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Lecture Goals

Probabilities

I Basic notions and intuitive understanding

I Basic laws and computing with probabilities

I Independence

Conditional probabilities

I Basic notions

I Bayes law

I Modelling complications

Literature:
[Grinstead, Snell: Introduction to Probability. AMS 1997]
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/

probability_book/book.html
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Always ask questions right away!

Consultation hour: Monday, 3-4pm



First Intuitive Notions

Probability

The (theoretical) likelihood of an event in an experiment

Notions

I Experiment: Action producing one of a finite number of
outcomes discrete probability distribution

I Event: A subset of the outcomes

I Likelihood: Fraction of an outcome happening in a huge
number of experiments

Example

I Experiment: Rolling a die

I Event: Rolling a ‘5’ or a ‘6’

I Likelihood of outcome ‘6’: 1
6 for a fair die



First Intuitive Notions

Probability

The (theoretical) likelihood of an event in an experiment

Notions

I Experiment: Action producing one of a finite number of
outcomes discrete probability distribution

I Event: A subset of the outcomes

I Likelihood: Fraction of an outcome happening in a huge
number of experiments

Example

I Experiment: Rolling a die

I Event: Rolling a ‘5’ or a ‘6’

I Likelihood of outcome ‘6’: 1
6 for a fair die



First Intuitive Notions

Probability

The (theoretical) likelihood of an event in an experiment

Notions

I Experiment: Action producing one of a finite number of
outcomes discrete probability distribution

I Event: A subset of the outcomes

I Likelihood: Fraction of an outcome happening in a huge
number of experiments

Example

I Experiment: Rolling a die

I Event: Rolling a ‘5’ or a ‘6’

I Likelihood of outcome ‘6’: 1
6 for a fair die



First Intuitive Notions

Probability

The (theoretical) likelihood of an event in an experiment

Notions

I Experiment: Action producing one of a finite number of
outcomes discrete probability distribution

I Event: A subset of the outcomes

I Likelihood: Fraction of an outcome happening in a huge
number of experiments

Example

I Experiment: Rolling a die

I Event: Rolling a ‘5’ or a ‘6’

I Likelihood of outcome ‘6’: 1
6 for a fair die



First Intuitive Notions

Probability

The (theoretical) likelihood of an event in an experiment

Notions

I Experiment: Action producing one of a finite number of
outcomes discrete probability distribution

I Event: A subset of the outcomes

I Likelihood: Fraction of an outcome happening in a huge
number of experiments

Example

I Experiment: Rolling a die

I Event: Rolling a ‘5’ or a ‘6’

I Likelihood of outcome ‘6’: 1
6 for a fair die



First Intuitive Notions

Probability

The (theoretical) likelihood of an event in an experiment

Notions

I Experiment: Action producing one of a finite number of
outcomes discrete probability distribution

I Event: A subset of the outcomes

I Likelihood: Fraction of an outcome happening in a huge
number of experiments

Example

I Experiment: Rolling a die

I Event: Rolling a ‘5’ or a ‘6’

I Likelihood of outcome ‘6’: 1
6 for a fair die



First Mathematical Notions

Notions

I Experiment: Sample space S and random variable X ∈ S

I Outcome: e ∈ S

I Event: E ⊆ S

I Likelihood: p : S → [0, 1] such that
∑

e∈S p(e) = 1

Random variable vs. outcome

I Random variable: represents the actual outcome of an
experiment unknown

I Outcome: specific potential outcome of an experiment
known
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First Mathematical Notions

Probability distribution

p : S → [0, 1] such that
∑

e∈S p(e) = 1

Example

I Sample space S = {1, 2, 3, 4, 5, 6}
I Outcome 6

I Event E = {5, 6}
I p(6) = 1

6

Definition (Probability of an event)

Event E ⊆ S and prob. distribution p : S → [0, 1]

p(E ) =
∑
e∈E

p(e)
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Introductory Examples

Example (Coin toss)

I Experiment: Toss a coin twice

I Sample space: {HH, HT, TH, TT} record sequence

I Prob. distribution: p(HH) = p(HT) = p(TH) = p(TT) = 1
4

What is the probability of the event “at least once tails”?

I Event: E = {HT, TH, TT}
I p(E ) =

∑
e∈E p(e) = 3

4
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Introductory Examples

Example (Another coin toss)

I Experiment: Toss 2 coins

I Sample space: {{H}, {H, T}, {T}} record faces seen

I Prob. distribution:
p({H}) = p({T}) = 1

4
p({H, T}) = 1

2

What is the probability of the event “no tails”?

I Event: E = {{H}}
I p(E ) = p({T}) = 1

4

Remark
p({H}) = p({T}) = p({H, T}) = 1

3 is also a prob. distribution, but
it does not capture the imagined experiment!
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The First Problems

Example (Galileo, early 1600s)

Does a sum of 10 show up more often than a sum of 9 in a roll of
3 dice?

Hint
There are 25 and 27 triplets summing to 9 and 10, respectively.

Historical remarks

I Buffon, 18th century: 4,040 coin tosses (2,048 H; 1,992 T)

I Weldon, 1894: 26,306 throws of 12 dice

I Wolf, ≈1884: 100,000 throws of a die
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The First Problems

Example (Tversky, 1982)

In a large hospital 45 babies are born each day, and in a smaller
hospital 15 babies are born each day. The overall proportion (over
the year) of boys is about 50%. Which hospital will have the
greater number of days in a year on which more than 60% of the
babies born were boys?

Answer
60% of 45 and 15 are 27 and 9, respectively.
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The First Problems

Example (Tversky, 1982)

In a large hospital 45 babies are born each day, and in a smaller
hospital 15 babies are born each day. The overall proportion (over
the year) of boys is about 50%. Which hospital will have the
greater number of days in a year on which more than 60% of the
babies born were boys?

Answer
60% of 45 and 15 are 27 and 9, respectively.

Assuming day-to-day independence, we can compute the
probability for more than 60% boys for a single day:

I large hospital: 11.63%

I small hospital: 30.36%



A Difficult Problem

Example

We toss a coin 40 times. Every time heads comes up, you give me
a cent, and every time tail comes up, I give you a cent.

(a) What is the most likely amount of cents won by me at the
end?

(b) What is the most likely number of times I am in the lead?
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Elementary Properties

Theorem
prob. distribution p : S → [0, 1]

1. p(E ) ≥ 0 for every event E ⊆ S

2. p(S) = 1

3. p(E ) ≤ p(E ′) for all E ⊆ E ′ ⊆ S

4. p(E ∪ E ′) = p(E ) + p(E ′) for all E , E ′ ⊆ S with E ∩ E ′ = ∅
5. p(S \ E ) = 1− p(E ) for every event E ⊆ S

6. p(E ) = |E |
|S | if p(e) = 1

|S | for every outcome e ∈ S

Remark

I If p(e) = 1
|S | for every outcome e ∈ S , then p is uniform

I in that case: probability of an event is ratio of positive
outcomes to all outcomes
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A Dice Problem

Example (Chevalier de Méré, Pascal, Fermat 1654)

What is the probability of at least one ‘6’ in 4 rolls of a die?

Answers

(a) � 50% ( ≤ 2
6 = 1

3)

(b) < 50%

(c) = 50%

(d) > 50%

(e) � 50% ( ≥ 4
6 = 2

3)



A Dice Problem

Example (Chevalier de Méré, Pascal, Fermat 1654)

What is the probability of at least one ‘6’ in 4 rolls of a die?

Answers

(a) � 50% ( ≤ 2
6 = 1

3)

(b) < 50%

(c) = 50%

(d) > 50%

(e) � 50% ( ≥ 4
6 = 2

3)

The probability is 0.52 (or 52%).



A Dice Problem
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A Dice Problem

Example (Chevalier de Méré, Pascal, Fermat 1654)

What is the probability of at least one ‘6’ in 4 rolls of a die?

1

1

1 2 3 4 5 6

2 3 4 5 6

2 3 4 5 6

1st roll = 6: 63 = 216 positive outcomes remaining rolls irrelevant
1st roll 6= 6:

I 2nd roll = 6: 62 = 36 positive outcomes
I 2nd roll 6= 6: 5 outcomes

I 3rd roll = 6: 6 positive outcomes
I 3rd roll 6= 6: 5 outcomes

I 4th roll = 6: 1 positive outcome
I 4th roll 6= 6: 0 positive outcomes 5 outcomes



A Dice Problem

Example (Chevalier de Méré, Pascal, Fermat 1654)

What is the probability of at least one ‘6’ in 4 rolls of a die?

1

1

1 2 3 4 5 6

2 3 4 5 6

2 3 4 5 6

positive outcomes:

p(E ) = p(E1) + p(E2) + p(E3) + p(E4)

= 216+5·36+52·6+53·1
1296 = 671

1296 = 0.5177

I E1: ‘6’ on 1st roll
I E2: ‘6’ on 2nd roll, but no ‘6’ on 1st roll
I . . .



Independent Events

Definition
Events E , E ′ ⊆ S are independent if

p(E ∩ E ′) = p(E ) · p(E ′)
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p(E ∩ E ′) = p(E ) · p(E ′)

Remarks

I Independence is often obvious

I but can also be tricky



Independent Events

Definition
Events E , E ′ ⊆ S are independent if

p(E ∩ E ′) = p(E ) · p(E ′)

Example (Die roll)

I E ′1: no ‘6’ on 1st roll

I E ′2: no ‘6’ on 2nd roll

E ′1 and E ′2 are independent.
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p(E2) = p(HH) + p(TT) = 1
2
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Definition
Events E , E ′ ⊆ S are independent if
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I E2: both tosses yield the same
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4
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Independent Events

Definition
Events E , E ′ ⊆ S are independent if

p(E ∩ E ′) = p(E ) · p(E ′)

Example (Sentence utterance)

1 spoken English sentence

I E1: first word is ‘I’

I E2: second word is ‘are’

Not independent!

Both individually rather likely, but together extremely unlikely.

p(E1 ∩ E2) 6= p(E1) · p(E2)



Back to the Dice Problem

Example (Chevalier de Méré, Pascal, Fermat 1654)

What is the probability of at least one ‘6’ in 4 rolls of a die?

Answer
p(E ) = 1− p(E ′) = 1− p(E ′1) · p(E ′2) · p(E ′3) · p(E ′4) = 1− (5

6)4

I E ′: no ‘6’ on any roll

I E ′1: no ‘6’ on 1st roll

I E ′2: no ‘6’ on 2nd roll

I . . .



Spice it up!

4 rolls of a single die expecting at least once a ‘6’ is favorable.

Example (Chevalier de Méré, Pascal, Fermat 1654)

How many rolls of 2 dice are needed for a favorable game, when
we expect to see at least once a pair of sixes?

Answer

I A ‘6’ shows in 1
6 of the cases

I A pair of sixes shows in 1
36 of the cases.

4 rolls are sufficient to make the 1-die game favorable. Since the
probability of a pair of sixes is 6 times as unlikely, we need 6 times
more rolls, which gives 4 · 6 = 24 rolls.

Problem
But Chevalier de Méré felt that he was losing and at least
25 rolls were needed. → Failure of Mathematics
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Roadmap

Basic Notions

Conditional Probabilities



Conditional probabilities — Intuition

Problem
Your fridge does not work.

Analysis

Cause Probability
disconnected

fuse blown
motor broken 0.1

coolant leak 0.1
plug or cord broken

alien sabotage 0.05
. . . . . .

Observation
The light inside is still on.
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Problem
Your fridge does not work.
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Conditional probabilities — Intuition

Problem
Your fridge does not work.

Analysis

Cause Probability
disconnected 0

fuse blown 0
motor broken 0.1

coolant leak 0.1
plug or cord broken 0

alien sabotage 0.05
. . . . . .

Observation
The light inside is still on.



Conditional probabilities

Definition
Given events E , E ′ ⊆ S , the probability that E happened given
that we already observed E ′ is p(E |E ′).

Definition (Formally...)

p(E |E ′) =
p(E ∩ E ′)

p(E ′)
p(E ′) 6= 0

Example (Dice again)

uniform prob. distribution p : {1, 2, 3, 4, 5, 6} → [0, 1]

I E = {6} rolling a ‘6’

I E ′ = {4, 5, 6} rolling at least a ‘4’

p(E |E ′) =
p(E ∩ E ′)

p(E ′)
=

1/6

1/2
=

1

3
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Independence and Conditional Probabilities

Theorem
Two events E , E ′ are independent if and only if

I both p(E ) and p(E ′) are positive and p(E |E ′) = p(E ), or

I p(E ) or p(E ′) is 0.

Intuitive reading

For independent events, knowledge of one event does not affect
the probability of the other.
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Another Problem

Example

A sick woman sees the doctor, who runs 2 positive tests (++) and
then looks up his clinical studies:

disease affected ++ +− −+ −−
d1 3,215 2,110 301 704 100
d2 2,125 396 132 1,187 410
d3 4,660 510 3,568 73 509

total 10,000 3,016 4,001 1,964 1019

Estimation
p(d1) = 32.15% p(d2) = 21.25% p(d3) = 46.60%

p(++|d1) = 2110
3215 = 65.63% p(++|d2) = 396

2125 = 18.64%

p(++|d3) = 510
4660 = 10.94%
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Another Problem

Example

A sick woman sees the doctor, who runs 2 positive tests (++) and
then looks up his clinical studies:

disease affected ++ +− −+ −−
d1 3,215 2,110 301 704 100
d2 2,125 396 132 1,187 410
d3 4,660 510 3,568 73 509

total 10,000 3,016 4,001 1,964 1019

Estimation
p(d1) = 32.15% p(d2) = 21.25% p(d3) = 46.60%

p(++|d1) = 2110
3215 = 65.63% p(++|d2) = 396

2125 = 18.64%

p(++|d3) = 510
4660 = 10.94%

What is the most likely disease of the woman?



Bayes Rule

Given p(E |E ′), p(E ), and p(E ′) we want to compute p(E ′|E )

Bayes formula

p(E ′) prior probability before E happened
p(E ′|E ) posterior probability after E happened

p(E ′|E ) =
p(E ′ ∩ E )

p(E )
p(E ) 6= 0

=
p(E ∩ E ′) · p(E ′)

p(E ) · p(E ′)
p(E ) · p(E ′) 6= 0

=
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Bayes Rule

Given p(E |E ′), p(E ), and p(E ′) we want to compute p(E ′|E )

Bayes formula

p(E ′) prior probability before E happened
p(E ′|E ) posterior probability after E happened

p(E ′|E ) =
p(E ′ ∩ E )

p(E )
p(E ) 6= 0

=
p(E ∩ E ′) · p(E ′)

p(E ) · p(E ′)
p(E ) · p(E ′) 6= 0

=
p(E |E ′) · p(E ′)

p(E )
p(E ) · p(E ′) 6= 0

p(E ′|E ) =
p(E |E ′) · p(E ′)

p(E )
p(E ) 6= 0, p(E ′) 6= 0



Let us Help The Sick Lady

p(d1|++) =
p(++|d1) · p(d1)

p(++)
=

2110/3215 · 0.3215

0.3016
= 69.96%

p(d2|++) =
p(++|d2) · p(d2)

p(++)
=

396/2125 · 0.2125

0.3016
= 13.13%

p(d3|++) =
p(++|d3) · p(d3)

p(++)
=

510/4660 · 0.4660

0.3016
= 16.91%



Let us Help The Sick Lady

p(d1|++) =
p(++|d1) · p(d1)

p(++)
=

2110/3215 · 0.3215

0.3016
= 69.96%

p(d2|++) =
p(++|d2) · p(d2)

p(++)
=

396/2125 · 0.2125

0.3016
= 13.13%

p(d3|++) =
p(++|d3) · p(d3)

p(++)
=

510/4660 · 0.4660

0.3016
= 16.91%

Most likely she suffers from d1.



Beware of Low Priors

Example

A doctor tests for a specific cancer that 1 in a 1,000 people suffer
from with a test that is 99% sensitive and 95% specific. What is
the probability of cancer given a positive test result?

Analysis



Beware of Low Priors

Example

A doctor tests for a specific cancer that 1 in a 1,000 people suffer
from with a test that is 99% sensitive and 95% specific. What is
the probability of cancer given a positive test result?

Analysis

S = {(cancer,−), (cancer, +), (clean,−), (clean, +)}
Events:

I Cancer = {(cancer,−), (cancer, +)}
I . . .

Interpretation:

I 99% sensitive → p(+|Cancer) = 0.99

I 95% specific → p(−|Clean) = 0.95



Beware of Low Priors

Example

A doctor tests for a specific cancer that 1 in a 1,000 people suffer
from with a test that is 99% sensitive and 95% specific. What is
the probability of cancer given a positive test result?

Analysis

p(Cancer|+) =
p(+|Cancer) · p(Cancer)

p(+)

=
p(+|Cancer) · p(Cancer)

p(+|Cancer) · p(Cancer) + p(+|Clean) · p(Clean)

=
0.99 · 0.001

0.99 · 0.001 + 0.05 · 0.999
= 0.019



Beware of Low Priors

Example

A doctor tests for a specific cancer that 1 in a 1,000 people suffer
from with a test that is 99% sensitive and 95% specific. What is
the probability of cancer given a positive test result?

Analysis

p(Cancer|+) =
p(+|Cancer) · p(Cancer)

p(+)

=
p(+|Cancer) · p(Cancer)

p(+|Cancer) · p(Cancer) + p(+|Clean) · p(Clean)

=
0.99 · 0.001

0.99 · 0.001 + 0.05 · 0.999
= 0.019

Only 1.9% of positively tested people have cancer; 98.1% are false positives.
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A doctor tests for a specific cancer that 1 in a 1,000 people suffer
from with a test that is 99% sensitive and 95% specific. What is
the probability of cancer given a positive test result?

So this test is useless?



Beware of Low Priors

Example

A doctor tests for a specific cancer that 1 in a 1,000 people suffer
from with a test that is 99% sensitive and 95% specific. What is
the probability of cancer given a positive test result?

So this test is useless?

p(Clean|−) =
p(−|Clean) · p(Clean)

p(−)

=
p(−|Clean) · p(Clean)

p(−|Cancer) · p(Cancer) + p(−|Clean) · p(Clean)

=
0.95 · 0.999

0.01 · 0.001 + 0.95 · 0.999
= 0.999989



Beware of Low Priors

Example

A doctor tests for a specific cancer that 1 in a 1,000 people suffer
from with a test that is 99% sensitive and 95% specific. What is
the probability of cancer given a positive test result?

So this test is useless?

p(Clean|−) =
p(−|Clean) · p(Clean)

p(−)

=
p(−|Clean) · p(Clean)

p(−|Cancer) · p(Cancer) + p(−|Clean) · p(Clean)

=
0.95 · 0.999

0.01 · 0.001 + 0.95 · 0.999
= 0.999989

So with a negative test, you can be 99.9989% certain to be cancer-free.



Final Problem

Example (vos Savant 1996)

On the night before the final exam, two students were partying in
another state and didn’t get back until it was over. Their excuse
was that they had a flat tire, and they asked if they could take a
make-up test. The professor agreed, wrote out a test and sent
them to separate rooms. The first question was worth 5 points,
and they answered it easily. The second question, worth 95 points,
was: ‘Which tire was it?’

What is the probability that both students answer equally?

Answer

(a) 1
16 (6.25%)

(b) 1
4 (25%)

(c) 1
2 (50%)
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make-up test. The professor agreed, wrote out a test and sent
them to separate rooms. The first question was worth 5 points,
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(c) 1
2 (50%)



That’s all folks!

Thank you for the attention.
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