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Abstract

We propose the neural string edit distance
model for string-pair matching and string
transduction based on learnable string edit dis-
tance. We modify the original expectation-
maximization learned edit distance algorithm
into a differentiable loss function, allowing us
to integrate it into a neural network provid-
ing a contextual representation of the input.
We evaluate on cognate detection, transliter-
ation, and grapheme-to-phoneme conversion,
and show that we can trade off between per-
formance and interpretability in a single frame-
work. Using contextual representations, which
are difficult to interpret, we match the per-
formance of state-of-the-art string-pair match-
ing models. Using static embeddings and a
slightly different loss function, we force inter-
pretability, at the expense of an accuracy drop.

1 Introduction

State-of-the-art models for string-pair classification
and string transduction employ powerful neural ar-
chitectures that lack interpretability. For example,
BERT (Devlin et al., 2019) compares all input sym-
bols with each other via 96 attention heads, whose
functions are difficult to interpret. Moreover, atten-
tion itself can be hard to interpret (Jain and Wallace,
2019; Wiegreffe and Pinter, 2019).

In many tasks, such as in transliteration, a rela-
tion between two strings can be interpreted more
simply as edit operations (Levenshtein, 1966). The
edit operations define the alignment between the
strings and provide an interpretation of how one
string is transcribed into another. Learnable edit
distance (Ristad and Yianilos, 1998) allows learn-
ing the weights of edit operations from data using
the expectation-maximization (EM) algorithm. Un-
like post-hoc analysis of black-box models, which
depends on human qualitative judgment (Adadi and
Berrada, 2018; Hoover et al., 2020; Lipton, 2018),
the restricted set of edit operations allows direct

Figure 1: An example of applying the dynamic pro-
gramming algorithm used to compute the edit probabil-
ity score. It gradually fills the table of probabilities that
prefixes of the word “equal” transcribe into prefixes of
phoneme sequence “IY K W AH L”. The probability
(gray circles) depends on the probabilities of the pre-
fixes and probabilities of plausible edit operations: in-
sert (blue arrows), substitute (green arrows) and delete
(red arrows).

interpretation. Unlike hard attention (Mnih et al.,
2014; Indurthi et al., 2019) which also provides a
discrete alignment between input and output, edit
distance explicitly says how the input symbols are
processed. Also, unlike models like Levenshtein
Transformer (Gu et al., 2019), which does not ex-
plicitly align source and target uses edit operations
to model intermediate generation steps only within
the target string, learnable edit distance considers
both source and target symbols to be a subject of
the edit operations.

We reformulate the EM training used to train
learnable edit distance as a differentiable loss func-
tion that can be used in a neural network. We pro-
pose two variants of models based on neural string
edit distance: a bidirectional model for string-pair
matching and a conditional model for string trans-
duction. We evaluate on cognate detection, translit-
eration, and grapheme-to-phoneme (G2P) conver-

52



sion. The model jointly learns to perform the task
and to generate a latent sequence of edit operations
explaining the output. Our approach can flexibly
trade off performance and intepretability by using
input representations with various degrees of con-
textualization and outperforms methods that offer a
similar degree of interpretability (Tam et al., 2019).

2 Learnable Edit Distance

Edit distance (Levenshtein, 1966) formalizes tran-
scription of a string s = (s1, . . . , sn) of n symbols
from alphabet S into a string t = (t1, . . . , tm) of
m symbols from alphabet T as a sequence of op-
erations: delete, insert and substitute, which have
different costs.

Ristad and Yianilos (1998) reformulated opera-
tions as random events drawn from a distribution of
all possible operations: deleting any s ∈ S, insert-
ing any t ∈ T , and substituting any pair of symbols
from S × T . The probability P(s, t) = αn,m of t
being edited from s can be expressed recursively:

αn,m = αn,m−1 · Pins(tm) + (1)

αn−1,m · Pdel(sn) +

αn−1,m−1 · Psubs(sn, tm)

This can be computed using the dynamic pro-
gramming algorithm of Wagner and Fischer (1974),
which also computes values of αi,j for all prefixes
s:i and t:j . The operation probabilities only depend
on the individual pairs of symbols at positions i,
j, so the same dynamic programming algorithm
is used for computing the suffix-pair transcription
probabilities βi,j (the backward probabilities).

With a training corpus of pairs of matching
strings, the operation probabilities can be estimated
using the EM algorithm. In the expectation step,
expected counts of all edit operations are estimated
for the current parameters using the training data.
Each pair of symbols si and tj contribute to the
expected counts of the operations:

Esubs(si, tj) += αi−1,j−1Psubs(si, tj)βi,j/αn,m

(2)
and analogically for the delete and insert operations.
In the maximization step, operation probabilities
are estimated by normalizing the expected counts.
See Algorithms 1–5 in Ristad and Yianilos (1998)
for more details.

3 Neural String Edit Distance Model

In our model, we replace the discrete table of op-
eration probabilities with a probability estimation

based on a continuous representation of the input,
which brings in the challenge of changing the EM
training into a differentiable loss function that can
be back-propagated into the representation.

Computation of the transcription probability is
shown in Figure 1. We use the same dynamic pro-
gramming algorithm (Equation 1 and Algorithm 2
in Appendix A) that gradually fills a table of prob-
abilities row by row. The input symbols are repre-
sented by learned, possibly contextual embeddings
(yellow and blue boxes in Figure 1) which are used
to compute a representation of symbol pairs with
a small feed-forward network. The symbol pair
representation is used to estimate the probabilities
of insert, delete and substitute operations (blue, red
and green arrows in Figure 1).

Formally, we embed the source sequence s of
length n into a matrix hs ∈ Rn×d and analogically
t into ht ∈ Rm×d (yellow and blue boxes in Fig-
ure 1). We represent the symbol-pair contexts as a
function of the respective symbol representations
(small gray rectangles in Figure 1) as a function of
repspective symbol representation ci,j = f(hs

i ,h
t
j)

depending on the task.
The logits (i.e., the probability scores before

normalization) for the edit operations are obtained
by concatenation of the following vectors (corre-
sponds to red, green and blue arrows in Figure 1):

• zi,jdel = Linear(ci−1,j) ∈ Rddel ,

• zi,jins = Linear(ci,j−1) ∈ Rdins ,

• zi,jsubs = Linear(ci−1,j−1) ∈ Rdsubs ,

where Linear(x) = Wx+ b where W and b are
trainable parameters of a linear projection and ddel,
dins and dsubs are the numbers of possible delete,
insert and substitute operations given the vocabu-
laries. The distribution Pi,j ∈ Rddel+dins+dsubs over
operations that lead to prefix pair s:i and t:j in a
single derivation step is

Pi,j = softmax(zi,jdel ⊕ zi,jins ⊕ zi,jsubs).i, j (3)

The probabilities Pi,j
del, P

i,j
ins and Pi,j

subs are obtained
by taking the respective values from the distribution
corresponding to the logits.1 Note that Pi,j only
depends on (possibly contextual) input embeddings
hs
i , h

s
i−1, ht

j , and ht
j−1, but not on the derivation

of prefix t:j from s:i.

1Using Python-like notation Pi,j
del = Pi,j [ : ddel],

Pi,j
ins = Pi,j [ddel : ddel+dins], Pi,j

subs = Pi,j [ddel+dins : ].
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Algorithm 1 Expectation-Maximization Loss
1: LEM ← 0
2: for i = 1 . . . n do
3: for j = 1 . . .m do
4: plausible← 0 . Indication vector
5: . I.e., operations that can be used given si and tj
6: if j > 1 then . Insertion is plausible
7: plausible += 1(insert tj)
8: E ins

i,j ← αi,j−1 · Pins(•|ci,j−1) · βi,j
9: if i > 1 then . Deletion is plausible

10: plausible += 1(delete si)
11: Edel

i,j ← αi−1,jPdel(•|ci−1,j)βi,j

12: if i > 1 and j > 1 then . Subs. is plausible
13: plausible += 1(substitute si → tj)
14: Esubs

i,j ← αi−1,j−1 · Psubs(•|ci−1,j−1) · βi,j
15: expected← normalize(plausible �
16:

[
E ins

i,j ⊕ Edel
i,j ⊕ Esubs

i,j

]
)

17: . Expected distr. can only contain plausible ops.
18: LEM += KL(Pi,j || expected)
19: return LEM

The transduction probability αi,j , i.e., a prob-
ability that s:i transcribes to t:j (gray circles in
Figure 1) is computed in the same way as in Equa-
tion 1.

The same algorithm with the reversed order of
iteration can be used to compute probabilities βi,j ,
the probability that suffix si: transcribes to tj:. The
complete transduction probability is the same, i.e.,
β1,1 = αn,m. Tables α and β are used to compute
the EM training loss LEM (Algorithm 1) which is
then optimized using gradient-based optimization.
Symbol • in the probability stands for all possible
operations (the operations that the model can assign
a probability score to), “normalize”’ means scale
the values such that they sum up to one.

Unlike the statistical model that uses a single dis-
crete multinomial distribution and stores the proba-
bilities in a table, in our neural model the operation
probabilities are conditioned on continuous vectors.
For each operation type, we compute the expected
distribution given the α and β tables (line 6–14).
From this distribution, we only select operations
that are plausible given the context (line 15), i.e.,
we zero out the probability of all operations that
do not involve symbols si and tj . Finally (line 18),
we measure the KL divergence of the predicted
operation distribution Pi,j (Equation 3) from the
expected distribution, which is the loss function
LEM.

With a trained model, we can estimate the prob-
ability of t being a good transcription of s. Also,
by replacing the summation in Equation 1 by the
max operation, we can obtain the most probable

operation sequence of operation transcribing s to t
using the Viterbi (1967) algorithm.

Note that the interpretability of our model de-
pends on how contextualized the input representa-
tions hs and ht are. The degree of contextualiza-
tion spans from static symbol embeddings with the
same strong interpretability as statistical models,
to Transformers with richly contextualized repre-
sentations, which, however, makes our model more
similar to standard black-box models.

3.1 String-Pair Matching

Here, our goal is to train a binary classifier decid-
ing if strings t and s match. We consider strings
matching if t can be obtained by editing s, with the
probability P(s, t) = αn,m higher than a threshold.
The model needs to learn to assign a high probabil-
ity to derivations of matching the source string to
the target string and low probability to derivations
matching different target strings.

The symbol-pair context ci,j is computed as

LN
(
ReLU

(
Linear(hs

i ⊕ ht
j)
))
∈ Rd, (4)

where LN stands for layer normalization and ⊕
means concatenation.

The statistical model assumes a single multino-
mial table over edit operations. A non-matching
string pair gets little probability because all deriva-
tions (i.e., sequence of edit operations) of non-
matching string pairs consist of low-probability
operations and high probability is assigned to oper-
ations that are not plausible. In the neural model,
the same information can be kept in model param-
eters and we can thus simplify the output space
of the model (see Appendix B for thought experi-
ments justifying the design choices).

We no longer need to explicitly model the proba-
bility of implausible operations and can only use a
single class for each type of edit operation (insert,
delete, substitute) and one additional non-match op-
tion that stands for the case when the inputs strings
do not match and none of the plausible edit op-
erations is probable (corresponding to the sum of
probabilities of the implausible operations in the
statistical model).

The value of P(s, t) = αm,n serves as a classi-
fication threshold for the binary classification. As
additional training signal, we also explicitly opti-
mize the probability using the binary cross-entropy
as an auxiliary loss, pushing the value towards 1
for positive examples and towards 0 for negative
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examples. We set the classification threshold dy-
namically to maximize the validation F1-score.

3.2 String Transduction

In the second use case, we use neural string edit
distance as a string transduction model: given a
source string, edit operations are applied to gener-
ate a target string. Unlike classification, we model
the transcription process with vocabulary-specific-
operations, but still use only a single class for
deletion. For the insertion and substitution opera-
tion, we use |T | classes corresponding to the target
string alphabet. Unlike classification, we do not
add the non-match class. To better contextualize
the generation, we add attention to the symbol-pair
representation ci,j :

LN
(
ReLU

(
Linear(hs

i ⊕ ht
j)
)
⊕Att

(
ht
j ,h

s
))

(5)
of dimension 2d, where Att(q,v) is a multihead
attention with queries q and keys and values v.

While generating the string left-to-right, the only
way a symbol can be generated is either by inserting
it or by substituting a source symbol. Therefore, we
estimate the probability of inserting symbol tj+1

given a target prefix t:j from the probabilities of
inserting a symbol after tj or substituting any si by
tj+1 (i.e., averaging over a row in Figure 1):

P (tj+1|t̂:j , s) =
|S|∑

j=1

αi,jPins(tj+1|ci,j)

+

|S|∑

j=2

αi,jPsubs(si, tj+1|ci,j). (6)

Probabilities Pins and Psubs are respective parts of
the distribution Pi,j (Equation 3). Probablity Pdel
is unkown at this point because computing it would
be computed based on state ci,j+1 which is impos-
sible without what the (j + 1)-th target symbol is,
where logits for Pins and Psubs use ci,j and ci−1,j .
Therefore, we approximate Equation 3 as

P̂i,j = softmax
(
zi,jins ⊕ zi,jsubs

)
. (7)

At inference time, we decide the next symbol t̂j
based on P̂i,j . Knowing the symbol allows com-
puting the Pi,j distribution and values α•,j that are
used in the next step of inference. The inference
can be done using the beam search algorithm as is
done with sequence-to-sequence (S2S) models.

We also use the probability distribution P̂ to
define an additional training objective which is the
negative log-likelihood of the ground truth output
with respect to this distribution, analogically to
training S2S models,

LNLL = −
|t|∑

j=0

log

|s|∑

i=0

P̂i,j/|s|. (8)

3.3 Interpretability Loss
In our preliminary experiments with Viterbi decod-
ing, we noticed that the model tends to avoid the
substitute operation and chose an order of insert
and delete operations that is not interpretable. To
prevent this behavior, we introduce an additional
regularization loss. To decrease the values of α
that are further from the diagonal, we add the term∑n

i=1

∑m
j=1 |i− j| ·αi,j to the loss function. Note

that this formulation assumes that the source and
target sequence have similar lengths. For tasks
where the sequence lengths vary significantly, we
would need to consider the sequence length in the
loss function.

In the string transduction model, optimization
of this term can lead to a degenerate solution by
flattening all distributions and thus lowering all
values in table α. We thus compensate for this loss
by adding the − logαn,m term to the loss function
which enforces increasing the α values.

4 Experiments

We evaluate the string-pair matching model on cog-
nate detection, and the string transduction model
on Arabic-to-English transliteration and English
grapheme-to-phoneme conversion.

In all tasks, we study four ways of representing
the input symbols with different degrees of con-
textualization. The interpretable context-free (uni-
gram) encoder uses symbol embeddings summed
with learned position embeddings. We use a 1-D
convolutional neural network (CNN) for locally
contexualized representation where hidden states
correspond to consecutive input n-grams. We use
bidirectional recurrent networks (RNNs) and Trans-
formers (Vaswani et al., 2017) for fully contextual-
ized input representations.

Architectural details and hyperparameters are
listed in Appendix C. All hyperparameters are
set manually based on preliminary experiments.
Further hyperparameter tuning can likely lead to
better accuracy of both baselines and our model.
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Method # Param.
Indo-European Austro-Asiatic

Plain + Int. loss Time Plain + Int. loss Time

Learnable edit distance 0.2M 32.8 ±1.8 — 0.4h 10.3 ±0.5 — 0.2h
Transformer [CLS] 2.7M 93.5 ±2.1 — 0.7h 78.5 ±0.8 — 0.6h

ST
A

N
C

E unigram 0.5M 46.2 ±4.9 — 0.2h 16.6 ±0.3 — 0.1h

RNN 1.9M 80.6 ±1.2 — 0.3h 15.9 ±0.2 — 0.2h
Transformer 2.7M 76.7 ±1.3 — 0.3h 16.7 ±0.3 — 0.2h

ou
rs

unigram 0.5M 78.5 ±1.0 80.1 ±0.8 1.5h 47.8 ±0.7 48.4 ±0.6 0.7h
CNN (3-gram) 0.7M 94.0 ±0.7 93.9 ±0.8 0.9h 77.9 ±1.5 76.2 ±1.9 0.5h

RNN 1.9M 96.9 ±0.6 97.1 ±0.6 1.9h 84.0 ±0.4 83.7 ±0.5 1.2h
Transformer 2.7M 87.2 ±1.6 87.3 ±1.8 1.6h 69.9 ±1.0 70.7 ±1.1 1.0h

Table 1: F1 and training time for cognate detection. F1 on validation is in Table 6 in the Appendix.

However, preliminary experiments showed that
increasing the model size only has a small ef-
fect on model accuracy. We run every experi-
ment 5 times and report the mean performance
and the standard deviation to control for train-
ing stability. The source code for the experi-
ments is available at https://github.com/jlibovicky/
neural-string-edit-distance.

Cognate Detection. Cognate detection is the
task of detecting if words in different languages
have the same origin. We experiment with
Austro-Asiatic languages (Sidwell, 2015) and Indo-
European languages (Dunn, 2012) normalized into
the international phonetic alphabet as provided by
Rama et al. (2018).2

For Indo-European languages, we have 9,855
words (after excluding singleton-class words) from
43 languages forming 2,158 cognate classes. For
Austro-Asiatic languages, the dataset contains
11,828 words of 59 languages, forming only 98 cog-
nate classes without singletons. We generate classi-
fication pairs from these datasets by randomly sam-
pling 10 negative examples for each true cognate
pair. We use 20k pairs for validation and testing,
leaving 1.5M training examples for Indo-European
and 80M for Austro-Asiatic languages.

Many cognate detection methods are unsuper-
vised and are evaluated by comparison of a cluster-
ing from the method with true cognate classes. We
train a supervised classifier, so we use F1-score on
our splits of the dataset.

Because the input and the output are from the
same alphabet, we share the parameters of the en-
coders of the source and target sequences.

As a baseline we use the original statistical learn-
2https://www.aclweb.org/anthology/attachments/

N18-2063.Datasets.zip

able edit distance (Ristad and Yianilos, 1998). The
well-performing black-box model used as another
baseline for comparison with our model is a Trans-
former processing a concatenation of the two input
strings. Similar to BERT (Devlin et al., 2019), we
use the representation of the first technical symbol
as an input to a linear classifier. We also com-
pare our results with the STANCE model (Tam
et al., 2019), a neural model utilizing optimal-
transport-based alignment over input text repre-
sentation which makes similar claims about inter-
pretability as we do. Similar to our model, we
experiment with various degrees of representation
contextualization.

Transliteration and G2P Conversion. For
string transduction, we test our model on two
tasks: Arabic-to-English transliteration (Rosca and
Breuel, 2016)3 and English G2P conversion using
the CMUDict dataset (Weide, 2017)4.

The Arabic-to-English transliteration dataset
consists of 12,877 pairs for training, 1,431 for val-
idation, and 1,590 for testing. The source-side
alphabet uses 47 different symbols; the target side
uses 39. The CMUDict dataset contains 108,952
training, 5,447 validation, and 12,855 test exam-
ples, 10,999 unique. The dataset uses 27 different
graphemes and 39 phonemes.

We evaluate the output strings using Character
Error Rate (CER): the standard edit distance be-
tween the generated hypotheses and the ground
truth string divided by the ground-truth string
length; and Word Error Rate (WER): the propor-
tion of words that were transcribed incorrectly. The
CMUDict dataset contains multiple transcriptions

3https://github.com/google/transliteration
4https://github.com/microsoft/CNTK/tree/master/

Examples/SequenceToSequence/CMUDict/Data
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Figure 2: Visualization of the α table (0 is dark blue, 1
is yellow) for cognate detection using a unigram model.
Left: A cognate pair, Right: a non-cognate pair

for some words, as is usually done we select the
transcription with the lowest CER as a reference.

Unlike the string-matching task, the future target
symbols are unknown. Therefore, when using the
contextual representations, we encode the target
string using a single-direction RNN and using a
masked Transformer, respectively.

To evaluate our model under low-resource con-
ditions, we conduct two sets of additional experi-
ments with the transliteration of Arabic. We com-
pare our unigram and RNN-based models with the
RNN-based S2S model trained on smaller subsets
of training data (6k, 3k, 1.5k, 750, 360, 180, and
60 training examples) and different embedding and
hidden state size (8, 16, . . . , 512).

For the G2P task, where the source and target
symbols can be approximately aligned, we further
quantitatively assess the model’s interpretability
by measuring how well it captures alignment be-
tween the source and target string. We consider the
substitutions in the Viterbi decoding to be aligned
symbols. We compare this alignment with statis-
tical word alignment and report the F1 score. We
obtain the source-target strings alignment using
Efmaral (Östling and Tiedemann, 2016), a state-of-
the-art word aligner, by running the aligner on the
entire CMUDict dataset. We use grow-diagonal for
alignment symmetrization.

The baseline models are RNN-based (Bahdanau
et al., 2015) and Transformer-based (Vaswani et al.,
2017) S2S models.

5 Results

Cognate Detection. The results of cognate detec-
tion are presented in Table 1 (learning curves are
in Figure 5 in Appendix). In cognate detection, our
model significantly outperforms both the statistical
baseline and the STANCE model. The F1-score

Loss functions F1

Complete loss 97.1 ±0.6
— binary XENT for αm,n 96.1 ±0.3
— expectation-maximization (Alg. 1) 96.3 ±0.7

Table 2: Ablation study for loss function on Cognate
classification with a model with RNN contextualizer.
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Figure 3: Character Error Rate for Arabic translitera-
tion into English for various training data sizes (left)
and various representation sizes (right).

achieved by the unigram model is worse than the
Transformer classifier by a large margin. Local
representation contextualization with CNN reaches
similar performance as the black-box Transformer
classifier while retaining a similar strong inter-
pretability to the static embeddings. Models with
RNN encoders outperform the baseline classifier,
whereas the Transformer encoder yields slightly
worse results. Detecting cognates seems to be
more difficult in Austro-Asiatic languages than in
Indo-European languages. The training usually
converges before finishing a single epoch of the
training data. An example of how the α captures
the prefix-pair probabilities is shown in Figure 2.
The interpretability loss only has a negligible (al-
though mostly slightly negative) influence on the
accuracy, within the variance of training runs. The
ablation study on loss functions (Table 2) shows
that the binary cross-entropy plays a more impor-
tant role. The EM loss alone works remarkably
well given that it was trained on positive examples
only.

Transliteration and G2P Conversion. The re-
sults for the two transduction tasks are presented
in Table 3 (learning curves are in Figure 5 in Ap-
pendix). Our transliteration baseline slightly out-
performs the baseline presented with the dataset
(Rosca and Breuel, 2016, 22.4% CER, 77.1%
WER). Our baselines for the G2P conversion
perform slightly worse than the best models by
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Method

#
Pa

ra
m

. Arabic→ English CMUDict

Plain + Interpret. loss Time Plain + Interpret. loss Time
CER WER CER WER CER WER Align. CER WER Align.

RNN Seq2seq 3.3M 22.0 ±0.2 75.8 ±0.6 — — 12m 5.8 ±0.1 23.6 ±0.9 24.5 — — — 1.8h
Transformer 3.1M 22.9 ±0.2 78.5 ±0.4 — — 11m 6.5 ±0.1 26.6 ±0.3 33.2 — — — 1.1h

ou
rs

unigram 0.7M 31.7 ±1.8 85.2 ±0.9 31.2 ±1.4 85.0 ±0.5 36m 20.9 ±0.3 67.5 ±1.0 55.7 20.6 ±0.3 66.3 ±0.2 59.5 2.4h
CNN (3-gram) 1.1M 24.6 ±0.6 80.5 ±0.3 24.5 ±0.9 80.1 ±0.9 41m 12.8 ±1.0 48.4 ±3.1 35.4 12.8 ±0.2 48.4 ±0.6 38.1 2.5h

Deep CNN 3.0M 24.4 ±0.5 80.0 ±0.7 23.8 ±0.3 79.3 ±0.1 52m 10.8 ±0.5 41.4 ±1.9 23.3 10.8 ±0.5 42.1 ±1.6 28.8 2.5h
RNN 2.9M 24.1 ±0.2 77.0 ±2.0 22.0 ±0.3 77.4 ±0.8 60m 7.8 ±0.3 31.9 ±1.3 44.7 7.3 ±0.4 33.3 ±1.5 48.9 2.3h
Transformer 3.2M 24.3 ±0.9 79.0 ±0.7 23.9 ±1.6 78.6 ±1.3 1.2h 10.7 ±1.0 41.8 ±3.1 33.3 10.2 ±1.1 43.6 ±3.2 37.9 2.3h

Table 3: Model error rates for Arabic-to-English transliteration and English G2P generation and respective training
times. For the second data set, we also report the alignment F1 scores (Align.). Our best models are in bold. The
error rates on the validation data are in Table 7 in the Appendix.

Loss functions CER WER

Complete loss 22.5 ±0.3 77.4 ±0.8
— expectation maximization 68.2 ±7.4 93.5 ±1.0
— next symbol NLL 27.2 ±1.4 81.1 ±2.2
— αm,n maximization 23.5 ±1.3 79.2 ±2.5

Table 4: Ablation study for loss function on Arabic-to-
English transliteration using RNN and the underlying
representation.

Yolchuyeva et al. (2019), which had 5.4% CER and
22.1% WER with a twice as large model, and 6.5%
CER and 23.9% WER with a similarly sized one.

The transliteration of Arabic appears to be a sim-
pler problem than G2P conversion. The perfor-
mance matches S2S, has fast training times, and
there is a smaller gap between the error rates of the
context-free and contextualized models.

The training time of our transduction models is
2–3× higher than with the baseline S2S models
because the baseline models use builtin PyTorch
functions, whereas our model is implemented us-
ing loops using TorchScript5 (15% faster than plain
Python). The performance under low data condi-
tions and with small model capacity is in Figure 3.

Models that use static symbol embeddings as
the input perform worse than the black-box S2S
models in both tasks. Local contextualization with
CNN improves the performance over static sym-
bol embeddings. Using the fully contextualized
input representation narrows the performance gap
between S2S models and neural string edit distance
models at the expense of decreased interpretability
because all input states can, in theory, contain infor-
mation about the entire input sequence. The ability
to preserve source-target alignment is highest when
the input is represented by embeddings only. RNN
models not only have the best accuracy, but also

5https://pytorch.org/docs/stable/jit.html

capture quite well the source-target alignment. We
hypothesize that RNNs work well because of their
inductive bias towards sequence processing, which
might be hard to learn from position embeddings
given the task dataset sizes.

Including the interpretability loss usually slightly
improves the accuracy and improves the alignment
between the source and target strings. It manifests
both qualitatively (Table 5) and quantitatively in
the increased alignment accuracy.

Compared to S2S models, beam search decoding
leads to much higher accuracy gains, with beam
search 5 reaching around 2× error reduction com-
pared to greedy decoding. For all input represen-
tations except the static embeddings, length nor-
malization does not improve decoding. Unlike ma-
chine translation models, accuracy doesn’t degrade
with increasing beam size. See Figure 4 in Ap-
pendix.

The ablation study on loss functions (Table 4)
shows that all loss functions contribute to the final
accuracy. The EM loss is most important, direct
optimization of the likelihood is second.

6 Related Work

Weighted finite-state transducers. Rastogi
et al. (2016) use a weighted-finite state transducer
(WFST) with neural scoring function to model
sequence transduction. As in our model, they
back-propagate the error via a dynamic program.
Our model is stronger because, in the WFST,
the output symbol generation only depends on
the contextualized source symbol embedding,
disregarding the string generated so far.

Lin et al. (2019) extend the model by including
contextualized target string representation and edit
operation history. This makes their model more
powerful than ours, but the loss function cannot be
exactly computed by dynamic programming and
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graphemes phonemes edit operations

GOELLER G OW L ER G )G -O -E -L L )OW +L -E R )ER
G )G O )OW -E -L L )L -E R )ER

VOGAN V OW G AH N V )V -O G )OW +G +AH -A N )N
V )V +OW -O G )G -A N )N

FLAGSHIPS F L AE G SH IH P S F )F L )L -A -G S )AE +G -H +SH -I P )IH +P +S
F )F L )L +AE -A G )G -S H )SH +IH -I P )P S )S

ENDLER EH N D L ER +EH -E N )N D )D L )L -E R )ER
E )EH N )N D )D L )L -E R )ER

SWOOPED S W UW P T S )S W )W +UW -O -O P )P -E D )T
S )S W )W -O O )UW P )P -E D )T

Table 5: Edit operations predicted by RNN-based model for grapheme (blue) to phoneme (green) conversion with
and without the interpretability loss (when provided ground-truth target). Green boxes are insertions, blue boxes
deletions, yellow boxes substitutions.

requires sampling possible operation sequences.

Segment to Segment Neural Transduction. Yu
et al. (2016) use two operation algorithm (shift and
emit) for string transduction. Unlike our model
directly, it models independently the operation type
and target symbols and lacks the concept of symbol
substitution.

Neural sequence matching. Several neural
sequence-matching methods utilize a scoring func-
tion similar to symbol-pair representation. Cuturi
and Blondel (2017) propose integrating alignment
between two sequences into a loss function that
eventually leads to finding alignment between the
sequences. The STANCE model (Tam et al., 2019),
which we compare results with, first computes the
alignment as an optimal transfer problem between
the source and target representation. In the sec-
ond step, they assign a score using a convolutional
neural network applied to a soft-alignment matrix.
We showed that our model reaches better accuracy
with the same input representation. Similar to our
model, these approaches provide interpretability
via alignment. They allow many-to-many align-
ments, but cannot enforce a monotonic sequence
of operations unlike WFSTs and our model.

Learnable edit distance. McCallum et al.
(2005) used trainable edit distance in combination
with CRFs for string matching. Recently, Riley and
Gildea (2020) integrated the statistical learnable
edit distance within a pipeline for unsupervised
bilingual lexicon induction. As far as we know, our
work is the first using neural networks directly in
dynamic programming for edit distance.

Edit distance in deep learning. LaserTagger
(Malmi et al., 2019) and EditNTS (Dong et al.,
2019) formulate sequence generation as tagging
of the source text with edit operations. They use
standard edit distance to pre-process the data (so,
unlike our model cannot work with different alpha-
bets) and then learn to predict the edit operations.
Levenshtein Transformer (Gu et al., 2019) is a par-
tially non-autoregressive S2S model generating the
output iteratively via insert and delete operations.
It delivers a good trade-off of decoding speed and
translation quality, but is not interpretable.

Dynamic programming in deep learning.
Combining dynamic programming and neural-
network-based estimators is a common technique,
especially in sequence modeling. Connectionist
Temporal Classification (CTC; Graves et al.,
2006) uses the forward-backward algorithm to
estimate the loss of assigning labels to a sequence
with implicit alignment. The loss function of a
linear-chain conditional random field propagated
into a neural network (Do and Artieres, 2010)
became the state-of-the-art for tasks like named
entity recognition (Lample et al., 2016). Loss
functions based on dynamic programming are
also used in non-autoregressive neural machine
translation (Libovický and Helcl, 2018; Saharia
et al., 2020).

Cognate detection. Due to the limited amount
of annotated data, cognate detection is usually ap-
proached using unsupervised methods. Strings
are compared using measures such as pointwise
mutual information (Jäger, 2014) or LexStat sim-
ilarity (List, 2012), which are used as an input to
a distance-based clustering algorithm (List et al.,
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2016). Jäger et al. (2017) used a supervised SVM
classifier trained on one language family using fea-
tures that were previously used for clustering and
applied the classifier to other language families.

Transliteration. Standard S2S models (Bah-
danau et al., 2015; Gehring et al., 2017; Vaswani
et al., 2017) or CTC-based sequence-labeling
(Graves et al., 2006) are the state of the art for both
transliteration (Rosca and Breuel, 2016; Kundu
et al., 2018) and G2P conversion (Yao and Zweig,
2015; Peters et al., 2017; Yolchuyeva et al., 2019).

7 Conclusions

We introduced neural string edit distance, a neural
model of string transduction based on string edit
distance. Our novel formulation of neural string
edit distance critically depends on a differentiable
loss. When used with context-free representations,
it offers a direct interpretability via insert, delete
and substitute operations, unlike widely used S2S
models. Using input representations with differ-
ing amounts of contextualization, we can trade off
interpretability for better performance. Our ex-
perimental results on cognate detection, Arabic-to-
English transliteration and grapheme-to-phoneme
conversion show that with contextualized input rep-
resentations, the proposed model is able to match
the performance of standard black-box models. We
hope that our approach will help motivate more
work on this type of interpretable model and that
our framework will be useful in such future work.
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Sevinj Yolchuyeva, Géza Németh, and Bálint Gyires-
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A Inference algorithm

Algorithm 2 is a procedural implementation of
Equation 1. In the Viterbi decoding used for ob-
taining the alignment, the summation on line 6, 8
and 10 is replaced by taking the maximum.

Algorithm 2 Forward evaluation
1: α ∈ Rn×m ← 0
2: α0,0 ← 1
3: for i = 1 . . . n do
4: for j = 1 . . .m do
5: if j > 0 then
6: αi,j += Pins(tj |ci,j−1) · αi,j−1

7: if i > 0 then
8: αi,j += Pdel(si|ci−1,j) · αi−1,j

9: if i > 0 and j > 0 then
10: αi,j += Psubs(si ) tj |ci−1,j−1) · αi−1,j−1

B Motivation for design choices in the
string-matching model

Let us assume a toy example transliteration. The
source alphabet is {A, B, C}, the target alphabet is
{a, b, c}, the transcription rules are:

1. If B is at the beginning of the string, delete it.

2. Multiple As rewrite to a single a.

3. Rewrite B to b and C to c.

The statistical learnable edit distance would not
be capable of properly learning rules 1 and 2 be-
cause it would not know that B was at the beginning
of the string and if an occurrence of A is the first
A. This problem gets resolved by introducing a
contextualized representation of the input.

The original statistical EM algorithm only needs
positive examples to learn the operation distribu-
tion. For instance, rewriting B to c will end up as
improbable due to the inherent limitation of a sin-
gle sharing static probability table. Using a single
table regardless of the context means that if some
operations become more probable, the others must
become less probable. A neural network does not
have such limitations. A neural model can in the-
ory find solutions that maximize the probability of
the training data, however, do not correspond to
the original set of rules by finding a highly proba-
ble sequence of operations for any string pair. For
instance, it can learn to count the positions in the
string:

1′. Whatever symbols at the same position i (si
and ti) are, substitute si with tj with the prob-
ability of 1.

2′. If i < j, assign probability of 1 to deleting si.

3′. If i > j, assign probability of 1 to inserting
tj .

For this reason, we introduce the binary cross-
entropy as an additional loss function. This should
steer the model away from degenerate solutions as-
signing a high probability score to any input string
pair.

But our ablation study in Table 2 showed that
even without the binary cross-entropy loss, the
model converges to a good non-degenerate solu-
tion.

This thought experiment shows keeping the full
table of possible model outcomes is no longer cru-
cial for the modeling strength. Let us assume that
the output distribution of the neural model con-
tains all possible edit operations as they are in
the static probability tables of the statistical model.
The model can learn to rely on the position infor-
mation only and select the correct symbols in the
output probability distribution ignoring the actual
content of the symbols, using their embeddings as
a key to identify the correct item from the output
distribution. The model can thus learn to ignore
the function the full probability table had in the
statistical model. Also, given the inputs, it is al-
ways clear what the plausible operations are, it is
easy for the model not to assign any probability
to the implausible operations (unlike the statistical
model).

These thoughts lead us to the conclusion that
there is no need to keep the full output distribution
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and we only can use four target classes: one for
insertion, one for deletion, one for substitution, and
one special class that would get the part of proba-
bility mass that would be assigned to implausible
operations in the statistical model. We call the last
one the non-match option.

C Model Hyperparameters

Following Gehring et al. (2017), the CNN uses
gated linear units as non-linearity (Dauphin et al.,
2017), layer normalization (Ba et al., 2016) and
residual connections (He et al., 2016). The symbol
embeddings are summed with learnable position
embeddings before the convolution.

The RNN uses gated recurrent units (Cho et al.,
2014) and follows the scheme of Chen et al.
(2018), which includes residual connections (He
et al., 2016), layer normalization (Ba et al., 2016),
and multi-headed scaled dot-product attention
(Vaswani et al., 2017).

The Transformers follow the architecture deci-
sions of BERT (Devlin et al., 2019) as implemented
in the Transformers library (Wolf et al., 2020).

All hyperparameters are set manually based on
preliminary experiments. For all experiments, we
use embedding size of 256. The CNN encoder
uses a single layer with kernel size 3 and ReLU
non-linearity. For both the RNN and Transformer
models, we use 2 layers with 256 hidden units. The
Transformer uses 4 attention heads of dimension
64 in the self-attention. The same configuration
is used for the encoder-decoder attention for both
RNN and Transformer. We use the same hyperpa-
rameters also for the baselines.

We include all main loss functions with weight
1.0, i.e., for string-pair matching: the EM loss,
non-matching negative log-likelihood and binary
cross-entropy; for string transduction: the EM loss
and next symbol negative log-likelihood. We test
each model with and without the interpretability
loss, which is included with weight 0.1.

We optimize the models using the Adam opti-
mizer (Kingma and Ba, 2015) with an initial learn-
ing rate of 10−4, and batch size of 512. We validate
the models every 50 training steps. We decrease
the learning rate by a factor of 0.7 if the validation
performance does not increase in two consecutive
validations. We stop the training after the learning
rate decreases 10 times.

D Notes on Reproducibility

The training times were measured on machines
with GeForce GTX 1080 Ti GPUs and with In-
tel Xeon E5–2630v4 CPUs (2.20GHz). We report
average wall time of training including data prepro-
cessing, validation and testing. The measured time
might be influenced by other processes running on
the machines.

Validation scores are provided in Tables 6 and 7.
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Figure 4: Effect of beam search on test data for grapheme-to-phoneme conversion.
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Figure 5: Learning curves for Cognate classification for Indo-European languages (left) and for grapheme-to-
phoneme conversion (right).
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Method Indo-European Austro-Asiatic

Base + Int. loss Base + Int. loss

Transformer [CLS] 91.4 ±2.8 — 78.8 ±0.8 —

ST
A

N
C

E unigram 46.5 ±4.7 — 16.5 ±0.4 —

RNN 80.4 ±1.6 — 16.5 ±0.1 —
Transformer 76.8 ±1.3 — 17.2 ±0.2 —

ou
rs

unigram 81.2 ±1.0 82.0 ±0.5 52.6 ±0.8 53.9 ±0.6
CNN (3-gram) 95.2 ±0.6 94.9 ±0.7 78.9 ±0.8 78.1 ±1.7

RNN 97.2 ±0.2 88.8 ±1.1 82.8 ±0.6 83.1 ±0.7
Transformer 88.8 ±1.6 88.7 ±1.1 71.5 ±1.1 71.5 ±1.1

Table 6: F1-score for cognate detection on the validation data.

Method Arabic→ English CMUDict

Base + Int. loss Base + Int. loss

CER WER CER WER CER WER CER WER

RNN Seq2seq 21.7 ±0.1 75.0 ±0.6 — — 7.4 ±0.0 31.5 ±0.1 — —
Transformer 22.8 ±0.2 77.7 ±0.6 — — 7.8 ±0.1 32.7 ±0.3 — —

ou
rs

unigram 28.4 ±0.7 84.1 ±0.8 28.3 ±0.5 84.3 ±0.7 21.2 ±1.0 66.4 ±1.9 21.5 ±0.8 68.0 ±2.1
CNN (3-gram) 34.4 ±1.1 86.5 ±0.8 32.2 ±1.1 86.5 ±0.8 36.0 ±5.7 80.9 ±3.2 33.8 ±3.5 79.0 ±2.8

RNN 42.4 ±9.0 90.9 ±5.4 45.2 ±2.6 90.9 ±1.8 59.1 ±2.5 96.2 ±0.7 43.6 ±5.6 80.5 ±5.6
Transformer 41.2 ±9.1 91.7 ±4.4 47.7 ±3.6 92.5 ±2.4 24.6 ±4.3 73.8 ±6.1 43.5 ±3.6 84.9 ±2.5

Table 7: Model error-rates for Arabic-to-English transliteration and English G2P generation on validation data.
.
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