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Machine NLP: Naive & highly simplistic model, Step 1

Memory: working, semantic, episodic

Working: pronouns etc.

Semantic: words etc.

Episodic: entities etc.

“She enjoyed the Olympics.”

“She”: working memory lookup

“enjoyed”: semantic memory lookup

“the Olympics”: episodic memory lookup
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(Actually: why I like representation learning for words in
general, including LSI, Brown classes etc.)

Embeddings are
a first stab at approximating semantic memory.

Standard NLP: Before training we know nothing about a word.

(But we have a very richly annotated corpus like WSJ.)

Embedding-based NLP:
when you encounter a word,
you look it up in semantic memory
and you know a lot about the word right away.

Working/Episodic memory:
extension of “semantic” memory/embeddings?
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Operations: reference / lookup

Operation R:T→E
Establishes Reference from Text to Episodic memory

text span → episodic memory slot

Example: “Olympics”
→ episodic memory slot “Beijing Olympics”
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Operations: reference / lookup

Operation R:T→S
Establishes “Reference” from Text to Semantic memory

text span → semantic memory slot

“red tape” → semantic memory slot for “red tape”

So: semantic memory lookup = recognition of word

May or may not be a good idea
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Operations: storage / manipulation

Operation I:W.
Initialize Working memory slot wi

Peter arrived today.

Claim one working memory slot for “Peter”
and put “Peter” in it.
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Operations: storage / manipulation

Operation M:W↔E.
Establishes Memory link Working M. ↔ Episodic M.

working memory slot w2 ↔ episodic memory slot

Obama is US president. He will leave office in 2017.

In this example:
w2 (he) ↔ episodic memory slot “Obama”
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Operations: storage / manipulation

Operation C:W→E.
Copies content from Working M. to Episodic M.

“The 1956 Olympics were held in Melbourne.”

First put in Working memory, then copy to Episodic memory
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Operations: Summary

R:T→W Reference text→working
R:T→E Reference text→epsodic
R:T→S Reference text→semantic
I:W Initialize working memory slot
M:W↔E Link working↔episodic
C:T→W Copy text→working
C:W→E Copy working→episodic
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Backup slides
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Reference: Discrete or not discrete?

Storage locations are discrete and in that sense against the
spirit of distributed representations / deep learning.

Problem 1: Non-discrete reference phenomena

GIVE EXAMPLES
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Words vs. entities

Can we also use embeddings for entities?

The answer is not clear to me: Pros and cons.

However, arguments for episodic memory could also be
arguments for treating words and entities differently.

Schütze, LMU Munich: Strawman Model of Reference 17 / 17


