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Abstract

Training discriminative rule selection
models is usually expensive because of the
very large size of the hierarchical gram-
mar. Previous approaches reduced the
training costs either by (i) using mod-
els that are local to the source side of
the rules or (ii) by heavily pruning out
negative samples. Moreover, all previ-
ous evaluations were performed on small
scale translation tasks, containing at most
250,000 sentence pairs. We propose two
contributions to discriminative rule selec-
tion. First, we test previous approaches
on two French-English translation tasks in
domains for which only limited resources
are available and show that they fail to
improve translation quality. To improve
on such tasks, we propose a rule selec-
tion model that is (i) global with rich
label-dependent features (ii) trained with
all available negative samples. Our global
model yields significant improvements, up
to 1 BLEU point, over previously pro-
posed rule selection models. Second, we
successfully scale rule selection models
to large translation tasks but have so far
failed to produce significant improvements
in BLEU on these tasks.

1 Introduction

Hierarchical phrase-based machine translation
(Chiang, 2005) performs non-local reordering in
a formally syntax-based way. It allows flexible
rule extraction and application by using a grammar
without linguistic annotation. As a consequence,
many hierarchical rules can be used to translate
a given input segment even though only a subset
of these yield a correct translation. For instance,

rules r1 to r3 can be applied to translate the French
sentence F1 below although only r1 yields the cor-
rect translation E.

(r1) X→ 〈 X1 pratique X2, practical X1 X2 〉
(r2) X→ 〈 X1 pratique X2, X1 X2 practice 〉
(r3) X→ 〈 X1 pratique X2, X2 X1 process 〉

F1 Une étude de l’ (intérêt)X1 pratique (de notre
approche)X2 .
A study on the (interest)X1 practical (of our
approach)X2 .

E A study on the practical (interest)X1 (of our
approach)X2 .

The rule scoring heuristics defined by (Chiang,
2005) do not handle rule selection in a satisfac-
tory way and many authors have come up with
solutions. Models that use the syntactic structure
of the source and target sentence have been pro-
posed by (Marton and Resnik, 2008; Marton et
al., 2012; Chiang et al., 2009; Chiang, 2010; Liu
et al., 2011). These approaches exclusively take
into account syntactic structure and do not model
rule selection (see Section 6 for a detailed discus-
sion). Following the work on phrase-sense disam-
biguation by (Carpuat and Wu, 2007), other au-
thors improve rule selection by defining features
on the structure of hierarchical rules and combin-
ing these with information about the source sen-
tence (Chan et al., 2007; He et al., 2008; He et al.,
2010; Cui et al., 2010). In these approaches, rule
selection is the task of selecting the target side of
a rule given its source side as well as contextual
information about the source sentence. This task
is modeled as a multiclass classification problem.

Because of the very large size of hierarchical
grammars, the training procedure for discrimina-
tive rule selection models is typically very expen-
sive: multiclass classification is performed over
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millions of classes (one for each possible target
side of a hierarchical rule). To overcome this
problem, previous approaches reduced the train-
ing costs by either (i) using models that are local
to the source side of hierarchical rules or (ii) heav-
ily pruning out negative samples from the train-
ing data. (Chan et al., 2007; He et al., 2008; He
et al., 2010) train one (local) classifier for each
source side or pattern of hierarchical rules instead
of defining a (global) model over all rules. Cui et
al. (2010) train global models but in addition to
rule table pruning, they heavily prune out negative
instances. Finally, in all previous approaches, a
small amount of fixed features is used for training
and prediction.

While previous approaches have been shown to
work on a small1 English-Chinese news transla-
tion task, we show (in Section 4) that on French-
English tasks on domains for which only a limited
amount of training data is available (which we call
low resource tasks), they fail to improve over a hi-
erarchical baseline. This failure is caused by the
fact that the models proposed so far do not take
advantage of all information available in the train-
ing data. Local models prevent feature sharing
between rules with different source sides or pat-
terns (see Section 2.3) while aggressive pruning
removes important information from the training
data (see Section 3.2). On low resource translation
tasks, this loss hurts translation quality. Moreover,
the small set of features used in previous work
does not provide a representation of the training
data that is as powerful as it could be for classifi-
cation (see Section 2.2).

We improve on previous work in two ways.
First, we define a global rule selection model with
a rich set of feature combinations. Our global
model enables feature sharing while the large
amount of features we use offers a complete rep-
resentation of the available training data. We train
our model with all acquired training examples.
The exhaustive training of a feature rich global
model allows us to take full advantage of the train-
ing data. We show on two low-resource French-
English translation tasks that local and pruned
models often fail to improve over a hierarchical
baseline while our global model with exhaustive
training yields significant improvements on scien-
tific and medical texts (see Section 4). In a second

1In (He et al., 2008; Cui et al., 2010), the size of the train-
ing data is about 240k parallel sentences.

contribution, we successfully scale rule selection
models to large scale translation tasks but fail to
produce significant improvements in BLEU over a
hierarchical baseline on these tasks.

Because our approach needs scaling to a large
amount of training examples, we need a classifier
that is fast and supports online streaming. We use
the high-speed classifier Vowpal Wabbit2 (VW)
which we fully integrate in the syntax component
(Hoang et al., 2009) of the Moses machine trans-
lation toolkit (Koehn et al., 2007). To allow re-
searchers to replicate our results and improve on
our work, we make our implementation publicly
available as part of Moses.

2 Global Rule Selection Model

The goal of rule selection is to choose the correct
target side of a hierarchical rule, given a source
side as well as other sources of information such
as the shape of the rule or its context of applica-
tion in the source sentence. The latter includes
lexical features (e.g. the words surrounding the
source span of an applied rule) or syntactic fea-
tures (e.g. the position of an applied rule in the
source parse tree). The rule selection task can
be modeled as a multi-class classification problem
where each target-side corresponding to a source
side gets a label.

Contrary to (Chan et al., 2007; He et al., 2008;
He et al., 2010), we solve the classification prob-
lem by building a single global discriminative
model instead of using one maximum entropy
classifier for each source side or pattern. We
solve the rule selection problem through multi-
class classification while (Cui et al., 2010) approx-
imate the problem by using a binary classifier.

2.1 Model Definition

We denote SCFG rules by X → 〈α, γ〉, where α
is a source and γ a target language string (Chi-
ang, 2005). By C(f, α) we denote information
of the source sentence f and the source side
α. R(α, γ) represents features on hierarchical
rules. Our discriminative model estimates P (γ |
α,C(f, α), R(α, γ)) and is normalized over the
set G′ of candidate target sides γ′ for a given α.
The function GTO : α→ G′ generates, given the
source side, the set G′ of all corresponding target
sides γ′. The estimated distribution can be written

2http://hunch.net/˜vw/. Implemented by John
Langford and many others.
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as:

P (γ | α,C(f, α), R(α, γ)) =
exp(

∑
i λihi(α,C(f, α), R(α, γ)))∑

γ′∈GTO(α) exp(
∑

i λihi(α,C(f, α), R(α, γ
′)))

In the same fashion as for local models, our global
model predicts the target side of a rule given its
source side and contextual features, meaning that
it still disambiguates between rules with the same
source side using rich context information. How-
ever, because the global model trains a single clas-
sifier over all rules, it captures information that
is shared among rules with different source sides
(see Section 2.3 for more details).

2.2 Feature Templates
We now present the feature templates R(α, γ) and
C(f, α) in the equation presented in Section 2.1.
While in isolation the features composing the tem-
plates are similar to the features used in previ-
ous work (He et al., 2008; He et al., 2010; Cui
et al., 2010), we create powerful representations
by dividing our feature set into fixed and label-
dependent features and taking the cross product of
these.

We begin by presenting the features in our tem-
plates. To this aim suppose that rule r4 has been
extracted from sentence F2. The 1-best parse tree
of F2 is given in Figure 1.

(r4) X→ 〈 pratique X1 X2, X2 X1 process 〉

F2 Une étude de la pratique (de l’ingénérie)X1

(informatique)X2

A study on the process (of software)X1

(development)X2 .

SENT

NP

D

Une

N

etude

PP

P

de

NP

D

la

N

pratique

PP

P

(de

D

l’

N

ingenerie)X1

AP

A

(informatique)X2

PONCT

.

Figure 1: Parse tree of Sentence F2

The rule internal featuresR(α, γ) are given in Fig-
ure 2. The source context features C(f, α) are

divided into (i) lexical and (ii) syntactic features.
Lexical features are given in Figure 3 where the
term ”factored form” denotes the surface form,
POS tag and lemma of a word. Syntactic features
are in Figure 4.

In order to create powerful representations, we
combine the features above into more complex
templates. To this aim, we distribute our features
into two categories:

1. A set of fixed features S on the source sen-
tence context and source side of the rule.

2. A set of features T which varies with the
target side of the rule, which we call label-
dependent.

The set S includes the lexical and syntactic fea-
tures in Figures 3 and 4 as well as shape features
on the source side α (2 first rows of Figure 2). The
set T contains all shape features involving the tar-
get side of the rules (5 last rows of Figure 2). Our
feature space consists of all source and target fea-
tures S and T as well as the cross product S × T .

The features resulting from the cross product
S × T capture many aspects of rule selection that
are lost when the features are considered in iso-
lation. For instance, the cross product of (i) the
lexical features (Figure 3) and source word shape
features (Figure 2, row 2) with (ii) the target word
shape features (Figure 2, row 4) create typical tem-
plates of a discriminative word lexicon. In the
same fashion, the cross product of (i) the syntactic
features (Figure 4) with (ii) the target alignment
shape feature (Figure 2, row 6) creates the tem-
plates of a reordering model using syntactic fea-
tures.

2.3 Feature Sharing
An advantage of global models over local ones is
that they allow feature sharing between rules with
different source sides. Through sharing, features
that do not depend on the source side of rules but
are nevertheless often seen across all rules can be
captured. As an illustration, assume that rules r5
and r6 have been extracted from sentence F3 be-
low. The 1-best parse of F3 is given in Figure 5.

(r5) X→ 〈 modèles X1 de bas X2, X1 X2 mod-
els 〉

(r6) X→ 〈 modèles X1 de X2, X1 X2 models 〉

F3 Un article sur les modèles (statistiques)X1 de
(bas niveau)X2 .
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Feature Template Example
Source side α pratique X1 X2 (one feature)
Words in α pratique X1 X2 (three features)
Target side γ X2 X1 process
Words in γ X2 X1 process
Aligned terminals in α and γ pratique↔process
Aligned non-terminals in α and γ X1↔X2 X2↔X1 (two features)
Best baseline translation probability Most Frequent

Figure 2: Rule shape features

Feature Template Example
first factored form left of α la, D, la
second factored form left of α de, P, de
first factored form right of α ., PONCT, .
second factored form right of α None, None, None

Figure 3: Lexical features

Feature Template Example
Does α match a constituent no match
Type of matched constituent None
Parent of matched constituent None
Lowest parent of unmatched constituent NP
Span width covered by α 5

Figure 4: Syntactic features

A paper on the models (statistical)X1 of (low-
level)X2

Although r4, r5 and r6 have completely differ-
ent source sides, they share many contextual fea-
tures such as:

(i) The POS tags of the first and second words
to the left of the segment where the rules are
applied (which are P and D)

(ii) The syntactic structure of this segment
(which is that (i) it is not a complete con-
stituent and (ii) it has a NP as its lowest par-
ent)

(iii) The rule span width (which is 5)

SENT
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N
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PP

P
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NP

D
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N

modeles
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Figure 5: Parse tree of Sentence F3

A global model would assign high weights to
features (i) to (iii) while local models fail to cap-
ture this generalization.

3 Exhaustive Model Training

Training examples for our classifier are generated
each time a hierarchical rule can be extracted from
the parallel corpus (see Section 3.1). This proce-
dure leads to a very large number of training ex-
amples. In contrast to (Cui et al., 2010), we do not
prune out negative samples and use all available
data to train our model.

3.1 Training procedure
We create training examples using the rule extrac-
tion procedure in (Chiang, 2005). We first extract
a rule-table in the standard way. Then, each time
a rule a1 : X → 〈α, γ〉 can be extracted from the
parallel corpus, we create a new training example.
γ is the correct class and receives a cost of 0. We
create incorrect classes using the rules a2, . . . , an
in the rule-table that have the same source side
as a1 but different target sides. As an example,
suppose that rule r1 introduced in Section 1 has
been extracted from sentence F1. The target side
“practicalX1 X2” is a correct class and gets a cost
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of 0. The target side of all other rules having the
same source side, such as r2 and r3, are incorrect
classes.

This process leads to a very large number of
training examples, and for each of these we gen-
erally have multiple incorrect classes. The to-
tal number of training examples for our French-
English data sets are displayed in Table 1. We do

Data Science Medical News
Sentences 139,215 111,165 1,572,099
Examples 47,952,867 25,435,958 583,165,140

cost 0 50,718,190 26,458,411 597,575,905
cost 1 493,271,397 170,064,556 8,805,099,861
avg 1 10.28 6.68 15.09

Table 1: Number of training examples (Examp.)
The last line shows the average amount of negative
samples (avg 1) for each training example.

not prune out negative instances and use all ac-
quired examples for model training. To scale to
this amount of training samples, we use the high-
speed classifier Vowpal Wabbit (VW). For model
training, we use the cost-sensitive one-against-
all-reduction (Beygelzimer et al., 2005) of VW.
Specifically, the training algorithm which we use
is the label dependent version of Cost Sensitive
One Against All which uses classification.3 Two
features of VW which are useful for our work
are feature hashing and quadratic feature expan-
sion. The quadratic expansion allows us to take
the cross-product of the simple source and target
features without having to actually write this ex-
pansion to disk, which would be prohibitive. Fea-
ture hashing (Weinberger et al., 2009) is also im-
portant for scaling the classifier to the enormous
number of features created by the cross-product
expansion.

We avoid overfitting to training data by em-
ploying early stopping once classifier accuracy de-
creases on a held-out dataset.4 Our model is inte-
grated in the hierarchical framework as an addi-
tional feature of the log-linear model.

3.2 Training without Pruning of Negative
Examples

By not pruning negative samples, we keep impor-
tant information for model training. As an illustra-
tion, consider the example presented above (Sec-

3The command line parameter to VW is “csoaa ldf mc”.
4We use the development set which is also used for tuning

with MIRA, as we will discuss later in the paper.

tion 3.1) where rule r1 is a positive instance and
r2 and r3 are negative samples. The negative in-
stances indicate that in the context of sentence F1,
the internal features of r2 and r3 are not correct.
For instance, a piece of information that could be
paraphrased into I is lost.

I In the syntactic and lexical context of F1 the
terminal pratique should neither be translated
into practice nor into process

Consider sentence F4, which has a similar con-
text to F1 in terms of the lexical and syntactic fea-
tures described in Section 2.2. To illustrate the
syntactic features common to F1 and F4, we give
the 1-best parse trees of these sentences in Figures
6 and 7.

F4 Les avantages de l’ (aspect)X1 pratique (de
la robotique)X2 .
The advantages of the (aspect)X1 practical
(of robotics)X2 .

In pruning-based approaches, if r2 and r3 ap-
pear infrequently in the training data, they are
pruned out and information I is lost. If at decoding
time candidate rules that share features with r2 and
r3 are bad candidates to translate F1 and F4 then
their application is not blocked by the discrimina-
tive model basing on I . For instance, if rules r7
and r8 have high scores in the hierarchical model
but are bad candidates in the context of sentences
F1 and F4 then a pruned model fails to block their
application. In other words, the discriminative
model does not learn that rules containing the lex-
ical items practice and process on the target lan-
guage side are bad candidates to translate F1 and
F4. As a consequence, the application of r7 and r8
to F4 generates the erroneous translations E∗1 and
E∗2 below.

(r7) X→ 〈 X1 pratique X2, X2 X1 practice 〉
(r8) X→ 〈 X1 pratique X2, X1 X2 process 〉

E∗1 The advantages of the of robotics aspects
practice

E∗2 The advantages of the aspects of robotics pro-
cess

4 Experiments on small domains

In a first set of experiments, we evaluate our ap-
proach on two low resource French-English trans-
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Figure 7: Parse tree of Sentence F4

lation tasks: (i) a set of scientific articles and (ii) a
set of biomedical texts. As these data sets cover
small domains, they allow us to investigate the
usefulness of our approach in this context. The
goal of our experiments is to verify three hypothe-
ses:

h1 Our approach beats a hierarchical baseline.
h2 Our global model outperforms its local vari-

ants.
h3 Our exhaustive training procedure beats sys-

tems trained with pruned data.

4.1 Experimental Setup
Our scientific data consists of the scientific ab-
stracts provided by Carpuat et al. (2013). The
training data contains 139,215 French and En-
glish parallel sentences. The development and
test sets both consist of 3916 parallel sentences.
For the medical domain, we use the biomedical
data from EMEA (Tiedemann, 2009). As training
data, we used 472,231 sentence pairs from EMEA.
We removed duplicate sentences and constructed
development and test data by randomly selecting
4000 sentence-pairs. After removal of duplicate
sentences, development and test data, we obtain
111,165 parallel sentences for training. For all
data sets, we trained a 5-gram language model us-
ing the SRI Language Modeling Toolkit (Stolcke,
2002). The training data for the language model
is the English side of the training corpus for each
task.

We train the model in the standard way, us-
ing GIZA++. After training, we reduce the num-
ber of translation rules using significance testing
(Johnson et al., 2007). For feature extraction, we
parse the French part of our training data using the
Berkeley parser (Petrov et al., 2006) and lemma-
tize and POS tag it using Morfette (Chrupała et
al., 2008). We train the rule-selection model us-
ing VW. All systems are tuned using batch MIRA
(Cherry and Foster, 2012). We measure the overall
translation quality using 4-gram BLEU (Papineni
et al., 2002), which is computed on tokenized and
lowercased data for all systems. Statistical signifi-
cance is computed with the pairwise bootstrap re-
sampling technique of (Koehn, 2004).

4.2 Compared Systems
We investigate systems including a discriminative
model in the three setups, given in Figure 4.2. For
each setup, we train a global model using a sin-
gle classifier. For instance, for the setup (Lex-
Glob) we train a classifier with the lexical and rule
shape features presented in Section 2.2 together
with their cross product.

Description Name
Rule shape and lexical features LexGLob
Rule shape and syntactic features SyntGlob
Rule shape, lexical and syntactic features LexSyntGlob

Figure 8: Setups of evaluated discriminative mod-
els.

In order to verify our first hypothesis (h1), we
show that our approach yields significant improve-
ments over the hierarchical model in (Chiang,
2005). The results of this experiment are given
in Table 2.

To verify our second hypothesis (h2), we show
that global rule selection models significantly im-
prove over their local variants. For this second
evaluation, we train local models with the feature
templates in Figure 4.2. Local models with rule
shape and lexical features are used in (He et al.,
2008). We further test the performance of local
rule selection models by also including syntactic
features and a combination of those with the lexi-
cal features. We report the results in Table 3 where
the local systems are denoted by LexLoc, SyntLoc
and LexSyntLoc.

For our third hypothesis (h3), we show that
pruning hurts translation quality. To this aim,
we take our best performing global model, which
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uses syntactic and rule shape features and per-
form heavy pruning of negative examples in the
data used for classifier training. To exactly re-
produce the context-based target model in (Cui
et al., 2010), we pruned as many negative exam-
ples as necessary to obtain approximately the same
amount of positive and negative examples they re-
port. We removed negative instances created from
rules with target side frequency < 5000. In the
next section, we denote this system by SyntPrun
and compare it to the hierarchical baseline as well
as to our global model in Table 4.

4.3 Results

The outcome of our experiments confirm hypothe-
ses h1 and h3 on all data sets and h2 on medical
data only.

The results of our first evaluation (Table 2) show
that on all data sets our global rule selection model
outperforms the hierarchical baseline (h1).

The results of our second evaluation (i.e. local
vs. global models in Table 3) show that h2 holds
on the medical domain only. On scientific data,
global rule selection models in all setups perform
slightly better than their local versions but the dif-
ference is not statistically significant. Note that
all rule selection models except LexLoc outper-
form the hierarchical baseline. The best perform-
ing system is a global model with syntactic fea-
tures (SyntGlob). On medical texts, global mod-
els outperform their local variants for all feature
templates. In each setup, the improvement of lo-
cal models over the global ones is statistically sig-
nificant. SyntGlob achieves the best performance
and yields significant improvements over the base-
line. The good performance of SyntGlob on scien-
tific and especially medical data can be explained
by the fact that syntactic features are less sparse
than lexical features and hence generalize better.
This is especially important within a global model
that allows feature sharing between source sides of
rules. Even a combination of lexical and syntactic
features underperforms syntactic features on their
own because of the sparse lexical features.

The results of our third evaluation are displayed
in Table 4. These show that on all data sets
our global model without pruning outperforms the
same model with pruned training data (h3). These
results also show that the pruned model fails to
outperform the hierarchical baseline. Note that
this result is consistent with the results reported

System Science Medical
Hierarchical 31.22 48.67

LexGlob 31.69 48.94
LexSyntGlob 31.89 48.97

SyntGlob 32.27 49.66

Table 2: Evaluation of global models against hi-
erarchical baseline. The results in bold are statis-
tically significant improvements over the Baseline
(at confidence p < 0.05).

System Science Medical
Hierarchical 31.22 48.67

LexLoc 31.50 48.43
LexSyntLoc 31.74 48.51

SyntLoc 31.85 48.76
LexGlob 31.69 48.94*

LexSyntGlob 31.89 48.97*
SyntGlob 32.27 49.66*

Table 3: Evaluation of global models against local.
We use * to mark global systems that yield sta-
tistically significant (at confidence p < 0.05) im-
provements over their local variants. The results
in bold are statistically significant improvements
over the hierarchical baseline.

in (Cui et al., 2010): their Context-based target
model yields very low improvements when used
in isolation.

5 Large scale Experiments

In a second set of experiments, we evaluate the
usefulness of our approach on two large scale
translation tasks: (i) a French-to-English news
translation task trained on 1,500,000 parallel sen-
tences and (ii) an English-to-Romanian news
translation task trained on 600,000 parallel sen-
tences. The training data for the first task con-
sists of the French-English part of the Europarl-
v4 corpus. Development and test sets are from
the French-to-English news translation task of
WMT 2009 (Callison-Burch et al., 2009). For the
second task, we use the English-Romanian part
of the Europarl-v8 corpus. Development and test
sets are from the English-to-Romanian news trans-
lation task of WMT 2016. The setup of these
experiments is the same as described in Section
4.1 except for the language model of the English-
to-Romanian task, which was trained using lmplz
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System Science Medical
Hierarchical 31.22 48.67

SyntGlob 32.27 49.66
SyntPrun 31.00 48.61

Table 4: Evaluation of global model against
pruned. The results in bold are statistically sig-
nificant improvements over the Baseline (at confi-
dence p < 0.05).

System Fr-En News En-Ro News
Hierarchical 20.96 24.16

LexGlob 21.01 24.23
LexSyntGlob 21.04 24.19

SyntGlob 21.14 24.52

Table 5: Evaluation of large scale tasks. No signif-
icant difference in performance between the eval-
uated models.

(Heafield et al., 2013) on the Romanian part of the
Common Crawl corpus.

Our goal is to verify if on large scale translation
tasks our global rule selection model outperforms
a hierarchical baseline (hypothesis h1 above). The
results, given in Table 5, show that on large scale
tasks, rule selection models with syntactic fea-
tures yield small improvements over the hierarchi-
cal baseline. However, none of these is statistically
significant. Hence hypothesis h1 does not hold on
large domains.

6 Related Work

(Marton and Resnik, 2008; Marton et al., 2012)
improve hierarchical machine translation by aug-
menting the translation model with fine-grained
syntactic features of the source sentence. The used
features reward rules that match syntactic con-
stituents and punish non-matching rules. (Chiang
et al., 2009) integrate these features into a transla-
tion model containing a large number of other fea-
tures such as discount or insertion features. (Chi-
ang, 2010) extends the approach in (Marton and
Resnik, 2008) by also including syntactic infor-
mation of the target sentence that is built during
decoding while (Liu et al., 2011) define a discrim-
inative model over source side constituent labels
instead of rewarding matching constituents. The
training data for their model is based on source

sentence derivations.5 In contrast to this work, we
define a rule selection model, i.e. a discriminative
model on the target side of hierarchical rules. The
training data for our model is based on the hierar-
chical rule extraction procedure: we acquire train-
ing instances by labeling candidate rules extracted
from the same sentence pairs.

Similar to our work, (He et al., 2008) define a
discriminative rule selection model including lex-
ical features, similar to the ones we presented in
Section 2.2. Their work bases on (Chan et al.,
2007) which integrate a word sense disambigua-
tion system into a hierarchical system. As opposed
to (He et al., 2008), this work focuses on hierar-
chical rules containing only terminal symbols and
having length 2. These approaches train rule se-
lection models that are local to the source side of
hierarchical rules. (He et al., 2010) generalize this
work by defining a model that is local to source
patterns instead of the source side of each rule.
We extend these approaches by defining a global
model that generalizes to all rules instead of rules
with the same source side or source pattern. We
also extend the feature set by defining models on
syntactic features.

(Cui et al., 2010) propose a joint rule selection
model over the source and target side of hierar-
chical rules. Our work is similar to their Con-
text Based Target Model (CBTM) but it integrates
much more information by not reducing the rule
selection problem to a binary classification prob-
lem and by not pruning the set of negative ex-
amples. We show empirically that the exhaustive
training of our model significantly improves over
their CBTM.

Finally, several authors train local rule selec-
tion models for different types of syntax- and
semantics- based systems. (Liu et al., 2008) train a
local discriminative rule selection model for tree-
to-string machine translation. (Zhai et al., 2013)
propose a discriminative model to disambiguate
predicate argument structures (PAS). In contrast,
our rule selection model uses syntactic features on
hierarchical rules and is a global model.

All6 of the mentioned models are trained us-
ing the maximum entropy approach (Berger et al.,
1996) which seems not to scale well as reported in

5The training instances are obtained by performing bilin-
gual parsing on the training data and extracting the obtained
rules from the derivation forest.

6All of the models except (Chan et al., 2007) which uses
an SVM, which is also not efficient.

99



(Cui et al., 2010). By using a high-speed stream-
ing classifier we are able to train a global model
doing true multi-class classification without prun-
ing of training examples.

7 Conclusion and Future Work

We have presented two contributions to previous
work on rule selection. First, we improved trans-
lation quality on low resource translation tasks
by defining a global discriminative rule selection
model trained on all available training examples.
In a second contribution, we successfully scaled
our global rule selection model to large scale trans-
lation tasks and presented the first evaluation of
discriminative rule selection on such tasks. How-
ever, we failed so far to produce significant im-
provements in BLEU over a hierarchical baseline
on large scale French-to-English and English-to-
Romanian translation tasks. To allow researchers
to replicate our results and improve on our work,
we make our implementation publicly available as
part of Moses.
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