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Abstract

This paper describes the submission of LMU
Munich to the WMT 2021 multilingual ma-
chine translation task for small track #1, which
studies translation between 6 languages (Croa-
tian, Hungarian, Estonian, Serbian, Macedo-
nian, English) in 30 directions. We investigate
the extent to which bilingual translation sys-
tems can influence multilingual translation sys-
tems. More specifically, we trained 30 bilin-
gual translation systems, covering all language
pairs, and used data augmentation techniques
such as back-translation and knowledge distil-
lation to improve the multilingual translation
systems. Our best translation system scores 5
to 6 BLEU higher than a strong baseline sys-
tem provided by the organizers (Goyal et al.,
2021). As seen in the Dynalab leaderboard,
our submission is the only fully constrained
submission that uses only the corpus provided
by the organizers and does not use any pre-
trained models.

1 Introduction

Neural Machine Translation (NMT) (Vaswani et al.,
2017) has been shown to be effective with rich and
in-domain bilingual parallel corpora. Although the
NMT model obtained promising performances for
high resource language pairs, it is hardly feasible to
train translation models for all directions of the lan-
guage pairs since the training progress is time- and
resource-consuming. Recent work has shown the
effectiveness of multilingual neural machine trans-
lation (MNMT), which aims to handle the transla-
tion from multiple source languages into multiple
target languages with a single unified model (John-
son et al., 2017; Aharoni et al., 2019; Arivazhagan
et al., 2019; Zhang et al., 2020; Fan et al., 2021;
Goyal et al., 2021).

The MNMT model dramatically reduces train-
ing and serving costs. It is faster to train a MNMT
model than to train bilingual models for all lan-
guage pairs in both directions, and MNMT signif-

icantly simplifies deployment in production sys-
tems (Johnson et al., 2017; Arivazhagan et al.,
2019). Further, parameter sharing across different
languages encourages knowledge transfer, which
improves low-resource translation directions and
potentially enables zero-shot translation (i.e., di-
rect translation of a language pair not seen during
training) (Ha et al., 2017; Gu et al., 2019; Ji et al.,
2020; Zhang et al., 2020).

We participate in the WMT 2021 multilingual
machine translation task for small track #1. The
task aims to train a multilingual model to trans-
late 5 Central/East European languages (Croatian,
Hungarian, Estonian, Serbian, Macedonian) and
English in 30 directions. The multilingual systems
presented in this paper are based on the standard
paradigm of MNMT proposed by Johnson et al.
(2017), which prefixes the source sentence with
a special token to indicate the desired target lan-
guage and does not change the target sentence at
all. Language tags are typically used in MNMT to
identify the language to translate to. A language
code, in the form of a two- or three-character iden-
tification such as en for English, is the main con-
stituent of a language tag and is provided by the
ISO 639 standard1 (International Organization for
Standardization, nd). Following ISO 639 standard,
en indicates English, mk indicates Macedonian,
sr indicates Serbian, et indicates Estonian, hr
indicates Croatian and hu indicates Hungarian in
this paper.

Compared with the other three submissions to
the task, our submissions have the following advan-
tages:

• Our submissions are fully constrained, which
means we using the data only provided by the
organizer, and do not use models pre-trained
on extra data.

• Our model only has 313M parameters, which
1https://en.wikipedia.org/wiki/ISO_639

https://en.wikipedia.org/wiki/ISO_639
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Whole Select
No filter 387M 71M
+ punctuation filter 384M 71M
+ deduplicated filter 304M 44M
+ langid filter 302M 43M
+ length filter 274M 42M

Table 1: Number of sentences in bitext datasets (total
in 15 directions) for different filtering schemes. Whole
denotes the use of all data provided by the organizers,
Select denotes the use of data selection.

is smaller than the other submissions.

2 Data

The training data provided by the organizers come
from the public available Opus repository (Tiede-
mann, 2012), which contains data of mixed qual-
ity from a variety of domains (WMT-News, TED,
QED, OpenSubtitles, etc.). In addition to the bilin-
gual parallel corpora, in-domain Wikipedia mono-
lingual data for each language is provided. The
validation and test sets are obtained from the Flo-
res 101 evaluation benchmark (Goyal et al., 2021),
which consists of 3001 sentences extracted from
English Wikipedia covering a variety of different
topics and domains. See Table 1 for details on data
used for training our systems.

2.1 Data Preprocessing

To prepare the data for training, we used the fol-
lowing steps to process all of the corpora:

1. The datasets were truecased and the punctu-
ation was normalized with standard scripts
from the Moses toolkit2(Koehn et al., 2007).

2. Sentences containing 50% punctuation are re-
moved.

3. Duplicate sentences are removed.

4. We used a language detection tool3 (langid)
to filter out sentences with mixed language.

5. SentencePiece4 (Kudo and Richardson, 2018)
was used to produce subword units. We

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer

3https://fasttext.cc/docs/en/
language-identification.html

4https://github.com/google/
sentencepiece

trained a model with 0.9995 character cov-
erage to have sufficient coverage of character-
based languages.

6. The length filtering removes sentences that
are too long (more than 250 subwords after
segmentation with Sentencepiece), sentences
with a mismatched length ratio (more than
3.0) between source and target language are
removed.

2.2 Data Selection
Data selection (Moore and Lewis, 2010; Axelrod
et al., 2011; Gascó et al., 2012), aims to select the
most relevant sentences from the out-of-domain
corpora, which improved the in-domain translation
performance. The training data provided by the
organizers is large scale and contains multiple do-
mains. Therefore, the data selection becomes a
key factor affecting the performance of MNMT.
Preliminary experiments (see in Table 1 model #3
and model #4) showed that the performance of
using all corpora provided by the organizer was
poor. Following the original paper (Goyal et al.,
2021), we selected three data sources (CCAligned,
MultiCCAligned, WikiMatrix) for further experi-
mentation.

3 Method Description

We first trained bilingual translation models with 30
directions for all language pairs. Next, we trained
a single multilingual model that can translate all
language pairs. Finally, we use back-translation
and knowledge distillation technologies to further
improve the performance of the multilingual trans-
lation system. The details of these components are
outlined next.

3.1 Bilingual NMT Model
We use Transformer (Vaswani et al., 2017) archi-
tecture for all bilingual models. To achieve the
best BLEU score on the validation dataset, random
search was used to select the hyperparameters since
the datasets are in different sizes. We segment the
data into subword units using SentencePiece jointly
learned for all languages. The details of selected
hyper-parameters are listed in Section 4.1.

3.2 Multilingual NMT Model
The multilingual model architecture is identical
to the bilingual NMT model. To train multilin-
gual models, we used a simple modification to the

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer
https://fasttext.cc/docs/en/language-identification.html
https://fasttext.cc/docs/en/language-identification.html
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
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source sentence proposed by Johnson et al. (2017)
which introduce an artificial token at the begin-
ning of the source sentence indicating the target
language (Johnson et al., 2017). For instance, for
the English-Macedonian (en→mk) translation di-
rection, we insert a token like <2mk> at the begin-
ning of all English sentences and do not change the
Macedonian sentences.

3.3 Back Translation
Back-translation (BT) (Sennrich et al., 2016) is a
simple and effective data augmentation technique,
which makes use of monolingual corpora and has
proven to be effective. Back-translation first trains
a target-to-source system that is used to translate
monolingual target data into source sentences, re-
sulting in a pseudo-parallel corpus. Then we mix
the pseudo-parallel corpus with the authentic par-
allel data and train the the desired source-to-target
translation system. Zhang et al. (2020) has shown
how BT can be useful for multilingual MT.

After generating the pseudo parallel corpus, we
tag our BT data by adding an artificial token <BT>
at the beginning of the source sentence (Caswell
et al., 2019), which indicates that the data is gener-
ated by back-translation.

3.4 Knowledge Distillation
Knowledge Distillation (KD) is a commonly used
technique to improve model performance. The stan-
dard KD training (Kim and Rush, 2016) derives a
student model from a teacher model by training the
student model to mimic the outputs of the teacher.
We follow a recent approach to KD proposed by
Wang et al. (2021), which uses selection at the
batch level and at the global level to choose suit-
able samples for distillation.

4 Experiments

4.1 Training Details
We use the Transformer architecture (Vaswani et al.,
2017) as implemented in fairseq5 (Ott et al., 2019).
For training NMT and MNMT systems, we use the
Transformer-Big architecture (hidden state
1024, feed-forward layer 4096, 16 attention heads,
6 encoder layers, 6 decoder layers). For optimiza-
tion, we follow the default settings from the origi-
nal paper (Vaswani et al., 2017) and used the Adam
optimizer with a learning rate of 0.0003. To pre-
vent overfitting, we applied a dropout of 0.3 on all

5https://github.com/pytorch/fairseq

layers. At the time of inference, a beam search
of size 5 is used to balance the decoding time and
accuracy of the search. The number of warm-up
steps was set to 4000 and the vocabulary size is
133k. In addition, we set a length penalty factor of
1.7 to maintain a balance between long and short
sentences. The batch size is set to 128 during de-
coding. We trained our models for approximately 3
weeks on one machine with 8 NVIDIA GTX 2080
Ti 11GB GPUs.

Because of the problems of the international tok-
enization in the standard BLEU score, the organiz-
ers used sentence-piece BLEU (spBLEU)6 (Goyal
et al., 2021) as the official evaluation metric which
operates on strings segmented using a Sentence-
Piece model. Recently, the BLEU score was crit-
icized as an unreliable automatic metric (Mathur
et al., 2020; Kocmi et al., 2021). Therefore, we also
evaluate our models using chrF (Popović, 2015)
and BERTScore (Zhang et al., 2019).

4.2 Systems

All of our systems described in Section 3.2 are
listed as follows:
Flores. As a baseline system, we use the pre-
trained models public available by Flores teams.
We use flores101_mm100_615M tested on the
devtest datasets as our baseline.
Bilingual. We trained the bilingual models using
standard Transformer-Big architecture for 6
languages in 30 directions. The hyperparameters
used are discussed in Section 4.1.
Multilingual. We trained the multilingual transla-
tion model using standard Transformer-Big
architecture and a specific language token to indi-
cate the desired translation target language.
Tagged BT. We augment the training data by
exploring the monolingual corpus using back-
translation proposed by Caswell et al. (2019), with
tagged back-translated source sentences with an
extra token <BT>.
Selective KD. We focused on selective knowledge
distillation proposed by Wang et al. (2021), which
uses batch-level and global-level selections to pick
suitable samples for distillation.

4.3 Results

The results of our systems on the devtest dataset are
presented in Table 2. For models 1–4, we observed

6https://github.com/ngoyal2707/
sacrebleu/tree/adding_spm_tokenized_bleu

https://github.com/pytorch/fairseq
https://github.com/ngoyal2707/sacrebleu/tree/adding_spm_tokenized_bleu
https://github.com/ngoyal2707/sacrebleu/tree/adding_spm_tokenized_bleu
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# Systems spBLEU chrF BERTScore BEST BLEU
0 Flores 28.0 0.528 0.867 sr-mk (36.0)
1 Bilingualwhole 21.1 0.477 0.831 en-mk (31.3)
2 Bilingualselect 28.4 0.533 0.863 sr-en (40.6)
3 Multilingualwhole 16.7 0.431 0.827 sr-en (26.1)
4 Multilingualselect 30.9 0.555 0.874 sr-en (40.0)
5 Multilingualselect + TaggedBT(Multilingualselect) 30.7 0.548 0.873 sr-en (40.5)
6 Multilingualselect + TaggedBT(Bilingualselect) 32.3 0.562 0.879 sr-en (41.5)
7* Multilingualselect + TaggedBT(Bilingualselect) + KDbatch 33.2 0.572 0.883 sr-en (42.0)
8* Multilingualselect + TaggedBT(Bilingualselect) + KDglobal 33.9 0.576 0.887 sr-en (42.4)

Table 2: The automatic evaluation metrics on devtest data. spBLEU, chrF, BERTScore denotes the average
scores of spBLEU, chrF and BERTScore respectively, BEST BLEU denotes the language pair with the best
BLEU score. Systems with subscript whole denote the use of all data provided by the organizers, and systems
with subscript select denote the use of data selection. Model #6 is our primary system submitted to the Dynalab
leaderboard. Systems 7∗ and 8∗ were trained after the shared task and were not used for the final submission.

en et hr hu mk sr
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Figure 1: spBLEU scores on devtest data in 30 direc-
tions

that the amount of training data is not proportional
to the performance of the model for the bilingual or
multilingual translation model. The training data
provided by the organizers contains multiple do-
mains and does not match the dev/devtext/test data
domain. Therefore, we apply the data selection
methods to select data-relevant data from the train-
ing dataset to do the following experiments. Our
multilingual model (#4) performs competitively
with the Flores strong baseline (Model #0).

After these initial experiments, we explored how
the bilingual models can be used to improve the
multilingual model. More specifically, we use the
Bilingualselect model (#2) and Multilingualselect
model (#4) to back-translate the relevant monolin-
gual corpora, and then we use the back-translations
to train a new multilingual model. Although the
overall performance of the Multilingual model
(#4) is better than the Bilingual model (#2), back-

translation using the Bilingual model (model #6)
is better than back-translation using the Multilin-
gual model (model #5). The possible reason is
that the multilingual BT is in fact a form of self-
training, but bilingual BT uses separate models,
which means the knowledge obtained from bilin-
gual BT models is more independent of the knowl-
edge already learned by the baseline multilingual
BT model.

Knowledge Distillation further improves perfor-
mance slightly (Model # 7∗ and Model # 8∗). Based
on Model # 6, selective KD (Wang et al., 2021) is
added to further improve the performance of the
multilingual system.

Our best systems were outperformed by two
other shared task submissions, which however used
models pre-trained on additional data sources.

The performance grid of our best system (Model
# 8∗) is presented in Figure 1. We see from the
results that the sr-en language pair produced the
best results in terms of spBLEU score while the
hu-hr language pair scored the lowest.

5 Conclusions

In this paper, we presented the LMU Munich sys-
tem for the WMT 2021 Large-scale Multilingual
Translation shared task for small track #1. The task
evaluates translation between five central/eastern
European languages and English, in total 30 trans-
lation directions. The system we submitted was
fully constrained, using only the data provided by
the organizers and not using any pre-trained model.
The experiments show that back-translation and
knowledge distillation techniques are effective for
training multilingual machine translation systems.
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