Target-Side Context for Discriminative Models in Statistical MT

Aleš Tamchyna, Alexander Fraser, Ondřej Bojar, Marcin Junczys-Dowmunt

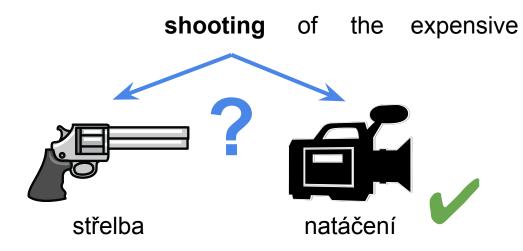
CIS Talk

June 28, 2016

Outline

- Motivation
- Model Description
- Integration in Phrase-Based Decoding
- Experimental Evaluation
- Analysis, Discussion

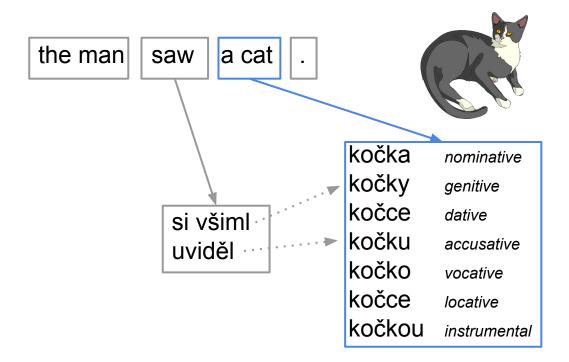
Why Context Matters in MT: Source



Wider **source** context required for disambiguation of word **sense**.

Previous work has looked at using source context in MT.

Why Context Matters in MT: Target

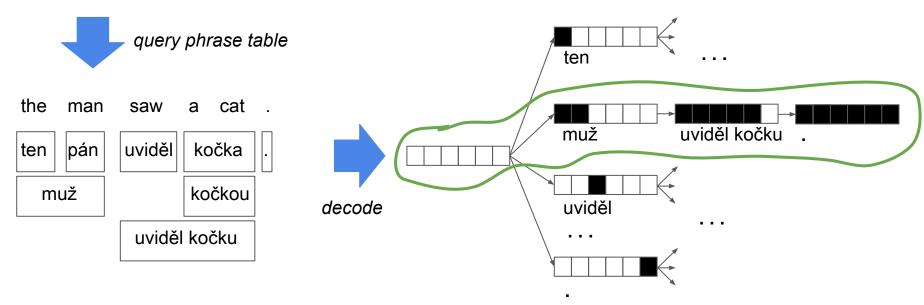


Correct case depends on how we translate the previous words.

Wider **target** context required for disambiguation of word **inflection**.

Phrase-Based MT: Quick Refresher

the man saw a cat.



 $P_{LM} = P(muž|<s>) \cdot P(uviděl kočku | <s> muž) \cdot ... \cdot P(</s> | kočku .)$

How Does PBMT Fare?

shooting of the **film** .

natáčení filmu .

shooting of the expensive **film** .

střelby na drahý film .

X

the man saw a cat.

muž uviděl **kočku**_{acc}.

1

the man saw a black cat.

muž spatřil **černou**_{acc} **kočku**_{acc} .

~

the man saw a yellowish cat.

muž spatřil **nažloutlá**_{nom} **kočka**_{nom} .

K

Outline

- Motivation
- Model Description
- Integration in Phrase-Based Decoding
- Experimental Evaluation
- Analysis, Discussion

A Discriminative Model of Source and Target Context

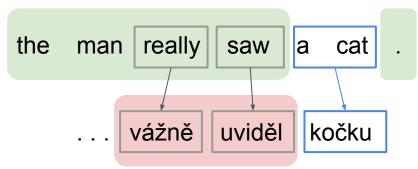
Let F, E be the source and target sentence.

Model the following probability distribution:
$$P(E|F) \propto \prod_{(\bar{e_i},\bar{f_i}) \in (E,F)} P(\bar{e_i}|\bar{f_i},F,e_{prev},e_{prev-1})$$
 source context target context Where:

Where:

Where:
$$P(\bar{e_i}|\bar{f_i}, F, e_{prev}, e_{prev-1}) = \frac{\exp(\bar{w} \cdot \text{fv}(\bar{e_i}, \bar{f_i}, F, e_{prev}, e_{prev-1}))}{\sum\limits_{\bar{e'} \in \text{GEN}(\bar{f_i})} \exp(\bar{w} \cdot \text{fv}(\bar{e'}, \bar{f_i}, F, e_{prev}, e_{prev-1}))}$$

Model Features (1/2)



Label Independent (S = shared):

- source window: swin-1^saw swin-2^really ...

source internal: sin^a sin^catsource indicator: sind^a cat

context window: tcwin-1^uviděl tcwin-2^vážně

context bilingual: blng^saw^uviděl blng^really^vážně

Label Dependent (T = translation):

target internal: tin^kočkutarget indicator: tind^kočku

Full Feature Set: { S×T U S U T }

sin^cat&tin^kočku ... sind^a_cat&tind^kočku ... blng^saw^uviděl&tind^kočku ... tcwin-1^uviděl&tind^kočku ... sind^a_cat ... tind^kočku

Model Features (2/2)

- train a single model where each class is defined by label-dependent features
- our feature set is richer than surface forms
- **source:** form, lemma, part of speech, dependency parent, syntactic role
- target: form, lemma, (complex) morphological tag (e.g. NNFS1----A---)
- Allows to learn e.g.:
 - subjects (role=Sb) often translate into nominative case
 - nouns are usually accusative when preceded by an adjective in accusative case
 - lemma "cat" maps to lemma "kočka" regardless of word form (inflection)

Model Training: Parallel Data

gunmen fled after the shooting.

pachatelé po střelbě uprchli.

...

shooting of an expensive film.

natáčení drahého filmu .

...

the director left the shooting .

režisér odešel z natáčení

the man saw a black cat .

muž viděl černou|A4 kočku|N4 .

. . .

the black cat noticed the man .

černá|A1 kočka|N1 viděla muže

Training examples:

- + střelbě&gunmen střelbě&fled ...
- natáčení&gunmen natáčení&fled ...
- střelbě&film střelbě&expensive ...
- + natáčení&film natáčení&fled ...
- střelbě&director střelbě&left ...
- + natáčení&director natáčení&left ...
- prev=A4&N1 prev=A4&kočka ...
- + prev=A4&N4 prev=A4&kočku ...
- + prev=A1&N1 prev=A1&kočka ...
- prev=A1&N4 prev=A1&kočku ...

Model Training

- Vowpal Wabbit
- quadratic feature combinations generated automatically
- objective function: logistic loss
- setting: --csoaa_ldf mc
- 10 iterations over data
 - select best model based on held-out accuracy
- no regularization

Training Efficiency

- huge number of features generated (hundreds of GBs when compressed)
- feature extraction
 - easily parallelizable task: simply split data into many chunks
 - each chunk processed in a multithreaded instance of Moses
- model training
 - Vowpal Wabbit is fast
 - training can be parallelized using VW AllReduce
 - workers train on independent chunks, share parameter updates with a master node
 - linear speed-up
 - 10-20 jobs

Intrinsic Evaluation

- the task: predict the correct translation in the current context

shooting

baseline: select the most frequent translation from the candidates, i.e.,
translation with the highest P(e|f)

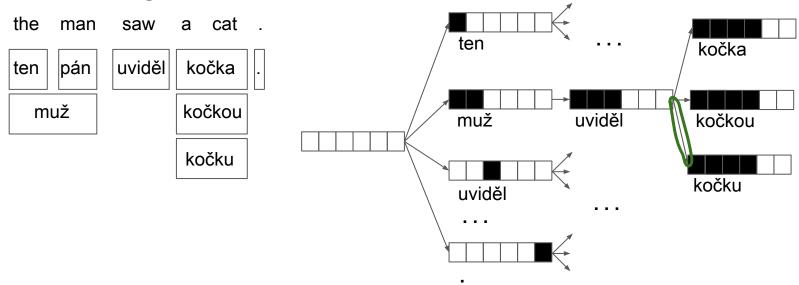
English-Czech translation, tested on WMT13 test set

Model	Accuracy
baseline	51.5
+source context	66.3
+target context	74.8*

Outline

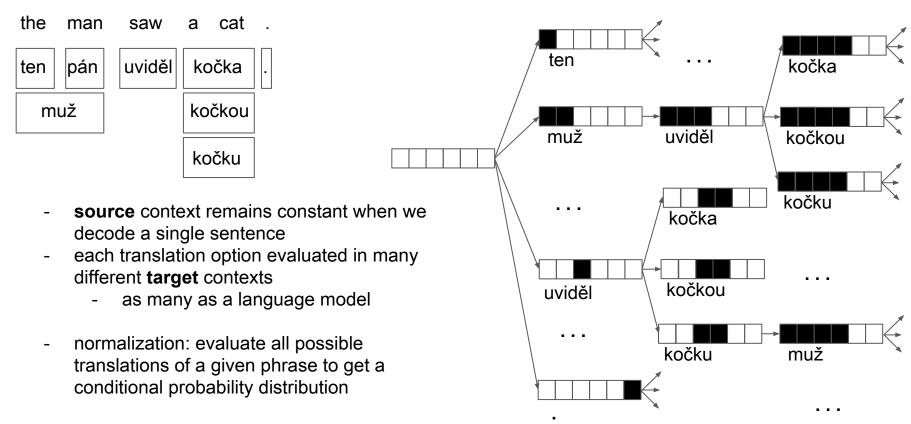
- Motivation
- Model Description
- Integration in Phrase-Based Decoding
- Experimental Evaluation
- Analysis, Discussion

Decoding with the Context Model

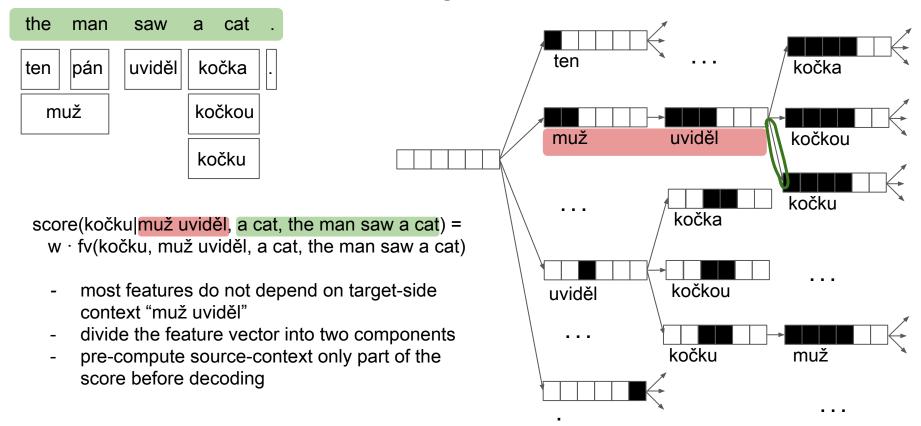


 $P_{disc}(\text{kočku}|\text{muž uviděl}, \text{cat, the man saw a cat}) = \frac{\exp(\text{score}(\text{kočku}|\text{muž uviděl}, \text{cat, the man saw a cat}))}{\sum_{i \in \left\{\substack{\text{kočka,} \\ \text{kočkou,} \right\}}} \exp(\text{score}(i|\text{muž uviděl}, \text{cat, the man saw a cat}))}$

Challenges in Decoding



Trick #1: Source- and Target-Context Score Parts



Trick #2: Cache Feature Vectors

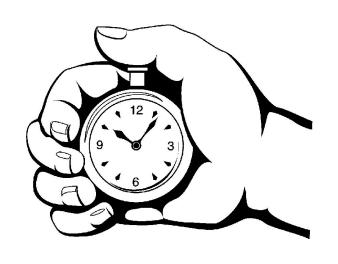
- each translation option ("kočku") will be seen multiple times during decoding, in different contexts
 - generate features T (internal to the translation option) before decoding
 - get back feature hashes from VW
 - store them in cache as integer arrays for future use
- target-side contexts repeat within a single search ("muž uviděl" -> *)
 - generate features S_{tot} the first time we see that particular context during decoding
 - store their hashes in cache

Trick #3: Cache Final Results

- our score needs to be locally normalized
 - over possible translations of the current source phrase in the current context
- compute score for all possible translations at once, normalize
- store scores of all translations in cache
 - the decoder will probably evaluate other translations as well anyway

Evaluation of Decoding Speed

Integration	Avg. Time per Sentence	
baseline	0.8 s	
naive: only #3	13.7 s	
+tricks #1, #2	2.9 s	



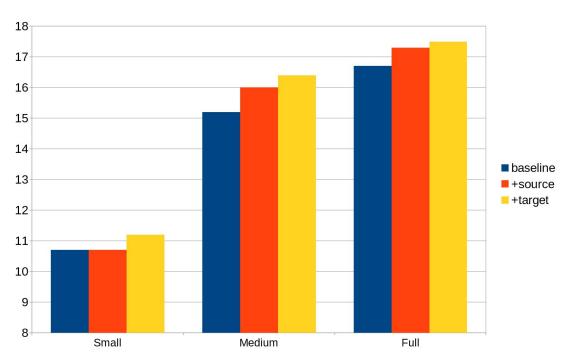
Outline

- Motivation
- Model Description
- Integration in Phrase-Based Decoding
- Experimental Evaluation
- Analysis, Discussion

Scaling to Large Data (1/2)

- not clear whether discriminative models help when large parallel data is available
- English-Czech translation, train on subsets of CzEng 1.0
- 5-gram LM, tune on WMT13, test on WMT14
- system variants:
 - baseline
 - +source
 - +target
- settings:
 - small -- 200k
 - medium -- 5M
 - full -- 14.8M

Scaling to Large Data (2/2)

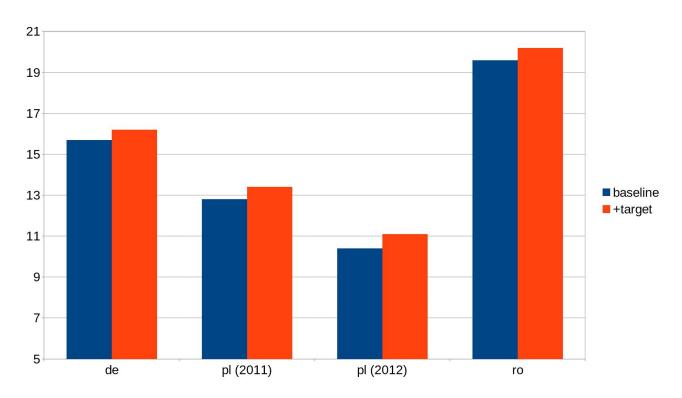


- BLEU scores on WMT14
- average over 5 independent optimization runs

Additional Language Pairs (1/2)

- English-German
 - parallel data: 4.3M sentence pairs (Europarl + Common Crawl)
 - dev/test: WMT13/WMT14
- English-Polish
 - not included in WMT so far
 - parallel data: 750k sentence pairs (Europarl + WIT)
 - dev/test: IWSLT sets (TED talks) 2010, 2011, 2012
- English-Romanian
 - included only in WMT16
 - parallel data: 600k sentence pairs (Europarl + SETIMES2)
 - dev/test: WMT16 dev test, split in half

Additional Language Pairs (2/2)



average test BLEU over 5 independent optimization runs

Outline

- Motivation
- Model Description
- Integration in Phrase-Based Decoding
- Experimental Evaluation
- Analysis, Discussion

Manual Evaluation

- blind evaluation of system outputs, 104 random test sentences
- English-Czech translation
- sample BLEU scores: 15.08, 16.22, 16.53

Setting	Equal	1 is better	2 is better
baseline vs. +source	52	26	26
baseline vs. +target	52	18	34

System Outputs: Example

input: the most intensive mining took place there from 1953 to 1962.

baseline: nejvíce intenzivní těžba došlo tam z roku 1953, aby 1962.

the_most intensive mining_nom there_occurred there from 1953 , in_order_to 1962 .

+source: nejvíce intenzivní těžby místo tam z roku 1953 do roku 1962.

the_most intensive mining an place there from year 1953 until year 1962.

+target: nejvíce intenzivní těžba probíhala od roku 1953 do roku 1962.

the_most intensive mining $_{nom}$ occurred from year 1953 until year 1962 .

System Outputs: Discussion

- source-context model improves:
 - semantics
 - often also morphology and syntax
- target-context helps overall agreement and coherence on top of the sourcecontext model

Conclusion

- novel discriminative model for MT that uses both source- and target-side context information
- (relatively) efficient integration directly into MT decoding
- significant improvement of BLEU for English-Czech even on large-scale data
- improvement consistent for three other language pairs
- model freely available as part of the Moses toolkit

Thank you!

Questions?