1. Course Information

2. Introduction to Machine Translation
 A few things that make MT difficult
 Approaches to Machine Translation
• Formally:
 – Lecture (Vorlesung): Wednesday 12:15 – 13:45
 – Exercise (Übung): Tuesday 16:15 – 17:45
• However, I will be mostly doing lectures earlier in the semester on *BOTH DAYS*
• Schedule, lecture slides, (old) videos posted on web page (see my homepage, Google: fraser CIS)
• NOTE: to receive a grade you must be registered for *both* Vorlesung and Übung, at least one of you has forgotten the Übung.
This course will look at machine translation:

- **Primarily from a computational side**
 - Understanding the challenges of modeling translation computationally
 - Basic understanding of rule-based machine translation
 - In-depth understanding of statistical machine translation
 - In-depth understanding of deep learning and neural machine translation
 (several guest lectures)

- **But also a little bit from a linguistic side**
 - Understanding the linguistic challenges of translation
 - Thinking about the implications of working with different language pairs
The statistical machine translation (SMT) material is mainly based on the book:

Koehn, Philipp (2009):
Statistical Machine Translation

Philipp Koehn also has a newer book on Neural Machine Translation. This doesn’t cover the newest model (Transformers) yet, but is still highly worth checking out, see the class web page for a link.
Course Requirements: IN SS 2023

- To pass this course ...
 - Exercises and assignments (bonus points for exam)
 - Written exam
Questions?

Any questions about logistics, etc., before I briefly introduce machine translation?
Outline

1. Course Information

2. Introduction to Machine Translation
 A few things that make MT difficult
 Approaches to Machine Translation
Acknowledgements

The content of this lecture is based on a previous lecture by Chris Callison-Burch (probably with some new errors introduced by me)
What is machine translation?

- Automatic translation of text in one language to another language.
- Examples: Google Translate, Bing Translator, DeepL, many more
A few things that make MT difficult

Not an exhaustive list:

- POS ambiguity
- Word sense
- Word order
- Pronouns
- Tense
- Idioms
- etc...
POS ambiguity

In many languages, the POS of a word is ambiguous

- Consider translation of the word “fire” to German
 - “The fire was large.”?
 - “I will fire them.”?
Word sense ambiguity is a big problem for many NLP systems:

- “Bank” as in river
 “Bank” as in financial institution
- “Plant” as in a tree
 “Plant” as in a factory
- Different word senses often translate into different words in another language
Differing word orders

- English word order is: subject - verb - object
- Japanese order is: subject - object - verb
- English: IBM bought Lotus
- Japanese: IBM Lotus bought
- English: Reporters said IBM bought Lotus
- Japanese: Reporters IBM Lotus bought said
Problem of pronouns

Pronouns can be a big difficulty in translation:

- Some languages like Spanish can drop subject pronouns
- In Spanish the verbal inflection often indicates which pronoun should be restored
 - o = I
 - as = you
 - a = he / she / it
 - amos = we
 - an = they
- When should we use ‘she’ or ‘he’ or ‘it’?
- Think about translating “it” from English to German.
Different tenses

- Spanish has two versions of the past tense: one for a definite time in the past, and one for an unknown time in the past
- When translating from English to Spanish we need to choose which version of the past tense to use
Idioms

- "to kick the bucket" means "to die"
- "a bone of contention" does not have anything to do with skeletons
- "a lame duck", "tongue in cheek", "to cave in"
- etc...
- Word-for-word translation
- Syntactic transfer
- Semantic transfer
- Interlingual approaches
- Controlled language

- Example-based translation
- Statistical machine translation
- Neural machine translation
Word-for-word translation

- Use a machine-readable bilingual dictionary to translate each word in a text
- Advantages: Easy to implement, results give a rough idea about what the text is about
- Disadvantages: Problems with word order (and word sense) means that this results in low-quality translation
Syntactic transfer

- Parse the sentence
- Rearrange constituents
- Then translate the words
Syntactic Transfer

- **Advantages:**
 - Deals with the word-order problem
 - Components are reusable - can use English parser developed for English to French for a subsequent English to German system

- **Disadvantages:**
 - Must construct grammars for each language that you deal with
 - Sometimes there is a syntactic mismatch between languages
 - Example 1:
 - English: The bottle floated into the cave
 - Spanish: La botella entró a la cueva flotando
 - = The bottle entered the cave floating
 - Example 2:
 - Peter likes to swim — > Peter schwimmt gerne
Semantic Transfer

• The sentence is first converted into a source-language-specific logical form
 John likes to swim ⇒ LIKE(SWIM(JOHN))

• This logical form is translated to a target-language-specific logical form
 LIKE(SWIM(JOHN)) ⇒ GERNE(SCHWIMMEN(JOHN))

• Then from the target-language logical form, we generate the text
 GERNE(SCHWIMMEN(JOHN)) ⇒ John schwimmt gerne

• In these approaches, it is typical to use a syntactic analysis of the source sentence (parse tree) as an intermediate step.
• Sometimes a syntactic parse tree for the target is also created.
• Assign a logical form to input sentences
• John must not go =
 OBLIGATORY(NOT(GO(JOHN)))
 John may not go =
 NOT(PERMITTED(GO(JOHN)))
• Use this logical form to generate a sentence in another language
Advantages:
Single logical form means that we can translate between all languages and only write a parser/generator for each language once

Disadvantages:
Difficult to define a single logical form that covers all situations in all languages. English words in all capital letters probably won’t cut it.
Controlled language

- Define a subset of a language which can be used to compose text to be translated
- Issue editorial guidelines that limit each word to only one word sense, and which forbid certain difficult constructions
- Apply syntactic transfer or interlingual approaches
- Famous example: Weather Reports
Controlled language

- Advantages: Results in more reliable, higher quality translation for subset of language that it deals with
- Disadvantages: Does not cover all language use, so can only be applied in limited settings
Example-based MT

- Uses a translation memory or parallel corpus as a starting point
- When a human translator types a sentence that is similar to one in the memory, it is retrieved
- Some rules/heuristics to change the sentence to match the new sentence
A-t-on acheté les actions ou les biens des entreprises nationalisées?
Quel était le genre de travaux exécutés aux termes de ces contrats?
Le recours est rejeté comme manifestement irrecevable
Les propositions ne seront pas mises en application maintenant.
La République française supportera ses propres dépens
Production domestique exprimée en pourcentage de l'utilisation domestique
La séance est ouverte à 2 heures.

Have the shares or properties of nationalized companies been purchased?
What was the nature of the work performed under these contracts?
The action is dismissed as manifestly inadmissible
The proposal will not now be implemented.
France was ordered to bear its own costs
Domestic output as a % of domestic use
The House met at 2 p.m.

...
Example-based MT

- Advantages: Uses human translations which are higher quality than machine translations
- Disadvantages: May have limited coverage depending on the size of the translation memory, and flexibility of heuristics
Statistical machine translation

- Find most probable English sentence given a French sentence
- Probabilities are determined automatically by training a statistical model using a parallel corpus
Statistical machine translation

• Advantages:
 – Has a way of dealing with lexical ambiguity
 – Can deal with idioms that occur in the training data
 – Requires minimal human effort
 – Can be created for any language pair that has enough training data

• Disadvantages:
 – Requires plentiful parallel training data
 – Does not explicitly deal with syntax (but later work on this)
 – Complex pipeline, can be computationally expensive to translate new sentences
 – Can be difficult to understand decision process
Neural machine translation

- Find most probable English sentence given a French sentence
- Probabilities are determined automatically by training a statistical model using a parallel corpus
- Model is implemented using a neural network
Neural machine translation

Neural machine translation is a new form of statistical machine translation, relying on neural networks, but for convenience we tend to refer to the two as distinct.

- **Advantages:**
 - Has a better way of dealing with lexical ambiguity
 - Can deal with idioms that occur in the training data
 - Requires minimal human effort
 - Can be created for any language pair that has enough training data
 - Simple pipeline
 - Seems to work better than previous statistical machine translation approaches

- **Disadvantages:**
 - Requires plentiful parallel training data
 - Expensive to train (requires heavy computing resources and/or specialized processors)
 - Very very difficult (but probably not impossible?) to understand decision process
I hope to have convinced you that Machine Translation is an interesting problem!

In this introduction I presented:

- Some basic linguistic problems in machine translation
- An overview of previous approaches to machine translation

In future lectures:

- We will see a little bit more about linguistic problems and previous approaches to machine translation
- We will go into much more detail in terms of statistical and neural machine translation
Questions?
Thank you for your attention.