Information Extraction Lecture 12 – More Machine Learning

CIS, LMU München Winter Semester 2015-2016

Dr. Alexander Fraser, CIS

Administravia

- Today is the last lecture
- Please review all of the slides from the Vorlesung before next time
- Next time: Klausur review
- Time after that: Klausur (bring paper!)
- PLEASE MAKE SURE YOU ARE REGISTERED FOR THE KLAUSUR IN LSF!
 - Check again now!
- Also, if you are in the seminar, don't forget to register for that too (two registrations total!)

Lecture today

- Today we will go into more details in machine learning, particularly for NER
 - Also briefly discuss tagging different human languages
- We'll discuss the models which are used in Wapiti
 - Up until now we really only talked about the intuitions behind was is going on, rather than the real models (which are Maximum Entropy models, as we will see)
- In the last exercise, we'll look at sequence learning (rather than binary classification)
 - We'll also look briefly at regularization
- Based on voting, the last exercise will be on Feb 3rd and 4th

Supervised Learning based IE

'Pipeline' style IE

- Split the task into several components
- Prepare data annotation for each component
- Apply supervised machine learning methods to address each component separately
- Most state-of-the-art ACE IE systems were developed in this way
- Provide great opportunity to applying a wide range of learning models and incorporating diverse levels of linguistic features to improve each component
- Large progress has been achieved on some of these components such as name tagging and relation extraction

Major IE Components

IE Output

 (In this talk) Information Extraction (IE) =Identifying the instances of facts names/entities, relations and events from semi-structured or unstructured text; and convert them into structured representations (e.g. databases)

Barry Diller on Wednesday quit as chief of Vi Vivendi Universal Entertainment

Trigger	Quit (a "Personnel/End-Position" event)		
Arguments	Role = Person	Barry Diller	
	Role = Organization	Vivendi Universal Entertainment	
	Role = Position	Chief	
	Role = Time-within	Wednesday (2003-03-04)	
	ivendi		

Slide modified from Heng Ji

11/40

Name Tagging

- Handcrafted systems
 - LTG
 - F-measure of 93.39 in MUC-7 (the best)
 - Ltquery, XML internal representation
 - Tokenizer, POS-tagger, SGML transducer
 - Nominator (1997)
 - IBM
 - Heavy heuristics
 - Cross-document co-reference resolution
 - Used later in IBM Intelligent Miner

Name Tagging

- Handcrafted systems
 - LaSIE (Large Scale Information Extraction)
 - MUC-6 (LaSIE II in MUC-7)
 - Univ. of Sheffield's GATE architecture (General Architecture for Text Engineering)
 - JAPE language
 - FACILE (1998)
 - NEA language (Named Entity Analysis)
 - Context-sensitive rules
 - NetOwl (MUC-7)
 - Commercial product
 - C++ engine, extraction rules

- Learning of statistical models or symbolic rules
 - Use of annotated text corpus
 - Manually annotated
 - Automatically annotated
- "BIO" tagging
 - Tags: Begin, Inside, Outside an NE
 - Probabilities:
 - Simple:
 - P(tag i | token i)
 - With external evidence:
 - P(tag i | token i-1, token i, token i+1)
 - "OpenClose" tagging
 - Two classifiers: one for the beginning, one for the end

- Decision trees
 - Tree-oriented sequence of tests in every word
 - Determine probabilities of having a BIO tag
 - Use training corpus
 - Viterbi, ID3, C4.5 algorithms
 - Select most probable tag sequence
 - SEKINE et al (1998)
 - BALUJA et al (1999)
 - F-measure: 90%

- HMM
 - Markov models, Viterbi
 - Separate statistical model for each NE category + model for words outside NEs
 - Nymble (1997) / IdentiFinder (1999)
- Maximum Entropy (ME)
 - Separate, independent probabilities for every evidence (external and internal features) are merged multiplicatively
 - MENE (NYU 1998)
 - Capitalization, many lexical features, type of text
 - F-Measure: 89%

- Hybrid systems
 - Combination of techniques
 - IBM's Intelligent Miner: Nominator + DB/2 data mining
 - WordNet hierarchies
 - MAGNINI et al. (2002)
 - Stacks of classifiers
 - Adaboost algorithm
 - Bootstrapping approaches
 - Small set of seeds
 - Memory-based ML, etc.

- Arabic
 - TAGARAB (1998)
 - Pattern-matching engine + morphological analysis
 - Lots of morphological info (no differences in orthographic case)
 - Bulgarian
 - OSENOVA & KOLKOVSKA (2002)
 - Handcrafted cascaded regular NE grammar
 - Pre-compiled lexicon and gazetteers
 - Catalan
 - CARRERAS et al. (2003b) and MÁRQUEZ et al. (2003)
 - Extract Catalan NEs with Spanish resources (F-measure 93%)
 - Bootstrap using Catalan texts

Slide modified from Heng Ji

- Chinese & Japanese
 - Many works
 - Special characteristics
 - Character or word-based
 - No capitalization
 - CHINERS (2003)
 - Sports domain
 - Machine learning
 - Shallow parsing technique
 - ASAHARA & MATSMUTO (2003)
 - Character-based method
 - Support Vector Machine
 - 87.2% F-measure in the IREX (outperformed most word-based systems)

- Dutch
 - DE MEULDER et al. (2002)
 - Hybrid system
 - Gazetteers, grammars of names
 - Machine Learning Ripper algorithm
- French
 - BÉCHET et al. (2000)
 - Decision trees
 - Le Monde news corpus
- German
 - Non-proper nouns also capitalized
 - THIELEN (1995)
 - Incremental statistical approach
 - 65% of corrected disambiguated proper names

• Greek

•

- KARKALETSIS et al. (1998)
 - English Greek GIE (Greek Information Extraction) project
 - GATE platform
- Italian
 - CUCCHIARELLI et al. (1998)
 - Merge rule-based and statistical approaches
 - Gazetteers
 - Context-dependent heuristics
 - ECRAN (Extraction of Content: Research at Near Market)
 - GATE architecture
 - Lack of linguistic resources: 20% of NEs undetected
 - Korean

۰

- CHUNG et al. (2003)
 - Rule-based model, Hidden Markov Model, boosting approach over unannotated data

- Portuguese
 - SOLORIO & LÓPEZ (2004, 2005)
 - Adapted CARRERAS et al. (2002b) Spanish NER
 - Brazilian newspapers
- Serbo-Croatian
 - NENADIC & SPASIC (2000)
 - Hand-written grammar rules
 - Highly inflective language
 - Lots of lexical and lemmatization pre-processing
 - Dual alphabet (Cyrillic and Latin)
 - Pre-processing stores the text in an independent format

- Spanish
 - CARRERAS et al. (2002b)
 - Machine Learning, AdaBoost algorithm
 - BIO and OpenClose approaches
- Swedish
 - SweNam system (DALIANIS & ASTROM, 2001)
 - Perl
 - Machine Learning techniques and matching rules
- Turkish

- TUR et al (2000)
 - Hidden Markov Model and Viterbi search
 - Lexical, morphological and context clues

Name Tagging: Task

- Person (PER): named person or family
- Organization (ORG): named corporate, governmental, or other organizational entity
- Geo-political entity (GPE): name of politically or geographically defined location (cities, provinces, countries, international regions, bodies of water, mountains, etc.)

<PER>George W. Bush</PER> discussed <GPE>Iraq</GPE>

- But also: Location, Artifact, Facility, Vehicle, Weapon, Product, etc.
- Extended name hierarchy, 150 types, domain-dependent (Sekine and Nobata, 2004)
- Convert it into a sequence labeling problem "BIO" tagging:

Supervised Learning for Name Tagging

- Maximum Entropy Models (Borthwick, 1999; Chieu and Ng 2002; Florian et al., 2007)
- Decision Trees (Sekine et al., 1998)
- Class-based Language Model (Sun et al., 2002, Ratinov and Roth, 2009)
- Agent-based Approach (Ye et al., 2002)
- Support Vector Machines (Takeuchi and Collier, 2002)
- Sequence Labeling Models
 - Hidden Markov Models (HMMs) (Bikel et al., 1997; Ji and Grishman, 2005)
 - Maximum Entropy Markov Models (MEMMs) (McCallum and Freitag, 2000)
 - Conditional Random Fields (CRFs) (McCallum and Li, 2003)

Typical Name Tagging Features

- N-gram: Unigram, bigram and trigram token sequences in the context window of the current token
- Part-of-Speech: POS tags of the context words
- Gazetteers: person names, organizations, countries and cities, titles, idioms, etc.
- Word clusters: to reduce sparsity, using word clusters such as Brown clusters (Brown et al., 1992)
- Case and Shape: Capitalization and morphology analysis based features
- Chunking: NP and VP Chunking tags
- Global feature: Sentence level and document level features. For example, whether the token is in the first sentence of a document
- Conjunction: Conjunctions of various features

Viterbi Decoding of Name Tagger

Current = Previous * Transition * Emission

Limitations of HMMs

- Joint probability distribution p(y, x)
- Assume independent features
- Cannot represent overlapping features or long range dependencies between observed elements
 - Need to enumerate all possible observation sequences
 - Strict independence assumptions on the observations
- Toward discriminative/conditional models
 - Conditional probability P(label sequence y | observation sequence x) rather than joint probability P(y, x)
 - Allow arbitrary, non-independent features on the observation sequence X
 - The probability of a transition between labels may depend on past and future observations
 - Relax strong independence assumptions in generative models

Slide modified from Heng Ji

Maximum Entropy

- Why **maximum** entropy?
- Maximize entropy = Minimize commitment
- Model all that is known and assume nothing about what is unknown.
 - Model all that is known: satisfy a set of constraints that must hold
 - Assume nothing about what is unknown: choose the most "uniform" distribution
 - → choose the one with maximum entropy

Why Try to be Uniform?

- Most Uniform = Maximum Entropy
- By making the distribution as uniform as possible, we don't make any additional assumptions to what is supported by the data
- Abides by the principle of Occam's Razor (least assumption = simplest explanation)
- Less generalization errors (less over-fitting)
 more accurate predictions on test data

Learning Coreference by Maximum Entropy Model

Suppose that if the feature "Capitalization" = "Yes" for token t, then

P (t is the beginning of a Name | (Captalization = Yes)) = 0.7

- How do we adjust the distribution?
 P (t is not the beginning of a name | (Capitalization = Yes)) = 0.3
- If we don't observe "Has Title = Yes" samples?
 - P (t is the beginning of a name | (Has Title = Yes)) = 0.5
 - P (t is not the beginning of a name | (Has Title = Yes)) = 0.5

The basic idea

- Goal: estimate p
- Choose p with maximum entropy (or "uncertainty") subject to the constraints (or "evidence").

$$H(p) = -\sum_{x \in A \times B} p(x) \log p(x)$$

 $x = (a, b), where a \in A \land b \in B$

Setting

- From training data, collect (a, b) pairs:
 - a: thing to be predicted (e.g., a class in a classification problem)
 - b: the context
 - Ex: Name tagging:
 - a=person
 - b=the words in a window and previous two tags
- Learn the prob of each (a, b): p(a, b)

Ex1: Coin-flip example (Klein & Manning 2003)

- Toss a coin: p(H)=p1, p(T)=p2.
- Constraint: p1 + p2 = 1
- Question: what's your estimation of p=(p1, p2)?
- Answer: choose the p that maximizes H(p)

$$H(p) = -\sum_{x} p(x) \log p(x)$$

p1=0.3 Slide from Heng Ji

Coin-flip example (cont)

p1 + p2 = 1

p1+p2=1.0, p1=0.3 Slide from Heng Ji

Ex2: An MT example (Berger et. al., 1996)

Possible translation for the word "in" is:

{dans, en, à, au cours de, pendant}

Constraint:

 $p(dans) + p(en) + p(a) + p(au \ cours \ de) + p(pendant) = 1$

Intuitive answer:	p(dans)	=	1/5
	p(en)	=	1/5
	$p(\dot{a})$	=	1/5
	p(au cours de)	=	1/5
	p(pendant)	=	1/5

An MT example (cont)

Constraints:

$$p(dans) + p(en) = 3/10$$

$$p(dans) + p(en) + p(a) + p(au \ cours \ de) + p(pendant) = 1$$

Intuitive answer:

$$p(dans) = 3/20$$

$$p(en) = 3/20$$

$$p(\hat{a}) = 7/30$$

$$p(au \ cours \ de) = 7/30$$

$$p(pendant) = 7/30$$

Why ME?

- Advantages
 - Combine multiple knowledge sources
 - Local
 - Word prefix, suffix, capitalization (POS (Ratnaparkhi, 1996))
 - Word POS, POS class, suffix (WSD (Chao & Dyer, 2002))
 - Token prefix, suffix, capitalization, abbreviation (Sentence Boundary (Reynar & Ratnaparkhi, 1997))
 - Global
 - N-grams (Rosenfeld, 1997)
 - Word window
 - Document title (Pakhomov, 2002)
 - Structurally related words (Chao & Dyer, 2002)
 - Sentence length, conventional lexicon (Och & Ney, 2002)
 - Combine dependent knowledge sources

Why ME?

- Advantages
 - Add additional knowledge sources
 - Implicit smoothing
- Disadvantages
 - Computational
 - Expected value at each iteration
 - Normalizing constant
 - Overfitting
 - Feature selection
 - Cutoffs
 - Basic Feature Selection (Berger et al., 1996)

Maximum Entropy Markov Models (MEMMs)

- A conditional model that representing the probability of reaching a state given an observation and the previous state
- Consider observation sequences to be events to be conditioned upon.

$$p(s \mid x) = p(s_1 \mid x_1) \prod_{i=2}^{n} p(s_i \mid s_{i-1}, x_i)$$

- Have all the advantages of Conditional Models
- No longer assume that features are independent
- Do not take future observations into account (no forward-backward)
- Subject to Label Bias Problem: Bias toward states with fewer outgoing transitions

Conditional Random Fields (CRFs)

- Conceptual Overview
 - Each attribute of the data fits into a *feature function* that associates the attribute and a possible label
 - A positive value if the attribute appears in the data
 - A zero value if the attribute is not in the data
 - Each feature function carries a *weight* that gives the strength of that feature function for the proposed label
 - High positive weights: a good association between the feature and the proposed label
 - High negative weights: a negative association between the feature and the proposed label
 - Weights close to zero: the feature has little or no impact on the identity of the label

CRFs have all the advantages of MEMMs without label bias problem

- MEMM uses per-state exponential model for the conditional probabilities of next states given the current state
- CRF has a single exponential model for the joint probability of the entire sequence of labels given the observation sequence
- Weights of different features at different states can be traded off against each other
- CRFs provide the benefits of discriminative models

Example of CRFs

Suppose $P(Y_v | X, all other Y) = P(Y_v | X, neighbors(Y_v))$ then X with Y is a **conditional** random field

- $P(Y_3 | X, all other Y) = P(Y_3 | X, Y_2, Y_4)$
- Think of X as observations and Y as labels

Sequential Model Trade-offs

	Speed	Discriminative vs. Generative	Normalization
НММ	very fast	generative	local
МЕММ	mid-range	discriminative	local
CRF	relatively slow	discriminative	global

State-of-the-art and Remaining Challenges

State-of-the-art Performance

- On ACE data sets: about 89% F-measure (Florian et al., 2006; Ji and Grishman, 2006; Nguyen et al., 2010; Zitouni and Florian, 2008)
- On CONLL data sets: about 91% F-measure (Lin and Wu, 2009; Ratinov and Roth, 2009)

Remaining Challenges

- Identification, especially on organizations
 - Boundary: "Asian Pulp and Paper Joint Stock Company, Lt. of Singapore"
 - Need coreference resolution or context event features: "FAW has also utilized the capital market to directly finance, and now owns three domestic listed companies" (FAW = First Automotive Works)
- Classification
 - "Caribbean Union": ORG or GPE?

Slides

- The slides on machine learning are from **Heng Ji**, who is a IE researcher at RPI
- Literature:
 - Dan Klein and Chris Manning. <u>Maxent Models, Conditional</u> <u>Estimation, and Optimization, without the Magic</u>. Tutorial presented at NAACL 2003 and ACL 2003.
 - Available from Dan Klein's web page (at the bottom):
 - <u>http://www.cs.berkeley.edu/~klein</u>
 - See also the two papers mentioned in the slides:
 - Ratnaparkhi's 1998 thesis
 - Adam Berger, Stephen Della Pietra, and Vincent Della Pietra. <u>A</u> maximum entropy approach to natural language processing. Computational Linguistics (22-1). March 1996
 - CRF (and MEMM) paper:
 - John Lafferty, Andrew McCallum, and Fernando C.N. Pereira. "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data" Departmental Papers (CIS) (2001). Available at: http://works.bepress.com/andrew_mccallum/4

• Thank you for your attention!