
Review of Basic Perl and
 Perl Regular Expressions

Alexander Fraser & Liane Guillou
{fraser,liane}@cis.uni-muenchen.de

CIS, Ludwig-Maximilians-Universität München

Computational Morphology and Electronic Dictionaries

SoSe 2016
2016-05-02

Outline

• Today will start with a review of Perl

• Followed by Perl regular expressions

– Regular expressions are closely tied to the Finite
State Acceptors (and Transducers) we saw last
time

3

Adapted from Perl Tutorial -

Bioinformatics Orientation 2008

By Eric Bishop

which was:

Adapted from slides found at:

www.csd.uoc.gr/~hy439/Perl.ppt

(original author is not indicated)

Credits

http://www.csd.uoc.gr/~hy439/Perl.ppt

4

Why Perl?

• Perl is built around regular expressions
– REs are good for string processing
– Therefore Perl is a good scripting language
– Perl is especially popular for CGI scripts

• Perl makes full use of the power of UNIX
• Short Perl programs can be very short

– “Perl is designed to make the easy jobs easy,
without making the difficult jobs impossible.” --
Larry Wall, Programming Perl

5

Why not Perl?

• Perl is very UNIX-oriented
– Perl is available on other platforms...

– ...but isn’t always fully implemented there

– However, Perl is often the best way to get some
UNIX capabilities on less capable platforms

• Perl does not scale well to large programs
– Weak subroutines, heavy use of global variables

• Perl’s syntax is not particularly appealing

6

Perl Example 1

#!/usr/bin/perl -w

Program to do the obvious

print 'Hello world.'; # Print a message

7

Understanding “Hello World”

• Comments are # to end of line

– But the first line, #!/usr/bin/perl, tells where to
find the Perl compiler on your system

– I use the modifier "-w" to get extra warnings,
highly recommended

• Perl statements end with semicolons

• Perl is case-sensitive

8

Running your program

• Two ways to run your program:

– perl hello.pl

– chmod 700 hello.pl

 ./hello.pl

9

Scalar variables

• Scalar variables start with $

• Scalar variables hold strings or numbers, and they are
interchangeable

• When you first use (declare) a variable use the my
keyword to indicate the variable’s scope
– Without "use strict;", this is not necessary but good

programming practice

– With "use strict;", won't compile (highly recommended!)

• Example:
– use strict;

– my $priority = 9;

10

Arithmetic in Perl

$a = 1 + 2; # Add 1 and 2 and store in $a

$a = 3 - 4; # Subtract 4 from 3 and store in $a

$a = 5 * 6; # Multiply 5 and 6

$a = 7 / 8; # Divide 7 by 8 to give 0.875

$a = 9 ** 10; # Nine to the power of 10, that is, 910

$a = 5 % 2; # Remainder of 5 divided by 2

++$a; # Increment $a and then return it

$a++; # Return $a and then increment it

--$a; # Decrement $a and then return it

$a--; # Return $a and then decrement it

11

Arithmetic in Perl cont’d

• You sometimes may need to group terms

– Use parentheses ()

– (5-6)*2 is not 5-(6*2)

12

String and assignment operators

$a = $b . $c; # Concatenate $b and $c

$a = $b x $c; # $b repeated $c times

$a = $b; # Assign $b to $a

$a += $b; # Add $b to $a

$a -= $b; # Subtract $b from $a

$a .= $b; # Append $b onto $a

13

Single and double quotes

• $a = 'apples';

• $b = 'bananas';

• print $a . ' and ' . $b;
– prints: apples and bananas

• print '$a and $b';
– prints: $a and $b

• print "$a and $b";
– prints: apples and bananas

14

Perl Example 2

#!/usr/bin/perl -w

program to add two numbers

use strict;

my $a = 3;

my $b = 5;

my $c = “the sum of $a and $b and 9 is: ”;

my $d = $a + $b + 9;

print “$c $d\n”;

16

if statements

if ($a eq “”)

{

 print "The string is empty\n";

}

else

{

 print "The string is not empty\n";

}

17

Tests

• All of the following are false:
 0, '0', "0", '', "”, “Zero”

• Anything not false is true

• Use == and != for numbers, eq and ne for
strings

• &&, ||, and ! are and, or, and not,
respectively.

18

if - elsif statements

if ($a eq “”)

 { print "The string is empty\n"; }

elsif (length($a) == 1)

 { print "The string has one character\n"; }

elsif (length($a) == 2)

 { print "The string has two characters\n"; }

else

 { print "The string has many characters\n"; }

19

while loops

#!/usr/bin/perl –w

use strict;

my $i = 5;

while ($i < 15)

{

 print ”$i";

 $i++;

}

21

for loops

• for (my $i = 5; $i < 15; $i++)

{

 print "$i\n";

}

22

last

• The last statement can be used to exit a loop before it
would otherwise end

 for (my $i = 5; $i < 15; $i++)

{

 print "$i,";

 if($i == 10)

 {

 last;

 }

 }

 print “\n”;

 when run, this prints 5,6,7,8,9,10

23

next

• The next statement can be used to end the current loop iteration early

 for (my $i = 5; $i < 15; $i++)
{

 if($i == 10)

 {

 next;

 }

 print "$i,";

 }

 print “\n”

when run, this prints 5,6,7,8,9,11,12,13,14

24

Standard I/O

• On the UNIX command line;
– < filename means to get input from this file

– > filename means to send output to this file

• STDIN is standard input
– To read a line from standard input use:

 my $line = <STDIN>;

• STDOUT is standard output
– Print will output to STDOUT by default

– You can also use :

 print STDOUT “my output goes here”;

25

File I/O

• Often we want to read/write from specific files

• In perl, we use file handles to manipulate files

• The syntax to open a handle to read to a file for reading is
different than opening a handle for writing
– To open a file handle for reading:

 open IN, “<fileName”;

– To open a file handle for writing:

 open OUT, “>fileName”;

• File handles must be closed when we are finished with
them -- this syntax is the same for all file handles
 close IN;

26

File I/O cont’d

• Once a file handle is open, you may use it just
like you would use STDIN or STDOUT

• To read from an open file handle:

– my $line = <IN>;

• To write to an open file handle:

– print OUT “my output data\n”;

27

Perl Example 3

#!/usr/bin/perl -w

singlespace.pl: remove blank lines from a file

Usage: perl singlespace.pl < oldfile > newfile

use strict;

while (my $line = <STDIN>)

{

 if ($line eq "\n")

 {

 next;

 }

 print "$line";

}

29

Arrays

• my @food = ("apples", "bananas", "cherries");

• But…

• print $food[1];

– prints "bananas"

• my @morefood = ("meat", @food);

– @morefood now contains:

 ("meat", "apples", "bananas", "cherries");

30

push and pop

• push adds one or more things to the end of a
list
– push (@food, "eggs", "bread");

– push returns the new length of the list

• pop removes and returns the last element
– $sandwich = pop(@food);

• $len = @food; # $len gets length of @food

• $#food # returns index of last element

31

@ARGV: a special array

• A special array, @ARGV, contains the
parameters you pass to a program on the
command line

• If you run “perl test.pl a b c”, then within
test.pl @ARGV will contain (“a”, “b”, “c”)

32

foreach

Visit each item in turn and call it $morsel

foreach my $morsel (@food)

{

 print "$morsel\n";

 print "Yum yum\n";

}

33

Hashes / Associative arrays

• Associative arrays allow lookup by name rather than by index

• Associative array names begin with %

• Example:
– my %fruit = ("apples”=>"red", "bananas”=>"yellow",

"cherries”=>"red");

– Now, $fruit{"bananas"} returns "yellow”

– To set value of a hash element:

 $fruit{“bananas”} = “green”;

34

Hashes / Associative Arrays II

• To remove a hash element use delete

– delete $fruit{“bananas”};

• You cannot index an associative array, but you can use the keys and

values functions:

 foreach my $f (keys %fruit)

{

 print ("The color of $f is " . $fruit{$f} . "\n");

}

35

Example 4

#!/usr/bin/perl –w

use strict;

my @names = ("bob", "sara", "joe");
my %likesHash = ("bob"=>"steak", "sara"=>"chocolate",

"joe"=>"rasberries");

foreach my $name (@names)
{
 my $nextLike = $likesHash{$name};
 print "$name likes $nextLike\n";
}

37

Regular Expressions

• $sentence =~ /the/

– True if $sentence contains "the"

• $sentence = "The dog bites.";
if ($sentence =~ /the/) # is false

– …because Perl is case-sensitive

• !~ is "does not contain"

38

RE special characters

. # Any single character except a newline

^ # The beginning of the line or string

$ # The end of the line or string

* # Zero or more of the last character

+ # One or more of the last character

? # Zero or one of the last character

39

RE examples

^.*$ # matches the entire string

hi.*bye # matches from "hi" to "bye" inclusive

x +y # matches x, one or more blanks, and y

^Dear # matches "Dear" only at beginning

bags? # matches "bag" or "bags"

hiss+ # matches "hiss", "hisss", "hissss", etc.

40

Square brackets

[qjk] # Either q or j or k

[^qjk] # Neither q nor j nor k

[a-z] # Anything from a to z inclusive

[^a-z] # No lower case letters

[a-zA-Z] # Any letter

[a-z]+ # Any non-zero sequence of

 # lower case letters

41

More examples

[aeiou]+ # matches one or more vowels

[^aeiou]+ # matches one or more nonvowels

[0-9]+ # matches an unsigned integer

[0-9A-F] # matches a single hex digit

[a-zA-Z] # matches any letter

[a-zA-Z0-9_]+ # matches identifiers

42

More special characters

\n # A newline

\t # A tab

\w # Any alphanumeric; same as [a-zA-Z0-9_]

\W # Any non-word char; same as [^a-zA-Z0-9_]

\d # Any digit. The same as [0-9]

\D # Any non-digit. The same as [^0-9]

\s # Any whitespace character

\S # Any non-whitespace character

\b # A word boundary, outside [] only

\B # No word boundary

43

Quoting special characters

\| # Vertical bar

\[# An open square bracket

\) # A closing parenthesis

* # An asterisk

\^ # A carat symbol

\/ # A slash

\\ # A backslash

44

Alternatives and parentheses

jelly|cream # Either jelly or cream

(eg|le)gs # Either eggs or legs

(da)+ # Either da or dada or

 # dadada or...

45

The $_ variable

• Often we want to process one string
repeatedly

• The $_ variable holds the current string

• If a subject is omitted, $_ is assumed

• Hence, the following are equivalent:

– if ($sentence =~ /under/) …

– $_ = $sentence; if (/under/) ...

46

Case-insensitive substitutions

• s/london/London/i

– case-insensitive substitution; will replace london,
LONDON, London, LoNDoN, etc.

• You can combine global substitution with
case-insensitive substitution

– s/london/London/gi

47

split

• split breaks a string into parts

• $info = "Caine:Michael:Actor:14, Leafy

Drive";

@personal = split(/:/, $info);

• @personal =

 ("Caine", "Michael", "Actor", "14, Leafy

Drive");

48

Example 5

#!/usr/bin/perl –w

use strict;

my @lines = ("Boston is cold.",

 "I like the Boston Red Sox.",

 "Boston drivers make me see red!");

foreach my $line (@lines)

{

 if ($line =~ /Boston.*red/i)

 {

 print "$line\n";

 }

}

50

Calling subroutines

• Assume you have a subroutine printargs that
just prints out its arguments

• Subroutine calls:

– printargs("perly", "king");
• Prints: "perly king"

– printargs("frog", "and", "toad");
• Prints: "frog and toad"

51

Defining subroutines

• Here's the definition of printargs:

– sub printargs

{ print join(“ “, @_) . ”\n"; }

– Parameters for subroutines are in an array called @_

– The join() function is the opposite of split()

• Joins the strings in an array together into one string

• The string specified by first argument is put between the
strings in the arrray

52

Returning a result

• The value of a subroutine is the value of the last
expression that was evaluated

sub maximum

{

 if ($_[0] > $_[1])

 { $_[0]; }

 else

 { $_[1]; }

}

$biggest = maximum(37, 24);

53

Returning a result (cont’d)

• You can also use the “return” keyword to return a value
from a subroutine
– This is better programming practice

sub maximum

{

 my $max = $_[0];

 if ($_[1] > $_[0])

 { max = $_[1]; }

 return $max;

}

$biggest = maximum(37, 24);

54

Example 6

#!/usr/bin/perl -w

use strict;

sub inside

{

 my $a = shift @_;

 my $b = shift @_;

 $a =~ s/ //g;

 $b =~ s/ //g;

 return ($a =~ /$b/ || $b =~ /$a/);

}

if(inside("lemon", "dole money"))

{

 print "\"lemon\" is in \"dole money\"\n";

}

Engineering Regular Expressions

• There are some nice online packages and websites that
can help with this.

• Let's look at a regular expression for recognizing simple
floating point numbers like:

• 1
• -1
• -1.56
• +200000.5

• (Credit for basic idea to TCL manual, version 8.5)

• /[-+]?([0-9])*\.?([0-9]*)/

• Does this seem reasonable?

• We can go to regexper.com, and put in this
regular expression and visualize it

• We can test our regular expression against
strings at regex101.com

• Looks good, right?

• But... What is up with match 1 on the next
slide?

• Credit here to Veronika Hintzen for noticing
and explaining this bug in class!

• Let's go back to the regexper.com graphic
(back a few slides)

• Look at the first group. It looks different from
the second group

• We can fix this by changing the regular
expression to be like this (we move the first
star inside the parenthesis):

• /[-+]?([0-9]*)\.?([0-9]*)/

• regex101.com allows us to test our new
regular expression

– Now it works as expected!

perlretut

• Final word: if you really want to master
regular expressions, take a look at:

• perlretut

• The perl regular expressions tutorial

66

Thank you for
your attention

