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Decision Trees vs. Linear Models 

• Decision Trees are an intuitive way to 

learn classifiers from data 

• They fit the training data well 

• With heavy pruning, you can control 

overfitting 

• NLP practitioners often use linear 

models instead 

• Most of the models discussed in 

Sarawagi Chapter 3 are linear models 
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Decision Trees for NER 

• So far we have seen: 

• How to learn rules for NER 

• A basic idea of how to formulate NER as a 

classification problem 

• Decision trees 

• Including the basic idea of overfitting the 

training data 

• How can we use decision trees for 

NER? 
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Rule Sets as Decision Trees 

• Decision trees are quite powerful 

• It is easy to see that complex rules can 

be encoded as decision trees 

• For instance, let's go back to border 

detection in CMU seminars... 
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A Path in the Decision Tree 

• The tree will check if the token to the left 

of the possible start position has "at" as a 

lemma 

• Then check if the token after the possible 

start position is a Digit 

• Then check the second token after the 

start position is a timeid ("am", "pm", etc) 

• If you follow this path at a particular 

location in the text, then the decision 

should be to insert a <stime> 
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Linear Models 

• However, in practice decision trees are 

not used so often in NLP 

• Instead, linear models are used 

• Let me first present linear models 

• Then I will compare linear models and 

decision trees 
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Binary Classification 

• I'm going to first discuss linear models for 

binary classification, using binary features 

• We'll take the same scenario as before 

• Our classifier is trying to decide whether 

we have a <stime> tag or not at the 

current position (between two words in 

an email) 

• The first thing we will do is encode the 

context at this position into a feature 

vector 
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Feature Vector 

• Each feature is true or false, and has a 

position in the feature vector 

• The feature vector is typically sparse, 

meaning it is mostly zeros (i.e., false) 

• The feature vector represents the full 

feature space. For instance, consider... 
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• Our features represent this table using binary variables 

• For instance, consider the lemma column 

• Most features will be false (false = off = 0) 

• The lemma features that will be on (true = on = 1) are: 
-3_lemma_the 

-2_lemma_Seminar 

-1_lemma_at 

+1_lemma_4 

+2_lemma_pm 

+3_lemma_will 



Classification 

• To classify we will take the dot product of 
the feature vector with a learned weight 
vector 

• We will say that the class is true (i.e., we 
should insert a <stime> here) if the dot 
product is > 0, and false otherwise 

• Because we might want to shift the 
decision boundary, we add a feature 
that is always true 
• This is called the bias 
• By weighting the bias, we can shift where we 

make the decision (see next slide) 
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Feature Vector 
• We might use a feature vector like this: 
(this example is simplified – really we'd have all features for all positions) 
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... (say, -3_lemma_giraffe) 

-3_lemma_the 

... 

-2_lemma_Seminar 

... 

... 

-1_lemma_at 

+1_lemma_4 

... 

+1_Digit 
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Weight Vector 

• Now we'd like the dot product to be > 0 if we 
should insert a <stime> tag 

• To encode the rule we looked at before we 
have three features that we want to have a 
positive weight 
• -1_lemma_at 

• +1_Digit 

• +2_timeid 

• We can give them weights of 1 

• Their sum will be three 

• To make sure that we only classify if all three 
weights are on, let's set the weight on the bias 
term to -2 
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Dot Product - I 
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Dot Product - II 
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Learning the Weight Vector 

• The general learning task is simply to find a 
good weight vector! 
• This is sometimes also called "training" 

• Basic intuition: you can check weight vector 
candidates to see how well they classify the 
training data 
• Better weights vectors get more of the training 

data right 

• So we need some way to make (smart) 
changes to the weight vector 
• The goal is to make better decisions on the 

training data 

• I will talk more about this later 
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Feature Extraction 

• We run feature extraction to get the feature 
vectors for each position in the text 

• We typically use a text representation to 
represent true values (which are sparse) 

• Often we define feature templates which 
describe the feature to be extracted and give 
the name of the feature (i.e., -1_lemma_ XXX) 

 

 

 

-3_lemma_the  -2_lemma_Seminar   -1_lemma_at +1_lemma_4  +1_Digit  +2_timeid         STIME 

 

-3_lemma_Seminar  -2_lemma_at  -1_lemma_4  -1_Digit  +1_timeid   +2_lemma_ will        NONE 
 

... 
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Training vs. Testing 

• When training the system, we have gold 

standard labels (see previous slide) 

• When testing the system on new data, 

we have no gold standard 

• We run the same feature extraction first 

• Then we take the dot product with the 

weight vector to get a classification decision 

• Finally, we have to go back to the 

original text to write the <stime> tags into 

the correct positions 
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Summary so far 

• So we've seen training and testing 

• We have an idea about train error and 
test error (key concepts!) 

• We are aware of the problem of 
overfitting  
• And we know what overfitting means in terms 

of train error and test error! 

 

• Now let's compare decision trees and 
linear models 
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Linear models are weaker 

• Linear models are weaker than decision 

trees 

• This means they can't express the same 

richness of decisions as decision trees can (if 

both have access to the same features) 

• It is easy to see this by extending our 

example 

• Recall that we have a weight vector 

encoding our rule (see next slide) 

• Let's take another reasonable rule 
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• The rule we'd like to learn is that if we 
have the features: 
-2_lemma_Seminar 
-1_lemma_at 

+1_Digit 

• We should insert a <stime> 

• This is quite a reasonable rule, it lets us 
correctly cover the new sentence: 

   "The Seminar at 3 will be given by ..."  

   (there is no timeid like "pm" here!) 

• Let's modify the weight vector 
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Adding the second rule 
 

 

25 

1 

0 

1 

0 

1 

0 

0 

1 

1 

0 

1 

1 

Bias term 

 

-3_lemma_the 

 

-2_lemma_Seminar 

 

 

-1_lemma_at 

+1_lemma_4 

 

+1_Digit 

+2_timeid 

-2 

0 

0 

0 

1 

0 

0 

1 

0 

0 

1 

1 



• Let's first verify that both rules work with 

this weight vector 

• But does anyone see any issues here? 

26 



How many rules? 

• If we look back at the vector, we see that we 
have actually encoded quite a number of 
rules 

• Any combination of three features with ones will 
be sufficient so that we have a <stime> 

• This might be good (i.e., it might generalize well 
to other examples). Or it might not. 

• But what is definitely true is that it would be 
easy to create a decision tree that only 
encodes exactly our two rules! 

• This should give you an intuition as to how 
linear models are weaker than decision trees 
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How can we get this power in 

linear models? 
• Change the features! 

• For instance, we can create combinations of 
our old features as new features 

• For instance, clearly if we have: 

• One feature to encode our first rule 

• Another feature to encode our second rule 

• And we set the bias to 0 

• We get the same as the decision tree 

• Sometimes these new compound features 
would be referred to as trigrams (they each 
combine three basic features) 
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Feature Selection 

• A task which includes automatically 
finding such new compound features 
is called feature selection 
• This is built into some machine learning 

toolkits 

• Or you can implement it yourself by trying 
out feature combinations and checking 
the training error  
• Use human intuition to check a small number 

of combinations 

• Or do it automatically, using a script 
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Training 
Training is automatically adjusting the feature vector so as to 
better fit the training corpus! Intuition: make small adjustments to 
get a better score on the training data (these all fit our example!) 
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Perceptron Update I 

• One way to do this is using a so-called perceptron 

 

• Algorithm: 
• Read the training examples one at a time 

• For each training example, decide how to update the weight 
vector 

• The perceptron update rule says: 
• If a training example is classified correctly: 

• Do nothing (because the current weight vector is fine) 

• If a training example is classified incorrectly: 
• Adjust the weight of every active feature by a small amount towards the 

desired decision 

• So that the example will score a bit better next time it is observed 

• Intuition: we hope that by making many small changes 
• The weights on important features increase consistently to the desired 

values which work well on the entire training set 

• The changes to unimportant feature weights will be random (sometimes 
up, sometimes down), and the weights will tend towards zero (meaning: 
no effect on the classification) 
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Perceptron Update II 
Say we have -2 0 0 0 ... 0 0 0 0.5, and see this 
training example. Clearly we will get it wrong... 
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Perceptron Update III 
So change the weight vector, by adding 0.1 to all 
active features. Score is now better (but still wrong) 
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Perceptron Update IV 
After looking at many other examples, irrelevant features (like "-3_lemma_the") are 
pushed back towards zero, and important features have stronger weights. 

We have learned a good weight vector for this example, no further update is needed 
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Two classes 

• So far we discussed how to deal with a single label 
• At each position between two words we are asking 

whether there is a <stime> tag 

• However, we are interested in <stime> and </stime> tags 

• How can we deal with this? 

• We can simply train one classifier on the <stime> 
prediction task  
• Here we are treating </stime> positions like every other non 

<stime> position 

• And train another classifier on the </stime> prediction 
task  
• Likewise, treating <stime> positions like every other non 

</stime> position 

• If both classifiers predict "true" for a single position, take 
the one that has the highest dot product 
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More than two labels 

• What we have had up until now is called 
binary classification 

• But we can generalize this idea to many 
possible labels 

• This is called multiclass classification 

• We are picking one label (class) from a set of 
classes 

• For instance, maybe we are also interested in 
the <etime> and </etime> labels 

• These labels indicate seminar end times, which 
are also often in the announcement emails (see 
next slide) 
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CMU Seminars - Example 

<0.24.4.93.20.59.10.jgc+@NL.CS.CMU.EDU (Jaime Carbonell).0> 

Type:     cmu.cs.proj.mt 

Topic:    <speaker>Nagao</speaker> Talk 

Dates:    26-Apr-93 

Time:     <stime>10:00</stime> - <etime>11:00 AM</etime> 

PostedBy: jgc+ on 24-Apr-93 at 20:59 from NL.CS.CMU.EDU (Jaime 

Carbonell) 

 

Abstract: 

 

<paragraph><sentence>This Monday, 4/26, <speaker>Prof. Makoto 

Nagao</speaker> will give a seminar in the <location>CMT red 

conference room</location> <stime>10</stime>-<etime>11am</etime> 

on recent MT research results</sentence>.</paragraph> 

 



One against all 

• We can generalize the way we handled two 
binary classification decisions to many labels 

• Let's add the <etime> and </etime> labels 

• We can train a classifier for each tag 
• Just as before, every position that is not an <etime> is 

a negative example for the <etime> classifier, and 
likewise for </etime> 

• If multiple classifiers say "true", take the classifier 
with the highest dot product 

• This is called one-against-all 

• It is a quite reasonable way to use binary 
classification to predict one of multiple classes 
• It is not the only option, but it is easy to understand 

(and to implement too!) 
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Optional: "notag" classifier 

• Actually, not inserting a tag is also a decision 

• When working with multiple classifiers, we could train a 
classifier for "no tag here" too 

• This is trained using all positions that do not have a tag as 
positive examples 
• And all positions that have tags as negative examples 

• And again, we take the highest activation as the winning class 
• What happens if all of the classifications are negative? 

• We still take the highest activation! 

• This is usually not done in domains with a heavy imbalance of 
"notag" like decisions, but it is an interesting possibility 

 

• Question: what would happen to the weight vector if we did 
this in the binary classification (<stime> or no <stime>) case? 
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Summary: Multiclass classification 

• We discussed one-against-all, a 

framework for combining binary classifiers 

• It is not the only way to do this, but it 

often works pretty well 

• There are also techniques involving building 
classifiers on different subsets of the data and 

voting for classes 

• And other techniques can involve, e.g., a 
sequence of classification decisions (for 

instance, a tree-like structure of 

classifications) 
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Binary classifiers and sequences 

• As we saw a few lectures ago, we can 

detect seminar start times by using two 

binary classifiers: 

• One for <stime> 

• One for </stime> 

• And recall that if they both say "true" to 

the same position, take the highest dot 

product 
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• Then we need to actually annotate 

the document 

• But this is problematic... 
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Some concerns 

Begin End Begin 

Begin End Begin End 

Begin End 

… 

Slide from Kauchak 



A basic approach 

• One way to deal with this is to use a greedy 
algorithm 

• Loop: 
• Scan the document until the <stime> classifier says 

true 

• Then scan the document until the </stime> classifier 
says true 

• If the last tag inserted was <stime> then insert a 
</stime> at the end of the document 

• Naturally, there are smarter algorithms than this 
that will do a little better 

• But relying on these two independent classifiers is 
not optimal 
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How can we deal better with 

sequences? 

• We can make our classification 

decisions dependent on previous 

classification decisions 

• For instance, think of the Hidden 

Markov Model as used in POS-tagging 

• The probability of a verb increases 

after a noun 
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Basic Sequence Classification 

• We will do the following 

• We will add a feature template into each 

classification decision representing the 

previous classification decision 

• And we will change the labels we are 

predicting, so that in the span between a 

start and end boundary we are predicting 

a different label than outside 
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Basic idea 

Seminar          at                4                    pm 

                            <stime>       in-stime            </stime> 
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• The basic idea is that we want to use the previous 

classification decision  

• We add a special feature template  -1_label_XXX 

• For instance, between 4 and pm, we have: 

    -1_label_<stime> 

 

• Suppose we have learned reasonable classifiers 

• How often should we get a <stime> classification 

here? (Think about the training data in this sort of 

position) 



-1_label_<stime> 

• This should be an extremely strong 

indicator not to annotate a <stime> 

 

• What else should it indicate? 

• It should indicate that there must be 

either a in-stime or a </stime> here! 
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Changing the problem slightly 

• We'll now change the problem to a 

problem of annotating tokens (rather 

than annotating boundaries) 

• This is traditional in IE, and you'll see 

that it is slightly more powerful than the 

boundary style of annotation 

• We also make less decisions (see next 

slide) 
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IOB markup 

Seminar          at                4                    pm             will         be          on          ... 

O                     O                 B-stime         I-stime        O           O            O 
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• This is called IOB markup (or BIO = begin-in-out) 

• This is a standardly used markup when modeling IE 

problems as sequence classification problems 

 

• We can use a variety of models to solve this problem 

• One popular model is the Hidden Markov Model, 

which you have seen in Statistical Methods 

• There, the label is the state 

• However, in this course we will (mostly) stay more 

general and talk about binary classifiers and one-

against-all 



(Greedy) classification with IOB 

Seminar          at                4                    pm             will         be          on          ... 

O                     O                 B-stime         I-stime        O           O            O 
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• To perform greedy classification, first run your classifier on 

"Seminar"  

• You can use a label feature here like 
    -1_Label_StartOfSentence 

• Suppose you correctly choose "O" 

• Then when classifying "at", use the feature: 

    -1_Label_O 

• Suppose you correctly choose "O" 
• Then when classifying "4", use the feature: 

    -1_Label_O 
• Suppose you correctly choose "B-stime" 

• Then when classifying "pm", use the feature: 
    -1_Label_B-stime 

• Etc... 

 



Training 

• How to create the training data (do 

feature extraction) should be obvious 

• We can just use the gold standard label of 

the previous position as our feature 
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BIEWO Markup 

• A popular alternative to IOB markup is 

BIEWO markup 

• E stands for "end" 

• W stands for "whole", meaning we 

have a one-word entity (i.e., this 

position is both the begin and end) 
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Seminar          at                4                   will         be          on           ... 

O                     O                 W-stime       O           O            O 

 

 

Seminar          at                4                    pm             will         be          on     ... 

O                     O                 B-stime         E-stime        O           O            O 

 

 



BIEWO vs IOB 

• BIEWO fragments the training data 

• Recall that we are learning a binary 

classifier for each label 

• In our two examples on the previous slide, 

this means we are not using the same 

classifiers! 

• Use BIEWO when single-word mentions 

require different features to be active 

than the first word of a multi-word 

mention 
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Conclusion 

• I've taught you the basics of: 
• Binary classification using features 

• Multiclass classification (using one-against-all) 
• Sequence classification (using a feature that uses the 

previous decision) 
• And IOB or BIEWO labels 

• I've skipped a lot of details 
• I haven't told you how to actually learn the weight vector 

in the binary classifier 

• I also haven't talked about non-greedy ways to do 
sequence classification 

• And I didn't talk about probabilities, which are used 
directly, or at least approximated, in many kinds of 
commonly used linear models! 

• Hopefully what I did tell you is fairly intuitive and helps 
you understand classification, that is the goal 
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• Further reading (optional): 

• Tom Mitchell “Machine Learning” (text 

book) 
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Seminar next week - I 

• In the Seminar next week, we will work with Wapiti 

• Wapiti is an open source machine learning package 
from LIMSI (Paris) 

 

• Wapiti implements Maximum Entropy classification for 
multiclass classification 

• We will use this to locate <location> tags in the CMU 
seminars data sets 

• We tell Wapiti what features to use, it learns the required 
weight vectors from the training set and stores them 

• You can then use Wapiti to classify new data (e.g., a test 
set) 

 

• Please download Wapiti, install it in your linux/Mac 
laptop, and try it out on a toy binary classification 
problem before the Seminar 
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Seminar next week - II 

• Wapiti also implements two sequence versions of 
Maximum Entropy classification 
• The more popular solution is: Bigram Linear-chain Conditional 

Random Field (or often CRF for short) 

• The less popular solution is MEMM (Maximum Entropy Markov 
Model), we will not use this (it often performs worse than CRF, 
but is much faster to train) 

• Both of these sequence solutions do maximum entropy 
classification using the previous decision in a sequence of 
classifications 

• In the Seminar we will look at CRFs (in a separate Übung 
towards the end of the semester) 

 

• Hopefully you will leave the seminar with an idea of how 
to solve IE problems with a classifier (or a sequence 
classifier) 
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• Thank you for your attention! 
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