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Abstract

We tackle the important task of part-of-speech
tagging using a neural model in the zero-
resource scenario, where we have no access
to gold-standard POS training data. We com-
pare this scenario with the low-resource sce-
nario, where we have access to a small amount
of gold-standard POS training data. Our ex-
periments focus on Ukrainian as a represen-
tative of under-resourced languages. Russian
is highly related to Ukrainian, so we exploit
gold-standard Russian POS tags. We consider
four techniques to perform Ukrainian POS tag-
ging: zero-shot tagging and cross-lingual an-
notation projection (for the zero-resource sce-
nario), and compare these with self-training
and multilingual learning (for the low-resource
scenario). We find that cross-lingual annota-
tion projection works particularly well in the
Zero-resource scenario.

1 Introduction

Little or no hand-annotated part-of-speech train-
ing data exists for the vast majority of languages
in the world. This work investigates POS-tagging
for under-resourced languages with a state-of-the-
art neural network model. We consider how
best to deal with the zero-resource scenario (i.e.,
no availability of any POS-labeled training data
for the targeted language). To better under-
stand this scenario, we compare it with the low-
resource scenario (i.e., availability of a small POS-
labeled training corpus). We thoroughly com-
pare four techniques, including: zero-shot tag-
ging and cross-lingual annotation projection from
a linguistically related higher-resource language
(for the zero-resource scenario), as well as self-
training and multilingual learning (for the low-
resource scenario).

A controlled experimental design is established
for our study. We aim for immediate compara-

bility of all tested tagging strategies of both sce-
narios, zero-resource and low-resource. We there-
fore opt to carry out both the zero-resource and the
low-resource experiments on the same language,
Ukrainian, and measure tagging accuracy on one
common test set. A small amount of manually
POS-annotated Ukrainian training data is avail-
able, which we use for supervised low-resource
training. We simulate the zero-resource sce-
nario by not using any POS-annotated Ukrainian
training data. Russian is a higher-resource lan-
guage which is linguistically closely related to
Ukrainian. We use a larger POS-annotated Rus-
sian corpus for multilingual learning and zero-shot
tagging experiments, and an unlabeled Russian—
Ukrainian parallel corpus for the cross-lingual
projection annotation experiment. To strengthen
the upper-bound result for low-resource tagging,
we consider the improvements possible through
self-training, for which we use the Ukrainian side
of the Russian—Ukrainian parallel corpus in or-
der to maintain comparability. Our experimen-
tal design allows us to directly assess whether
the tagging quality of any zero-resource strategy
is approaching the accuracies of supervised low-
resource strategies. We find that zero-shot tag-
ging does not yield satisfactory quality, even if
we operate on a higher linguistic abstraction level
with word stems, which are often very similar in
Ukrainian and Russian. But the empirical results
show that annotation projection from a closely-
related language is a very effective strategy for
training neural POS taggers.

2 Related Work

Annotation projection for POS-tagging was first
explored by Yarowsky and Ngai (2001) for cross-
lingual transfer from English to French. Our ba-
sic approach shares much of Yarowsky and Ngai’s



original idea and reaffirms the efficacy of annota-
tion projection also with a state-of-the-art neural
sequence tagging model (Wang et al., 2015) and
on the modern universal POS-annotation scheme
(Petrov et al., 2012).

Since 2001, in addition to POS-tagging, an-
notation projection has been successfully applied
to other tasks such as named entity recognition
(Yarowsky et al., 2001; Enghoff et al., 2018), word
sense tagging (Bentivogli et al., 2004), seman-
tic role labeling (Pado and Lapata, 2005, 2009;
van der Plas et al., 2011; Aminian et al., 2017), or
dependency parsing (Hwa et al., 2005; Tiedemann,
2014; Rasooli and Collins, 2015; Agic et al., 2016;
Aufrant et al., 2016). Kim et al. (2011) presented
an integration into a full pipeline for information
extraction. Open-source software tools for anno-
tation projection are now available online (Akbik
and Vollgraf, 2018, 2017).

To avoid unnecessarily noisy data, unlike pre-
vious authors, Lacroix et al. (2016) did not apply
heuristics to fix certain word alignment links that
pose difficulties to annotation projection. They
demonstrated that it is simpler and more effec-
tive to ignore unaligned words as well as many-to-
many alignments. In our work, we likewise settle
on a simple technique based on a one-directional
word alignment.

Xi and Hwa (2005) have combined projected
POS-annotation with a small manually annotated
corpus in a low-resource scenario. Newer re-
search on annotation projection for POS-tagging
has looked at historical languages (Meyer, 2011;
Sukhareva et al., 2017) and sign language (Ostling
et al., 2015). Notable exceptions are the works
of Wisniewski et al. (2014), examining annota-
tion projection for a CRF tagging model (Lavergne
et al., 2010) on living spoken languages, and of
Agié et al. (2015). Meyer (2011) tags Old Rus-
sian via annotation projection from modern Rus-
sian translations. Sukhareva et al. (2017) POS-
tag the extinct Hittite language through projec-
tion from German. Recent related work on neu-
ral POS-tagging has mostly focused on robust-
ness through character-level modeling (Heigold
etal., 2016, 2018; dos Santos and Zadrozny, 2014;
Labeau et al., 2015) or on architectural improve-
ments (Huang et al., 2015; Ma and Hovy, 2016;
Yasunaga et al., 2018). Kim et al. (2017) have
proposed an interesting neural tagging architec-
ture that allows for multilingual learning with a

language-specific component integrated with an-
other cross-lingually shared component. We are
however not aware of many prior studies that
systematically explore annotation projection for
cross-lingual transfer in neural POS-tagging of liv-
ing spoken languages. Steps in this direction have
been taken only lately by Fang and Cohn (2016),
Plank and Agi¢ (2018) and Anastasopoulos et al.
(2018). We follow up on this line of research with
our work.

3 Methods

Research questions. We ask two central re-
search questions in this work, one for each of the
considered scenarios:

Low-resource scenario: When the amount of
hand-labeled training data is small for the tar-
geted language, how effectively can we further
improve the tagger by employing auxiliary re-
sources? Specifically, how helpful is the use of ad-
ditional unlabeled corpora (self-training) and cor-
pora in a different language (multilingual learn-
ing)?

Zero-resource scenario: When there isn’t any
hand-labeled training data available for the tar-
geted language, how effectively can we harness
knowledge from annotated corpora in a different,
but related language? Specifically, is tagging qual-
ity close to supervised low-resource conditions at-
tainable with either a plain foreign-language tag-
ging model (zero-shot tagging) or via annotation
projection from a foreign language (cross-lingual
transfer)?

Neural tagging model. Depending on the con-
text, the part-of-speech of a word may vary. E.g.,
the English word “green” takes a different POS
(adjective, noun, verb) in each of the following
three sentences:

The recipe requires green mangoes.

She took 63 shots to reach the green.

How can we green our campus?

The need to resolve such ambiguities is one of
the challenges in POS-tagging, and is the reason
why the task requires sequence labeling instead of
just a simple dictionary lookup. Another challenge
is imposed by words that are out-of-vocabulary
(OOV) to the tagger—a pressing issue especially
under low-resource conditions, where many valid
word forms of the language are not observed in
training data.



We utilize a Bidirectional Long Short-Term
Memory (BLSTM) neural network model
(Hochreiter and Schmidhuber, 1997) to build
our sequence taggers. BLSTMs are recurrent
neural networks (RNNs) that are capable of
learning long-term dependencies, taking into
account both the previous and the following
context. RNNs generally show great results at
processing sequential data. They are widely
adopted in natural language processing, including
the POS-tagging task (Wang et al., 2015). Other
statistical sequence labeling methods, such as
maximum entropy tagging models (Ratnaparkhi,
1996) or conditional random fields (Lafferty
et al., 2001; Lavergne et al., 2010), are nowadays
often outperformed by neural network methods
(Collobert et al., 2011).

3.1 Self-Training

Given sufficient amount of labeled data, it is pos-
sible to build high-performance tools with direct
supervision, but since there are languages that do
not have enough suitable data to train a model,
it is reasonable to employ semi-supervised meth-
ods. Those include self-training, which was pre-
viously discussed by McClosky et al. (2006), inter
alia. Self-training requires labeled and unlabeled
data and can be applied to low-resource languages.
“Semi-supervised and unsupervised methods are
important because good labeled data is expensive,
whereas there is no shortage of unlabeled data”
(McClosky et al., 20006).

3.2 Multilingual Learning

The multilingual learning method is suitable for
under-resourced languages with little annotated
data. The training set is enlarged through the texts
of a related language. The idea is to shuffle origi-
nal Ukrainian training sentences with the Russian
labeled data to get more annotated texts.

3.3 Zero-shot Tagging

A zero-shot strategy can be pursued in case no an-
notated text exists for the resource-poor language.
The zero-shot approach applies a tagging model
trained for a closely related language.

There is quite some vocabulary intersection be-
tween Ukrainian and Russian (cf. Section 4.3),
and the grammatical structure and word order of
sentences are expected to be similar in the two
related languages. We will however determine
in the experimental section that these similarities

Open class words Closed class words

ADJ: adjective ADP: adposition

ADV: adverb AUX: auxiliary
INT]J: interjection CCONUJ: coordinating conjunction
NOUN: noun DET: determiner
PROPN: proper noun NUM: numeral
VERB: verb PART: particle

PRON: pronoun
SCONIJ: subordinating conjunction

Other

PUNCT: punctuation ~ SYM: symbol  X: other

Table 1: Universal Dependencies tags.

are not strong enough to be able to use a model
trained for Russian to tag Ukrainian sentences
(Section 5.2.4).

3.4 Cross-lingual Transfer

The cross-lingual transfer approach relies on the
availability of cross-lingual supervision and is
suitable for languages that do not have any an-
notated data, but for which there is an available
parallel corpus with a high-resource language. A
POS-tagger for the high-resource language can be
applied to automatically annotate the source side
(here: Russian) of the parallel corpus. The source
annotation is then projected to the target side
(here: Ukrainian) (Yarowsky and Ngai, 2001). Af-
ter that, a tagger for the resource-poor language
can be trained on the target side of the parallel cor-
pus with its associated projected automatic source-
side annotation. This provides another solution in
the case of a complete lack of gold-standard train-
ing data, the zero-resource scenario.

4 Corpus-linguistic Analysis

Ukrainian, as an under-resourced language, has a
relatively small amount of suitable data that can be
freely obtained from the web. There are two main
data sources that are used throughout this work:
annotated Ukrainian and Russian texts from the
Universal Dependencies project and a Russian—
Ukrainian parallel corpus of news texts. This sec-
tion provides a description of the data as well
as a quantitative comparison of the Russian and
Ukrainian data sets.

4.1 Data

Universal Dependencies. The annotated data
used to train taggers is taken from the Uni-
versal Dependencies corpora for Russian and



Ukrainian.! Universal Dependencies (UD) is a

project based on open collaboration that is de-
veloping cross-linguistically consistent treebank
annotation for many languages. The annotation
scheme is based on an evolution of Stanford de-
pendencies (de Marneffe et al., 2006; de Marneffe
and Manning, 2008; de Marneffe et al., 2014) and
Google universal part-of-speech tags (Petrov et al.,
2012). The 17 UD core part-of-speech categories
are listed in Table 1. Additional lexical and gram-
matical properties of words are distinguished by
extra features that are not part of the tag set.

Russian—Ukrainian parallel corpus. The
Russian—-Ukrainian parallel corpus was created
by ElVisti Information Center.> A fragment of
100,000 sentences is freely available for scientific
and educational purposes.®> The corpus consists of
web publications of news articles and was created
as a resource for building machine translation
systems (Lande and Zhygalo, 2008).

4.2 Relatedness of Ukrainian and Russian

Slavic languages descend from a common pre-
decessor, called Proto-Slavonic. Russian and
Ukrainian belong to East Slavic, one of three re-
gional subgroups of Slavic languages, which is
also the largest group as for the number of speak-
ers (Carlton, 1991).

Alphabet. Both Russian and Ukrainian use the
Cyrillic script and have 33 letters each. However,
there are differences in their alphabets. Unlike
Russian, the letters B¢, b, Blbt, D5 are not used in
Ukrainian, and Ukrainian has extra letters I'r, €e,
Ii, Ti, which are not found in Russian. The apos-
trophe occurs in words of both languages, but in
Russian it is not very common and mainly used in
foreign proper nouns.

Vocabulary. Despite the fact that the languages
share some of their vocabularies with similar pro-
nunciation and spelling, they often have differ-
ent semantic shades. Having a common predeces-
sor language, Russian and Ukrainian have retained
many identical word stems. Stemming techniques
will be explored in this work in order to capitalize
on such similarities between the two related lan-
guages and improve Ukrainian POS-tagging.

1http: //universaldependencies.org
http://visti.net
http://ling.infostream.ua
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Figure 1: Tag distribution in training sets.

Ambiguity Ukrainian Russian
Types | Tokens | Types | Tokens
1 25940 | 65780 | 128082 | 812855
2 374 | 13111 | 2682 | 143338
3 46 2727 152 57793
4 13 2245 24 55035
5 3 1606 7 11489
6 - - 2 6750

Table 2: Tag ambiguity.

Morphosyntax. Russian and Ukrainian also
have similarities in their morphosyntactic features.
For example, in both languages, the adjective, par-
ticiple and possessive pronoun agree with the noun
in case, gender and number. The verb has separate
forms for different genders in the past but does not
have gender variations in other tenses. There are
three persons and two numbers.

4.3 Quantitative Comparison

Amount of data. The annotated UD data set for
the Russian language is an order of magnitude big-
ger than the Ukrainian. The Ukrainian training
corpus contains 85K annotated tokens in 5K sen-
tences, the Russian corpus 1M tokens in 61K sen-
tences.

Tag statistics. The distribution of tags in the
Ukrainian and in the Russian UD training sets is
quite similar, as can be seen in Figure 1. The
most frequent tags in both corpora are NOUN
and PUNCT, which account for nearly 25% and
20% of the tokens, respectively. Together with
VERB, ADJ and ADP, they cover over 70% of
the texts. The rank-frequency distribution of
POS-tags approximately complies with Zipf’s law
(Zipf, 1932).

The words in both Russian and Ukrainian are
mostly unambiguous. The bigger part of the train-
ing data vocabulary is always annotated with the
same tag (Table 2). Some words occur with up
to five different tags in Ukrainian and up to six in
Russian, but those are quite rare cases.
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Shared voc. Words Stems
2998 / 26376 3442 /15821
Ukr | Types 11.4 % 21.8%
Tokens 35395/ 85469 47789 / 85469
41.4 % 55.9 %
Rus | Types 2998 / 130949 3442 / 48652
23 % 7.1 %
Tokens 392319 /1087260 | 550297 / 1087260
36.1 % 50.6 %

Table 3: Shared vocabulary before and after stemming.

Shared vocabulary. Taking into account that
Ukrainian and Russian are related, it makes sense
to examine their lexicons for common words. An
overview of the shared vocabulary is given in Ta-
ble 3 (left-hand column). There are only 2998
words appearing in lexicons of both languages.
However, when counting their actual occurrences
in the text we can see that common words are fre-
quent throughout the texts. In Ukrainian, for ex-
ample, 41% of the training texts consist of words
that can be found in both languages.

These words are also mainly tagged in the same
way. About 79% (2358 out of 2998) are tagged in
both languages with the same tag (or tags). An-
other 13% (388 out of 2998) are tagged with the
partially same tags.* The rest of the words of the
shared vocabulary (about 8%) are annotated with
completely different tags in each language.

Stemming. Since both Russian and Ukrainian
are richly inflected languages, but closely related
to each other, many differences in their word sur-
face form vocabularies might be caused by in-
flection diversities. Table 3 (right-hand column)
provides statistics of the stemmed Russian and
Ukrainian training sets to examine whether the
amount of shared vocabulary is higher after the
words are reduced to their stem forms. Rus-
sian text is stemmed with the Snowball stemmer
(Porter, 1980) from the NLTK package.> The
stemmer for Ukrainian is an implementation found
on GitHub posted by Kyrylo Zakharov.®

The size of the shared vocabulary rises from
2998 to 3442 types after stemming. Although this
increase in vocabulary overlap seems marginal, in
terms of the occurrences there is a more significant

“For example: the word BecTu can be tagged in Russian
as VERB or NOUN, in Ukrainian only as NOUN.

Shttp://www.nltk.org/_modules/nltk/
stem/snowball.html

*https://github.com/Amicel3/ukr_
stemmer

change. After the stemming, the shared vocabu-
lary tokens in the training sets of both languages
amount to over 50%.

5 Experiments

5.1 Experimental Setup
5.1.1 BLSTM Tagger

An open-source re-implementation of Wang
etal.’s BLSTM tagging architecture is used for our
experiments.” We configure a hidden layer size of
100, embedding dimensions of 300, a maximum
training sequence length of 100, and a batch size
of 32. We optimize with RMSprop, a variation of
RProp (Riedmiller and Braun, 1993), at a learning
rate of 0.001. A sample sized 20% of the training
data is removed and used for validation. To coun-
teract overfitting, we store model checkpoints and
do early stopping.

Word embeddings. Word embeddings help ren-
der more information regarding the word since
they carry semantic and syntactic information and
capture the meaning of words, the relationship be-
tween words, and the context of different words.
This is useful for tagging and many other tasks
in natural language processing (Plank et al., 2016;
Wiegandt et al., 2017).

Pre-trained embeddings used in this work were
downloaded from an open repository provided by
Facebook Research.® These embeddings were
trained with fast Text® on Wikipedia using the
skip-gram model with default parameters (Bo-
janowski et al., 2017).

5.1.2 Frequency Tagger

We additionally built a simple Frequency tagger
that annotates each word in isolation with its most
frequent tag. The only calculations that are re-
quired are tag counts per word in the training data.
As soon as the occurrences are counted, the Fre-
quency tagger is ready to annotate sentences.
OOVs are tagged with the majority class, which
in both languages is NOUN. There are 3771 words
in the Ukrainian test set that are new to the Fre-
quency tagger, which means that 25.8% of the text
cannot be tagged based on evidence. In Russian,

"https://github.com/aneesh-joshi/LSTM_
POS_Tagger

$https://github.com/facebookresearch/
fastText/blob/master/docs/
pretrained-vectors.md

‘https://fasttext.cc
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Russian Test
Model Accuracy
Frequency Tagger 90.7 %
BLSTM + RE 91.3 %
BLSTM + PE 94.4 %
Stem BLSTM +RE | 923 %

Table 4: Overview of the conducted tagging exper-
iments on Russian test data (and trained on Russian
data): PE - pre-trained embeddings; RE - randomly ini-
tialized embeddings; Stem - stemming.

Ukrainian Test

Model Accuracy

trained on Ukrainian data
Frequency Tagger 81.6 %
BLSTM + RE 80.0 %
BLSTM + PE 85.4 %
Self-trained BLSTM + PE 86.2 %
Stem BLSTM + RE 84.1 %

trained on Russian data
Zero-shot BLSTM + PE 51.5 %
Zero-shot Stem BLSTM + RE 56.1 %

trained on projected annotation
84.4 %
trained on both languages
Multilingual BLSTM + PE 86.4 %
Multilingual Stem BLSTM + RE | 87.3 %

Cross-lingual Transfer

Table 5: Overview of the conducted tagging experi-
ments on Ukrainian test data.

the fraction of unknown words is smaller (9.4%).
This can be explained by the much bigger size of
the training set that covers more of the Russian vo-
cabulary.

5.2 Experimental Results

We now present the results for all the investigated
techniques. The tagging accuracies for all exper-
iments on the Ukrainian test set are collectively
shown in Table 5. Some further empirical obser-
vations, e.g. on the taggers’ ability to correctly
handle OOV words, will also be discussed be-
low. Supplementary tagging accuracies of Russian
POS-taggers measured on a Russian test set are re-
ported in Table 4.

5.2.1 Low-resource Supervision Results

The baseline taggers (Frequency and BLSTM)
for Russian and for Ukrainian are trained on
annotated UD data for the respective language.
For the BLSTM models, there are two fla-
vors: one with randomly initialized embed-
dings (BLSTM + RE) and one with pre-trained

Accuracy Tags

~99% NOUN, PUNCT
91-99% | PRON, CCONJ, SCONJ, AUX, ADP
71-90% PART, ADV, NUM, DET
51-70% -
41-50% VERB, PROPN, SYM
31-40% ADJ, INTJ

11-30% -

<10% X

Table 6: Prediction quality per part-of-speech (of the
Ukrainian BLSTM + PE tagging model).

word embeddings (BLSTM + PE). The Russian
BLSTM taggers are built with the exact same hy-
perparameters as the Ukrainian BLSTM taggers
but show better results in the evaluation. This is
because the Russian model is trained on more data.

On Ukrainian, the BLSTM with randomly ini-
tialized embeddings (RE) achieves better results
on tag prediction for OOVs than the Frequency
tagger (53% vs. 40% correct), but surprisingly
does not outperform the Frequency tagger in over-
all accuracy (BLSTM + RE: 80.0%, Frequency:
81.6%; Table 5). However, the use of pre-trained
embeddings in the BLSTM model increases the
overall accuracy by about +-5% absolute (BLSTM
+ PE: 85.4%). OOV tag prediction is boosted fur-
ther to 58% of unknowns correctly labeled.

Table 6 shows the prediction quality per indi-
vidual POS of the Ukrainian BLSTM + PE model.
11 out of 17 tags are predicted with accuracies
above 70%. The most inaccurate predictions are
made for the X tag which is used for cases of code-
switching. Since the tag is used when it is not pos-
sible (or meaningful) to analyze the word, it is dif-
ficult for a neural network to learn to recognize it
without additional features.

5.2.2  Self-Training Results

In self-training, the existing model first labels un-
labeled data. We apply our BLSTM + PE model
to automatically tag the Ukrainian side of the
Russian—Ukrainian parallel corpus. This step pro-
vides us with new synthetically annotated data,
which is then treated as truth and appended to the
original training corpus to re-train the tagger.

The tagger trained with additional synthetically
annotated data improves just moderately over the
tagger trained on only the hand-labeled UD corpus
(86.2% vs. 85.4% overall accuracy; Table 5). Self-
training is thus barely effective despite the 20-
fold augmentation of training instances through
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Figure 2: Confusion matrix heatmaps.

the synthetic corpus. Clark et al. (2003) have pre-
viously reported similar findings. In the litera-
ture, inefficacy of self-training is occasionally at-
tributed to a domain mismatch of the synthetically
annotated data. In our case, all corpora are from
the same domain (news text), though. The main
benefit of self-training that we observe is an in-
crease of correctly tagged OOVs (of around +5%
absolute, from 58% to 63%).

5.2.3 Multilingual Learning Results

The multilingual learning approach yields an im-
provement of one percentage point (86.4% accu-
racy) compared to the low-resource BLSTM + PE
tagger trained on only the Ukrainian data.

We oversampled the Ukrainian corpus to bal-
ance out the fraction of data from each language
and avoid a bias towards Russian. The Ukrainian
data was copied and added to the mixed training
set until it reached the size of the Russian data. We
also tried undersampling of Russian data and plain
concatenation. The differences in tagging accu-
racy were minor (undersampling: 86.0%, concate-
nation: 86.2%), but oversampling of Ukrainian
worked best.

5.2.4 Zero-shot Tagging Results

In the zero-shot tagging experiment, the BLSTM
model trained on the Russian UD corpus (with
pre-trained word embeddings) is applied to the
Ukrainian test set. The Russian model’s accu-
racy on the Russian test set had reached 94.4%
(Table 4). Yet, when being run on the related
Ukrainian language, just over 50% of Ukrainian
words are correctly annotated by the Russian tag-
ger (Table 5). This cannot be considered a satis-
factory outcome.

5.2.5 Cross-lingual Transfer Results

The idea of the cross-lingual transfer is to project
tags from the annotated part of the parallel cor-
pus to its unlabeled translation to produce training
data for the under-resourced language. The suc-
cess of cross-lingual transfer depends not only on
the quality of the source language annotation, but
also on the reliability of the annotation projection.

We rely on standard statistical word align-
ment algorithms (Brown et al., 1993) as the ba-
sis of POS annotation projection from Russian to
Ukrainian. The parallel corpus is aligned with
fast_align,'® an unsupervised word aligner
introduced by Dyer et al. (2013). For phrase-
based machine translation, the two alignment di-
rections (forward and reverse) are typically com-
bined to a symmetrized alignment. But for an-
notation projection, it iS more convenient to use
one-directional alignment with one Ukrainian to-
ken never being aligned to multiple tokens on the
Russian side. The annotation projection across
the alignment then becomes straightforward.!! No
disambiguation heuristics are necessary, which
could be a source of additional errors.'?

The BLSTM tagger supervised with gold-
standard Ukrainian annotation (Section 5.2.1) out-
performs the cross-lingual transfer tagger by only
one percentage point (Table 5), despite the latter
not requiring and not using any manually anno-
tated Ukrainian training data. The confusion ma-
trix heatmaps in Figure 2 visually illustrate the su-

Ohttps://github.com/clab/fast_align

"The projected label of each Ukrainian token is taken
from the single Russian-side token that it’s aligned with. Vice
versa, note that we permit 1-to-many projection from one
Russian token to multiple Ukrainian tokens in this setting.

12We experimented with other word alignment variants but
could not improve over the reported result.
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periority of cross-lingual transfer over zero-shot
tagging, and how the two compare to the low-
resource supervision baseline BLSTM. The result
highlights that a competitive neural tagger can be
trained even under zero-resource conditions. A
parallel corpus with a related language and the ex-
istence of a tagger for that related language enable
effective cross-lingual transfer. A BLSTM model
trained on projected annotation seems to cope very
well with the language transfer.

5.2.6 Stemming Results

In Section 4.3 it was demonstrated that the num-
ber of common words grew after stemming was
applied. We now test whether stemming has a
positive impact on tagging quality. Since the
pre-trained word embeddings were trained on full
word surface forms, the embeddings for these ex-
periments are randomly initialized.

The Stem BLSTM + RE result in Table 4 shows
that compared to the previous taggers trained on
random embeddings, the accuracy for Russian
grows by about one percentage point. There are
even bigger improvement for the Ukrainian tagger,
which reaches 84.1% accuracy (Table 5).

Stemming benefits the performance of the POS-
tagger, since the number of unknown tokens in the
test data is reduced. The number of OOVs that
are tagged correctly in Ukrainian increases to 61%
from the initial 53%. The error rate among the
known vocabulary is reduced by 2% absolute com-
pared to the non-stemmed model.

Applying the Russian stem POS-tagger to the
Ukrainian stemmed test set results in a nice accu-
racy improvement (about +4%) over the previous
zero-shot attempt on full word forms. The zero-
shot tagging quality remains weak, though, even
with stemming.

In order to also examine the multilingual learn-
ing strategy over stem forms, the last model in
this series of experiments is trained on concate-
nated stemmed Ukrainian and stemmed Russian
data. The model achieves about +1% absolute
improvement compared to the previous best re-
sult for Ukrainian. Tagging accuracy is reaching
87.3%, beating the result with the model trained
on full forms of the same concatenation of cor-
pora. We found that the stem system version
is actually slightly worse at predicting tags of
known Ukrainian words, but OOVs are handled
much better (69% vs. 57% correct tags for unseen
Ukrainian words).

6 Summary of Findings

The observations that have been made in the
course of this work can be briefly summarized as
follows: 1) Pre-trained word embeddings are im-
portant for better tagging quality since they repre-
sent contextual similarities between words. 2) A
semi-supervised approach (self-training) showed
only moderate gains despite a notable increase
of the training corpus with synthetically labeled
data. 3) Mixing larger related-language annotated
data into the training corpus (multilingual learn-
ing) slightly improved the tagging accuracy for
the low-resource language. 4) Applying a Russian
tagger on Ukrainian (zero-shot) did not show sat-
isfactory results, which could be due to the rela-
tively small amount of shared vocabulary and cer-
tain differences in grammar. 5) Given a parallel
corpus, a competitive neural POS-tagger can be
trained without any initial annotated data (using
cross-lingual transfer via annotation projection),
which can be viewed as a good solution in the
zero-resource scenario. 6) Bridging words by re-
ducing them to their stems has a positive influence
since both languages are highly inflected. The
number of types is lowered and the tagger can ab-
stract from the sparsity of inflected surface forms.

The best accuracy for Ukrainian (87.3%) was
achieved when a multilingual model was trained
on both Russian and Ukrainian stemmed train-
ing corpora. Potentially, through a combination
of stemmed words and pre-trained stem embed-
dings, further improvements could be attained.
For the important zero-resource scenario, cross-
lingual projection worked best, and we achieved
an accuracy rate of 84.4%. Here there is likely to
be room for further improvement by tailoring the
word alignment more to the task.

7 Conclusion

We carried out an evaluation on Ukrainian neu-
ral POS-tagging for both low-resource and zero-
resource scenarios. For low-resource, multilingual
learning works best, suggesting that even for lan-
guages which do have some gold-standard POS
training data, multilingual learning through com-
bining the training data with data from closely
related languages is of strong interest.  For
zero-resource, cross-lingual annotation projection
works best, suggesting that where parallel corpora
with a related language are available, cross-lingual
projection should be strongly considered.
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