Statistical Machine Translation Part VI – Better Word Alignment, Morphology and Syntax

Alexander Fraser

CIS, LMU München

2016.12.20 SMT and NMT

MT talk on January 10th

• Christine Bruckner will give a talk and demo:

Machine Translation and the Professional Translator's Workplace – Practical Insights into Current Commercial Solutions

• Talk on Tues. January 10th at 12:15 in 131 (upstairs, near CIS)

Back to SMT

- We changed the seminar schedule
 - I will actually go back to SMT in this lecture
 - I'm going to talk about some other areas of importance in SMT research
 - Touches on work in my research group
- This lecture was originally designed to be after the last SMT lecture
- But I'll try to make very general comments about problems in NMT as appropriate
- Matthias Huck will present the details of how NMT works in January

Where we have been

- We've discussed the MT problem and evaluation
- We have covered phrase-based SMT
 - Model (now using log-linear model)
 - Training of phrase block distribution
 - Dependent on word alignment
 - Search
 - Evaluation

Where we are going

- Word alignment makes linguistic assumptions that are not realistic
- Phrase-based decoding makes linguistic assumptions that are not realistic
- How can we improve on this?

Outline

- Improved word alignment
- Morphology
- Syntax
- Conclusion

Improved word alignments

- My dissertation was on word alignment
- Three main pieces of work
 - Measuring alignment quality (F-alpha)
 - We saw this already
 - A new generative model with many-to-many structure
 - A hybrid discriminative/generative training technique for word alignment

Modeling the Right Structure

- 1-to-N assumption
 - Multi-word "cepts" (words in one language translated as a unit) only allowed on target side. Source side limited to single word "cepts".
- Phrase-based assumption
 - "cepts" must be consecutive words

LEAF Generative Story

- Explicitly model three word types:
 - Head word: provide most of conditioning for translation
 - Robust representation of multi-word cepts (for this task)
 - This is to semantics as ``syntactic head word'' is to syntax
 - Non-head word: attached to a head word
 - Deleted source words and spurious target words (NULL aligned)

LEAF Generative Story

- Once source cepts are determined, exactly one target head word is generated from each source head word
- Subsequent generation steps are then conditioned on a single target and/or source head word
- See EMNLP 2007 paper for details

Discussion

- LEAF is a powerful model
- But, exact inference is intractable
 - We use hillclimbing search from an initial alignment
- Models correct structure: M-to-N discontiguous
 - First general purpose statistical word alignment model of this structure!
 - Can get 2nd best, 3rd best, etc hypothesized alignments (unlike 1to-N models combined with heuristics)
 - Head word assumption allows use of multi-word cepts
 - Decisions robustly decompose over words (not phrases)

New knowledge sources for word alignment

- It is difficult to add new knowledge sources to generative models
 - Requires completely reengineering the generative story for each new source
- Existing unsupervised alignment techniques can not use manually annotated data

Decomposing LEAF

- Decompose each step of the LEAF generative story into a sub-model of a log-linear model
 - Add backed off forms of LEAF sub-models
 - Add heuristic sub-models (do not need to be related to generative story!)
 - Allows tuning of vector $\boldsymbol{\lambda}$ which has a scalar for each sub-model controlling its contribution
- How to train this log-linear model?

Semi-Supervised Training

- Define a semi-supervised algorithm which alternates increasing likelihood with decreasing error
 - Increasing likelihood is similar to EM
 - Discriminatively bias EM to converge to a local maxima of likelihood which corresponds to "better" alignments
 - "Better" = higher F_{α} -score on small gold standard word alignments corpus
 - Integrate minimization from MERT together with EM

The EMD Algorithm

Discussion

- Usual formulation of semi-supervised learning: "using unlabeled data to help supervised learning"
 - Build initial supervised system using labeled data, predict on unlabeled data, then iterate
 - But we do not have enough gold standard word alignments to estimate parameters directly!
- EMD allows us to train a small number of important parameters discriminatively, the rest using likelihood maximization, and allows interaction
 - Similar in spirit (but not details) to semi-supervised clustering

Contributions

- Found a metric for measuring alignment quality which correlates with decoding quality
- Designed LEAF, the first generative model of M-to-N discontiguous alignments
- Developed a semi-supervised training algorithm, the EMD algorithm
 - Allows easy incorporation of new features into a word alignment model that is still mostly unsupervised
- Obtained large gains of 1.2 BLEU and 2.8 BLEU points for French/English and Arabic/English tasks

Outlook

- There was a lot of interest in word alignment around 2005-2009
 - Key to phrase-based approach need good quality word alignments, particularly for sparsely seen vocabulary
 - Word alignment is still useful for many specialized subproblems in translation and related multilingual problems
- However, neural machine translation is not trained on word alignments!
 - As a side effect of training on sentence pairs, a so-called "attentional model" is learned
 - Gives weight to the input embeddings of words that will be useful for translating the current word being generated
- However, ideas from word alignment are still being integrated into the neural model, this will probably continue for a few years

Morphology

- We will use the term morphology loosely here
 - We will discus two main phenomena: Inflection, Compounding
 - There is less work in SMT on modeling of these phenomena than there is on syntactic modeling
 - A lot of work on morphological reduction (e.g., make it like English if the target language is English)
 - Not much work on generating (necessary to translate to, for instance, Slavic languages or Finnish)

Inflection

Inflection

- Inflection
 - The best ideas here are to strip redundant morphology
 - For instance case markings that are not used in target language
 - Can also add pseudo-words
 - One interesting paper looks at translating Czech to English (Goldwater and McClosky)
 - Inflection which should be translated to a pronoun is simply replaced by a pseudo-word to match the pronoun in preprocessing

Compounds

- Find the best split by using word frequencies of components (Koehn 2003)
- Aktionsplan -> Akt Ion Plan or Aktion Plan?
 - Since Ion (English: ion) is not frequent, do not pick such a splitting!
- Initially not improved by using hand-crafted morphological knowledge
- Fabienne Cap has shown using SMOR (Stuttgart Morphological Analyzer) together with corpus statistics is better (Fritzinger and Fraser WMT 2010)

Work at Munich on Morphology

- My group has done a lot of work on modeling inflection and compounds in SMT
 - Particularly for translation into morphologically rich languages (e.g., English to German translation)
- Looking at applying similar techniques in NMT

Syntax

- Better modeling of syntax was a very hot topic in SMT
- For instance, consider the problem of translating German to English
 - One way to deal with this is to make German look more like English

Clause Level Restructuring [Collins et al.]

• Why clause structure?

- languages *differ vastly* in their clause structure (English: SVO, Arabic: VSO, German: fairly *free order*; a lot details differ: position of adverbs, sub clauses, etc.)
- large-scale restructuring is a *problem* for phrase models

• Restructuring

- reordering of constituents (main focus)
- add/drop/change of *function words*

Clause Structure

S PPER-SB VAFIN-HD VP-OC	Ich I werde PPER-DA NP-OA VVFIN	will Ihnen you ART-OA die the ADJ-NK entsprechenden corresponding NN-NK Anmerkungen comments aushaendigen pass on	MAIN CLAUSE
\$	\$, 8-MO	KOUS-CP damit so that PPER-SB Sie you VP-OC PDS-OA das that ADJD-MO eventuell perhaps PP-MO APRD-MO bei in ART-DA der the NN-NK Abstimmung vote VVINF uebernehmen include VMFIN koennen can	SUB- ORDINATE CLAUSE

• Syntax tree from German parser

Slide from Koehn and Lopez 2008

Reordering When Translating

- Reordering when translating into English
 - tree is *flattened*
 - clause level constituents line up

Systematic Reordering German \rightarrow English

- Many types of reorderings are systematic
 - move verb group together
 - subject verb object
 - move negation in front of verb
- \Rightarrow Write rules by hand
 - apply rules to test and training data
 - train standard *phrase-based* SMT system

English to German

- A lot of work in Munich on this language pair
- We can also apply this idea in translation from English to German
 - Put English in German word order
 - A bit more difficult but doable (Gojun and Fraser 2012)
 - More recent work also looks at agreement and tense

But what if we want to integrate probabilities?

- It turns out that we can!
- We will use something called a synchronous context free grammar (SCFG)
- This is surprisingly simple
 - Just involves defining a CFG with some markup showing what do to with the target language
 - We'll first do a short example translating an English NP to a Chinese NP
 - Then we'll look at some German to English phenomena

Tree-Based Models

- Traditional statistical models operate on sequences of words
- Many translation problems can be best explained by pointing to syntax
 - reordering, e.g., verb movement in German-English translation
 - long distance agreement (e.g., subject-verb) in output
- \Rightarrow Translation models based on tree representation of language
 - significant ongoing research
 - state-of-the art for some language pairs

Phrase Structure Grammar

- Phrase structure
 - noun phrases: the big man, a house, ...
 - prepositional phrases: at 5 o'clock, in Edinburgh, ...
 - verb phrases: going out of business, eat chicken, ...
 - adjective phrases, ...
- Context-free Grammars (CFG)
 - non-terminal symbols: phrase structure labels, part-of-speech tags
 - terminal symbols: words
 - production rules: $NT \rightarrow [NT,T]+$ example: $NP \rightarrow DET NN$

Phrase Structure Grammar

Phrase structure grammar tree for an English sentence (as produced Collins' parser)

$$\begin{split} \mathrm{NP} &\longrightarrow \mathrm{DT}_{1}\mathrm{NPB}_{2} \ / \ \mathrm{DT}_{1}\mathrm{NPB}_{2} \\ \mathrm{NPB} &\longrightarrow \mathrm{JJ}_{1}\mathrm{NN}_{2} \ / \ \mathrm{JJ}_{1}\mathrm{NN}_{2} \\ \mathrm{NPB} &\longrightarrow \mathrm{NPB}_{1}\mathrm{JJ}_{2} \ / \ \mathrm{JJ}_{2}\mathrm{NPB}_{1} \\ \mathrm{DT} &\longrightarrow \mathrm{the} \ / \ \varepsilon \\ \mathrm{JJ} &\longrightarrow \mathrm{strong} \ / \ \mathrm{F}^{\mathrm{ch}}_{\mathrm{ch}} \\ \mathrm{JJ} &\longrightarrow \mathrm{north} \ / \ \mathrm{th} \\ \mathrm{NN} &\longrightarrow \mathrm{wind} \ / \ \mathrm{Ch} \end{split}$$

Learning a SCFG from data

- We can learn rules of this kind
 - Given: Chinese/English parallel text
 - We parse the Chinese (so we need a good Chinese parser)
 - We parse the English (so we need a good English parser)
 - Then we word align the parallel text
 - Then we extract the aligned tree nodes to get
 SCFG rules; we can use counts to get probabilities

Synchronous Phrase Structure Grammar

• English rule

 $\rm NP\, \rightarrow\, DET\,\, JJ\,\, NN$

• French rule

 $\rm NP\, \rightarrow\, DET\, \, NN\, \, JJ$

• Synchronous rule (indices indicate alignment):

 $NP \rightarrow DET_1 NN_2 JJ_3 \mid DET_1 JJ_3 NN_2$

Synchronous Grammar Rules

• Nonterminal rules

 $\mathrm{NP} \rightarrow \mathrm{DET}_1 \ \mathrm{NN}_2 \ \mathrm{JJ}_3 \ \big| \ \mathrm{DET}_1 \ \mathrm{JJ}_3 \ \mathrm{NN}_2$

• Terminal rules

 $N \rightarrow maison \mid house$ $NP \rightarrow la maison bleue \mid the blue house$

• Mixed rules

 $NP \rightarrow la maison JJ_1 |$ the JJ_1 house

Tree-Based Translation Model

- Translation by parsing
 - synchronous grammar has to parse entire input sentence
 - output tree is generated at the same time
 - process is broken up into a number of rule applications
- Translation probability

$$SCORE(TREE, E, F) = \prod_{i} RULE_{i}$$

• Many ways to assign probabilities to rules

Aligned Tree Pair

Phrase structure grammar trees with word alignment (German–English sentence pair.)

Reordering Rule

• Synchronous grammar rule

 $VP \rightarrow PPER_1 NP_2$ aushändigen | passing on $PP_1 NP_2$

- Note:
 - one word $\operatorname{aush}\ddot{\operatorname{andi}}$ mapped to two words $\operatorname{passing}$ on ok
 - but: fully non-terminal rule not possible (one-to-one mapping constraint for nonterminals)

Another Rule

• Subtree alignment

• Synchronous grammar rule (stripping out English internal structure)

 $PRO/PP \rightarrow Ihnen \mid to you$

• Rule with internal structure

$$PRO/PP \rightarrow Ihnen \begin{vmatrix} TO & PRP \\ | & | \\ to & you \end{vmatrix}$$

Slide from Koehn 2009

Another Rule

 \leftrightarrow

 \bullet Translation of German werde to English shall be

- $\bullet\,$ Translation rule needs to include mapping of v_P

Internal Structure

• Stripping out internal structure

```
VP \rightarrow werde VP_1 \mid shall be VP_1
```

 \Rightarrow synchronous context free grammar

• Maintaining internal structure

 \Rightarrow synchronous tree substitution grammar

Slide from Koehn 2009

But unfortunately we have some problems

- Two main problems with this approach
 - A text and its translation are not always isomorphic!
 - CFGs make strong independence assumptions

- A text and its translation are not always isomorphic!
 - Heidi Fox looked at two languages that are very similar, French and English, in a 2002 paper
 - Isomorphic means that a constituent was translated as something that can not be viewed as one or more complete constituents in the target parse tree
 - She found widespread non-isomorphic translations
 - Experiments (such as the one in Koehn, Och, Marcu 2003) showed that limiting phrase-based SMT to constituents in a CFG derivation hurts performance substantially
 - This was done by removing phrase blocks that are not complete constituents in a parse tree
 - However, more recent experiments call this result into question

- CFGs make strong independence assumptions
 - With a CFG, after applying a production like S -> NP VP then NP and VP are dealt with independently
 - Unfortunately, in translation with a SCFG, we need to score the language model on the words not only in the NP and the VP, but also across their boundaries
 - To score a trigram language model we need to track two words OUTSIDE of our constituents
 - For parsing (= decoding), we switch from divide and conquer (low order polynomial) for an NP over a certain span to creating a new NP for each set of boundary words!
 - Causes an explosion of NP and VP productions
 - For example, in chart parsing, there will be many NP productions of interest for each chart cell (the difference between them will be the two proceeding words in the translation)

- David Chiang's Hiero model partially overcomes both of these problems
 - One of very many syntactic SMT models that were published between about 2003 and 2015
 - Work goes back to mid-90s, when Dekai Wu first proposed the basic idea of using SCFGs (not long after the IBM models were proposed)

Chiang: Hierarchical Phrase-based Model

- Chiang [ACL, 2005] (best paper award!)
 - context free bi-grammar
 - one non-terminal symbol
 - right hand side of rule may include non-terminals and terminals
- Competitive with phrase-based models in 2005 DARPA/NIST evaluation

Types of Rules

- Word translation
 - $X \rightarrow$ maison \parallel house
- Phrasal translation
 - $X \rightarrow daba$ una bofetada | slap
- Mixed non-terminal / terminal hierarchial phrases
 - $X \rightarrow X_1$ bleue \parallel blue X_1
 - $X \rightarrow$ ne X_1 pas \parallel not X_1
 - $X \to X_1 X_2 \parallel X_2 \text{ of } X_1$
- Technical rules
 - $S \rightarrow S_1 X_2 \parallel S_1 X_2$
 - $S \to X_1 \parallel X_1$

Learning Hierarchical Rules

Learning Hierarchical Rules

 $X \to \mathsf{a}$ Ia $X \parallel \mathsf{the}\ X$

Comments on Hiero

- Grammar does not depend on labeled trees, and does not depend on preconceived CFG labels (Penn Treebank, etc)
 - Instead, the word alignment alone is used to generate a grammar
 - The grammar contains all phrases that a phrase-based SMT system would use as bottom level productions
 - This does not completely remove the non-isomorphism problem but helps
- Rules are strongly lexicalized so that only a low number of rules apply to a given source span
 - This helps make decoding efficient despite the problem of having to score the language model
- Work in Munich on discriminative models for choosing hierarchical rules has been effective

Comments on Morphology and Syntax in MT

- Phrase-based SMT is robust, and is still state of the art for many language pairs
 - Competitive with or better than rule-based for many tasks (particularly with heuristic linguistic processing)
 - Can be competitive with NMT on some language pairs; but this won't last for much longer
 - Industry workhorse

Before NMT

- Many research groups working on taking advantage of syntax in statistical models
- Hiero is easy to explain, but there are many other models
- Chinese->English MT (not just SMT) was already dominated by syntactic SMT approaches, a few other language pairs interesting

NMT

- There has been a large amount of work on NMT in the last two years
 - I mostly talked in this lecture about dealing with the poor linguistic assumptions in phrase-based SMT
 - Until NMT appeared, syntactic models thought to be the way forward, now at end?
 - My research group has been working on dealing with morphological richness (particularly in the target language), domain adaptation (out of scope here)
- NMT has changed this in a substantial way
 - For instance, there are a few papers showing that word order doesn't seem to be a major problem in NMT, hurts motivation for syntax
 - Morphological richness is still a problem, but may not need much specialized knowledge in NMT (not known yet)
- 4 areas of work here in Munich
 - Looking at morphological richness and NMT
 - Considering translation problems that were out of reach with SMT (for instance, modelling beyond the sentence level!)
 - Examining character-level models (may help with morphological generalization)
 - Exploiting comparable corpora, particularly for domain adaptation (out of scope here)

• Thanks for your attention!