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word2vec skipgram

predict, based on input word, a context word
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word2vec parameter estimation:

Historical development
vs. presentation in this lecture

Mikolov et al. (2013) introduce word2vec, estimating
parameters by gradient descent.
(today)

Still the learning algorithm used by default and in most cases

Levy and Goldberg (2014) show near-equivalence
to a particular type of matrix factorization.
(yesterday)

Important because it links two important bodies of research:
neural networks and distributional semantics
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Gradient descent (GD)

Gradient descent is a learning algorithm.

Given:

a hypothesis space (or model family)
an objective function or cost function
a training set

Gradient descent (GD) finds a set of parameters, i.e.,
a member of the hypothesis space (or specified model)
that performs well on the objective
for the training set.

GD is arguably the most important learning algorithm,
notably in deep learning.
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Simple learning problem → word2vec

Gradient descent for
housing prices

Gradient descent for
word2vec skipgram

Schütze (LMU Munich): Gradient descent 8 / 40



Roadmap Intro, model, cost Gradient descent

Inverted Classroom
Andrew Ng: “Machine Learning”

http://coursera.org

Schütze (LMU Munich): Gradient descent 9 / 40



Roadmap Intro, model, cost Gradient descent

Outline

1 Roadmap

2 Intro, model, cost

3 Gradient descent

Schütze (LMU Munich): Gradient descent 10 / 40



Roadmap Intro, model, cost Gradient descent

Intro, model, cost: Andrew Ng videos

Introduction

Supervised learning

Model and cost function

Model representation
Cost function
Cost function, intuition 1
Cost function, intuition 2
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Housing prices in Portland

input variable x output variable y

size (feet2) price ($) in 1000s

2104 460
1416 232
1534 315
852 178

We will use m for the number of training examples.
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Setup to learn a housing price predictor using GD

Next: Setup for word2vec skipgram

Hypothesis:
hθ = θ0 + θ1x

Parameters:
θ = (θ0, θ1)

Cost function:

J(θ0, θ1) =
1

2m

m∑

i=1

(hθ(x
(i))− y (i))2

Objective: minimizeθ0,θ1J(θ0, θ1)
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graph: hypothesis, parameters
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Basic idea: gradient descent finds “close” hypothesis

Choose θ0, θ1
so that, for our training examples (x , y),
hθ(x) is close to y .

Schütze (LMU Munich): Gradient descent 15 / 40



Roadmap Intro, model, cost Gradient descent

Cost as a function of θ1 (for θ0 = 0)

Left:
housing price y as a function of square footage x

Right:
cost J(θ1) as a function of θ1
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one-variable case
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Cost as a function of θ0, θ1

Left:
housing price y as a function of square footage x

Right: contour plot
cost J(θ0, θ1) as a function of (θ0, θ1)
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Hypothesis (left)

Point corresponding to its cost in contour (right)

Schütze (LMU Munich): Gradient descent 19 / 40



Roadmap Intro, model, cost Gradient descent

Surface plot (instead of contour plot)
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Gradient descent: Andrew Ng videos

Gradient descent

Gradient descent intuition

Gradient descent for linear regression
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Gradient descent: Basic idea

Start with some values of parameters,
e.g., θ0 = 0.3, θ1 = −2

(These initial values are randomly chosen.)

Keep changing θ0, θ1 to reduce J(θ0, θ1)

Hopefully, we will end up at a minimum of J(θ0, θ1).

“keep changing”: how exactly do we do that?
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Gradient descent: One step (one variable)

Repeat until convergence

θ1 := θ1 − α
d

dθ1
J(θ1)

Or: Repeat until convergence

θ1 := θ1 − αJ ′(θ1)

α is the learning rate.
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positive/negative slope
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Exercise: Gradient descent

Suppose you have arrived at a point where the gradient is 0

Draw an example of this situation

Mark the current point at which the gradient is zero and the
point that gradient descent will move to next
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Gradient descent: One step (> 1 variables)

Repeat until convergence

θ0 := θ0 − α
∂

∂θ0
J(θ0, . . . , θk)

θ1 := θ1 − α
∂

∂θ1
J(θ0, . . . , θk)

. . .

θk := θk − α
∂

∂θk
J(θ0, . . . , θk)

α is the learning rate.
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Path down to minimum: Two parameters
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Surface plot (instead of contour plot)
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Gradient descent: One step (regression)

Repeat until convergence

θ0 := θ0 − α
1

m

m∑

i=1

(hθ(x
(i))− y (i))

θ1 := θ1 − α
1

m

m∑

i=1

[(hθ(x
(i))− y (i)) · x(i)]

α is the learning rate.
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derivatives
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Learning rate α

If α is too small:
gradient descent is very slow.

If α is too large:
gradient descent overshoots, doesn’t converge or (!) diverges.
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divergence
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Different minima: Exercise

Depending on the starting point, we can arrive at different minima
here. Find two starting points that will result in different minima.
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Gradient descent: batch vs stochastic

So far: batch gradient descent

Recall cost function:
J(θ0, θ1) =

1
2m

∑
m

i=1(hθ(x
(i))− y (i))2

We sum over the entire training set . . .

. . . and compute the gradient for the entire traning set.

Schütze (LMU Munich): Gradient descent 36 / 40



Roadmap Intro, model, cost Gradient descent

Stochastic gradient descent

Instead of computing the gradient for the entire traning set,

we compute it for one training example

or for a minibatch of k training examples.

E.g., k ∈ {10, 50, 100, 500, 1000}

We usually add randomization,

e.g., shuffling the training set.

This is called stochastic gradient descent.
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Gradient descent: stochastic vs batch

Advantages of stochastic gradient descent

More “user-friendly” for very large training sets, converges faster
for most hard problems, often converges to better optimum

Advantages of batch gradient descent

Is easier to justify as doing the right thing (e.g., no bad move
based on outlier training example), converges faster for some
problems, requires a lot fewer parameter updates per epoch

Schütze (LMU Munich): Gradient descent 38 / 40



Roadmap Intro, model, cost Gradient descent

Exercise

Prepare a short (perhaps three-sentence) summary of how
gradient descent works.

Present this summary to your neighbor

You may want to refer to these notions:
Hypothesis hθ = θ0 + θ1x

Parameters θ = (θ0, θ1)

Cost function J(θ0, θ1) =
1
2m

∑
m

i=1(hθ(x
(i))− y (i))2

Derivative of cost function
Objective minimizeθ0,θ1J(θ0, θ1)
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Gradient descent: Summary

n-dimensional hyperplane for n parameters

Height (dim n+ 1) is cost → the surface we move on.

a series of steps, each step in steepest direction down

The derivative gives us the steepest direction down.

The learning rate determines how big the steps are we take.

We will eventually converge (stop) at a minimum (valley).

There is no guarantee we will reach the global minimum.
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