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LINEAR MODELS
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Binary Classification with Linear Models

Example: the seminar at < time > 4 pm will

Classification task: Do we have an < time > tag in the current position?

Word | Lemma | LexCat | Case | SemCat | Tag
the the Art low
seminar | seminar | Noun low
at at Prep low stime
4 4 Digit low
pm pm Other | low | timeid
will will Verb low
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Feature Vector

Encode context into feature vector:

Fabienne Braune (CIS)

N

102
103
202
203
302
303

bias term
-3_lemma_the
-3_lemma_giraffe

-2_lemma_seminar
-2_lemma_giraffe

-1_lemma_at
-1_lemma_giraffe

+1_lemma_4
+1_lemma_giraffe
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Dot product with (initial) weight vector

h(X)=X-0T

Fabienne Braune (CIS)

X =

1]
X1 = 1
x2 =0

xpo1 = 1

x102 =0

xo01 =1
x202 =0

x301 = 1

x302 =0
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[ wp =1.00 ]
w1 = 0.01
wr = 0.01

X101 = 0.01

X102 = 0.01

X201 = 0.01

X202 = 0.01

X301 = 0.01

x302 = 0.01
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Prediction with dot product

h(X) = X-oT
Xowo + x1wy + - + XpWp
= 1%x14+1%001+0x0.014...40x0.01+1x0.01
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Predictions with linear models

Example: the seminar at < time > 4 pm will

Classification task: Do we have an < time > tag in the current position?
Linear Model: h(X)=X-0T

Prediction: If /(X) > 0.5, yes. Otherwise, no.
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Getting the right weights

Training: Find weight vector © such that h(X) is the correct answer as
many times as possible.

— Given a set T of training examples ti, - - - t, with correct labels y;,

find © such that h(X(t;)) = y; for as many t; as possible.
— X(t;) is the feature vector for the i-th training example t;
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Dot product with trained weight vector

h(X)=X-0T
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1]
X1 =
x> =0
x101 = 1
x102 =0
X — o—
xp01 = 1
x202 = 0
x301 = 1
x302 = 0
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[ wp =1.00 ]
wy = 0.001
wy = 0.02

x101 = 0.012

X102 = 0.0015

X201 = 0.4
X202 = 0.005
X301 — 0.1

X300 = 0.04
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Working with real-valued features

h(X)=X-0T

Fabienne Braune (CIS)

X =

[ xg=1.0 ]
X1 = 50.5
xp = 52.2

X101 = 45.6

X102 = 60.9

X201 — 40.4

X202 = 51.9

X301 = 40.5

X302 = 35.8
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wo = 1.00 ]
wy = 0.001
wy = 0.02
x101 = 0.012
X102 = 0.0015
X201 = 0.4
X202 = 0.005
X301 — 0.1

X300 = 0.04
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Working with real-valued features

h(X) = X-©T

Xowo + Xgwy + -+ 4+ Xp Wy
1.0x1+50.5%0.001 +... +40.5% 0.1 +35.8%0.04
= b540.5
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Working with real-valued features

Classification task: Do we have an < time > tag in the current position?
Prediction: h(X) = 540.5

@ What does 540.5 mean?
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Sigmoid function

We can push h(X) between 0 and 1 using a non-linear activation function
The sigmoid function o(7) is often used

h(x)
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Logistic Regression

Classification task: Do we have an < time > tag in the current position?
Linear Model: 7 = X -7
Prediction: If o(Z) > 0.5, yes. Otherwise, no.

Logistic regression:

@ Use a linear model and squash values between 0 and 1.
» Convert real values to probabilities

@ Put threshold to 0.5.

@ Positive class above threshold, negative class below.
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Logistic Regression

X0
X1 @0

©1
X2 x-eT

o, h(X) = o(Z)
X3 63

O4

X4
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LINEAR MODELS: LIMITATIONS
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Decision Boundary

What do linear models do?

e 0(Z) > 0.5 when Z(=X-07)>0
o Model defines a decision boundary given by X -©T =0

positive examples (have time tag)
negative examples (no time tag)

X2 L

X1
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Exercise

When we model a task with linear models, what assumption do we make
about positive/negative examples?
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Modeling 1: Learning a predictor for A

a b aAb beO el

0 0 0

0 1 0

10 0

11 1 20
Features : a, b Feature values : binary

Can we learn a linear model to solve this problem?
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Modeling 1: Learning a predictor for A
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Modeling 1: Logistic Regression

X0
—-30
X1 z
20 o(2)
2 20
Xo X1 X2 | X1 N\ X2
1 0 O 0(1*—30+0%20+40x%20) =0(—30)~0
1 0 1 O’(l*—30+0*20+1*20): ( 0)%0
1 1 0 U(l*—30+1*20+1*20): 0)%0
1 1 1 0'(1*—30+1*20+1*20)—0’( )%
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Modeling 2: Learning a predictor for XNOR

a b a XNOR b b0 el

0 0 1

0 1 0

10 0

11 1 20
Features : a, b Feature values : binary

Can we learn a linear model to solve this problem?

Fabienne Braune (CIS) An introduction to Neural Networks



Non-linear decision boundaries

X2 .= °

X1

Can we learn a linear model to solve this problem?
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Non-linear decision boundaries

X2 o °

X1

Can we learn a linear model to solve this problem?

No! Decision boundary is non-linear.
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Learning a predictor for XNOR

Linear models not suited to learn non-linear decision boundaries.

Neural networks can do that.
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NEURAL NETWORKS
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Learning a predictor for XNOR

a b a XNOR b b0 1

0 0 1

0 1 0

10 0

11 1 20
Features : a, b Feature values : binary

Can we learn a non-linear model to solve this problem?
Yes! E.g. through function composition.
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Function Composition

X0 Xo X1 X | X1 N\ Xo
—30 1 0 O ~
X1 — z 1 0 1 ~
o(Z) 1 1 0 ~
X0 20 1 1 1 ~
X0 X0 X1 X2 | —ix1 A\ TXxo
X1 5 z 1 0 1 R
o(Z) 1 1 0 ~
—20 1 1 1 =~

X2
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Function Composition

X0 X1 X2 | O'(Zl) | 0'(22) 0'(23)

1 0 O ~0 ~1 o(1x—-1040%204+1%20)=0(10) =~ 1
1 0 1 ~0 | =0 |o(l%—-1040%20+0%20)=0(—10)~0
1 1 0 ~0 | ~0 |o(1x—10+0%20+0%20)=c(—10)~0
1 1 1 ~1 | ~0 | o(1%x—10+1%20+1%20)=0(30)~1
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Feedforward Neural Network

We just created a feedforward neural network with:

1 input layer X (feature vector)
2 weight matrices U = (©1, ©2) and V = O3
1 hidden layer H composed of:

» 2 activations A; = 0(Z;) and A, = o(Z>) where:
* 71 =X 01
* Z=X-0,

1 output unit h(X) = o(Z3) where:
> Z3 =H- 63
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Feedforward Neural Network

Computation of hidden layer H:
0 A =0(X:-0q) Computation of output unit h(X):
0 Ay =0(X-0,) @ h(X)=0c(H-63)
@ By =1 (bias term)
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Feedforward neural network

Classification task: Do we have an < time > tag in the current position?

Neural network: /1(X) =0o(H-0,), with:

By=1
A1 =o0(X-01)
H= |A=o(X 0,)

Aj=0o(X-6))

Prediction: If h(X) > 0.5, yes. Otherwise, no.
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Getting the right weights

Training: Find weight matrices U = (©1, ©) and V = O3 such that /(X)
is the correct answer as many times as possible.

— Given a set T of training examples t1, - - - t, with correct labels y;,
find U = (©1, ©2) and V = O3 such that /(X)) =y; for as many t;
as possible.

— Computation of /(X)) called forward propagation
— U= (01, ©3) and V = O3 with error back propagation

Will be covered in lecture about training of neural networks
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Network architectures

Depending on task, a particular network architecture can be chosen:

input Hq hidden 1 Ho hidden 2

Note: Bias terms omitted for simplicity
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Multi-class classification

More than two labels

Instead of “yes” and “no”, predict ¢; € C = {c1, -, ck}

Not just <time> label but also <etime>,<\etime>,...

Use k output units, where k is number of classes

» Output layer instead of unit
» Use softmax to obtain value between 0 and 1 for each class
» Highest value is right class
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A NEURAL LANGUAGE MODEL
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Neural language model

e Early application of neural networks (Bengio et al. 2003)
@ Task: Given k previous words, predict the current word
Estimate: P(we|we_g, -+, We—2, We_1)

@ Problem with non-neural approaches:
— Huge number of features
w; represented with V binary features (V is vocabulary)
— Each word is sparse binary vector
— No way to model similarity

The cat is walking in the bedroom
A dog was running in a room
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Neural language model

@ Solution: Associate a distributed word feature vector to each word
— Learn shared representation for words

— Learn with neural network
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Feedforward Neural Network

input V) hidden %4

Given words w;i_g4, Wi_3, Wi_p and w;_1, predict w;
Note: Bias terms omitted for simplicity
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Context vectors

Input layer are context vectors Cy_4, Ci—3, Ct— and Gt

e C(i) is dot product of weight matrix C with index of w;

» W = {dog,cat,kitchen,table,chair}, w;p. =

o= O OO

Note: There is no non-linearity here
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Context vectors

Representation of dog is first row of C
Note: Bias terms omitted for simplicity
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Context vectors

Do this for each word with same C (shared)
Note: Bias terms omitted for simplicity
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Feedforward Neural Network

input V) hidden %4

Given contexts C;_4, Ci_3, Ci_o and C;_1, predict w;
Note: Bias terms omitted for simplicity
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Feedforward Neural Network

Input layer (X): Context vectors Ci_4, Ci—3, Ci—2 and G
Weight matrices U, V

Hidden layer (H): o(X - U + d)

Output layer (1): H-V +b

Prediction: /(X) = softmax()

@ Predicted class is the one with highest probability (given by softmax)
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Getting the right weights

Training: Find weight matrices C, U, V (and biases b, d) such that /(X)
is the correct answer as many times as possible.

— correct answer: word at position t

— Given a set T of training examples ti,- - - t, with correct labels y;
(wy), find C, U, V (and biases b, d) such that /(X)) =y; for as many
t; as possible.

— forward propagation to compute /(X)
— back propagationof error to find best C, U, V' (and biases b, d)
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Neural language model

@ Beats benchmarks

@ Representation C is shared among all words
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WORD EMBEDDINGS

Fabienne Braune (CIS) An introduction to Neural Networks



Word Embeddings

@ Representation of words in vector space

rich

sliver

Ociety

/m:cn

poor
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Word Embeddings

@ Similar words are close to each other
— Similarity is the cosine of the angle between two word vectors

rich

sliver

Ociety

disease

poor
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Learning word embeddings

Count-based methods:

o Compute cooccurrence statistics
@ Learn high-dimensional representation

@ Map sparse high-dimensional vectors to small dense representation

Neural networks:

@ Predict a word from its neighbors

@ Learn (small) embedding vectors
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Word cooccurrence in Wikipedia

@ corpus = English Wikipedia

@ cooccurrence defined as occurrence within k = 10 words of each other

cooc.(rich,silver) = 186
cooc.(poor silver) = 34
cooc.(rich,disease) = 17
cooc.(poor,disease) = 162
cooc.(rich,society) = 143
cooc.(poor,society) = 228

vV vy VY VY VY

Adapted slide from Hinrich Schiitze
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Coocurrence-based Word Space

rich

sliver

poor
cooc.(poor,silver)=34,cooc.(rich,silver)=186
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Coocurrence-based Word Space

rich

sliver

”;ase

poor
cooc.(poor,disease)=162,cooc.(rich,disease)=17.
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Exercise

rich

sliver

”&ase

poor

ccooc.(poor,society)=228, cooc.(rich,society)=143
How is it represented?
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Coocurrence-based Word Space

rich

sliver

Ociety

”;ase

poor
cooc.(poor,society)=228, cooc.(rich,society)=143
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Dimensionality of word space

@ Up to now we've only used two dimension words: rich and poor.
@ Do this for all possible words in a corpus — high-dimensional space

o Formally, there is no difference to a two-dimensional space with three
vectors.

@ Note: a word can have a dual role in word space.

» Each word can, in principle, be a dimension word, an axis of the space.
» But each word is also a vector in that space.

Adapted slide from Hinrich Schiitze
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Semantic similarity

rich

sliver

Ociety

disease

poor

Similarity is the cosine of the angle between two word vectors
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Word vectors with Neural Networks

@ LM Task: Given k previous words, predict the current word
— For each word w in V, model P(w¢|wi—1, wi_2, ..., w_p)
— Learn shared representation C of word features

— Input for task

@ Task: Given k context words, predict the current word
— Learn shared representation C of word features
— Word embedding w
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Network architecture

input V) hidden %4

Given words w_p, Wi_1, Wer1 and weyp, predict w;
Note: Bias terms omitted for simplicity
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Network architecture

input V) hidden %4

We want the context vectors — embed words in shared space
Note: Bias terms omitted for simplicity
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Simplifications

@ Hidden layer: replaced by sum of contexts

@ Output layer: single logistic unit
— No need for distribution over words (only vector representation)
— Task as binary classification problem:

» Given input and weight matrix say if w; is current word
» We know the correct w;, how do we get the wrong ones?
— negative sampling
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Semantic similarity task

How similar are the words:

@ coast and shore; rich and money; happiness and disease; close and
closet; close and open

Similarity tasks:
@ WordSim-353 (Finkelstein et al. 2002)

» Measure associations
» close and closet

@ SimLex-999

» Only measure semantic similarity
> close and closet
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Recap

Fitting data with non-linear decision boundary difficult with linear
models

Solution: compose non-linear functions with neural networks

Successful in many NLP applications:

» Language modeling
» Learning word embeddings

Feeding word embeddings to neural network has proven successful in
many NLP tasks (e.g. sentiment analysis)
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Thank you !
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