
Statistical Machine Translation

Part IV – Log-Linear Models

Alexander Fraser

Institute for Natural Language Processing

University of Stuttgart

2011.11.25 Seminar: Statistical MT

Where we have been

• We have covered all bases!

• Solving a problem where we are predicting a

structured output:

– Problem definition– Problem definition

– Evaluation, i.e., how will we evaluate progress?

– Model

– Training = parameter estimation

– Search (= decoding, for SMT)

Where we are going

• The generative models we have seen so far

are good, but we can do better

– Switch to discriminative models (this will be

defined later)defined later)

– We will see that this frees us from the structure of

the generative model!

• We can concentrate on new knowledge sources

• Also, no more annoying open parameters

– The kind of model I will present is used practically

everywhere in NLP these days

Outline

• Optimizing parameters

• Deriving the log-linear model

• Tuning the log-linear model

• Adding new features• Adding new features

Introduction

argmax P(e | f) = argmax P(f | e) P(e)

e ea

• We have seen that using Bayes’ Rule we can

decompose the problem of maximizing P(e|f)

e ea

Basic phrase-based model

• We make the Viterbi assumption for alignment (not

summing over alignments, just taking the best one)

• We know how to implement P(f,a|e) using a phrase-

based translation model composed of a phrase-

generation model and a reordering model

• We know how to implement P(e) using a trigram

model and a length bonus

length(e)

LMDTM C (e)P (a)P e)|a(f,P

Example

Source: |Morgen| |fliege| |ich| |nach Kanada|

Hyp 1: |Tomorrow| |I| |will fly| |to Canada|

Hyp 2: |Tomorrow| |fly| |I| |to Canada|

• What do we expect the numbers to look like?

Phrase Trans Reordering Trigram LM Length bonus

Hyp 1 Good Z^4 < 1 Good C^6

Hyp 2 Good Z^0 = 1 Bad C^5 < C^6

What determines which hyp is

better?
• Which hyp gets picked?

– Length bonus and trigram like hyp 1

– Reordering likes hyp 2

• If we optimize Z and C for best performance, we will • If we optimize Z and C for best performance, we will

pick hyp 1

Phrase Trans Reordering Trigram LM Length bonus

Hyp 1 Good Z^4 < 1 Good C^6

Hyp 2 Good Z^0 = 1 Bad C^5 < C^6

How to optimize Z and C?

• Take a new corpus “dev” (1000 sentences, with gold

standard references so we can score BLEU)

• Try out different parameters. [Take last C and Z

printed]. How many runs?

Best = 0;

For (Z = 0; Z <= 1.0; Z += 0.1)

For (C = 1.0; C <= 3.0; C += 0.1)

Hyp = run decoder(C,Z,dev)

If (BLEU(Hyp) > Best)

Best = BLEU(Hyp)

Print C and Z

Adding weights

• But what if we know that the language model

is really good; or really bad?

• We can take the probability output by this

model to an exponentmodel to an exponent

• If we set the exponent to a very large positive

number then we trust very much

– If we set the exponent to zero, we do not trust it

at all (probability is always 1, no matter what e is)

LM
λ

(e)PLM

(e)PLM

• Add a weight for each component

(Note, omitting length bonus here, it will be back

soon; we’ll set C to 1 for now so it is gone)

LMDTM
λλλ

(e)P (a)P e)|a(f,P LMDTM

• To get a conditional probability, we will divide

by all possible strings e and all possible

alignments a

∑
=

a',e' LMDTM

LMDTM

)(e'P)(a'P)e'|a'(f,P

(e)P (a)P e)|a(f,P
 f)|aP(e,

LMDTM

LMDTM

λλλ

λλλ

• To solve the decoding problem we maximize

over e and a. But the term in the denominator

is constant!

LMDTM

LMDTM

LMDTM

λλλ

λλλ

λλλ

(e)P (a)P e)|a(f,P argmax

)(e'P)(a'P)e'|a'(f,P

(e)P (a)P e)|a(f,P
 argmax f)|aP(e,argmax

LMDTMae,

a',e' LMDTM

LMDTM
ae,ae,

=

=

∑

• We now have two problems

– Optimize Z, C and the three lambdas

– Exponentiation is slow

• Let’s solve this one first…• Let’s solve this one first…

Log probabilities

• Convenient to work in log space

• Use log base 10 because it is easy for humans

• log(1)=0 because

• log(1/10)=-1 because

1100
=

10/110 1
=

−

• log(1/10)=-1 because

• log(1/100)=-2 because

• Log(a*b) = log(a)+log(b)

• Log(a^b) = b log(a)

10/110 1
=

−

100/110 2
=

−

So let’s maximize the log

length(e)

LMDTMae,

ae,

C(e)P (a)P e)|a(f,P argmax

 f)|aP(e,argmax

LMDTM
λλλ

=

So let’s maximize the log

)C(e)P (a)P e)|a(f,Plog(argmax length(e)

LMDTM ae,
LMDTM
λλλ

=

length(e)

LMDTMae,

ae,

C(e)P (a)P e)|a(f,P argmax

 f)|aP(e,argmax

LMDTM
λλλ

=

So let’s maximize the log

)C(e)P (a)P e)|a(f,Plog(argmax length(e)

LMDTM ae,
LMDTM
λλλ

=

length(e)

LMDTMae,

ae,

C(e)P (a)P e)|a(f,P argmax

 f)|aP(e,argmax

LMDTM
λλλ

=

))C log()(e)P log(

)(a)log(P)e)|a(f,Plog(argmax

length(e)

LM

DTM ae,

++

+=

LM

DTM

λ

λλ

So let’s maximize the log

)C(e)P (a)P e)|a(f,Plog(argmax length(e)

LMDTM ae,
LMDTM
λλλ

=

length(e)

LMDTMae,

ae,

C(e)P (a)P e)|a(f,P argmax

 f)|aP(e,argmax

LMDTM
λλλ

=

))C log()(e)P log(

)(a)log(P)e)|a(f,Plog(argmax

length(e)

LM

DTM ae,

++

+=

LM

DTM

λ

λλ

)) log((e))P log(

(a))log(Pe))|a(f,Plog(argmax

length(e)

LM

DTM ae,

Cλ

λλ

LM

DTM

++

+=

Let’s change the length bonus

)log(10 (e))P log(

(a))log(Pe))|a(f,Plog(argmax

length(e)

LM

DTM ae,

LBLM

DTM

λλ

λλ

++

+=

length(e) (e))P log(

(a))log(Pe))|a(f,Plog(argmax

LM

DTM ae,

LBLM

DTM

λλ

λλ

++

+=

We set C=10 and add a new lambda, then simplify

Length penalty

))(-length(e (e))P log(

(a))log(Pe))|a(f,Plog(argmax

LM

DTMae,

LPLM

DTM

λλ

λλ

++

+=

We like the values we work with to be zero or less We like the values we work with to be zero or less

(like log probabilities)

We change from a length bonus to a length

penalty (LP)

But we know we want to encourage longer strings

so we expect that this lambda will be negative!

Reordering

))(-length(e (e))P log(

(-D(a))e))|a(f,Plog(argmax

LM

TMae,

LPLM

DTM

λλ

λλ

++

+=

Do the same thing for reordering. As we do more Do the same thing for reordering. As we do more

jumps, “probability” should go down.

So use –D(a)

D(a) is the sum of the jump distances (4 for hyp 1

in our previous example)

Log-linear model

• So we now have a log-linear model with four

components, and four lambda weights

– The components are called feature functions

• Given f, e and/or a they generate a log probability value • Given f, e and/or a they generate a log probability value

• Or a value looking like a log probability (Reordering,

Length Penalty)

– Other names: features, sub-models

• This is a discriminative model, not a

generative model

Slide from Koehn 2008

Slide from Koehn 2008

Search for the log-linear model

• We’ve derived the log-linear model

– We can use our beam decoder to search for the

English string (and alignment) of maximum

probabilityprobability

• We only change it to sum (lambdas times log

probabilities)

• Rather than multiplying unweighted probabilities as it

did before

))(-length(e (e))P log(

(-D(a))e))|(fPlog(argmax

LM

TMae,

LPLM

DTM

λλ

λλ

++

+=

Discriminative training problem:

optimizing lambda

• We are looking for the best lambda vector

– A lambda vector consists of lambda scalars (4 for our model right now)

• How do we get an optimal lambda vector?

• We can use nested for-loops as we did before for C and Z• We can use nested for-loops as we did before for C and Z

– We need to try out a lot of values for the lambda scalars though, the

differences could be very subtle

– Many, many decoder runs; these take 10 minutes or longer each!

• At least we can reduce number of decoder runs

– Use n-best lists

Slide from Koehn 2008

Slide from Koehn 2008

Learning Task
Source: |Morgen| |fliege| |ich| |nach Kanada|

Hyp 1: |Tomorrow| |I| |will fly| |to Canada|

Hyp 2: |Tomorrow| |fly| |I| |to Canada|

Assume that Hyp 1 has a better BLEU scoreAssume that Hyp 1 has a better BLEU score

Phrase Trans Reordering Trigram LM Length

Hyp 1 -1 -4 -3 -6

Hyp 2 -1 0 -5 -5

Learning Task
Suppose we start with an initial lambda vector: 1 1 1 -1

Then: hyp 1 has a log score of -2 (1/100 probability)

hyp 2 has a log score of -1 (1/10 probability)

This is poor! Hyp 2 will be selected

Phrase Trans Reordering Trigram LM Length

Hyp 1 -1 -4 -3 -6

Hyp 2 -1 0 -5 -5

Learning Task
We would like to find a vector like: 1 0.5 2 -1

hyp 1 has a log score of -3

hyp 2 has a log score of -6

Hyp 1 is correctly selected!

Phrase Trans Reordering Trigram LM Length

Hyp 1 -1 -4 -3 -6

Hyp 2 -1 0 -5 -5

Learning Task
N-best lists contain several sentences and hypotheses for each sentence

The lambda vector 1 0.5 2 -1 picks Hyp 1 in the first sentence, and Hyp 2

in the second sentence.

Suppose sentence 2 Hyp 1 is better. Then choose a lambda like: 3 0.5 2 -1

It is easy to see that this does not change the ranking of the hypotheses

Sentence Hypothesis Phrase

Trans

Reordering Trigram LM Length

bonus

1 Hyp 1 -1 -4 -3 -6

1 Hyp 2 -1 0 -5 -5

2 Hyp 1 -2 0 -3 -3

2 Hyp 2 -3 0 -2 -3

It is easy to see that this does not change the ranking of the hypotheses

in sentence 1.

N-best lists result in big savings

• Run the for-loops on a small collection of

hypotheses, do decoder runs only when you

have good settings

Initialize: start with empty hypothesis collection

LOOP:

– Run the decoder with current lambda vector and add n-

best list hypotheses to our collection

– Score collection of hypotheses with BLEU

– Use nested-for-loop to change individual lambda

scalars in vector to get better BLEU on collection

– End program if lambda vector did not change

• OK, so we know how to set the lambda vector

for our four feature functions

– This means depending on the task we might, for

instance, penalize reordering more or lessinstance, penalize reordering more or less

– This is determined automatically by the

performance on the dev corpus

• But what about new features?

New Feature Functions

• We can add new feature functions!

– Simply add a new term and an associated lambda

• Can be anything that can be scored on a partial hypothesis

– (remember how the decoder works!)

– Can be function of e, f and/or a– Can be function of e, f and/or a

– Can be either log probability (e.g., Trigram), or just look like one (e.g.,

Length Penalty)

• These can be very complex features to very simple features

– Length penalty is simple

– Phrase translation is complex

– With right lambda settings they will trade-off against each other well!

New Feature Functions

• Features can overlap with one another!

– In a generative model we do a sequence of steps, no

overlapping allowed

– In Model 1, you can’t pick a generated word using two

probability distributionsprobability distributions

• Note: Interpolation is not an answer here, would add the

optimization of the interpolation weight into EM

• Better to rework generative story if you must (this is difficult)

– With a log-linear model we can score the probability of a

phrase block using many different feature functions,

because the model is not generative

Slide from Koehn 2008

Revisiting discriminative training:

methods to adjust feature weights

• We will wind up with a lot of lambda scalars to

optimize

• But there are algorithms to deal with this that are • But there are algorithms to deal with this that are

more efficient than nested for-loops

• In all cases, we have the same log-linear model

– The only difference is in how to optimize the lambdas

– We saw one way to do this already

• Using nested for-loops on n-best lists

– We will keep using n-best lists (but not nested for-loops)

Minimum Error Rate Training

– Maximize quality of top-ranked translation

• Similarity according to metric (BLEU)

• Implemented in Moses toolkit• Implemented in Moses toolkit

Slide from Koehn 2008

MERT is like “un-nesting” the for-loops
StartLambda = 1 1 1 -1

LOOP:

BestBLEU[1..4] = 0

For (i = 1 to 4)

TryLambda = StartLambda

For (L = 1.0; L <= 3.0; L += 0.1)

TryLambda[i] = L

Hyp = best_hyps_from_nbest_list(TryLambda)

If (BLEU(Hyp) > BestBLEU[i])

BestBLEU[i] = BLEU(Hyp)

BestLambda[i] = L

Then simply check BestBLEU[1..4] for the best score.

Suppose it is BestBLEU[2].

Set StartLambda[2] = BestLambda[2] and go to top of loop (until

you get no improvement).

However MERT is better than that

• We will not check discrete values (1.0, 1.1, …,

3.0)

• We will instead do an exact line minimization

in one pass through the n-best listin one pass through the n-best list

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Minimum Error Rate Training

[Och, ACL 2003]

• Maximize quality of top-ranked translation

• Similarity according to metric (BLEU)

• This approach only works with up to around 20-30

feature functions feature functions

• But very fast and easy to implement

• Implementation comes with Moses

Maximum Entropy

[Och and Ney, ACL 2002]

– Match expectation of feature values of model and

reference translation

– Log-linear models are also sometimes called – Log-linear models are also sometimes called

Maximum Entropy models (when trained this way)

– Great for binary classification, very many

lightweight features

• Also is a convex optimization – no problems with local

maxima in the optimization

– Doesn‘t work well for SMT

Ordinal Regression

[Chiang et al., NAACL 2009;

many others previously]

– Separate k worst from the k best translations

• E.g., separate hypotheses with lowest BLEU from hypotheses with highest • E.g., separate hypotheses with lowest BLEU from hypotheses with highest

BLEU

• Approximately maximizes the margin

• Support Vector machines do this non-approximately (but are too slow)

• Research on this for previous 6 years without success

• David Chiang apparently has it working now

• Scales to thousands of features!

• But requires good weight initializations , ability to efficiently get

hypotheses for one sentence at a time, and lots of other details

• There will be more results on this soon, being added to Moses

Conclusion

• We have defined log-linear models

• And shown how to automatically tune them

• Log-linear models allow us to use any feature

function that our decoder can scorefunction that our decoder can score

– Must be able to score a partial hypothesis

extended from left to right (Lecture 3)

• Log-linear models are used almost

everywhere (also in non-structured

prediction)

• Thanks for your attention!• Thanks for your attention!

Slide from Koehn 2008

