
Statistical Machine Translation

Part II: Word Alignments and EM

Alexander Fraser

Institute for Natural Language Processing

Universität Stuttgart

2012.09.13 Seminar: Statistical MT

NSSNLP, University of Kathmandu

Where we have been

• Parallel corpora

• Sentence alignment

• Overview of statistical machine translation

– Start with parallel corpus

2

– Start with parallel corpus

– Sentence align it

– Build SMT system

• Parameter estimation

– Given new text, decode

• Human evaluation & BLEU

Where we are going

• Start with sentence aligned parallel corpus

• Estimate parameters

– Word alignment

– Build phrase-based SMT model

3

– Build phrase-based SMT model

• Given new text, translate it!

– Decoding

Word Alignments

• Recall that we build translation models from

word-aligned parallel sentences

– The statistics involved in state of the art SMT

decoding models are simple

4

decoding models are simple

– Just count translations in the word-aligned parallel

sentences

• But what is a word alignment, and how do we

obtain it?

• Word alignment is annotation

of minimal translational

correspondences

•Annotated in the context in

which they occur

•Not idealized translations!

(solid blue lines annotated by a

bilingual expert)

•Automatic word alignments

are typically generated using a

model called IBM Model 4

•No linguistic knowledge

•No correct alignments are

supplied to the system

•Unsupervised learning

(red dashed line = automatically

generated hypothesis)

Uses of Word Alignment

• Multilingual
– Machine Translation

– Cross-Lingual Information Retrieval

– Translingual Coding (Annotation Projection)

– Document/Sentence Alignment

7

– Document/Sentence Alignment

– Extraction of Parallel Sentences from Comparable Corpora

• Monolingual
– Paraphrasing

– Query Expansion for Monolingual Information Retrieval

– Summarization

– Grammar Induction

Outline

• Measuring alignment quality

• Types of alignments

• IBM Model 1

– Training IBM Model 1 with Expectation – Training IBM Model 1 with Expectation
Maximization

• IBM Models 3 and 4

– Approximate Expectation Maximization

• Heuristics for high quality alignments from the
IBM models

How to measure alignment quality?

• If we want to compare two word alignment

algorithms, we can generate a word alignment with

each algorithm for fixed training data

– Then build an SMT system from each alignment

9

– Compare performance of the SMT systems using BLEU

• But this is slow, building SMT systems can take days

of computation

– Question: Can we have an automatic metric like BLEU, but

for alignment?

– Answer: yes, by comparing with gold standard alignments

Measuring Precision and Recall

• Precision is percentage of links in hypothesis that are
correct

– If we hypothesize there are no links, have 100% precision

• Recall is percentage of correct links we hypothesized

– If we hypothesize all possible links, have 100% recall

10

– If we hypothesize all possible links, have 100% recall

F
α
-score

|S|

|AS|
 S)A,

∩
=Recall(

Gold

f1 f2 f3 f4 f5

e1 e2 e3 e4

=
3

4

=
3

5

(e3,f4)

wrong

(e2,f3)

(e3,f5)

not in hyp

||

||
),Precision(

A

AS
SA

∩
=

11

|S|e1 e2 e3 e4

Hypothesis

f1 f2 f3 f4 f5

e1 e2 e3 e4

5 not in hyp

S)A,S)A,

)SA,

Recall(

1

Precision(

1
,F(

αα
α

−
+

=

Called F
α
-score to differentiate

from ambiguous term F-Measure

• Alpha allows trade-off between precision and

recall

• But alpha must be set correctly for the task!

• Alpha between 0.1 and 0.4 works well for SMT• Alpha between 0.1 and 0.4 works well for SMT

– Biased towards recall

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Last word on alignment functions

• Alignments functions are nice because they are a
simple representation of the alignment graph

• However, they are strangely asymmetric
– There is a NULL word on the German side (to explain

where unlinked English words came from)

– But no NULL word on the English side (some German – But no NULL word on the English side (some German
words simply don’t generate anything)

– Very important: alignment functions do not allow us to
represent two or more German words being linked to one
English word!

• But we will deal with this later…

• Now let’s talk about models

Generative Word Alignment Models

• We observe a pair of parallel sentences (e,f)

• We would like to know the highest probability
alignment a for (e,f)

• Generative models are models that follow a series of
stepssteps
– We will pretend that e has been generated from f

– The sequence of steps to do this is encoded in the
alignment a

– A generative model associates a probability p(e,a|f) to
each alignment

• In words, this is the probability of generating the alignment a and
the English sentence e, given the foreign sentence f

IBM Model 1

A simple generative model, start with:

– foreign sentence f

– a lexical mapping distribution
t(EnglishWord|ForeignWord)t(EnglishWord|ForeignWord)

How to generate an English sentence e from f:

1. Pick a length for the English sentence at random

2. Pick an alignment function at random

3. For each English position generate an English word by
looking up the aligned ForeignWord in the alignment
function, and choose an English word using t

Slide from Koehn 2008

p(e,a|f) =
Є

54
× t(the|das) × t(house|Haus) × t(is|ist) × t(small|klein)

Є

625

× 0.7 × 0.8 × 0.8 × 0.4=

= 0.00029Є

Modified from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Unsupervised Training with EM

• Expectation Maximization (EM)

– Unsupervised learning

– Maximize the likelihood of the training data

• Likelihood is (informally) the probability the model

29

• Likelihood is (informally) the probability the model

assigns to the training data (pairs of sentences)

– E-Step: predict according to current parameters

– M-Step: reestimate parameters from predictions

– Amazing but true: if we iterate E and M steps, we

increase likelihood*!
• (*actually, we do not decrease likelihood)

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

data

Modified from Koehn 2008

Slide from Koehn 2008

We will work out an example for the sentence pair:

la maison

the house

in a few slides, but first, let’s discuss EM further…

Implementing the Expectation-Step

• We are given the “t” parameters

• For each sentence pair:

• For every possible alignment of this sentence pair, simply work out the
equation of Model 1
– We will actually use the probability of every possible alignment (not just the

best alignment!)

• We are interested in the “posterior probability” of each alignment• We are interested in the “posterior probability” of each alignment
– We sum the Model 1 alignment scores, over all alignments of a sentence pair

– Then we will divide the alignment score of each alignment by this sum to
obtain a normalized score

• Note that this means we can ignore the left part of the Model 1 formula, because it is
constant over all alignments of a fixed sentence pair

– The resulting normalized score is the posterior probability of the alignment
• Note that the sum over the alignments of a particular sentence pair is 1

• The posterior probability of each alignment of each sentence pair will be
used in the Maximization-Step

Implementing the Maximization-Step

• For every alignment of every sentence pair we assign weighted counts to
the translations indicated by the alignment
– These counts are weighted by the posterior probability of the alignment

– Example: if we have many different alignments of a particular sentence pair,
and the first alignment has a posterior probability of 0.32, then we assign a
“fractional count” of 0.32 to each of the links that occur in this alignment

• Then we collect these counts and sum them over the entire corpus, giving
us a list of fractional counts over the entire corpus
Then we collect these counts and sum them over the entire corpus, giving
us a list of fractional counts over the entire corpus

– These could, for example, look like: c(the|la) = 8.0, c(house|la)=0.1, …

• Finally we normalize the counts to sum to 1 for the right hand side of
each t parameter so that we have a conditional probability distribution
– If the total counts for “la” on the right hand side = 10.0, then, in our example:

– p(the|la)=8.0/10.0=0.80

– p(house|la)=0.1/10.0=0.01

– …

• These normalized counts are our new t parameters!

• In the next slide, I will show how to get the fractional

counts for our example sentence

– We do not consider the NULL word

• This is just to reduce the total number of alignments we have to

considerconsider

– We assume we are somewhere in the middle of EM, not at

the beginning of EM

• This is only because having all t parameters being uniform would

make the example difficult to understand

– The variable z is the left part of the Model 1 formula

• This term is the same for each alignment, so it cancels out when

calculating the posterior!

Modified from Koehn 2008

z zz z

More formal and faster

implementatation: EM for Model 1

• If you understood the previous slide, you understand

EM training of Model 1

• However, if you implement it this way, it will be slow

because of the enumeration of all alignments

42

because of the enumeration of all alignments

• The next slides show:

1. A more mathematical presentation with the foreign NULL

word included

2. A trick which allows a very efficient (and incredibly

simple!) implementation

• We will be able to completely avoid enumerating alignments and

directly obtain the counts we need!

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

= t(e1|f0) t(e2|f0) + t(e1|f0) t(e2|f1) + t(e1|f0) t(e2|f2)

+ t(e1|f1) t(e2|f0) + t(e1|f1) t(e2|f1) + t(e1|f1) t(e2|f2)+ t(e1|f1) t(e2|f0) + t(e1|f1) t(e2|f1) + t(e1|f1) t(e2|f2)

+ t(e1|f2) t(e2|f0) + t(e1|f2) t(e2|f1) + t(e1|f2) t(e2|f2)

= t(e1|f0) [t(e2|f0) + t(e2|f1) + t(e2|f2)]

+ t(e1|f1) [t(e2|f0) + t(e2|f1) + t(e2|f2)]

+ t(e1|f2) [t(e2|f0) + t(e2|f1) + t(e2|f2)]

= [t (e1|f0) + t(e1|f1) + t(e1|f2)] [t(e2|f0) + t(e2|f1) + t(e2|f2)]

Slide modified from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Outline

• Measuring alignment quality

• Types of alignments

• IBM Model 1

– Training IBM Model 1 with Expectation – Training IBM Model 1 with Expectation

Maximization

• IBM Models 3 and 4

– Approximate Expectation Maximization

• Heuristics for improving IBM alignments

Slide from Koehn 2008

Training IBM Models 3/4/5

• Approximate Expectation Maximization

– Focusing probability on small set of most probable

alignments

Slide from Koehn 2008

Maximum Approximation

• MathemaRcally, P(e| f) = ∑ P(e, a | f)

• An alignment represents one way e could be

generated from f

• But for IBM models 3, 4 and 5 we approximate

a

• But for IBM models 3, 4 and 5 we approximate

• Maximum approximation:

P(e| f) = argmax P(e , a | f)

• Another approximation close to this will be

discussed in a few slides

55

a

Bootstrap

E-Step

Translation

Model

Initial

parameters

Viterbi

alignments

Model 3/4/5 training: Approx. EM

56

M-Step

Viterbi

alignmentsRefined

parameters

Model 3/4/5 E-Step

• E-Step: search for Viterbi alignments

• Solved using local hillclimbing search

– Given a starting alignment we can permute the alignment by making
small changes such as swapping the incoming links for two words

• Algorithm:

Begin: Given a starting alignment, make list of possible small changes

57

– Begin: Given a starting alignment, make list of possible small changes
(e.g. list every possible swap of the incoming links for two words)

– for each possible small change

• Create new alignment A2 by copying A and applying small change

• If score(A2) > score(best) then best = A2

– end for

– Choose best alignment as starting point, goto Begin:

Model 3/4/5 M-Step

• M-Step: reestimate parameters

– Count events in the neighborhood of the Viterbi

• Neighborhood approximation: consider only those

alignments reachable by one change to the alignment

58

alignments reachable by one change to the alignment

• Calculate p(e,a|f) only over this neighborhood, then

divide by the sum over alignments in the neighborhood

to get p(a|e,f)

– All alignments outside neighborhood are not considered!

– Sum counts over sentences, weighted by p(a|e,f)

– Normalize counts to sum to 1

Search Example

IBM Models: 1-to-N Assumption

60

• 1-to-N assumption

• Multi-word “cepts” (words in one language translated as a unit) only allowed

on target side. Source side limited to single word “cepts”.

• Forced to create M-to-N alignments using heuristics

Slide from Koehn 2008

Slide from Koehn 2008

Slide from Koehn 2008

Discussion

• Most state of the art SMT systems are built as presented here

• Use IBM Models to generate both:
– one-to-many alignment

– many-to-one alignment

• Combine these two alignments using symmetrization heuristic
– output is a many-to-many alignment – output is a many-to-many alignment

– used for building decoder

• Moses toolkit for implementation: www.statmt.org
– Uses Och and Ney GIZA++ tool for Model 1, HMM, Model 4

• However, there is newer work on alignment that is interesting!

• Thank you for your attention!• Thank you for your attention!

65

