
Information Extraction
Lecture 7 – Linear Models (Basic Machine Learning)

CIS, LMU München

Winter Semester 2016-2017

Dr. Alexander Fraser, CIS

Decision Trees vs. Linear Models

• Decision Trees are an intuitive way to

learn classifiers from data

• They fit the training data well

• With heavy pruning, you can control

overfitting

• NLP practitioners often use linear

models instead

• Most of the models discussed in

Sarawagi Chapter 3 are linear models

2

Decision Trees for NER

• So far we have seen:

• How to learn rules for NER

• A basic idea of how to formulate NER as a

classification problem

• Decision trees

• Including the basic idea of overfitting the

training data

• How can we use decision trees for

NER?

3

Rule Sets as Decision Trees

• Decision trees are quite powerful

• It is easy to see that complex rules can

be encoded as decision trees

• For instance, let's go back to border

detection in CMU seminars...

4

A Path in the Decision Tree

• The tree will check if the token to the left

of the possible start position has "at" as a

lemma

• Then check if the token after the possible

start position is a Digit

• Then check the second token after the

start position is a timeid ("am", "pm", etc)

• If you follow this path at a particular

location in the text, then the decision

should be to insert a <stime>

6

Linear Models

• However, in practice decision trees are

not used so often in NLP

• Instead, linear models are used

• Let me first present linear models

• Then I will compare linear models and

decision trees

7

Binary Classification

• I'm going to first discuss linear models for

binary classification, using binary features

• We'll take the same scenario as before

• Our classifier is trying to decide whether

we have a <stime> tag or not at the

current position (between two words in

an email)

• The first thing we will do is encode the

context at this position into a feature

vector

8

Feature Vector

• Each feature is true or false, and has a

position in the feature vector

• The feature vector is typically sparse,

meaning it is mostly zeros (i.e., false)

• The feature vector represents the full

feature space. For instance, consider...

9

11

• Our features represent this table using binary variables

• For instance, consider the lemma column

• Most features will be false (false = off = 0)

• The lemma features that will be on (true = on = 1) are:
-3_lemma_the

-2_lemma_Seminar

-1_lemma_at

+1_lemma_4

+2_lemma_pm

+3_lemma_will

Classification

• To classify we will take the dot product of
the feature vector with a learned weight
vector

• We will say that the class is true (i.e., we
should insert a <stime> here) if the dot
product is > 0, and false otherwise

• Because we might want to shift the
decision boundary, we add a feature
that is always true
• This is called the bias
• By weighting the bias, we can shift where we

make the decision (see next slide)

12

Feature Vector
• We might use a feature vector like this:
(this example is simplified – really we'd have all features for all positions)

13

1

0

1

0

1

0

0

1

1

0

1

1

Bias term

... (say, -3_lemma_giraffe)

-3_lemma_the

...

-2_lemma_Seminar

...

...

-1_lemma_at

+1_lemma_4

...

+1_Digit

+2_timeid

Weight Vector

• Now we'd like the dot product to be > 0 if we
should insert a <stime> tag

• To encode the rule we looked at before we
have three features that we want to have a
positive weight
• -1_lemma_at

• +1_Digit

• +2_timeid

• We can give them weights of 1

• Their sum will be three

• To make sure that we only classify if all three
weights are on, let's set the weight on the bias
term to -2

 14

Dot Product - I

15

1

0

1

0

1

0

0

1

1

0

1

1

Bias term

-3_lemma_the

-2_lemma_Seminar

-1_lemma_at

+1_lemma_4

+1_Digit

+2_timeid

-2

0

0

0

0

0

0

1

0

0

1

1

To compute

the dot

product first

take the

product of

each row, and

then sum these

Dot Product - II

1

0

1

0

1

0

0

1

1

0

1

1

Bias term

-3_lemma_the

-2_lemma_Seminar

-1_lemma_at

+1_lemma_4

+1_Digit

+2_timeid

-2

0

0

0

0

0

0

1

0

0

1

1

1*-2

0*0

0*0

0*0

1*0

0*0

0*0

1*1

1*0

0*0

1*1

1*1

1*-2

1*1

1*1

1*1

 1

Learning the Weight Vector

• The general learning task is simply to find a
good weight vector!
• This is sometimes also called "training"

• Basic intuition: you can check weight vector
candidates to see how well they classify the
training data
• Better weights vectors get more of the training

data right

• So we need some way to make (smart)
changes to the weight vector
• The goal is to make better decisions on the

training data

• I will talk more about this later

17

Feature Extraction

• We run feature extraction to get the feature
vectors for each position in the text

• We typically use a text representation to
represent true values (which are sparse)

• Often we define feature templates which
describe the feature to be extracted and give
the name of the feature (i.e., -1_lemma_ XXX)

-3_lemma_the -2_lemma_Seminar -1_lemma_at +1_lemma_4 +1_Digit +2_timeid STIME

-3_lemma_Seminar -2_lemma_at -1_lemma_4 -1_Digit +1_timeid +2_lemma_ will NONE

...

18

Training vs. Testing

• When training the system, we have gold

standard labels (see previous slide)

• When testing the system on new data,

we have no gold standard

• We run the same feature extraction first

• Then we take the dot product with the

weight vector to get a classification decision

• Finally, we have to go back to the

original text to write the <stime> tags into

the correct positions

19

Summary so far

• So we've seen training and testing

• We have an idea about train error and
test error (key concepts!)

• We are aware of the problem of
overfitting
• And we know what overfitting means in terms

of train error and test error!

• Now let's compare decision trees and
linear models

20

Linear models are weaker

• Linear models are weaker than decision

trees

• This means they can't express the same

richness of decisions as decision trees can (if

both have access to the same features)

• It is easy to see this by extending our

example

• Recall that we have a weight vector

encoding our rule (see next slide)

• Let's take another reasonable rule

21

• The rule we'd like to learn is that if we
have the features:
-2_lemma_Seminar
-1_lemma_at

+1_Digit

• We should insert a <stime>

• This is quite a reasonable rule, it lets us
correctly cover the new sentence:

 "The Seminar at 3 will be given by ..."

 (there is no timeid like "pm" here!)

• Let's modify the weight vector

24

Adding the second rule

25

1

0

1

0

1

0

0

1

1

0

1

1

Bias term

-3_lemma_the

-2_lemma_Seminar

-1_lemma_at

+1_lemma_4

+1_Digit

+2_timeid

-2

0

0

0

1

0

0

1

0

0

1

1

• Let's first verify that both rules work with

this weight vector

• But does anyone see any issues here?

26

How many rules?

• If we look back at the vector, we see that we
have actually encoded quite a number of
rules

• Any combination of three features with ones will
be sufficient so that we have a <stime>

• This might be good (i.e., it might generalize well
to other examples). Or it might not.

• But what is definitely true is that it would be
easy to create a decision tree that only
encodes exactly our two rules!

• This should give you an intuition as to how
linear models are weaker than decision trees

27

How can we get this power in

linear models?
• Change the features!

• For instance, we can create combinations of
our old features as new features

• For instance, clearly if we have:

• One feature to encode our first rule

• Another feature to encode our second rule

• And we set the bias to 0

• We get the same as the decision tree

• Sometimes these new compound features
would be referred to as trigrams (they each
combine three basic features)

28

Feature Selection

• A task which includes automatically
finding such new compound features
is called feature selection
• This is built into some machine learning

toolkits

• Or you can implement it yourself by trying
out feature combinations and checking
the training error
• Use human intuition to check a small number

of combinations

• Or do it automatically, using a script

29

Training
Training is automatically adjusting the feature vector so as to
better fit the training corpus! Intuition: make small adjustments to
get a better score on the training data (these all fit our example!)

-2

0

0

0

1

0

0

1

0

0

1

1

-2.01

0.04

0.0004

0

1.1

0

0

0.9001

0

0

0.89

0.91

-1.99

0.04

0.002

0

1.101

0

0

0.9111

0

0

0.892

0.91

-2.01

0.043

0.0003

0

1.1

0

0

0.9144

0

0

0.93

1.01

Perceptron Update I

• One way to do this is using a so-called perceptron

• Algorithm:
• Read the training examples one at a time

• For each training example, decide how to update the weight
vector

• The perceptron update rule says:
• If a training example is classified correctly:

• Do nothing (because the current weight vector is fine)

• If a training example is classified incorrectly:
• Adjust the weight of every active feature by a small amount towards the

desired decision

• So that the example will score a bit better next time it is observed

• Intuition: we hope that by making many small changes
• The weights on important features increase consistently to the desired

values which work well on the entire training set

• The changes to unimportant feature weights will be random (sometimes
up, sometimes down), and the weights will tend towards zero (meaning:
no effect on the classification)

31

Perceptron Update II
Say we have -2 0 0 0 ... 0 0 0 0.5, and see this
training example. Clearly we will get it wrong...

1

0

1

0

1

0

0

1

1

0

1

1

Bias term

-3_lemma_the

-2_lemma_Seminar

-1_lemma_at

+1_lemma_4

+1_Digit

+2_timeid

-2

0

0

0

0

0

0

0

0

0

0

0.5

1*-2

1*0.5

 -2

 0.5

 -1.5

Perceptron Update III
So change the weight vector, by adding 0.1 to all
active features. Score is now better (but still wrong)

1

0

1

0

1

0

0

1

1

0

1

1

Bias term

-3_lemma_the

-2_lemma_Seminar

-1_lemma_at

+1_lemma_4

+1_Digit

+2_timeid

-2

0

0

0

0

0

0

0

0

0

0

0.5

1*-1.9

1*0.1

1*0.1

1*0.1

1*0.1

1*0.1

1*0.6

-1.9

0.1

0.1

0.1

0.1

0.1

0.6

-0.8

Perceptron Update IV
After looking at many other examples, irrelevant features (like "-3_lemma_the") are
pushed back towards zero, and important features have stronger weights.

We have learned a good weight vector for this example, no further update is needed

1

0

1

0

1

0

0

1

1

0

1

1

Bias term

-3_lemma_the

-2_lemma_Seminar

-1_lemma_at

+1_lemma_4

+1_Digit

+2_timeid

-2.1

0

-0.1

0

0.1

0

0

0.7

0

0

1.1

1.2

1*-2.1

1*-0.1

1*0.1

1*0.7

1*1.1

1*1.2

-2.1

-0.1

 0.1

 0.7

 1.1

 1.2

 0.9

Two classes

• So far we discussed how to deal with a single label
• At each position between two words we are asking

whether there is a <stime> tag

• However, we are interested in <stime> and </stime> tags

• How can we deal with this?

• We can simply train one classifier on the <stime>
prediction task
• Here we are treating </stime> positions like every other non

<stime> position

• And train another classifier on the </stime> prediction
task
• Likewise, treating <stime> positions like every other non

</stime> position

• If both classifiers predict "true" for a single position, take
the one that has the highest dot product

35

More than two labels

• What we have had up until now is called
binary classification

• But we can generalize this idea to many
possible labels

• This is called multiclass classification

• We are picking one label (class) from a set of
classes

• For instance, maybe we are also interested in
the <etime> and </etime> labels

• These labels indicate seminar end times, which
are also often in the announcement emails (see
next slide)

36

CMU Seminars - Example

<0.24.4.93.20.59.10.jgc+@NL.CS.CMU.EDU (Jaime Carbonell).0>

Type: cmu.cs.proj.mt

Topic: <speaker>Nagao</speaker> Talk

Dates: 26-Apr-93

Time: <stime>10:00</stime> - <etime>11:00 AM</etime>

PostedBy: jgc+ on 24-Apr-93 at 20:59 from NL.CS.CMU.EDU (Jaime

Carbonell)

Abstract:

<paragraph><sentence>This Monday, 4/26, <speaker>Prof. Makoto

Nagao</speaker> will give a seminar in the <location>CMT red

conference room</location> <stime>10</stime>-<etime>11am</etime>

on recent MT research results</sentence>.</paragraph>

One against all

• We can generalize the way we handled two
binary classification decisions to many labels

• Let's add the <etime> and </etime> labels

• We can train a classifier for each tag
• Just as before, every position that is not an <etime> is

a negative example for the <etime> classifier, and
likewise for </etime>

• If multiple classifiers say "true", take the classifier
with the highest dot product

• This is called one-against-all

• It is a quite reasonable way to use binary
classification to predict one of multiple classes
• It is not the only option, but it is easy to understand

(and to implement too!)

38

Optional: "notag" classifier

• Actually, not inserting a tag is also a decision

• When working with multiple classifiers, we could train a
classifier for "no tag here" too

• This is trained using all positions that do not have a tag as
positive examples
• And all positions that have tags as negative examples

• And again, we take the highest activation as the winning class
• What happens if all of the classifications are negative?

• We still take the highest activation!

• This is usually not done in domains with a heavy imbalance of
"notag" like decisions, but it is an interesting possibility

• Question: what would happen to the weight vector if we did
this in the binary classification (<stime> or no <stime>) case?

39

Summary: Multiclass classification

• We discussed one-against-all, a

framework for combining binary classifiers

• It is not the only way to do this, but it

often works pretty well

• There are also techniques involving building
classifiers on different subsets of the data and

voting for classes

• And other techniques can involve, e.g., a
sequence of classification decisions (for

instance, a tree-like structure of

classifications)

40

Binary classifiers and sequences

• As we saw a few lectures ago, we can

detect seminar start times by using two

binary classifiers:

• One for <stime>

• One for </stime>

• And recall that if they both say "true" to

the same position, take the highest dot

product

41

• Then we need to actually annotate

the document

• But this is problematic...

42

Some concerns

Begin End Begin

Begin End Begin End

Begin End

…

Slide from Kauchak

A basic approach

• One way to deal with this is to use a greedy
algorithm

• Loop:
• Scan the document until the <stime> classifier says

true

• Then scan the document until the </stime> classifier
says true

• If the last tag inserted was <stime> then insert a
</stime> at the end of the document

• Naturally, there are smarter algorithms than this
that will do a little better

• But relying on these two independent classifiers is
not optimal

44

How can we deal better with

sequences?

• We can make our classification

decisions dependent on previous

classification decisions

• For instance, think of the Hidden

Markov Model as used in POS-tagging

• The probability of a verb increases

after a noun

45

Basic Sequence Classification

• We will do the following

• We will add a feature template into each

classification decision representing the

previous classification decision

• And we will change the labels we are

predicting, so that in the span between a

start and end boundary we are predicting

a different label than outside

46

Basic idea

Seminar at 4 pm

 <stime> in-stime </stime>

47

• The basic idea is that we want to use the previous

classification decision

• We add a special feature template -1_label_XXX

• For instance, between 4 and pm, we have:

 -1_label_<stime>

• Suppose we have learned reasonable classifiers

• How often should we get a <stime> classification

here? (Think about the training data in this sort of

position)

-1_label_<stime>

• This should be an extremely strong

indicator not to annotate a <stime>

• What else should it indicate?

• It should indicate that there must be

either a in-stime or a </stime> here!

48

Changing the problem slightly

• We'll now change the problem to a

problem of annotating tokens (rather

than annotating boundaries)

• This is traditional in IE, and you'll see

that it is slightly more powerful than the

boundary style of annotation

• We also make less decisions (see next

slide)

49

IOB markup

Seminar at 4 pm will be on ...

O O B-stime I-stime O O O

50

• This is called IOB markup (or BIO = begin-in-out)

• This is a standardly used markup when modeling IE

problems as sequence classification problems

• We can use a variety of models to solve this problem

• One popular model is the Hidden Markov Model,

which you have seen in Statistical Methods

• There, the label is the state

• However, in this course we will (mostly) stay more

general and talk about binary classifiers and one-

against-all

(Greedy) classification with IOB

Seminar at 4 pm will be on ...

O O B-stime I-stime O O O

51

• To perform greedy classification, first run your classifier on

"Seminar"

• You can use a label feature here like
 -1_Label_StartOfSentence

• Suppose you correctly choose "O"

• Then when classifying "at", use the feature:

 -1_Label_O

• Suppose you correctly choose "O"
• Then when classifying "4", use the feature:

 -1_Label_O
• Suppose you correctly choose "B-stime"

• Then when classifying "pm", use the feature:
 -1_Label_B-stime

• Etc...

Training

• How to create the training data (do

feature extraction) should be obvious

• We can just use the gold standard label of

the previous position as our feature

52

BIEWO Markup

• A popular alternative to IOB markup is

BIEWO markup

• E stands for "end"

• W stands for "whole", meaning we

have a one-word entity (i.e., this

position is both the begin and end)

53

Seminar at 4 will be on ...

O O W-stime O O O

Seminar at 4 pm will be on ...

O O B-stime E-stime O O O

BIEWO vs IOB

• BIEWO fragments the training data

• Recall that we are learning a binary

classifier for each label

• In our two examples on the previous slide,

this means we are not using the same

classifiers!

• Use BIEWO when single-word mentions

require different features to be active

than the first word of a multi-word

mention

 54

Conclusion

• I've taught you the basics of:
• Binary classification using features

• Multiclass classification (using one-against-all)
• Sequence classification (using a feature that uses the

previous decision)
• And IOB or BIEWO labels

• I've skipped a lot of details
• I haven't told you how to actually learn the weight vector

in the binary classifier

• I also haven't talked about non-greedy ways to do
sequence classification

• And I didn't talk about probabilities, which are used
directly, or at least approximated, in many kinds of
commonly used linear models!

• Hopefully what I did tell you is fairly intuitive and helps
you understand classification, that is the goal

55

• Further reading (optional):

• Tom Mitchell “Machine Learning” (text

book)

56

Seminar next week - I

• In the Seminar next week, we will work with Wapiti

• Wapiti is an open source machine learning package
from LIMSI (Paris)

• Wapiti implements Maximum Entropy classification for
multiclass classification

• We will use this to locate <location> tags in the CMU
seminars data sets

• We tell Wapiti what features to use, it learns the required
weight vectors from the training set and stores them

• You can then use Wapiti to classify new data (e.g., a test
set)

• Please download Wapiti, install it in your linux/Mac
laptop, and try it out on a toy binary classification
problem before the Seminar

57

Seminar next week - II

• Wapiti also implements two sequence versions of
Maximum Entropy classification
• The more popular solution is: Bigram Linear-chain Conditional

Random Field (or often CRF for short)

• The less popular solution is MEMM (Maximum Entropy Markov
Model), we will not use this (it often performs worse than CRF,
but is much faster to train)

• Both of these sequence solutions do maximum entropy
classification using the previous decision in a sequence of
classifications

• In the Seminar we will look at CRFs (in a separate Übung
towards the end of the semester)

• Hopefully you will leave the seminar with an idea of how
to solve IE problems with a classifier (or a sequence
classifier)

58

• Thank you for your attention!

59

