
Embeddings and Deep Learning

Exercises

17-21 July, ESSLLI 2017

0 Requirements

Exercise 0.1 Installation

To do the following exercises you will need certain python packages. This
first exercise is about installing them. You will need sklearn, nltk, numpy,
gensim. Please make sure you have installed them (by your distribution’s
package manager, pip, anaconda, . . . ) and check your installation by trying
to import them:

1 import sklearn
2 import nltk
3 import numpy
4 import gensim

1 Wordspace

Exercise 1.1 First steps with Wordspace

In wordspace.py you find some convenience functions to extract a word
cooccurrence matrix from text. Run the following script and evaluate the
embeddings by looking at the nearest neighbors of some words.

1 from wordspace import cooccurrence_matrix ,\
2 nearest_neighbor_loop
3
4 with open(’brown.txt’, ’r’) as f:
5 brown = f.read()
6
7 matrix, vocabulary = cooccurrence_matrix(brown)
8 nearest_neighbor_loop(matrix, vocabulary)

1



Embeddings and Deep Learning ESSLLI 2017

Exercise 1.2 Model improvements (I)

One simple way to improve a basic counting model is transforming the word
counts by, e.g., applying the square root afterwards.
Modify the script from exercise 1.1 by using numpy.sqrt to do so.

Exercise 1.3 Model improvements (II)

Next let us examine the parameters of the function cooccurrence_matrix.
You can modify the window_size and/or try a different vectorizer than
the standard CountVectorizer to compute the cooccurrence scores. Try
sklearn.feature_extraction.text.TfidfVectorizer!

1 cooccurrence_matrix(
2 text, window_size=2, max_vocab_size=20000,
3 same_word_zero=False, vectorizer=CountVectorizer
4 )

2 Singular Value Decomposition

Exercise 2.1 Lower dimensionality

With Singular Value Decomposition (SVD) you can reduce the dimension-
ality of your embeddings. Try sklearn.decomposition.TruncatedSVD and
see how your embeddings change! Consider the following usage example:

1 C, V = cooccurrence_matrix(some_text)
2 svd = TruncatedSVD(
3 n_components=100, algorithm="randomized",
4 n_iter=5, random_state=42, tol=0.
5 )
6 new_C = svd.fit_transform(C)

n_components desired embedding dimension
algorithm SVD solver to use; either “arpack” or “randomized”
n_iter number of iterations for randomized SVD solver (not used

by ARPACK)
random_state seed for pseudo-random number generator
tol toleranze for ARPACK. Ignored by randomized SVD

solver

2



Embeddings and Deep Learning ESSLLI 2017

3 Word2Vec

Exercise 3.1 How to train your word2vec

Use the following code snippets to train your own word2vec model on the
brown corpus (or any other large text file you have). semantic_tests.py
contains some tests for your embeddings. Feel free to add more!

1 from semantic_tests import semantic_tests
2 from gensim.models.word2vec import Word2Vec
3 import nltk.data
4 from nltk.tokenize import word_tokenize
5 import logging
6 logging.basicConfig(
7 format=’%(asctime)s: %(levelname)s: %(message)s’,
8 level=logging.INFO
9 )

10
11 sent = nltk.data.load(
12 ’tokenizers/punkt/english.pickle’
13 )
14 with open(’brown.txt’, ’r’) as f:
15 sentences = sent.tokenize(f.read())
16 sentences = map(lambda s: word_tokenize(s), sentences)
17
18 model = Word2Vec(
19 sentences , size=100, window=5,
20 min_count=5, hs=0, negative=5,
21 cbow_mean=1, iter=5, workers=3
22 )
23
24 semantic_tests(model.wv)

Hint: The keyword arguments of Word2Vec should look familiar to you. You
can use them as you would use the command line arguments of the word2vec
script.

Exercise 3.2 Load pretrained embeddings

Instead of training your own word2vec model, you can also download pre-
trained embeddings and load them into gensim. Are they doing better in
your semantic_tests?

3



Embeddings and Deep Learning ESSLLI 2017

1 from gensim.models import KeyedVectors
2 from semantic_tests import semantic_tests
3
4 model = KeyedVectors.load_word2vec_format(
5 ’path/to/GoogleNews−vectors−negative300.bin.gz’,
6 binary=True
7 )
8
9 semantic_tests(model)

Exercise 3.3 Bonus exercise: Phrase embeddings

gensim also includes a module for phrase detection (i.e. two or more words
belonging together like New York). If you have time, you can try to train
embeddings for these, too!

1 from gensim.models.phrases import Phrases, Phraser
2
3 bigram = Phraser(Phrases(sentences))
4 model = Word2Vec(list(bigram_transformer[sentences]))
5
6 print(model.wv.most_similar([’New_York’]))

4 FastText

Exercise 4.1 How to train your fasttext

For this exercise you need to download and build FastText1 as gensim only
provides a wrapper around the actual fasttext library. Then you can use it
like this:

1 from gensim.models.wrappers import FastText
2 from semantic_tests import semantic_tests
3
4 model = FastText.train(
5 "path/to/fasttext",
6 corpus_file=’brown.txt’
7 )
8 semantic_tests(model)

1https://github.com/facebookresearch/fastText

4

https://github.com/facebookresearch/fastText


Embeddings and Deep Learning ESSLLI 2017

5 Deep Learning

Exercise 5.1 New requirements

You will need to install torch and torchtext for the last exercise.

http://cis.lmu.de/esslli2017/convolutional.tar.gz contains a shell
script install_requirements.sh that can do this for you (Anaconda and
using the script with ./install_requirements.sh conda is recommended).

In case you need to troubleshoot your installation, please make sure you
tried to install it before the last course session.

Exercise 5.2 Sentiment Classification

Download the pytorch implementation of a convolutional neural network for
text classification from

http://cis.lmu.de/esslli2017/convolutional.tar.gz.

Try different hyperparameters. You can also modify

(I) if the word embeddings should be randomly initialized or loaded from
word2vec (cf. exercise 3.2) and

(II) if the embeddings should be kept static or be fine-tuned during train-
ing.

5

http://cis.lmu.de/esslli2017/convolutional.tar.gz
http://cis.lmu.de/esslli2017/convolutional.tar.gz

	Requirements
	Wordspace
	Singular Value Decomposition
	Word2Vec
	FastText
	Deep Learning

