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Abstract

All state of the art statistical machine translation systems and many example-based

machine translation systems depend on an annotation of word-level translational cor-

respondence between sets of parallel sentences. Such an annotation of two parallel

sentences is called a “word alignment”. The largest number of manually annotated

word alignments currently available to the research community for any pair of lan-

guages consists of alignments for only thousands of parallel sentences, even though

there are several orders of magnitude more parallel sentences available. For instance,

for the task of translating Chinese news articles to English,there are currently on the

order of 10 million parallel sentences. This is too many for manual alignment, so they

must be automatically word aligned.

Unsupervised word alignment systems generate poor qualityalignments, often us-

ing statistical word alignment models developed over 10 years ago, but most recent

research into improving word alignments has not led to improved translation. There

are several reasons for this:

ix



1. There is no good metric which can be used to automatically measure word align-

ment quality for the translation task.

2. Statistical word alignment models are based on assumptions about the structure

of the problem which are incorrect.

3. It is difficult to add new sources of linguistic knowledge because many current

systems must be completely reengineered for each new knowledge source.

4. Statistical models of word alignment are most often learned in an unsupervised

training process which is unable to take advantage of annotated data.

This thesis remedies these problems by making contributions in the following three

areas:

1. We have found a new method for automatically measuring alignment quality us-

ing an unbalanced F-Measure metric (Fraser & Marcu, 2007b).We have vali-

dated that this metric adequately measures alignment quality for the translation

task. We have shown that the metric can be used to derive a lossfunction for dis-

criminative training approaches, and it is useful for measuring progress during

the development of new word alignment procedures.

2. We have designed a new statistical model for word alignment called LEAF (Fraser

& Marcu, 2007a), which directly models the word alignment structure as it is

x



used for machine translation, in contrast with previous models which make un-

reasonable structural assumptions.

3. We have developed a semi-supervised training algorithm,the EMD algorithm

(Fraser & Marcu, 2006), which automatically takes advantage of whatever quan-

tity of manually annotated data can be obtained. The use of the EMD algorithm

allows for the introduction of new knowledge sources with minimal effort.

We have shown that these contributions improve state of the art statistical machine

translation systems in experiments on challenging large data sets.
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Chapter 1

Motivation

1.1 The Word Alignment Problem

Word alignment is the problem of determining translationalcorrespondence at the word

level given a pair of sentences, one of which is a translationof the other. The graph in

Figure 1.1 shows a word alignment of a pair of parallel sentences taken from the LDC

Canadian Hansards corpus, which consists of English and French documents. In this

dissertation we will consider the task of automatically annotating word alignments.

Automatically aligning word level translational correspondence in parallel sentences

so as to be able to learn translation rules of high quality is achallenging problem in

terms of both accuracy and tractability. Most of the currently successful approaches

used in conjunction with state of the art statistical machine translation systems use

1



Figure 1.1: French/English gold standard
word alignment

Figure 1.2: French/English gold standard
word alignment (solid lines) and system
hypothesis (dashed lines)

statistical models of carefully crafted generative stories which are trained using unsu-

pervised learning methods. The task of automatic word alignment is very different from

the automatic translation task. In automatic translation,we are trying to generate a rea-

sonable translation, which does not necessarily attempt tomimic all the complexities

2



of human behavior. In automatic word alignment, on the otherhand, we must annotate

an original sentence and whatever humans chose to produce asa translation.

The research community has recently become very interestedin improving the qual-

ity of automatic word alignment, as evidenced by a large number of recent papers

beginning with Al-Onaizan et al. (1999), and in particular two workshops featuring

shared word alignment tasks, WPT03 (Mihalcea & Pederson, 2003) and WPT05 (Mar-

tin et al., 2005). One reason for this is that word alignmentsare critical to building

statistical machine translation (SMT) systems. For instance, the estimation of phrase-

based SMT models (Koehn et al., 2003) such as those implemented in the Alignment

Templates system (Och & Ney, 2004) and Moses (Koehn et al., 2007) relies on word

alignments. Syntactic SMT models (Galley et al., 2004; Galley et al., 2006; Melamed,

2004; Chiang, 2005; Quirk et al., 2005; Zollmann & Venugopal,2006) also require

word alignments. Phrase-based and syntactic SMT models represent the state of the art

in SMT, and therefore improving automatic word alignment isan important endeavor.

Word alignment techniques are not only used in translation,but in fact to acquire

knowledge in virtually all trans-lingual tasks: Cross-Lingual Information Retrieval

(Hiemstra & de Jong, 1999; Xu et al., 2001; Fraser et al., 2002), Trans-lingual Coding

(sometimes referred to as annotation projection) (Yarowsky et al., 2001; Hwa et al.,

2002), Document Alignment (Resnik & Smith, 2003), Sentence Alignment (Moore,

2002), Extraction of Parallel Sentences from Comparable Corpora (Munteanu et al.,

3



2004; Fung & Cheung, 2004), etc. Many approaches to monolingual tasks also take

advantage of knowledge learned from word alignments. Some examples are summa-

rization (Dauḿe III & Marcu, 2005), query expansion for monolingual information

retrieval (Xu et al., 2002; Riezler et al., 2007), paraphrasing (Pang et al., 2003; Quirk

et al., 2004; Bannard & Callison-Burch, 2005), grammar induction (Kuhn, 2004), etc.

The focus of this dissertation is on improving translation,but it is likely the work de-

scribed here will benefit the other tasks mentioned as well. At the current time, the

word alignment models developed for annotating translational correspondence are the

same models used in approaches to exploiting corpora of parallel sentences for all of

these tasks.

Automatic word alignment is not a solved problem. Many MT systems are trained

in an alignment process based on the IBM Model 4 word alignmentmodel (Brown

et al., 1993). This process involves post-processing the output of Model 4 using heuris-

tics. When evaluated on properly annotated gold standard English/French data, which

is a relatively easy language pair for automatic word alignment systems, this approach

has only69% balanced F-measure. F-measure is a trade-off between two factors, called

Precision and Recall. Precision is the percentage of the links we hypothesized which

are actually correct, and Recall is the percentage of the correct links which we hypoth-

esized. Balanced F-Measure is the geometric mean of these twonumbers. The graph

in Figure 1.2 shows a gold standard annotation and a hypothesized annotation (marked

4



by a dashed line). Note the errors. English “do not” should bealigned to French “ne”

and “pas” but “not” is aligned to “ne” while “do” is not aligned. The words “to spend”

should be aligned to “d́epenser”, but only “spend” is aligned to “dépenser”. The word

“british” is aligned to “colombie” and “columbia” is aligned to “brittanique”. The

Precision of this hypothesized alignment, the number of correctly hypothesized links

over the total number of hypothesized links, is13/15. The Recall of the hypothesized

alignment, the number of correctly hypothesized links overthe number of correct links,

is 13/19. Balanced F-Measure (the geometric mean of Precision and Recall) is 77%,

meaning that this hypothesis is better than the average hypothesis from this system.

The desire to improve automatic word alignment systems, so that there are less errors

like these and therefore better machine translation performance is obtained, motivates

our work.

1.2 Problems with Current Practices in Word Alignment

1.2.1 Building Translation Systems with Word Alignments

Before we can show the problems with the most widely used unsupervised word align-

ment approach for statistical machine translation (SMT), we need to briefly outline how

SMT systems use word alignments.

5



SMT systems are usually broken down into two types of model, the translation

model, which is a model of translational correspondence between the source and target

languages, and the language model, which is a model of well-formed sentences in the

target language. To translate a new source sentence, we lookfor a probability maxima

of these two models, i.e. we search for a target string which is both a good mapping

of the source string into a target string and is also a well-formed target sentence. The

translation model is estimated using a word alignment of a bitext (a corpus of aligned

sentences in the source and target languages). The languagemodel is estimated from

monolingual target language text. For further details on building SMT systems using

alignments see Appendix B.1.

1.2.2 Unsupervised Alignments are Not the Best Alignments Possible

for Translation

We would like to substantiate the claim that improved alignments will lead to improved

MT systems. We show that there exist alignments of a fixed bitext which are signifi-

cantly better for translation than the alignments generated by our unsupervised baseline

system. We generate the improved alignments by using an “oracle”, a system which

tells our alignment system how to improve the alignments; itknows how to do this by

“cheating”. We measure statistical machine translation performance both when using

our baseline alignment system, and compare this with using a“weak oracle” in Figure

6



Figure 1.3: Comparison of baseline with a weak oracle showingthat it is possible to
improve MT performance by improving word alignment

1.3. We do this by using the BLEU metric (Papineni et al., 2001), which is an auto-

matic translation evaluation metric which measures translation quality. BLEU has been

shown to correlate well with human judgments of quality. Theimproved alignments

from the “weak oracle” result in a BLEU score of 26.36; this is 3.30 points better than

the baseline which is a large improvement. This shows that improving alignments can

improve machine translation performance. See Appendix B.2 for a detailed explanation

of this experiment. Even determining a good oracle for this problem is difficult. Our

“weak oracle” is not the upper bound on performance. Given infinite computational

resources we could find a “strong oracle” which would have better performance. We

graphically depict this in the figure as well but note that theBLEU score such a “strong

oracle” could obtain is unknown. We show later in the dissertation how to obtain im-

proved word alignments without using an oracle.

7



1.2.3 Existing Metrics Do Not Track Translation Quality

There have been many research papers presented at ACL, NAACL, HLT, COLING,

WPT03, WPT05, etc, outlining techniques for attempting to increase word alignment

quality. However, although there are many results where an alignment system has suc-

cessfully increased the score according to intrinsic metrics of word alignment quality,

very few of these approaches has been shown to result in a large gain in translation per-

formance. We show that this is because the two intrinsic wordalignment quality met-

rics commonly used do not measure how useful alignments are for translation. These

metrics are balanced F-Measure (Melamed, 2000) and Alignment Error Rate, or AER,

(Och & Ney, 2003). We calculate the correlation between these metrics and the BLEU

metric, and show that this correlation is low. A concise mathematical description of

correlation is the coefficient of determination (r2), which is the square of the Pearson

product-moment correlation coefficient (r). For an alignment task using a commonly

studied French/English data set,r2 = 0.16 for the Alignment Error Rate (AER) metric,

showing a low correlation with BLEU. For the same task and annotation, balanced F-

Measure1 hasr2 = 0.20, which also shows a low correlation with BLEU, see Chapter

2 for more details.

1This metric is referred to as “balanced F-Measure with Sure/Possible” later in the
dissertation, see Chapter 2.
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Chapter 2 presents a metric which has a high correlation with BLEU. This metric is

shown to allow the derivation of an effective loss function for semi-supervised training

in Chapter 4.

1.2.4 Existing Generative Models Make False Structural Assumptions

Our objective is to automatically produce alignments whichcan be used to build high

quality machine translation systems. These are presumablyclose to the alignments that

trained bilingual speakers produce. Human annotated alignments often contain M-to-N

alignments, where several source words are aligned to several target words and the re-

sulting unit can not be further decomposed. Source or targetwords in a single unit are

sometimes non-consecutive. Unfortunately, existing generative alignment models can

not model these alignments, because they make unrealistic assumptions about align-

ment structure.

Word alignments define minimal single or multi-word units intwo parallel sen-

tences which correspond to one another, which we will call “cepts” following Brown

et al. (1993). Alignments for two examples (created by shortening sentences observed

in “development” data) are shown in Figures 1.4 and 1.5. We concentrate on several

interesting minimal translational correspondences listed in Table 1.6. The first two are

taken from Figure 1.4 and the second two are taken from Figure1.5. We now discuss

the different alignment structure assumptions which have been made in previous work.
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Figure 1.4: French/English gold standard
word alignment, example 1

Figure 1.5: French/English gold standard
word alignment, example 2

English Cept French Cept 1-to-1 1-to-N M-to-1 phrase-basedM-to-N discontinuous
do not ne pas X

to spend dépenser X X X

we should il faudrait X X

take a look at examiner X X

Figure 1.6: The impact of alignment structure assumptions

The use of the 1-to-N assumption is widespread, probably because of the success

of the IBM word alignment models (Brown et al., 1993). 1-to-N alignments are align-

ments where one English word is aligned to zero or more Frenchwords, which need

not be consecutive. Consider the 1-to-N alignment column in Table 1.6. In the first

row, we see an example alignment which the IBM models are not able to model. The

English cept: “do not” is aligned to the French cept: “ne ... pas” (which is a French

negation construction), this is taken from Example 1 in Figure 1.4. This requires a
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many to many, discontinuous alignment. This can not be modeled because under the

1-to-N assumption the English cept “do not” can not be modeled as a unit. In fact, the

1-to-N assumption can not be used to model any of the multi-word phrase mappings

we have shown in Table 1.6. Of course, we can flip the directionand train such that one

French word is aligned to zero or more English words. However, upon examining the

M-to-1 column of Table 1.6, it becomes obvious that this assumption is also unsatis-

factory. Many other generative models use the 1-to-N assumption, including the HMM

model (Vogel et al., 1996) and other models based on the HMM model, for example the

work of Toutanova et al. (2002), Lopez and Resnik (2005) and Deng and Byrne (2005).

What is done in practice in systems using the 1-to-N assumption of the IBM mod-

els is that the models are trained in both directions (English to French and French to

English) and then “symmetrized” using a heuristic (Och & Ney, 2003; Koehn et al.,

2003). If we allow ourselves to consider the best possible 1-to-N and M-to-1 align-

ments in Figures 1.4 and 1.5, can see several ways we might heuristically combine a

1-to-N alignment with a M-to-1 alignment. However, for moredisparate language pairs

(or longer French/English sentences), it is increasingly difficult to do this correctly. The

use of a symmetrization heuristic also makes it problematicto calculate the probability

of a final combined alignment as it is unclear how to combine the probabilities assigned

by the two models.
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There has also been a large amount of work on generative alignment models which

model 1-to-1 word alignment structure (for instance the work of Wu (1997), Melamed

(2000), Ahrenberg et al. (2000), Cherry and Lin (2003) and Liang et al. (2006)). None

of the examples we have chosen in Table 1.6 can be modeled withthis structure. These

models have not been shown to perform for translation at the quality level of heuristic

symmetrization of the 1-to-N and M-to-1 alignments produced using the IBM models.

The claims made about the alignment quality for translationof these techniques are

not well founded because they are based only on intrinsic metrics which unfortunately

do not track how useful the generated alignments are for translation (as we discussed

already in Section 1.2.3). 1-to-1 alignments are not generally used in practice to build

machine translation systems.

Another common assumption is the phrase-based assumption,which is also used

in translation in phrase-based MT systems (Och & Ney, 2004; Koehn et al., 2003).

This assumption allows multiple word units to align to one another, but enforces the

constraint that all words must be consecutive. For example,the Joint model (Marcu

& Wong, 2002) typically aligns short segments of consecutive words to each other

obeying this assumption. These models do not model discontinuous alignments. As

shown in Table 1.6, this structure cannot be used to align the“ne ... pas” or “take a ...

hard look” cepts in Examples 1 and 2 because they have gaps. Discontinuous align-

ments are important to achieve the best possible performance in translation. The strong
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performance of the Hiero SMT model (Chiang, 2005), which usessuch discontinuous

alignments directly in the translation process, offers direct evidence to support this.

Interestingly, even phrase-based SMT systems, which are already less flexible than hi-

erarchical SMT systems in that they do not allow gaps in theirtranslation rules, fair

poorly when they are built from alignments which obey the phrase-based alignment

assumption2. That even phrase-based SMT systems benefit from discontinuous align-

ments offers further evidence that discontinuous alignments are important to translation

performance.

Since 2005 there have been a number of discriminative modelsintroduced for the

word alignment problem. Surprisingly, these models have suffered from the same struc-

tural assumptions. These models have either themselves directly required an unreason-

able structural assumption, such as the work of Ittycheriahand Roukos (2005), Taskar

et al. (2005), Liu et al. (2005), Fraser and Marcu (2006), Blunsom and Cohn (2006)

and Lacoste-Julien et al. (2006), or they have used featuresderived from a generative

model implemented with such a structural assumption in order to obtain the best per-

formance, examples include the work of Ayan and Dorr (2006b), Lacoste-Julien et al.

2For example, a phrase-based SMT system can not learn both that the English cept
“hard” translates as French “serieusement” and that the non-minimal “take a hard look
at” translates as “examiner serieusement” in Figure 1.5, unless the alignment is able
to represent the gap in the English cept “take a ... look at”, which violates the phrasal
alignment assumption.
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(2006) and Moore et al. (2006). We will discuss discriminative models in detail in

Chapter 4 and focus in particular on the structural assumptions made.

The inability of current generative models to model many-to-many discontinuous

alignments is an important deficiency. We correct this problem. Our new genera-

tive model, LEAF, is able to model alignments which consist of many-to-many non-

consecutive minimal translational correspondences directly, without the use of heuris-

tics. LEAF is presented in Chapter 3. We show how to derive features from LEAF for

use in a discriminative model in Chapter 4.

1.2.5 Many Existing Training Techniques Can Not Take Advantage

of Manually Annotated Data

Until recently, start of the art translation systems were trained using an unsupervised

training process which did not take advantage of manually annotated data. If we have

access to a small amount of annotated word alignment data, wecan shift from view-

ing alignment as an unsupervised problem to viewing alignment as a semi-supervised

problem. In the last few years, this has become an active sub-area of word alignment

research, but the advances according to various intrinsic word alignment metrics have

not been shown to result in increased machine translation performance. Many research

groups have continued to use unsupervised techniques to generate word alignments. As
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we will show in Chapter 2, this is because the loss criteria being used do not reflect the

usefulness of the generated alignments for machine translation.

In Chapter 4 we show that the alignment quality metric we will present in Chapter

2 is useful in the derivation of a loss function for use in semi-supervised training. If

we have access to a small aligned set (we use up to 1,000 annotated sentence pairs), we

can train a small number of important parameters directly, and discriminatively smooth

richer sub-models3 which would otherwise not be robustly estimated. If we have access

to even more annotated data (we recently acquired data wherewe have up to 25,000

sentences), we can learn more parameters directly, but thisis still only a fraction of

the total parameters we need to align large corpora (for instance, we currently work

on a task which involves aligning 10,000,000 parallel sentences which requires a very

large number of parameters, most of which can not be estimated from a small corpus

of 25,000 sentences).

We formulate a new model which is trained in a semi-supervised fashion in Chapter

4. This model uses rich features derived from our new generative model LEAF, but also

allows for the easy integration of new knowledge sources which would be difficult to

add to a generative story. This leads to large increases bothin alignment accuracy (up

3Sub-models are sometimes also referred to as feature functions in the literature. We
call them sub-models in our framework as a reminder that theythemselves frequently
have parameters which are estimated empirically.
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to 9 F-score points) and translation accuracy (improvements of up to 2.8 BLEU points)

over strong baselines.

1.2.6 It is Difficult to Add New Knowledge Sources to Generative

Models

Current generative models depend on complex generative stories which must be com-

pletely reengineered each time a new knowledge source is added, blocking the easy

introduction of new sources of linguistic knowledge to improve translation.

Consider again Figure 1.2. One problem with the hypothesizedalignment is that

“british” is aligned to “colombie” and “columbia” is aligned to “brittanique”. If we

were able to easily incorporate a knowledge source which used string similarity into

our alignment model we might be able to overcome this problem. We show in Chapter

4 how to integrate a state of the art transliteration model used for the transliteration

of names from Arabic to English. We also show how to incorporate a small fully

supervised model estimated from 25,000 sentences, as we discussed in the previous

section. Most of the approaches to discriminative word alignment models presented in

the last two years, for example the work of Liu et al. (2005), Ittycheriah and Roukos

(2005), Taskar et al. (2005), Ayan and Dorr (2006b), Lacoste-Julien et al. (2006),

Fraser and Marcu (2006), Blunsom and Cohn (2006) and Moore et al. (2006), have
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also addressed the problem of integrating disparate knowledge sources, which shows

its importance.

1.3 Dissertation Approaches in Brief

We have shown that improvements in word alignment quality can help MT performance

in Section 1.2.2. We present the problems we address and the approaches to solving

them in brief:

1. As we discussed in Section 1.2.3, existing metrics for word alignment quality do

not predict translation quality. To address this shortcoming, we describe a method

for automatically measuring alignment quality which is related to improvements

in resulting translation quality. Determining how to measure word alignment

quality for automatic translation is addressed in Chapter 2.

2. As shown in Sections 1.2.4, existing generative models for word alignment make

false structural assumptions. To address this problem, we improve word align-

ment modeling by designing a statistical model which directly models the full

structure of the word alignment problem. Improving word alignment modeling

with better structure is addressed in Chapter 3.
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3. As discussed in Section 1.2.5 and 1.2.6 respectively, existing training techniques

for word alignment models will not allow us to take advantageof manually anno-

tated word alignments, and do not allow for easy integrationof new knowledge

sources. To address this issue, we develop a new semi-supervised training al-

gorithm. This algorithm automatically takes advantage of whatever quantity of

manually annotated data can be obtained, allows for the robust training of pow-

erful models, and enables an easy integration of new knowledge sources. Im-

proving word alignment training using semi-supervised learning is addressed in

Chapter 4.
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Chapter 2

Intrinsic Metrics for Measuring the Quality of Word

Alignment for Translation

Automatic word alignment plays a critical role in statistical machine translation. Unfor-

tunately the relationship between alignment quality and statistical machine translation

performance has not been well understood. In the recent literature, the alignment task

has frequently been decoupled from the translation task andassumptions have been

made about measuring alignment quality for machine translation which, it turns out,

are not justified. In particular, none of the tens of papers published over the last five

years have shown that significant decreases in Alignment Error Rate, AER (Och &

Ney, 2003), result in significant increases in translation performance. We explain this

state of affairs and present a method for measuring alignment quality in a way which is

predictive of statistical machine translation performance.
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2.1 Introduction

Automatic word alignment (Brown et al., 1993) is a vital component of all statistical

machine translation (SMT) approaches. There were a number of research papers pre-

sented from 2000 to 2005 at ACL, NAACL, HLT, COLING, WPT03, WPT05, etc,

outlining techniques for attempting to increase word alignment quality. Despite this

high level of interest, none of these techniques has been shown to result in a large gain

in translation performance as measured by BLEU (Papineni et al., 2001) or any other

translation quality metric. We find this lack of correlationbetween previous word align-

ment quality metrics and BLEU counter-intuitive, because weand other researchers

have measured this correlation in the context of building SMT systems that have bene-

fited from using the BLEU metric in improving performance in open evaluations such

as the NIST evaluations.1

1Since in our experiments we use BLEU to compare the performance of systems
built using a common framework where the only difference is the word alignment, we
make no claims about the utility of BLEU for measuring translation quality in absolute
terms, nor its utility for comparing two completely different MT systems. We only
assume that BLEU tracks translation quality differences caused by the effects of dif-
ferent word alignments of a fixed bitext. This is a much less general assumption than
assuming that BLEU can be used to compare, for instance, a rule-based system and
a statistical machine translation system, or two statistical machine translation systems
which were trained on differing bitext and/or monolingual text. We argue that any sys-
tematic changes to the alignments which result in better BLEUscores on an unseen test
set (i.e. changes which are made without examination of thattest set) must be viewed
as improvements to the alignments for the automatic translation task.
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We confirm experimentally that previous metrics do not predict BLEU well and de-

velop a methodology for measuring alignment quality which is predictive of BLEU. We

also show that AER is not correctly derived from F-Measure and is therefore unlikely

to be useful as a metric.

2.2 Experimental Methodology

2.2.1 Data

To build an SMT system we require a bitext and a word alignmentof that bitext, as well

as language models built from target language data. In all ofour experiments, we will

hold the bitext and target language resources constant, andonly vary how we construct

the word alignment.

The gold standard word alignment sets we use have been manually annotated us-

ing links between words showing minimal translational correspondences. Links which

must be present in a hypothesized alignment are called “Sure” links. Some of the align-

ment sets also have links which are not “Sure” links but are “Possible” links (Och &

Ney, 2003). “Possible” links which are not “Sure”2 may be present but need not be

present.

2“Sure” links are by definition also “Possible”.
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We evaluate the translation performance of SMT systems by translating a held-out

translation test set and measuring the BLEU score of our hypothesized translations

against one or more reference translations. We also have an additional held-out transla-

tion set, the development set, which is employed by the MT system to train the weights

of its log-linear model to maximize BLEU (Och, 2003). We work with data sets for

three different language pairs, examining French to English, Arabic to English, and

Romanian to English translation tasks.

The training data for the French/English data set is taken from the LDC Canadian

Hansards data set, from which the word aligned data (presented by Och and Ney (2003))

was also taken. The English side of the bitext is 67.4 millionwords. We used a separate

Canadian Hansards data set (released by ISI) as the source of the translation test set and

development set. We evaluate two different tasks using thisdata, a medium task where

1/8 of the data (8.4 million English words) is used as the fixedbitext, and a large task

where all of the data is used as the fixed bitext. The 484 sentences in the gold standard

word alignments have 4,376 Sure Links and 19,222 Possible links. See alignment set A

in Table 2.1 for the data statistics (note that alignment sets B and C will be introduced

later).
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Table 2.1: French/English Dataset

FRENCH ENGLISH

MEDIUM TRAINING

SENTENCES 355,273
WORDS 9,487,633 8,438,050

VOCABULARY 65,239 49,121
SINGLETONS 25,622 19,253

LARGE TRAINING

SENTENCES 2,842,184
WORDS 75,794,254 67,366,819

VOCABULARY 149,568 114,907
SINGLETONS 60,651 47,765

TRANSLATION DEV
SENTENCES 833

WORDS 20,562 17,454

TRANSLATION TEST
SENTENCES 2,380

WORDS 58,990 49,182

ALIGNMENT SET A

SENTENCES 484
WORDS 8,482 7,681

SURE L INKS 4,376
POSSIBLEL INKS 19,222

ALIGNMENT SET B

SENTENCES 110
WORDS 1,888 1,726

SURE L INKS 1,037
POSSIBLEL INKS 3,989

ALIGNMENT SET C
SENTENCES 110

WORDS 1,888 1,726
SURE L INKS 2,292

The Arabic/English training corpus is the data used for the NIST 2004 machine

translation evaluation3. The English side of the bitext is 99.3 million words. The trans-

lation development set is the “NIST 2002 Dry Run”, and the testset is the “NIST 2003

evaluation set”. We have annotated gold standard alignments for 100 parallel sentences

using Sure links, following the Blinker guidelines (Melamed, 1998) which calls for

Sure links only (there were 2,154 Sure links). Here we also examine a medium task

3http://www.nist.gov/speech/tests/summaries/2004/mt04.htm
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Table 2.2: Arabic/English Dataset

ARABIC ENGLISH

MEDIUM TRAINING

SENTENCES 482,965
WORDS 11,218,869 12,424,253

VOCABULARY 185,441 77,298
SINGLETONS 81,565 34,645

LARGE TRAINING

SENTENCES 3,863,718
WORDS 89,705,083 99,326,492

VOCABULARY 426,746 191,349
SINGLETONS 143,552 77,430

TRANSLATION DEV
SENTENCES 203

WORDS 5,039 6.4KTO 7.0K

TRANSLATION TEST
SENTENCES 663

WORDS 16,491 19.0KTO 21.7K

ALIGNMENT SET

SENTENCES 100
WORDS 1,747 2,029

SURE L INKS 2,154

using 1/8 of the data (12.4 million English words) and a largetask using all of the data.

Note that we had four references available for the translation test set and translation

development set (used for training Maximum BLEU), which allowed the use of less

test sentences than for the other data sets where we used muchlarger translation devel-

opment and test sets because we only had access to one reference translation. See Table

2.2 for the data statistics.

The Romanian/English training data was used for the tasks on Romanian/English

alignment at WPT03 (Mihalcea & Pederson, 2003) and WPT05 (Martin et al., 2005).

We carefully removed two sections of news bitext to use as thetranslation development

and test sets. The English side of the training corpus is 964,000 words. The gold
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Table 2.3: Romanian/English Dataset

ROMANIAN ENGLISH

SMALL TRAINING

SENTENCES 45,241
WORDS 913,806 963,615

VOCABULARY 44,390 24,918
SINGLETONS 18,865 8,473

TRANSLATION DEV
SENTENCES 800

WORDS 15,864 16,896

TRANSLATION TEST
SENTENCES 2,400

WORDS 46,740 48,758

ALIGNMENT SET

SENTENCES 148
WORDS 2,773 2,875

SURE L INKS 3,181

standard alignment set is the first 148 annotated sentences used for the 2003 task (there

were 3,181 Sure links). For the data statistics see Table 2.3.

2.2.2 Measuring Translation Performance Changes Caused By Alignment

In phrased-based SMT (Koehn et al., 2003) the knowledge sources which vary with the

word alignment are the phrase translation lexicon (which maps source phrases to target

phrases using counts from the word alignment) and some of theword level translation

parameters (sometimes called lexical smoothing). However, many knowledge sources

do not vary with the final word alignment, such as scores assigned using IBM Model

1, N-gram language models and the length penalty. In our experiments, we use a state

of the art phrase-based system, similar to (Koehn et al., 2003). The weights of the

different knowledge sources in the log-linear model used byour system are trained
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using Maximum BLEU (Och, 2003), which we run for 25 iterationsindividually for

each system. Two language models are used, one built using the target language training

data and the other built using additional news data.

2.2.3 Generating Alignments of Varying Quality

We have observed in the past that generative models used for statistical word alignment

create alignments of increasing quality as they are exposedto more data. The intuition

behind this is simple; as more co-occurrences of source and targets words are observed,

the word alignments are better. If we wish to increase the quality of a word alignment,

we allow the alignment process access to extra data which is used only during the

alignment process and then removed. If we wish to decrease the quality of a word

alignment, we divide the bitext into pieces and align the pieces independently of one

another, finally concatenating the results together.

To generate word alignments we use GIZA++ (Och & Ney, 2003), which imple-

ments both the IBM Models (Brown et al., 1993) and the HMM word alignment model

(Vogel et al., 1996). We use Model 1, HMM, and Model 4 in that order. The output

of these models is an alignment of the bitext which projects one language to another.

GIZA++ is run end-to-end twice. In one case we project the source language to the tar-

get language (producing the “1-to-N” alignment), and in theother we project the target

language to the source language (producing the “M-to-1” alignment). The output of
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GIZA++ is then post-processed using the three “symmetrization heuristics” described

by Och and Ney (2003), “Union”, “Intersection” and “Refined”.We evaluate our ap-

proaches using these heuristics because we would like to account for alignments gener-

ated in different fashions. These three heuristics were used as the baselines in virtually

all recent work on automatic word alignment, and many of the best SMT systems use

these techniques as well.

The “Union” heuristic simply combines the links in the 1-to-N alignment with the

links in the M-to-1 alignment, and usually has a higher recall than either of the starting

alignments. The “Intersection” heuristic takes only thoselinks occurring in both align-

ments, and usually results in a higher precision than eitherof the starting alignments.

The “Refined” symmetrization heuristic starts from the intersection of the two align-

ments and adds links from the union, and usually has higher precision than the union

of the 1-to-N and M-to-1 alignments and higher recall than the intersection of these

alignments.

We describe the “Refined” symmetrization heuristic in further detail. The first step

in applying the heuristic is to take the intersection of the 1-to-N and M-to-1 alignments

and store the links into a setA. We then take the union of the 1-to-N and M-to-1

alignments and subtractA, resulting in a setA′ of the links in only one of the two

alignments. Each link inA′ is then considered for addition toA. A link (i, j) connecting

the source word at positioni with the target word at positionj is added toA if a
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“neighboring” link is already inA, and subject to an additional constraint which we

will describe. The “neighboring” links to(i, j) are the links(i, j + 1), (i, j − 1),

(i + 1, j) and (i − 1, j). The constraint is that the addition of(i, j) must not result

in A containing any link(i′, j′) such that both the source word ati′ and the target

word atj′ are involved in more than one link inA. Once no further link addition can be

performed,A is returned as the result. In practice, an implementation expands outwards

from each link in the intersection, and requires defining both the order in which the links

in the intersection are visited, and the order in which the neighbors to a visited link are

checked for addition. The usage of the “Refined” symmetrization heuristic results in a

symmetrized alignment consisting of minimal translational correspondences which are

either 1-to-N or M-to-1 and consist of consecutive words only.

In this work, when applying the “Union” symmetrization heuristic we take the tran-

sitive closure of the bipartite graph created, which results in fully connected compo-

nents indicating minimal translational correspondence4. All of the alignments in Figure

2.1 are equivalent from a translational correspondence perspective and the first two will

be mapped to the third in order to ensure consistency betweenthe number of links an

alignment has and the translational equivalences licensedby that alignment.

4We have no need to do this for the “Refined” and “Intersection” heuristics, because
they only produce alignments in which the components are already fully connected.
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Figure 2.1: All of these alignments are equivalent from a translational correspondence
perspective

2.3 Word Alignment Quality Metrics

2.3.1 Alignment Error Rate is Not a Useful Measure

We begin our study of metrics for word alignment quality by testing Alignment Error

Rate (AER) (Och & Ney, 2003). AER requires a gold standard manually annotated

set of Sure links and Possible links (referred to asS andP ). Given a hypothesized

alignment consisting of the link setA, three measures are defined:

Precision(A,P ) =
|P ∩ A|

|A|
if (/A/ > 0), 1 otherwise (2.1)

Recall(A, S) =
|S ∩ A|

|S|
if (/S/ > 0), 1 otherwise (2.2)

29



AER(A,P, S) = 1 −
|P ∩ A| + |S ∩ A|

|S| + |A|
if ((/S/+ /A/) > 0), 0 otherwise

(2.3)

Och and Ney’s definition of Precision measures the percentage of links in our hy-

pothesized set which are Possible (note that Precision decreases from 1 only as links

which are not even Possible are hypothesized, and note that all Sure links are by defini-

tion Possible). Recall measures the percentage of the links in the Sure set which have

been hypothesized (note that Possible links may either be hypothesized or not hypoth-

esized, this does not affect Recall). In order for a hypothesis to be 100% correct (i.e.

have Precision=1 and Recall=1), all of the links in the Sure set must be hypothesized,

and any additional links hypothesized must be in the Possible set.

In our graphs, we will present1 − AER so that we have an accuracy measure.

We created alignments of varying quality for the medium French/English training

set. We broke the parallel text into separate pieces corresponding to 1/16, 1/8, 1/4 and

1/2 of the original parallel text to generate degraded alignments, and we used 2, 4, and

8 times the original parallel text to generate enhanced alignments. In all cases we use

only the alignment of the original parallel text to build a MTsystem for measuring

BLEU. For the “fractional” alignments we report the average AER of the pieces5.

5For example, for 1/16, we perform 16 pairs of alignments (a pair of alignments
is a 1-to-N alignment and a M-to-1 alignment), each of which includes the full gold
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The graph in Figure 2.2 shows the correlation of1 − AER with BLEU. High cor-

relation would look like a line from the bottom left corner tothe top right corner. As

can be seen by looking at the graph, there is low correlation between1 − AER and

the BLEU score. A concise mathematical description of correlation is the coefficient

of determination (r2), which is the square of the Pearson product-moment correlation

coefficient (r). Here,r2 = 0.16, which is low.

The correlation is low because of a significant shortcoming in the mathematical

formulation of AER which to our knowledge has not been previously reported. Och

and Ney (2003) state that AER is derived from F-Measure. But AER does not share

a very important property of F-Measure, which is that unbalanced precision and recall

are penalized, whereS ⊂ P (i.e. when we make the Sure versus Possible distinction,

meaning thatS is a proper subset ofP )6. We will show this using an example.

We first define the measure “F-Measure with Sure and Possible”using Och and

Ney’s Precision and Recall formulas together with the standard F-Measure formula

(Rijsbergen, 1979). In the F-Measure formula (2.4) there is aparameterα which sets

the trade-off between Precision and Recall. When an equal trade-off is desired,α is set

to 0.5.

standard text. We perform another 16 pairs of alignments without the gold standard
text. We then apply the symmetrization heuristics to each these pairs. We use the
symmetrized alignments including the text from the gold standard set to measure AER
and take the average. We concatenate the symmetrized alignments not including the
gold standard text to build SMT systems for measuring BLEU.

6Note that ifS = P then 1-AER reduces to balanced F-Measure

31



F-measure with Sure and Possible(A,P, S, α) =
1

α

Precision(A,P )
+ (1−α)

Recall(A,S)

(2.4)

We compare two hypothesized alignments where|A|, the number of hypothesized

alignment links, is the same; for instance,|A| = 100. Let |S| = 100. In the first case,

let |P ∩ A| = 50 and|S ∩ A| = 50. Precision is0.50 and Recall is0.50. In the second

case, let|P ∩ A| = 75 and|S ∩ A| = 25. Precision is0.75 and Recall is0.25.

The basic property of F-Measure, if we setα equal to0.5, is that unbalanced preci-

sion and recall should be penalized. The first hypothesized alignment has an F-Measure

with Sure and Possible score of0.50, while the second has a worse score,0.375.

However, if we substitute the relevant values into the formula for AER (Equation

2.3), we see that1−AER for both of the hypothesized alignments is0.5. Therefore AER

does not share the property of F-Measure (withα = 0.5) that unbalanced precision and

recall are always penalized. Because of this, it is possible to maximize AER by favoring

precision over recall, which can be done by simply guessing very few alignment links.

Unfortunately, whenS ⊂ P , this leads to strong biases, which makes AER not useful

as a metric.
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Goutte et al. (2004) previously observed that AER could be unfairly optimized by

using a bias towards precision which was unlikely to improvethe usefulness of the

alignments. Possible problems with AER were discussed at WPT2003 and WPT 2005.

Examining the graph in Figure 2.3, we see that F-Measure withSure and Possible

has some predictive power for the data points generated using a single heuristic, but the

overall correlation is still low,r2 = 0.20. We need a measure which predicts BLEU

without having a dependency on the way the alignments are generated.

2.3.2 Balanced F-Measure is Better, but Still Inadequate

We wondered whether the low correlation was caused by the Sure and Possible distinc-

tion. We re-annotated the first 110 sentences of the French test set using the Blinker

guidelines (Melamed, 1998), there were 2,292 Sure links. This is alignment set C in

Table 2.1. We define F-Measure without the Sure versus Possible distinction (i.e., all

links are Sure) in Equation 2.5, and setα = 0.5. This measure has been extensively

used with other word alignment test sets. Figure 2.4 shows the results. Correlation is

higher,r2 = 0.67.

F-measure(A, S, α) =
1

α

Precision(A,S)
+ (1−α)

Recall(A,S)

(2.5)
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2.3.3 Varying the Trade-off Between Precision and Recall Works

Well

We then hypothesized that the trade-off between precision and recall is important. This

is controlled in both formulas by the constantα. We searchedα = 0.1, 0.2, ..., 0.9 for

the bestr2 value. The best results were:α = 0.1 for the original annotation annotated

with Sure and Possible (see Figure 2.5), andα = 0.4 for the first 110 sentences as

annotated by us (see Figure 2.6)7. The relevantr2 scores were0.80 and0.85 respec-

tively. With a goodα setting, we are able to predict the machine translation results

reasonably well. For the original annotation, recall is very highly weighted, while for

our annotation, recall is still more important than precision8. Our results also suggest

that better correlation will be achieved when using Sure-only annotation than with Sure

and Possible annotation.

We then tried the medium Arabic training set. Results are shown in figure 2.8, the

best setting ofα = 0.1, andr2 = 0.93. F-Measure is effective in predicting machine

translation performance for this set.

We also tried the larger tasks, where we can only decrease alignment quality as we

have no additional data. For the large French/English corpus the best results are with

7We also checked the first 110 sentences using the original annotation to ensure
that the differences observed were not an effect of restricting our annotation to these
sentences, see alignment set B in Table 2.1

8α less than0.5 weights recall higher, whileα greater than0.5 weights precision
higher, see the F-Measure formulas.
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α = 0.2 for the original annotation of 484 sentences andα = 0.4 for the new annotation

of 110 sentences with only Sure links (see Figure 2.7). Relevant r2 scores were0.62

and0.64 respectively. Disappointingly, our measures are not able to fully explain MT

performance for the large French/English task.

For the large Arabic/English corpus, the results were better, the best correlation

was atα = 0.1, for whichr2 = 0.90 (see Figure 2.9). We can predict MT performance

for this set. It is worth noting that the Arabic/English translation task and data set

has been tested in conjunction with our translation system over a long period, but the

French/English translation task and data has not. As a result, there may be hidden

factors that affect the performance of our MT system which only appear in conjunction

with the large French/English task.

One well-studied task on a smaller data set is the Romanian/English shared word

alignment task from the Workshop on Parallel Text at ACL 2005 (Martin et al., 2005).

We only decreased alignment quality and used 5 data points for each symmetrization

heuristic due to the small bitext. The best setting ofαwasα = 0.2, for whichr2 = 0.94

(see Figure 2.10), showing that F-Measure is again effective in predicting BLEU.

2.4 Previous Work

Most previous work on measuring alignment quality has focused on comparison of a

hypothesis with a gold standard word alignment using some type of distance metric,
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Figure 2.2: French1−AER versus BLEU,
r2 = 0.16

Figure 2.3: French F-Measure with Sure
and Possibleα = 0.5 versus BLEU,r2 =
0.20

Figure 2.4: French F-Measureα = 0.5
versus BLEU,r2 = 0.67

Figure 2.5: French F-Measure with Sure
and Possibleα = 0.1 versus BLEU,r2 =
0.80

Figure 2.6: French F-Measureα = 0.4
versus BLEU,r2 = 0.85

Figure 2.7: Large French F-Measureα =
0.4 (110 sentences) versus BLEU,r2 =
0.64
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Figure 2.8: Arabic F-Measureα = 0.1
versus BLEU,r2 = 0.93

Figure 2.9: Large Arabic F-Measureα =
0.1 (100 sentences) versus BLEU,r2 =
0.90

Figure 2.10: Small Romanian F-Measure
α = 0.2 (148 sentences) versus BLEU,
r2 = 0.94

much as our work does. The differences between these studieshave focused primarily

on the weighting of the links in a single minimal translational correspondence, exam-

ining how each of the word level links should be weighted (e.g., should the link in

a 1-to-1 correspondence be considered to have equal weight with one of the links in

a 1-to-2 correspondence, or should it have the same weight asboth combined? How

should the links in a 2-to-2 correspondence, which involvesfour links at the word level,

be weighted?). Based on our investigations this does not appear to be as important
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as the trade-off between the loss involved in predicting incorrect links versus the loss

involved in not predicting correct links which is tuned using α in the F-Measure for-

mula. Melamed (2000) has a formula for weighting the links inlarge minimal units

of translation to avoid giving these units too much weight. The basic idea of this met-

ric is that the sum of all links to a word should have a constantweight. Och and Ney

(2003) claim that using the Sure and Possible links defined for F-measure with Sure and

Possible helps determine how to correctly weight non-compositional links, but our ex-

periments cast doubt on whether this is necessary because wehave shown evidence that

F-Measure with Sure and Possible is not more effective than simple F-Measure. Other

approaches to dealing with non-compositional links have been tried. Davis (2002) has

a metric similar to Melamed’s which implements the same weighting idea of words

having constant weight, but in a simpler fashion. Ahrenberget al. (2000) develop sim-

ple link precision/recall as the basis for a metric to evaluate the alignment of multiple

English words to the large compound words which are common inGermanic languages

such as Swedish and German. None of these metrics have been shown to be useful ex-

trinsically, for measuring machine translation performance or measuring performance

for any other task. These metrics do have one advantage over F-Measure, which is that

they do not require tuning theα parameter for each new task. However, our results

show that the best trade-off between Precision and Recall varies by alignment task,
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so varying this trade-off will likely be required in any successful approach involving

comparison of hypothesized word links with a gold standard.

There are also approaches to measuring word alignment quality which do not in-

volve using a gold standard word alignment of a small sample of parallel sentences, but

instead building a translation lexicon from the whole alignment. Wu and Xia (1995)

sample the translation lexicon and uses both manual and automatic filters to measure

precision. Melamed (2000) takes a sample from the translation lexicon and measures

probability weighted precision manually, and then he uses this to estimate probability

weighted recall. Koehn and Knight (2002) evaluate a translation lexicon by count-

ing how many of the entries are found in a dictionary, which wefind interesting as it

is automatic, but it is limited as dictionary entries will likely only exist for matches

between the frequent senses of content words (without accompanying function words).

The commonality of these approaches lies in using an abstract implicit context, whether

that used for the translation dictionary or that used in a manual evaluation, where the

evaluators directly judge translational correspondence without observing the context in

which the presumed correspondence occurs. Our approach is superior, at least for the

task of data driven machine translation, in that it evaluates alignment accuracy in the

observed context of parallel sentences where many of the minimal translational corre-

spondences are only contextually motivated and would not apply to all contexts. We

expect our translation system to learn not only idealized translations applicable in any
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context, which are what is found in a translation dictionary, but also translations which

are contextually motivated and may apply only in certain contexts. If we do not learn

the latter type of translations we are failing to take full advantage of our (limited) train-

ing data.

Appearing somewhat later than our study, two recent papers have looked at the re-

lationship between alignment accuracy and translation performance. Lopez and Resnik

(2006) looked at the impact of alignments on phrase-based MTfor a Chinese/English

task using 30M words of English and 27M words of Chinese. We found this study inter-

esting in that it showed evidence that phrase-based MT systems become less sensitive

to alignment quality as training size increases, which we also found in our study. This

appears to be due to a saturation of the parameters in basic phrase-based MT models

which do not model context as richly as newer approaches suchas hierarchical models

and supervised syntactic models. Ayan and Dorr (2006a) looked at the same trade-off

between Precision and Recall that we examined. They study small alignment tasks for

Chinese/English (4.1 M English words) and Arabic/English (1.4 M English words).

This work only considered a single lower recall alignment and a single lower precision

alignment along with three other alignments. One of the contributions is the defini-

tion of an error metric called CPER, which equally weights Precision and Recall over

phrases extracted from the hypothesized alignment with respect to phrases extracted

from the gold alignment, but unfortunately they were unableto show that this metric is
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an effective predictor of MT performance. Both of these studies are limited to gener-

alizations about phrase-based MT models for small to mediumsized tasks. As we will

show in Chapter 4, our metric can be used to derive a loss function to produce not only

improved alignments for phrase-based MT but also improved alignments for hierarchi-

cal and supervised syntactic MT models, which use richer context and more structure

than phrase-based MT and are therefore more likely to be affected by alignment quality

at large training data sizes. Additionally, we have shown that there is not a single best

trade-off between Precision and Recall for all alignment tasks, but instead there is a

significant difference in the best trade-off depending on the task. For instance, our re-

search shows that the best results for large Chinese/Englishtasks tend to favor balanced

Precision and Recall, a finding which is not inconsistent withthe observation of Ayan

and Dorr (2006a) on small Chinese/English data tasks. However, obtaining the best re-

sults for large Arabic/English tasks requires strongly favoring Recall, which is opposite

the conclusion for small Arabic/English tasks reached by Ayan and Dorr (2006a).

Our work invalidates some of the conclusions of recent alignment work which pre-

sented only evaluations based on metrics like AER or balanced F-Measure, and explains

the lack of correlation in the few works which presented bothsuch a metric and final

MT results. A good example of the former are our own results (Fraser & Marcu, 2005).

The work presented there had the highest balanced F-Measurescores for the Roma-

nian/English WPT05 shared task, but based on the findings hereit is possible that a
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different alignment algorithm tuned for the correct criterion would have had better MT

performance. Other work includes many papers working on alignment models where

words are allowed to participate in a maximum of one link. These models generally

have higher precision and lower recall than IBM Model 4 symmetrized using the “Re-

fined” or “Union” heuristics. But we showed that AER is broken in a way that favors

precision in Section 2.3.1. It is therefore likely that the results reported in these papers

are affected by the AER bias and that the corresponding improvements in AER score

do not correlate with increases in phrasal SMT performance.We will show further ev-

idence that F-Measure with a tuned trade-off between Precision and Recall is effective

by using this metric to derive a loss criterion in discriminative modeling in Chapter 4.

While we have addressed measuring alignment quality for phrasal SMT, similar

work is now required to see how to measure alignment quality for other tasks. For

an evaluation campaign the organizers should pick a specifictask, such as improving

phrasal SMT, and calculate an appropriateα to be used. Individual researchers working

on the same phrasal SMT tasks as those reported on here (or very similar tasks) could

use the values ofα we calculated.
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2.5 Summary

We have presented an empirical study of the use of simple evaluation metrics based on

gold standard alignment of a small number of sentences to predict machine translation

performance. Based on our experiments we can now draw the following conclusions:

1. We measured the correlation between our unbalanced F-Measure metric and

BLEU. Good correlation was obtained for the medium French andArabic data

sets, the large Arabic data set and the small Romanian data set. We have ex-

plained most of the effect of alignment quality on these sets, and if we are given

the F-measure of a hypothesized word alignment for the bitext we can make a

reasonable prediction as to what the resulting BLEU score will be.

2. We recommend using the Blinker guidelines as a starting point for new alignment

annotation efforts, and that Sure-only annotation be used.If a larger gold standard

is available and was already annotated using the Sure versusPossible distinction,

this is likely to have only slightly worse results.

3. When we make the distinction between Sure and Possible links, AER does not

share the important property of F-Measure that unequal precision and recall are

penalized, making it easy to obtain good AER scores by simplyguessing less

alignment links. As a result AER is a misleading metric whichshould no longer

be used.
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We suggest comparing alignment algorithms by measuring performance in an iden-

tified final task such as machine translation. F-Measure withan appropriate setting

of α will be useful during the development process of new alignment models, or as a

maximization criterion for discriminative training of alignment models. We will return

to the topic of discriminative training in Chapter 4, where wewill use our new metric

to derive a loss function in conjunction with a semi-supervised training algorithm, and

show that this improves translation quality.

2.6 Research Contribution

We found an automatic intrinsic metric which measures word alignment quality for the

translation task in a better fashion than the currently usedmetrics.

In addition, this metric will be shown to be useful to derive aloss function for

semi-supervised training in Chapter 4.
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Chapter 3

Improving Structural Assumptions with a New

Many-to-Many Discontinuous Generative Alignment

Model

Previous generative word alignment models have made unreasonable assumptions about

the desired word alignment structure, which do not match thealignment structure used

to build statistical machine translation systems. Previous discriminative models have

either made such an assumption directly or used features derived from a generative

model making one of these assumptions.

Two incorrect word alignment structures are particularly common. The first is the

1-to-N assumption, meaning that each source word generateszero or more target words,

which requires heuristic techniques in order to obtain alignments suitable for training

a SMT system. The second is the consecutive word-based “phrasal SMT” assumption.
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This does not allow gaps in minimal translation correspondences. We discussed the

problems with these word alignment structure assumptions in Section 1.2.4, and we will

discuss these issues further in Section 3.6, which outlinesprevious work on generative

models of word alignment.

Our objective is to automatically produce alignments whichcan be used to build

high quality machine translation systems. These are presumably close to the alignments

that trained bilingual speakers produce. Human annotated alignments often contain M-

to-N alignments, where several source words are aligned to several target words and the

resulting unit can not be further decomposed. Source or target words in a single unit

are sometimes non-consecutive.

We describe a new generative model, LEAF, which directly models M-to-N non-

consecutive word alignments.

3.1 Introduction

For ease of exposition, the source language for the translation task is referred to as

“French”, and the target language is referred to as “English”, although these can be any

language pairs in practice. The translation problem is defined as given a French string

f , find the English strinĝe, and is presented in Equation 3.1.
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ê = argmax
e

Pr(e|f) = argmax
e

Pr(e) ∗ Pr(f |e) (3.1)

The variablee represents any potential English string made up of English words.

Pr(e) represents the true distribution over English strings.Pr(f |e) represents the true

distribution over French strings generated from English strings.

ConsiderPθ(f |e) to be a model ofPr(f |e). If we introduce a hidden variablea

representing word alignments, we can sum over all possible alignments, as in Equation

3.2.

Pθ(f |e) =
∑

a

Pθ(f, a|e) (3.2)

For our task, which is word alignment annotation, we have fixed stringsf ande,

and we wish to select the best alignment according to the model, â, which we do in

Equation 3.3. This alignment is called the Viterbi alignment.

â = argmax
a

Pθ(a|e, f) = argmax
a

Pθ(f, a|e) (3.3)

We will subsequently drop theθ subscript when calculating probabilities according

to the model. Note that generative word alignment models often model the probability

of stochastically generating the French string from the English string. This is the reverse

direction of the translation task, and is motivated by the noisy channel formulation
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which is the right-most term in Equation 3.1. For this reasonwe will refer to English as

the “source” language and French as the “target” language subsequently in this chapter,

as is standardly done in the word alignment literature.

3.2 LEAF: A Generative Word Alignment Model

3.2.1 Generative Story

We introduce a new generative story which enables the learning of non-consecutive M-

to-N alignment structure. We use the same notation as the generative story for Model

4 (Brown et al., 1993), which we are extending, where this is possible. The reader may

find it useful to consult Appendix A for a discussion of Model 4.

The LEAF generative story describes the stochastic generation of a target stringf

(sometimes referred to as the French string, or foreign string) from a source stringe

(sometimes referred to as the English string), consisting of l words. The variablem is

the length off . We generally use the indexi to refer to source words (ei is the English

word at positioni), andj to refer to target words.

Our generative story makes the distinction between different types of source words.

There are head words, non-head words, and deleted words. Similarly, for target words,

there are head words, non-head words, and spurious words. A head word is associated

with zero or more non-head words; each non-head word is associated with exactly one
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head word. The purpose of head words is to try to provide a robust representation of the

semantic features necessary to determine translational correspondence. This is similar

to the use of syntactic head words in statistical parsers to provide a robust representation

of the syntactic features of a parse sub-tree. However, an important difference is that

in current training approaches the head words are not determined using supervision

(annotated training data) or hand-written rules, but instead estimated in an unsupervised

fashion.

A minimal translational correspondence consists of a linkage between a source head

word and a target head word (and by implication, the non-headwords which they

are associated with). Each head word is involved in exactly one such link. Deleted

source words are not involved in a minimal translational correspondence, as they were

“deleted” by the translation process. Spurious target words are also not involved in a

minimal translational correspondence, as they spontaneously appeared during the gen-

eration of other target words.

Figure 3.1 shows a simple example of the stochastic generation of a French sentence

from an English sentence, annotated with the step number in the generative story, which

we present next.

In specifying the generative story we will introduce some new notation. We use the

three word classes classe, classf , and classh to reduce the dimensionality of the English

vocabulary, the French vocabulary and the French head word vocabulary respectively.
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To define the distortion model we use two notational tools:ρi is the previous English

head word to the English head word ati; andcz is the “center” of the French cept, the

average of the positions of the words in the cept, whose head word is linked with the

English head word at positionz.
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1. Choose the source word type.

for eachi = 1, 2, ..., l choose a word typeχi = −1 (non-head word),χi = 0

(deleted word) orχi = 1 (head word) according to the distributiong(χi|ei)

let χ0 = 1

2. Choose for each non-head word the identity of the head word it is associated with

for eachi = 1, 2, ..., l if χi = −1 choose the position of the associated head word

µi for the non-head wordei according to the distributionw−1(µi − i|classe(ei))

for eachi = 1, 2, ..., l if χi = 1 let µi = i

for eachi = 1, 2, ..., l if χi = 0 let µi = 0

* for eachi = 1, 2, ..., l if χµi
6= 1 return “failure”

3. Choose the identity of the generated target head word for each source head word

for eachi = 1, 2, ..., l if χi = 1 chooseτi1 according to the distributiont1(τi1|ei)

4. Choose the number of words in each target cept. This is conditioned on the

identity of the source head word from which the target head word was generated

and the source cept size (γi is 1 if the cept size is 1, and 2 if the cept size is greater

than 1)

for eachi = 1, 2, ..., l if χi = 1 choose a target cept sizeψi according to the

distributions(ψi|ei, γi)
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for eachi = 1, 2, ..., l if χi < 1 let ψi = 0

5. Choose the number of spurious words.

chooseψ0 according to the distributions0(ψ0|
∑

i ψi)

letm = ψ0 +
∑l

i=1 ψi

6. Choose the identity of the spurious words.

for eachk = 1, 2, ..., ψ0 chooseτ0k according to the distributiont0(τ0k)

7. Choose the identity of the target non-head words associated with each target head

word.

for eachi = 1, 2, ..., l and for eachk = 2, 3, ..., ψi chooseτik according to the

distributiont>1(τik|ei, classh(τi1))

8. Choose the position of the target head and non-head words.

for eachi = 1, 2, ..., l and for eachk = 1, 2, ..., ψi choose a positionπik as

follows:

• if k = 1 chooseπi1 according to the distributiond1(πi1−cρi
|classe(eρi

), classf (τi1))

• if k = 2 chooseπi2 according to the distributiond2(πi2 − πi1|classf (τi1))

• if k > 2 chooseπik according to the distributiond>2(πik−πik−1|classf (τi1))

* if any position was chosen twice, return “failure”
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9. Choose the position of the spuriously generated words.

for eachk = 1, 2, ..., ψ0 choose a positionπ0k fromψ0 − k + 1 remaining vacant

positions in1, 2, ...,m according to the uniform distribution

let f be the stringfπik = τik

We note that the steps which return “failure” (the two steps marked with a “*” in

the generative story) are required because the model is deficient. Deficiency means that

a portion of the probability mass in the model is allocated towards generative stories

which would result in infeasible alignment structures. Ourmodel has deficiency in the

non-spurious target word placement, just as Model 4 does. Ithas additional deficiency

in the source word linking decisions. Och and Ney (2003) presented results suggesting

that the additional parameters required to ensure that a model is not deficient result in

inferior performance, but we plan to study whether this is the case for our generative

model in future work.

3.2.2 Mathematical Formulation

Givene, f and a candidate alignmenta, which represents both the links between source

and target head words and the head word connections of the non-head words, we would

like to calculateP (f, a|e). The formula for this is:
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P (f, a|e) =[
l

∏

i=1

g(χi|ei)]

[
l

∏

i=1

δ(χi,−1)w−1(µi − i|classe(ei))]

[
l

∏

i=1

δ(χi, 1)t1(τi1|ei)]

[
l

∏

i=1

δ(χi, 1)s(ψi|ei, γi)]

[s0(ψ0|
l

∑

i=1

ψi)]

[

ψ0
∏

k=1

t0(τ0k)]

[
l

∏

i=1

ψi
∏

k=2

t>1(τik|ei, classh(τi1))]

[
l

∏

i=1

ψi
∏

k=1

Dik(πik)]

where:

δ(i, i′) is the Kronecker delta function which is equal to 1 ifi = i′ and 0 otherwise.

ρi is the position of the closest English head word to the left ofthe word ati or 0 if

there is no such word.
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classe(ei) is the word class of the English word at positioni, classf (fj) is the word

class of the French word at positionj, classh(fj) is the word class of the French head

word at positionj.

p0 andp1 are parameters describing the probability of not generating and of gener-

ating a single target spurious word from each non-spurious target word,p0 + p1 = 1.

m′ =
l

∑

i=1

ψi (3.4)

s0(ψ0|m
′) =

(

m′

ψ0

)

pm
′−ψ0

0 pψ0

1 (3.5)

Dik(j) =















































































d1(j − cρi
|classe(eρi

), classf (τik))

if k = 1

d2(j − πi1|classf (τik))

if k = 2

d>2(j − πik−1|classf (τik))

if k > 2

(3.6)

γi = min(2,
l

∑

i′=1

δ(µi′ , i)) (3.7)
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ci =















ceiling(
∑ψi

k=1 πik/ψi) if ψi 6= 0

0 if ψi = 0

(3.8)

3.2.3 Other Alignment Structures are Special Cases

The alignment structure used in many other approaches can bemodeled using special

cases of this framework. We can express the 1-to-N structureof models like Model 4 by

disallowingχi = −1. For 1-to-1 structure we both disallowχi = −1 and deterministi-

cally setψi = χi. We can also specialize our generative story to the consecutive word

M-to-N alignments used in “phrase-based” models, though inthis case the condition-

ing of the generation decisions would be quite different. This involves adding checks

on source and target connection geometry to the generative story. These checks would

check whether the phrase-based constraint is violated. If it is violated, “failure” would

be returned. Naturally this would be at the cost of additional deficiency.

3.2.4 Symmetricity

The LEAF generative story is symmetric, and so the same alignment structure can be

used to evaluate the model in the French to English, or in the English to French direc-

tion. In practice, we will estimate the model in both directions, and in unsupervised

training we will maximize likelihood in both directions. When determining the Viterbi
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alignment, we sum the log costs of the model in both directions. We discuss unsuper-

vised training in the next section.

3.3 Unsupervised Training

3.3.1 Training LEAF Using Expectation-Maximization

3.3.1.1 Introduction

In this section we present the training of LEAF using the Expectation-Maximization

algorithm. Expectation-Maximization (Dempster et al., 1977), or EM, is an algorithm

for finding parameter settings of a model which maximize the expected likelihood of

the observed and the unobserved data (this is called the complete data likelihood; the

incomplete data likelihood is the likelihood of only the observed data). Intuitively, in

statistical word alignment, the E-step corresponds to calculating the probability of all

alignments according to the current model estimate, while the M-step is the creation

of a new model estimate given a probability distribution over alignments (which was

calculated in the E-step).

3.3.1.2 E-step

In the E-step we would ideally like to enumerate all possiblealignments and label them

with P (f, a|e). However, this is not possible when using a word alignment model as
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complex as LEAF. As we will see below in the discussion of the M-step, we would at

least like to find the most likely alignment of a paire andf given the model. This is

the Viterbi alignment,̂a in this formula:

â = argmax
a

Pθ(a|e, f) = argmax
a

Pθ(f, a|e) (3.9)

This is a repeat of equation 3.3 which represents the task of finding an approximate

Viterbi alignment to output as the final alignment output from the alignment process.

Here, in Equation 3.9 we are referring to the search for an alignment during training.

We can vary this to be, for instance, the search for the 10 mostprobable alignments

(where a posterior distribution over the 10 alignments would be used for updating the

model in the M-step).

Unfortunately, there is no known polynomial time algorithmfor finding the Viterbi

alignment of LEAF, or even for determining that a particularalignment is the Viterbi

alignment. We assume that this is intractable. A similar problem (the calculation of

the Viterbi alignment for IBM Model 4) was proven to be NP-hardby Udupa and Maji

(2006). So we take the most probable alignment we can find, andassume it is the

Viterbi alignment. The algorithms used to solve this searchproblem are discussed in

Section 3.4.
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3.3.1.3 M-step

For the M-step, we would like to take a sum over all possible alignments for each

sentence pair, weighted byP (a|e, f) which we calculated in the E-step (note that the

alignments labeled with probabilities in the E-step must berenormalized to sum to 1

for eache, f pair, as they are estimates ofP (f, a|e), and we would like estimates of

P (a|e, f)). As we mentioned, this is not tractable.

We make the assumption that the Viterbi alignment can be usedto update our esti-

mate in the M-step (which we callpM(a|e, f), the probability of the alignment given

the sentencee and the sentencef ):

pM(a|e, f) =















1 if a = â

0 if a 6= â

(3.10)

Note that we are abusing the term “Viterbi alignment” to meanthe best alignment

according to the model that we can find, not the best alignmentaccording to the model

that exists.

Although in our experiments we use Viterbi training, neighborhood estimation (Al-

Onaizan et al., 1999; Och & Ney, 2003) , “pegging” (Brown et al., 1993) or some

other means of creating a set of candidate alignments (whoseprobabilities are then

normalized to sum to one) could be used instead in the M-step.
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cg(χi|ei) source word type
cµ(△i|classe(ei)) head word links (collected ifχi = −1)
ct1(fj|ei) head word translation
cs(ψi|ei, γi) number of words in target cept
cs0(ψ0|

∑

i ψi) number of unaligned target words
ct0(fj) identity of unaligned target words
ct>1

(fj|ei, classh(τi1)) non-head word translation
cd1(△j|classe(eρ), classf (fj)) movement of target head words
cd2(△j|classf (fj)) movement of left-most target non-head

word
cd>2

(△j|classf (fj)) movement of subsequent target non-head
words

(same counts, other direction)...

Table 3.1: Counts used in unsupervised training of LEAF

We estimate new parameters from the Viterbi alignments found during the E-step

by simply counting events in the Viterbi alignments, since they are assumed in equation

3.10 to be the only alignments of non-zero probability. We are interested in the counts

in Table 3.1 which we simply count ina. After collecting the counts, for each condi-

tion, we normalize these counts so that the conditional probabilities sum to one, which

provides us with the model estimate which is the result of theM-step.

The Viterbi training approximation is related to EM training, which tries to maxi-

mize the complete data log likelihood. Neal and Hinton (1998) analyze approximate

EM training and motivate this general variant. In future work we would like to try us-

ing a probability estimate over a larger set of hypothesizedalignments to reestimate the

61



model, but finding a set to use which helps performance of the estimated models is an

open research problem.

3.3.2 Bootstrapping

The term “bootstrapping” refers to how we initialize the model. In order to perform

unsupervised training of our new model we require an initialprobability distribution

over alignments. In practice, instantiations of the EM algorithm (including approximate

variants) start with a pseudo-M step, where we estimate an initial “iteration 0” model

estimate, before the first full iteration of EM. For example,the IBM Models (Brown

et al., 1993) were originally specified as a sequence of increasingly complex models

which bootstrap from one another in this fashion. The iteration 0 estimate is calculated

using the counts necessary for our current model. However, these counts are collected

over the alignment distribution (the set of alignments and their probabilities) estimated

using the previous model in the bootstrapping chain. In our work, we use Model 1

to start with, bootstrap the HMM Model (Vogel et al., 1996) from Model 1, and then

bootstrap LEAF from the HMM Model.

To initialize the parameters of the generative model for thefirst iteration, we use

bootstrapping from a 1-to-N and a M-to-1 alignment. We use the intersection of the 1-

to-N and M-to-1 alignments to provide likely candidates forthe head word relationship,
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the 1-to-N alignment to delineate likely target word cepts,and the M-to-1 alignment to

delineate likely source word cepts.

A key concept in our bootstrapping algorithms is whether an initial alignment is

feasible under the new model or not. Feasible means that we could set the parameter

settings for the model such that this alignment will have probability greater than zero

under the model. Infeasible means that no such parameter settings exist.

A problem arises when we encounter infeasible alignment structure where, for in-

stance, a source word generates target words but no link between the target words and

the source word appears in the intersection, so it is not clear which target word is the

target head word. To address this, we consider each of the N generated target words as

the target head word in turn and assign this configuration 1/Nof the counts.

3.4 Search

For each iteration of training we search for the Viterbi alignment for millions of sen-

tence pairs. Evidence that inference over the space of all possible alignments is in-

tractable has been presented, for a similar problem, by Udupa and Maji (2006). Left-

to-right hypothesis extension using a beam decoder (as is typically implemented in

phrase-based SMT decoders) is unlikely to be effective because in word alignment re-

ordering can not be limited to a small local window and so the necessary beam would

be very large. We are not aware of admissible or inadmissiblesearch heuristics which
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have been shown to be effective when used in conjunction witha search algorithm sim-

ilar to A* search for a model predicting over a structure likeours. Therefore we use a

simple local search algorithm which operates on complete hypotheses.

Brown et al. (1993) defined two local search operations for their 1-to-N alignment

models 3, 4 and 5. All alignments which are reachable via these operations from the

starting alignment are considered. One operation is to change the generation decision

for a French word to a different English word (move), and the other is to swap the

generation decision for two French words (swap). All possible operations are tried and

the best is chosen. This is repeated. The search is terminated when no operation results

in an improvement. Och and Ney (2003) discussed efficient implementation.

In our model, because the alignment structure is richer, we define the following

operations:

• move French non-head word to new head

• move English non-head word to new head

• swap heads of two French non-head words

• swap heads of two English non-head words

• swap English head word links of two French head words

• link English word to French word making new head words
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• unlink English and French head words

These operations are defined and discussed further in the next section. Germann

et al. (2004) and Marcu and Wong (2002) introduce some similar operations without

the head word distinction.

3.4.1 Implementing the Search Operations

We now define the seven operations which transform an alignment a to an alignment

a′. For each operation we begin by copyinga to a′ and then apply the operation ona′

as specified. The four operations which are applied to non-head words are in Figure

3.2 and the three operations applied to head word links are inFigures 3.3 and 3.4. Note

that the operations applied to non-head words are similar tothe word level operations in

Model 4. The operations applied to head-word links are like the operations in phrase-

based alignment such as those defined by Marcu and Wong (2002).

In implementing the search algorithm, we represent an alignmenta as a vectorµ, a

vectorb and a vectorh. bj is used to indicate the target head word for the target word

at positionj, just asµi indicates the source head word for the source word at position

i. hj indicates which source head word at positioni generated the target head word at

positionj. hj = 0 if the word at positionj is not a head word. If the source word at

positioni is deleted we setµi = 0. Likewise, if the target word at positionj is spurious,
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we setbj = 0. We also define the function inv(i) which returns the positionj for which

hj = i or returns0 if there is no such position.

For comparison we note that for 1-to-N models an alignmenta is often represented

as a vectorv wherevj indicates the position of the source word which generated the

target word at positionj, andvj = 0 if the target word is spuriously generated.

We try all possible values of the parameters (see the line “Given” in each operation).

Note that “unlink source and target head words”, Operation 7in Figure 3.4, has 3 pa-

rameters, rather than 2. To control complexity we restrict the total number of modified

alignments considered reachable from an alignmenta by applying this operation. This

is done by placing restrictions on the parametersi andj, which specify the location of

the head-words with which to associate the former head words(and non-head words

previously associated with these former head words). We only allow for association

with nearby head words, or for changing the type of affected source words to “deleted”

source word, or affected target words to “spurious” target word.

3.4.2 Search Algorithms

Any search algorithm trying to find the Viterbi alignment according to the LEAF model

is trying to solve a problem which is most likely intractable. We must align as many as

10,000,000 sentence pairs for a single iteration of training (given the data sets we have

at the present time).

66



OPERATION 1: move French non–head word
Given: target word positionsj, j′

if bj 6= j andbj′ = j′ then
let bj = j′

end if

OPERATION 2: move English non–head word
Given: source word positionsi, i′

if µi 6= i andµi′ = i′ then
let µi = i′

end if

OPERATION 3: swap French head word decisions of two French non–head
words
Given: target word positionsj, j′

if bj 6= j andbj′ 6= j′ then
swapbj andbj′

end if

OPERATION 4: swap English head word decisions of two English non–head
words
Given: source word positionsi, i′

if µi 6= i andµi′ 6= i′ then
swapµi andµi′

end if

Figure 3.2: LEAF search operations: move and swap non-head words
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OPERATION 5: swap English head word links of two French head words
Given: target word positionsj, j′

if bj = j andbj′ = j′ then
swaphj andhj′

end if

OPERATION 6: link English word to French word
{after this operation is performed, source wordi and target wordj are both head
words}
Given: source word positioni, target word positionj
let j′ = inv(i), let i′ = hj
if i′ 6= 0 then

for i′′ = 1..l do
if µi′′ = i′ then

let µi′′ = i
end if

end for
end if
if j′ 6= 0 then

for j′′ = 1..m do
if bj′′ = j′ then

let bj′′ = j
end if

end for
end if
let hj = i

Figure 3.3: LEAF search operations: swap and link head words
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OPERATION 7: unlink the link between an English head word and a French
head word
{non-head words whose head words are Frenchj′ or Englishhj′ would be “or-
phaned”}
{parameteri is the English head word (or NULL) to which to attach the English
head-word athj′ and any non-head words attached tohj′}
{parameterj is the French head word (or NULL) to which to attach the Frenchhead-
word atj′ and any non-head words attached toj′)}
Given: target word positionj′, source word positioni, target word positionj
let i′ = hj′
if i′ 6= 0 andµi = i andbj = j then

let µi′ = i andbj′ = j andhj′ = 0
for i′′ = 1..l do

if µi′′ = i′ then
let µi′′ = i

end if
end for
for j′′ = 1..m do

if bj′′ = j′ then
let bj′′ = j

end if
end for

end if

Figure 3.4: LEAF search operation: unlink head words

To control memory usage, which would be a problem with any search algorithm,

we have developed a technique where we restrict the memory used to the parameters

we need for a small number of parallel sentences at a cost of refiltering the parameters

each time we load a small group of parallel sentences to align.
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Because of the time tractability issues, we use a hillclimbing local search. Local

search does have one advantage over search algorithms whichrely on hypothesis ex-

tension, which is that we are always operating on a complete hypothesis. This makes

integration of new knowledge sources easier, and in particular allows for knowledge

sources which can only be scored over a complete hypothesis,which would be difficult

to use if our search involved partial hypothesis extension.

3.4.2.1 Basic Search Algorithm

In the basic search algorithm, we start the search from a starting alignment (for which

we use the best alignment from the previous iteration) and exhaustively try each of the

operations in Figures 3.2, 3.3 and 3.4 with all possible values for the parameters. We

remember which resulting hypothesis was the best, to use as the starting point in the

next iteration of search. We terminate the search when no improvement in model score

via the search operations in Figures 3.2, 3.3 and 3.4 is possible.

3.4.2.2 New Alignment Search Algorithm

We developed a new alignment algorithm to reduce the numerous search errors1 made

by the basic search algorithm and directly control the time taken:

1A search error in a word aligner is a failure to find the best alignment according to
the model, i.e. in our case a failure to maximize Equation 3.3.
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• The alignment search operates by considering complete hypotheses so it is an

“anytime” algorithm (meaning that it always has a current best guess). Timers

can therefore be used to control processing, and we set thesebased on the product

of the source and target sentence lengths.

• Alignments which are selected as the starting point at any iteration during a single

run of the search algorithm are marked so that they can not be returned to at a

future point in the same search run.

• We perform a hillclimbing search (as in the baseline algorithm) but as we search

we construct a priority queue of possible other candidate alignments to consider

(i.e. the second, third, etc best alignments seen). The search is restarted by draw-

ing the best candidate from this queue after a timer expires.When calculating

Viterbi alignments for the entire training corpus we have found it effective to set

such a timer 5 or more times, increasing the time limit each time.

The first improvement is important for restricting total time used when producing

alignments for large training corpora. The latter two improvements are related to the

well-known Tabu local search algorithm (Glover, 1986).
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3.4.2.3 Comparing the Two Search Algorithms

One issue of major importance in using local search is the careful control of search

errors. A search error is a failure to find the Viterbi alignment under the current model

estimate and in a basic hillclimbing search it means that thesearch ended in a local

probability maxima2.

We present an experiment comparing our two search algorithms for the Model 4

search task. We apply it a French/English task and to an Arabic/English task. The

directions evaluated are the French to English and Arabic toEnglish generational di-

rections. We apply both algorithms using the Model 4 search operations described in

Appendix A. For each corpus we sampled 1000 sentence pairs randomly, with no sen-

tence length restriction. Model 4 parameters are estimatedfrom the final HMM Viterbi

alignment of these sentence pairs. We then search to try to find the Model 4 Viterbi

alignment with both the new and old algorithms, allowing them both to process for the

same amount of time.

Our experiment evaluates the number of search errors made using the baseline

search algorithm and the new search algorithm. The percentage of known search er-

rors is the percentage of sentences from our sample in which we were able to find a

more probable candidate by applying our new algorithm using24 hours of computation

2A search error could also mean that we had an error in the implementation of our
search algorithm, but we are confident that over the course ofexperimentation we have
effectively removed such errors.
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SYSTEM KNOWN SEARCH ERRORS%
ARABIC/ENGLISH OLD 19.4
ARABIC/ENGLISH NEW 8.5
FRENCH/ENGLISH OLD 32.5
FRENCH/ENGLISH NEW 13.7

Table 3.2: Comparison of New Search Algorithm with Old SearchAlgorithm for Model
4 Alignment

for just the 1000 sample sentences. Table 3.2 presents the results, showing that our

new algorithm reduced known search errors to8.5% for Arabic to English and13.7%

for French to English. This shows that the new algorithm is more effective than the

baseline search algorithm.

3.5 Experiments

3.5.1 Data Sets

We perform experiments on two large alignments tasks, for Arabic/English and French/English

data sets. Statistics for these sets are shown in Table 3.3. All of the data used is avail-

able from the Linguistic Data Consortium except for the French/English gold standard

alignments which we annotated ourselves (and are availablefrom us).
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ARABIC/ENGLISH FRENCH/ENGLISH

A E F E

TRAINING

SENTS 6,609,162 2,842,184
WORDS 147,165,003 168,301,29975,794,254 67,366,819
VOCAB 642,518 352,357 149,568 114,907

SINGLETONS 256,778 158,544 60,651 47,765

ALIGN DISCR.
SENTS 1,000 110

WORDS 26,882 37,635 1,888 1,726
L INKS 39,931 2,292

ALIGN TEST

SENTS 83 110
WORDS 1,510 2,030 1,899 1,716

L INKS 2,131 2,176

TRANS. DEV
SENTS 728 (4REFERENCES) 833 (1REFERENCE)

WORDS 18,255 22.0KTO 24.6K 20,562 17,454

TRANS. TEST
SENTS 1,056 (4REFERENCES) 2,380 (1REFERENCE)

WORDS 28,505 35.8KTO 38.1K 58,990 49,182

Table 3.3: Data sets

3.5.2 Experimental Results

To build both our baseline and the contrastive alignment systems, we start with 5 itera-

tions of Model 1 followed by 4 iterations of HMM (Vogel et al.,1996), as implemented

in GIZA++ (Och & Ney, 2003).

For the LEAF word classes, we use the same set of classes as thebaseline sys-

tem. 50 classes are used for each language. The classes are determined using the

“mkcls” program which is supplied with GIZA++. This programstarts with a random

assignment of the words in a monolingual text to the 50 monolingual classes and then

greedily maximizes the likelihood of the monolingual text according to a class-based

bigram model by moving words to different classes as described by Och (1999). In our
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experiments the classes used for the head classes, classesh, are the same as those used

for all French words, classesf .

For non-LEAF systems, we take the best performing of the “Union”, “Refined”

and “Intersection” symmetrization heuristics (Och & Ney, 2003) to combine the 1-to-

N and M-to-1 directions resulting in a M-to-N alignment. Because these systems do

not output fully linked alignments, we fully link the resulting alignments. The reader

should recall that this does not change the set of rules or phrases that can be extracted

using the alignment.

We compare the unsupervised LEAF system with GIZA++ Model 4 to give some

idea of the performance of the unsupervised model. We made aneffort to optimize the

free parameters of GIZA++, while for unsupervised LEAF there are no free parame-

ters to optimize. A single iteration of unsupervised LEAF iscompared with heuristic

symmetrization of GIZA++’s extension of Model 4 (which was run for four iterations).

LEAF was bootstrapped as described in Section 3.3.2 from theHMM Viterbi align-

ments. Note that the timings for the first E-Step of the French/English experiments are

presented in Appendix C.1. The current (unoptimized) LEAF search implementation is

slow; speeding up search is discussed in the same appendix.

Results for the experiments on the French/English data set are shown in Table 3.4.

We ran GIZA++ for four iterations of Model 4 and used the “Refined” heuristic (line

1). We observe that LEAF unsupervised (line 2) is competitive with GIZA++ (line 1).
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FRENCH/ENGLISH ARABIC/ENGLISH

SYSTEM F-MEASURE (α = 0.4) F-MEASURE (α = 0.1)
GIZA++ 73.5 75.8
LEAF UNSUPERVISED 74.5 72.3

Table 3.4: Experimental Results

Results for the Arabic/English data set are also shown in Table 3.4. We used a

large gold standard word alignment set available from the LDC. We ran GIZA++ for

four iterations of Model 4 and used the “Union” heuristic. Wecompare GIZA++ (line

1) with one iteration of the unsupervised LEAF model (line 2). The unsupervised

LEAF system is worse than four iterations of GIZA++ Model 4. We believe that the

features in LEAF are too high dimensional to use for the Arabic/English task (which

is more difficult than the French/English task) without the back-offs available in the

semi-supervised model which we will discuss in Chapter 4.

We will return to these experiments in Chapter 4 to compare theperformance of our

unsupervised systems with the semi-supervised systems presented there. In particular,

we will present a discriminative model based on sub-models directly derived from the

LEAF generative story which we will train using a semi-supervised training algorithm.
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3.6 Previous Work

The LEAF model is inspired by the literature on generative modeling for statistical

word alignment and particularly by IBM Model 4 (Brown et al., 1993). Because of

this, we begin our discussion of previous work in generativemodeling with the most

widely used alignment structure, the 1-to-N structure, which is that used by the IBM

Models and the HMM word alignment model. We then continue with other structures,

discuss additional issues and conclude.

3.6.1 Generative Models of 1-to-N Structure

The 1-to-N structure is not the best alignment structure. See the discussion in Section

1.2.4 and particularly Table 1.6 on Page 10 for an analysis oftwo example parallel

sentences which shows that there are interesting minimal translational correspondences

which can not be modeled using this structure.

Most 1-to-N models have the advantage that their parameterscan be robustly es-

timated from relatively small amounts of data. While such models can not directly

account for M-to-N discontinuous correspondence, they canuse word deletion, where

a source word generates nothing (sometimes referred to as “zero fertility” for reasons

which will become apparent in the discussion), to try to reduce the effect of this by

allowing all of the source words which should appear in a M-to-N relationship to be
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deleted except for one source word which generates the N target words3. Often models

with this structure do a good job of accounting for the cepts in the target language,

by robustly decomposing the probabilities associated withthese cepts into word level

probabilities, and in practice these models can even deal with discontinuous target cepts

well. Given decisions about target cepts taken from a 1-to-Nalignment, and source

cepts taken from a N-to-1 alignment, heuristics can be applied which attempt to gener-

ate a M-to-N discontinuous alignment of reasonable quality.

In practice, the main disadvantage of this alignment structure is the need for heuris-

tic symmetrization in order to obtain M-to-N discontinuousalignments. Heuristic

symmetrization was introduced by Och and Ney (2003) and extended by Koehn et al.

(2003). The choice of symmetrization heuristic which is most effective changes from

task to task. It is not only dependent on the language pair being aligned, as well as the

translation direction of the final translation task, but it is also dependent on the training

data size (for instance, see the graphs in Chapter 2 on page 36). Appendix A contains

further information on heuristic symmetrization, including specific details of how it is

used in our baseline. LEAF does not require use of these heuristics.

We now discuss specific 1-to-N alignment models, beginning with the IBM models.

3However, In general many variants approximating an M-to-N minimal translational
correspondence will be possible. For instance if M=N such a model will often align the
words 1-to-1. But it is important to remember that none of these variants is correct and
it is easy to find contexts where the translation rules licensed by such variants would be
harmful.
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3.6.1.1 The IBM Models

Brown et al. (1993) developed five statistical models of translation, IBM Models 1

through 5, and parameter estimation techniques for them. These models all use the

1-to-N alignment structure. The models were designed to be used in a pipeline, where

each model is bootstrapped from the previous model.

Model 1 is the first model in the pipeline. It makes very strongconditional indepen-

dence assumptions on word placement and generation (all French words are generated

and placed independently). Three probability distributions are involved in generat-

ing a French sentence from a English sentence using steps which define an alignment.

These are a distribution over the length of the French sentence, a distribution over the

alignment decision for each French word position (denotingthe position of the En-

glish word which generated it), and a distribution over the translation decision (which

stochastically selects the lexical identity of the French word given the English word

which generated it).

The formula in Model 1 for the joint probability of an alignment and a French

string, given an English string, is in Equation 3.11. Note the three components of the

model. The length distribution is the numerator of the term before the product. The

alignment position model is simply1/(l+ 1)m, a uniform distribution over the English

positions (including position0 which if selected would indicate that the French word
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is spuriously generated). The translation model is inside the product so it is evaluated

once for each of them French words.

P (f, a|e) =
p(m|l)

(l + 1)m

m
∏

j=1

p(fj|eaj
) (3.11)

When Model 1 is trained to maximize likelihood using EM the likelihood is convex,

but in practice Och and Ney (2003) suggest that stopping before convergence increases

performance. The estimation of the parameters for a single iteration can solved without

a complex search operation, and the calculation of the Viterbi alignment for a fixede

andf is trivial (the highest generation probability for each French word is selected).

This makes Model 1 a popular choice for applications which donot require a strong

model of translational correspondence but instead a rough indication of whether two

sentences should be considered parallel, such as sentence alignment (Moore, 2002).

Model 1 is also used as a smoothing method for higher order translation models (Och

et al., 2004).

Model 2 relaxes one of the assumptions of Model 1, by making the location of the

English word which generated each French word dependent on the absolute locations of

the two words. The equation for Model 2 is in Equation 3.12. The first term is again the

length distribution. Within the product, the first term is the alignment position model

(the conditional probability that the French word at position j is generated by the En-

glish word at positionaj). The translation model is identical with Model 1. Like Model
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1, the estimation of the parameters for a single iteration can solved without a complex

search operation, and the calculation of the Viterbi alignment is also simple (the prod-

uct of the alignment position model and the translation model is simply maximized for

each French word in turn).

P (f, a|e) = p(m|l)
m
∏

j=1

p(aj|j, l,m)p(fj|eaj
) (3.12)

Models 1 and 2 are both weak models of translational correspondence which were

designed to be used for bootstrapping Models 3, 4 and 5. The advantage of these

models is the tractability of both estimating the models andmaking predictions using

the models.

Models 3, 4 and 5 are considerably more complex. These modelsare discussed

in detail in Appendix A. They are referred to as the “fertility” models. An English

word’s fertility is the number of French words generated by it. The use of a fertility

model requires inverting the alignment position model. Models 3 and 4 use a simple

alignment position model which introduces deficiency into the estimation. Deficiency

means that the model wastes probability mass on predictionswhich are impossible. In

this case the deficiency lies in the placement decisions for French words (an example

is that the probability that two French words are placed in the same position can be

non-zero). Och and Ney (2003) presented evidence that this form of deficiency is not a

problem in practice.
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Model 3 introduces the “fertility” distribution. The alignment model still uses abso-

lute positions as in IBM Model 2, but is inverted so that we calculate the probability of

placing a French word given an English word’s position (rather than vice versa, as was

the case for Model 2). Model 3 is not generally used in practice. The reader interested

in Model 3 is referred to the Model 3 tutorial (Knight, 1999),which is also good back-

ground for understanding Model 4 (as well as providing a goodfirst view of statistical

word alignment and SMT in general).

The good performance of Model 4 is the basis for the work on modeling in this

thesis, and Model 4 is used in much of the work in Statistical Machine Translation

published in the last several years. Model 4 is a generalization of Model 3 where the

alignment model uses relative positions rather than absolute positions. The alignment

model is again inverted from that used by Model 1 and Model 2. The reader is referred

to Appendix A for a full presentation of Model 4 including a discussion of the gen-

erative story with examples. LEAF suffers from the same deficiency as Model 4 and

introduces additional deficiency in the source non-head word linking decisions, but we

have seen no evidence that this causes problems in practice.

Model 5 is the last model in the chain of IBM models. Model 5 is similar to Model

4, except that Model 5 is not deficient. Model 5 is not typically used because avoiding

the deficiency of Model 4 requires a much larger number of parameters than Model 4
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has, and because Model 5 has not been shown to perform better than Model 4, despite

Model 4’s deficiency (Och & Ney, 2003).

The advantages of Model 4 over Model 1 and Model 2 come from themore power-

ful model which better captures translational correspondence, but this comes at a high

price. Both estimation and search over the full distributionof alignments becomes in-

tractable. In practice, a local hillclimbing search is usedduring the E-step (as discussed

for Model 4 in Appendix A.2.5.2, note that this is similar to the “basic” search algorithm

used with LEAF discussed in Section 3.4), to find a small set ofprobable alignments,

and the model is re-estimated using only this set (i.e. with the assumption that align-

ments outside this set have probability0). LEAF also requires local hillclimbing search

and re-estimation from a small set of probable alignments.

The unsupervised baseline in this thesis involves first training Model 1, then training

the HMM word alignment model (the HMM has similarities to Model 2 but performs

better than Model 2; it is described in the next section), andthen Model 4. Appendix

A includes a presentation of the baseline unsupervised system which uses the GIZA++

implementation of Model 4 in both directions (the 1-to-N direction and the M-to-1

direction), followed by the application of symmetrizationheuristics to produce the final

M-to-N discontinuous alignment.
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LEAF improves on Model 4 by providing a generative story which allows the mod-

eling of M-to-N discontinuous alignment structure rather than the 1-to-N structure mod-

eled by the IBM Models. This is a better structure of translational correspondence than

that modeled in the IBM models. In practice, this means that LEAF has the important

advantage that it does not require heuristic symmetrization and is able to model the full

range of translational correspondences we are interested in directly. LEAF can provide

a posterior distribution over likely M-to-N discontinuousalignment hypotheses, which

is impossible to obtain from Model 4 without using both symmetrization heuristics and

heuristic combination of the 1-to-N and M-to-1 posterior probabilities.

3.6.1.2 HMM Word Alignment Models

Much of the additional work on generative modeling of 1-to-Nword alignments is

based on the HMM word alignment model (Vogel et al., 1996), which is itself a gener-

alization of ideas presented by Dagan et al. (1993). The HMM word alignment model

uses an alignment model which has relative positions, like IBM Model 4, rather than

using an alignment model involving absolute positions which are used with models like

IBM Model 2. We observe the French words, which are the emissions of the HMM,

and we know that there arel states, the English words. The transition parameters are

tied by distance. For example, suppose we already emitted the French word at position

j from statei. The transition probability of transitioning from statei to i′ (which would

84



mean that we would emit the French word at positionj + 1 from i′) is conditioned on

the signed distancei′ − i.

Many research groups are interested in the HMM because it canbe efficiently

trained using the Forward-Backward algorithm, and inference is also tractable. One

important difference with Model 4 is that the HMM does not have a fertility distribu-

tion. The fertility distribution is important to the good performance of Model 4, and

there have been several attempts to at least partially overcome the lack of a fertility

distribution in the HMM (without losing the benefits of tractable inference) as we will

discuss further below.

Och and Ney (2003) presented extensions to the HMM word alignment model

which allow NULL (which emits spurious target words) to be modeled usingl addi-

tional states (recall thatl is the length of the English sentence). The choice of this state

encodes the positioni of the previous non-NULL English word (the state from which

we transitioned into a NULL state). This allows the appropriate NULL state to “re-

member” the previous non-NULL English word, so that transition probabilities out of

the NULL states can be based on the previous English word. If this were not done, and

we have only one NULL state, this state would “forget” where in the English sentence

the last non-spurious word was emitted from. This formulation adds one additional free

parameter, the probability of a jump to the appropriate spurious word state (in fact, the

formulation requiresl free parameters, but in practice these are tied). An additional free
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parameter is used to control an interpolation of the relative position alignment model

with a uniform position alignment model, which is used to smooth the relative posi-

tion alignment model. These two parameters must be optimized on held out data. In

practice, we have found the parameter controlling the jump to the NULL states to be

particularly important for good performance. Och and Ney (2003) also proposed lex-

icalizing the non-NULL jump probabilities with word classes to create a class-based

HMM.

Toutanova et al. (2002) and Lopez and Resnik (2005) presenteda variety of refine-

ments of the HMM word alignment model particularly effective for low data conditions.

Toutanova et al. (2002) reported on extending the HMM word alignment model in three

ways: using POS-based translation probabilities, making the jump to NULL dependent

on the identity of the English word and conditioning the generation of spurious French

words on the following French word. Lopez and Resnik (2005) introduced syntactically

motivated jump distance features based on the distance within a dependency parse and

improved initialization of both the translation and alignment position models.

The model which was presented by Deng and Byrne (2005) is an extension of the

HMM which modifies the HMM to be able to emit a phrase of words ateach state

(recall that a state is an English word). Optionally, a word-level bigram formulation

can be used to model which words are in a phrase, otherwise a word-level unigram

model is used. A free parameter is used to tune whether longeror shorter phrases
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are desired. Like the extension of the HMM presented by Och and Ney (2003), the

state space is multiplied by two to model spurious target generation (though here we

are referring to spurious phrases rather than spurious words), and the probability of

outputting a spurious phrase is a free parameter. To more robustly model the alignment

position distribution a linear interpolation of the usual HMM relative position model

is performed with an absolute position model (like Model 2’salignment model) and a

simple uniform position model. This interpolation of thesethree quantities introduces

another two free parameters. These four free parameters must be optimized against

held out data, which, given our experience with the HMM, is likely to be important

to performance. The structure modeled by Deng and Byrne (2005) is 1-to-N. When

trained in both training directions (using different settings for the free parameters of

the two directions), the improvements in the model were competitive with Model 4 (for

the special case of monotone translation). However, the largest improvements were

obtained by using a technique which “second guesses” the final symmetrized alignment,

which is easier to do with models which support exact inference (like the HMM) than

with LEAF or Model 4. This “second guessing” provides translations for phrases which

were not covered by the symmetrized alignment, we will discuss this in detail in Section

3.6.7.
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3.6.1.3 Discussion

Model 4 and the HMM share one important characteristic. The reordering models (also

called “distortion” models) use relative positions, i.e. that there is a greater than zero or-

der dependency on word placement. The “homogeneous” HMM word alignment model

has a first order dependency (the position of the next placed word is conditioned only

on the position of the previously placed word). The extendedHMM word alignment

model of Och and Ney (2003) remembers the location of the previously placed non-

NULL word. Model 4 conditions the alignment model on the location of the previous

“cept center” for the first word (from the left) generated from an English word, on the

position of the previous word generated from an English wordif the word being placed

is not the first word generated, and also uses word classes (see Appendix A for more

details). These models appear to be successively more powerful. LEAF uses a similar

ordering model to Model 4 with the important difference thatthe distortion is relative

to explicitly chosen head words4.

The lack of fertility in the HMM is a strong difference with Model 4. Toutanova

argues for using a probability of “staying” in a source word to try to indirectly model

fertility. Deng and Byrne use phrase length probabilities for each emission. Both of

these can not directly model fertility because the state canbe returned to multiple times,

4The placement of the third and subsequent words in a cept is relative to the place-
ment of the previous word, which is more similar to the modeling of distortion in Model
4.
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but they may provide a useful bias which partially makes up for the lack of an explicit

fertility model. Model 4’s fertility model is its main strength over the HMM, as it

provides a more robust global model of generation (e.g. in order for an English word

to generate words in two very different parts of the sentenceit pays both a distortion

cost and a fertility cost; for the HMM this is just a distortion cost which is easily offset

by avoiding a low probability translation). LEAF has an explicit model of fertility

which is similar to Model 4’s but is also conditioned onγ which indicates whether the

source cept is a single word. We have experimented with conditioning this decision as

well on the word class of the target head word, but found that performance degraded,

indicating that such a distribution can not be robustly estimated with the amount of data

we currently have available5.

In general, LEAF improves on the HMM by providing a generative story which al-

lows the modeling of M-to-N discontinuous alignment structure rather than the 1-to-N

alignment structure modeled by the HMM. As in the case of Model 4, the predictions

of the HMM word alignment model are 1-to-N, which requires heuristic symmetriza-

tion of predictions in both training directions. However, an important difference with

both LEAF and Model 4 is that HMM word alignment models support tractable exact

estimation and prediction, which explains their interest to the research community. We

5One approach to remedying this might be to use fewer head wordclasses, we
currently use 50.
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bootstrap both LEAF and our baseline Model 4 system from the HMM as implemented

in GIZA++.

A disadvantage which both Model 4 and the HMM variants have incommon is

the existence of several free parameters which must be optimized on held out data

in an expensive end-to-end heuristic search which is eithermanually done, or often

simply not done at all (in which case parameters optimized for a different task are

used). Unsupervised LEAF has the advantage that it requiresno free parameters, but

this lack of direct control over important parameters contributes to poor performance

if the bootstrap distributions are not well estimated (thisappears to be the case for the

unsupervised Arabic/English experiment we reported in Section 3.5). In Chapter 4 we

show how a small number of parameters can be trained using as few as 100 sentences

of annotated data as an integral part of a semi-supervised training process. This can

be viewed as a practical way to avoid the manual optimizationprocess required when

using such free parameters while still obtaining the benefits of such an optimization.

3.6.1.4 Other Generative Models of 1-to-N Structure

Moore (2004) reported on modifications to the training of IBM Model 1, which serve

to improve the quality of the Viterbi alignment of Model 1. Moore noted that using

techniques which may reduce the accuracy of the full distribution over possible align-

ments in favor of strongly sharpening the Viterbi estimate,may be counter productive
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if the model is subsequently used to bootstrap, as is done with both LEAF and our

baseline. However, Moore motivated his work by discussing applications other than

word alignment which use Model 1, including sentence alignment (Moore, 2002) in

particular.

Och and Ney (2003) presented “Model 6”, which is a log-linearcombination of

Model 4 and the HMM. The motivation for this combination is that the distortion (re-

ordering) model for the HMM is in the inverse direction of that of Model 4, and so

combining their predictions may be more robust. In practice, Model 6 is not used to

create alignments for state of the art SMT systems. Symmetric LEAF calculates a rela-

tive distortion model in both directions, and uses a differently parameterized model for

determining source non-head word to head word links (again in both directions), so it

captures this same effect in a stronger fashion.

3.6.2 Generative Models of 1-to-1 Structure

Another popular choice has been to use the 1-to-1 alignment structure. The discussion

in Section 1.2.4 and particularly Table 1.6 on Page 10 shows that this structure is inad-

equate in accounting for translational correspondence. However, search over this type

of structure is simple. Wu (1997) and Melamed (2000) and Cherry and Lin (2003) all

used this structure. It is possible that 1-to-1 alignment structure may be of some inter-

est for applications other than machine translation with a strong emphasis on precision,
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such as the extraction of single word translation lexicons for use in Cross-Lingual In-

formation Retrieval (Xu et al., 2001), but further study is needed to determine whether

this is in fact the case or whether the low recall of 1-to-1 alignment approaches causes

problems.

Wu (1997) invented hierarchical alignment, using operations on parallel binary

trees, which were modeled as hidden variables, and a word level lexicon to establish

translational correspondence. This allows for highly tractable estimation and inference,

but has not been used effectively to improve translation.

Melamed (2000) introduced “competitive linking” which is aheuristically moti-

vated combined modeling/search approach which involves a greedy 1-to-1 matching

of English and French words. Cherry and Lin (2003) used a probabilistic model sim-

ilar to Melamed (2000) and two constraints, the 1-to-1 constraint and the no crossing

dependencies (“cohesion”) constraint. Two sets of features are used in their model,

“adjacency” features (which rewards groups of words for clustering together) and “de-

pendency” features (a word movement penalty based on dependency trees generated

using the MiniPar dependency parser). LEAF’s placement models encode knowledge

similar to Cherry and Lin’s non-syntactic features here, butthe syntactic features may

capture a generalization that is of interest in the semi-supervised approach we present

in Chapter 4.
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Yamada and Knight (2001) presented a tree-to-string alignment model. The model

is trained using English syntactic trees generated from a high quality syntactic parser

and Japanese strings. A particular generative story applies operations to the English tree

to generate the Japanese string, and this induces an alignment. The operations on the

tree allowed by the generative story include three kinds of operations, the reordering of

English constituents within an English constituent phrase, translation actions mapping

English to Japanese, and insertion of NULL words. This modelwas not used to try

to generate a good Viterbi alignment, but instead to directly learn a good estimate for

p(fstring|etree) which is then applied during translation (translation is the recovery of

an English tree given a Japanese string), in conjunction with a language model which

models the probability of an English tree. This model uses a 1-to-1 structure for the

majority of the translation actions, which are translations of the leaves of the English

parse tree, but was later extended to allow phrasal translations of constituents in the

parse tree (however, this was not implemented in the alignment model). Gildea (2003)

extended this model to tree-to-tree alignment and enhancedboth tree-to-string and tree-

to-tree generative stories with an operation called “clone” which allows models to be

more powerful and less tied to the original tree structure (or structures). LEAF induces

a roughly dependency-like relationship in the links between a single head word and

multiple non-head words, but this is more semantically motivated than syntactically

motivated.
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1-to-1 alignments make very few predictions, so they have a bias toward high pre-

cision but low recall. Estimation (and prediction) using 1-to-1 alignment structure is

highly tractable, but unfortunately this structure is not agood choice for building MT

systems. As we showed in Chapter 2, the AER metric unfairly favors high precision

alignments, which has encouraged research using this structure, but none of this re-

search has been shown to improve machine translation quality.

3.6.3 Generative Models of “Phrase-based” Structure

The phrase-based (consecutive word) alignment structure has also been used in several

alignment models, though it is more often used in translation models. The discussion

in Section 1.2.4 and particularly Table 1.6 on Page 10 shows that the phrase-based

assumption is also not a good choice of alignment structure,and we mention again

that even phrase-based SMT models do not perform ideally with alignments generated

using a phrase-based alignment structure.

3.6.3.1 General consecutive word alignment models

Marcu and Wong (2002) defined the Joint model, which modeled consecutive word

M-to-N alignments. When used as a translation model, the Joint model is interesting

because it uses a distribution over phrase translations directly, rather than estimating it

from a Viterbi alignment. The model has a strong memorization capability and seems to
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match the assumptions behind phrase-based SMT closely. However, this memorization

capability leads to problems in generalization and in tractability. In the Joint model,

unlike in LEAF, overlapping phrases do not share parameters. For instance, the proba-

bility of the French cept “homme” translating to the Englishcept “man” is not directly

related to the probability of the French cept “homme” translating as the English cept

“the man”. This leads to a large blow-up in the number of parameters, causing the in-

tractability problems, and leads to poor generalization. The Joint model also does not

have the ability to deal with non-parallelism (which is annotated using NULL align-

ments in most other translation models). Kumar et al. (2006)used the phrase-based

version of the alignment templates translation framework of Och and Ney (2004) to

build an alignment model which is similar to the Joint model.

The problem with the blow-up in parameter space involved in models like the Joint

model is addressed in LEAF by using the head word structure toallow the phrase prob-

abilities to decompose into smaller units. In particular, this appears to provide a good

trade-off between robustness and expressiveness given theamount of training data cur-

rently available. The M-to-N discontinuous alignment structure using the head word

assumption is also faster to search than a pure phrase-basedstructure as the transla-

tion dependencies on one side are only dependent on the head word on the other side

(andγ which is a flag indicating whether the cept on the other side contains just one

word). The decomposition of costs using the head word assumption means that adding
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a non-head word to a head word is an operation which incurs additional cost but does

not cause all of the other costs incurred by that cept to be reevaluated. In phrase-based

models any change to a cept causes all costs to be reevaluated. LEAF also provides us

with a path to easily increase the power of the model by simplyreducing reliance on

word classes and further relaxing conditional independence assumptions.

3.6.3.2 Other “phrasal” models

Other alignment structures have been tried which are loosely phrasal. Wang and Waibel

(1998) introduced a generative story based on extension of the generative story of

Model 4. The alignment structure modeled was “consecutive Mto non-consecutive

N”, and the parameters were trained using EM. LEAF has some similarities with this

model in that they are both based on generative stories whichare extensions of Model

4. However, LEAF allows the full range of M-to-N discontiguous alignments.

Tiedemann (2003) created an algorithm similar to Melamed’scompetitive linking

algorithm, but allowing adjacent word connections. This structure has similarities to the

“Refined” heuristic symmetrization metric of Och and Ney (2003) which we discussed

in Chapter 2. A variety of features were used including features based on POS tags

and similarity heuristics. We will propose a semi-supervised training algorithm which

could use these types of features in Chapter 4.
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3.6.4 Generative Models of 1-to-N and M-to-1 Structure

Matusov et al. (2004) presented a model capable of modeling 1-to-N and M-to-1 align-

ments (but not M-to-N alignments) which was bootstrapped from Model 4. The tech-

nique used for bootstrapping is to use state occupation probabilities. State occupation

probabilities can be exactly determined for the HMM but onlyapproximately deter-

mined for Model 4; this involves using a sample of the Model 4 posterior distribution

which is calculated over a small set of alignments which are hopefully near to the best

alignment. We suspect that this is not more powerful than simply estimating a model

directly from the Model 4 Viterbi alignment (and could even be inferior), but these two

options have never been directly compared. The state occupation probabilities are then

used in combination with the Hungarian algorithm to solve a bipartite covering problem

which derives a 1-to-N and M-to-1 alignment. However the decisions made are based

only on the state occupation probabilities which don’t model the global context well6.

6This is easiest to illustrate with an example. Suppose an estimate of Model 4
prefers to assign the French word at the beginning of a particular French sentence to
the first English word 50% of the time and the French word at theend of the French
sentence to the same English word 50% of the time. This can easily be captured in the
state occupation probabilities. But this fails to capture any interaction between these
two alignment decisions. If the highly probable alignmentswhich have the first French
word aligned to the first English word never contain an alignment of the last French
word to the first English word (because the distortion probabilities involved in making a
placement at the beginning of the French sentence and at the end of the French sentence
of words generated from the same English word are low), this interaction would be lost
using state occupation probabilities.
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Because of this, we doubt that using HMM or Model 4 state occupation probabilities

would be as effective as bootstrapping LEAF from the HMM.

3.6.5 Generative models of M-to-N Discontinuous Structure

LEAF is the only general purpose alignment model which models M-to-N discontinu-

ous structure which we are aware of. However, May and Knight (2007) defined a model

which can be used to re-align given a high quality word alignment and an English parse

tree. This work uses the GHKM translation model (Galley et al., 2006) as an alignment

model.

May and Knight (2007) used this model to re-align from a starting alignment and a

fixed parse tree. The parse tree is treated as a fixed hard constraint. First an inventory

of treelet/alignment pairs is created from the starting alignment and the fixed parse tree.

Then EM is used to find better treelet/alignment pairs for maximizing the likelihood of

the training data then were originally used (note that all ofthe treelet/alignment pairs

considered for a particular sentence must have been observed in the starting minimal

Viterbi derivation of either the sentence in question or a different training sentence).

Finally the Viterbi treelet/alignment derivation is foundfor each sentence pair. This

work allows a generative model to take advantage of syntactic information. However,

it has some of the same issues with overlapping rules as phrasal systems do. This is

partially addressed by adding a “rule size” distribution which is analogous to a fertility

98



distribution (but is over rule size rather than the number ofwords generated). We would

be interested in taking advantage of syntactic informationin LEAF, but as the parse tree

is not perfect (it is generated by a probabilistic parser, which makes errors) we think

the appropriate way to do this would be to define syntactically motivated sub-models

in our semi-supervised formulation, which will be discussed in Chapter 4.

3.6.6 Symmetrization

One important aspect of LEAF is its symmetry. Och and Ney (2003) invented heuristic

symmetrization of the output of a 1-to-N model and a M-to-1 model resulting in a M-to-

N alignment, this was extended by Koehn et al. (2003). Zens etal. (2004) introduced

symmetrized lexicon training. Liang et al. (2006) showed how to train two HMM word

alignment models, a 1-to-N model and a M-to-1 model, to agreein predicting all of the

links generated, resulting in a 1-to-1 alignment with occasional rare 1-to-N or M-to-1

links. We have used insights from these works to help determine the structure of our

generative model.

Various models have attempted to gain the advantages of using these symmetriza-

tion heuristics, but most have been required to deal with 1-best predictions (or with state

occupation probabilities). LEAF uses the head word structure in a symmetric fashion

inside of the generative story, which seems to be a better wayto model the desired
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structure. In particular, this allows for a posterior distribution over more than the 1-best

alignment without the use of heuristics.

3.6.7 Different Rule/Phrase Extraction

The work reported in this thesis used translation systems which extract translation rules

from a single word alignment (Koehn et al., 2003). One promising area of translation

modeling research is work on extracting translations rulesfrom richer representations

than a single word alignment. The IBM models (Brown et al., 1993) and the Joint

model (Marcu & Wong, 2002) were designed to estimate parameters (for 1-to-N and

phrase-based translation models respectively) directly without requiring the use of a

Viterbi alignment. Venugopal et al. (2003) invented a generalized technique for using

lower order alignment models such as Model 1 to generate phrase pairs given a source

language test set and an unaligned bitext.

Deng and Byrne (2005) described an approach which is used as a post-process

for finding translations of phrases in a translation test setwhich did not have trans-

lation candidates indicated in the symmetrized alignment.This is a form of “second

guessing” the symmetrized alignment. It involves using a modified Forward algo-

rithm for estimating the posterior probability of each possible phrase pair (according

to symmetrically trained phrase-based HMM models). They used this approach to-

gether with symmetrized phrase-based HMM alignments to obtain improved BLEU
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scores over just using the symmetrized phrase-based HMM alignments. They also ob-

tained improved BLEU scores when using the posteriors calculated over symmetric

phrase-based HMM models to extract translations for phrases which were not covered

in symmetrized Model 4 alignments. The implementation of this approach requires the

calculation of quantities similar to the state occupation probabilities of Matusov et al.

(2004). This relaxation of the Viterbi alignment assumption for phrasal or hierarchical

rule extraction seems to us to be a logical extension of our current approach. Imple-

menting this for LEAF would require modifications to the model to allow it to generate

the most probable alignment subject to the constraint that at least one translation of a

certain phrase can be extracted; we will discuss this further in Chapter 5.

3.6.8 Discussion

We have outlined some of the important previous work on word alignment. We chose

to break this work down by the alignment structure modeled, as our choice of a better

alignment structure was critical to the design of LEAF.

However, there are other dimensions on which we could expand. One very impor-

tant dimension is the treatment of syntactic phenomena. In designing LEAF, we were

not only inspired by Model 4, but also by dependency-based alignment models. We dis-

cussed some of the dependency-based word alignment models in the sections on 1-to-1,

phrase-based and M-to-N discontinuous structures. In contrast with their approaches,
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we have a very flat, one-level notion of dependency, which is semantically motivated

and learned automatically from the parallel corpus. This idea of dependency has some

similarity with hierarchical SMT models such as the Hiero model (Chiang, 2005).

3.7 Summary

Our new generative model, LEAF, is able to model alignments which consist of M-to-N

non-consecutive minimal translational correspondences.We presented the generative

story and mathematical formulation.

We then discussed the training of LEAF using an approximate Expectation-Maximization

training algorithm. We discussed the E-step, the M-step, and bootstrapping (performing

the initial M-step).

We use a local search algorithm to search for likely alignments. We presented the

permutation operators used and discussed how to use them in abasic hillclimbing al-

gorithm. We also derived an improved hillclimbing algorithm using “Tabu” alignments

and restarts, and performed a simple experiment showing that it is effective.

We conducted experiments on large French/English and Arabic/English data sets

which show that LEAF is comparable with our baseline, GIZA++, when LEAF is

trained in an unsupervised fashion.

We then discussed the extensive body of previous work on generative modeling of

word alignment. We broke the discussion down by the alignment structure modeled,
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with the two most important structures being the “1-to-N” structure as used in the IBM

models and the HMM, and the “phrase-based” (consecutive word) structure as used in

phrase-based models. We contrasted LEAF’s M-to-N non-consecutive alignment struc-

ture with both of these structures and discussed the advantages of the head word as-

sumption, and in particular how this approach solves the phrasal segmentation problem

of phrase-based models, where overlapping phrases cause problems with both tractabil-

ity and robustness. We also discussed two other issues, symmetricity and approaches

to building translation systems which use more than just theViterbi word alignment.

In conclusion, we have found a new structure over which we canrobustly predict

which directly models translational correspondence commensurate with how it is used

in hierarchical SMT systems. Surprisingly, this is also a more suitable structure for

general phrase-based SMT systems than the phrase-based alignment structure. Our

model, LEAF, is comparable with a strong baseline when it is trained in an unsupervised

fashion. In Chapter 4 we will decompose LEAF to derive the sub-models of a powerful

semi-supervised model and show that this model has significantly better performance

than two strong baselines.
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3.8 Research Contribution

We designed a new generative model which models the structure of the word alignment

problem directly.

We also developed a high performance distributed local search algorithm.
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Chapter 4

Minimum Error / Maximum Likelihood Training for

Automatic Word Alignment

4.1 Introduction

The technique of using labeled data and unlabeled data together for training is called

semi-supervised training. We are interested in developinga semi-supervised training

technique for the word alignment problem: we have a large number of parameters to

estimate, a large amount of unlabeled data, and a small amount of labeled data. We

have a structured generative model, LEAF, which can be trained in an unsupervised

fashion on the unlabeled data, and now we would like to take advantage of the labeled

data.

When we refer to labeled data for the automatic word alignmentproblem, we mean

parallel sentences for which a correct word alignment has been annotated by humans.
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Unlabeled data refers to a pair of sentences which we assume are parallel (as they were

chosen using a sentence alignment program which is known to have high accuracy

in making this determination). Unlabeled data do not have human annotated word

alignments associated with them, which is why we call them unlabeled.

We first show how to discriminatively rerank the output of a generative model to

minimize the errors on the labeled data. We then present a newsemi-supervised training

approach called Minimum Error / Maximum Likelihood training which incorporates

steps which alternatively minimize error with respect to the final performance criterion

and maximize the likelihood of the underlying generative model.

4.2 Discriminative Reranking for Generative Word Alignment

Models

The idea behind applying discriminative training to generative models is to enable us to

use a discriminative criterion to access knowledge which can not be directly integrated

into the generative model (because of the need to reengineerthe generative story).

Discriminative reranking of the output of a generative model uses a representation

of the guesses of the generative model. If this representation explicitly enumerates the

best N complete hypotheses, it is called an N best list. The hypotheses are ranked by

their probabilities. Discriminatively reranking an N bestlist allows the use of additional
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knowledge which would be difficult to incorporate directly into the generative model

to produce a new ranking (i.e. different probability scoresfor the hypotheses in the N

best list). If additional knowledge sources are effectively combined with the knowledge

sources in the original generative model, this ranking willbe better than (or at least as

good as) the ranking output by the original model.

We present a new discriminative reranking method which we will apply to an N best

list generated using LEAF. After presenting relevant previous work on discriminative

reranking, we will generalize this to a new semi-supervisedtraining approach.

4.2.1 Reinterpreting LEAF as a Log-Linear Model

In this section we will reinterpret LEAF as a log-linear model. This form of model

will allow us to use the distributions which make up LEAF in a discriminatively trained

model, as we will explain in the next two sections.

We use the term “sub-model” to refer to the components of our models. This em-

phasizes that most of these “sub-models” are in fact models which are estimated from

data. These “sub-models” often have parameters and rely on what we normally think

of as “features” for their parameterization. However, not all of our sub-models will

have parameters (for instance, we could imagine defining a sub-model which is simply

the percentage of the French words which are unaligned). A sub-model is simply a

function applied to an alignment which outputs a real number(we hope that the reader
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who prefers to call this a “feature function” or “feature” will simply mentally translate

“sub-model” to their preferred term). An effective sub-model can be used to tell us

whether to prefer one hypothesized alignment over another.If we view the numbers

output by a sub-model as negative log probabilities, then a high number (cost) assigns

the alignment a low probability, while a low number assigns the alignment a high prob-

ability.

In this section we reinterpret the probability distributions of LEAF listed in Table

4.1 as sub-models of a log-linear model and estimate the weights associated with each

sub-model. The model formulation is given in Equation 4.1. We reinterpret the new

generative model as having ten sub-models in the source to target direction, and ten

sub-models in the target to source direction, for a total of twenty sub-models, which are

listed in Table 4.1. Each sub-modelm has an associated weightλm. Our approach can

also be applied to additional sub-models which are not part of the original generative

model, which will be discussed in Section 4.8.1.

pλ(a, f |e) =
exp(

∑

i λihi(f, a, e))
∑

f ′,a′ exp(
∑

i λihi(f
′, a′, e))

(4.1)

Given a vector of weightsλ, the alignment search problem, i.e. the search to return

the best alignment̂a of e andf according to the model, is in Equation 4.2.
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1 g(χi|ei) source word type
2 w−1(i− µi|classe(ei)) choosing a head word
3 t1(fj |ei) head word translation
4 s(ψi|ei, γi) ψi is number of words in target cept
5 s0(ψ0|

∑

i ψi) number of unaligned target words
6 t0(fj) identity of unaligned target words
7 t>1(fj |ei, classh(τi1)) non-head word translation
8 d1(△j|classe(eρ), classf (fj)) movement for target head words
9 d2(△j|classf (fj)) movement for left-most target non-head word
10 d>2(△j|classf (fj)) movement for subsequent target non-head words

11-20 (same features, target to source direction)

Table 4.1: Sub-models derived from LEAF

â = argmax
a

pλ(a|f, e) = argmax
a

pλ(a, f |e) = argmax
a

exp(
∑

i

λihi(f, a, e)) (4.2)

4.2.2 Discriminative Training Algorithm

Given a hypothesized alignmenta, a gold standard alignmentg, and the English and

French sentences, we can calculate an error function,E(a, g, e, f). We would like to

minimize the error function by finding the bestλ settings. This is a supervised learning

problem, the discriminative training problem, listed in Equation 4.3.

argmin
λ

E(â, g, e, f) whereâ is as defined in Equation 4.2 (4.3)

Because this is a structured learning problem over the enormous space ofλ vectors,

exact inference is intractable. We will instead develop an iterative process for solving
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Equation 4.3. We will learn optimal weights over a (growing)set of hypotheses for a

small number of parallel sentences for which we have gold standard alignments. We

use1 − F-measure(α) as our error function, comparing hypothesized word alignments

for the discriminative training set (often referred to as the “development” or “dev” set)

with the gold standard.

The discriminative reranking algorithm is initialized with the parameters of the sub-

modelsθ (which are the final distributions estimated during unsupervised training of

the generative model), an initial choice of theλ vector, gold standard word alignments

(labels) for the alignment discriminative training set, the constant N specifying the size

of the N best list1, and an empty master set of hypothesized alignments. The algorithm

consists of repeatedly running a loop which consists of three main steps:

LOOP:

1. Produce an N best list usingλ by solving Equation 4.2). If all of the hypotheses

in the N best list are already in the master set of hypotheses,the algorithm has

converged, so terminate the loop. Otherwise add new hypotheses to the master

set of hypotheses.

2. In this step, we choose the bestλ vector to minimize error from a set of candi-

dates. The candidates are our currentλ vector, anyλ vectors which were chosen

1N = 128 for our experiments
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previously in Steps 2 and 3, and 999 randomly generated vectors. Given these

candidateλ vectors we apply each of them to the master set of hypotheses in order

to determine the top ranked alignmenta′, and and then evaluate the error function

E(a′, g, e, f). We setλ to theλ vector which resulted in the alignments with the

lowest error (i.e. the highest F-measure(α) score since we use1− F-measure(α)

as our error criterion), so we have solved Equation 4.3.

3. Run a “city block” error minimization step which results ina new vectorλ. This

minimization also involves solving Equation 4.3, but is more complex than sim-

ply evaluating the error of severalλ candidates. The implementation of “city

block” minimization for our problem is discussed in detail below.

Step 3 of the algorithm tries to find the bestλ setting over the set of hypotheses

for the sentences in the discriminative training set using numerical optimization. This

is an M-dimensional optimization problem (where M is the number of sub-models).

Minimizing error for all of the weights at once is not computationally feasible. We

initially applied Powell’s Method (Press et al., 2002), using Brent’s Method (Press

et al., 2002) for line minimization, but found this to be ineffective. This is might be

because the assumption that the error surface is quadratic was violated and the line

minimization was then quickly trapped in local error minimawhich were much worse

than the global error minima.
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Och (2003) has described an efficient exact one-dimensionalerror minimization

technique for a similar search problem, which we will adapt to our problem. This

involves calculating a piecewise constant function. This function, which is calculated

for a fixed sub-modelm, is a function of one variablex. The function directly evaluates

the error of the hypotheses which would be picked by equation4.2 if we hold all weights

constant, except for the weight (λm for somem) under consideration, which is set to

x. The formula for such a function for sub-modelm, which we callfm(x) is given in

Equation 4.4.

fm(x) = E(argmax
a

exp(x ∗ hm(f, a, e) +
∑

i6=m

λihi(f, a, e)), g, e, f) (4.4)

We implement “city block” minimization by first calculatingthe M functions. Once

we have calculated an explicit representation of each of thefunctions fm, we can

quickly find the error minima (thex value resulting in lowest error) for eachfm. We

then choose the sub-modelm and the valuex resulting in the lowest error minima and

setλm = x. We iterate this process until no further reduction in errorcan be found.

We can in fact generalize Equation 4.4 to calculate a function for any line in the

M-dimensional space (not just the M unit vectors). It would seem obvious that we

should use exact line minimizations in place of Brent’s method and apply Powell’s
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method. However, counter-intuitively, we have found that in practice Powell’s method

is quickly trapped in local error minima even with the exact line minimizations. We

have instead found it more effective to perform “city block”minimization over just the

M unit vectors.

In automatic word alignment problems using a large number ofsub-models, the

outcome of Step 3 is sensitive to the starting point. If we consider just steps 2 and 3, then

we can define a search error as a failure to find the bestλ value for minimizing the error

of the hypothesis chosen from the current master set of hypotheses using Equation 4.2.

Performing step 2, which vets both theλ vectors which were found useful previously

and a large number of randomλ vectors, and then using the best result as the starting

point of the “city block” minimization in step 3 seems to reduce search errors to an

acceptable level, but we believe that in future work we will be able to improve on this.

4.3 Previous Work in Discriminative Training

Discriminative reranking has been used successfully in many areas of NLP. A good ex-

ample area is syntactic parsing. For parsing, discriminative reranking was introduced

by (Collins, 2000). He starts with an underlying generative model which models the

joint generation of a sentence and its parse-tree. Given a new sentence to parse, he

first selects the best N parse-trees according to his generative model. Then he scores

new features, which could not be easily integrated into a newgenerative story because
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their roles in generation would overlap, and learns discriminatively how to rerank the

parses in his N best list. He uses a greedy feature selection technique to determine

which features are important. Recently a very large number ofdifferent approaches to

discrimininative reranking have been applied to syntacticparsing, and there have also

been a large number of more general discriminative trainingalgorithms used. One dis-

criminative training algorithm of particular interest to us is training using the averaged

perceptron (Collins, 2002), which was refined and applied to word alignment by Moore

(2005); this will be discussed in Section 4.4.3.

Discriminative reranking has also been applied to machine translation. Och et al.

(2003) and Och et al. (2004) used a large number of feature functions and the discrim-

inative training technique defined by Och (2003) to rerank N best lists of hypothesized

English translations for Chinese sentences to improve the quality of translations. Shen

and Joshi (2005) evaluated maximum margin approaches for the same task.

Other approaches to discriminative training based on an underlying generative model

have been applied in NLP. We present work in the area of machine translation, as it is

relevant to the discriminative training approach we will take. Och and Ney (2002)

introduced a log-linear model for translation composed of acollection of sub-models

which are estimated using various techniques. These included several sub-models es-

timated by taking the relative frequency of consecutive word phrases extracted from

the one-best output of symmetrized Model 4 alignments and also included sub-models
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which backed off estimation of phrase-to-phrase translation probabilities to a word-

level translation lexicon. Both the maximum mutual information (MMI) and the mini-

mum classification error (MCE) criteria were tried. Och (2003) introduced direct error

minimization for statistical machine translation using the same log-linear model, and

showed that discriminative training to the final performance criterion, BLEU, is supe-

rior to training using MMI or MCE. Other optimization techniques are possible with

log-linear models. For instance Zens and Ney (2004) used thedownhill simplex method

to train weights for both phrase-based and alignment-template-based translation, and

Cettolo and Federico (2004) used the downhill simplex methodto train weights for a

log-linear model involving a reinterpretation of the Model4 sub-models for translation.

The approaches to discriminative reranking and discriminative training for Machine

Translation which we have discussed use a log-linear model to integrate sub-models of

widely varying granularity. The log-linear model is trained either to a criterion which

maximizes entropy, or to directly maximize the final performance criterion. Och (2003)

showed that the latter performs well in practice. When training to the final performance

criterion is chosen, two approaches to discriminative training are generally used. The

simpler approach is to generate candidate vectors of weights and evaluate the results;

the down simplex optimization method (Press et al., 2002) iscommonly applied here.

We apply this type of approach in step 2 of our discriminativealgorithm in an even

simpler fashion, by simply generating random vectors and evaluating them. The other
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approach, introduced for translation by Och (2003), is to optimize over N best lists

using exact line minimizations. This puts the performance criterion inside the opti-

mization. We use exact line minimizations in the “city block” minimization which is

performed in step 3 of our algorithm.

4.4 Previous Work in Discriminative Modeling for Word

Alignment

Previous work on discriminative modeling for word-alignment differs most strongly

from the log-linear approach in that it generally views word-alignment as a supervised

task. However, all of the state of the art approaches depend on using features from

an unsupervised generative model in order to obtain their best results because of the

small amount of gold standard word alignments available (Liu et al., 2005; Ittycheriah

& Roukos, 2005; Taskar et al., 2005; Ayan & Dorr, 2006b; Lacoste-Julien et al., 2006;

Fraser & Marcu, 2006; Blunsom & Cohn, 2006; Moore et al., 2006).

We are most interested in discriminative models which allowthe use of many-to-

many non-contiguous alignment structure. We are less interested in discriminative

models using 1-to-N structure, as the use of 1-to-N requiresa heuristic step follow-

ing the discriminative training to obtain the M-to-N discontiguous alignments actually

used to build SMT systems. The use of such a heuristic step means that alignment
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quality can not be directly optimized. We will show in Section 4.8 that optimizing

F-measure(α) for 1-to-N and M-to-1 alignment models separately (and thencombin-

ing their predictions using a symmetrization heuristic such as “Union”) is inferior to

directly optimizing F-measure(α) for our M-to-N alignment model.

We are not aware of previous work on discriminative models with a “phrase-based”

contiguous M-to-N structure, and given the recent success of hierarchical SMT models

(which support gaps in the translation rules) we doubt this is would have strong perfor-

mance for most data sets. However, it would be simple to implement this to test this

assumption. As we discussed in Section 3.2.3, phrase-basedstructure can be modeled

as a special case of LEAF (however, it is important to remember that the conditioning

of the generation decisions would be on the head words ratherthan on the full phrase).

EMD could then be applied without modification to a log-linear model using the sub-

models derived from this special LEAF model.

4.4.1 Discriminative Models of 1-to-1 Structure

After Brown et al. (1993), much of the initial work on generative modeling was done

using 1-to-1 structure. This structure is not a good choice for maximizing SMT perfor-

mance, but is an interesting starting point for researcherswho then go on to work on

more highly structured output spaces. In particular, search limited to a 1-to-1 alignment

structure is fairly simple even for models which use very complex features.
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Taskar et al. (2005) took a similar approach to the models of Melamed (2000)

and Cherry and Lin (2003), but in a discriminative context, casting the word alignment

problem as a maximum weighted bipartite matching problem, which is estimated within

the large margin framework using a quadratic program. They use such features as DICE

score, orthographic similarity and proximity of (absolute) positions.

Liu et al. (2005) built a log-linear model using the IBM Model 3alignment score in

both directions and discriminatively reranked it. Additional sub-models were a POS-

based lexicon model, and a dictionary based lexicon model. They showed small im-

provements in balanced F-measure with Sure/Possible over symmetrized Model 4, but

did not show what the effect is on translation quality. Theirdiscriminative reranking

approach is similar to ours, but with important differences. They did not decompose the

underlying generative model, which is IBM Model 3. Instead, they used two features

based on the score of the full model. These features model 1-to-many and many-to-1

alignments respectively, so they can not directly model many-to-many alignments. One

of these two feature functions must have a value of zero unless the hypothesized align-

ment is a 1-to-1 alignment. The other main difference is thatthey trained to the Maxi-

mum Entropy criterion rather than maximizing the final performance criterion, though

they indicate interest in doing this and they use heuristicsto try to pick local maxima

of the Maximum Entropy training which are better according to the final performance

criterion.
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4.4.2 Discriminative Models of 1-to-N Discontinuous Structure

The 1-to-N structure, used initially in the generative models defined by Brown et al.

(1993), has a long and distinguished history. Discriminative approaches which adopt

the 1-to-N structure are a logical extension of this.

Berger et al. (1996) defined a word level lexicon model which used varying amounts

of context up to 3 words in each direction from the word being translated, and dis-

cussed how to train this representation. Garcı́a-Varea et al. (2002) implemented this

in an alignment package. This work defined the lexicon using both word contexts and

word class contexts. The system was built by first completelytraining the IBM models

to obtain both the 1-to-N Viterbi alignments in a single direction and the sub-models

representing fertility and distortion. The weights of the features for the special lexicon

were trained using the Viterbi alignments as training data and the maximum entropy

criterion. The fertility and distortion models were then retrained, holding the special

lexicon model fixed. Finally the presumed Viterbi alignmentwas calculated, and this

was returned as the final discriminatively reranked result.This work resulted in small

gains in balanced F-measure over Model 4 and has not been shown to improve transla-

tion quality.

Kumar and Byrne (2002) presented a framework for searching tominimize the

Bayes Risk, applied to word alignment. The work presented usedIBM Model 3 with-

out a reordering model (i.e., translation and fertility were modeled as in Model 3, but
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distortion was modeled as a uniform distribution). The insights in this work could be

applied in our framework in the future, once we have a better posterior distribution over

word alignments.

Ittycheriah and Roukos (2005) presented a 1-to-N discriminative model trained us-

ing the Maximum Entropy criterion specifically for the task of Arabic/English word

alignment. They showed balanced F-Measure results which were competitive with 1-

to-N GIZA++, and are one of the few works which also compared the resulting MT per-

formance, where they had inconsistent gains over 1-to-N GIZA++ (unfortunately there

was no comparison with heuristically symmetrized GIZA++, which would have been a

stronger baseline). They invested significant effort in sub-model engineering (produc-

ing both sub-models specific to Arabic/English alignment and sub-models which would

be useful for other language pairs), while we use sub-modelswhich are derived from

LEAF and a few heuristic features. In contrast to their work,all of the sub-models we

have presented are language independent.

Blunsom and Cohn (2006) created a Conditional Random Field (CRF) model for the

1-to-N alignment task, and trained it to minimize AER. The model structure was similar

to the HMM model in that there was a first-order Markov assumption, but because they

were using a CRF they were able to integrate overlapping features (lexica based on

string similarity, words and POS tags were all scored for thesame link), which would

have been difficult to integrate into a generative story.
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Previous to our work with LEAF, we used 1-to-N structure within the work we did

on training a log-linear model using a mix of features derived from IBM Model 4 and

heuristics (Fraser & Marcu, 2006). In this work we optimizedthe F-Measure(α) of

models in both directions independently, but at each iteration of training we estimated

additional word-level lexicons by heuristically symmetrizing the Viterbi alignments

taken from both training directions. This is similar to the symmetrized lexicon training

of Zens et al. (2004). We will compare the current approach using sub-models derived

from LEAF with our previous approach using sub-models derived from Model 4 in the

experiments in Section 4.8.

4.4.3 Discriminative Models of 1-to-N and M-to-1 Discontinuous

Structure

Lacoste-Julien et al. (2006) created a discriminative model restricted to 1-to-1, 1-to-2

and 2-to-1 alignments. This work extends the framework of Taskar et al. (2005) to the

“quadratic” case, where there are features on pairs of edgesrather than individual edges,

allowing them to robustly model 1-to-2 and 2-to-1 alignments. Parameter estimation

can be solved exactly as a quadratic assignment problem, butcan also be relaxed to

be solvable as a quadratic program. Prediction is solved as an integer linear program,

but can this also be relaxed. The (relative) tractability ofsearch in this framework is

attractive, but this is at the cost of the unreasonable 1-to-2 and 2-to-1 assumptions and
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weaker features than the features derived from LEAF. This work valued tractability

over the richness of the features, which is at odds with our approach. The approach

also requires the use of Hamming loss as the training criterion. Hamming loss has

been shown to be effective in reducing AER, but no work has beendone to show that

it is effective for optimizing a metric which correlates well with machine translation

performance. The best results were obtained using featuresbased on intersected Model

4 and symmetric HMMs trained to agree (Liang et al., 2006). The generated alignments

were not evaluated in a statistical machine translation system.

Moore et al. (2006) introduced a sequence of two discriminative models called

Stage 1 and Stage 2. The final alignments generated are 1-to-1, 1-to-2, 1-to-3, 2-to-1

or 3-to-1 alignments. Unlike the work of Lacoste-Julien et al. (2006), there is noth-

ing in the framework which inherently restricts the N and M variables in the 1-to-N

and M-to-1 alignments modeled, and we assume that the choiceof 3 for both of these

variables was a good choice to minimize AER for the French/English alignment task

considered. The Stage 1 model is estimated from the unannotated full training data

and the annotated discriminative training set. The Stage 2 model is estimated using the

predictions of Stage 1. The features used in Stage 1 include alignment geometry, exact

string match, lexical features (for words occurring two or more times in the small dis-

criminative training set), and a ranking induced from the log likelihood ratio calculated

over cooccurences of words occurring in parallel sentencesin the full training data. The
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stage 2 model uses statistics taken from the stage 1 model’s predictions on the full train-

ing set, in particular an empirically estimated feature which models the probability of a

single source word being aligned to a bag of up to 3 target words (or vice versa) and an

empirically estimated jump distance feature. The model is trained using the averaged

perceptron which requires a heuristic search to find the mostprobable alignment just as

ours does, but a beam decoder is used rather than a hillclimbing search. The averaged

perceptron training was compared with using a support vector machine formulation

which is designed for structured prediction, and the two approaches had similar perfor-

mance. The conclusion of this work, that the richness of the features is more important

than the discriminative training technique, matches our intuition. Similarly to the work

of Lacoste-Julien et al. (2006) the best results were obtained using intersected Model 4

and HMMs trained to agree, and MT performance was not evaluated. We view both of

these works as providing an interesting study of features, some of which we intend to

try adding to our model in future work.

4.4.4 Discriminative Models of M-to-N Discontinuous Structure

Ayan et al. (2005) used transformation based learning to expand the 1-to-1 and 1-to-

N discontinuous alignments generated from generative statistical alignment models to

general M-to-N discontiguous alignments. They used a smallgold word alignment

set to learn effective transformations (additions or deletions to the alignment) which
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used context modeled using closed-class words, POS tags, and dependency trees. This

work integrates interesting features which we will consider using in the future in our

semi-supervised approach.

Ayan and Dorr (2006b) used a Maximum Entropy classifier to combine the predic-

tions of several alignment systems. Based on features over the input alignment set ge-

ometry and POS tags, they learned to classify whether a particular link that is predicted

by at least one of the input alignments should be included in the final alignment. These

decisions were made for each link independently as they are conditioned only on the

input and not the output. The experiments performed included combining Model 4 and

the HMM extensions of Lopez and Resnik (2005). They showed significant improve-

ments in MT quality over heuristic symmetrization for smalldata sets. Our approach, in

contrast, involves a powerful model where alignment links are not considered indepen-

dently, but maximizing this model requires a search over possible alignment bigraphs

of the whole sentence. We could add the predictions of other models into our model in

a similar fashion to their work. We have in fact tried combining information in a sim-

ilar fashion using alignments generated from the HMM Viterbi alignments (which are

also what we bootstrap from) in conjunction with using threeheuristic symmetrization

metrics and found this to be ineffective when using sub-models derived from LEAF

(although we note that these same sub-models were effectivein our previous 1-to-N

log-linear model (Fraser & Marcu, 2006)).
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4.5 Semi-Supervised Learning

During our discussion of semi-supervised training, we drawa distinction between dis-

criminative training and semi-supervised training, as applied to generative models. In

discriminative training we rerank the predictions of a generative model to obtain pre-

dictions of higher quality. There is no mechanism so that thediscriminative criterion

can affect the estimates of the underlying generative model. Discriminative training

(when applied to an underlying generative model) can be viewed as a weak form of

semi-supervised learning which is missing this important feedback loop.

Most approaches to semi-supervised learning require that the labeled data be suffi-

cient to make a good initial estimate which is then refined using unlabeled data (Seeger,

2000). In fact, the problem of semi-supervised learning is often defined as “using unla-

beled data to help supervised learning” (Seeger, 2000). Most work on semi-supervised

learning uses underlying generative models which have distributions with a relatively

small number of parameters. An initial model is estimated ina supervised fashion using

the labeled data, and this supervised model is used to attachlabels (or a probability dis-

tribution over labels) to the unlabeled data, then a new supervised model is estimated,

and this is iterated.

For instance, both Nigam et al. (2000) and Miller and Browning(2003) train an

initial supervised classifier and then use EM to improve the initial estimate of posterior

class membership probabilities. In cases where there are only a small number of labels
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available but a very large number of parameters must be estimated, such as when the

number of parameters increases as training data increases,this is not practical. If this

technique is applied in these cases, it will lead to the so-called “overconfident pseudo-

labeling problem” (Seeger, 2000), where the initial labelsof very poor quality assigned

to the unlabeled data will at the best have no effect, and at the worst dominate the

initial model estimated in the M-step causing convergence to a local minima of very

poor quality (with respect to the final performance criterion).

We present the following alternative, which alternativelyminimizes error and max-

imizes likelihood. Our new approach applies in cases where the amount of labeled data

is not sufficient to do supervised estimation of an initial model of reasonable quality, but

we have large amounts of unlabeled data and a generative model which can be trained

in an unsupervised fashion. We call our training approach “Minimum Error / Maximum

Likelihood Training”, and we introduce the “EMD” semi-supervised training algorithm

to perform the training.

4.6 Minimum Error / Maximum Likelihood Training

We extend approximate EM training to perform a new type of training which we call

Minimum Error / Maximum Likelihood Training. The intuitionbehind this approach

to semi-supervised training is that we wish to obtain the advantages of both discrimi-

native training (error minimization) and approximate EM (which allows us to estimate
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a large numbers of parameters effectively even though we have too few gold standard

word alignments to do this in a supervised fashion). We introduce the EMD algorithm,

in which discriminative training is used to control the contributions of sub-models

(thereby minimizing error), and a procedure similar to one iteration of approximate

EM is used to estimate the large number of sub-model parameters, by using steps which

increase likelihood.

Intuitively, in approximate EM training for word alignment(Brown et al., 1993),

the E-step corresponds to calculating the probability of all alignments according to the

current model estimate, while the M-step is the creation of anew model estimate given

the probability distribution over alignments calculated in the E-step.

In the E-step ideally all possible alignments should be enumerated and labeled with

p(a|e, f), but this is intractable. For the M-step, we would like to count over all possible

alignments for each sentence pair, weighted by their probability according to the model

estimated at the previous step. Because this is not tractable, we make the assumption

that the single assumed Viterbi alignment can be used to update our estimate in the

M-step. This approximation is called Viterbi training. Neal and Hinton (1998) analyze

approximate EM training and motivate this type of variant.

The basic intuition behind our approach to semi-supervisedlearning is that we wish

to obtain the advantages of both discriminative training and approximate EM. We use
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discriminative training to control the contributions of sub-models, which vary in gran-

ularity from large numbers of parameters to a single parameter (this can be a single pa-

rameter in the original generative model, which we are training discriminatively here).

We use a sub-procedure very similar to approximate EM to train the often very large

numbers of parameters of the sub-models themselves.

Here is an initial brief outline of the approach. We first determine a decomposition

of the generative model into sub-models. We then add additional sub-models which

were not in the generative model.

A single iteration of EMD training consists of a step which resembles the E-step

in EM, followed by a step which resembles the M-step in EM, followed by a “dis-

criminative step”, which we call the D-step. In the step which resembles the E-step,

we use the weightsλ and the estimates of all sub-models (both the sub-models in the

generative model and those sub-models which are not in the generative model) to pre-

dict alignments for the entire training set. In the step which resembles the M-step, we

reestimate the sub-models dependent on the hypothesized alignments (for example, the

sub-models which are distributions from the generative model). The D-step estimates

the weight vectorλ which minimizes error. It does this by repeatedly rerankingthe

output of the generative model for a small set of sentences for which we have labels.

This completes one iteration of training.
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We start the EMD algorithm by estimating the sub-models taken from the generative

model by bootstrapping as in the unsupervised case. We then carry out an initial D-step.

After this “iteration 0”, complete iterations of EMD training are performed, starting

with iteration 1.

4.6.1 EMD Algorithm

A sketch of the EMD algorithm applied to our extended model ispresented in Figure

4.1. Parameters have a superscriptt representing their value at iterationt. The parame-

ters of the iteration dependent sub-modelm at timet areθtm, while the parameters of the

sub-modelm which is iteration independent is denotedθ′m. We initialize the algorithm

with the gold standard word alignments (labels) of the word alignment discriminative

training set, an initialλ, N, the starting alignments (the final HMM Viterbi alignment),

and the parameters of the heuristic sub-models which are iteration independent (θ′). In

line 2, we make iteration 0 estimates of the sub-models whoseparameters are estimated

from the current Viterbi alignment (these are sub-models 1 toM ′, and include the sub-

models based on distributions used in LEAF). In line 3, we rundiscriminative training

using the algorithm from Section 4.2.2. In line 4, we measurethe error of the resulting

λ vector. In the main loop in line 7 we align the full training set (similar to the E-step

of EM), and in line 8 we estimate the iteration-dependent sub-models (similar to the
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1: Algorithm EMD(labels,λ′, N, starting
alignments,θ′)

2: bootstrapθ0
m for m = 1 toM ′

3: λ0 = Discrim(θ0, θ′, λ′, labels, N)
4: e0 = Error(λ0)
5: t = 1
6: loop
7: align full training set usingλt−1, θt−1

andθ′

8: estimateθtm for m = 1 toM ′

9: λt = Discrim(θt, θ′, λt−1, labels, N)
10: et = Error(λt)
11: if et >= et−1 then
12: terminate loop
13: end if
14: t = t+ 1
15: end loop
16: return hypothesized alignments of full

training set

Figure 4.1: Sketch of the EMD algorithm

M-step of EM). Then we perform discriminative reranking in line 9 and check for con-

vergence in lines 10 and 11 (convergence has been reached if error was not decreased

from the previous iteration). The output of the algorithm ishypothesized alignments of

the entire training corpus (calculated in line 7).

In the general word alignment problem, the entire search space can not be enumer-

ated, which is the reason we have to do multiple iterations ofthe loop of the “Discrim”

subroutine (which was presented in Section 4.2.2). For eachiterationi of the the “Dis-

crim” subroutine, we find a new vectorλ which then causes us to enumerate a different

portion of the search space in Step 1 of the “Discrim” subroutine. We could run this

process until we no longer search a different portion of the search space (i.e., we find
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no new N best list entries), at which point we would assume we have converged. In

practice we stop when the error does not decrease. Note that if EMD is used for a

different problem where the entire search space can be explicitly enumerated, the code

inside the loop of the “Discrim” algorithm would only need tobe executed once per

outer loop iterationt.

When re-estimating the generative model we use the hypothesized labels for the

discriminative training set, rather than the gold standardlabels. Otherwise we would

overfit the labels on the discriminative set and so we would beunable to continue using

predictions to determine good weights.

It is important to emphasize that we are not presenting just adiscriminative rerank-

ing step but instead a fully integrated approach, taking advantage of the fact that the

power of each sub-model changes over the training process (i.e., from iteration to iter-

ation of training). It is the ability to determine how discriminative each sub-model is

at each iteration of semi-supervised training and the ability to directly train a few sub-

model parameters directly at each iteration of semi-supervised training which gives us

performance superior to discriminative reranking (where these two things can only be

done once, after the estimation of the generative model).
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4.7 Previous Work on Semi-Supervised Learning

Previous approaches for using EM for combining labeled and unlabeled data have often

been applied to unstructured classification. An initial classifier is learned from labeled

data, and then this classifier is used to label unlabeled datawith posterior class mem-

bership probabilities. EM is then used to improve the initial estimate of posterior class

membership probabilities. For labeled data, the probability of the correct class is max-

imized, and this improves estimates of class membership forthe unlabeled data. For

unlabeled data the maximum a posteriori (MAP) solution is selected.

There is a large body of work on semi-supervised learning with parameterized dis-

tributions that are described by a small number of parameters; we present a few ex-

amples. Miller and Uyar (1997) used unlabeled data and EM to augment a mixture

of experts. Miller and Browning (2003) used an extension of the EM algorithm for a

task modeled as a mixture of Gaussians. Their algorithm is similar to the algorithm

we propose in that they extended the EM algorithm by incorporating an additional sep-

arate optimization for training a small number of parameters, but they trained these

parameters to maximize complete data log likelihood ratherthan the final performance

criterion.

There has also been some work on semi-supervised learning when a much larger

number of parameters must be estimated. Nigam et al. (2000) addressed a text classifi-

cation task where each class is modeled as multiple mixturesover the entire vocabulary.
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They estimated a Naive Bayes classifier over the labeled data and used it to provide ini-

tial MAP estimates for unlabeled documents. They then ran EMas described above.

They introduced a single mixing parameter to attempt to control problems with the es-

timates from the unlabeled data washing out the estimates from the labeled data. Their

approach would not work if applied to our scenario as the number of labeled examples

is small, so the initial labellings of the unlabeled data would be very poor, causing the

“overconfident pseudo-labeling problem” we already mentioned in Section 4.5.

Callison-Burch et al. (2004) performed a preliminary study ofthe issue of semi-

supervised training for word alignment. They addressed their lack of manually anno-

tated data by using automatically annotated data as a replacement for human annotated

data and looking at the effect of semi-supervised learning on both AER and BLEU, fol-

lowing the work of Nigam et al. (2000). However, their simulated supervised data was

annotated using GIZA++, which, as we have already shown, canbe further improved

substantially, so we do not believe that they succeeded in realistically simulating having

large amounts of manually annotated data. However, their experiments on combining

higher and low quality automatically generated alignmentsdid result in an important

finding. They showed that it is important to ensure that the larger amount of low qual-

ity annotations do not “wash out” the parameters estimated from the higher quality

annotations, which is an insight we will use in the experimental section.
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Figure 4.2: Two alignments with the same translational correspondence

Two approaches that are more similar in spirit to our work involve the use of labels

in reinforcement learning and the use of labels in clustering. Ivanov et al. (2001)

used discriminative training in a reinforcement learning context in a similar way to

our adding of a discriminative training step to an unsupervised context. A large body

of work uses semi-supervised learning for clustering by imposing constraints on the

clusters. Basu et al. (2004) is a good example, where the system was supplied with

lists of pairs of instances labeled as belonging to the same or different clusters. Our

work can be motivated in a similar fashion to theirs, but the details are quite different.

We are solving a difficult structured prediction problem which involves a search over

bigraphs for each parallel sentence pair.

4.8 Experiments

We perform experiments on the two large alignments tasks from Chapter 3, for Ara-

bic/English and French/English data sets. Statistics for these sets are shown in Table

3.3 on page 74. All of the data used is available from the Linguistic Data Consortium
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except for the French/English gold standard alignments which are available from the

authors.

We showed that F-Measure is effective in predicting BLEU in Chapter 2. There-

fore, we use1 − F-Measure(α) as our error criterion in discriminative training. We

established that it is important to tuneα (the trade-off between Precision and Recall) to

maximize performance.

We remind the reader of the problem we discovered in Chapter 2,which is that

two alignments which have the same translational correspondence can have different

F-Measures. An example is shown in Figure 4.2. To overcome this problem we fully

interlinked the transitive closure of the undirected bigraph formed by each alignment

hypothesized by our baseline alignment systems2. This operation maps the alignment

shown to the left in Figure 4.2 to the alignment shown to the right. Recall that this op-

eration does not change the collection of phrases or rules extracted from a hypothesized

alignment.

The best settings ofα wereα = 0.1 for the Arabic/English task andα = 0.4 for

the French/English task, , see Chapter 2 for details of the process used to choose these

constants.

2All of the gold standard alignments were fully interlinked as distributed. We did
not modify the gold standard alignments.
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1 g(χi|ei) source word type 9 d2(△j|classf (fj)) movement for left-
most target non-head word

2 w−1(i − µi|classe(ei)) choosing a
head word

10 d>2(△j|classf (fj)) movement for
subsequent target non-head words

3 t1(fj |ei) head word translation 11 t(fj |ei) translation without depen-
dency on word-type

4 s(ψi|ei, γi) ψi is number of words in
target cept

12 t(fj |ei) translation table from final
HMM iteration

5 s0(ψ0|
∑

i ψi) number of unaligned
target words

13 s(ψi|γi) target cept size without de-
pendency on source head worde

6 t0(fj) identity of unaligned target
words

14 s(ψi|ei) target cept size without de-
pendency onγi

7 t>1(fj |ei, classh(τi1)) non-head word
translation

15 target spurious word penalty

8 d1(△j|classe(eρ), classf (fj)) move-
ment for target head words

16-30 (same features, other direction)

Table 4.2: Sub-models used together with the EMD algorithm

4.8.1 Evaluating EMD+LEAF

We present an experiment which evaluates the efficacy of the EMD training algorithm

when applied to a log-linear model. We decompose LEAF, presented in Section 3.2,

in both translation directions to provide the initial feature functions for the log-linear

model, features 1 to 10 and 16 to 25 in Table 4.2.

To provide additional robustness, we use back-offs for the translation decisions (fea-

tures 11 and 26), the HMM translation tables (features 12 and27) and back-offs for the

target cept size distributions (features 13, 14, 28 and 29 inTable 4.2). We also use

heuristics which directly control the number of unaligned words we generate (features

15 and 30 in Table 4.2), which allows us to control the trade-off between Precision and

Recall which is required to optimize any particularα used with F-Measure(α).
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We perform one main comparison, which is of semi-supervisedsystems. This is

also what we will use to produce alignments for evaluating SMT performance. We com-

pare semi-supervised LEAF with our previous state of the artsemi-supervised system

(Fraser & Marcu, 2006) which also uses the EMD algorithm but separately optimizes

1-to-N and M-to-1 translation performance using sub-models derived from Model 4

and a larger number of heuristic models than are used with LEAF. We perform transla-

tion experiments on the alignments generated using semi-supervised training to verify

that the improvements in F-Measure result in increases in BLEU. Note that the timings

for the first E-Step of the French/English experiments are presented in Appendix C.1.

The current (unoptimized) LEAF search implementation is slow, speeding up search is

discussed in the same appendix.

In order to have the results in a single table, we also comparethe unsupervised

LEAF system with GIZA++ Model 4. This gives an idea as to the performance of

the unsupervised model, and is a repeat of the results from Section 3.5. The reader is

referred there for further explanation.

To build all alignment systems, we start with 5 iterations ofModel 1 followed by

4 iterations of HMM (Vogel et al., 1996), as implemented in GIZA++ (Och & Ney,

2003), and use the final iteration of HMM to perform the bootstrap. To generate the

final output for all non-LEAF systems, we take the best performing of the “Union”,

“Refined” and “Intersection” symmetrization heuristics (Och & Ney, 2003) to combine
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the 1-to-N and M-to-1 directions resulting in a M-to-N non-consecutive alignment.

Because these systems do not output fully linked alignments,we fully link the resulting

alignments. Once again, the reader should recall that this does not change the set of

rules or phrases that can be extracted using an alignment.

Results for the experiments on the French/English data set are shown in Table 4.3.

We ran GIZA++ for four iterations of Model 4 and used the “Refined” heuristic (line 1).

We ran the baseline semi-supervised system for two iterations (line 2), and in contrast

with Fraser and Marcu (2006) we found that the best symmetrization heuristic for this

system was “Union”, which is most likely due to our use of fully linked alignments. We

observe that LEAF unsupervised (line 3) is competitive withGIZA++ (line 1), and is

in fact competitive with the baseline semi-supervised result (line 2). We ran the LEAF

semi-supervised system for two iterations (line 4). The best result is the LEAF semi-

supervised system, with a gain of 1.8 F-Measure over the LEAFunsupervised system

and a gain of 2.8 F-Measure over GIZA++.

For French/English translation we use a state of the art phrase-based MT system

similar to those of Och and Ney (2004) and Koehn et al. (2003).The translation test

data is described in Table 3.5.1. We use two trigram languagemodels, one built using

the English portion of the training data and the other built using additional English news

data. The BLEU scores reported are calculated using lowercased and tokenized data.

For semi-supervised LEAF the gain of 0.46 BLEU over the semi-supervised baseline is
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FRENCH/ENGLISH ARABIC/ENGLISH

SYSTEM F (α = 0.4) BLEU F (α = 0.1) BLEU
GIZA++ 73.5 30.63 75.8 51.55
FRASER AND MARCU (2006) 74.1 31.40 79.1 52.89
LEAF UNSUPERVISED 74.5 72.3
LEAF SEMI-SUPERVISED 76.3 31.86 84.5 54.34

Table 4.3: Experimental Results

not statistically significant (a gain of 0.78 BLEU would be required), but LEAF semi-

supervised compared with GIZA++ is significant, with a gain of 1.23 BLEU. We note

that a gain of 1.23 BLEU shows a large gain in translation quality over that obtained

using GIZA++ because for the French/English task BLEU is calculated using only a

single reference (a gain of 1.23 BLEU using a single referenceis a larger gain than a

gain of 1.23 BLEU when using four references).

Results for the Arabic/English data set are also shown in Table 4.3. We used a large

gold standard word alignment set available from the LDC. We ran GIZA++ for four

iterations of Model 4 and used the “Union” heuristic. We compare GIZA++ (line 1)

with one iteration of the unsupervised LEAF model (line 3). The unsupervised LEAF

system is worse than four iterations of GIZA++ Model 4. We believe that the features

in LEAF are too high dimensional to use for the Arabic/English task without the back-

offs available in the semi-supervised models. The baselinesemi-supervised system

(line 2) was run for three iterations and the resulting alignments were combined with

the “Union” heuristic. We ran the LEAF semi-supervised system for two iterations. The
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best result is the LEAF semi-supervised system (line 4), with a gain of 5.4 F-Measure

over the baseline semi-supervised system and a gain of 8.7 F-Measure over GIZA++.

For Arabic/English translation we train the state of the arthierarchical model Hiero

(Chiang, 2005) using our Viterbi alignments. The translation test data used is described

in Table 3.5.1. We use two trigram language models, one builtusing the English portion

of the training data and the other built using additional English news data. The test set

is from the NIST 2005 translation task. LEAF had the best performance scoring 1.43

BLEU better than the baseline semi-supervised system and scoring 2.79 BLEU better

than GIZA++, both of which are statistically significant.

The success of training our new log-linear model, based on sub-models derived

from LEAF, to minimize the1−F-Measure(α) error criterion using the semi-supervised

EMD training algorithm combines the main contributions of this thesis. The BLEU

score increases achieved by this system are large for both tasks3. We now have a princi-

pled model over the alignment structure in which we are interested, and we can obtain

a posterior probability distribution over likely alignments rather than being restricted

to heuristically combining the 1-best predictions of a 1-to-N and M-to-1 model as was

previously done, which will enable new directions for future research. We have shown

that the predictions of our new model substantially improvestate of the art machine

translations systems on some of the largest, most challenging, data sets available.

3We remind the reader that the French/English result is basedon BLEU calculated
using only a single reference, for which a gain of 1.2 BLEU% is large.
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4.8.2 Giving GIZA++ Access to Human Annotated Alignments

We performed an additional experiment for the French/English alignment task aimed

at understanding the potential contribution of the word aligned data without the new

model and training algorithm. Like Ittycheriah and Roukos (2005), we converted the

alignment discriminative training corpus links into a special corpus where the parallel

“sentences” consist only of the single English and French word involved in each link.

We found that the information in the links was “washed out” bythe rest of the data

and resulted in no change in the alignment test set’s F-Measure. Callison-Burch et al.

(2004) showed in their work on combining alignments of lowerand higher quality that

the alignments of higher quality should be given a much higher weight than the lower

quality alignments. Using this insight, we found that adding 10,000 copies of this

special corpus to our training data resulted in the highest alignment test set gain, which

was a small gain of0.3 F-Measure. This result suggests that while the link information

is directly useful for improving F-Measure, our semi-supervised training method is

producing much larger improvements.

4.8.3 Integrating an Arabic Name Transliteration Model

We report in this section on integrating an Arabic Name transliteration model, devel-

oped by Ulf Hermjakob. This model reads parallel sentences and outputs any likely
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transliteration matches between a single Arabic token and one or more English tokens

along with a confidence score.

The interesting aspect of integrating this as a sub-model isthat it can not be di-

rectly integrated as a phrase to phrase matching. This is because even when there is

a likely transliteration match, this match often does not fully account for the complete

translational correspondence involved.

For instance, suppose that in the Arabic sentence of a parallel Arabic/English sen-

tence pair the Arabic word “Mohammed” occurs. If the Englishword “Mohammed”

occurs twice in the English sentence, a transliteration model is unable to determine

which one to match or whether to match both. We solve this problem by providing

a constraint on the alignment. We say that the alignment mustalign at least one of

the English “Mohammed” tokens with the Arabic “Mohammed” token, or a penalty is

paid. We train a penalty sub-model in the log-linear model which pays a fixed cost for

violating such constraints, which has the effect of settinga decrease in cost which must

be obtained from other sub-models in order for an alignment in which the constraint is

violated to more probable than one obeying the constraint. Note that this type of “OR”

constraint would be very difficult to specify in the LEAF generative story.

A similar case occurs where the combination of an English transliteration of an

Arabic content word and one or more English function words should be aligned as a

unit to the single Arabic content word. The transliterationmodel has a limited ability to
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determine where English function words should be aligned, but for more complicated

decisions the decision requires knowledge which can be found in the other sub-models

which can determine whether alignment geometry is probable, likely non-head words

to attach to the English head word, etc. This is again implemented as a constraint,

which is placed on the alignment of the content word.

Adding constraints determined by the transliteration package lead to an increase of

0.2 F-Measure over the system without these constraints. The fit on the development

corpus was 0.5 F-Measure better, indicating that some overfitting likely occurred.

The transliteration model only suggests a constraint for a few words in each of

roughly one quarter of the parallel sentences in our training corpus. The sub-model

added a constant for each constraint violation. We also tried using one minus the con-

fidence score as the penalty which did not improve performance.

The successful integration of a feature of this type shows that our approach is not

limited to sub-models which are similar to those in the generative story but can in fact

be used with any sub-model which can be scored over a hypothesized alignment of

a parallel sentence pair. We believe that improving the reliability of the confidence

score and decreasing overfitting will increase the performance obtained by adding this

sub-model further.
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4.8.4 Integrating Supervised Sub-models

The EMD algorithm can also integrate supervised knowledge.We recently obtained a

larger hand aligned alignment set from LDC for Arabic/English. After eliminating pos-

sible overlap with our discriminative training and test sets, there were hand generated

alignments for 25,930 new sentences. We decided to estimatetwo small supervised

sub-models directly from this data and add these sub-modelsto the EMD+LEAF sys-

tem.

We estimated translation tables directly from this data. There were about 230,000

entries in the translation tables, which are tables containing an English word, an Arabic

word, and a probability. This is a low number of parameters. For instance, compare

this with the HMM translation tables, where each table has about 34,000,000 entries,

(these tables are features 12 and 27 in the semi-supervised model, see Table 4.2).

We added the two supervised translation table sub-models toour baseline LEAF+EMD

alignment system. This lead to an increase of 1.8 F-Measure over a system without this

supervised knowledge. This shows that it is possible to easily integrate supervised

knowledge into the system.
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4.9 Discussion

The literature on semi-supervised learning generally addresses how to augment super-

vised learning tasks with unlabeled data. Here we augment anunsupervised learning

task with labeled data. This is useful in a wide diversity of tasks where we do not have

enough unlabeled data for supervised estimation of an initial model.

We have presented an algorithm applicable in the case that wehave few labels

and a generative model with acceptable performance when trained in an unsupervised

fashion. We determine a decomposition of the generative model into sub-models and

then reinterpret these sub-models as being combined into a log-linear model. We can

add additional sub-models which were not in the original generative story, and we use

this to add both backed off forms of the sub-models derived from the original generative

story, and heuristic sub-models which are not directly related to the original generative

story.

It is important to note that with this training algorithm we are not taking steps to

strictly maximize likelihood, even though the vast majority of parameters are estimated

in the likelihood maximization framework. Instead we are finding local maxima of

likelihood which are better with respect to the final performance criterion. These are

better than other reachable maxima with respect to the final performance criterion, but

they could possibly be worse with respect to likelihood under the original generative

model.
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We have shown that the reinterpretation of our new model as a log-linear model and

the derivation of a semi-supervised training algorithm which can be used to train it is an

excellent way forward to integrating knowledge sources which could not be captured

in the original generative model.

The semi-supervised learning literature generally addresses augmenting supervised

learning tasks with unlabeled data (Seeger, 2000). In contrast, we augmented an un-

supervised learning task with labeled data. We hope that Minimum Error / Maximum

Likelihood training using the EMD algorithm can be used for awide diversity of tasks

where there is not enough labeled data to allow supervised estimation of an initial model

of reasonable quality.

4.10 Summary

We began this chapter by redefining LEAF as a log-linear model. We showed how to

discriminatively rerank N best lists which are taken from this model. We then gener-

alized this to a semi-supervised training algorithm called“EMD” which implements

“Minimum Error / Maximum Likelihood” training. We trained EMD using the original

sub-models of LEAF along with more robust backed off sub-models and heuristically

derived sub-models which directly control the trade-off between Precision and Recall.

The EMD algorithm, when coupled with features derived from our LEAF model

and trained to maximize F-Measure, leads to increases between 3 and 9 F-score points
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in alignment accuracy and 1.2 and 2.8 BLEU points in translation accuracy over strong

French/English and Arabic/English baselines. This strongly validates all three main

contributions of the thesis. We additionally performed experiments showing that we

can add sub-models which are very different from those derived from LEAF.

4.11 Research Contribution

We developed an effective semi-supervised training algorithm for automatic word align-

ment which is capable of using manually annotated data and ofintegrating sub-models

which are not in our original generative model.
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Chapter 5

Conclusion

We present the contributions of the thesis, discuss lessonslearned, and then present a

section combining shortcomings and suggested future work.

5.1 Contributions

1. We have found a new method for automatically measuring alignment quality us-

ing an unbalanced F-Measure metric (Fraser & Marcu, 2007b),which has a good

correlation with BLEU. We have experimentally validated that this metric ade-

quately measures alignment quality for the translation task.

2. We have designed a new statistical model for word alignment, called LEAF

(Fraser & Marcu, 2007a), which directly models the word alignment problem

without making unreasonable assumptions about the structure of the resulting
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alignments. When LEAF is trained in an unsupervised fashion using approxi-

mate EM, it is comparable with our baseline. Unlike our baseline, unsupervised

LEAF does not require the use of heuristics to generate the final alignment which

is used to build a SMT system. The LEAF model can be decomposedto provide

rich sub-models which can be used in a log-linear model for semi-supervised

training.

3. We have developed a semi-supervised training algorithm,the EMD algorithm

(Fraser & Marcu, 2006), which automatically takes advantage of whatever quan-

tity of manually annotated data can be obtained. This algorithm allows for the in-

troduction of new knowledge sources with minimal effort. Weformulated a new

log-linear model using the original sub-models of LEAF along with more robust

backed off sub-models and two heuristically derived sub-models which directly

control the important trade-off between Precision and Recall. We applied the

EMD algorithm to train this model using a loss function derived from our unbal-

anced F-Measure metric. The EMD algorithm, when coupled with sub-models

derived from our LEAF model, leads to increases between 3 and9 F-score points

in alignment accuracy and 1.2 and 2.8 BLEU points in translation accuracy over

strong French/English and Arabic/English baselines.

149



5.2 Lessons Learned

5.2.1 Quality

The most widely used error metric in word alignment, Alignment Error Rate, (AER)

(Och & Ney, 2003) is not correctly derived from F-Measure andshould not be used.

The trade-off between Precision and Recall is very important. We have shown that

the setting of the parameterα, controlling this trade-off, varies with the task.

Using fully connected alignments is important, see Figure 2.1 on Page 29. Without

using fully connected components we have unnecessary ambiguity where two align-

ments which have the same translational correspondences have different scores accord-

ing to most intrinsic metrics of quality.

Extrinsic evaluation is important. Some word alignment research directed towards

minimizing AER, such as research on 1-to-1 alignment models,is not useful for in-

creasing translation performance. This is an important lesson for Natural Language

Processing systems which are not generally extrinsically validated. An example is sta-

tistical parsing where, at least until recently, a higher priority has been assigned to

increasing performance on the Section 23 test set of the PennTreebank than to en-

suring robust performance in clearly identified tasks. The latter would almost always
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involve parsing sentences which are drawn from a distribution which is not well cor-

related with that of the Penn Treebank, and gains in the robustness required to do this

accurately may not be well correlated with small gains on Section 23.

5.2.2 Modeling

M-to-N discontiguous alignments allow us to learn the translational correspondences

we are interested in. These are the most general correspondences which can be used by

current hierarchical translation systems such as Hiero (Chiang, 2005) and GHKM (Gal-

ley et al., 2006). Even phrase-based (consecutive word) SMTmodels can benefit from

alignments which do not make the consecutive word alignmentstructure assumption.

The quality of search is an important consideration where weare unable to do

tractable inference. It is important to both directly control search errors and directly

control the time taken.

The beam decoding algorithm, widely used in phrase-based decoders, does not work

for word alignment models with complex structure. Unlike phrase-based decoding, left-

to-right hypothesis extension using a beam decoder is unlikely to be effective because in

word alignment reordering is not limited to a small local window and so the necessary

beam would be very large. We are not aware of admissible or inadmissible search

heuristics which have been shown to be effective when used inconjunction with a

search algorithm similar to A* search for a model predictingover a structure like ours.
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The problem with the blow-up in parameter space involved in phrase-based models

such as the Joint model (Marcu & Wong, 2002) is partially solved by using the head

word structure. In particular, this appears to be a realistic assumption given the amount

of data we now have, and we also have a straight-forward path to increase the richness

of the sub-models, in response to additional training data,by simply reducing reliance

on word classes and further relaxing conditional independence assumptions. The M-

to-N discontiguous alignment structure using the head wordassumption is also faster

to search than a pure phrase-based structure as the translation dependencies on one side

are only dependent on the head word on the other side (andγ which is a flag indicating

whether the cept on the other side contains just one word). Inphrase based approaches

translational correspondence is calculated using the fullidentity of both cepts. The

decomposition of costs using the head word assumption meansthat adding a non-head

word to a head word is an operation which incurs additional cost but does not cause all

other costs incurred by that cept to be reevaluated. In phrase-based models any change

to a cept causes all costs to be reevaluated.

5.2.3 Semi-supervised Training

Combining discriminative training in a loop with steps derived from EM which increase

likelihood is an effective approach to semi-supervised training of models which were

traditionally trained in an unsupervised fashion using EM.
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Symmetrization heuristics are surprisingly powerful, butare no longer required for

LEAF, which directly models the desired alignment structure. We were initially sur-

prised that the predictions of the symmetrization heuristics were no longer useful as

a sub-model, but in retrospect it makes sense as they are the product of simple rules

which are effectively subsumed in the LEAF model.

Deriving an appropriate training criterion is important. As we showed in Chapter

2 AER is not a good training criterion, which shows why our initial experiments in

discriminative training, (Fraser & Marcu, 2005), failed toproduce an improvement in

BLEU.

Backing off the rich features of LEAF is important, particularly for difficult lan-

guage pairs like Arabic/English, and combining the original rich feature with a backed

off version in a log-linear model is an effective way of doingthis.

Directly tuning the trade-off between Precision and Recall is important when work-

ing with F-Measure. This has an analogue in translation, which is the optimization

of the BLEU length penalty (Koehn et al., 2003), which is required to obtain good

performance using BLEU.

Scoring full hypotheses allows for the integration of very rich features scored over

the full alignment, a subject we have only scratched the surface of with the integration

of the name transliteration feature.
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The search performance dramatically affects the performance of our discriminative

algorithm. We have found that search performance is much more important during the

D-step than it is when predicting Viterbi alignments for theentire training corpus. For-

tunately we only have to execute search for the discriminative development set during

discriminative training. For instance, we search for the Viterbi alignment for only the

1,000 sentences in the development set for the Arabic/English task (the search is per-

formed once for each iteration of the loop inside of the D-step, see Figure 4.1). Because

of this we can spend a significantly longer time on each sentence pair during discrim-

inative training than when we perform the E-step (which requires finding the Viterbi

alignment of 6.6 million sentence pairs in the Arabic/English case).

5.3 Shortcomings and Future Work

5.3.1 Problem Definition: What is a Word?

We have implicitly specified that a word is a space-separatedtoken output by a tok-

enizer. The tokenizer’s primary purpose is to separate punctuation from words. The

tokenizer additionally performs light deterministic processing of morphological phe-

nomena. For instance, the French tokenizer we use separatesobvious clitics from the

words they are attached to (e.g. “n’est” is mapped to “ne est”) and maps masculine

and feminine articles to a single token (which is acceptablefor translation to English
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which does not make this distinction). However this approach is too simple for many

language pairs.

The LEAF generative story generalizes well to the case that information in one

language is expressed lexically and not present in an easilyaccessible fashion in the

other language. For instance, for the application of Chinese/English machine transla-

tion LEAF’s “head-word” concept seems to work well. An English phrase such as “the

man” is often translated as a single Chinese word meaning “man”, while the definite-

ness of this word is usually marked by syntactic phenomena which would be difficult

to model. A good LEAF alignment would be a head-word link between English “man”

and the Chinese word for “man”, and then an association from English non-head word

“the” to English head word “man”. Theg distribution in LEAF is capable of modeling

that the word “the” has a high probability of being a non-headword, while thew−1

distribution can model that non-head words in the word classwhich “the” is in have a

high probability of being associated with a head word which is one word to the right.

Chinese (and other Asian languages such as Japanese) additionally require word

segmentation, which separates short sequences of Chinese characters into “words” (this

is because Chinese is written without the use of spaces to separate words). Automatic

word segmentation is itself an active area of research. A Chinese word segmenter is

typically trained in a supervised fashion from a gold standard segmentation specified

by human annotators, but it is not been carefully studied whether existing segmentations
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are a good choice for machine translation purposes. In fact,it may be possible to create

a new generative story by adding a few steps to the LEAF generative story which allow

the Chinese word segmentation to be modeled simultaneously with word alignment,

rather than handled as a preprocess as is currently done. This would have the interesting

effect of allowing word segmentation choices to be informedby the English words

in the parallel text. Most likely an initial segmentation (or segmentation knowledge

source) would need to be initialized using supervised knowledge, but the segmentation

could then be allowed to vary during the alignment process, and this might determine a

final segmentation which is more useful for translation thanexisting segmentations.

Unfortunately, the LEAF generative story does not model theinformation systemat-

ically present in “pieces” of words (e.g. morphological phenomena, including particu-

larly clitics). Such generalization would require a sourceof morphological knowledge.

For instance, consider again English “the man”, but this time consider how it should

be aligned with Arabic. English “the man” might be aligned with the single Arabic

token “al-rajul”, where the prefix “al-” is “the”, and “rajul” means “man”. Here again

the g distribution in LEAF is capable of modeling that words like “the” have a high

probability of being non-head words; again, thew−1 distribution can model that non-

head words in the word class of “the” are often associated with head words one word

to the right. But LEAF can not learn that the “al-” in this case indicates that it is more

likely that “the” should be in the English cept aligned with “al-rajul”. Modeling this
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in a language independent fashion would be difficult. Ittycheriah and Roukos (2005)

defined sub-models which model this type of information for the Arabic/English word

pair case and showed that this is effective. We could similarly define language pair

specific sub-models to do this. However, we would be more interested in finding a

general framework to solve this problem. Such a framework would ideally be language

independent, but might require supervised training data (in the same way that integrat-

ing Chinese segmentation might require access to a supervised knowledge source, as

we already discussed). We would be interested in developinga language independent

extension of the LEAF generative story which is able to consider phenomena like the

“al-” in “al-rajul” (and possibly align such morphemes separately), but we recognize

that this is both conceptually and computationally difficult without access to very highly

accurate sources of morphological knowledge.

5.3.2 Quality

One shortcoming of our work on quality metrics is that we haveprovided a metric with

a tunable parameter. This necessitates experimentation todetermine how to evaluate

with each new task. We would be interested in understanding the dependency of theα

parameter more fully. For instance, we could study whether there is something about

the language pairs involved, the quality and style of the gold standard annotation, or
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even the quantity of training data which helps to explain whya particularα setting

works best.

Ideally we would like to derive a metric which does not have a tunable parameter

but has the same performance as unbalanced F-Measure does whenα is appropriately

tuned. CPER (Ayan & Dorr, 2006a) is an interesting step in thisdirection. CPER cal-

culates balanced F-Measure over the phrase pairs extractedfrom a hypothesized align-

ment (these are the same phrase pairs as are extracted for usein the translation model

of a phrase-based MT system), comparing them with the phrasepairs extracted from

a gold standard alignment. Unfortunately, CPER has not been shown to predict MT

performance. It seems likely to us that there should be a trade-off between Precision

and Recall in comparing phrases extracted as well, but possibly this trade-off will be

less important than in the case of word links. We would be satisfied if we were able to

use a singleα parameter in conjunction with a CPER-like metric ifα were constant for

all of our tasks.

Another shortcoming of our work is that we only tested the BLEUmetric. The

BLEU metric shows that is likely that our noise and oracle models, used for artificially

degrading and improving alignments, produce regular changes in the quality of machine

translation systems built from these alignments, but we could obtain even stronger ev-

idence. Ideally we would like to use human annotators to judge the output of MT

systems built using the alignments, but this would be prohibitively expensive and is
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probably not necessary in this case. Instead, METEOR (Banerjee & Lavie, 2005) is

a promising automatic metric which we would be interested intrying as it has been

shown to have better correlation with human judgments than BLEU.

Our work on quality is dependent on measuring the quality of asingle predicted

alignment, such as the Viterbi alignment of the LEAF model. However, there are ap-

proaches to building MT systems which are trying to utilize the full distribution over

alignments rather than the most likely single alignment. Asthis body of work matures,

we would be interested in deriving a quality criterion for a distribution over alignments

which is finer grained than simply taking the most likely prediction and scoring it. This

new quality criterion should allow us to evaluate the quality of the entire distribution.

5.3.3 Modeling

One large disadvantage of the LEAF model is the intractability of exact search. Model

4 has the same problem. We need to solve search problems during both parameter esti-

mation and prediction of the final Viterbi alignment. As we have discussed previously,

existing models with tractable exact search make unrealistic assumptions about align-

ment structure which do not model the word alignment problemwith sufficient fidelity.

We have defined a local search algorithm which results in goodF-Measure scores, by

taking steps to apply some of the knowledge gained by the research community in

solving problems such as the Traveling Salesman Problem in our implementation of a
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restarting “Tabu” search (Glover, 1986). However, our current implementation is very

slow (see Appendix C.1 for detailed timings and a discussion of how to program a

faster implementation). We are also hopeful that we could use a dynamic programming

approach which would consider many more alignments (see Appendix C.2).

Another disadvantage of the LEAF model is the Viterbi approximation used to carry

out the M-step. In previous experiments using GIZA++ we havefound that using the

Viterbi assumption is usually not worse than using the “neighborhood” assumption,

which involves calculating the probabilities of alignments which are one search oper-

ation away from the Viterbi alignment. However, there is reason to believe that this

might not be the best we could do. In our work with LEAF we have significantly re-

duced search errors, which means that the alignments we find are of higher quality. It

is likely that the N best lists we generate are a better approximation of the search space

than the neighborhood of the Viterbi used by GIZA++. In the short term, it would be

interesting to try estimating LEAF using a normalized N bestlist of a large size similar

to those generated during the D-step (but in this case calculated over the entire training

corpus). In the longer term, it would be interesting to estimate LEAF by solving the

alignment problem such that very large N best lists or an alternative efficient represen-

tation of many hypotheses can be used.
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One aspect of the LEAF model we have not fully investigated isthe use of word

classes. We use source word classes derived using a greedy maximization of the prob-

ability of the monolingual source corpus (Och, 1999), and follow the same procedure

to derive word classes for the monolingual target corpus. These are the same word

classes as are used in our baseline. We would be interesting in conducting a study to

see if better word classes, for instance derived from Part-of-Speech tags, might help the

performance of LEAF.

5.3.4 Semi-supervised Training

Our approach to semi-supervised training, Minimum Error / Maximum Likelihood

training using the EMD algorithm, has been shown to work well, but it could be fur-

ther improved. We would be interested in conducting studiesto determine the point at

which the current algorithm begins to overfit the discriminative training set. It would

also be helpful to determine at which point adding additional sub-models begins to tax

the current optimization’s ability to find a local maxima reasonably close to the global

maxima.

A closely related problem is the problem of feature selection. In our current im-

plementation several of the features receive very low scores and sometimes the 1 best

choice (taken by rescoring the final hypothesis list from theD-step) is not changed

by removing these features. A principled approach to feature selection would mark
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these features as ineffective earlier in the process and this might systematically result

in convergence to better solutions for the discriminative training problem.

One obvious area of improvement for our semi-supervised alignment model is to

use language specific sub-models as we already mentioned. Inparticular, interesting

work has been done for morphology in connection with word alignment. Corston-

Oliver and Gamon (2004) describes an approach for normalizing the inflectional mor-

phology of German and English to gain an improvement in alignment quality mea-

sured by AER. We documented a simple approximative stemming algorithm, (Fraser

& Marcu, 2005), which was used to gain an improvement in AER. Niessen and Ney

(2004) provides an interesting approach to integrating morphology in word alignment

by interpolating lemma and inflected word probabilities in aprincipled fashion. The

IBM research group has used Model 1 training combined with sophisticated morpho-

logical segmentation of Arabic to train Arabic/English word alignments (Lee, 2004),

and more recently defined a discriminative word alignment model specifically for Ara-

bic integrating morphological components (Ittycheriah & Roukos, 2005). These works

and several others point to the possibility of integrating morphological modeling with

word alignment. One could integrate features either just into the word alignment model,

or possibly into both the word alignment model and the translation model in a coordi-

nated fashion.
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We are also interested in the integration of more powerful sub-models which can

be drawn from other areas covered in the natural language processing literature. We

suggest three examples here. Drabek and Yarowsky (2004) showed that syntactic rules

can be used to reorder the corpus so as to decrease problems inaligning syntactic clause

level phenomena, and Collins et al. (2005) has generalized this approach further. Our

model is likely to benefit from the use of dependency parses tohelp determine likely

head word relationships in a manner similar to work reportedby Cherry and Lin (2003),

but instead implemented as a sub-model added to semi-supervised LEAF. Work on de-

termining multi-word units, which is often done using unsupervised models, may pro-

vide interesting features for helping to inform which wordsmight be grouped together

as a translational unit, though this decision is ultimatelya bilingual decision which will

be made differently for different language pairs (e.g. the English words grouped to-

gether would differ for the English/Arabic and English/German cases). Work of this

type can be easily integrated into our framework as we alwaysscore complete hypothe-

ses, and so no limitations requiring the decomposing of features over small pieces of

the alignment are necessary.

Finally, we would like to apply the EMD algorithm to problemsoutside of word

alignment. There is a tremendous interest in algorithms which work well with very

small quantities of labeled data and larger quantities of unlabeled data. EMD solves this

problem, but in its current formulation is tied to the word alignment problem. We would
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be interested in providing a more general formulation of EMD. Another application of

EMD, perhaps outside of the area of natural language processing, is an opportunity we

would be very interested in pursuing.

5.3.5 Using Word Alignment

We would be interested in applying the EMD algorithm in conjunction with LEAF to

generate alignments for applications other than MT. Two obvious applications which

come to mind are Cross-Lingual Information Retrieval (CLIR) (Hiemstra & de Jong,

1999; Xu et al., 2001; Fraser et al., 2002) and paraphrasing (Pang et al., 2003; Quirk

et al., 2004; Bannard & Callison-Burch, 2005). It would be interesting to see if the

F-Measure criterion derived for translation tasks is useful for these tasks as well. Our

intuition tells us it that it should be, but this must be empirically verified. We would

need to calculate an appropriateα for each task. As an example, we were interested to

observe that in work by Riezler et al. (2007) the authors reported that they needed to

manually increase the number of NULL alignments on one side of a specialized corpus

they were aligning for use in query expansion. We expect thatthese sort of trade-

offs could be handled automatically in our framework by providing a small number of

gold standard word alignments and appropriately adjustingα. It would also be very

interesting to try using alignments generated following our approach to build resources
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for CLIR and paraphrasing, and these applications might provide another source of

extrinsic validation for our work.

We also envision modifying LEAF’s generative story to better model other appli-

cations. For instance, LEAF could be modified to directly model the problem of sum-

marization, in a fashion similar to work by Daumé III and Marcu (2005). This requires

a generative story which allows large amounts of deletion inaligning the document to

the summary. A similar problem is the modeling of the generation of closed captions

for television.

The present best practice of extracting translation rules (or phrase pairs in a phrase-

based SMT system) from a single alignment (such as the LEAF Viterbi alignment) is

well established. But as we discussed in Section 3.6.7 research has begun into estimat-

ing the translation model from a distribution over alignments. A first approximation

of this approach might be to estimate rules from the N best lists we can currently gen-

erate, weighted by the posterior probability of the alignment. We might also want to

“second-guess” the extraction of phrase-pairs from the final LEAF Viterbi alignment

in a fashion similar to the work of Deng and Byrne (2005). Givena new test set, they

used their alignment model to try to determine probable translations for phrases which

occurred in the training data but were aligned in such a way that extracting a transla-

tion rule was impossible. This revisiting of the alignment given a test set is a form of

inexpensive transductive learning. As work in the area of estimating from more general
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output distributions than the Viterbi alignment progresses, we envision the modification

of LEAF to output a distribution over alignments which assigns non-zero probabilities

to a large portion of the probable alignments. This will necessitate the modification of

translation systems to estimate rules from this distribution.

A closely related advance would be to refine LEAF itself into atranslation model.

The success of the Hiero hierarchical translation model (Chiang, 2005) suggests that

this would be possible. However this would be an ambitious research program as we

would need to create a decoder integrating language modeling capability, and most

likely we would have to create a very different search algorithm. We would also need

to add new sub-models to the model to score translations. In particular it would be

important to allow the model to memorize more of the context than is necessary in

word alignment. A less ambitious project which could be usedas a stepping stone

towards this final goal would be to score the LEAF alignment model as a feature in

a hierarchical decoder in a similar fashion to the “lexical smoothing” (scoring of the

alignment links used to generate translation rules) already implemented in Hiero, or

even as “lexical smoothing” in a phrase-based decoder (particularly if it were a more

general phrase-based decoder which supported gaps in the phrases).
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Appendix A

IBM Model 4

A.1 Introduction

The definitive work on early generative models of word alignment for machine trans-

lation is by Brown et al. (1993), which describes a group of models called the IBM

Models. We focus on IBM Model 4 in particular. An overview of other generative

models for word alignment is given in Section 3.6.

A.2 The IBM Models

Brown et al. (1993) developed five statistical models of translation (IBM Models 1

through 5) and parameter estimation techniques for them. The models were designed

to be used in a pipeline, where each model is bootstrapped from the previous model.
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For ease of exposition, the source language for the translation task is referred to as

“French”, and the target language is referred to as “English”, although these can be any

language pairs in practice. The translation problem is defined as given a French string

f , find the English strinĝe according to Equation A.1.

ê = argmax
e

Pr(e|f) = argmax
e

Pr(e) ∗ Pr(f |e) (A.1)

wheree represents any potential English string made up of English words. Pr(e)

represents the true distribution over English strings.Pr(f |e) represents the true distri-

bution over French strings generated from English strings.

ConsiderPθ(f |e) to be a model ofPr(f |e). If we introduce a hidden variablea

representing word alignments, we can sum over these variables, see Equation A.2.

Pθ(f |e) =
∑

a

Pθ(f, a|e) (A.2)

For our task, which is word alignment annotation, we have fixed stringsf ande,

and we wish to select the best alignment according to the model, â, which we do in

Equation A.3.

â = argmax
a

Pθ(a|e, f) = argmax
a

Pθ(f, a|e) (A.3)
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The only alignments in the IBM models which can have non-zero probability in-

volve links from one English word to zero or more French words. We call alignments

which can have non-zero probability within a model “feasible” in that model. Not all

French words must be aligned with an English word which appears in the sentence;

those that aren’t are considered to be spontaneously generated. For reasons of nota-

tional convenience we consider them to be aligned to a so-called NULL word which

we will denotee0.

A.2.1 Introduction to Model 4

We concentrate on Model 4, presenting the generative story,the mathematical formu-

lation, and the unsupervised training algorithm for the model using a variant of the

Expectation Maximization (EM) algorithm. We also outline how Model 4 is used in

practice, including the heuristic steps applied to the alignments predicted by the model

in order to produce a final word alignment.

Brown et al. (1993) defined a model ofPr(f |e) called Model 4. IBM Model 4 is

a generative model, which is a model of how a French stringf is generated given an

English stringe. The steps followed determine a unique alignmenta.

To generatef from e (using steps which determinea), the following generative

story is used. We first pick for each English word a fertility value, which is the number

of French words which will be generated from it. Then we choose a fertility value for
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Figure A.1: French/English example, gold standard (solid lines) and best possible
Model 4 decisions (dashed lines)

the NULL English word conditioned on the total number of French words generated

from the non-NULL English words. For each English word including the NULL word

we pick the identity of the French words that are generated from it. Finally, we choose

the position of each French word in the French sentence.

A.2.2 Example of Model 4 Generative Story

We start with an English sentence. We will use a shorter sentence similar to our example

from the introduction which is shown in Figure A.1. The gold standard decisions are

the solid lines, while the best alignment which is feasible in Model 4 is indicated with
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dashed lines. Here are the Fertility and Translation decisions which we would like the

model to make for our example:

• “They” is Fertility 1. It generates French “ils”.

• “do” is Fertility 0.

• “not” is Fertility 2. It generates French “ne” and French “pas”.

• “want” is Fertility 1. It generates French “désirent”.

• “to” is Fertility 0.

• “spend” is Fertility 1. It generates French “dépenser”.

• “that” is Fertility 1. It generates French “cet”.

• “money” is Fertility 1. It generates French “argent”.

• The English period is Fertility 1. It generates the French period.

• The English NULL word does not generate any spurious French words.

Because of the 1 to many assumption, we can not draw links from both English

“do” and “not” to French: “ne” and “pas”. We also can not draw links from both “to”

and “spend” to “d́epenser”. This is a serious problem. We present a new model called

LEAF in Chapter 3 which overcomes the 1-to-many assumption.
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A.2.3 Model 4 Generative Story

We present the full Model 4 generative story, following the exposition of Brown et al.

(1993) very closely. We do make one assumption differently from Brown et al. (1993),

which is that the placement position is only dependent on theprevious placement po-

sition (in IBM Model 4 there is an additional conditioning on automatically derived

word classes, but we omit this to simplify the presentation). Note that there is a non-

zero probability of “failure”, i.e. there is a non-zero probability that the generative story

fails to generate anything. This means the model is deficient, wasting some probability

mass.

The variablel refers to the length of the English sentencee, andm refers to the

length of the generated French sentencef . φi is the number of French words generated

by the English word at position i. The identity of these wordsis τik (k ranges from 1 to

φi), and their French position isπik. The termρi refers to the previous English word to

the English word at positioni which has fertility greater than zero.cρi
is the “center” of

the words placed by the previous English word of non-zero fertility to the English word

at position i. The calculation ofcz for a non-zero-fertility English word at position z is

described in equation A.4, below.

The Model 4 generative story:

1. For eachi = 1, 2, ..., l choose a fertility valueφi according to the distribution

n(φi|ei).
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2. Choose a fertility valueφ0 according to the distributionn0(φ0|
∑l

i=1 φi).

3. Let m =φ0 +
∑l

i=1 φi

4. For eachi = 0, 1, ..., l and eachk = 1, 2, ..., φi, choose a French wordτik ac-

cording to the distributiont(τik|ei).

5. For eachi = 1, ..., l and eachk = 1, 2, ..., φi, choose a positionπik as follows:

• If k = 1, chooseπi1 according to the distributiond1(πi1 − cρi)

• If k > 1, chooseπik according to the distributiond>1(πik − πik−1) subject

to the constraint thatπik−1 < πik

6. If any position has been chosen more than once, return “failure”

7. For eachk = 1, 2, ..., φ0 choose a positionπ0k from φ0 − k+ 1 remaining vacant

positions in1, 2, ...,m according to the uniform distribution.

8. Letf be the string withfπik = τik

The calculation of the “center” of the French words generated from a non-zero

fertility English word at positioni in the English sentence is shown in Equation A.4.

ci = ceiling(
φi

∑

k=1

πik/φi) (A.4)
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We call French words generated from English words (not including the special

English NULL word) “non-spurious”, as their generation is explained by the English

words we observe. The number of non-spurious words ism′, which is the sum of the

fertilities of the non-null English words, as shown in Equation A.5.

m′ =
l

∑

i=1

φi (A.5)

For notational reasons we annotate unexplained French words as being generated

from the English NULL word, but this does not directly reflectthe generative process.

These French words are called “spurious”, as they aren’t being generated by the English

words we observe. In the generative story, these words are generated as a part of the

process of generating non-spurious French words. The parameter p1 represents the

probability that as we generate a non-spurious French word we also generate a single

spurious French word, whilep0 is the probability that as we generate a non-spurious

French word we don’t generate any spurious French word (p0+p1 = 1). The number of

spurious words generated is modeled using a binomial distribution where the number

of trials ism′ and the chance of trial success (generating a spurious word)is p1 (the

chance of trial failure is1 − p1 = p0). The equation is given in Equation A.6.

n0(φ0|m
′) =

(

m′

φ0

)

pm
′−φ0

0 pφ0

1 (A.6)
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The decisions made in a particular generative story can be mapped to a unique

alignmenta. When working with 1 to many alignments, a compact representation

of an alignment which is sometimes used is a vector of lengthm (the length of the

French sentence), which indicates for each French wordfj the position of the English

word which generated it (i.e., the values in the vector rangefrom 0, .., l). The reader

can verify that given the particular generative story outlined for our example (with the

addition of distortion operations to specify the placementof the words) we generate the

unique French string and unique alignment shown in A.1. Under the Model 4 generative

story, given a starting English stringe and the decisions made (which did not result in

“failure”), we generate a unique French stringf and a unique alignmenta, and this is

always the case1.

A.2.4 Model 4 Mathematical Formulation

Given an English stringe, a French stringf and a candidate alignmenta, we would like

to look upp(f, a|e). The formula for Model 4 is in Equation A.7. See Equation A.8 for

the expansion of the simplified distortion calculation which we abbreviateDik(j).

[

l
∏

i=1

n(φi|ei)

]

n0(φ0|
l

∑

i=1

φi)
l

∏

i=0

φi
∏

k=1

t(τik|ei)
l

∏

i=1

φi
∏

k=1

Dik(πik) (A.7)

1The inverse is not generally true; given an English stringe, a French stringf ,
and an alignmenta, there is not only one particular generative story that would have
generatedf anda from e unlessφ0 = 0 (such as in our example).
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Dik(j) =















d1(j − cρi
) if k = 1

d>1(j − πik−1) if k > 1

(A.8)

A.2.5 Training Model 4 Using Expectation-Maximization

A.2.5.1 Introduction

In this section we present the training of Model 4 using the Expectation-Maximization

(EM) algorithm. EM is an algorithm for finding parameter settings of a model which

maximize the expected likelihood of the observed and the unobserved data (this is

called the complete data likelihood; the incomplete data likelihood is the likelihood

of only the observed data). Intuitively, in statistical word alignment, the E-step corre-

sponds to calculating the probability of all alignments according to the current model

estimate, and the M-step is the creation of a new model estimate given a probability

distribution over alignments (which was calculated in the E-step).

Model 4 is a generative model with carefully controlled complexity. In Model 4,

given stringse andf , every particular generative story which explains howf was gen-

erated frome representsl + 2m decisions. There arel fertility decisions over the

English string and there is a generation decision and a placement decision for each of

them French words. It is important in EM to control complexity. Ifcomplexity is not

carefully controlled, there can be a bias towards simpler structure, by which we mean

solutions where less decisions are made. If this is the case then heuristics must be used
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to compensate. It is difficult to craft an effective generative model of word alignment

which has a constant number of decisions for use with EM.

A.2.5.2 E-step

In the E-step we would ideally like to enumerate all possiblealignments and label them

with p(f, a|e). However, this is not possible when using an alignment modelas complex

as Model 4. As we will see below in the discussion of the M-step, we would at least

like to find the most likely alignment given the model. This isreferred to as the Viterbi

alignment,̂a in this formula:

â = argmax
a

Pθ(a|e, f) = argmax
a

Pθ(f, a|e) (A.9)

This is a repeat of equation A.3 which represents the task of finding an approximate

Viterbi alignment to output as the final alignment output from the alignment process.

Here, in Equation A.9 we are referring to the search for an alignment during training.

We can vary this to be, for instance, the search for the 10 mostprobable alignments

(where a probability distribution over the 10 alignments would be used for the M-step).

The calculation of the Viterbi alignment for IBM Model 4 was proven to be NP-

hard by Udupa and Maji (2006). So we take the most probable alignment we can find,

and assume it is the Viterbi alignment.
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A local hillclimbing search algorithm is used (Brown et al., 1993). The search starts

from the presumed Viterbi alignment found during the previous iteration of training.

Brown et al. (1993) recommends instead starting the search from the Viterbi alignment

of IBM Model 2, but we do not believe this is more effective. Allalignments which

are reachable by two search operations from the current bestalignment are considered.

One search operation is to change the generation decision for a French word to a dif-

ferent English word, and the other search operation is to swap the generation decision

for two French words. The two search operations are applied exhaustively, and the

best resulting alignment is chosen; this is iterated. The search is terminated when no

improved alignment can be found.

A.2.5.3 M-step

For the M-step, we would like to take a sum over all possible alignments for each

sentence pair, weighted byp(a|e, f) which we calculated in the E-step (note that the

labels labeled in the E-step must be renormalized to sum to 1 for eache, f pair, as they

are estimates ofp(f, a|e), and we would like estimates ofp(a|e, f)). As we mentioned,

this is not tractable.

We make the assumption that the single assumed Viterbi can beused to update our

estimate in the M-step (which we callpM(a|e, f), the probability of the alignment given

the sentencee and the sentencef ):
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pM(a|e, f) =















1 if a = â

0 if a 6= â

(A.10)

Note that when discussing “Viterbi training”, we are abusing the term “Viterbi

alignment” to mean the best alignment according to the modelthat we can find, not

the best alignment according to the model that exists.

We estimate new parameters from the assumed Viterbi alignments found during

the E-step by simply counting events in the assumed Viterbi alignments, since they

are assumed in equation A.10 to be the only alignments of non-zero probability. We

collect the counts listed in Figure A.2. After collecting the counts, for each condition,

we normalize these counts so that they sum to one, which provides us with the model

estimate for the next E-step, listed in the following equations:

t(f̄ |ē) = ct(f̄ |ē)/
∑

f̄ ′

ct(f̄ ′|ē) (A.11)

n(φ̄|ē) = cn(φ̄|ē)/
∑

φ̄′

cn(φ̄′|ē) (A.12)

d1(△j) = cd1(△j)/
∑

△j′

cd1(△j
′) (A.13)

189



ct(f̄ |ē) translation counts,̄f is a French word and̄e is an English word
cn(φ̄|ē) fertility counts,φ̄ is the number of words generated by the English word

ē
cd1(△j) distortion (movement) counts of the first French word translated from a

single English word (looking from left to right in French sentence)
cd>1(△j) distortion (movement) counts of other French words translated from a

single English word

Figure A.2: Counts collected in unsupervised Model 4 training

d>1(△j) = cd>1(△j)/
∑

△j′

cd>1(△j
′) (A.14)

Clearly the Viterbi training approximation is related to EM training, which tries to

maximize the complete data log likelihood. Neal and Hinton (1998) analyzed approx-

imate EM training and motivates this general variant. We would like to eventually try

using a probability estimate over a larger set of hypothesized alignments to reestimate

the model, but finding a set to use which will help the performance of the estimated

models is an open research problem.
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A.2.6 How Model 4 is Used in Practice

A.2.6.1 Open Parameters Used with Model 4

In practice,p0 is not usually trained using likelihood (see (Brown et al., 1993) for

details of count collection). Insteadp0 is set to a fixed value which produces good

quality alignments.

The GIZA++ Model 4 implementation used in our experiments has two smoothing

parameters to smooth the fertility distribution which are not part of the original Model

4 formulation.

We set these three open parameters based on final translationquality, in an expen-

sive grid-search process which involves building a full SMTsystem for each parameter

setting we would like to try. In our work on semi-supervised training presented in

Chapter 4 we overcome this difficulty and show how to efficiently train such parame-

ters using a small amount of hand annotated word alignment data.

A.2.6.2 Heuristic Symmetrization for the IBM Models

All of the IBM Models assign zero probability to alignments inwhich more than one

English word is aligned to a single French word. This is a poorassumption. Ideally,

we would like a model to be able to assign non-zero probabilities to all of the possible

alignments, which includes alignments that violate the oneto many assumption.
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In practice, in current state of the art machine translationsystems, heuristic tech-

niques are used to obtain M-to-N discontinuous alignments.For 1-to-N models like the

IBM Models, the following approach is used:

• We are supplied with a bitext to be aligned, a 1-to-N alignment system, and a

symmetrization heuristic.

• Generate the predicted 1 to many alignment in the direction English to French.

In this alignment one English word aligns to zero or more French words. Call the

resulting alignment A1.

• Generate the predicted 1 to many alignment in the direction French to English.

In this alignment one French word aligns to zero or more English words. Call the

resulting alignment A2.

• Combine A1 and A2 into a many to many alignment using a symmetrization

heuristic. Call this many to many discontinuous alignment A3

• Return A3

We briefly discuss the three symmetrization heuristics defined by Och and Ney

(2003). For discussion of other heuristics the reader is referred to Koehn et al. (2003).
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• The “Union” symmetrization heuristic involves taking the union of the links in

the A1 and A2 alignments. This results in an alignment havingM-to-N discon-

tinuous structure.

• The “Intersection” symmetrization heuristic involves taking the intersection of

the links in the A1 and A2 alignments. This will result in a 1-to-1 alignment

structure.

• The “Refined” symmetrization heuristic starts from the “Intersection” 1-to-1 align-

ment, and adds some of the links present in the “Union” M-to-Ndiscontinuous

alignment following the algorithm defined by Och and Ney (2003). This results

in an alignment containing 1-to-N and M-to-1 correspondences, but importantly

the words in the minimal translational correspondences must be consecutive, so

this is not as general as the “Union” heuristic. This heuristic is described in fur-

ther detail in Section 2.2.3.

Use of these heuristics is undesirable. We would ideally usea model which is

able to assign non-zero probability to many to many discontinuous alignments directly,

without requiring the use of heuristics. We present the LEAFmodel in Chapter 3 which

is able to do this.
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A.2.7 Discussion

We have presented the important issues behind the work of Brown et al. (1993). We

have shown how Model 4 works in detail, and have discussed thestructural assumptions

that were used in all of the IBM models. In addition, we have discussed how Model 4

is used in practice. We hope that the reader now has an understanding of the previous

state of the art unsupervised solution for word alignment and some idea of its strengths

and weaknesses.

For the baselines in this thesis, we directly compare results with the freely available

GIZA++ software package, which is used to generate the alignments for many MT

systems.

However, we have also reimplemented the Model 4 alignment model. We have

implemented our code so that we can calculate presumed Viterbi alignments for Model

4 on many servers using a small memory footprint, which is a large advantage over

GIZA++ which has a large memory footprint and can only use oneserver.
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Appendix B

Details of Introductory Experiments

B.1 Building Translation Systems with Word Alignments

SMT systems are usually broken down into two types of model, the translation model,

which is a model of translational correspondence between the source and target lan-

guages, and the language model, which is a model of well-formed sentences in the

target language.

The translation model is estimated using a bitext of parallel source language sen-

tences and target language sentences and an alignment of that bitext. The model es-

timated from the bitext is called the translation model because it models the mapping

of a source phrase to a target phrase. The language model is estimated only from the

target language text, this is a model of well-formed target language sentences. We can
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use additional target language text which is not from the bitext to help us build a better

language model.

In the experiments presented in this section, we use the ISI implementation of the

alignment templates system (Och & Ney, 2004), which is a phrase-based SMT trans-

lation system (Koehn et al., 2003). This is a log-linear translation model (Och & Ney,

2002). The log-linear model is trained to maximize an automatic translation quality

metric called BLEU (Papineni et al., 2001). BLEU is an automatic evaluation metric

which measures translation quality. BLEU has been shown to correlate well with hu-

man judgments of quality. To maximize BLEU we use the Maximum BLEU training

algorithm (Och, 2003). This algorithm uses the translation“dev” set as training data to

train the weights of the log linear model so as to maximize BLEU.

In phrase-based SMT, we estimate the phrase lexicon (the most important part of

the translation model) using a word alignment of the training bitext. We will vary how

we construct this word alignment. This is the only factor varied in all experiments in

this thesis1. We will always compare two or more systems using the same language

models and the same bitext, but the two alignments of the bitext will be different.

For all of our experiments, we use a language model built on the target language

training data and a large language model built on news data.

1Note that because we only allow the final alignment to vary, features based on IBM
Model 1 (a lower order alignment model) are also held constant.

196



We evaluate an alignment by building a machine translation system, translating

a machine translation test set and evaluating it using BLEU. For ease of reading we

multiply the BLEU score by 100, and for this reason we report “BLEU %” in our

results.

We present our own word alignment systems in Chapters 3 and 4. In this section we

present results based on our baseline, a widely used unsupervised alignment procedure,

which is used as the baseline in most papers on word alignment. This approach uses

a freely available software package called GIZA++ (Och & Ney, 2003), which imple-

ments several alignment models. GIZA++ implements both theIBM Models (Brown

et al., 1993) and the HMM word alignment model (Vogel et al., 1996). In our baseline,

we use heuristic post-processing of the output of GIZA++, asis standardly done.

GIZA++ implements both Model 4 and the HMM using a few extensions which

were not in the original formulations. We use IBM Model 1, the Aachen HMM, and

IBM Model 4 in that order (these models “bootstrap” from one another, see Appendix

A for more details). The output of these models is an alignment of the bitext which

projects one language to another. GIZA++ is run end-to-end twice. In one case we

project the source language to the target language, and in the other we project the target

language to the source language. The output of GIZA++ is thenpost-processed using

so-called “symmetrization heuristics” to produce a singlealignment by combining the

source to target alignment and the target to source word alignment output by the models.
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We describe Model 4 and the heuristic symmetrization algorithms in more detail in

Appendix A.

B.2 Experimental Details for the Romanian/English Weak

Oracle Experiment

We would like to substantiate the claim that improved alignments will lead to improved

MT systems. We show that there exist alignments of a fixed bitext which are signifi-

cantly better for translation than the alignments generated by our baseline system. We

generate the improved alignments by using an “oracle”, a system which (in an un-

fair fashion) tells our alignment system how to improve the alignments. We measure

phrase-based statistical machine translation performance both when using our baseline

alignment system, and using the “oracle”. We show that alignments can be improved

by showing that the “oracle” alignments lead to higher performance than the baseline.

Experiment overview: We report on a “weak oracle” experiment. We select a

training bitext (parallel sentences in Romanian and English) to be aligned under three

different experimental conditions. For the baseline, we use the current state of the art

alignment system to align the training bitext and then builda machine translation sys-

tem and translate a held out test set. The second experimental condition is to show that

our reimplementation of the baseline has identical performance (this is only necessary
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because we need to use our reimplementation for the weak oracle). For the “weak or-

acle”, we allow the word alignment system access to gold standard alignments of the

test data to force it to make better alignment decisions on the training bitext. The dif-

ference with the baseline is that a “weak oracle” told the alignment system how to align

the training bitext well (for this test set). We show that thetranslations of the test data

generated by an MT system using this alignment is of higher quality than the transla-

tion which was generated by the baseline system. This shows the existence of better

alignments than those generated by our baseline system.

Experiment details: We build SMT systems for three distinct experimental condi-

tions which we list below. See Table B.1 for statistics of the data.

We use the training data originally supplied for the WPT05 shared task (Martin

et al., 2005) on word alignment. For the machine translation“dev” set, which is used for

Maximum BLEU training, we use the WPT05 alignment test set, andfor the machine

translation “test” set, we use the WPT03 alignment test set.

The first system, “Symmetrized GIZA++”, is the result of running 5 iterations of

running GIZA++ IBM Model 1, 5 iterations of GIZA++ HMM Model, and 4 itera-

tions of GIZA++ Model 4 where one alignment was generated in the Romanian to

English direction and one alignment was generated in the English to Romanian direc-

tion. The second system, “Symmetrized Model 4”, is the result of bootstrapping our
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implementation of Model 4 using the GIZA++ HMM Model outputs, running 4 itera-

tions of Model 4 in both directions using our implementationand is otherwise identical

to “Symmetrized GIZA++”.

The first system, “Symmetrized GIZA++”, is the result of running GIZA++ Model

4 and post-processing the output with heuristics. “Symmetrized Model 4” is our im-

plementation of Model 4, also post-processed with the same heuristics. The third sys-

tem, “Weak Oracle” is generated by concatenating the training data together with 1000

copies of the manually annotated gold standard word alignments for both the machine

translation “dev” set and the machine translation “test” set each time parameters are

estimated for use in our implementation of Model 4. These gold standard alignments

are removed before the alignments are used to build the machine translation system.

The effect these gold standard alignments have on the machine translation system is

indirect; they force the decisions made in the alignment of the training data to be good

decisions for the translation of the development and test sets (which is why this is an

oracle experiment).

Using gold standard word alignments for a fraction of the parallel sentences in our

augmented training+dev+test corpus is easy to do in our reimplementation of Model

4 but not implemented in GIZA++, which is why we use our implementation to im-

plement the “Weak Oracle”. A preliminary comparison is necessary to show that our

alignment package is equivalent in performance to GIZA++. The BLEU scores in line 1
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(GIZA++) and line 2 (our implementation) of Table B.2 show that our implementation

has equivalent performance.

The main comparison directly addresses the existence of better alignments. We

compare “Symmetrized Model 4” (line 2 of Table B.2) with “WeakOracle” (line 3 of

Table B.2). The “Weak Oracle” is 3.30 BLEU points better than “Symmetrized Model

4”. This shows the existence of alignments which give us better translation performance

than the best we can obtain with our baseline.

Note that this is only a weak oracle experiment because it is possible to find even

better alignments. For instance, if a word is translated as two words in the gold stan-

dard in one context, it will translate as two words in every context. This will damage the

quality of other alignments of that word in other contexts which could affect translation

decisions and adversely affect translation quality. In addition, the oracle is weak be-

cause it is constrained to the alignment structure which is modeled by the IBM Models

which is not the correct alignment structure (see Section 1.2.4). If we were given infi-

nite resources to search all alignments exhaustively by evaluating them in a translation

system directly, it would be possible to find better alignments with even larger BLEU

improvements (which would be a strong oracle).

Experiment Results Summary: Table B.2 shows that the current state of the art

(line 1) and our reimplementation (line 2) have the same performance. Line 2 is the

baseline for the main experiment, the BLEU score is 23.06. Line 3 shows the existence
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Table B.1: Romanian/English Weak Oracle Data

ROMANIAN ENGLISH

TRAINING

SENTENCES 48222
WORDS 971525 1024321
VOCABULARY 45782 25507
SINGLETONS 19328 8567

TRANSLATION DEV
SENTENCES 200
WORDS 4365 4562

TRANSLATION TEST
SENTENCES 248
WORDS 5495 5639

Table B.2: Romanian/English Weak Oracle Results

SYSTEM BLEU %
SYMMETRIZED GIZA++ 22.85
SYMMETRIZED MODEL 4 23.06
WEAK ORACLE 26.36

of alignments which give us better translation performancethan the best we can cur-

rently obtain with our baseline. These improved alignmentsresult in a BLEU score of

26.36; this is 3.30 points better than the baseline which is alarge improvement. This

experiment is evidence that MT quality can be improved by producing improved word

alignments. We will show how to obtain such improved word alignments (without using

an oracle) in the main part of the dissertation.
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Appendix C

Search Implementation Details

C.1 Comparing the Current LEAF Search Implementation

with Model 4

Our current implementation of the LEAF search (used in both the D-step and the E-

step) is unoptimized. We compare it with an unoptimized version of Model 4 (our

implementation) and a highly optimized implementation of Model 4 (GIZA++, Och

and Ney (2003)). We will discuss how the search for the LEAF Viterbi alignment

can be improved (using the same techniques implemented in GIZA++) to be about 12

times slower than the time required by the GIZA++ Model 4 implementation. GIZA++

is implemented such that only a single processor can be used.Both of our current

LEAF and Model 4 search implementations are fully parallelized and can be run on
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Table C.1: Average milliseconds per sentence pair in E-Step

SYSTEM E TO F F TO E FINAL M-TO-N
UNOPTIMIZED MODEL 4 (UNSUPERVISED) 336 493 829
GIZA++ MODEL 4 (UNSUPERVISED) 8 10 18
UNOPTIMIZED LEAF (UNSUPERVISED) NA NA 10151
UNOPTIMIZED LEAF (SEMI-SUPERVISED) NA NA 11810

any number of processors; this is what has enabled us to carryout experimentation

without implementing the optimizations.

The number of milliseconds used per sentence pair in the E-Step is presented in

Table C.1. We calculated this on the French data set which is 2,842,184 sentences,

67,366,819 English words (see Table 3.3 on Page 74 for the full statistics). This data

set contains sentences of length up to 254 words, which increases the average search

time required, versus other data sets where the sentence length cut-off is significantly

shorter.

We have already shown that our implementation of Model 4 and GIZA++ have

the same performance (as measured by BLEU) in Appendix B.2. In our discussion

of Model 4 alignment search implementations we restrict ourselves to the “baseline”

search algorithm, as described by Brown et al. (1993), which uses a hillclimbing search

from only one starting point to converge to a local probability maxima; no restarts are

used, see Section 3.4.2.1.

The first line of Table C.1 shows that we spend an average of 829 milliseconds per

sentence pair (column 3) for our unoptimized Model 4 implementation (we sum the
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two directions in columns 1 and 2 to determine this number, and assume that applying

the “Union” or “Refined” symmetrization heuristic to these two alignments to obtain

the final alignment takes a negligible amount of time).

We consider Model 4 in the English to French alignment direction. Our unoptimized

implementation of Model 4 uses a representation of the alignment as a vectorv of

lengthm (the number of French words) wherevj is the position of the English word

which generated the French word at positionj. The two search operations, “move”

and “swap” (described in Appendix A.2.5.2), copy this alignment vector, and change

one position (for “move”; two positions are changed for “swap”), and then score the

new alignment created by calling a function which returns a probability for the new

alignment.

The second line of Table C.1 shows that the Model 4 implementation in GIZA++

is much faster, an average of 18 milliseconds is used per sentence pair, which is 46

times faster than our unoptimized Model 4 implementation. The reason for this is that

GIZA++ has two optimizations which are not yet implemented in our implementation

of Model 4.

The first optimization is described by Brown et al. (1993), we will call it the “In-

cremental Probability Calculation” optimization. Given analignmenta, from which

we obtain the alignmenta′ by applying a particular search operation, we can obtain

p(a′, f |e) by a constant small number of steps. This involves starting from p(a, f |e),
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dividing out just the probabilities of the generative actions made to arrive ata which

were not made in arriving ata′, and multiplying in the probabilities of the generative

actions made to arrive ata′ but not made in arriving ata. This is much faster than cal-

culatinga′ from scratch by looking up the probabilities of all of the generative actions

used to obtaina′ (including particularly those which were the same as those used to

arrive ata). The cost of looking up all of the probabilities isO(l + m) (wherel is the

length of the English sentence andm is the length of the French sentence).

In LEAF, such procedures for updating in a constant number ofsteps can also be

defined. We will present a very simple example in which we assume we are calculating

LEAF in just the English to French direction (for ease of exposition). Suppose we have

an alignmenta in which an English non-head word at positioni is in a three word En-

glish cept headed by the English head word at positiony. The “move English non-head

word to new head” search operation is used to changeei to be of word type “deleted”,

resulting in a new alignmenta′. The probabilityz of a′ can be quickly determined given

the probability ofa. This is done by performing the following calculations:

• z = p(a, f |e)

• // divide the probability of the non-head word to head word association

z = z/w−1(y − i|classe(ei)
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• // divide the probability ofei being type−1 (non-head word)

z = z/g(−1|ei)

• // multiply the probability ofei being type0 (deleted)

z = z ∗ g(0|ei)

• // z is the probability ofa′

returnz

For LEAF, as in the case of Model 4, this allows us to calculatethe probability

of a′ from a in a small constant number of steps, rather using anO(l + m) lookup

of the probabilities for all of the actions. We expect that the speed up from using

this optimization with LEAF is analogous to the speed up obtained when using this

optimization with Model 4.

The second optimization is from the appendix of the work by Och and Ney (2003).

This optimization is called “Fast Hill Climbing”. If we startfrom an alignmenta, we

can keep a single matrix for each search operation, which will cachep(a′, f |e)/p(a, f |e)

for alignmentsa′ reachable by applying the search operation toa. For instance, if we

have a search operation with two argumentsi andj, a matrixM indexed by the possible

i andj values is defined. The probability of an alignmenta′ generated by applying this

search operation using argumentsi andj is M[i,j] times the probability of the original
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alignmenta. Initially, all of the cells of this matrix must be calculated explicitly by cal-

culating the costs of the alignments (using the first optimization). However, the speed

up of the “Fast Hill Climbing” optimization is obtained because updatingM when the

starting alignmenta is changed does not require revisiting all of the cells. Onlythose

columns and rows for which the ratio changes need to be updated, and this is a small

number of rows and columns. This means that after the matrices are initially created,

search simply consists of scanning these matrices for the cell with the best probability

multiplier, updating the alignment using that search operation, and updating a few of

the columns and rows of the matrices. Och and Ney report a 10 to20 times speed up in

local search using this optimization.

This “Fast Hill Climbing” optimization can also be applied toLEAF. Six of the

seven search operations in LEAF also have two arguments and require matrices of

similar size to those required for Model 4. The seventh operation, “unlink the link

between an English head word and a French head word” (operation 7 in Table 3.4 on

Page 69) has three parameters, but two of these parameters are restricted to three values

each, so this will be a small matrix which can be rapidly updated. The matrices required

for the first six operations arel ∗m,m2 or l2 in size, and it is easy to see that the cost to

update them will be similar to the cost to update the matricesused with Model 4. We

believe search using the “Fast Hill Climbing” optimization is dominated by the time to

calculate the initial matrices, where each cell must be visited. LEAF will require the
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calculation of six matrices, while each Model 4 direction requires the calculation of two

matrices, for a total of four matrices. Therefore we believethat the speed up obtained

by using this optimization with LEAF will be about 1.5 times less than that obtained

for Model 4.

By implementing these two optimizations it is clearly possible to speed up our im-

plementation of Model 4 to match the speed of the GIZA++ implementation of Model

4. According to our empirical measurements comparing our unoptimized Model 4 im-

plementation with GIZA++ it will be at least a 46 times speed up1, which is close to the

estimate of Och and Ney.

The third line of Table C.1 shows that the unoptimized unsupervised LEAF imple-

mentation is very slow. It is about 12 times slower than the unoptimized Model 4 im-

plementation. The fourth line of Table C.1 shows that the unoptimized semi-supervised

LEAF implementation is about 14 times slower than the unoptimized Model 4 imple-

mentation.

1In fact, it is likely that this speed up would be more than a 46 times speed up
as long as we continue to use the Viterbi approximation in training. GIZA++ uses the
“neighborhood” training approximation (Al-Onaizan et al., 1999; Och & Ney, 2003) by
default (we used “neighborhood” training in all of our experiments using GIZA++). Us-
ing the neighborhood approximation requires incurring additional computational costs
to those incurred in Viterbi training, see the appendix of the work by Och and Ney
(2003) for the details.
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As we have already discussed the optimizations required forLEAF are very similar

to those used with Model 4. For LEAF, the results use the new search algorithm of Sec-

tion 3.4.2.2, because the baseline search algorithm is unacceptably slow to converge.

The speed ups gained by implementing the two optimizations discussed in this section

apply equally to both the baseline search algorithm and the new search algorithm as

the optimizations make the search operations faster and thesame search operations are

used in both algorithms.

In summary, we expect that the first optimization would result in an analogous

speed up for LEAF search to the speed up obtained for Model 4. The speed up from

applying the second optimization to LEAF would be 1/1.5 times the speed up gained

for Model 4. The unoptimized Model 4 search can be sped up by atleast 46 times. This

implies that we can obtain at least a 30 times speed up for the LEAF search process by

implementing these optimizations. We plan to implement these optimizations in future

work.

C.2 LEAF Search and Dynamic Programming

In this section we briefly consider other search algorithms reported on in the literature

which we consider directly relevant to the search for the LEAF Viterbi alignment. They

share the commonality that they are all based on dynamic programming.
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Germann (2003) produced an impressive speed-up in local hillclimbing search for

machine translation by segmenting the starting hypothesisinto overlapping local areas

(called tiles) which can be independently searched, and then reintegrating these partial

solutions into a complete solution using dynamic programming. Such a decomposition

appears to be possible for the LEAF model (though it might be more complicated in the

semi-supervised case if global features such as the name transliteration sub-model are

used). If such decomposition is possible this would lead to amuch higher performance

in search, particularly when applied in combination with our search advances and the

optimizations discussed in the previous section.

We can also consider search algorithms which are quite different from the local

hillclimbing search algorithms we currently use. Udupa andMaji (2005) defined a

search algorithm for Model 4 which considers an exponentialnumber of alignments in

polynomial time. Eisner and Tromble (2006) presented a search algorithm for “very

large neighborhood” search in machine translation which can be used to consider an

exponential number of reorderings for translation in polynomial time. Both of these

approaches use dynamic programming to examine a much largerspace of alignments

than our current search algorithms can examine. We speculate that it is possible to

produce a dramatically improved search algorithm for finding the LEAF Viterbi align-

ment by inventing a similar approach based on dynamic programming which allows the

consideration of exponentially many LEAF alignments in polynomial time.
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