x0c); �0 is a convex chain of GE0,by 2.9. In case 2, we distinguish several subcases. In every subcase we shallgive a convex chain � of GE0 starting with (i; x0c; itr; �x0c) or (itr; �x0c; i; x0c). We usenotation and result of Lemma 2:(a) If � = (j; �x; i; x);(t) w, then � = (i; x0c; itr; �x0c); wtr.(b) If � = (j; �x; i; x);(t) S2; : : :, then we replace S�1 by S2 and are in case 1described above.(c) If � = (j; �x; i; x);(f) S2; : : : (or � = (j; �x; i; x);(f) w), then� = (itr; �x0c; i; x0c); (S2; : : :)0 (resp. � = (itr; �x0c; i; x0c); w).Remark: Since i is a transport boundary it is in Col(xc) and convex chains(j; �x; i; x); xc or (j; �x; i; x); �xc cannot occur.(d) the case where � = (j; �x; i; x); (i; xc; k; �xc); : : : need not to be consideredsince here k = itr. Thus (i; x0c; itr; �x0c) is a natural image of (i; xc; k; �xc) 2 BE.(e) If � = (j; �x; i; x); (i; �xc; k; xc);(t) S2; : : :(or � = (j; �x; i; x); (i; �xc; k; xc);(t) w), then� = (itr; �x0c; i; x0c); (S2; : : :)0 (resp. � = (itr; �x0c; i; x0c); wtr).(f) If � = (j; �x; i; x); (i; �xc; k; xc);(f) S2; : : :(or � = (j; �x; i; x); (i; �xc; k; xc);(f) w), thencr < k and (i; �x0c; k; x0c) 2 BE0. We de�ne� = (itr; �x0c; i; x0c); (i; �x0c; k; x0c); (S2; : : :)0 or� = (itr; �x0c; i; x0c); (i; �x0c; k; x0c); w.Remark: Since k is in Col(xc) convex chains (j; �x; i; x); (i; �xc; k; xc); xc or(j; �x; i; x); (i; �xc; k; xc); �xc cannot exist.(g) If � = (j; �x; i; x); R1; R2; : : :, then � is adaptive, R01 2 BE0 (Lemma 1) andwe de�ne� = (itr; �x0c; i; x0c); (R1; R2; : : :)0 if (R1; R2; : : :)0 is adaptive and� = (itr; �x0c; i; x0c);  if (R1; R2; : : :)0 has the form R01; R0�11 ; , where  isadaptive (see Lemma 2 (iii)).It is not di�cult to see that this subcase analysis is complete. In case (a) and(c) it is trivial that � is a chain of GE0. In case (e) this follows from ktr = i, see42



2.6 (iv). The convexity of � is trivial in case (a). In cases (c), (e), (f) and (g) theconvexity of � follows from Lemma 2 since � is adaptive, by 2.4.Theorem 4: If GE is non-trivial and proper and if GE0 = GE� 2Transf(GE), then GE0 satis�es condition (ii) of de�nition 4.4.Proof: If all natural images of standard equations S ofGE are non-degeneratewith respect to �, then the result follows from Lemma 3. If some standardequations of GE of have degenerate natural images with respect to �, then thetransformation may be divided into two steps: �rst, all bases get columns asdescribed in 3.3.1-3.3.3, ignoring the exceptional situation (degenerate boundaryequations are not yet erased). We may introduce a column-function Col 0(0) andfunctions Left0(0) and Right0(0) to describe this situation. Then the bases arecontracted, as described in 3.3.4, and degenerate boundary equations are erased.Consider now any boundary equation E 0 of GE0. We may apply the constructionof Lemma 2 and Lemma 3 in order to construct a chain �0(0) with witness wwhich starts with E 0 or E 0�1 and is convex with respect to Col 0(0). Now, in asecond step, we erase all degenerate boundary equations of �0(0) (note that the�rst element is not erased). We still have a chain since the two boundaries ofdegenerate boundary equations coincide and since Right0(w) = Right0(0)(w). Theresulting chain �0 is again convex: when we ignore last entries, �0(�0) is obtainedfrom �0(�0(0)) by erasing some letters or contracting two letters �� to =. Thisfollows from the fact that in a degenerate boundary equation both boundariesare identical and both bases have the same position with respect to Col 0(0), by2.6 (v). Since Left0(0)(w) � Left0(w) still �0(�0) 2 f�;=g? � f=;�g?.
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