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Where we have been

 We defined the overall problem and talked
about evaluation

 We have now covered word alignment
— IBM Model 1, true Expectation Maximization

— IBM Model 4, approximate Expectation
Maximization
— Symmetrization Heuristics (such as Grow)
* Applied to two Model 4 alignments

e Results in final word alignment



Where we are going

 We will define a high performance translation
model

* We will show how to solve the search problem
for this model



Outline

* Phrase-based translation
— Model
— Estimating parameters

* Decoding



 We could use IBM Model 4 in the direction
p(f|e), together with a language model, p(e),
to translate

argmax P(e | f) = argmax P(f|e) P(e)
e e



 However, decoding using Model 4 doesn’t
work well in practice

— One strong reason is the bad 1-to-N assumption

— Another problem would be defining the search
algorithm

* |f we add additional operations to allow the English
words to vary, this will be very expensive

— Despite these problems, Model 4 decoding was
briefly state of the art

e We will now define a better model...



Phrase-based translation

Morgen

|f1iege

ich

nach Kanada

z1ur Konferensz

J

| Tomorrow

to the conference] |in Canada

e Foreign input is segmented in phrases
— any sequence of words, not necessarily linguistically motivated

e Each phrase is translated into English

e Phrases are reordered
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Statistical Machine Translation

e Components: Translation model, language model, decoder

foreign/English English
parallel text text

statlstlcal analysis statlstlcal analysis

Translation Language
Model Model

Decoding Algorithm I
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Language Model

e Often a trigram language model is used for p(e)

— P(the man went home) = p(the | START) p(man |
START the) p(went | the man) p(home | man went)

e Language models work well for comparing the
grammaticality of strings of the same length

— However, when comparing short strings with long
strings they favor short strings

— For this reason, an important component of the
language model is the length bonus

e This is a constant > 1 multiplied for each English word in the
hypothesis

It makes longer strings competitive with shorter strings



Phrase-based translation model

e Major components of phrase-based model

— phrase translation model ¢(f|e)
— reordering model d
— language model p,y(e)

e Bayes rule , , ,
argmaxp(e|f) = argmax.p(fle)p(e)

— argma:{egﬁ{f|e};_:rm_1{e)w|e”gth':e)
e Sentence f is decomposed into I phrases f{ = fi,.... fi
e Decomposition of o(f|e)

m{f_ﬂfir) = H q—‘b{ﬁ|ﬁg)f'f[ﬂ.; — bi_1)

i=1

Modified from Koehn 2008



Advantages of phrase-based translation
e Many-to-many translation can handle non-compositional phrases
e Use of local context in translation

e The more data, the longer phrases can be learned
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Phrase translation table

e Phrase translations for den Vorschlag

English o(elf) | English o(elf)
the proposal 0.6227 || the suggestions | 0.0114
's proposal 0.1068 || the proposed 0.0114
a proposal 0.0341 || the motion 0.0091
the idea 0.0250 || the idea of 0.0091
this proposal 0.0227 || the proposal , 0.0068
proposal 0.0205 | its proposal 0.0068
of the proposal | 0.0159 || it 0.0068
the proposals 0.0159
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How to learn the phrase translation table?

e Start with the word alignment:

bofetada bruja
la 1

Maria no daba una a verds

Mari

did

not

alap

the

green

witch

e Collect all phrase pairs that are consistent with the word alignment
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Consistent with word alignment

Maria no daba Maria no daba Maria no daba
]
Mary Mary Mary
]
did did did
]
not not not
alap I_I_- alap alap
inconeistent inconesistent

e Consistent with the word alignment :=

phrase alignment has to contain all alignment points for all covered words

(€. ?} c BP & Ye; €€ (e, }Lj} cA— f_.j: c f

AND VYf; € (e, fi)eEA—ece
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Word alignment induced phrases

bofetada bruija
l:T

Haria no dabka una a warde

Mary

did

slap

the=

gres=n

witch

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green)
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Word alignment induced phrases

bofatads bruia
l:T

Haria no dabka una a warde

gresn
witch

did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),

(Maria, Mary), (no,
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Word alighment induced phrases

bofetada bruja
Haria no daba una -1 1a werde
Mary I
did
nt e ——
_
s1s —
"
= [TO
gres=n
wiktch -

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),

(Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)
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Word alignment induced phrases

bofetada &
Haria no daba una

a 1a werde

slap

the=

grasn

wicch

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),
{Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the)
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),

(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch),
(Maria no daba una bofetada a la, Mary did not slap the),

(daba una bofetada a la bruja verde, slap the green witch)
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Word alignment induced phrases (5)

bofetada ja
Haris no daba uns -1 1= wvards

Mary -
did -II
II —
not
slap
the

gresn

wiktch

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),
{Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the)
{bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),

(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch),

(Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde,
slap the green witch), (no daba una bofetada a la bruja verde, did not slap the green witch),
(Maria no daba una bofetada a la bruja verde, Mary did not slap the green witch)
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Probability distribution of phrase pairs
e We need a probability distribution ¢( f[€) over the collected phrase pairs
= Possible choices

count(f.=)
> cou nt(f.=)

— relative frequency of collected phrases: ¢(f|e) =

— or, conversely ¢(¢|f)
— use lexical translation probabilities
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Reordering

e Monotone translation

— do not allow any reordering
— worse translations

e Limiting reordering (to movement over max. number of words) helps

e Distance-based reordering cost

— moving a foreign phrase over n words: cost z*n

e [exicalized reordering model
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Outline

 Phrase-based translation model

* Decoding
— Basic phrase-based decoding
— Dealing with complexity

e Recombination
* Pruning

e Future cost estimation



Statistical Machine Translation

e Components: Translation model, language model, decoder

foreign/English English
parallel text text

statlstlcal analysis statlstlcal analysis

Translation Language
Model Model

Decoding Algorithm I
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Decoding

Goal: find the best target translation of a source sentence
Involves search

— Find maximum probability path in a dynamically generated search
graph

Generate English string, from left to right, by covering parts of
Foreign string

— Generating English string left to right allows scoring with the n-gram
language model

Here is an example of one path



Decoding Process

Maria no dio una bofetada a la bruja verde

e Build translation left to right

— select foreign words to be translated

Slide from Koehn 2008



Decoding Process

Maria no dio una bofetada a la bruja verde

Mary

e Build translation left to right

— select foreign words to be translated

— find English phrase translation
— add English phrase to end of partial translation
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Decoding Process

Maria no dio una bofetada a la bruja verdes

e Build translation left to right

— select foreign words to be translated

— find English phrase translation

— add English phrase to end of partial translation
— mark foreign words as translated
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Decoding Process

no dio una bofetada a la bruja verdes

e

e One to many translation
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Decoding Process

la

bruja

verde

e Many to one translation
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Decoding Process

Maria no

Mary did not

e Many to one translation

Slide from Koehn 2008

dic una bofetada

slap

a la

bruja

verde

the




Maria no

Mary did not

e Reordering
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Decoding Process

dic una bofetada

slap

a la

the

bruja

verde

green




Decoding Process

dic una bofetada

Mary did not slap the green witch

e [ranslation finished
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Translation Options

Maria neo dio una bofetada a la bruja verde
Mars not gl a al ap Lo the witch green
did not a alap Ly are=n witoh
no slap to the
did not gjve Lo
the
alap the witeoh

e Look up possible phrase translations

— many different ways to segment words into phrases

— many different ways to translate each phrase
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Hypothesis Expansion

Maria o dio una bofetada a 1la bruja vards
M3ty not giwe a slap Lo tha —wWitech femal=T=tul
did not 2 slap Ly gresn witch
o slap to the
did not give Lo
the
2lap Lha witcoh

e Start with empty hypothesis
— e: no English words
— f: no foreign words covered

— p: probability 1
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Hypothesis Expansion

Maria no dio una bofetada a 1la bruja vards
— Mary not giwe =1 slap to tha —witch Jr=en
did not a slap Loy gresn wWitch
o glan to the
did pot aiwe Lo
the

2lap fha witch

(= 2: Mary
E: --------- |j=—piERERRC
p: 1 p: .G534

e Pick translation option

e Create hypothesis
— e: add English phrase Mary
— f: first foreign word covered
— p: probability 0.534
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Hypothesis Expansion

Maria no dio una bofetada a la bruja vards
M1y not gisre =1 slan Lo Lhs witch gJlsen
~did not a3 slap Ly gresn witch
o slap Lo the
did pot aiwe Lo
the
alap the witch
e: witch
fiom------w-
p: 182
(= 2: Mary
R fr #--------
p: 1 ju E34

e Add another hypothesis
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Hypothesis Expansion

no dio una bofaetada a 1la bruja vards

M3ty not giwe a slap Lo tha —witch femal=T=1l
did not 2 slap Loy gresn wWitch
o alap to the
did pot ajwe Lo
the
2lap fha witch

e: witch = . slap

f: -------%- Fo m-www_———

: 182 p: .043

e Further hypothesis expansion
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Hypothesis Expansion

Maria no dioc una bofetada a la bruja wverds
Moty haluin gJive =1 glan o the —witech greasn
Aid not A slap Ly Jreen witch
no =2lap Lo tha
did neot give Lo
thea
2lap Iha witch

a: witch e: slap
P f: Fokkk -
: .182 p: .043

a: the
F: ®hkkkkd__

p: .004283

e:green wiktch
F: *dkdkhnsds

p: .000271

o : Blap
£: —--------- 7 We======= 7 iz ====== : REERE____
p: 1 7

: 015

e ... until all foreign words covered

— find best hypothesis that covers all foreign words
— backtrack to read off translation
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Hypothesis Expansion

Maria no dio una bofetada a la bruja vards
M3ty not giwe a slap Lo tha —witch femal=T=1l
Aid not a slap Ly gresn witch
o 3lapw to the
Aid not agiswe +
the
2lap Lha witch
e: witch a: zlap
f: [ —— S f: W W W e =
p: .18Z2 @ P: .043 %
My - -
ax 2: Mary e: did not a: slap e: the a:grean witch
f: _——— - — f: | - : f: L SR f: whkwh R - .,f: e okdk ok oW f: Wl dr ko Wkl W
P: 1 P: .534 p: .154 +p: .015 p: 004253 +p: La00zTl
¥ ¥ ¥

e Adding more hypothesis

=- Explosion of search space
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Explosion of Search Space
e Number of hypotheses is exponential with respect to sentence length
= Decoding is NP-complete [Knight, 1999]

— Need to reduce search space

— risk free: hypothesis recombination
— risky: histogram /threshold pruning
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Hypothesis Recombination

p=0.534 p=0.092

g NEEEEE

Mar

did not give

did not

ive
p=0.164 9 p=0.044

e Different paths to the same partial translation
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Hypothesis Recombination

=1 =0.534 =0.092
b Mary b did not give P
EEEEEEEEE e - EEEEEEEE = - EEEEEE
did not

ive
p=0.164 9

e Different paths to the same partial translation

— Combine paths
— drop weaker path
— keep pointer from weaker path (for lattice generation)
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Hypothesis Recombination

p=0.092 p=0.017

did not give
= g NEEEEE

p=0.092

did not give
e HUEEEEE

did not
give

p=0.164

e Recombined hypotheses do not have to match completely

e No matter what is added, weaker path can be dropped, if:
— last two English words match (matters for language model)
— foreign word coverage vectors match (possible future paths are the same)

Modified from Koehn 2008



Hypothesis Recombination

p=0.092

did not give

p=0.092

did not give
e HUEEEEE

did not
give

p=0.164

e Recombined hypotheses do not have to match completely

e No matter what is added, weaker path can be dropped, if:
— last two English words match (matters for language model)

— foreign word coverage vectors match (possible future paths are the same)

= Combine paths

Modified from Koehn 2008



Pruning
e Hypothesis recombination is not sufficient
= Heuristically discard weak hypotheses early

e Organize Hypothesis in stacks, e.g. by
— same foreign words covered
— same number of foreign words covered
— same number of English words produced

e Compare hypotheses in stacks, discard bad ones
— histogram pruning: keep top n hypotheses in each stack (e.g., n=100)

— threshold pruning: keep hypotheses that are at most a times the cost of
best hypothesis in stack (e.g., & = 0.001)
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Hypothesis Stacks

e Organization of hypothesis into stacks

— here: based on number of foreign words translated
— during translation all hypotheses from one stack are expanded
— expanded Hypotheses are placed into stacks
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Comparing Hypotheses

e Comparing hypotheses with same number of foreign words covered

Maria no dio una bofetada a la bruja verde
e: Mary did not e: the
o *%k_______ fe ——co-- * ok
p: 0.154 p: 0.354
better covers
partial easier part
translation --> lower cost

e Hypothesis that covers easy part of sentence is preferred

= Need to consider future cost of uncovered parts
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Future Cost Estimation

a la

y

Ito thel

e Estimate cost to translate remaining part of input

e Step 1: estimate future cost for each translation option

— look up translation model cost
— estimate language model cost (no prior context)

— ignore reordering model cost
— LM * TM = p(to) * p(the|to) * p(to the|a la)

Slide from Koehn 2008



Future Cost Estimation: Step 2

a la
- to cost = 0.0299
= the cost = 0.0354

e Step 2: find cheapest cost among translation options
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Future Cost Estimation: Step 3

Maria

no

dio

ura

bofetada

a

la

bruja

verds

Maria

o L]

dio

ura

bofetada

la

bruja

verds

e Step 3: find cheapest future cost path for each span

— can be done efficiently by dynamic programming
— future cost for every span can be pre-computed
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Future Cost Estimation: Application

Maria dic una bofetada a la bruja verds
0.1 glap 0.006672
future future
covered
coversd coat coat

| =
{ \

fo: 0006872
pr*fo: . 000029

e Use future cost estimates when pruning hypotheses
e For each uncovered contiguous span:

— look up future costs for each maximal contiguous uncovered span
— add to actually accumulated cost for translation option for pruning
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A* search

e Pruning might drop hypothesis that lead to the best path (search error)

e A* search: safe pruning

— future cost estimates have to be accurate or underestimates
— lower bound for probability is established early by

depth first search: compute cost for one complete translation
— if cost-so-far and future cost are worse than lower bound, hypothesis can be

safely discarded

e Not commonly done, since not aggressive enough
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Limits on Reordering

e Reordering may be limited

— Monotone Translation: No reordering at all
— Only phrase movements of at most n words

e Reordering limits speed up search (polynomial instead of exponential)

e Current reordering models are weak, so limits improve translation quality
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Word Lattice Generation

p=0.092

did not give

p=0.092

did not giwve
o EEEEEE|

did not

ive
p=0.164 °

e Search graph can be easily converted into a word lattice

— can be further mined for n-best lists
— enables reranking approaches
—: enables discriminative training

Jos
did not give

»{]

did not giwve
> el

Mary
did not give

Slide from Koehn 2008



